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Abstract. Camera traps are a vital tool for ecologists to enable them
to monitor wildlife over large areas in order to determine population
changes, habitat, and behaviour. As a result, camera-trap datasets are
rapidly growing in size. Recent advancements in Artificial Neural Net-
works (ANN) have emerged in image recognition and detection tasks
which are now being applied to automate camera-trap labelling. An
ANN designed for species detection will output a set of activations, rep-
resenting the observation of a particular species (an individual class) at
a particular location and time and are often used as a way to calculate
population sizes in different regions. Here we go one step further and
explore how we can combine ANNs with probabilistic graphical models
to reason about animal behaviour using the ANN outputs over different
geographical locations. By using the output activations from ANNs as
data along with the trap’s associated spatial coordinates, we build spa-
tial Bayesian networks to explore species behaviours (how they move and
distribute themselves) and interactions (how they distribute in relation
to other species). This combination of probabilistic reasoning and deep
learning offers many advantages for large camera trap projects as well
as potential for other remote sensing datasets that require automated
labelling.

Keywords: Animal Behavior · Convolutional Neural Networks · Bayesian
Networks · Activation Based Reasoning.

1 Introduction

Artificial Neural Networks (ANNs), and in particular, Convolutional Neural Net-
works (CNNs) have superseded traditional statistical methods in a multitude of
domains, ranging from speech recognition and synthesis [6], natural language
processing [2] as well as image processing, detection and recognition tasks [1].
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Recently there has been growing interest by ecologists into the use of machine
learning to assist with the growing task of labelling camera trap data [4]. A
camera trap consists of an imaging device with an automatic trigger. These
triggers are often in the form of a passive infrared sensor or timer which starts
off the capture of a series of images, from here on in referred to as a sequence.
Ecologists have increasingly used camera trap surveys to monitor and investigate
species populations and animal behaviour without the need for physical capture
of the animals [7]. With the decrease in the cost of camera technology and storage
hardware, we’ve seen a rapid increase in size and extent of these datasets.

Traditionally an individual researcher, or their team, would process through
each image taken during the survey, labelling each with the species seen and
any behaviour that may be of interest to the study. As the datasets grew, re-
searchers began to enlist citizen scientists to assist with the endeavour. This,
however, still requires vast amounts of human time [4]. Which in turn has led
ecologists to investigate alternative means in labelling, in particular, the use of
machine learning to assist the endeavour in reducing human dependency and
potentially speeding up the process of labelling. Initial work in species classifica-
tion has utilised CNNs by feeding whole images into the model with individual
neuron outputs representing each species occurring in a given image. This has
shown promising results but has also identified certain issues with CNNs that
are particularly apparent with camera trap data.

One major issue is that of overfitting. Given that each camera trap placed is
usually left in the same location for the duration of a study, the background of
all images from a single camera is the same. When there is a high density of a
single species at one location, CNNs tend to focus on the background rather than
the features of the animal within the image. To overcome this issue, Beery et
al. have developed an object-detection model called MegaDetector which identi-
fies ‘animal’, ‘human’ and ‘vehicle’ classes along with their predicted bounding
box within the given image [1]. These detections can then be cropped in accor-
dance to the predicted bounding box and passed to a species classifier for finer
grain prediction, reducing the ability of the species classifier to overfit to the
background of the images.

While there is still research to be done on fine-tuning the automation of the
labelling process, there is a potential for reasoning about the labelling of images
given the uncertainty of the classification to better understand the behaviour
of different species. Thus, we propose a framework for reasoning about species
behaviour, based on the activations of a CNN trained to identify species in
different geographical locations.

Bayesian Networks (BNs) have been successfully used in many areas of re-
search where data is characterised by uncertainty, including in ecology ([3], [11],
[5]) . There has also been some work exploring the use of spatial Bayesian net-
works to analyse the movement of species [10]. In this paper, we investigate
combining ANNs with BNs so that rather than reasoning about observations
made by humans, we can automate the entire process of understanding ani-
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mal behaviour starting from the image and ending with predictive models that
explain complex spatial behaviours.

In the next section, we will firstly describe the BorneoCam dataset that
we focus on for this study. Secondly, we shall present the deep-learning-based
classifier for automating the labelling of images in the BorneoCam dataset. We
then describe how we use these labels (in the form of ANN activations as data)
to learn a Bayesian Network allowing us to reason and predict about the species
sightings across a number of cameras spread over different geographical locations.

2 Methodology

2.1 Camera Trap Data

The BorneoCam dataset includes camera trap imagery from multiple surveys
across northern Borneo which will be made publicly available at a later date. For
the following experimentation, we utilise just one subset of the dataset relating
to a single survey, identified as ‘OG3’ as shown in Figure 1. The region consists
of 47 camera locations further split into North, West and East subregions each
consisting of 15 to 16 cameras. The images in Figure 1 show a sample camera
trap image along with a sample extraction/detection containing just the animal.

Fig. 1. OG3 Survey Site with Camera Locations from the BorneoCam Dataset, a sam-
ple camera trap image and detection extract of a Red muntjac.
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2.2 Experiments

Firstly, the MegaDetector is used, an object detection model trained on a va-
riety of datasets from around the world which identifies ‘animal’, ‘human’ and
‘vehicle’ classes along with their associated bounding box [1]. Through qualita-
tive analysis, the results of the model seem reasonable enough to assume some
degree of certainty that when an image has a species label and has one detection
from the MegaDetector that the bounding box from the detection matches the
region of image containing the species identified in the labelled set. With these
one-detection, one-label images we are able to build a dataset to train a deep-
learning-based classifier just on the region of an image that contains the animal
limiting the risk of the classifier to overfit to the background of each location.

In order to demonstrate our approach, we train a CNN species classifier
on the six species with the highest image frequencies from the dataset while
merging ‘Red muntjac’ and ‘Yellow muntjac’ into a singular ‘Muntjac’ class.
This is due to difficulties in classifying these species because of subtle differences
in their visual characteristics. This presents us with ‘Bearded Pig’, ‘Long-tailed
porcupine’, ‘Southern pig-tailed macaque’, ‘Muntjac’ and ‘Spiny rat’.

Fig. 2. Visualisation of sequence frequency by species in the OG3 region.

The survey in use from the BorneoCam dataset was set up so that each
camera captures a sequence of ten images once the device has been triggered.
Often it is found that the first image contains no or a small portion of the animal
as the triggers viewing angle is wider than the camera’s view. Thus, we take the
second image of each sequence to obtain a higher likelihood of the animal in
view. The resulting dataset is split based on camera location into 70% training,
5% validation and 25% testing subsets. Splitting based on camera location allows
us to test that the model is able to generalise to images taken from previously
unseen locations. Once the images are sorted into the relevant sets, the number
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of images per species is normalised so that each class has a fair representation
of samples.

A model is trained based on the ResNet50v2 architecture [12] with a clas-
sification head of one average pooling layer followed by a dropout layer of 0.2
and finally a dense layer using softmax activations. The model is trained util-
ising transfer learning from a model pretrained on the ImageNet dataset [8].
Categorical cross-entropy is used as the loss function and a learning rate of 1e-3
for five epochs is run with only the classification head trainable. Followed by
five epochs with a learning rate of 1e-4 where layers above 150 are trainable.
The ResNet50v2 architecture has been chosen based on prior experimentation
as appears to be less prone to overfitting and provides a reasonable result in
accuracy.

In order to build the BN from the activation data, the activations generated
from the Resnet are pre-processed into intervals over the duration of the camera
trap study. These intervals are derived by considering the highest activation
of each predicted image as a sighting of the respective species. This is then
recorded as a sighting at the interval the image capture falls within for the
relevant camera location and species. The interval size can be determined based
upon the idealised granularity ensuring that the interval is greater than the
estimated time required for the species of interest to pass by two or more camera
locations.

BNs are graphical models that encode the joint distribution of a dataset
using a graphical structure to capture independent relations between variables
and local conditional probability distributions. See Fig 3 for an example BN with
five nodes where the probability distribution at each node is conditioned upon
its parents.

Fig. 3. A Bayesian Network with 5 nodes.

BNs can be inferred from data using score and search methods such as hill
climbing with the log-likelihood metric, or constraint-based methods such as the
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PC algorithm [9]. In this paper, these approaches were both explored to infer BN
models from a subset of the processed activation data (70% as training data).
Here, each BN node will represent one species at a particular spatial coordinate.
The resulting structures were explored for spatial features and specific species
interactions. The remaining 30% of activation data was used to test the BNs
as predictive models. Prediction was then conducted on a location-by-location
basis. It involved using inference where evidence was entered into the BN model
based upon the activations of all surrounding locations and the BN model was
used to predict the presence of species in each test location (in the form of a
posterior probability distribution over all species).

Figure 4 presents an overview process diagram visualising the steps taken in
the methodology.

Fig. 4. Process diagram providing an overview of the methodology.

3 Results

First, we look at the ability of the CNN to automatically identify species from
the BorneoCam data. Figure 5 shows the learning of the model with 5 epochs
training the classification head and the last 5 epochs fine-tuning with layers
150+ trainable. Figure 6 shows the confusion matrices, visualising the difference
between the labels and that of the predictions from the ResNet model. We can
see that on the whole, the model performs well with relatively high numbers
of correct classification (frequencies on the diagonal). The classes that are most
confused are that of the long-tailed porcupine and the spiny rat. This could be
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because both are relatively small, have a long tail and similar body shape. The
long-tailed porcupine has a distinctive “brush” on the end of the tail, but this
can be missing or difficult to see, so it’s unlikely the ANN has learnt this feature.

Fig. 5. Training/validation loss and accuracy by epoch.

Fig. 6. Confusion matrix of the Species Classifier.
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Now we explore the use of the output activations as data that we want
to reason about. To do this, interval pre-processing was used as explained in
the methods section. Figure 7 shows the images taken within the OG3 region
overtime giving us an overview of the total time period. The size of each circle
represents the number of images taken for that location at a particular time.
Notice that for a small number of cameras, there is potential malfunction, empty
battery or full memory as the images stop recording after a fixed time. These
cameras with missing data may need to be removed from further analysis, though
if there are enough arcs learnt towards the nodes in the network where we are
missing data it may be possible to predict the missing sightings.

Fig. 7. Visualisation of images taken at each camera location over time. Colour relates
to the individual cameras / rows.

Now we turn to the Bayesian network analysis. Table 1 shows the accuracy
for each species and each location of a network learnt on the west subregion
when tested on the test dataset. It is clear that some species/locations are more
easily predicted than others which may infer a stronger relation, be it a higher
number of arcs directed to the relevant nodes in the BN or that there is a strong
pattern identified in the learning and fitting.

BNs are learnt for individual species and one network incorporating all species
as seen in Figure 8. We can see that when incorporating additional species into
the model that links are identified both between the same species at different
locations but also between differing species. This in turn provides further in-
formation for making predictions and presents avenues of exploration into the
underlying variables behind the inter-species behaviour patterns.
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Species Accuracy Sensitivity Specificity Precision Recall F1

Bearded Pig 0.934 0.989 0.204 0.942 0.989 0.965
Long Tailed Porcupine 0.906 0.986 0.15 0.917 0.986 0.95
Muntjac 0.821 0.965 0.262 0.835 0.965 0.895
Southern Pig Tailed Macaque 0.97 0.989 0.45 0.98 0.989 0.985
Spiny Rat 0.915 0.967 0.349 0.941 0.967 0.954

Table 1. OG3 West BN Prediction Statistics

Fig. 8. BNs for each species (Bearded Pig, Long Tailed Porcupine, Muntjac, Southern
Pig Tailed Macaque, Spiny Rat) and all species in OG3 West.

Table 2 and Figure 9 show the resulting BN structure over all regions for
all species. It is clear that there are predictive relationships that span greater
distances than the local ones discovered in Figure 8. These long distance rela-
tionships seem to involve all the species which may imply that there are regular
activity patterns across the subregions where species are seen or not seen within
the same day. This opens up further exploration into the factors at play, such as
the time of day or weather conditions impacting behaviour.

Figure 10 shows a detail of the overall network structure that combines multi-
ple species and locations whilst Table 2 summarises all inter-species links. Notice
how some species interact far less than others (eg. spiny rat only seems to have
some loose relationship to Muntjac, and no relationship to spiny rats in other
locations), whilst other species interact a great deal with themselves across loca-
tions (eg. SPT Macaques indicating one or more of the species moving between
locations) and with other species (SPT Macaques with Bearded Pigs indicating
some avoidance or following behaviour).

We can also see in Figure 10 that the relationships being made can be rea-
soned about in terms of both species and location. In the zoomed in portion
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Fig. 9. The discovered BN across all 3 regions for all species.

of the network, the center-most Bearded Pig node has the highest frequency of
relationships to nodes that are of the same species and the same (East) subre-
gion, highlighting that the BN has learnt what appears to be logical relationships
(likely to be the same animals as they move around a localised area).

Fig. 10. Species Interaction Network (and detailed section as discussed).
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Bearded Pig
Long Tailed
Porcupine

Muntjac
Southern Pig
Tailed Macaque

Spiny Rat

Bearded Pig 14 10 9 5 10
Long Tailed
Porcupine

4 4 16 10 7

Muntjac 11 15 18 11 8
Southern Pig
Tailed Macaque

12 3 12 18 4

Spiny Rat 10 9 9 6 7
Table 2. Summary of BN arcs for OG3 with multiple species showing the total number
of arcs between species with “from” on the Y axis and “to” on the X axis.

4 Conclusions

In this paper, we have explored a framework for reasoning about images that
have been analysed by deep learners. We have applied a combination of deep
learning (for image classification) and Bayesian networks (for spatial reasoning)
to camera trap data, used by ecologists to better understand animal populations
and behaviour. We have shown, using trap data from BorneoCam, that by treat-
ing deep learner label outputs (activations) as data and by combining them with
time and spatial coordinates, we can build probabilistic models that can iden-
tify and predict specific species’ behaviours and interactions. Whilst the deep
learning classifier achieved accuracies of 0.92 for labelling species, the Bayesian
network achieved accuracies of 0.97 for predicting whether a species would be
present at a specific location given other information about nearby locations.
This work is still in the early stages and there is a great deal of work that will be
followed up including the incorporation of deep learning activations as measures
of certainty in a species being present, the exploration of other datasets and the
integration of geographical and climate features such as rivers and weather into
the models.
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