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ABSTRACT 

 

 
Almufleh, Auroabah S. M.S., Department of Neuroscience, Cell Biology, and Physiology, 

Wright State University, 2020. Exploring the Impact of Affective Processing on Visual 

Perception of Large-Scale Spatial Environments. 

 

 

 

This thesis explores the interaction between emotions and visual perception using large 

scale spatial environment as the medium of this interaction. Emotion has been documented 

to have an early effect on scene perception (Olofsson, Nordin, Sequeira, & Polich, 2008). 

Yet, most popularly-used scene stimuli, such as the IAPS or GAPED stimulus sets often 

depict salient objects embedded in naturalistic backgrounds, or “events” which contain rich 

social information, such as human faces or bodies. And thus, while previous studies are 

instrumental to our understanding of the role that social-emotion plays in visual perception, 

they do not isolate the effect of emotion from the social effects in order to address the 

specific role that emotion plays in scene recognition – defined here as the recognition of 

large-scale spatial environments. To address this question, we examined how early 

emotional valence and arousal impact scene processing, by conducting an Event-Related 

Potential (ERP) study using a well-controlled set of scene stimuli that reduced the social 

factor, by focusing on natural scenes which did not contain human faces or actors. The 

study comprised of two stages. First, we collected affective ratings of 440 natural scene 

images selected specifically so they will not contain human faces or bodies. Based on these 

ratings, we divided our scene stimuli into three distinct categories: pleasant, unpleasant, 
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 and neutral. In the second stage, we recorded ERPs from a separate group of participants 

as they viewed a subset of 270 scenes ranked highest in each of their respective categories. 

Scenes were presented for 200ms, back-masked using white noise, while participants 

performed an orthogonal fixation task. We found that emotional valence had significant 

impact on scene perception in which unpleasant scenes had higher P1, N1 and P2 peaks. 

However, we studied the relative contribution of emotional effect and low-level visual 

features using dominance analysis which can  compare the relative importance of 

predictors in multiple regression. We found that the relative contribution of emotional 

effect and low-level visual features (operationalized by the GIST model, (Oliva & 

Torralba, 2006)) had complete dominance over emotional effects (both valence and 

arousal) on most early peaks and areas under the curve (AUC). We also found out that 

affective ratings were significantly influenced by the GIST intensities of the scenes in 

which scenes with high GIST intensities were more likely to be rated as unpleasant. We 

concluded that emotional impact in our stimulus set of natural scenes was mostly due to 

bottom-up effect on scene perception and that controlling for the low-level visual features 

(particularly the GIST intensity) would be an important step to confirm the affective impact 

on scene perception.     

Keywords: scene perception, affective processing, valence, arousal, ERP. 
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 I. GENERAL INTRODUCTION AND PURPOSE 

Humans are surrounded by an overwhelming environment, rich in large amounts of 

incoming sensory inputs that challenges their limited capacity for processing all that 

information (Marois & Ivanoff, 2005). Traditional bottom-up theories of visual perception 

describe information processing within a hierarchical system, in which early visual 

processing feeds into conceptual systems (including both cognitive and emotional), but 

conceptual systems do not alter early visual encoding (Hubel & Wiesel, 1968; Maunsell & 

Newsome, 1987). On the other hand, top-down theories view perception as a constructive 

process which relies on top-down processing which including affective appraisal (Gregory, 

1971). Recent neuroimaging findings support the top-down theories in that it had 

demonstrated that people’s emotional reactions (e.g., arousing versus neutral stimuli) are 

associated with stronger signals across the visual cortex (Lin et al., 2020; Vuilleumier, 

Richardson, Armony, Driver, & Dolan, 2004).  Neural representations in early visual cortex 

of scene stimuli were modulated by the emotional response to the presented scenes (Minati 

et al., 2009). These findings revealed where emotions influenced visual representations in 

the cortex. To uncover when these effects emerged in time (i.e., early vs. late), 

electrophysiological studies have demonstrated that emotional arousal and/or valence 

(pleasantness) impact early ssVEP (steady-state visually evoked potentials) and ERP 

activity in response to visual scene stimuli (Olofsson et al., 2008; Peyk, Schupp, Keil, 

Elbert, & Junghöfer, 2009). Nevertheless, the most commonly used scene stimuli often 

depict salient objects embedded in naturalistic backgrounds, or “events” which contain rich 



 

 

2 

 

 social information, such as human faces or bodies. Thus, there is still a debate around the 

actual cause of the early effects of emotions on scene perception (Löw, Bradley, & Lang, 

2013). Therefore, the objective of the current study is to investigate the putative impact of 

affective processing on scene recognition, using proper stimuli, and leveraging EEG due 

to its fine temporal resolution that can identify the specific time of interaction. Thus, we 

aim to establish whether affective processing impacts visual perception by looking at how 

people process scenes. 

Visual perception 

Human visual perception entails a complex interplay between bottom-up (i.e. 

stimulus-driven)  and top-down (observer-based) signals yielding fast and accurate 

recognition of the visual world (Albright, 2012). This interplay between bottom-up and 

top-down processing streams have attracted scientific focus since its early inception. To 

understand this interplay, perceptual regulating systems (attention, motivation, and 

emotions) contribute to the prioritization and selection of a subset of information to be 

perceived at the cost of others. Which one or combination of systems is at play depends on 

the nature of the stimuli (the external input), the explicit goals (including motivation and 

emotional appraisal), as well as the individual internal state (implicit goals, motivations, 

and emotions) (Driver & Vuilleumier, 2001; Ungerleider, 2000). It is not a simple task to 

disentangle the interaction between these intricately complicated processes, which are not 

yet fully understood. In this thesis, we will focus on the interaction between visual 
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 perception and emotions since human emotion is considered a basic evolutionary feature 

(Turner, 1996). It is essential to understand how much emotion affects perception because 

it is easy to assume that we see what is out there.   For example, most of us assume that as 

we look at a hill, the incline’s steepness in our visual image is an accurate estimation of the 

real angle—however, perception of the steepness changes depending on one’s mood 

(Riener, Stefanucci, Proffitt, & Clore, 2011). For example, when someone feels sad, he 

perceives the hill as steeper than when he feels happy. Such findings indicate that the spatial 

layout’s perception is influenced by non-optical factors, such as emotion. 

Emotions 

Emotions involve three major components, physiological responses, behavioral and 

cognitive appraisal. Cognitive theories of emotions posit the necessity of complex 

cognitions or thoughts associated with concept deployment. For sake of simplicity, we will 

focus on this aspect of emotions (cognitive appraisal)(Lazarus, 1991; Reisenzein, Bördgen, 

Holtbernd, & Matz, 2006). Accumulating evidence supports cognitive theories of emotions 

reporting that several neocortical regions are crucial for intact affective functioning (Bush, 

Luu, & Posner, 2000; Phillips et al., 1998, 1997).  Emotion mechanisms can be classified 

into two major categories; explicit and implicit. Based on cognitive theories of emotions, 

we assume that unconscious processing of the emotions would reflect the later conscious 

or explicit emotional response (i.e. ratings). 
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 Negativity bias 

In this thesis, we followed the circumplex model of emotion that proposes that all 

affective states arise from cognitive interpretations of core neural sensations that are the 

product of two independent dimensions; valence (pleasant to unpleasant) and arousal 

(activating to calming).   Different emotions can impact perception differently. Unpleasant 

(commonly refer to as negative) events and information evoke stronger physiological and 

emotional reactions compared to both neutral and pleasant events and information 

(Cacioppo, Gardner, & Berntson, 1999) (Öhman, 1992). This “negativity bias” is thought 

to have resulted from evolutionary pressure favoring outcomes in response to threat versus 

rewards. Thus, preparing the individual to respond quickly and effectively to unpleasant 

information as an important survival mechanism (Cacioppo et al., 1999). 

Emotion (Im)penetrability of Visual Perception 

The degree to which visual encoding is influenced by emotional factors, and/or 

executed through a passive, data-driven system is a central debate in cognitive and affective 

sciences (Pessoa, 2008). While emotions and perceptual processes certainly combine, at 

one point in time, to influence how the visual world becomes interpreted, the extent to 

which visual perception and emotion are distinct processes, and 

precisely when and where they interact is still in question. The classical framework 

proposed that visual perception is accomplished additively, in which physical properties of 

a stimulus are extracted, encoded, and reconstructed hierarchically within an encapsulated 
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 modular system (Fodor, 1983).   Modular perceptual systems contain innate, neural 

modules restricted to processing direct inputs and are unable to access information stored 

elsewhere in the system, such as emotional appraisal or ratings (Pylyshyn, 1999).  

When a visual stimulus is presented, light enters the eye striking the retina and 

transforming into an array of neural signals that travels through the optic nerve. The next 

stage is what Marr (1982) and Pylyshyn (1999) called “Early vision,” which is the part of 

visual perception that happens rapidly and completed within 200 ms (Marr, 1976; 

Pylyshyn, 1999). It includes early perceptual analysis, which according to the modular 

view must be contained within an unconscious system operating independently of top-

down (e.g. emotional) influence because interactions on rapid processing would introduce 

critical perceptual delays and potential errors. Thus, according to the modular view, early 

vision is impervious to cognitive or emotional influence. Therefore, emotional factors, such 

as explicit valence or arousal ratings, interact with visual percepts in later processing stages 

and do not penetrate early visual perception.  

Notably, however, the extent to which the functional architecture of primary visual 

cortex and the ventral visual pathway support this modularized, hierarchical framework 

has recently come into question. Recent studies documented early effect of top down 

factors and particularly emotions on perception which challenge the assumptions of 

hierarchical framework (Kayser, Körding, & König, 2004; Kravitz, Saleem, Baker, 

Ungerleider, & Mishkin, 2013). We will elaborate in these studies in the next section. 
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 Neural evidence for top-down influence on visual processing 

Recently, increasing evidence reveals that neurons in early visual areas, even in 

primary visual cortex (V1) do not act as linear feature detectors when faced with natural 

scenes, highlighting the role of feedback response modulation beyond the classical 

receptive field (Kayser et al., 2004) .  For example, V1 responses to bars within a natural 

scene are reduced compared to bars on a uniform background (MacEvoy, Hanks, & 

Paradiso, 2008).  Additionally, non-linear receptive field models using natural stimuli 

predict V1 activity more optimally than a model fit using grating stimuli (David, Vinje, & 

Gallant, 2004). Thus, early visual neurons transform retinal signals and integrate top-down 

and lateral inputs, which convey prediction, memory, attention, reward, task, expectation, 

and emotions (for a review see, Albright, 2012). Such higher processing is fed back (mono-

synaptically or otherwise) to V1 from cortical and subcortical sources (Muckli & Petro, 

2013). Adding to that, the neuroimaging evidence pinpoints that emotional stimuli not only 

activate emotional brain circuits (such as Amygdala) but also enhance the activity in the 

visual cortex (Vuilleumier et al., 2004). Also, decoding algorithms were successful in 

decoding different emotional experiences from analyzing the pattern of visual cortex 

activity. Kragel et al, analysis showed that of the seven emotional states were classified, at 

least five distinct emotion clusters could be reliably differentiated from one another based 

on occipital lobe activity (Kragel, Reddan, LaBar, & Wager, 2019). 
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 The second step in visual scene processing goes through ventral visual pathway 

(VVP). This pathway courses through occipitotemporal cortex to the anterior part of the 

inferior temporal gyrus.  It is known as the “what” pathway that mainly represent object 

quality and identity information (Mishkin, Ungerleider, & Macko, 1983). However, ventral 

visual pathway representations are not tied to particular physical objects, but they capture 

a stable configuration of visual information (e.g. texture, scenes). It is 

traditionally  characterized as following the same feedforward process described above 

(assuming separation between perceptual mechanisms and internally generated signals). 

However, Recent evidence challenges the traditional framework and proposes that the 

ventral pathway is best understood as a recurrent network containing neural representations 

of the world both utilized and controlled by distinct cortical and subcortical systems 

specialized in behavioral, cognitive, or affective function. Anatomical evidence indicates 

that the ventral pathway is a complex network of feedforward and feedback projections 

(Kravitz et al., 2013).  These findings, combined with its dense limbic and medial 

prefrontal cortex connectivity, suggest the VVP may serve to integrate affective and 

perceptual processing.  

The predictive coding theory (Clark, 2013) posits that sensory processes like vision 

are supported by top-down signals tuned to match incoming information from the outside 

with internal expectations and predictions that is usually susceptible to fears. For example, 

it is advantageous to anticipate any potential threat in the scene before the individual gets 

in there. This added foresight provides beneficial information to the visual system, 
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 especially if it can aid in generating richer and more accurate representations. Thus, if the 

ultimate goal of perception is to build rich representations to understand one’s 

surroundings, it is beneficial for perceptual systems to be permeable to affective factors, 

especially when prediction can inform the visual system (Egner & Summerfield, 2013).  

The question remains open as to precisely how and when this kind of predictive 

information interacts with incoming, moment-to-moment operations of the perceptual 

system. If perceptual mechanisms are part of recurrent networks within an interactive 

cortical and subcortical systems, the extent to which these processes are temporally 

separated remains uncertain. 

Visual scene perception 

One particular domain of visual perception which is best suited to study the extent 

to which the perceptual system incorporates affective information to better represent one’s 

surroundings, is scene perception. To simulate visual perception in real-life environments 

while maintaining controlled laboratory settings, we have chosen to focus in this work on 

the visual processing of real-world scenes. Humans have the ability to quickly and 

accurately recognize and act within complex real-world scenes in a single, brief glance (M. 

Potter, 1975; M. C. Potter & Levy, 1969). This ability disguises the immense 

computational challenges presented to the human brain. Despite variations in how scenes 

present themselves to the retina (i.e., the unique patterns of photons activated), the brain 

can extract the relevant physical properties (i.e., geometry, colors, edges), the gist (i.e., 
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 overall meaning), and rapidly produce affective reaction if appropriate in just fractions of 

a second (Antes, Penland, & Metzger, 1981; Schyns & Oliva, 1994).  

The new look on perception (Schafer & Murphy, 1943; D. E. P. Smith & Hochberg, 

1954) established visual perception as a flexible process that recognizes visual environment 

depending on external (e.g., environment, context) as well as internal (mainly emotional 

reactions) factors. That is, applying the same concept to scenes, visual scene perception 

reflects not only the availability of perceptual information but also the observer's internal 

emotional biases.  But, the question remains, does the emotional reaction to the scenes 

flexibly adapt to how one perceives the scene? In other words, is perceptual processing of 

the scene adjustable according to the emotional reaction, or is it emotion-independent? To 

date, an abundance of research on affective scenes had investigated the mechanisms 

through which affective processes impact the neural basis of scene perception. In the 

following section, we will expand on empirical evidence that demonstrates how visual 

perception and emotions are closely linked, challenging the traditional, feedforward view 

of visual perception  (Bekhtereva & Müller, 2014; Minati et al., 2009; Olofsson et al., 2008; 

Sambuco, Bradley, Herring, Hillbrandt, & Lang, 2020). 

The Case for Emotion Penetrability: Neural Evidence  

Several lines of evidence suggest an impact of emotional processing on visual scene 

perception. Neuroimaging studies have provided new insight into affective interaction with 

sensory processing by showing early visual cortex hemodynamic changes as a response to 



 

 

10 

 

 stimulus affective salience. Minati and colleagues (2009) used Functional near-infrared 

spectroscopy fNIRS to examine hemodynamic responses evoked by neutral, pleasant, and 

unpleasant emotional scenes pictures. They reported that emotional content modulated 

amplitude and latency of oxy-, deoxy- and total hemoglobin response peaks. The 

processing of pleasant and unpleasant scenes enhanced hemodynamic response amplitude, 

and this effect was also associated with blood pressure changes. The processing of pleasant 

scenes resulted in reduced hemodynamic response peak latency (Minati et al., 2009). 

Moreover, the functional limbic‐visual activity was remarkably reduced in anxiety 

patients who had high trauma scores when viewing emotional, compared to neutral scenes. 

This suggests that the stronger interaction between emotion and perception is crucial for 

healthy emotional as well as perceptual processing (Sambuco et al., 2020). Sambuco and 

colleagues used fMRI to assess functional activation in the amygdala and visual cortex 

during emotional scene processing comparing healthy and anxiety and mood disorder 

patients. They reported a strong covariation between functional activity in the amygdala 

and ventral visual cortex, with blood-oxygen-level-dependent (BOLD) activity overall 

significantly enhanced in both regions. When patients reported the highest trauma scores, 

their brain scan shows the smallest BOLD changes in response to arousing scenes in the 

amygdala and ventral visual cortex (Sambuco et al., 2020). This could pinpoint the role of 

the interaction between emotion and perception in healthy emotional processing. 
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 Before taking a definite position regarding these accumulating evidences of the 

impact of affective processing on visual scene perception, it is essential to define a “scene” 

precisely since this terminology has been used extensively for various meanings. We define 

a “scene” as a real-world, large-scale spatial environment comprising background elements 

and multiple discrete objects . Critically, however, in contrast with this definition most 

affective scene perception studies have used scenes containing people performing different 

activities. This creates two potential caveats when one aims to examine the role of emotion 

on scene perception per se. First, such scenes can trigger extreme affective responses (for 

example, using erotic pictures to trigger pleasure with high arousal and mutilations to illicit 

high arousal with unpleasant feelings) or generate responses which are not scene-specific, 

but rather face-specific. Further complicating the picture, in contrast to prior studies of 

affective scene perception, most of the scenes used as neutral scenes represent landscapes 

and inanimate scenes. Unfortunately, such ill-defined scenes or other visual stimuli shaped 

current understanding of the role that emotion plays in visual perception, particularly in 

social cognition (since they mainly contained people). However, they cannot be 

generalized on all circumstances of visual perception, such as the specific role that emotion 

plays in complex scene perception as defined above. 

Therefore, the objective of the current thesis was to examine the time course of 

emotional valence and arousal on visual scene processing using electroencephalography 

(EEG) with natural scene images that did not contain human faces or bodies as stimuli.  

Specifically, we set out to examine if emotional valence and/or arousal ratings flexibly (i.e. 
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 in different contexts) influenced scenes representations in early visual areas reflecting 

emotional modulation on visual encoding, and if so, assess the relative contribution of 

explicit affective ratings compared to low-level visual features. 

Current Study 

Our initial question was whether top-down factors (considering explicit emotion as 

one of the higher-order cognition processes based on the cognitive theories of emotions) 

had an early effect on perceptual processing. We conducted a two-step study. First, we 

collected affective ratings (valence and arousal) of 440 natural scene images selected 

specifically so they will not contain human faces or bodies. Based on these ratings, we 

divided our scene stimuli into three distinct categories: neutral (with the lowest arousal), 

pleasant and unpleasant (with high to medium arousal). Below (Study I Introduction), we 

will discuss the visual stimuli and explain the criteria and the rationale that led us to select 

our stimulus set. In the second stage, we recorded ERPs from an independent group of 

participants as they viewed a subset of the highly ranked scenes in their respective 

categories and compare the relative contribution of explicit affective ratings versus low-

level visual features. Based on previous works on affective scene perception (Olofsson et 

al., 2008) , we hypothesized that early visual ERPs for scene stimuli would be flexibly 

modulated by the explicit affective reaction. Based on the negativity bias framework, we 

predict that explicitly rated unpleasant scenes will be prioritized for processing (i.e., will 

produce higher amplitude and/or reduced latencies) of early ERP peaks, especially P2, 
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 which is one of the most scene-selective components. Moreover, based on the cognitive 

theories of emotions, we assumed that explicit affective response (ratings) is an informative 

measure that is sufficient to reflect the impact of implicit affective processing on the early 

visual ERP.  
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 II. STUDY I: AFFECTIVE RATINGS OF LARGE-SCALE SPATIAL 

ENVIRONMENTS 

Introduction 

Many visual scenes stimulus sets are available for use in studies of visual affective 

processing. The broadest available standardized sample of emotional scene stimuli set is 

the International Affective Picture System (IAPS;(Bradley & Lang, 2007)). It contains 

1182 color pictures of pleasant, neutral, and unpleasant content across the entire affective 

space, including human faces, landscapes, animals, various objects, erotica, press 

photographs of war and catastrophes, severe injuries, mutilation, and corpses. Later, the 

Open Affective Standardized Image Set (OASIS) was presented as an open-access, online 

alternative to IAPS. OASIS contains 900 color images showing a broad spectrum of 

themes, as humans, animals, objects, and scenes. Studies that used both sets incorporate 

scenes that contain people performing different activities to trigger extreme affective 

responses (for example, using erotic pictures to trigger pleasure with high arousal and 

mutilations to illicit high arousal with unpleasant feelings). In contrast, most of the 

landscapes and inanimate scenes in the stimulus set were rated within the neutral category 

with minimal arousal. In using these scenes, the social  content (presence of people) often 

is confounded with arousal or valence (Colden, Bruder, & Manstead, 2008). Studies using 

pupillometry and eye-tracking showed that people's presence captures exogenous attention 

readily compared to affective scenes with decreased social factors (landscapes) (Fitzgerald, 

1968). Moreover, affective evaluation of social information engage activity in neural 
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 regions that differ from those engaged during nonsocial affective evaluation (Van Den 

Bos, McClure, Harris, Fiske, & Cohen, 2007).  

Due to this unique neural representation, some authors started to debate whether 

these neural responses are specific to the social component or can be generalized to 

emotional responses. For instance, Low et al. (2013) used IAPS as stimuli to measure the 

ERP response to scenes with people and without. He claimed that affective images were 

associated with facilitated perception only when the images contained people. To examine 

the effect of emotion on scene perception while avoiding the caveats described above, we 

developed our own set of 440 complex, naturalistic, inanimate scenes that include 

representation of real-life environments that are reasonably likely to be encountered in 

daily life or social media. These images vary along two well-established dimensions of 

affect: valence (unpleasant to pleasant) and arousal (low to high activation) and cover the 

canonical affective space, or the combinations of valence and arousal (i.e., affect 

categories) (Barrett, 2006). Since landscapes and images that do not include social 

components usually get low arousal ratings, we purposefully looked for images that arose 

or excite from all the valence spectrum in our a-priori selection process. Our goal in this 

study is to validate this affective stimulus set which facilitate further understanding of the 

affective modulation of perceptual processing to be measured in a subsequent ERP 

experiment (Study II, see details below). 
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 Methods 

Participants 

Fifty participants participated in the experiment for course credit or monetary 

compensation, 30 women, age M = 21.1, range = 18–35). Fourteen participants answered 

the questionnaire online, and the rest performed the study in the lab. All participants were 

recruited from the Wright state university community, which includes students, faculty, 

and staff. All of them had normal or corrected-to-normal visual acuity and no history of 

psychiatric or neurological disorders. All of the participants read and consented an 

electronic informed consent, approved by the Wright State University Institutional Review 

Board (IRB).  

Stimuli  

Stimuli were selected from non-copyrighted images found on the internet. A few 

of them were selected from other affective images databases including GAPED (2-3 

pictures)(Dan-Glauser & Scherer, 2011), OASIS (30 picture)(Kurdi, Lozano, & Banaji, 

2017), NAPS (24 picture) (Marchewka, Żurawski, Jednoróg, & Grabowska, 2014), 

HNVCL scene database (25 picture) (Harel, Groen, Kravitz, Deouell, & Baker, 2016a; 

Kravitz, Peng, & Baker, 2011) . We selected a variety of real-world full-color naturalistic 

scene images with multiple focal points, taking in consideration that no human faces, 

bodies or single objects were included in the scenes.  We removed even people or animals 

in the background, which could be considered indiscernible to effectively control for this 

confounding factor. 
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 All scenes were outdoor (eye-level); we excluded indoor scenes to control for 

navigability as a confounding factor. As our goal was to create a set of naturalistic scenes, 

we excluded pictures that appeared to be posed or digitally enhanced, as well as pictures 

of famous places or events.   

All scenes were in landscape orientation. We re-sized all images to 1024 x 770 

pixels by Adobe Photoshop. Also, we used Photoshop to remove written words or 

logotypes that might capture visual attention and replaced it with the background colors.  

We selected scenes of what we considered to be of three categories: pleasant scenes, 

unpleasant scenes, or neutral. For pleasant scenes, we collected a variety of natural scenes 

that we expected would elicit feelings of esthetic appreciation. For unpleasant stimuli, we 

selected a range of disaster area scenes (e.g. destruction after a fire, tsunami, or flood). 

Neutral stimuli were chosen to be a mixture of natural scenes that we expected would be 

part of our participants’ everyday encounters.  To test our assumptions, in the current 

experiment, we asked our participants to rate these scenes based on their valence, ranging 

from very unpleasant to highly pleasant (see below). The final set included 143 expected 

unpleasant, 151 expected neutral, and 146 expected pleasant scenes. Figure (1) shows 

examples of each category. 
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Figure 1: Representative examples of scene stimuli used in the rating and the ERP study. Note: the 

first row contains examples of pleasant scenes, with high or mid arousal levels. The second row 

contains examples of neutral scenes with mid to low arousal. The third row contains some of 

unpleasant scenes with high to medium arousal levels 

  

Procedure  

For the online subjects (n =14), after we checked their eligibility to participate, we 

send them the link for the study with instructions to read the informed consent, ask any 

question, and sign it if they are willing to participate. For the participants who performed 

the study in the lab (n= 36), we followed the same procedure of checking their eligibility, 

asking them to read the informed consent form, ask any question and sign it if they are 

ready to participate.  

Following consent, each participant read the explanation of the procedure and 

completed the computer rating task, a brief demographics questionnaire, inquiring about 

age, and gender and emotional regulation questionnaire (ERQ) (This was designed as part 

of a different study and therefore will not be further discussed here). After the completion 

of the study, participants were granted course credit or monetary compensation.  
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 Each participant was seated on a desktop in the lab or instructed to use their 

desktop at home. Participants were informed that the purpose of the study was to learn how 

people respond to scenes that represent different settings and environments, and that they 

would be viewing and rating these scenes (For an example of a trial, see Figure (2). We 

employed the SAM (Self-Assessment Manikin) (Bradley & Lang, 1994), a five-pointer 

scale of a non-verbal pictorial technique which directly measures valence and arousal. The 

first rating was for how unpleasant or pleasant the scene made them feel (ranging from 

most unpleasant in the left to mostly pleasant on the right). The second rating was for how 

arousing or activating they found the scene to be (from low arousal on the left to high 

arousal on the right). The third question was assessing presence (how much they liked to 

be in that scene (from –5 to 5)(we did not analyze this question further as it was not 

pertinent for the purposes of the current thesis work). Participants were informed that the 

task was not timed, but there was an allotted time of two hours for the whole experiment. 

The order of stimuli was randomized for each participant. In each trial, a scene 

image was presented on the screen with the three questions about it. After the participant 

answered the three questions, they were allowed to proceed to the next image.   
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Figure 2: Example trial of the rating study. Note: a trial consists of three questions, rating valence, 

arousal and presence. 

 



 

 

21 

 

 Results 

Participants’ ratings data were analyzed using Microsoft Excel and SPSS. The 

variability of valence ratings among the 440 scenes ranges from 0.39 to 1.48. For two 

examples of the variability of the valence ratings on a given scene, please see Appendix D. 

Figure 3 presents the average valence and arousal ratings distribution among the 440 scenes 

after sorting them from highest to lowest valence. The data is slightly skewed to the left 

(toward pleasant scenes) (skewness = -0.37) and an overlap between the pleasant and the 

neutral scenes, while unpleasant scenes were also slightly overlapping with the neutral 

scenes. Figure 4 depicts the full distribution of the individual scenes based on frequency of 

valence and arousal ratings among the three affective categories.  

The average valence rating across all scenes was 3.04 (SD = 1.22). The average 

arousal ratings across all scenes was 2.6 (SD = 0.48). Consistent with other stimulus sets 

(e.g.,  (Barrett, 2006);(Posner, Russell, & Peterson, 2005, COMPASS, 2019), valence and 

arousal ratings showed a U-shaped relationship, such that scenes at the extremes of the 

valence dimension were rated as more arousing than scenes in the middle of the dimension 

(see figure 5). 

 

To examine the extent to which the three scene categories were perceived as 

separate entities, we performed ANOVA on the three a-priori selected categories (pleasant, 

unpleasant and neutral) (see Figure 5) which showed they were significantly distinguished 

from one another in terms of valence and arousal ratings (F(2,437)=1801.31, p < .0001), 
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 (F(2,437)= 296.74, p < .0001) respectively. The average valence rating for the a-priori 

selected unpleasant scenes was 1.44 (SD = 0.24) while the average arousal ratings for these 

scenes was 2.48 (SD=0.29). For the a-priori selected pleasant scenes, their average valence 

ratings was 4.2 (SD=0.48) and their average arousal ratings was 3.1 (SD=0.38). Lastly, the 

average valence ratings of a-priori selected neutral scenes was 3.45 (SD= 0.77) while their 

average arousal ratings was 2.24 (SD=0.17).  

Based on these rankings we selected a subset of scenes from each category to be 

used in the ERP experiment. To avoid any overlap, we have chosen the 90 highest valence 

rated scenes as the pleasant ones (M= 4.45, SD=0.14; average arousal ratings was 3.22 

(SD=0.35)), the 90 lowest valence rated scenes as the unpleasant scenes (M=1.3, SD=0.08; 

average arousal was 2.56 (SD=0.28)), and for the neutral scenes, we have chosen the lowest 

valence among the neutral category (M=3.21, SD=0.31; average arousal rating was 2.1 

(SD=0.18)) to avoid the overlap with the pleasant scenes valence. Figure 6 displays the 

results of ANOVA of the three groups (pleasant, neutral and unpleasant) which showed 

they were significantly distinguished from one another in terms of valence and arousal 

ratings (F(2,267)=5606.41,p <.0001) in mean valence ratings as well as mean arousal 

ratings (F(2,267)=361.19,p <.0001). 
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Figure 3: Valence (up) and Arousal (down) ratings distribution across the 440 scenes. Note: the x axis has the 440 

scenes starting by the expected pleasant on the right, followed by expected neutral, then expected unpleasant. The Y 

axis shows the valence (up) and arousal (down) ratings for each scene. They are sorted by the average valence from 

highest to lowest for each of the proposed categories; the arousal corresponds to that  valence above and is not 

sorted from highest to lowest. 
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Figure 4: Histogram showing valence (a,b,c) and arousal (d,e,f) distribution among the three affective 

categories across the 440 scenes.Note: this histogram shows the full distribution of individual scenes 

among the three expected categories based on frequency of valence (a,b,c) and arousal (d,e,f) ratings 

across the 440 scenes. 
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Figure 5: Whisker plot showing Valence and arousal ratings distribution and the central tendency 

measures (mean, median, sd) across the 440 scenes. Note: this anova analysis showed that the three 

groups on the x axis (unpleasant, neutral and pleasant) had significantly different valence as well as 

arousal ratings (p <.0001 when comparing any of the groups to each other). 
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Figure 6: Whisker plot showing Valence and arousal ratings distribution and the central tendency measures (mean, 

median, SD) across the chosen 270 scenes. Note: this anova analysis showed that the three chosen groups on the x 
axis (unpleasant, neutral and pleasant) had significantly different valence as well as arousal ratings (p <.0001 when 
comparing any of the groups to each other), the similarity between whisker plots for the 440 scenes and the chosen 
scenes shows that they have similar distribution with no overlap on the valence ratings. 
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 The impact of low-level visual properties on affective ratings. 

To examine how, the three scenes categories, differ in their physical properties, we 

assessed their differences in low-level visual features using gist model (spatial envelope). 

This model categorizes scenes based on computing a statistical abstract of visual features 

similar to those known to be analyzed in the early stages of the human visual system. This 

model suggests five perceptual dimensions (naturalness, expansion, ruggedness, openness, 

roughness) which represent the dominant spatial structure of a scene. The model generates 

a multidimensional space in which scenes sharing membership in semantic categories (e.g., 

streets, highways, coasts) are projected closed together (Torallba and Oliva, 2001).  The 

Gist algorithm measures the distribution of oriented bandpass Gabor filter responses in 

localized portions of images. Our model used default settings of 16 receptive fields (4 × 4 

grid), 8 orientations, and 4 spatial frequencies; (Oliva & Torralba, 2006). This model had 

a 512-vector output. After applying the algorithm to all our scenes images, we averaged 

across the 512 vectors of each image to get the average gist.  Afterwards, we conducted a 

univariate ANOVA, with average gist score as the dependent variable, in order to examine 

the low-level visual properties differences . among the three affective scene categories,  

We observed a significant main effect of  affective scene category on the average 

gist (F(2,1)= 33.2, p < .0001), in which the unpleasant scenes with high to moderate arousal 

(M = 0.054, SD = .01 ) had the significantly highest average gist intensity followed by 

pleasant scenes (with highest to moderate arousal) (M = 0.048, SD = .012) and the 
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 significantly lowest gist was associated with neutral scenes (with moderate to lowest 

arousal) (M=0.042, SD=.012).  

For the chosen 270 scenes, similarly, we observed a significant main effect of the 

average gist on affective scene category (F(2,1)=21.16, P<.0001), in which unpleasant 

scenes (M = 0.055, SD = .009 ) had higher average gist intensity compared to the pleasant 

and neutral scenes (M = 0.043, SD = .009 and M=0.046, SD=.009, respectively). In contrast 

to the whole set of 440 scenes, pleasant and neutral scenes did not show any significant 

difference in their average gist score (P=0.40). 

Discussion 

The goal of this study was to prepare a stimulus set that contains naturalistic scene 

images that vary in their affective content while controlling for the social effect of human 

presence. Similar to previous affective scene databases, our scenes that scored higher 

valence rates showed higher arousal rates as well. Thus, consistent with other affective 

databases, our images fall into three combinations of arousal and valence (higher to 

moderate arousal pleasant, higher to moderate arousal unpleasant, and moderate to lower 

arousal neutral) that are represented by the U- shape of the previously mentioned 

circumplex model of affect(e.g. (Barrett, 2006; Posner, Russell, & Peterson, 2005).  

In contrast to previous affective databases (unpleasant scenes usually provoke higher 

arousal ratings (Bradley & Lang, 2007; Dan-Glauser & Scherer, 2011), a subset of our 

pleasant scenes evoked higher arousal ratings than unpleasant scenes. We expect that this 
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 difference could be due to the relativity of affective scales (i.e., participants are rating the 

scenes comparing them to each other). This could be explained by the theory of scale 

relativity that discusses the relative character of all scales in nature (Nottale, 1992). For 

example, our pleasant scenes were represented as highly ecstatic places that evoke 

excitement more than the neutral scenes that represented mundane, everyday scenes. At 

the same time, participants could have considered our unpleasant scenes as repulsive but 

not as much as other graphic images that appear in social media since it simply contained 

lands and environments in disrupted situations. 
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 III. STUDY II: NEURAL RESPONSES TO AFFECTIVE LARGE-SCALE SPATIAL 

ENVIRONMENTS 

Introduction 

In the first part of this thesis, we chose, designed, and collected emotional ratings 

for a set of suitable visual stimuli to examine the effect of emotion on scene perception. 

This stimulus set contains naturalistic scenes representing different environments and 

controls for the social effects of faces and human presence. In the second part of the thesis, 

we will discuss the  measurement of the neural responses to these scene stimuli in order to 

facilitate the assessment of the temporal dynamics of the impact of emotion on visual scene 

perception.  

EEG provides an excellent medium to understand the temporal sequence of the 

neural responses to visual scenes (Luck & Kappenman, 2016). For example, one of EEG 

techniques, steady-state visual evoked potential (ssVEPs), had shown that emotionally 

arousing stimuli presented at 10 Hz rate enhanced ssVEP amplitude at parieto-occipital 

recording sites as compared to neutral stimuli (Keil et al., 2003).  

Another common EEG technique is Event-Related Potentials (ERP), which 

measures voltage changes in cortical neurons that follow the onset of specific visual, 

auditory, or other sensory stimuli. In our case ERP has the advantage that it can index 

visual perception as well as affective events (Luck et al, 2014). Thus, ERP can be utilized 

as proxies to inform us about early visual perceptual processes and whether they are 

susceptible to emotional factors, the timing of their effect and if certain emotional category 
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 impact perception differently (Luck et al, 2014). Moreover, previous studies show that 

early ERP peaks are influenced by scene perception; for example, a posterior ERP 

component, the P2 has been shown to index the processing of global scene properties 

(Harel, Groen, Kravitz, Deouell, & Baker, 2016b). Accordingly, many ERP studies 

examined the effect of emotion on scene perception (for a review, see (Olofsson et al., 

2008)). These studies suggested that some early ERP components are associated with the 

processing of the affective content of the scenes. The temporal courses of ERP valence and 

arousal effects differ as valence most commonly appears to influence relatively early (100–

250 ms) and arousal influences relatively late (200–1000 ms) components (Olofsson et al., 

2008). Such effects can be obtained in passive viewing and active response tasks (Bernat, 

Bunce, & Shevrin, 2001; Yee & Miller, 1987). These findings support the view that 

affective processing can be described as an automatic feature of perception (LeDoux, 1989; 

Öhman & Soares, 1998). Three ERP components in particular seem to be influenced by 

the emotional content of the scene: P1, N1, and P2 components, prominent exogenous, 

sensory-driven components which are elicited in the presence of a visual stimulus.   

Research examining the P1, which occurs approximately 100ms post-stimulus 

onset and is typically largest over the posterior lateral electrode sites, shows sensitivity to 

low-level physical properties of the stimulus, such as luminance, shape, and color, as well 

as selective attention (Hillyard, Vogel, & Luck, 1998).  Spatial and selective attention has 

been shown to modulate the P1 and the N1 (Luck, Heinze, Mangun, & Hillyard, 1990). It 

also appear to be susceptible to arousal which was induced by encouraging participants by 
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 giving feedback and instructing them to respond faster every time (Luck, Woodman, & 

Vogel, 2000)  

The N1, a negative voltage change occurring approximately 150-200ms post-

stimulus onset, has been widely used to understand the temporal dynamics of object and 

face processing. When presented with faces, this component is known as the N170, and it 

is reliably more substantial over lateral occipital electrode sites (especially in the right 

hemisphere) when participants view faces compared to non-face stimuli (Bentin & 

Deouell, 2000). The N1 has also been used to examine the influences of emotion on 

perceptual processing of faces (Blau, Maurer, Tottenham, & McCandliss, 2007). As Blau 

et al. (2007) showed that the N170 response could be affected by emotional facial 

expressions such as fearful faces. The topography of this effect supports that fear stimuli 

exaggerate the N170 response itself.  

EPN: Early Posterior Negativity EPN was the most consistent emotional early 

effects. It is a negative deflection over occipitotemporal sites, peaks around 180 and 250ms. 

It has been considered a marker of the earliest processing of selective emotional perception. 

The amplitude of the EPN correlates with emotional arousal regardless of the valence 

(Schupp, Junghöfer, Weike, & Hamm, 2004) . Peyk and colleagues (2009) had 

demonstrated that emotionally arousing scenes presented at slow as well as rapid rated (1 

to 12 Hz) were associated with greater EPN compared to neutral scenes. Thus, showing 
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 that arousal was preferentially processed automatically even under highly demanding 

conditions (Peyk et al., 2009).  

The P2 component, a positive voltage deflection occurring approximately 200ms 

post-stimulus onset, is thought to index global properties of scene processing, such as 

naturalness and openness (Hansen, Noesen, Nador, & Harel, 2018). Additionally, P2 was 

reported to respond to the emotional reaction to scenes, though it is not conclusive which 

valence or arousal category result in higher amplitude (Delplanque, Lavoie, Hot, Silvert, 

& Sequeira, 2004) . 

LPP late positive potential is a positive voltage that typically consist of an enlarged 

P3 component in its onset (around 300 ms) and distribution (parietal). It may extend for 

hundreds of milliseconds and may become more centrally distributed over time. It reflects 

the intrinsic task relevance of emotion-related stimuli (Cuthbert, Schupp, Bradley, 

Birbaumer, & Lang, 2000; Hajcak & Olvet, 2008).  

As noted above, these studies often use stimuli depicting salient objects embedded 

in naturalistic backgrounds or “events” which contain rich social information, such as 

human faces or bodies. Using these sub-optimal scenes, recent affective scene perception 

neuroimaging studies have demonstrated that emotional content impacts early visual scene 

processing. However, the question is whether that is a real effect of emotion on scene 

perception or just the detection of faces and other socially-relevant elements. Sebatiallin 

and colleagues challenged the idea that the early effects of emotions (especially EPN) are 



 

 

34 

 

 pure effects of emotions by examining the relationship between EPN amplitude and fMRI 

activation patterns. They demonstrated that the late emotional valence effect (i.e., LPP) 

was associated with emotional circuits activation in the brain (e.g. amygdala) while the 

early effects were not. This study raises a concern of the interpretation of the early effects 

of emotions (Sabatinelli, Keil, Frank, & Lang, 2013). Relatedly, Low and colleagues 

reported that the presence of people and picture composition (simple figure-ground vs. 

complex scenes) modulate EPN (and can explain the facilitated perception) more than the 

emotional arousal categories   (Löw et al., 2013)).  Miskovic et al. expanded on this caveat 

by directly examining the relative contribution of luminance and chromatic visual channels 

to IAPS emotional effect on electrophysiological correlates of visual scene perception. 

They reported that the early posterior negativity (EPN)  was stimulus-specific, present for 

the low spatial frequencies and greyscale but not for high spatial frequency and green/ red 

stimuli, while only the later effect, that is, the LPP was not modulated by luminance or 

colors (Miskovic et al., 2015).  Additional examples of low-level features studied in 

affective pictures are image brightness (Kurt, Eroğlu, Bayram Kuzgun, & Güntekin, 2017), 

color (Bekhtereva & Müller, 2014) and spatial frequency content (Müller & Gundlach, 

2017) . 

Therefore, the evidence for the effect of emotion on scene perception is based on 

comparisons of the responses to scene stimuli that have different low-level visual features 

(even though some studies match for some of them, see for example, (Sabatinelli et al., 

2013)). Hence, it is logically possible that the ascribed ERP emotional effect is not due to 
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 emotional content per se, but to some confounding low-level visual feature which is 

present in affective stimuli but not in neutral ones. Notably, these low-level visual 

properties may not only be simple image statistics such as contrast or spatial frequency, 

but also, global properties of scenes that are represented by the gist model or scene spatial 

envelop. This model, as described earlier, can discriminate between scenes that are open 

or closed, more natural or more artificial, and so forth (for a full description see (Torallba 

and Oliva, 2001) Therefore, in the current study we did not only investigate how the 

emotion impacts early visual processing of scenes, but also whether such attributed effects 

can also be explained in light of the relative contribution of low-level visual properties 

represented by the gist model. 

By leveraging the advantages of EEG and, specifically, the ERP technique, we 

examined the temporal dynamics of visual scene processing, with a particular interest in 

whether emotional scene content modulated early visual responses (i.e., P1, N1, P2).  We 

used the early visual components described above to investigate if and when emotional 

reaction, as modulated by valence and arousal ratings, influenced incoming visual 

information to facilitate scene processing.  This paradigm allowed us to examine whether 

early visual ERP responses to scene information are affect-dependent and identify the 

specific processing stage  impacted by it. 
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 Methods 

Participants 

Twenty-three participants (13 females, mean age 18.8; range: 22-18) participated 

in the experiment for course credits.  Three participants were removed for extensive EEG 

artifacts (e.g., excessive blinking, motion). All participants were recruited from the Wright 

state university community, had normal or corrected-to-normal visual acuity, and no 

history of psychiatric or neurological disorders.  Participants provided their written 

informed consent, which was approved by the Wright State University Institutional Review 

Board (IRB).   

Stimuli 

Two hundred seventy scenes were selected from the first study as top-rated based 

on the criteria described above. In order to examine how our scenes stimuli, differ in their 

image (“low-level”) visual properties and how that might impact the observed neural 

responses, we applied the Gist model algorithm (Torallba and Oliva, 2001) using Matlab 

2016 on the chosen 270 scenes. This algorithm (as described earlier) extracts the spatial 

envelope, or gist descriptors, of the scene, which can then be used to categorize a scene 

based on its global image features.  

Experimental Design and Procedures 

Participants were given a brief description of the experiment, followed by obtaining 

their informed consent orally and in writing, then EEG electrodes attached to the subjects. 
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 Presentation Software (Neurobehavioral system, Inc., Albany, CA) was used to present 

and control the presentation and timing of the stimuli. Photographs were displayed in colors 

with (770 x 1024) resolution. Afterward, participants sat in an isolated room at 

approximately 50 inches from a computer monitor piloted from a PC computer in an 

adjacent room. They viewed the 270 images repeated five times, which made a total of 

1350 trials distributed in thirty blocks. Each block consists of 45 images. The order of 

individual stimulus presentation was pseudo-randomized across participants. Each 

individual image was only repeated after all the 270 images was presented once at least.  

Scene stimuli were presented for 200 milliseconds, followed by white noise back-mask to 

prevent any emotional carry over from the previous image. The back-mask was followed 

by a jittered inter-trial interval (ITI) ranging from 1000-2000ms. We presented ten 

randomized white masks to prevent the habituation to their effects. 

Participants performed a fixation cross task, in which they were required to report 

whether the horizontal or vertical bar of the central fixation cross lengthened in width or 

height, respectively. Changes in the fixation cross were randomized across trials, and hence 

were independent from the actual content of the underlying image, essentially requiring the 

participants to pay very little, if any, attention to the background images while completing 

this task (see figure 7). Furthermore, to ensure participants’ engagement in the task, they 

were given feedback on their performance at the end of each block. Participants were 

instructed to keep their eyes open during the trial duration.  If/when they had to blink, they 

were reminded to blink during the ITIs to prevent artifacts in the ERP analysis.  The 
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 experimental session lasted approximately two hours.  At the completion of the study, 

participants were debriefed and granted credits.  

 

Figure 7: Example trial from the ERP experiment. Note: Each trial starts with Scene stimuli (ISI) presented 

for 200 milliseconds, followed by white noise back-mask to prevent any emotional carry over from the 

previous image, then followed by a jittered inter-stimulus interval (ITI) ranging from 1000-2000ms. 

EEG Recording 

EEG was recorded continuously by a set of electrodes by 64 Ag-AgCl pin-type 

active electrodes (ActiveTwo, Biosemi) mounted on an elastic cap (ECL) according to the 

extended 10-20 system, and from six additional electrodes, two placed at the right and left 

mastoid, and an electrode on the tip of the nose. Two pairs of EOG electrodes used to 

monitor the eye movements, as well as the blinks, one pair attached to the external canthi, 

and the other pair to the infraorbital and supraorbital regions of the right eye. Both EEG 

and EOG were sampled at 512 Hz with a resolution of 24 bits and an active input range of 
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 -262 to +262 mV/bit, with on-line low-pass filtering of 51 Hz to prevent aliasing. The 

digital EEG was saved and processed off-line. 

Data processing 

We processed the data using Brain Vision Analyzer 2 (Brain Products GmbH, 

Munich, Germany), which included applying a 0.3 Hz high-pass filter and referencing to 

the tip of the nose.  We used ocular correction infomax ICA procedures to correct for eye 

movements and blinks.  We rejected any remaining artifacts that exceeded ± 100 mV in 

amplitude or contained an absolute change of over 100 mV in a period of 100ms.  Next, 

we segmented the preprocessed data into epochs ranging from − 200ms before to 800ms 

after stimulus onset for all conditions.  We rejected trials containing EEG artifacts, and no 

more than 30% of trials were rejected within any of the valence categories for any 

individual participant (thus left us with a large number of trials, not less than 317 trials out 

450).  

ERP analysis 

Since we are interested in determining whether emotion modulates perceptual 

encoding during early visual stages of visual scene processing, we focused on the early 

visual evoked potentials: P1, N1, and P2 (Luck et al , 2005).  Specifically, these ERP 

components have been shown to be involved in several aspects of visual scene perception 

(Hansen et al., 2018; Harel et al., 2016b). We extracted peak information for the P1, N1, 

and P2 across each experimental condition for every participant.  The P1 was defined as 

the most positive peak between 100 and 140ms, the N1 was defined as the most negative 
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 peak between 150 and 190ms, and P2 was defined as the most positive peak between 200-

240ms.  We restricted our analysis to the posterior lateral electrode sites (averaged across 

P7, P5, P9, PO7 for the left hemisphere and across P8, P6, P10, PO8 for the right 

hemisphere) because these regions maximally capture early visual activity.   

Area under the curve (AUC) 

We measured the impact of emotional valence and arousal on scene processing 

over an extended epoch of time rather than on isolated peaks.  We computed the rectified 

AUC for each condition, and each individual image for two distinct time epochs: 50 – 

200ms, and 200 – 350ms, to index early and late visual processing, respectively. 

 

Statistical tests 

We conducted multiple regression analysis after averaging right and left posterior 

lateral leads of each peak and latency (P1, N1, and P2) and the early and late AUC to study 

the effect of valence (as a continuous measure using the individual image valence ratings), 

arousal (as a continuous measure using individual image arousal ratings) and the average 

gist (for each image) Also, we averaged across repetition of each individual scene (5 trials 

x 20 participants) to get the individual scenes ERP data. Thus; examining the impact of 

each variable on early visual ERPs. Then, we run a dominance analysis to determine which 

factor had the maximum effect. We adopted the 0.05 significance level to ascertain 

statistical significance. 
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 Results 

To test whether the emotional valence and arousal of the scenes influenced early 

perceptual scenes processing, we examined their effect on early visual ERP 

components.   Figure 8) depicts the grand averaged ERP waveforms for each emotional 

valence category.  As can be seen, the unpleasant scenes evoked a higher amplitude across 

all early visually evoked potentials (P1, N1, and P2) relative to neutral scenes. Pleasant 

scenes evoked a similar response to the neutral scenes. The effect of unpleasant scenes 

started around 130ms post-stimulus onset, was most pronounced at 230 ms (around the P2 

peak) and persisted until around 350ms, at which point the backward mask operated and 

prevented further processing (notice the converging waveforms after that point). To 

formally quantify these apparent trends, we performed a univariate ANOVA, multiple 

linear regression and dominance analysis, further explained below.  
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Figure 8: Grand averaged ERP waveforms for the three emotional category (unpleasant with high to mid 

arousal (red), neutral with mid to low arousal (black) and pleasant with high to mid arousal ratings (blue). 

Note: the red line shows grand average ERP response for unpleasant group including the 90 unpleasant 

scenes and their five repetition making up to 450 trial, black line for neutral and blue line for pleasant 

group, right posterior lateral above and left posterior lateral below. n=20 

  

To examine the extent to which the observed ERP trends are also due to emotional 

valence, arousal or merely low-level visual properties of the scenes, we conducted two 
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 analyses. First, we examined how the individual scenes ratings correlate with the peak 

amplitude of the early visually-evoked ERP components (P1, N1, P2) to individual scenes. 

Second, we examined how the individual scenes ratings correlate with the early (50ms-

200ms) or late (200ms-350ms) occipitotemporal activity, operationalized by the measure 

of area under the curve. In both analyses, we conducted a multiple regression analysis to 

estimate the relative contribution of valence, arousal and the average gist, and their 

potential interactions to the modulation of the ERP activity.  The peak analysis results are 

reported next, followed by the AUC analysis.  For a complete report of the peak voltage 

and latency analyses for each ERP component, please see the multiple regression tables in 

Appendix A.  

Multiple linear regression 

In all of the ERP components (P1, N1 and P2) and AUC (early and late) analysis 

down, we did not observe any interaction between the three variables (valence, arousal, 

and the average gist) (for the full statistics, see Appendix A and B). Thus, we are reporting 

the main effect of each one of the variables on the ERP components.  

We will report the amplitude and latency results of each ERP component. The 

amplitude changes reflect stronger or weaker effect while latency changes reflect faster and 

slower responses. 

P1 component  

P1 amplitude is typically sensitive to low-level stimulus properties, as well as 

selective attention (Hillyard et al., 1998). It also appear to be susceptible to arousal (Luck 
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 et al., 2000). Looking to explain variance in P1 amplitude, we found that the significantly 

explained variance (R-squared) for the model containing average gist, arousal, and valence 

as independent predictors was 0.22 (F(3,266) = 25.52, p < 0.0001).  We observed a 

significant main effect of arousal on the amplitude of the P1 component (t(1) = -2.52, p 

=.01). Secondly, the average gist showed significant main effect on P1 peak amplitude t(1) 

= 7.92, p < .001).   With controlling for arousal and the average gist, valence had no 

significant effect on P1 peak amplitude (p=0.33). Figure 9 displays the average gist and 

arousal effect on P1 mean posterior lateral peak amplitude.    

As for latency, we found that the significantly explained variance (R-squared) for 

the model containing average gist, arousal, and valence as independent predictors was 

0.016 (F(3,266) = 1.41, p= 0.242). The only significant predictor of variance in P1 latency 

was the average gist (t(1) = -1.99, p= 0.047). Figure 10 displays the average gist effect on 

latency of P1 mean posterior lateral latency.   
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Figure 9: The impact of the significant factors (average gist and arousal) on mean peak amplitude of P1 

posterior lateral leads. Note:  the average gist (right) is positively related to P1 peak amplitude while 

arousal (left) is negatively related to P1 peak amplitude in the posterior lateral leads
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Figure 10: The impact of the only significant factor (average gist) on mean latency of P1 posterior lateral 

leads. Note: :  the average gist is inversely related to mean latency of P1 in the posterior lateral leads   

N1 component.    

 N1 has been used to examine the influences of emotion on perceptual processing 

of faces (Blau et al., 2007). In our study, while looking to explain variance in N1 amplitude, 

we found that the significantly explained variance (R-squared) for the model containing 

average gist, arousal, and valence as independent predictors was 0.21 (F (3,266) = 23.77, 

p < 0.0001).  We observed a significant main effect of valence on the amplitude of the N1 

component (t (1) = -4.85, p < .001). Secondly, the average gist showed significant main 

effect on N1 peak amplitude t (1) = 4.97, p < .001).   With controlling for valence and the 

average gist, the arousal had no significant effect on N1 peak amplitude (p=0.06). Figure 



 

 

47 

 

11 displays the average gist and valence effect on N1 mean posterior lateral peak 

amplitude.   

As for latency, we found that the significantly explained variance (R-squared) for 

the model containing average gist, arousal, and valence as independent predictors was 0.93 

(F(3,266) = 1077, p < 0.0001). In contrast to P1 latency, valence (t (1) = 44.43, p < .001) 

and arousal (t(1) = 8.32, p < .001) had highly significant effect on N1 latency while the 

average gist did not show any significant effect (p= 0.07). This is the only component that 

had such strong association with valence and arousal and insignificant effect of GIST. 

Figure 12 displays the valence and arousal effect on N1 mean posterior lateral latency. 

 

 

Figure 11: The impact of the significant factors (average gist and valence) on mean peak amplitude of N1 

posterior lateral leads. Note: the average gist (right) is positively related to N1 peak amplitude while 

valence (left) is inversely related to N1 peak amplitude in the posterior lateral leads   
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Figure 12: The impact of the significant factors (valence and arousal) on mean latency of N1 posterior 

lateral leads. Note: :  valence (right) and arousal (left) are both positively related to mean latency of N1 in 

the posterior lateral leads   

 

P2 component 

P2 is thought to index global properties of scene processing, such as naturalness 

and openness (Hansen et al., 2018). Here, while looking to explain variance in P2 

amplitude, we found that the significantly explained variance (R-squared) for the model 

containing average gist, arousal, and valence as independent predictors was 0.24 (F (3,266) 

= 28.81, p < 0.0001). Exceptionally, P2 was modulated by all three variables. We observed 

a significant main effect of arousal on the amplitude of the P2 component (t (1) = 2.86, p 

=.01). Secondly, the average gist showed significant main effect on P2 peak amplitude (t 
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(1) = 6.51, p < .001).  Furthermore, valence ratings showed a significant main effect on P2 

peak amplitude t (1) = -4.25, p < .001. Figure 13  displays the average gist, valence and 

arousal effect on P2 mean posterior lateral peak amplitude.   

 

As for latency, we found that the significantly explained variance (R-squared) for 

the model containing average gist, arousal, and valence as independent predictors was 

0.025 (F (3,266) = 2.23, p= 0.085). Similar to P1 latency, the only significant predictor of 

variance in P2 latency was the average gist (t (1) = 2.06, p= 0.040). Figure 14 displays the 

average gist effect on P2 mean posterior lateral latency.   
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Figure 13: The impact of the three significant factors (average gist (top right), valence (top left) and arousal 

(down)) on mean peak amplitude of the P2 posterior lateral leads. Note: the average gist (top right) and 

arousal (down) are both positively related to P2 peak amplitude while valence (top left) is inversely related 

to P2 peak amplitude in the posterior lateral leads   
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Figure 14: The impact of the only significant factor (average gist) on mean latency of P2 posterior lateral 

leads. Note: the average gist is inversely related to mean latency of P2 in the posterior lateral leads   

 

Early Activity (Area under the curve: 50ms-200ms) 

Above, we have described the effect on the traditionally reported ERP peaks, to 

facilitate comparison with previous studies.  Peak amplitudes are the easiest to measure but 

they are not particularly meaningful theoretically. Since, the time at which the voltage 

reaches a maximum amplitude has no special interpretation, measuring this time only may 

provide an overly simplistic and incomplete picture of the effect (Luck et al , 2005).  In 

fact, our results can be explained more reliably and is affected less by the signal noise, by 

looking into the continuous, whole ERP activity  that were not constricted in specific peaks 

(measured by AUCs) both during the early and late time periods.  
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Seeking to explain variance in the early activity, we found that the significantly 

explained variance (R-squared) for the model containing average gist, arousal, and valence 

as independent predictors was 0.24 (F (3,266) = 28.36, p < 0.0001).  We observed a 

significant main effect of arousal on the early area, t (1) = -2.24, p =0.03. Secondly, the 

average gist showed a significant main effect on the early area = 7.25, p < .0001.   With 

controlling for arousal and the average gist, the valence had no significant effect on the 

early area (p=0.15).  Figure 15 displays the average gist and arousal effect on mean early 

area.  

 

 

Figure 15: The impact of the significant factors (average gist and arousal) on mean early area (50-200ms) 

in the posterior lateral leads. Note:  the average gist (right) is positively related to mean early area while 

arousal (left) is inversely related to it in the posterior lateral leads. 
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Late activity (Area under the curve (200ms-350)) 

Looking to explain variance in the late activity, we found that the significantly explained 

variance (R-squared) for the model containing average gist, arousal, and valence as 

independent predictors was 0.18 (F (3,266) = 19.95, p < 0.0001).  We observed a significant 

main effect of valence on the late area, t (1) = -2.88, p =0.004. Secondly, the average gist 

showed a significant main effect on the late area = 5.89, p < .0001.  With controlling for 

valence and the average gist, the arousal had no significant effect on the late area 

(p=0.12).  Figure 16 displays the average gist and valence effect on mean late area.  

 

 

Figure 16: The impact of the significant factors (average gist and valence) on mean late area (200-350ms) 

in the posterior lateral leads. Note: the average gist (right) is positively related to mean late area while 

valence (left) is inversely related to it in the posterior lateral leads 
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Dominance analysis (DA) 

Dominance analysis is a statistical method used to compare the relative importance 

of predictors in multiple regression. It determines the dominance of one predictor over 

another by comparing their additional coefficient of determination, R2, contributions 

across all subset models. For example, for P1 posterior lateral peak amplitude, the added 

contribution of the gist is 0.205, which is greater than the added contribution of valence 

(0.024), when either one is the first term in the model.  The model where arousal is included 

first, adding the gist results in 0.188 contribution, while adding valence results in 0.007 

contribution.  Since 0.188 is greater than 0.007, gist dominates valence here as well.  Lastly, 

in the model that already contains valence and arousal, the added contribution of gist is 

0.183.  In contrast, in the model with Gist and Arousal already included the added 

contribution of valence is 0.003.  Since 0.183 is greater than 0.003, gist dominates valence 

here as well.  Since gist dominates valence for every model, it has complete dominance 

over valence. If overall averaged additional R2 contribution of one predictor (e.g gist) is 

greater than another then that predictor is said to generally dominate the other. 

Using the dominance analysis matrix tables in appendix (C), we carried out a 

similar process with gist compared to arousal and arousal compared to valence to see how 

gist dominates arousal as well arousal has complete dominance over valence. So, for P1 
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posterior lateral peak amplitude, in terms of contribution to R-squared, the average gist has 

the largest effect, arousal has the second largest effect, and valence has the weakest effect. 

We summarized the results tables of dominance analysis matrix in table 1. For P1 

posterior lateral latency, carrying on the same process will demonstrate that the average 

gist has complete dominance over both arousal and valence. Valence has general 

dominance over arousal. So, for P1 posterior lateral latency, in terms of contribution to R-

squared, the average gist has the largest effect, valence has the second largest effect, and 

arousal has the weakest effect. 

Similarly, for N1 posterior lateral peak amplitude, the average gist has complete 

dominance over both arousal and valence. Valence has complete dominance over arousal. 

So, for N1 posterior lateral peak amplitude, in terms of contribution to R-squared, the 

average gist has the largest effect, valence has the second largest effect, and arousal has the 

weakest effect. 

In contrast, for N1 posterior lateral latency valence has complete dominance over 

both arousal and average gist. Arousal has complete dominance over average gist. So, for 

N1 posterior lateral latency, in terms of contribution to R-squared, the valence, arousal has 

the second largest effect, and average gist has the weakest effect. 

Similar to N1 amplitude, for P2 posterior lateral peak amplitude and its latency, the 

average gist has complete dominance over both arousal and valence. Valence has complete 

dominance over arousal. So, for P2 posterior lateral peak amplitude and latency, in terms 



 

56 

 

of contribution to R-squared, the average gist has the largest effect, valence has the second 

largest effect, and arousal has the weakest effect. 

For the early and late area, the average gist has complete dominance over both 

arousal and valence. Valence has general dominance over arousal for the early area and 

complete dominance over arousal for the late area. So, for the early area, in terms of 

contribution to R-squared, the average gist per scene has the largest effect, valence has the 

second largest effect, and arousal has the weakest effect. 

Table 1: Dominance analysis results for all ERP peaks, latency and areas: 

I. P1 posterior lateral peak amplitude dominance analysis results 

Variable Type of Dominance Over 

Average Gist Complete Arousal and Valence 

Arousal Complete Valence 

Valence None   

II. P1 posterior lateral latency dominance analysis results 

Variable Type of Dominance Over 

Average Gist Complete Arousal and Valence 

Valence General Arousal 

Arousal None   

III. N1 posterior lateral peak amplitude dominance analysis results 

Variable Type of Dominance Over 

Average Gist  Complete Arousal and Valence 

Valence Complete Arousal 

Arousal None   

IV. N1 posterior lateral latency dominance analysis results 

Variable Type of Dominance Over 

Valence Complete Arousal and Average Gist 

Arousal Complete Average Gist  

Average Gist None   

V. P2 posterior lateral peak amplitude dominance analysis results 

Variable Type of Dominance Over 

Average Gist Complete Arousal and Valence 

Valence Complete Arousal 

Arousal None   
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VI. P2 posterior lateral latency dominance analysis results 

Variable Type of Dominance Over 

Average Gist Complete Arousal and Valence 

Valence Complete Arousal 

Arousal None   

VII. The early Area dominance analysis results 

Variable Type of Dominance Over 

Average Gist  Complete Arousal and Valence 

Valence General Arousal 

Arousal None   

VIII. The late Area dominance analysis results 

Average Gist  Complete Arousal and Valence 

Valence Complete Arousal 

Arousal None   

   

 

Discussion 

We examined the effect of emotional valence and arousal on perception using ERP 

measurements while participants view naturalistic scenes differing in their affective 

content as well as low-level visual properties measured by Gist descriptors. The goal of 

this study was to examine the effect of the emotional content of the scenes in their 

perception. Secondly, we aimed to distinguish the low-level image features' effect on 

perception from the emotional effect and compare them when they occur concurrently. At 

first glance on ERP grand average results, unpleasant scenes with moderate to high arousal 

showed the highest amplitude in P1, N1, and P2. This widespread effect was inconsistent 

with prior affective scene research. As mentioned in the introduction, previous studies have 

reported specific and isolated differences such as valence effects (while controlling for 

arousal) were reported as P1 or P2 amplitude change while arousal (while controlling for 
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valence) influences P1, N1 or later components (Olofsson et al., 2008). We clarified this 

inconsistency between our finding and previous studies using the univariate analysis that 

we performed to show the average gist of the unpleasant scenes was higher than pleasant 

and neutral scenes which had an insignificant difference between their means. This finding, 

by itself, could explain the ERP grand average waveform difference between unpleasant 

scenes on the one hand and pleasant/neutral scenes on the other.  

As a further step, to investigate the relative contribution of the low-level image features 

and emotional effect on scene perception, we run multiple linear regression and dominance 

analysis that include the individual scenes' emotional ratings (valence and arousal) as well 

as the average gist to represent low-level image properties. Table (2) below summarizes 

the multiple regression and dominance analysis results. 
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Table 2: summary of the multiple regression and dominance analysis results. Note: the + symbol describe 

the positive relationship while the – symbol describes the negative relationship. The larger symbol in the 

same column shows who completely dominates over the other variables, which have smaller symbols. C 

indicates complete dominance over the blank cell in the same column. When the cell is blank, that means 

non-significance in the multiple regression analysis. G indicates general dominance over the blank or 

smaller symbol containing cell in the same column. 

The multiple regression and dominance analysis showed that both average gist and 

emotional ratings impact early ERP components. The average gist exhibited complete 

dominance and showed a consistent, mostly positive effect on all peaks and latencies. The 

only exception was N1 latency, which is exactly the component that was affected strongly 

by valence while having no significant interaction with gist. Our study demonstrated that, 

during the early perception period (P1, N1, and P2), the gist had a widespread effect, which 

is not the usual pattern for most measures of low-level visual properties. P1 and N1 are 

sensitive to very low levels of stimulus properties, such as the local texture of scenes  (for 

example, roughness, smoothness), while P2 is mostly sensitive to the global layout (Greene 

 P1 

amplitude 

P1 

latency 

N1 

amplitude 

N1 

latency 

Early 

AUC 

P2 

amplitude 

P2 

latency 

Late 

AUC 

Average 

Gist 
+ - +  + + + + 

Valence  G 
- + 

G 
- 

C 
- 

Arousal 
- 

  + - +   
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& Hansen, 2018; Harel et al., 2020). A previous study that balanced the scenes' complexity 

as the only low-level visual feature showed the only difference of higher EPN amplitude 

for less complex scenes regardless of its emotional ratings (Löw et al., 2013). We could 

explain our widespread ERP effect by our choice of the gist model. This simple model 

spans over all levels of visual information ranging from very low-level features (e.g., color, 

contour) to intermediate (e.g., texture, shapes) and high level (semantic knowledge 

activation) (Oliva & Torralba, 2006). Further discussion of this observation will be in the 

general discussion section).  

Negativity bias 

Since our study's emotional effect was inferior to the effect of the gist descriptors, we 

cannot decisively answer our question of the effect of emotion (with decreased social 

factor) on scene perception. Nevertheless, we cannot neglect the reported effects of valence 

as the second effector (after gist) on the ERP pattern and mostly dominate over arousal. 

Two critical findings supported the Negativity bias framework that highlights unpleasant 

(or aversive) information can produce a more robust brain response than pleasant or neutral 

due to the rapid activation of the amygdala processing (Phelps & LeDoux, 2005). First, 

valence ratings were very strongly (R=.93) correlated directly proportional to N1 latency, 

while the gist did not affect it. Shorter N1 latencies were associated with lower valence 

ratings, which could reflect faster perceptual processing providing an evolutionary 

advantage for unpleasant scenes  (Hillyard et al., 1998). However, this particular 
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correlation with N1 latency was not reported in previous studies. Thus, we recommend 

verifying this correlation which could serve as an index for the unpleasant inanimate scenes 

effect on perceptual processing. Second, valence ratings were inversely proportional to N1 

and P2 amplitude in which the lower valence ratings were associated with higher 

amplitude. This resonates with empirical evidence of the Negativity bias framework 

showed that unpleasant scenes had inconsistently higher P1, N1, or P2 peaks differing with 

different methodologies and stimuli types (Olofsson et al., 2008).  
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IV. GENERAL DISCUSSION 

We examined the effect of affective valence and arousal on perception using ERP 

measurements while participants view naturalistic scenes (that reduced the social factor by 

eliminating the presence of people). We found that unpleasant scenes (with high to 

moderate arousal) had higher grand average ERP peaks (P1, N1, and P2) than pleasant 

(with highest and moderate arousal) and neutral scenes (with moderate to low arousal). 

Upon further analysis of the image summary statistics, explicitly rated unpleasant scenes 

showed higher gist scores than neutral or pleasant scenes, suggesting the ERP results might 

be driven by image properties rather than affective ratings. To compare the relative 

contribution of all these factors (low-level visual properties, valence and arousal ratings), 

we ran multiple linear regression and dominance analysis studying the impact of individual 

scenes gist scores and explicit affective ratings on the ERP amplitude and latency. We 

found that the average gist had the most dominant effect over affective ratings for all early 

peaks, latencies, and areas except N1 latency. For this particular latency, valence had 

complete dominance over the other factors, while arousal had complete dominance over 

the gist. Secondly, valence had the second-largest dominance effect, and it showed 

complete dominance over arousal on all peaks, latencies, and areas except P1 peak 

amplitude where arousal ratings had complete dominance over valence.  
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Is scene perception (im)penetrable to emotion?  

Our study suggests that scenes, even general scenes with reduced social factors, can 

evoke an emotional reaction, confirmed by ratings and the differences in ERP response. 

However, since this ERP response is also associated with differences in GIST, we cannot 

confirm our hypothesis regarding the impact of emotion on scene perception. In the current 

stimulus set, the majority of the early electrophysiological responses (P1, N1, and P2) seem 

to reflect the processing of image properties, followed by ratings of valance, then arousal, 

which had the least effects as expected. We had expected a small effect -if any- of arousal 

since it was relatively minor in the current scene stimulus set compared to other stimulating 

images (e.g. erotica or graphic content). For the valence, the literature is inconsistent, 

depending on stimulus selection, tasks, and methodology. We expected the unpleasant 

scenes to have higher P1 peaks as reported by (Carretié, Hinojosa, Martín-Loeches, 

Mercado, & Tapia, 2004; Delplanque et al., 2004; A. P. R. Smith, Dolan, & Rugg, 2004). 

Also, we expected P2 to be higher with unpleasant scenes as it was reported in several 

affective studies and it is scene specific component that can be modulated by different 

characteristics of scenes (Hansen et al., 2018; Olofsson et al., 2008).  

Given the above studies, how can the weak effect of valence in the current study be 

explained? The weak effect of valence can be understood in five ways:  The first one is 

that based on our results, we can deduce that our hypothesis was proven false. That is, 

implicit affective processing had a weak effect on ERP of early visual perceptual processes. 
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This weak effect is not consistent with previous research. It could be due to our stimuli's 

nature, as suggested in previous studies that inanimate and landscape scenes result in less 

affective neural activity (that could be small to be detected by external electrodes) than 

affective scenes with people (Löw et al., 2013).   We can reject the hypothesis, that valence 

can affect neural response to scene perception, if we got complete negative results, i.e no 

change in ERP response between the three conditions (neutral and affective scenes). Even 

then, the design of the experiment made it impossible to conclude that affect (particularly 

valence) is not salient feature of scene perception. The most obvious reason is that we did 

not control for important confounding factors (low-level visual properties, arousal while 

measuring valence and vice versa).  

In our case, we had differences between those conditions. Although low level visual 

properties ,in form of gist, explained those differences more than affective factors, we still 

cannot disregard the minor effect of valence on the neural response. 

Secondly, limitations in the trial size, and/or experimental design preclude any 

conclusion. The trial size of individual scenes in the regression analysis was relatively 

small (maximum of five repetitions; some were lost due to artifact rejection) compared to 

the number of trials used in standard ERP experiments which typically include more than 

14 trials for adequate test–retest reliability (Larson, Baldwin, Good, & Fair, 2010). The 

low number of trial in our study had reduced the statistical power to detect the effect  (Luck 

et al, 2014). When determining the appropriate number of experimental trials necessary to 
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test a hypothesis, Boudewyn and colleagues (2018) recommend considering additional 

factors, such as the size of the sample and noise/signal ratio. Future work may potentially 

compensate for the relatively low trial count by increasing the sample size and minimizing 

the noise level in the EEG recording. The other possible reason for this weak impact of 

implicit affective processing is that it was reduced due to top-down attentional task 

demands (the orthogonal task might have won the competition). Support for this conjecture 

comes from a study by Schupp and colleagues (2014), which showed that explicit simple 

categorization task requiring little attentional resources suppressed the implicit emotional 

processing (Schupp, Schmälzle, & Flaisch, 2014). We used the orthogonal task to control 

for endogenous attention; future studies can compare it with an explicit affective 

categorization task. 

Thirdly, we might need to re-evaluate our assumption that detailed explicit affective 

ratings can reflect implicit affective processing. The weak correlation could be due to this 

assumption instead of the genuinely weak impact of implicit processing on ERP.  The 

assumption was based on previous affective perception studies that did not acquire explicit 

ratings during the neural recording, simply using IAPS or other dataset affective ratings to 

examine the implicit affective processing influence on perceptual and cognitive processes 

(Feng et al., 2012; Olofsson & Polich, 2007). This assumption led us to design our study 

so that we do not enable further conscious emotional processing of the scenes by distracting 

the participants (instead of using a task that engages the explicit emotional system) and 

using brief stimulus presentation time and backward masking. This allowed us to present 
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a large number of trials for each scene category while getting higher signal-to-noise ratios 

and avoiding fatigue effects. However, it prevented us from looking at the neural correlates 

of the conscious emotional response. This assumption may not necessarily be accurate 

since emotional processing could be viewed along a continuum, ranging from an implicit 

level to an explicit level (Lane, 2008; Lane et al., 1998), which might  influence various 

cognitive processes differentially (e.g. executive function and cognitive control) (Cohen, 

Moyal, Lichtenstein-Vidne, & Henik, 2016). Each process has different characteristics and 

neural mechanisms. Implicit processing of emotions is known to be automatic, procedural, 

non-conceptual process that does not necessitate conscious processing (bottom-up) and has 

been linked to the amygdala and anterior cingulate cortex (H. D. Critchley, 2005). In 

contrast, explicit processing entails declarative evaluation and involves top-down higher 

cognitive resources to define conscious emotional states and involve the temporoparietal 

junction and medial prefrontal cortex (H. D. Critchley, 2005; H. Critchley et al., 2000).  

With this distinction in mind, it is plausible that implicit processing does not impact the 

ERP response because cortical neurons (that our electrodes were measuring) are not 

sensitive to the early emotional activity in the subcortex, except when it is strong enough 

to propagate to the cortical areas. This is supported by the evidence that masked emotional 

stimuli are processed in the subcortex (Tamietto & De Gelder, 2010).  

Fourthly, we did not control for  arousal when we are measuring the effect of 

valence and vice versa. This could have caused confounding results since arousal and 

valence had opposite effects at some components. Yet, we have measured the relative 
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contribution of each affective dimension.  Furthermore, we did not attempt to control for 

low-level visual properties. But we were able to account for that and examine their relative 

contribution to the resulting neural response. Additionally, we used that drawback to 

expand the study scope and to understand the fundamental relationship between emotion 

and the early perceptual processing.  

The fifth alternative explanation for the current results, relates to the question of 

the generalizability of the first group’s affective ratings to those of the second group. 

Although the two groups had only minor differences in demographics, the convenience 

sampling nature includes potentially unmeasurable selection bias that does not allow 

generalizability of the results due to the possible under-representation of subgroups in the 

sample compared to the population of interest (Bornstein, Jager, & Putnick, 2013). Besides 

that, even if the sample was representative, the experimental conditions were different (the 

task, timing, and use of EEG electrodes) which would result in different emotional and 

cognitive states of the participants.  

At the current moment, we cannot prove or disprove our hypothesis of the expected 

impact of implicit affective processing on ERP of early visual processing because gist turns 

out to be varying in our scenes and likely causing the majority of EEG differences; and 

other possible explanations mentioned above. This study merely presents a first step in 

exploring this interaction of emotion and large-scale spatial environment scene perception. 

See below for further discussion of the future potential directions this study presents.  



 

68 

 

Arousal 

In our stimulus set, we noticed three findings about arousal. Foremost, it had the 

weakest effects on scene perception (in all peaks and latencies except for P1 peak 

amplitude). For P1, arousal ratings were inversely proportional to P1 amplitude. This is 

inconsistent with previous research, that report positive effect of arousal on P1 amplitude 

(Luck et al , 2014). Moreover, we did not even observe EPN which is most consistent 

finding in arousing stimuli. We expected that arousal in our set would be much less than 

other studies which use scenes of people (e.g. erotic) that could trigger sexual or autonomic 

arousal through mirror neuron activation (Mouras et al., 2008). A mirror neuron fires when 

an individual acts and when the individual observes the same action performed by another 

and its activation is thought to be a mechanism of social connections (Rizzolatti & 

Craighero, 2004). Future studies should look for ways that activate arousal mechanisms 

without involving social brain systems (Tso, Rutherford, Fang, Angstadt, & Taylor, 2018). 

Moreover, arousal self-reports are not accurate and misattributed in many situations as 

documented previously (Dutton & Aron, 1974) 

Does GIST intensity influence affective ratings? 

Our analysis of the gist descriptor of various affective rating categories also points 

to the more fundamental fact that affective ratings were associated with different gist values 

(i.e. intensities), in which unpleasant scenes have higher gist intensity. In other words, 

participants in Study 1 rated the scenes for their affective dimensions, and they were 

describing scenes with high gist scores as more unpleasant with moderate to high arousal. 
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Redies and colleagues (2020) analyzed the predictability power of 13 global image 

properties (including color, symmetry, complexity, and self-similarity) to affective ratings 

of five affective pictures datasets including IAPS and OASIS. They pointed out that these 

datasets differ widely in their low-level perceptual qualities, which covary with different 

affective ratings (both valence and arousal). They recommended controlling for these 

global properties before rating acquisition. Alternatively, they offered an open-source that 

generates picture sets (e.g., pleasant versus unpleasant) that are matched for the image 

properties with a prominent effect on the ratings and allows scientists to use the established 

values of individual pictures covariates for statistical analyses (Redies, Grebenkina, 

Mohseni, Kaduhm, & Dobel, 2020). Rhodes et al. (2019) reported similar findings in 

machine vision that low-level features such as un-localized, two-dimensional (2-D) Fourier 

spectra can be diagnostic of affective scene content. However, because exchanging 

amplitude spectra between picture categories did not affect the affective ratings, the authors 

concluded that it is not used by the human visual system (Rhodes et al., 2019). Since 

stimulus properties are different among different affective categories, the question, of 

which one – if any – is used by the human visual system, remains open.  

From our analysis, gist was correlated with affective ratings (valence and arousal) 

but we did not investigate the correlation between gist and valence or gist and arousal in 

particular. Apparently, the correlation cannot be absolute since gist had effects on the ERP 

that neither valence nor arousal had. In the future, we would like to advance our analysis 

to explore the relationship between gist and valence in scenes that have same arousal 
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values. Also exploring the relationship between gist and arousal in scenes that have same 

valence ratings. This would enable further understanding of this interesting effect of 

physical stimulus properties on different dimensions of the affective spectrum.  

 As a future direction, it will be interesting to use “scrambled” images (abstract 

without semantic meaning) that has different gist intensities and ask participants to 

affectively rate them. We would predict the highest gist intensities (regardless of image 

content) to be associated with unpleasant valence and moderate to high arousal ratings. 

Another experiment to expand on this finding is by asking participants to rate the same 

scenes before and after controlling for physical properties and to examine the ERP response 

of these scenes.  

Emotions as bottom-up effectors on perception 

These findings raise a question if we can ever separate the physical properties of 

the stimulus from its affective processing (both implicit and explicit). Our results pinpoint 

to the primarily bottom-up (stimulus-driven) characteristics of emotional triggers.  It also 

highlights the notion of common emotional triggers imbedded in the stimulus properties 

regardless of the semantic meaning. This view supports Malcom et al (2016) who argue 

that for a complete understanding of scene perception, it is essential to account for both 

differing observer goals and the contribution of diverse scene properties (Malcolm, Groen, 

& Baker, 2016).  
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Does GIST influence affective processing and their impact on ERP? 

If the GIST descriptors have a direct effect on affective ratings, we would also 

expect an effect on ERP response to affective stimuli. The gist dominance pattern over 

affective processing resonates with other studies. Affect ERP studies that have evaluated 

variables such as stimulus complexity, color, spatial frequency, etc., find some influences 

of physical variables on affective waveforms (Löw et al., 2013; Miskovic et al., 2015). 

Although most affective scenes studies had controlled for one or two physical variables 

such as luminance, color, contrast, spatial frequencies or complexity Feng et al., 2012; Löw 

et al., 2013; Sabatinelli, Keil, Frank, & Lang, 2013), limited affective scene studies had 

controlled for the gist or looked into its combined effect with emotional ratings. Our study 

stands out in that we accounted for the relative contribution of gist on the relationship 

between emotion and scene perception. Because low level visual properties have various 

levels and factors, it was essential to use the gist, which covers local and global scene 

properties. Please refer to the implications section for discussion of applications to this 

finding. 

Potential of the study 

Our study is a first step in exploring the effect of emotional processing on the 

perception of real-life environments. The detected minor effect should be further explored 

while controlling for low-level image properties before affective rating acquisition. To 

assess the influence of emotion on perception, we need to be clear about which emotional 
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processes we would like to examine. I would like to further explore that by asking how 

early perception is influenced when individuals are not aware of certain emotional triggers 

(implicit) versus conscious emotional involvement (explicit). To answer this question, we 

need to examine the differences between implicit affective processing (while passive 

viewing versus a task that requires minimum attentional interaction with the stimuli) versus 

explicit processing (while describing how they feel) and their impact on the neural 

processing of scene perception. This future experiment will guide us in exploring a 

potential dissociation between implicit and explicit emotional processes, which should be 

taken into consideration in any affective study. This gap had been the basis of 

psychoanalytic psychotherapy, which aims at moving implicit emotions to be explicitly 

expressed to treat or prevent various mental and psychosomatic disorders (Lane, 2008). To 

explore this gap, we will evaluate individuals’ introspection and emotional awareness and 

assess implicit and explicit affective processes by various autonomic measures and ERP. 

These measures would show the factors that could shorten the gap between explicit and 

implicit emotional processing (Katkin, Wiens, & Öhman, 2001). A further step is to mask 

the stimulus and measure the gap between conscious/ unconscious versus explicit/ implicit 

emotional processing to ascertain the neural mechanisms behind different emotional 

processes. This potential dissociation is an important area that must be explored to 

understand the mind-body integration and introduce various preventive measures of mental 

health disorders.   
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Moreover, one application of the relationship between low-level visual features and 

affective processing supports artificial intelligence research aiming to teach machines to 

understand and share emotions to communicate better with humans. Unlike facial 

emotional expressions, it is more difficult for machines to interpret natural scenes’ 

emotional content. Using gist descriptors and EEG reading of a human operator, robots can 

learn emotional reactions in response to natural scenes (Zhang & Lee, 2009). Zhang and 

Lee, 2009 invented an emotion understanding system based on electrical brain activity and 

GIST that foster the brain-computer interface to aid robots/ computers in recognizing and 

categorizing emotional scenes. They used GIST as input signals, and the computer can 

analyze the combined brain activity and the GIST and share the emotional category as an 

output. We recommend further exploration of similar applications, which could enhance 

our understanding of human emotionality as well. 

Conclusion 

In summary, the interaction between emotion and scene perception involves many 

facets  including low-level visual properties interaction with affective appraisal and 

explicit-implicit emotion interactions. Our study is a first step in exploring this interaction 

using large scale spatial environment with reduced social component. In our stimulus set, 

the ‘assumed’ explicit affective ratings had minor impact on neural response to scene 

perception compared to low-level visual properties (particularly GIST). We did not 

measure the implicit affective processing so that we cannot comment on its correlation with 

neural response to scene perception. Instead, we documented the influence of low-level 
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visual properties on explicit affective ratings. That could mean, emotional triggers do not 

only depend on the overall appraisal of the scene, but they are fundamentally embedded in 

the basic elements of the scene (physical properties). Our data thus demonstrates . the role 

of physical stimulus properties (bottom-up) in affective processing rather than the top-

down (cognitive) side of it. As an implication, when humans are out in nature, certain 

triggers embedded in the low-level visual properties of the large spatial scale environment 

can generate affective reaction. This affective reaction could be playing role in how we 

filter the world around us. This is also related to previous research that point to the 

cognitive benefit of interacting with nature while our study showed the other side of being 

out in nature, i.e the unpleasant effect (Berman, Jonides, & Kaplan, 2008). 
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Appendix A:  

Table 3: multiple linear regression tables for all early components (P1, N1 and P2) and AUCs (early and 

late). Note: For each component, the first and second tables show the overall variance of the model 

including the R-square and the F value. The third Table contains Type I sums of squares when each 

variable is the first term entered into the model, while fourth table contains type III sums of squares when 

each variable is entered last in the model.  Statisticians generally prefer type III because they show the 

additional contribution of that variable after controlling for the effects of all the other variables. The fifth 

table contain the t and p values for each variable which we have reported in the text. 

I. P1 Posterior Lateral peak amplitude Main Effects Model, multiple linear regression 

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 

Model 3 137.6438481 45.8812827 25.57 <.0001 

Error 266 477.2445602 1.7941525     

Corrected 
Total 

269 614.8884083       

 

R-Square Coeff Var Root MSE P1_posterior_lateral_V Mean     

0.223852 15.83844 1.33946 8.457017     
  

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 126.2045002 126.2045002 70.34 <.0001 

valence 1 0.0071066 0.0071066 0 0.9499 

Arousal 1 11.4322413 11.4322413 6.37 0.0122 

 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 112.5374236 112.5374236 62.72 <.0001 

valence 1 1.6937773 1.6937773 0.94 0.3321 

Arousal 1 11.4322413 11.4322413 6.37 0.0122 
 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept 6.97498399 0.54529573 12.79 <.0001 

average gist 50.11095463 6.32723358 7.92 <.0001 

valence 0.07017042 0.07221969 0.97 0.3321 

Arousal -0.42405571 0.16799134 -2.52 0.0122 

 

II. P1 Posterior Lateral latency Main Effects Model, multiple linear regression  

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 

Model 3 48.663999 16.221333 1.41 0.2416 

Error 266 3070.733671 11.544112     

Corrected 
Total 

269 3119.39767       
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R-Square Coeff Var Root MSE P1_posterior_lateral_L Mean   
  
  
  

0.0156 2.733425 3.397663 124.3005 

 

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 47.68957536 47.68957536 4.13 0.0431 

valence 1 0.6701999 0.6701999 0.06 0.8098 

arousal 1 0.30422379 0.30422379 0.03 0.8712 
 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 45.79833376 45.79833376 3.97 0.0474 

valence 1 0.27318917 0.27318917 0.02 0.8779 

arousal 1 0.30422379 0.30422379 0.03 0.8712 

 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept 126.0890967 1.38319266 91.16 <.0001 

average gist -31.9675263 16.04960873 -1.99 0.0474 

valence -0.0281811 0.18319186 -0.15 0.8779 

arousal -0.0691757 0.42612546 -0.16 0.8712 

 

III. P2 Posterior Lateral peak amplitude Main Effects Model, multiple linear regression 

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 

Model 3 156.7397801 52.2465934 28.81 <.0001 

Error 266 482.4406604 1.8136867     

Corrected 
Total 

269 639.1804405       

 

R-Square Coeff Var Root MSE P2_posterior_lateral_V Mean   
  
  
  

0.24522 13.98642 1.346732 9.628852 

 

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 141.2237839 141.2237839 6.04 0.0146 

valence 1 13.3516724 13.3516724 0.57 0.4505 

arousal 1 1.6688567 1.6688567 0.07 0.7896 

 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 99.62974962 99.62974962 4.26 0.04 
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valence 1 7.89551728 7.89551728 0.34 0.5617 

arousal 1 1.66885669 1.66885669 0.07 0.7896 

 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept 166.3497514 1.96854686 84.5 <.0001 

average gist 47.1496759 22.8416531 2.06 0.04 

valence -0.1515013 0.26071695 -0.58 0.5617 

arousal -0.1620193 0.60645777 -0.27 0.7896 

 

IV. P2 Posterior Lateral latency Main Effects Model, multiple linear regression 

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 

Model 3 156.244313 52.081438 2.23 0.0853 

Error 266 6219.68393 23.38227     

Corrected 
Total 

269 6375.928243       

 

R-Square Coeff Var Root MSE P2_posterior_lateral_L Mean   
  
  
  

0.024505 2.88313 4.835522 167.7178 

 

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 141.2237839 141.2237839 6.04 0.0146 

valence 1 13.3516724 13.3516724 0.57 0.4505 

Arousal 1 1.6688567 1.6688567 0.07 0.7896 

 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 99.62974962 99.62974962 4.26 0.04 

valence 1 7.89551728 7.89551728 0.34 0.5617 

Arousal 1 1.66885669 1.66885669 0.07 0.7896 

 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept 166.3497514 1.96854686 84.5 <.0001 

average gist 47.1496759 22.8416531 2.06 0.04 

valence -0.1515013 0.26071695 -0.58 0.5617 

Arousal -0.1620193 0.60645777 -0.27 0.7896 

 

V. N1 Posterior Lateral peak amplitude Main Effects Model, multiple linear regression 

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 
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Model 3 94.7043579 31.5681193 23.77 <.0001 

Error 266 353.2050642 1.3278386     

Corrected 
Total 

269 447.909422       

 

R-Square Coeff Var Root MSE 
N1_posterior_lateral_V 
Mean 

  
  
  
  

0.211436 122.8364 1.152319 0.938093 

 

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 63.45626159 63.45626159 47.79 <.0001 

valence 1 26.5539427 26.5539427 20 <.0001 

arousal 1 4.69415357 4.69415357 3.54 0.0612 
 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 32.79820506 32.79820506 24.7 <.0001 

valence 1 31.23311048 31.23311048 23.52 <.0001 

arousal 1 4.69415357 4.69415357 3.54 0.0612 
 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept -0.1653163 0.4691104 -0.35 0.7248 

average gist 27.05261367 5.44323187 4.97 <.0001 

valence -0.30132388 0.0621296 -4.85 <.0001 

arousal 0.27172893 0.14452064 1.88 0.0612 

 

VI. N1 Posterior Lateral latency Main Effects Model, multiple linear regression 

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 

Model 3 93288.7896 31096.2632 1077.12 <.0001 

Error 266 7679.3467 28.8697     

Corrected 
Total 

269 100968.1363       

 

R-Square Coeff Var Root MSE N1_posterior_lateral_L Mean   
  
  
  

0.923943 3.301225 5.373055 162.7594 

 

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 12113.80607 12113.80607 419.6 <.0001 

valence 1 79176.4669 79176.4669 2742.54 <.0001 
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arousal 1 1998.51664 1998.51664 69.23 <.0001 

 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 94.24107 94.24107 3.26 0.0719 

valence 1 56983.79976 56983.79976 1973.83 <.0001 

arousal 1 1998.51664 1998.51664 69.23 <.0001 

 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept 111.80417 2.18737749 51.11 <.0001 

average gist -45.8568592 25.38081201 -1.81 0.0719 

valence 12.870684 0.28969917 44.43 <.0001 

arousal 5.606749 0.67387377 8.32 <.0001 

 

VII. Early area, posterior lateral,  Main Effects Model, multiple linear regression 

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 

Model 3 620359.983 206786.661 28.36 <.0001 

Error 266 1939451.478 7291.171     

Corrected 
Total 

269 2559811.461       

 

R-Square Coeff Var Root MSE Early_Area Mean   
  
  
  

0.242346 10.62199 85.38835 803.883 

 

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 535808.3298 535808.3298 73.49 <.0001 

valence 1 48003.8551 48003.8551 6.58 0.0108 

arousal 1 36547.7984 36547.7984 5.01 0.026 
 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 382921.9646 382921.9646 52.52 <.0001 

valence 1 14914.689 14914.689 2.05 0.1538 

arousal 1 36547.7984 36547.7984 5.01 0.026 
 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept 747.301131 34.7617042 21.5 <.0001 

average gist 2923.070778 403.3507169 7.25 <.0001 

valence -6.584655 4.6038861 -1.43 0.1538 

arousal -23.976613 10.7091714 -2.24 0.026 
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VIII. Late area, posterior lateral,  Main Effects Model, multiple linear regression 

Source DF 
Sum of 
Squares 

Mean Square F Value Pr > F 

Model 3 1157856.365 385952.122 19.95 <.0001 

Error 266 5146249.116 19346.801     

Corrected 
Total 

269 6304105.482       

 

R-Square Coeff Var Root MSE Late_area Mean   
  
  
  

0.183667 13.77764 139.0928 1009.555 

 

Source DF Type I SS Mean Square F Value Pr > F 

average gist 1 993286.7323 993286.7323 51.34 <.0001 

valence 1 116772.7418 116772.7418 6.04 0.0147 

arousal 1 47796.8914 47796.8914 2.47 0.1172 
 

Source DF Type III SS Mean Square F Value Pr > F 

average gist 1 671458.8402 671458.8402 34.71 <.0001 

valence 1 160931.1698 160931.1698 8.32 0.0042 

arousal 1 47796.8914 47796.8914 2.47 0.1172 
 

Parameter Estimate Standard Error t Value Pr > |t| 
  
  
  
  
  

Intercept 817.678642 56.6248419 14.44 <.0001 

average gist 3870.739017 657.0354111 5.89 <.0001 

valence -21.629477 7.4994689 -2.88 0.0042 

arousal 27.419344 17.444632 1.57 0.1172 
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Appendix B: Multiple linear regression Figures for the non-significant factors effect on 

ERP components (P1, N1, P2) and AUC (early and late): 

 
 

Figure 18: The relationship between non significant factors (valence (right) and arousal(left)) and latency 

of P1 posterior lateral leads. Note: the relationship between valence or arousal and P1 latency is almost 

flat line 
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Figure 17: The relationship between non significant factor (valence) and peak amplitude of P1 

posterior lateral leads. Note: the relationship between valence and P1 peak amplitude is almost 

flat line 
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Figure 19: The relationship between non-significant factor (arousal) and peak amplitude of N1 posterior lateral 

leads. Note: the relationship between arousal and N1 peak amplitude is almost flat line 

Figure 20: The relationship between non-significant factor (average gist) and latency of N1 posterior 

lateral leads. Note: the relationship between average gist and N1 latency  is almost flat line 
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Figure 21: The relationship between non-significant factors (valence and arousal) and latency of P2 

posterior lateral leads. Note: the relationship between valence or arousal and P2 latency is almost flat line 

 

 

 
Figure 22: The relationship between non-significant factor (valence) and mean early area (50- 200ms) in 

posterior lateral leads. Note: the relationship between valence and mean early area is almost flat line 
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Figure 23: The relationship between non-significant factor (arousal) and mean late area (200ms-350ms) in posterior 

lateral leads. Note: the relationship between arousal and mean late area is almost flat line 
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 Appendix C: 

Table 4: Dominance analysis matrix for all components (P1, N1, P2) and AUCs (early and 

late). Note: The first row is the intercept only model, (The “fit” equal to zero since it does not include any 

of the three variables) and the added contribution of each variable when they are added by themselves (e.g 

for P1 amplitude: 0.205 for gist, .024 for valence, and .033 for arousal).  The next three rows are when the 

variable in the first column is in the model, and the values in the final three columns are the added 

contribution when each variable is added to that model.  The fifth row is the average contribution of each 

variable when one other variable is included.  The sixth through eighth rows are the added contribution of 

each variable when the two variables listed in the first column are already in the model, and the ninth row 

is the R-squared of the full model with all three variables. 

I. P1 posterior lateral peak latency dominance analysis matrix 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.205 0.024 0.033 

Gist 1 0.205  0.000 0.016 

Valence 1 0.024 0.181  0.017 

Arousal 1 0.033 0.188 0.007  
Average 1 Variable 1  0.184 0.004 0.016 
 

Gist + Valence 2 0.205   0.019 

Gist + Arousal 2 0.221  0.003  

Valence + Arousal 2 0.041 0.183   

Average 2 Variables 2  0.183 0.003 0.019 
 

Gist + Valence + Arousal 3 0.224       

II. P1 posterior lateral peak latency dominance analysis matrix: 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.015 0.001 0.000 

Gist 1 0.015  0.000 0.000 

Valence 1 0.001 0.015  0.000 

Arousal 1 0.000 0.016 0.001  
Average 1 Variable 1  0.015 0.001 0.000 
 

Gist + Valence 2 0.016   0.000 

Gist + Arousal 2 0.016  0.000  
Valence + Arousal 2 0.001 0.015   

Average 2 Variables 2  0.015 0.000 0.000 
 

Gist + Valence + Arousal 3 0.016       
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 III. N1 posterior lateral peak amplitude dominance analysis matrix: 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.142 0.127 0.003 

Gist 1 0.142  0.059 0.000 

Valence 1 0.127 0.074  0.011 

Arousal 1 0.003 0.139 0.135  

Average 1 Variable 1  0.107 0.097 0.006 

 

Gist + Valence 2 0.201   0.010 

Gist + Arousal 2 0.142  0.070  

Valence + Arousal 2 0.138 0.073   

Average 2 Variables 2  0.073 0.070 0.010 
 
Gist + Valence + Arousal 3 0. 211       

IV. N1 posterior lateral peak latency dominance analysis matrix 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.120 0.903 0.281 

Gist 1 0.120  0.784 0.240 

Valence 1 0.903 0.001  0.020 

Arousal 1 0.281 0.079 0.642  

Average 1 Variable 1  0.040 0.713 0.130 
 

Gist + Valence 2 0.904   0.020 

Gist + Arousal 2 0.360  0.564  
Valence + Arousal 2 0.923 0.001   

Average 2 Variables 2  0.001 0.564 0.020 
 

Gist + Valence + Arousal 3 0.924       

V. P2 posterior lateral peak amplitude dominance analysis matrix: 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.190 0.100 0.000 

Gist 1 0.190  0.032 0.004 

Valence 1 0.100 0.122  0.025 

Arousal 1 0.000 0.194 0.125  

Average 1 Variable 1  0.158 0.079 0.015 
 

Gist + Valence 2 0.222   0.023 
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Gist + Arousal 2 0.194  0.051  

Valence + Arousal 2 0.125 0.120   

Average 2 Variables 2  0.120 0.051 0.023 
 

Gist + Valence + Arousal 3 0.245       

VI. P2 posterior lateral peak latency dominance analysis matrix 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.022 0.009 0.003 

Gist 1 0.022  0.002 0.001 

Valence 1 0.009 0.016  0.000 

Arousal 1 0.003 0.021 0.006  

Average 1 Variable 1  0.018 0.004 0.001 
 

Gist + Valence 2 0.024   0.000 

Gist + Arousal 2 0.023  0.001  
Valence + Arousal 2 0.009 0.016   

Average 2 Variables 2  0.016 0.001 0.000 
 

Gist + Valence + Arousal 3 0.025       

VII. The early Area posterior lateral dominance analysis matrix: 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.209 0.080 0.049 

Gist 1 0.209  0.019 0.027 

Valence 1 0.080 0.148  0.013 

Arousal 1 0.049 0.187 0.044  
Average 1 Variable 1  0.168 0.031 0.020 
 

Gist + Valence 2 0.228   0.014 

Gist + Arousal 2 0.237  0.006  

Valence + Arousal 2 0.093 0.150   

Average 2 Variables 2  0.150 0.006 0.014 
 

Gist + Valence + Arousal 3 0.242       

VIII. The late Area posterior lateral dominance analysis matrix: 

Model # of variables fit Gist Valence Arousal 

Intercept Only 0 0.000 0.158 0.069 0.001 

Gist 1 0.158  0.019 0.001 

Valence 1 0.069 0.108  0.009 

Arousal 1 0.001 0.157 0.076  

Average 1 Variable 1  0.132 0.047 0.005 



 

 

 

 

105 

 

  

Gist + Valence 2 0.176   0.008 

Gist + Arousal 2 0.158  0.026  

Valence + Arousal 2 0.077 0.107   

Average 2 Variables 2  0.107 0.026 0.008 
 

Gist + Valence + Arousal 3 0.184       
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Appendix D: Two Examples of the variability of human judgements of valence ratings 

among 50 participants (study I)  

 

Figure 24: Examples of the variability among valence ratings 
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