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ABSTRACT 

 

 

Beachy, Atticus J., M.S.M.E., Mechanical and Materials Engineering Department, 

Wright State University, 2020. Adaptive Multi-Fidelity Modeling for Efficient Design 

Exploration Under Uncertainty. 

 

 

This thesis work introduces a novel multi-fidelity modeling framework, which is 

designed to address the practical challenges encountered in Aerospace vehicle design when 

1) multiple low-fidelity models exist, 2) each low-fidelity model may only be correlated 

with the high-fidelity model in part of the design domain, and 3) models may contain noise 

or uncertainty. The proposed approach approximates a high-fidelity model by 

consolidating multiple low-fidelity models using the localized Galerkin formulation. Also, 

two adaptive sampling methods are developed to efficiently construct an accurate model. 

The first acquisition formulation, expected effectiveness, searches for the global optimum 

and is useful for modeling engineering objectives. The second acquisition formulation, 

expected usefulness, identifies feasible design domains and is useful for constrained design 

exploration. The proposed methods can be applied to any engineering systems with 

complex and demanding simulation models. 
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I. RESEARCH BACKGROUND AND TECHNICAL NEEDS 

 This thesis lays out novel methods to reduce the time and cost of engineering design 

exploration when using computer simulations. The main approach is to build and use 

surrogate models, which inexpensively approximate computer model responses using data 

from a limited number of simulation runs. Multi-Fidelity (MF) surrogate modeling allows 

for multiple data sources of various accuracies and cost to be leveraged, allowing for 

increased modeling flexibility and decreased overall cost without sacrificing prediction 

accuracy. Adaptive sampling methods sequentially select new data samples in regions of 

the design space where increased accuracy is important. A novel MF surrogate modeling 

method is introduced, as well as two adaptive sampling methods, one for global 

optimization and the other for determining contours and boundaries of design feasibility. 

The former introduces Expected Effectiveness (EE) and is useful for capturing engineering 

design objectives by exploiting MF data sources, while the latter defines Expected 

Usefulness (EU) for modeling engineering feasibility in the design domain of interest. 

1.1 Surrogate Modeling in Engineering Design Exploration 

 Computational simulations and analysis have been widely used to reduce the cost and 

time of engineering design exploration. To streamline the design process, the design 

optimization and uncertainty quantification approaches can be used to examine and mature 

multiple design concepts in the early stage of design development. These design 

exploration studies require many iterations of model evaluations, which may incur 
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intractable computational costs. To alleviate the computational costs, many surrogate-

based design exploration methods [1-3] have been proposed. A surrogate model is a 

mathematical model that is constructed using data sampled from the original model. The 

surrogate model is then used as an inexpensive replacement of the original model for 

accelerated analysis. While the computational costs incurred after the surrogate model is 

built are typically manageable, collecting the samples to construct an accurate surrogate is 

often computationally prohibitive. Data-fit surrogate models include the response surface 

method [4], Taylor series-based approximation [5], neural network [6], reduced order 

modeling [7] and kriging [8-10]. However, these data-fit methods typically require many 

simulation samples to achieve the desired level of accuracy. The computational demands 

of generating many simulation samples may be challenging. The high computational costs 

associated with sampling complex, non-linear responses of high dimension models has 

motivated the development of multi-fidelity modeling. 

1.2 Multi-Fidelity Modeling Approaches 

 MF modeling methods [11-18] leverage mixed data from multiple sources of different 

cost and accuracy to build a reliable surrogate model with reduced computational cost. The 

basic strategy is to use many samples from the Low Fidelity (LF) data to find the general 

trend of the model, while correcting the trend using a small number of High Fidelity (HF) 

data points. It is assumed that the HF model predicts the true system response of interest 

with the desired level of accuracy for the current modeling and simulation purpose. HF 

data can come from expensive physical tests or fully-integrated multi-physics simulations, 

while LF data, which are typically much cheaper than HF data, can be generated from 

simplified or decoupled physics-based simulations, empirical regression models, or 
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reduced sub-system tests. There are many different MF approaches that can be classified 

based on the types of sources of LF data, strategies for combining data, and applications of 

MF models. Peherstorfer et al. [17] divided the MF approaches of combining fidelity data 

into three categories: adaptation, fusing, and filtering.  

 The proposed MF modeling method in this thesis is based on the adaptation approach 

that uses surrogate models to correct the LF models using a small number of HF samples. 

The model corrections can be defined as multiplicative, additive, hybrid/comprehensive or 

space mapping. In the context of design optimization, the multiplicative corrections are 

often given by either constant factors or low-order regression functions to capture the 

global trend of the HF model [19, 20]. As for additive corrections, surrogate models such 

as kriging are constructed and used to compensate for the local discrepancies from the HF 

model. As a general approach, hybrid or comprehensive MF methods [11-16] have been 

developed that use both multiplicative and additive corrections. Adaptive hybrid methods 

[11, 12, 21] in which the additive and multiplicative corrections are combined by using a 

constant weight factor were developed for the applications of design optimization. The 

weighting factors are determined by using the previously evaluated data point within a 

local trust region. Han et al. [15] proposed the Generalized Hybrid Bridge Function 

(GHBF) to build an MF kriging model that can cover the global domain. In GHBF, the 

regression term formulated as a multiplicative correction is coupled with the stochastic 

process for the additive correction, which is determined via the usual Maximum Likelihood 

Estimation (MLE) method. Adopting GHBF, Rumpfkeil and Beran [22] developed the 

dynamic MF modeling approach that can address non-stationary HF model behaviors with 

an adaptive sampling scheme. 
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 Most existing MF modeling methods assume three things [11-16]: globally correlated 

LF models, known hierarchical rankings for the LF models, and deterministic HF and LF 

data. First, it is assumed that the trend of the LF models is well correlated with the HF 

model over the entire design domain of interest. However, there are often more than two 

LF models that may provide valid correlations within different local ranges of the design 

domain. For example, different buckling models can be used based on different ranges of 

the slenderness ratio, and different flutter equations are used for subsonic, supersonic, and 

transonic speed ranges. The localized valid domains of LF models can be disjointed or 

partially overlapped. In many situations, before performing any model evaluations, it is 

hard to decide which LF models should be used in which local domains. Second, there are 

several methods of combining more than two LF models by using either sequential 

adaptation [22] or co-kriging regression [23]. However, it is often required that either the 

stationary hierarchical rank of model accuracy among the LF models be user-defined or 

enough samples of both HF and LF models are available to construct a valid correlation 

structure. The rank of accuracy is simply regarded as the same as the rank of the model 

fidelity, which is not always true depending on the application of the models. Lastly, the 

data from HF and LF models or sources are assumed to be deterministic. However, in 

practice almost all measurements and estimations carry some degree of uncertainty sourced 

from measurement randomness, modeling error, or noise in the operational conditions. 

1.3 Adaptive Sampling of Models 

 To minimize the required number of samples for surrogate modeling, many studies have 

been performed to develop adaptive sampling and variance reduction techniques [9, 24, 

25]. These methods maximize a metric called the acquisition function to determine the next 
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sample location for sequential surrogate modeling. The acquisition function used depends 

on the goal of the model, whether to develop a model accurate everywhere in the design 

space, to find the global optimum, or to find a contour boundary. For instance, the problem 

of finding a function’s global optimum is addressed by the Expected Improvement (EI) 

concept [9, 25] which updates a kriging surrogate model by adding adaptively selected 

samples within the Efficient Global Optimization (EGO) framework. EI is defined as the 

expected value by which a stochastic kriging prediction surpasses the current best sample. 

This approach provides a balance between improving the kriging model’s prediction while 

exploiting its approximation and has been successful in many applications of adaptive 

kriging refinement and global optimization. However, the EGO method needs user 

specified stopping criteria to avoid numerical overfitting. The performance and quality of 

EGO can vary significantly with the stopping criteria. As a variation of EI, Clark et al. [26] 

proposed an adaptive infill criteria that considers both aleatory and modeling epistemic 

uncertainties within the framework of Non-Deterministic Kriging (NDK) [27] to 

successfully perform EGO on uncertain data and to achieve stable convergence.  

 Recently, efforts have been made to develop methods that enable adaptive sampling of 

MF models. For example, multi-fidelity expected improvement based multi-criteria 

adaptive sampling has been proposed and applied to the shape optimization of a NACA 

hydrofoil [28, 29]. Chandhuri et al. [30] proposed an adaptive sampling strategy 

considering residual error, information gain, and weighted information gain. In these 

methods, however, the adaptive sample selection only focused on improvement of 

prediction model accuracy. While optimization methods for adaptively sampling MF 

models exist [31-34], the MF surrogates perform poorly when LF models do not have 
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stationary ranks of accuracy and individual LF models only capture the true trend in local 

regions of the design space.  

 The overall goal of adaptive MF sampling is allocation of limited computational 

resources among variable fidelity models with different computational costs in the way that 

best improves prediction accuracy. When performing optimization, lower fidelity models 

can be effective in domains with less expectation of an optimum solution and at the 

beginning of the sequential sampling, whereas higher fidelity models should be selected at 

locations of higher expectation or towards the final stages of sequential sampling. The 

Value-based Global Optimization (VGO) method [35] has been proposed to address this 

problem by using utility metrics of variable fidelity models with different costs. The VGO 

method uses the expected value of information in the adaptive sampling selection instead 

of EI. However, based on the kriging formulation, VGO needs to fit many hyperparameters 

to combine samples from multiple fidelity models. The fitting process requires the solution 

of a multi-dimensional optimization problem to find unknown hyperparameters 

simultaneously unlike conventional kriging in which only one-dimensional problems are 

needed for individual hyperparameters. This numerical fitting of multiple VGO 

hyperparameters can pose numerical challenges of overfitting and non-uniqueness of the 

fitting solution. In contrast, the multi-fidelity modeling method proposed in this thesis work 

has only one kernel length hyperparameter that needs to be set. 

 For a related problem, Multi-Information Source Optimization (MISO), a surrogate 

modeling method that flexibly varies LF model bias across the domain while remaining 

robust to noise was introduced [36]. The misoKG algorithm adaptively samples the fidelity 
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and location that maximizes the knowledge gradient. This method avoids the assumptions 

of global LF accuracy, known rank-ordered accuracies of LF models, and noiseless data.  

 An adaptive sampling method for contour estimation [37] provides an efficient way of 

predicting failure boundaries and determining feasible and infeasible regions of the design 

space under uncertainty. The Efficient Global Reliability Analysis (EGRA) [24] method 

includes an adaptive sampling scheme called the Expected Feasibility Function (EFF) with 

the ability to sample multiple constraints simultaneously to determine the composite 

feasible region. This allows for computational savings when a design can fail in multiple 

ways. However, the above methods only work for a single fidelity of data. A multi-fidelity 

contour estimation method, Contour Location via Entropy Reduction (CLoVER) [38], uses 

the same surrogate model as the misoKG [36] method. This method therefore avoids the 

assumptions of global LF accuracy, known rank-ordered accuracies of LF models, and 

noiseless data. While the method performs well, it is designed to handle only a single 

constraint at a time.  
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II. RESEARCH GOALS 

 Based on the technical difficulties and limitations of the existing MF modeling methods 

for engineering design exploration, the research goals of the thesis are identified as follows: 

1. Develop a MF surrogate modeling approach that performs well when individual LF 

models only capture the true trend in local regions of the design space, LF models 

do not have stationary ranks of accuracy, and noise may exist in the HF and LF 

data. 

2. Enable adaptive MF modeling for global design optimization considering the 

balance between information gained and data cost. 

3. Enable adaptive MF modeling for capturing the composite feasible region when 

multiple constraints exist.  

 To achieve these goals, novel modeling approaches are developed and proposed in this 

work including the Localized Galerkin Multi-Fidelity (LGMF) method, the Expected 

Effectiveness (EE) adaptive sampling method for global design optimization, and the 

Expected Usefulness (EU) adaptive sampling method for determining constraint failure 

boundaries. The LGMF method enables exploitation of an arbitrary number of non-

hierarchical LF information sources and can handle noise in both LF and HF data. 

Additionally, the method returns uncertainty bounds and dominance information which can 

be used by adaptive sampling methods. The EE adaptive sampling method determines 

where to generate data by selecting the LF model that improves LGMF optimally in an 

iterative process for efficient global optimization. EE is essentially a composite metric of 

EI, modeling dominance, modeling uncertainty, and the cost of generating data from a LF 

model. The EU adaptive sampling method enables efficient updating of a composite 
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feasibility boundary model within the design domain of interest. EU represents data 

usefulness as measured by EFF, modeling dominance, and modeling uncertainty balanced 

against the costs of generating data from a LF model. The method can ignore inactive 

constraint boundaries while simultaneously considering multiple active constraints, further 

reducing the required number of HF samples and increasing efficiency.  

 Within this thesis, existing surrogate modeling methods are discussed in Chapter III. 

The novel methods mentioned previously are built on these exiting methods, which include 

Kriging, EGO and EI, EGRA and EFF, and correction-based adaptation methods. In 

Chapter IV, the proposed LGMF, EE, and EU methodologies are introduced in detail and 

demonstrated with multiple numerical examples. Finally, the summary and discussion of 

promising directions for future work are presented in Chapter V.  
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III. EXISTING SURROGATE MODELING METHODS 

 This section lays out the Kriging formulation and existing adaptive sampling 

approaches, which are later extended to a multi-fidelity context. The samples are used to 

construct a Kriging surrogate, which is then used to determine the next location to sample. 

The EGO method is reviewed for optimization, while the EGRA method is discussed for 

the problem of feasibility contour estimation.  

3.1 Kriging Formulation 

 Kriging was originally developed for use in geostatistics as a means of estimating the 

distribution of ore using samples taken from a limited number of bore holes [39]. When a 

Gaussian kernel is used for the kriging model, as in this thesis, it is also known as Gaussian 

Process Regression (GPR).  

 When a function is estimated from 𝑚 data samples, the sample locations are given by 

𝑺 = [𝑠1, 𝑠2, … , 𝑠𝑚]𝑇 and the sample responses are given by 𝒀 = [𝑦1, 𝑦2, … , 𝑦𝑚]𝑇. The true 

function 𝑦(𝑥) is treated as a realization of a stochastic process 𝑦̂(𝑥), which includes a 

regression term 𝒇(𝑥)𝑻𝒃 and a stochastic process 𝑧(𝑥), 

 𝑦̂(𝑥) = 𝒇(𝑥)𝑻𝒃 + z(x) (1) 

where 𝒇(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑝(𝑥)]
𝑇
 is the basis vector of 𝑝 regression functions and 𝒃 

is the coefficient vector of the basis functions. The stochastic process 𝑧(𝑥) is used to fit the 

residuals of the regression term and is assumed to have a mean of 0. The reason a stochastic 

process is used to model the deterministic deviations of the regression model from the true 

responses is that those deviations are assumed to resemble white noise for a well-chosen 
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regression model. The random process 𝑧(𝑥) describes epistemic uncertainty about the true 

deviation value and is modeled with covariance 

 𝐶𝑂𝑉[𝑧(𝑠𝑖), 𝑧(𝑠𝑗)] = 𝜎2𝑅(𝜽, 𝑠𝑖, 𝑠𝑗) (2) 

where 𝜎2 is the mean squared error of the regression term, 𝜽 is the model hyperparameter 

vector and 𝑅 is the correlation among sample points. This work uses a Gaussian correlation 

function, 

 𝑅(𝜽, 𝑠𝑖, 𝑠𝑗) =  ∏ exp (−𝜃𝑘𝑑𝑘
2)

𝑁𝑑
𝑘=1  (3) 

where 𝑑𝑘 is the distance between the sample points along the 𝑘𝑡ℎ dimensional direction 

and 𝑁𝑑  is the number of dimensions of the problem. The regression coefficients 𝒃 are 

calculated using the least-squares method, i.e., by minimizing the mean squared error of 

the regression term, defined as  

 𝜎2 = 𝐸[(𝒀̂𝒓𝒆𝒈 − 𝒀)
2

] (4) 

where 𝒀̂𝑟𝑒𝑔 = 𝒇(𝑺)𝑻𝒃  is the vector of predicted regression responses at the sample 

locations. The regression coefficients can then be derived as  

 𝒃̂ = (𝑭𝑻 𝑹−1𝑭)−1𝑭𝑻𝑹−1𝒀 (5) 

where 𝑹 is the 𝑚 × 𝑚 matrix of stochastic-process correlations between z responses at the 

sample locations, given as 

 𝑹𝑖𝑗 = 𝑅(𝜽, 𝑠𝑖, 𝑠𝑗),      𝑖, 𝑗 = 1, … , 𝑚 (6) 

and where 𝑭 is the 𝑚 × 𝑝 regression design matrix at the sample locations, given as 

 𝑭 = [𝒇(𝒔𝟏), 𝒇(𝒔𝟐), …  𝒇(𝒔𝒎)]𝑻 (7) 

The prediction response at any point 𝑥 is then given by 

 𝑦̂(𝑥) = 𝒇(𝒙)𝑻 𝒃̂ + 𝒓(𝒙)𝑻𝑹−1(𝒀 − 𝑭𝒃̂) (8) 
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where 𝒓(𝒙) is the correlation between the prediction location 𝑥 and the sample points 𝑺. 

Under this formulation the kriging response of Eq. 8 is dependent on the regression 

coefficients of Eq. 5, which are dependent on the correlations 𝑹 among samples of Eq. 6, 

which is dependent on the model hyperparameters 𝜽. These hyperparameters must be 

selected to fully determine the model. Using the Maximum Likelihood Estimation (MLE) 

approach, the optimal correlation model parameter 𝜽∗  for the Gaussian process is 

computed by solving the optimization problem 

 𝜽∗ = argmax
𝜽

𝐿 (9) 

Where the likelihood 𝐿 is given by 

 𝐿 =  −
1

2
(𝑁𝑠 ln(2𝜋) + ln(|𝑹|) + (𝒀 − 𝑭𝒃̂)

𝑇
𝑹−𝟏(𝒀 − 𝑭𝒃̂)) (10) 

Once 𝜽∗ is found, the mean squared error can be predicted as  

 𝜎̂2(𝑥) = 𝜎2(1 + 𝒖𝑻(𝑭𝑻𝑹−𝟏𝑭)𝒖 − 𝒓(𝒙)𝑻𝑹−𝟏𝒓(𝒙)) (11) 

where 

 𝒖 = 𝑭𝑻𝑹−𝟏𝒓(𝒙) − 𝒇(𝒙) (12) 

 Model predictions are represented as Gaussian distributions at each point 𝑥, with both 

a prediction mean 𝑦̂(𝑥) (Eq. 8) and a standard deviation 𝜎̂(𝑥) (Eq. 11) representing the 

epistemic uncertainty about the true response. This uncertainty information is invaluable 

when performing adaptive sampling. More detailed descriptions of the theory behind 

kriging, as well as the optimization process for model fitting, can be found in [8, 10, 40]. 

The Kriging models in this theses were built using the DACE Toolbox [40] with some 

modifications to the source code.  



13 
 

3.2 EGO and EI 

 EGO [9] was introduced to use the prediction and uncertainty information from a 

kriging fit to balance exploration and exploitation efficiently for global optimization. It 

works by sampling at the point with maximum EI, where EI is the value by which a point 

taken at a given sampling location can be expected to improve over the current best sample, 

where a worse or equal value yields an improvement of 0. This can be calculated by 

integrating over the portion of the prediction probability density function that extends 

below the current optimum, as illustrated in Fig. 1.  

 

Figure 1. Illustration of Expected Improvement metric for adaptive sampling. 

 For a Gaussian distribution, the integral can be solved and the expected improvement 

given as a closed-form expression, 

 𝐸𝐼(𝑥) = (𝑓𝑚𝑖𝑛 − 𝑦̂(x)) ∗  Φ (
𝑓𝑚𝑖𝑛−𝑦̂(𝑥)

𝜎(𝑥)
)  + 𝜎(𝑥) ∗ 𝜙 (

𝑓𝑚𝑖𝑛−𝑦̂(𝑥)

𝜎(𝑥)
)  (13) 

where 𝜎 is the standard deviation of the kriging estimation, 𝑓𝑚𝑖𝑛 is the minimum sample 

point found so far, and 𝑦̂ is the kriging estimate. Also, 𝜙(∙) and Φ(∙) are the standard 

normal density and cumulative distribution functions, respectively. 

 An example of adaptive sampling using EI is included for Eq. 14: 

 y(𝑥) = (6𝑥 − 2)2𝑠𝑖𝑛(12𝑥 − 4) (14) 
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 EGO takes five iterations to converge a kriging model initialized with four samples. The 

true function, along with the iterative history of the sampling and convergence, is shown 

in Fig. 2.  

 

 

 

Figure 2. Iteration History of EGO, steps 1 to 5. (Top) Kriging estimation and 

confidence bounds (Bottom) Expected Improvement values across design domain 

a) Function Being Optimized b) Iter. 1 

c) Iter. 2 d) Iter. 3 

e) Iter. 4 f) Iter. 5 
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 Convergence occurs when the maximum EI value drops below tolerance, in this case 

set to 0.001. For the first iteration (Fig. 2b) data is sparse so the uncertainty bounds are 

quite wide. The maximum EI value occurs between 𝑥 values of 0.1 and 0.2, so that is where 

the next sample is added. In the second iteration (Fig. 2c) the added sample has 

significantly reduced uncertainty in that region, and the maximum EI value occurs just 

below the 𝑥 value of 0.6. Therefore, that is where the next sample is added. This process 

continues until the final iteration (Fig. 2f), where the maximum EI value has dropped below 

10−3. This indicates the optimum has been located and further samples are unlikely to 

significantly improve it.  

3.3 EGRA and EFF 

 The Efficient Global Reliability Analysis (EGRA) methodology [24] was developed to 

evaluate the reliability of systems for engineering design. The method uses the Expected 

Feasibility Function (EFF) metric as an acquisition function for adaptive sampling. The 

samples are used to construct a kriging surrogate model, which is then used to accurately 

evaluate the contour boundary and therefore the feasible region. The metric balances 

sampling locations that are predicted to be near the failure boundary with sampling 

locations that have high uncertainty. The next location to be sampled is the location that 

maximizes the EFF. For a single constraint, the EFF is given by  

 𝐸𝐹𝐹(𝑥) = (𝜇𝑔 − 𝑧̅) ∗ [2Φ (
𝑧̅−𝜇𝑔

𝜎𝑔
) − Φ (

𝑧−−𝜇𝑔

𝜎𝑔
) − Φ (

𝑧+−𝜇𝑔

𝜎𝑔
)]  

 − 𝜎𝑔 [2𝜙 (
𝑧̅−𝜇𝑔

𝜎𝑔
) − 𝜙 (

𝑧−−𝜇𝑔

𝜎𝑔
) − 𝜙 (

𝑧+−𝜇𝑔

𝜎𝑔
)]  

 + 𝜀 [Φ (
𝑧+−𝜇𝑔

𝜎𝑔
) − Φ (

𝑧−−𝜇𝑔

𝜎𝑔
)] (15) 
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where 𝑧̅ is the contour level (in this case 0), 𝜇𝑔  is the mean kriging estimate, 𝜎𝑔  is the 

kriging standard deviation, 𝜀 ∝ 𝜎 (in this case set to 𝜀 = 2𝜎) and 𝑧+ and 𝑧− are equal to 

𝑧̅ ± 𝜀, respectively.  

 When multiple constraints exist, it may not be necessary to find the contours of each 

constraint function at all locations. Parts of the contours which appear in the infeasible 

regions of other constraints do not need to be accurately found. The constraints 𝑔 only need 

to be sampled until their composite failure contour is known, at which point the feasible 

region is fully understood. This leads to the concept of a composite expected feasibility 

function (CEFF), given by 

 𝐶𝐸𝐹𝐹(𝑥) = (𝜇𝑔
∗ − 𝑧̅) ∗ [2Φ (

𝑧̅−𝜇𝑔
∗

𝜎𝑔
∗ ) − Φ (

𝑧−−𝜇𝑔
∗

𝜎𝑔
∗ ) − Φ (

𝑧+−𝜇𝑔
∗

𝜎𝑔
∗ )]  

 − 𝜎𝑔
∗ [2𝜙 (

𝑧̅−𝜇𝑔
∗

𝜎𝑔
∗ ) − 𝜙 (

𝑧−−𝜇𝑔
∗

𝜎𝑔
∗ ) − 𝜙 (

𝑧+−𝜇𝑔
∗

𝜎𝑔
∗ )]  

 + 𝜀 [Φ (
𝑧+−𝜇𝑔

∗

𝜎𝑔
∗ ) − Φ (

𝑧−−𝜇𝑔
∗

𝜎𝑔
∗ )] (16) 

where 𝜇𝑔
∗  is the mean and 𝜎𝑔

∗  is the standard deviation of the kriging prediction that is 

closest to failing at 𝑥, that is 

 𝜇𝑔
∗ = max[𝜇𝑔

𝑖 ] ,     𝑖 = 1, … , 𝐼 (17) 

and 𝜎𝑔
∗ is the corresponding uncertainty.  

3.4 Correction-Based Adaptation Methods for Multi-Fidelity Modeling 

 In many cases, there are multiple choices of simulation models to predict the response 

of interest with different levels of model fidelity and computational cost. It is assumed that 

the computational cost of an HF model evaluation is significantly higher than that of the 

LF models. In the adaptation approach, the correction functions, also called bridge 
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functions or scaling functions, can be divided into three categories: additive, multiplicative 

and hybrid/comprehensive corrections. The additive correction δ can be expressed as 

 𝛿(𝑥) = 𝑦𝐻(𝑥) − 𝑦𝐿(𝑥) (18) 

 After the surrogate models of the correction function and LF model are constructed, the 

HF response can be approximated as a MF model by 

 𝑦𝑀𝐹_𝑎𝑑𝑑(𝑥) = 𝑦̂𝐿(𝑥) + 𝛿(𝑥) (19) 

where the diacritic hat (   ̂) indicates a surrogate model of the function.  

 Similarly, the multiplicative correction 𝜌 is obtained as 

 𝜌(𝑥) =
𝑦𝐻(𝑥)

𝑦𝐿(𝑥)
 (20) 

and the HF response can be approximated as a MF model by 

 𝑦𝑀𝐹𝑚𝑢𝑙𝑡
(𝑥) = 𝑦̂𝐿(𝑥) ∗ 𝜌̂(𝑥) (21) 

where the diacritic “   ̂” again indicates a surrogate of the associated function.  

 Popular choices for surrogate models of additive and multiplicative corrections are 

typically low-order response surface models and kriging under the assumption that the LF 

model is correlated to the HF model well enough to capture its global trend. An additive 

correction is effective when the majority of a LF model’s prediction error is described as a 

translational deviation from an HF model. On the other hand, a multiplicative correction is 

capable of correcting incorrect trends of a LF model by scaling its response negatively. 

However, Gano et al. [11] found that the qualities of model adaptation via either additive 

or multiplicative corrections can vary depending on the problem, which motivated the 

development of hybrid methods [12-15]. Notionally, the two corrections are combined by 

using a weight factor w in the hybrid methods as, 

 𝑦𝑀𝐹(𝑥) = (1 − 𝑤) 𝑦𝑀𝐹_𝑚𝑢𝑙𝑡(𝑥) + 𝑤𝑦𝑀𝐹_𝑎𝑑𝑑(𝑥) (22) 
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 Eldred et al. [12] proposed to determine the weight factor 𝑤 by matching the Multi-

Fidelity model to the HF data at a nearby point 𝑥𝑜𝑙𝑑 , such as a previous design point 

explored during a design optimization iteration: 

 𝑤 =
𝑦𝐻(𝑥𝑜𝑙𝑑)−𝑦𝑀𝐹_𝑚𝑢𝑙𝑡(𝑥𝑜𝑙𝑑)

𝑦𝑀𝐹_𝑎𝑑𝑑(𝑥𝑜𝑙𝑑)−𝑦𝑀𝐹_𝑚𝑢𝑙𝑡(𝑥𝑜𝑙𝑑)
 (23) 

 When 𝑤 is close to 1, it means the additive correction is more accurate based on the 

previous design iteration history. To improve the convergence rate of an optimized design, 

Fischer et al. [21] proposed the Bayesian posterior updating approach to determine the 

weight factors of the additive and multiplicative corrections individually, 

 𝑤𝑎𝑑𝑑
𝑘 =

𝑤𝑎𝑑𝑑
𝑘−1𝜓𝑎𝑑𝑑(𝑥)

𝑤𝑎𝑑𝑑
𝑘−1𝜓𝑎𝑑𝑑(𝑥)−𝑤𝑚𝑢𝑙𝑡

𝑘−1 𝜓𝑚𝑢𝑙𝑡(𝑥)
 (24) 

 𝑤𝑚𝑢𝑙𝑡
𝑘 =

𝑤𝑚𝑢𝑙𝑡
𝑘−1 𝜓𝑚𝑢𝑙𝑡(𝑥)

𝑤𝑎𝑑𝑑
𝑘−1𝜓𝑎𝑑𝑑(𝑥)−𝑤𝑚𝑢𝑙𝑡

𝑘−1 𝜓𝑚𝑢𝑙𝑡(𝑥)
 (25) 

where k is the design iteration number and 𝜓𝑎𝑑𝑑(𝑥)  and 𝜓𝑚𝑢𝑙𝑡(𝑥)  denote the model 

likelihood of the respective correction functions. The update of the weight factor starts with 

𝑤𝑎𝑑𝑑
0 = 𝑤𝑚𝑢𝑙𝑡

0 = 1/2. The model likelihood is defined using Eqs. 26 and 27, 

 𝜓𝑖(𝑥) = (
1

2𝜋𝜎̂𝑖,𝑚𝑙𝑒
2 )

𝑛/2

𝑒−𝑛/2   (26) 

 𝜎̂𝑖,𝑚𝑙𝑒
2 =

∑ (𝑦𝐻(𝑥𝑗)−𝑦𝑀𝐹𝑖
(𝑥𝑗))

2
𝑛
𝑗=1

𝑛
   (27) 

 where 𝑖 stands for either the additive or multiplicative case and n denotes the number of 

data points available within the current trust region of design exploration. This approach 

was applied to fundamental mathematical and aerodynamic airfoil shape optimization 

problems and showed promising computational advantages over conventional optimization 

in terms of the required number of high-fidelity evaluations. Also, the approach 
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demonstrated its ability to capture the descent behavior of a HF model even when the LF 

model exhibited weak similarity.  

 Another form of hybrid method, called comprehensive correction [15], is expressed as  

 𝑦𝑀𝐹(𝑥) = 𝛼(𝑥)𝑦̂𝐿(𝑥) + 𝛾(𝑥) (28) 

where 𝛼(𝑥)  is the generalized multiplication correction and 𝛾(𝑥)  is the generalized 

additive correction. The additive correction 𝛾(𝑥) is constructed as a kriging model using 

the discrepancy samples defined by  

 𝛾𝑘 = 𝑦𝐻(𝑥𝑘) − 𝛼(𝑥𝑘)𝑦𝐿(𝑥𝑘),    k = 1, … , 𝑁ℎ (29) 

 In many approaches, the multiplicative correction is either a simple regression 

coefficient [12, 13] or kriging function [15, 21, 22]. In the comprehensive Bayesian MF 

method [13, 15], the multiplicative correction term also includes calibration parameters. 

Using the Generalized Hybrid Bridge Function (GHBF), Han et al. [15] coupled the two 

correction terms and determined the multiplicative low-order regression coefficients and 

additive hyper parameters of kriging simultaneously via the Maximum Likelihood 

Estimation (MLE) method. Essentially, GHBF can be viewed as universal kriging with a 

trend function for the multiplicative correction in the form of a low-order polynomial 

regression model and a stochastic process for the additive correction. The same information 

or data is used for GHBF as for the additive, multiplicative, and hybrid corrections. No 

additional information is needed, and only the formulation of the comprehensive correction 

is different than that of other corrections. GHBF also demonstrated its promising 

performance in some analytical and airfoil aerodynamic design problems. Rumpfkeil and 

Beran [22] developed a dynamic MF modeling approach in which both GHBF and an 
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adaptive sampling method are integrated to address non-stationary system responses with 

variable fidelity models. 
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IV. PROPOSED METHODS 

 To address general and practical situations, the non-deterministic Localized-Galerkin 

Multi-Fidelity (LGMF) modeling methodology is proposed [41-42]. The method is based 

on two main technical processes: the consolidation of multiple LF models and the refined 

adaptation of the consolidated model. Non-Deterministic Kriging (NDK) [10] is also 

employed for the variable fidelity modeling under uncertainty. The proposed non-

deterministic LGMF method is demonstrated in multiple analytical examples and a 

thermally coupled structural design problem. 

 As an extension of EI, the Expected Effectiveness (EE) [43] adaptive sampling approach 

is proposed for accelerated global design optimization using multi-fidelity information 

sources. While adaptive sampling of the HF model will be done using EI, adaptive 

sampling of LF models will be done using EE. EE performs sequential LGMF modeling, 

selecting which fidelity model to evaluate every iteration and where to achieve 

computational cost savings and alleviate computational challenges. This is achieved by 

basing EE on EI, while also accounting for the Modeling Uncertainty (MU), Dominance 

under Uncertainty (DU) and cost of each LF model. 

 For a design problem with multiple failure modes and constraints, the existing Expected 

Feasibility Function (EFF) [24] performs well for adaptive sampling of HF data only. To 

exploit MF information sources using adaptive sampling, the Expected Usefulness (EU) 

method is proposed. During contour estimation, the EFF will be used to sample the HF 

model while EU will be used to sample the LF models. EU is based on the Expected 

Feasibility Function (EFF), but like EE accounts for MU, DU, and cost. In this chapter, the 
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three proposed methodologies are introduced and demonstrated with fundamental and 

application examples to show how the aforementioned technical gaps can be addressed.  

4.1 Localized Galerkin Multi-Fidelity (LGMF) Modeling 

 The proposed Localized-Galerkin Multi-Fidelity (LGMF) modeling methodology is 

based on two main technical processes: the consolidation of multiple LF models and the 

refined adaptation of the consolidated model. Non-Deterministic Kriging (NDK) [10] is 

also employed for the variable fidelity modeling under uncertainty. The proposed non-

deterministic LGMF method is demonstrated in multiple analytical examples and a 

thermally coupled structural design problem. The following sections review the existing 

correction-based adaptation methods, describe the proposed framework of non-

deterministic LGMF, and present numerical examples to demonstrate the characteristics 

and prediction performance of the proposed method. 

4.1.1 Proposed Localized Galerkin Multi-Fidelity (LGMF) Modeling 

A. Framework of LGMF 

 The proposed LGMF prediction model is expressed as a weighted sum of basis 

functions,  

 𝑦𝐿𝐺𝑀𝐹(𝑥) = ∑ 𝑐𝑖(𝑥)𝑀
𝑖=1 𝜂𝑖(𝑥) (30) 

where M is the total number of basis functions of consideration, 𝜂𝑖(𝑥) is the ith basis 

function and 𝑐𝑖(𝑥) is the participation function of the ith basis function. Generally, the basis 

functions can be derived from the LF models using additive, multiplicative, hybrid, or any 

other correction. For example, by using the multiplicative correction, a basis function can 

be derived from a LF model as  
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 𝜂(𝑥) = 𝜌̂(𝑥)𝑦̂𝐿(𝑥) (31) 

The expansion form allows as many models as are available to be considered in the MF 

model adaptation. To determine the model participation function at a prediction location 

𝑥𝑝, the localized Galerkin equations are formulated as 

 ∫ 𝜙𝑗(𝑥, 𝑥𝑝) (𝑦𝐿𝐺𝑀𝐹(𝑥) − 𝑦𝐻(𝑥))𝑑𝐷 = 0,    𝑗 = 1, … , 𝑀 (32) 

where D ∈ ℝ𝑛 is the design domain of interest and 𝜙𝑗(𝑥, 𝑥𝑝) is the 𝑗𝑡ℎ locally weighted 

test function at 𝑥𝑝 defined as 

 𝜙𝑗(𝑥, 𝑥𝑝) = 𝜔(𝑥, 𝑥𝑝, ℎ)𝜂𝑗(𝑥) (33) 

 Here, 𝜔(𝑥, 𝑥𝑝, ℎ) = 𝑒−
1

2
(

𝑥−𝑥𝑝

ℎ
)

2

is the Gaussian kernel in which the shape parameter h of 

the kernel function is determined by the density of HF samples and expected HF 

nonlinearity within the design domain. By replacing 𝑦𝐿𝐺𝑀𝐹 and 𝜙𝑗  with Eqs. 30 and 33, 

the Galerkin equations become 

 ∫ 𝜔(𝑥, 𝑥𝑝, ℎ)𝜂𝑗(𝑥) (∑ 𝑐𝑖(𝑥)𝜂𝑖(𝑥)𝑀
𝑖=1 − 𝑦𝐻(𝑥)) 𝑑𝐷 = 0,    𝑗 = 1, … , 𝑀 (34) 

 Since 𝑦𝐻 is known only at 𝑁ℎ HF sample locations, the integral of Eq. 34 can only be 

evaluated and aggregated at those locations as 

 ∑ 𝜔(𝑥𝑘, 𝑥𝑝, ℎ)𝜂𝑗(𝑥𝑘)𝑁ℎ
𝑘=1 ∑ 𝑐𝑖(𝑥𝑘)𝜂𝑖(𝑥𝑘)𝑀

𝑖=1  − 

        ∑ 𝜔(𝑥𝑘, 𝑥𝑝, ℎ)𝜂𝑗(𝑥𝑘)y𝐻(𝑥𝑘)𝑁ℎ
𝑘=1 = 0,   𝑗 = 1, … , 𝑀 (35) 

 The equation above can be expressed in matrix form as  

 𝜢𝒄 = 𝒚 (36) 

where  

        𝜢 ∈ ℝ𝑀×𝑀 with 𝛨𝑗𝑖 = ∑ ∑ 𝜔(𝑥𝑘 , 𝑥𝑝, ℎ)𝜂𝑖(𝑥)𝜂𝑗(𝑥𝑘)𝑀
𝑖=1

𝑁ℎ
𝑘=1 , 𝑖, 𝑗 = 1, … , 𝑀 (37) 

              𝒚 ∈ ℝ𝑀×1 with 𝑦𝑗 = ∑ 𝜔(𝑥𝑘, 𝑥𝑝, ℎ)𝜂𝑗(𝑥)𝑦𝐻(𝑥𝑘)
𝑁ℎ
𝑘=1 , 𝑗 = 1, … , 𝑀 (38) 
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and 𝑐 ∈ ℝ𝑀×1 is the participation vector at 𝑥𝑝. By solving Eq. 36, the participation factors 

are determined at the prediction location and they are plugged back into Eq. 30 to complete 

the LGMF prediction. Without requiring user-defined ranks of fidelity or accuracy, the 

degrees of local dominance of LF models are estimated based on the participation factors 

that are obtained mathematically by solving the locally weighted Galerkin equations. In 

this study, to address the possible practical situations aforementioned, the proposed 

framework is applied to build the MF model by the following two main stages: 

1. Consolidation of multiple LF models: Consider multiple LF models that are valid 

in different local ranges of the design domain of interest. Each of the LF models 

captures the HF trend within a local range better than the other LF models. In this 

stage, the goal is to consolidate the multiple LF models into a single representative 

model that can capture the global trend of the HF model, while identifying 

individual correlations of the LF models to the HF model. To achieve this goal, the 

LF functions are corrected to obtain basis functions, which are then consolidated 

into a single function. The basis functions are defined with a single type of 

correction function, either additive or multiplicative. In this study, additive 

corrections of the LF models are selected, and the basis functions are defined as 

 𝜂𝑎𝑑𝑑,𝑖(𝑥) = 𝑦̂𝐿𝑖(𝑥) + 𝛿𝑖(𝑥)           𝑖 = 1~𝑀   (39) 

where M becomes the total number of available LF models. By setting up and 

solving the localized Galerkin equations (Eqs. 36-38) for 𝑐𝑖(𝑥) , a single 

Consolidated LF (CLF) model is obtained: 

 𝑦̂𝐶𝐿𝐹(𝑥) = ∑ 𝑐𝑖(𝑥)𝑀
𝑖=1 𝜂𝑎𝑑𝑑,𝑖(𝑥) (40) 
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Since only the additive corrections are used as the basis functions, the CLF model 

can be viewed as a combination of linearly translated LF models based on their 

local correlations to the HF samples. The differences of the participation functions 

𝑐𝑖(𝑥) of the multiple LF models can be directly interpreted as a map of LF model 

dominance within the design domain. It is possible to use the other form of 

corrections such as multiplicative or even combined, but it will need an additional 

conversion function to extract the LF model dominance information. The quality of 

𝑦𝐶𝐿𝐹(𝑥) depends on how many HF samples are available and how well the LF 

models capture the global trend of HF in a combined way. 

2. Refined Adaptation of the consolidated model as the resulting LGMF model: As 

pointed out by many previous researchers [11, 15], additive corrections are not 

always good enough without multiplicative ones. Unlike other hybrid or 

comprehensive MF models, the CLF model from the previous stage does not 

interpolate the HF samples exactly because the participation factors are obtained 

by minimizing the residual between HF and LGMF with the locally weighted test 

function 𝜙 in Eq. 33. Therefore, in this second stage, the CLF model is used as a 

new single LF model and further refined. The new basis functions are derived from 

the CLF model, i.e., multiplicative and additive or hybrid corrections. In this study, 

the basis functions are the multiplicative and additive corrections derived from the 

CLF model.  

 𝜂𝑎𝑑𝑑(𝑥) = 𝑦̂𝐶𝐿𝐹(𝑥) + 𝛿𝐶𝐿𝐹(𝑥) (41) 

 𝜂𝑚𝑢𝑙𝑡(𝑥) = 𝜌̂𝐶𝐿𝐹(𝑥)𝑦̂𝐶𝐿𝐹(𝑥) (42) 
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Here 𝛿𝐶𝐿𝐹(𝑥) and 𝜌̂𝐶𝐿𝐹(𝑥) are surrogates for the correction functions defined in 

Eqs. 18 and 20, and 𝑦̂𝐶𝐿𝐹(𝑥) is defined in Eq. 40. The resulting LGMF model is 

obtained as,  

 𝑦𝐿𝐺𝑀𝐹(𝑥) = 𝑐𝑎𝑑𝑑(𝑥)𝜂𝑎𝑑𝑑(𝑥) + 𝑐𝑚𝑢𝑙𝑡(𝑥)𝜂𝑚𝑢𝑙𝑡(𝑥) (43) 

Since the major adaptations were already performed during the previous stage, only 

small refinements are needed to finalize the resulting LGMF model. 

 A critical factor for the creation of the LGMF model is selection of a suitable shape 

parameter h for the Gaussian kernel function, which may vary based on the number and 

layout of the HF and LF samples. Like kriging, where the stochastic process is defined by 

hyper-parameters that must be optimized, LGMF seeks to determine the optimal parameter 

ℎ to build the non-deterministic prediction model that will best capture the HF behavior. 

The Maximum Likelihood Estimation (MLE) method is a popular approach to fit a process 

model parameter to non-deterministic data. However, unlike kriging, the LGMF function 

does not have an explicit function form with the kernel function. Also, since multiple basis 

functions derived from individual LF models are involved, the underlying true kernel 

process can be regarded as non-ergodic, which makes the MLE approach inappropriate. 

Instead of MLE, the Cross Validation (CV) approach was used to optimize the shape 

parameter with the Leave-One-Out (LOO) criteria by formulating an optimization problem 

in which the sum of the squared errors at each HF point during the LOO process is 

minimized 

  ℎ𝑐𝑣 ∈ argmin
ℎ∈𝐻

∑ (𝑦𝑘 − 𝑦𝐿𝐺𝑀𝐹,𝑘,−𝑘)
2𝑁ℎ𝑖

𝑘=1  (44) 

subject to the constraint that no more than one outlier per point left out, or 1% outliers, 

whichever is greater, are allowed from the LOO process as 
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∑ ∑ 𝐼(𝑖,𝑘)𝑁ℎ

𝑖
𝑁ℎ𝑖
𝑘

𝑁ℎ∗𝑁ℎ𝑖
≤ max (

1

𝑁ℎ
, 0.01) (45) 

where 𝑦𝐿𝐺𝑀𝐹,𝑘,−𝑘 is the conditional estimation at 𝑥𝑘 with LGMF built by leaving the kth HF 

sample out, 𝑁ℎ𝑖 is the number of interior high fidelity samples (as boundary samples are 

not left out), and 𝐼(𝑖, 𝑘) is an indicator function that determines whether a point is an outlier 

(falls outside of the 3 standard deviation uncertainty bounds) and is defined by 

   𝐼(𝑖, 𝑘) = {1 𝑖𝑓 |𝑦𝑘 − 𝑦𝐿𝐺𝑀𝐹,𝑘,−𝑖|
2

− 9𝜎𝐿𝐺𝑀𝐹,𝑘,−𝑖
2 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (46) 

 The optimization via CV LOO could be nontrivial because the objective function is 

often multimodal. In this study, a general multiple starting point search strategy was used 

by calling the sequential quadratic programming solver in Matlab at each starting point. 

The optimized shape parameter enables the LGMF model to capture the HF samples within 

the prediction uncertainty bounds while making an accurate mean prediction. It was found 

[44] that CV achieves better and more robust fitting than MLE especially when the 

underlying process is not well matched with the Gaussian-family covariance structure. 

B. Non-Deterministic Kriging for LGMF 

 When the evaluation costs are trivial, the LF models can be used directly. However, in 

most cases it is more computationally efficient to build surrogate models such as kriging 

from a finite number of LF training samples. In this study, it is assumed that the samples 

from both HF and LF models can carry some degree of uncertainty sourced from either 

modeling uncertainty or natural randomness in the environmental and operational 

conditions. When the samples are under non-stationary uncertainty, deterministic kriging 

is prone to fail to model physically meaningful behaviors due to the interpolation 

requirement. Counterintuitively, the modeling failure gets worse as more samples are 
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added. Non-Deterministic Kriging (NDK) [10] provides a flexible framework that can 

properly capture both the means and non-stationary variances of prediction from data 

samples under uncertainty. To accommodate non-deterministic samples, NDK is 

formulated as in Eq. 47 by combining the global trend function with the realizations of two 

stochastic processes, 𝑧𝐸(𝑥) and 𝑧𝐴(𝑥) that represent epistemic and aleatory uncertainties 

respectively. 

 𝑦̂𝑛𝑑(𝑥) = 𝒇(𝒙)𝑻𝜷 + 𝑧𝐸(𝑥) + 𝑧𝐴(𝑥) (47) 

 Here, 𝒇(𝒙) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑝(𝑥)]  are the vector of known p basis trend functions 

of x, and 𝜷 is the regression coefficient vector. Epistemic uncertainty (𝑧𝐸) comes from lack 

of confidence in interpolation modeling due to limited or missing data, which can be 

reduced by adding more data and information. On the other hand, natural and irreducible 

randomness, such as a measurement error or statistical distribution of material property, is 

modeled as aleatory uncertainty (𝑧𝐴). It is noted that when random samples are too small 

to obtain accurate statistical inference, one can say that 𝑧𝐴 has both epistemic and aleatory 

uncertainties. In this case, adding more samples will reduce the epistemic uncertainty in 𝑧𝐴 

and make the statistical distribution more accurate. When statistical information is 

available along with the training samples, the statistical information can be directly used 

as aleatory uncertainty in NDK. In the NDK framework, the first step is to estimate the 

aleatory variances 𝑧𝐴  at each data point using local polynomial regression. Then, the 

epistemic modeling uncertainty is determined by fitting hyper-parameters in 𝑧𝐸 through 

the MLE approach. Within the LGMF framework, both the LF and CLF models are 

modeled with NDK by generating and using a finite number of training samples under 
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uncertainty. Assuming that the aleatory uncertainties are independent and identically 

distributed among the multiple LF models, the aleatory uncertainty of the resulting LGMF 

model is estimated as  

 𝑍𝐴_𝐿𝐺𝑀𝐹(x) = (∑ (𝑛𝑐𝑖(𝑥) 𝑍𝐴_𝜂𝑖(𝑥))
2

𝑀
𝑖=1 )

1/2

 (48) 

where 𝑍𝐴_𝜂𝑖 is the aleatory uncertainty of the 𝑖𝑡ℎ basis function and 𝑛𝑐𝑖 is the normalized 

participation ratio. Therefore, the resulting LGMF model can provide not only the expected 

prediction mean but also the uncertainty bounds of the prediction. According to the 

application or goal of MF modeling, the prediction model can be designed to provide either 

optimistic risk-taking or conservative risk-averse predictions. Also, the quantified 

uncertainty bounds can be useful in an adaptive sampling strategy for efficient model 

updating. 

4.1.2 Numerical Examples 

 In this section, numerical examples are presented and the performance of the proposed 

LGMF method is discussed. Under the assumption that the evaluation cost of an HF model 

is significantly higher than that of a LF model, the computational costs of building an MF 

model are determined mainly by the costs of generating the HF evaluation samples. 

Throughout the examples presented in this section, kriging models utilize the stationary 

Gaussian kernel function, and the hyperparameters are determined based on MLE. When 

samples are under uncertainty, NDK models are constructed using a finite number of 

samples for the corrected basis and CLF functions in LGMF modeling. As in practical 

situations, multiple LF models are considered in demonstrations which 1) may be only 

locally correlated to the HF model, 2) may provide estimations with different levels of 
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uncertainty, and 3) may show inconsistent or indefinite ranks of fidelity and accuracy 

within the design domain.  

Example 1: Deterministic One-Dimensional Mathematical Problem with one LF model  

 The proposed LGMF method is demonstrated with the deterministic mathematical 

problem shown in Fig. 1. This problem, which has been often discussed in the literature [1, 

15, 18, 22], is presented to compare the proposed LGMF and existing Bayesian Hybrid 

Multi-Fidelity (BHMF) [21] methods. The LF model is created by scaling the HF value by 

a constant term and adding a linear deviation as 

 𝑦𝐻(𝑥) = (6𝑥 − 2)2𝑠𝑖𝑛(12𝑥 − 4)   (49) 

 𝑦𝐿(𝑥) = 0.5𝑦𝐻(𝑥) + 10(𝑥 − 0.5) − 5   (50) 

where x is a design variable with the range [0~1.1]. As an extreme case, only three samples 

of the HF model at 𝑥 = {0, 0.5, 1.0} are considered. In this example, the BHMF method 

combines the additive and multiplicative corrections by obtaining the constant weighting 

factors at the fixed location x=0.5 as a previously evaluated data point. In BHMF, Gradient 

Enhanced Kriging (GEK) is also used for both adaptation functions to improve the model 

accuracy, assuming that the gradient information is available along with the function 

evaluation value with small additional cost. As for LGMF, the conventional kriging models 

without using the gradient information are built for the basis functions and CLF. Since 

there is only one LF model, the first stage of LGMF can be skipped and the second stage 

begins directly. The results are shown in Fig. 1. The BHMF model (Fig. 3a) shows large 

discrepancies even through the gradient information was included while the proposed 

LGMF model (Fig. 3b) is almost overlapped with the HF model. It was expected BHMF 

would have larger discrepancies than LGMF because BHMF uses constant weighting 
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factors. On the other hand, the proposed LGMF method updates the participation factors 

of the basis functions at each prediction location, allowing the linear deviation term of the 

LF function to be corrected exactly. Similar performance to LGMF was observed when the 

Bayesian Compressive Model (BCM) or Generalized Hybrid Bridge Model (GHBM) were 

applied [15, 18]. Note that simple additive and multiplicative corrections were used in this 

example, but any other adaptation models, such as the BCM or GHBM, can be incorporated 

as additional basis functions in the proposed LGMF framework.  

 

 

 

 

 

 

 

Figure 3. One dimensional example comparing the BHMF and LGMF methods 

Example 2: One-Dimensional Mathematical Problem with Two Locally Correlated LF 

Models  

 This example introduces the practically possible situation of two locally-correlated LF 

models for the same HF model as the previous example. The two LF models are given as 

𝑦𝐿𝐹1(𝑥) = 1.5sin(8𝑥 − 4) + 5(𝑥 − 0.5) − 5  and 𝑦𝐿𝐹2(𝑥) = −6 sin(8𝑥 − 4) − 7 , as 

shown in Fig. 4. 
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Figure 4. One dimensional HF model with two locally correlated LF models 

 Neither the LF1 nor LF2 model is globally correlated to the HF model. However, based 

on the similarity of the global trends, LF1 is observed to have better correlation to HF than 

LF2 in the first half of the domain, 𝑥 ∈ [0.0~0.6] while LF2 correlates better than LF1 in 

the second half of the domain, 𝑥 ∈ [0.6~1.0] . The LF models have their own valid 

application ranges, which are partially overlapped. Here, four samples of the HF model, 

collected at 𝑥 = {0, 0.333, 0.667, 1.0}, are considered. This example illustrates a practical 

situation where 1) the boundaries of the valid application ranges of the multiple LF models 

are unknown and 2) the ranks of accuracy among the LF models are not given. For 

comparison, the BHMF models are built by choosing only one of the LF models as shown 

in Fig. 5. It is obvious that none of the BHMF models are accurate because the LF models 

are only partially correlated, not globally. On the other hand, the proposed LGMF model 

shown in Fig. 6a is constructed by combining both LF models and provides a more 

meaningful prediction model than BHMF. The shape parameter in the first stage of LGMF 

was optimized to h=1.1. Along with the prediction model, the LF model dominance 

information is obtained from LGMF as shown in Fig. 6b.  
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Figure 5. BHMF models with two individual LF models with four HF samples 

 The model dominance, which is essentially derived from the modal participation 

functions, can be interpreted as describing how the correlations of the LF models change 

over the design domain in a quantitative way. The model dominance is assessed between 

zero-dominance (0) and full-dominance (1). The model dominance plot in Fig. 6b shows 

the behavior of local correlations between the two LF models, which is consistent with the 

earlier observations about the LF and HF models in Fig. 4. Starting from the position x=0, 

LF1 is better correlated to HF and more heavily weighted in the LGMF model than LF2, 

with partial dominance ratios of 0.6 to 0.4, respectively. After the tipping point (x=0.55), 

LF2 becomes more dominant than LF1, becoming almost totally dominant after around 

x=0.7.  
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Figure 6. LGMF modeling with two LF models that are locally correlated to HF 

 With the number of HF samples increased to seven and using the optimum shape 

parameter of h=0.8, the LGMF model and LF dominance become accurate and clear as 

shown in Fig. 7. The dominance information can be useful in understanding the 

characteristics of the HF model behavior in terms of the fundamental local behaviors 

described by the LF models. Along with other data classification or clustering algorithms 

which are purely based on data samples, the model dominance information can be used to 

enable a physics-based data clustering. In another imminent application, the dominance 

information can guide us in identifying which local models or transition ranges need to be 

interrogated with more samplings in an adaptive sampling and model updating scheme. 

  

a) LGMF with four HF samples b) LF model dominance from LGMF 
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Figure 7. LGMF modeling with seven HF samples 

 As a case with modeling under uncertainty, consider non-deterministic LF models with 

provided prediction means and constant standard deviations (𝜎𝐿𝐹1 = 0.5 and 𝜎𝐿𝐹2 = 2.0 ) 

as shown in Fig. 8a. Taking 𝜎𝐿𝐹1 and 𝜎𝐿𝐹2 as the aleatory uncertainties of the LF models, 

the aleatory uncertainty of LGMF, 𝑍𝐴_𝐿𝐺𝑀𝐹  is estimated based on Eq. 48, which is used to 

suggest the prediction uncertainty bounds as 3𝑍𝐴_𝐿𝐺𝑀𝐹 as shown in Fig. 8b. As expected, 

the combined uncertainty bounds are narrow in the range of LF1 dominance and become 

larger in the LF2 dominance range, which presents the possible prediction errors of LGMF 

with a non-stationary normal distribution.  
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Figure 8. Non-deterministic LGMF model with prediction uncertainty bounds 

Example 3: Non-Stationary Mathematical Problem with Non-Deterministic LF Models  

 This mathematical example addresses an HF model with a non-stationary response, i.e., 

the response behavior changes abruptly at the C0 continuity. The HF model shown in Fig. 

9 is defined as 

 𝑦𝐻(𝑥1, 𝑥2) = max [𝑓1, 𝑓2]   (51) 

where 𝑓1 and 𝑓2 are given by 

 𝑓1(𝑥1, 𝑥2) = exp(𝑥1
2 +  𝑥2) − 7  (52) 

 𝑓2(𝑥1, 𝑥2) = −(1.7(𝑥1 + 0.3) − 2)2 sin(𝑥1𝑥2𝜋) ∗ (𝑥2 + 1)   (53) 

 As shown in Fig. 9, the HF behavior changes between 𝑓1  and 𝑓2  along a nonlinear 

boundary, resulting in discontinuous derivatives.  
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Figure 9. Non-stationary HF model 

 Low-fidelity models are available, which are non-deterministic to account for the effects 

of natural randomness and incomplete modeling. The two non-deterministic LF models are 

defined with both linear and nonlinear deviation terms, along with random function terms, 

as 

 𝑦𝐿𝐹1(𝑥1, 𝑥2) = 3 + 𝑓1(𝑥1, 𝑥2) − 𝑥1 − 𝑥2 + 𝑥1𝑥2 + 0.2ξ(𝑥1 + 𝑥2) (54) 

 𝑦𝐿𝐹2(𝑥1, 𝑥2) = 1 + 𝑓2(𝑥1, 𝑥2) + 𝑥1𝑥2 − (𝑥2 − 0.3)2 + 0.25ξ (55) 

where ξ  is the standard normal random variable. LF1 is designed to have increasing 

uncertainty bounds with increasing 𝑥1 and 𝑥2, while LF2 has constant randomness within 

the domain. In this example, to simulate a realistic situation, only limited numbers of 

random samples are taken from the LF models. Using noisy LF samples, NDK models for 

LF1 and LF2 were constructed for use in the LGMF process.  

 NDK provides a flexible framework for handling both randomly collected samples 

directly and statistical samples that come with the estimated mean and standard deviation 

at every data location. Here, the NDK of LF1 is built with 26 statistical samples with prior 

uncertainty information, while the NDK of LF2 is modeled with 377 randomly collected 
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samples over the entire space. Since the model evaluation cost is significantly cheaper for 

LF models than for HF, it is assumed that the large number of LF2 samples is manageable.  

 In Figs. 10 and 11, the distributed samples are shown along with the LF mean surfaces. 

Using the non-deterministic samples, NDK models are created and compared against the 

mean and uncertainty bounds (±3σ) of the true LF models. NDK of LF2 seems more 

accurate in predicting both mean and uncertainty bounds than LF1 because of the well-

populated random samples. As for LF1, there are some areas with a lower density of 

samples, which causes the inaccuracy in the NDK predictions. Adding more samples of 

the LF model will improve the prediction accuracy. 

 

 

 

 

 

 

Figure 10. NDK with twenty-six statistical samples from LF1 

 

 

 

 

 

 

Figure 11. NDK with 377 random samples from LF2 
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 The first trial of building the LGMF model is performed with seven Latin Hypercube 

Sampling (LHS) HF samples and the LF NDK models as shown in Fig. 12. The LGMF 

model obtained and shown in Fig. 13 is clearly more accurate than the kriging model built 

using only the HF samples. 

 

 

 

 

 

 

 

 

Figure 12. LF NDK models and HF function with seven samples 

 

 

 

 

 

Figure 13. LGMF and kriging models built using seven HF samples 

 As another case, the LGMF model is created with twelve HF samples shown in Fig. 

14a. It is found that the LF1-NDK model is overall more dominant than the LF2-NDK 

model. The dominance of LF1-NDK was expected because the global trend of LF1-NDK 

is better correlated to HF than LF2-NDK. Increasing the number of samples enables us to 
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capture the dominance boundary more accurately as shown in Fig. 14b. Comparing the 

resulting LGMF and kriging models shown in Fig. 15, it is apparent that the LGMF model 

is more accurate than the kriging model. Due to the noise in the data, the accuracy of the 

kriging model is degraded when increasing the number of points.  

 

 

 

 

 

 

 

 

Figure 14. HF model with 12 samples and LF dominance 

 

 

 

 

 

Figure 15. LGMF and kriging models with 12 HF samples 

 The model dominance information shown in Fig. 14b captures the general shape of the 

non-stationarity boundary shown in Fig. 12. When the LF dominance boundary is known 

a priori, LGMF can be built accurately with a small number of HF samples by skipping the 

LF consolidation stage. This is essentially the same as having a single LF model that is 

𝑦 

𝑥1 
𝑥2 

𝑥1 

𝑥2 

• Blue solid circle: 𝐻𝐹 samples 

• Red solid surface: 𝐻𝐹  

• Orange surface: 𝐿𝐹1 𝑁𝐷𝐾 dominance 

• Green surface: 𝐿𝐹2 𝑁𝐷𝐾 dominance 

a) 12 HF samples b) Model dominance obtained from LGMF 

samples 

b)  

•Colormap surface: 𝐿𝐺𝑀𝐹 

•Magenta surface: 𝐾𝑟𝑖𝑔𝑖𝑛𝑔 

•Blue solid circle: 𝐻𝐹 samples 

•Red solid surface: 𝐻𝐹  

𝑦 
𝐿𝐺𝑀𝐹 𝐾𝑟𝑖𝑔𝑖𝑛𝑔 

𝑦 

𝑥1 
𝑥2 

𝐷
𝑜

𝑚
𝑖𝑛

𝑎
𝑛

𝑐𝑒
 

𝑥1 
𝑥2 



41 
 

globally well correlated to the HF model. To capture nonlinear deviation, it will still be 

necessary to determine the optimum locations of samples from the HF model to maximize 

the LGMF performance. There are many adaptive sampling schemes [45] in which 

Expected Improvement (EI), mean squared errors, or confidence bounds are measured to 

determine the sequential sample locations in an iterative process. 

Example 4: Non-Deterministic Prediction Model of Thermally Coupled Aircraft 

Structure Response  

 In this example, an idealized model of a thin exhaust-washed structure is considered. 

The structure is located aft of an embedded aircraft engine and can exhibit geometric 

nonlinear responses due to extreme thermal loads. It was found by Deaton and Grandhi 

[46] that the geometric nonlinearity resulting from an elevated thermal load makes a 

significant contribution to the overall structural response through stress stiffening behavior 

and deformation-dependent load redistributions. To investigate the characteristic 

behaviors, the fundamental curved strip model was developed as an idealization of a thin-

shell thermal structure as shown in Fig. 16.  

 

Figure 16. Fundamental curved strip model under extreme thermal load 

 The material properties are E = 12.5 × 106𝑝𝑠𝑖  and α = 5.5 × 106/℉  for Young’s 

modulus and the coefficient of thermal expansion, respectively. The model is 

parameterized using the thickness-to-span-length ratio 𝑡 𝐿⁄  and the curvature-to-span-

length ratio 𝛿 𝐿⁄ . The finite element model is created with 250 two-node beam elements 
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and analyzed using MSC Nastran under a thermal load of 900℉ applied uniformly over 

the structure. To capture the effects of thermal expansion on the boundary conditions, linear 

elastic boundaries consisting of axial (Ka) and rotational (Kr) elastic members are used. By 

changing the stiffness values of the elastic members, the boundary conditions can be 

adjusted to any case between fully clamped and weakly constrained in a continuous 

manner. The maximum stress responses for two example boundary conditions are shown 

in Fig. 17. The following characteristic behaviors were discussed in [46]: 1) the effect of 

varying thickness on geometric nonlinearity appears to be small compared to the other 

factors, 2) increasing the curvature reduces the effect of geometric nonlinearity, and 3) the 

effect of geometric nonlinearity becomes sensitive when both Ka and Kr increase. Most 

importantly, it was observed that the trend predicted by a linear analysis is the opposite of 

the trend of the nonlinear structural responses, especially for a small curvature structural 

configuration. For more details of the curved strip model and discussions of its nonlinear 

responses, the reader is referred to [46].  

 

 

 

 

 

 

 

Figure 17. Mean surfaces of maximum stress of the HF nonlinear model with fixed and 

rotation-free BCs 

a) Fixed BC (𝐾𝑎 = ∞, 𝐾𝑟 = ∞) b) Rotation-free BC (𝐾𝑎 = ∞, 𝐾𝑟 = 0) 

𝑡 𝐿⁄  

𝜎𝑚𝑎𝑥 

𝛿 𝐿⁄  
𝑡 𝐿⁄  

𝜎𝑚𝑎𝑥 

𝛿 𝐿⁄  
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 As an example of the proposed LGMF method, a prediction model of the maximum 

stress of the curved strip model under extreme thermal load is built within the design 

domain of interest. The design parameters are 𝑡 𝐿⁄  and 𝛿 𝐿⁄  with ranges of [0.005~0.050] 

and [0.005~0.150] respectively. Assuming that geometric nonlinear analysis is capable of 

capturing the actual physics and nonlinear responses, HF samples are obtained by 

performing a nonlinear analysis of the curved strip model. Considering that in practical 

large-scale problems linear analysis is generally much cheaper than nonlinear analysis, a 

linear model is used as the LF model in this demonstration problem. It was observed [46] 

that the linear model makes well-correlated predictions to the nonlinear one within some 

ranges of the design domain, but becomes inaccurate and fails to capture even the trend of 

the nonlinear behavior in other ranges. Therefore, two different LF linear models are 

selected with non-zero finite stiffness ratios 𝑘𝑎 and 𝑘𝑟 (defined in [46]), as shown in Fig. 

18. Unlike the HF models, the LF models are assumed to be deterministic.  

 

 

 

 

 

 

Figure 18. Maximum stress of the two selected linear LF models with finite stiffness 

ratios 

 In the following demonstrations of the proposed LGMF method, two different Boundary 

Conditions (BCs) are considered for the HF model: Fixed BCs with 𝐾𝑎 = ∞ and 𝐾𝑟 = ∞ 

a) LF01 (𝑘𝑎 = 1.0, 𝑘𝑟 = 500) b) LF02 (𝑘𝑎 = 0.5, 𝑘𝑟 = 400) 

𝑡 𝐿⁄  

𝜎𝑚𝑎𝑥 

𝛿 𝐿⁄  
𝑡 𝐿⁄  

𝜎𝑚𝑎𝑥 

𝛿 𝐿⁄  
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and Rotation-free BCs with 𝐾𝑎 = ∞  and 𝐾𝑟 = 0 . The maximum stress surface of the 

nonlinear model for each boundary condition is shown in Fig. 17. In either case, to simulate 

a practical situation it is assumed that HF samples are non-deterministic and randomly 

perturbed due to aleatory uncertainty in the BCs and modeling uncertainty of the geometric 

nonlinear model. The HF samples could also be obtained from actual physical tests which 

are subject to random variations in test conditions and operations. In this example, random 

perturbations to the HF stress response are accounted for by adding normal distributions to 

the rotational stiffness ratios 𝑘𝑟 and maximum stress 𝜎𝑚𝑎𝑥 with standard deviations of 5 

and 3000 psi respectively. The random variation of the HF stress will increase as 𝛿 𝐿⁄  

reduces and 𝑡 𝐿⁄  increases due to the randomness in the rotational stiffness ratio. The goal 

is to use a small number of non-deterministic HF samples and the deterministic LF models 

to build a useful and physically meaningful prediction model that can be used for a design 

exploration study. 

Case 1: Fixed BCs with 12 HF non-deterministic samples 

 As a first case, the fixed BCs are set up using elastic elements with 𝐾𝑎 = ∞, 𝐾𝑟 = ∞.  

The geometric nonlinear response is plotted with the 18 HF samples in the design domain 

of 𝑡 𝐿⁄  ∈ [0.005~0.050] and 𝛿 𝐿⁄  ∈ [0.005~0.150] as shown in Fig. 19. Since they are 

non-deterministic, the HF samples are not exactly on the HF mean surface. The resulting 

LGMF and conventional kriging models are shown in Figs 19a and 19b, respectively. Here, 

kriging is built using the HF samples only while LGMF leverages the LF models along 

with the HF samples to build a prediction model that is insensitive to the randomness in 

HF samples. 
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Figure 19. Maximum stress from HF (red surface), LGMF and kriging with 12 HF 

samples (blue circles) 

 Fig. 20 compares the maximum stress predictions along two cross-sections of the design 

domain, where 𝛿 𝐿⁄ = 0.048 is the 30% point within its range, and  𝑡 𝐿⁄ = 0.036 is the 

80% point in its range. It is obvious based on Figs. 19 and 20 that LGMF is more accurate 

(closer to HF) than kriging. It is often more important in design exploration to make 

physically meaningful estimations of the response gradients than to precisely estimate the 

response itself. As shown in Fig. 20, kriging can mislead the design exploration by giving 

an incorrect gradient at a design point, while LGMF can more reliably estimate physically 

meaningful design gradients as well as the prediction uncertainty bounds (i.e., ±3𝜎).   

 

 

 

 

 

 

Figure 20. Case 1: Comparisons of the maximum stress responses from LGMF and 

kriging against HF 

b) Kriging (magenta surface) a) LGMF (colormap surface) 
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a) Stress along 𝑡 𝐿⁄  at 𝛿 𝐿⁄ = 0.048 b) Stress along 𝛿 𝐿⁄  at 𝑡 𝐿⁄ = 0.036 
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Case 2: Fixed BCs: 𝐾𝑎 = ∞, 𝐾𝑟 = ∞ with 46 HF samples 

 By increasing the number of samples from 12 to 46, the prediction model of LGMF is 

improved as shown in Fig. 21a. compared to Fig. 19a. However, it is observed that kriging 

shows more local bumps despite the increased number of samples. The local bumps of 

kriging depend on the random fluctuations of the samples and the layout of the data points. 

Unlike kriging, LGMF is immune to the local random fluctuations, and as more samples 

are added, the prediction model of LGMF becomes more accurate as expected.  

 

 

 

 

 

 

Figure 21. Maximum stress from HF (red surface), LGMF and kriging with 46 HF 

samples (blue circles) 

 It can be seen clearly in the comparison of the 1D predictions in Fig. 22 that the kriging 

model is more accurate than the previous case, although the frequency of local bumps is 

more severe. In this case, one should be cautious when interpreting the kriging prediction 

since the local bumps are due to numerical instability with no physical meaning. On the 

other hand, the mean and uncertainty bounds of the LGMF predictions shown in Fig. 22 

accurately capture the true global trend. 

  

b) Kriging (magenta surface) a) LGMF (colormap surface) 
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Figure 22. Case 2: Comparisons of the maximum stress responses from LGMF and 

kriging against HF 

 With non-deterministic HF samples, LGMF can provide the ±3 uncertainty bounds of 

the prediction as shown in Fig. 23 along with the mean predictions shown in Figs. 19a and 

21a. The assessed uncertainty bounds include both aleatory uncertainty due to the random 

perturbations of HF samples and modeling uncertainty caused by insufficient samples. The 

LGMF prediction uncertainty bounds shown in Fig. 23a are conservatively wide enough to 

include all the given HF random samples. Fig. 23 shows how the conservative bounds of 

Case 1 improve to the ones of Case 2 as the number of samples increases. Since the 

modeling uncertainty reduces when more samples are included, the prediction uncertainty 

bounds get closer to the true uncertainty bounds of the random perturbations of the HF 

samples. 
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a) Stress along 𝑡 𝐿⁄  at 𝛿 𝐿⁄ = 0.048 b) Stress along 𝛿 𝐿⁄  at 𝑡 𝐿⁄ = 0.036 

a)  

𝐻𝐹 mean 

𝑁𝐷𝐾 mean 

𝑁𝐷𝐾 ± 3𝜎   

𝐾𝑟𝑖𝑔𝑖𝑛𝑔 mean 

𝐾𝑟𝑖𝑔𝑖𝑛𝑔 ± 3𝜎  

 



48 
 

𝑡 𝐿⁄  

𝜎𝑚𝑎𝑥 

𝛿 𝐿⁄  

𝑡 𝐿⁄  
𝛿 𝐿⁄  

𝑡 𝐿⁄  

𝛿 𝐿⁄  

𝜎𝑚𝑎𝑥 

𝑡 𝐿⁄  𝛿 𝐿⁄  

a) Case 1 with 12 samples 

II.  

a) Case 1 with 12 samples 

IV.  

LF dominance  

 

 

 

 

 

 

Figure 23. Uncertainty bounds (±3) of LGMF predictions for Case 1 and Case 2 

 As a byproduct of LGMF, the model dominance information is obtained in a quantitative 

manner as shown in Fig. 24. With a small number of samples as in Case 1, the model 

dominance information is only valid in an approximated global sense. However, with a 

large number of samples as in Case 2, the model dominance information becomes higher-

resolution and more accurate. According to the dominance information, LF2 is better 

correlated to HF than LF1 overall, but for a high 𝛿 𝐿⁄  value and a low 𝑡 𝐿⁄  value LF1 better 

captures HF than LF2. 

 

 

 

 

 

 

Figure 24. Model dominance information from LGMF for Case 1 and Case 2 

  

b) Case 2 with 46 samples 

I.  

b) Case 2 with 46 samples 

III.  

LF dominance  

• Orange surface: 𝐿𝐹1 𝑁𝐷𝐾 dominance 

• Green surface: 𝐿𝐹2 𝑁𝐷𝐾 dominance 
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Case 3: Rotation-free BCs: 𝐾𝑎 = ∞, 𝐾𝑟 = 0 with 46 HF samples 

 It is shown in Fig. 17 that geometric nonlinearity with rotation-free BCs is far different 

from the other cases with the fixed BCs, especially for a strip with low curvature and high 

thickness. Like the previous cases, LGMF provides a reliable prediction model with 

uncertainty bounds of prediction with 46 random HF samples as shown in Figs. 25 and 26. 

 

 

 

 

 

 

 

Figure 25. Case 3: LGMF prediction mean and uncertainty bounds for the rotation-free 

BCs case with 46 HF samples (blue circles) 

 

 

 

 

 

 

 

Figure 26. Case 3: Comparisons of the maximum stress responses from LGMF and 

kriging against HF 

a) LGMF (colormap surface) b) Uncertainty bounds (±3) 
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a) Stress along 𝑡 𝐿⁄  at 𝛿 𝐿⁄ = 0.048 b) Stress along 𝛿 𝐿⁄  at 𝑡 𝐿⁄ = 0.036 
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 Comparing the HF responses with the LF1 and LF2 models, it is observed that in the 

design domain LF1 is better correlated to HF within the ranges of small curvature and high 

thickness, but in ranges of small curvature and small thickness, LF2 captures the HF 

behavior more accurately. This observation is clearly reflected in the model dominance 

information shown in Fig. 27. One can see how the HF model behavior makes transitions 

from one fundamental behavior explained by a LF model to the other behavior captured 

better by another LF model within the design domain in a quantitative way.  

 

 

 

 

 

 

Figure 27. Model dominance information from LGMF fit of Case 3, for LF1 (orange 

surface) and LF2 (green surface) 

4.1.3 Summary of the Proposed LGMF Modeling Method 

 This section introduced multi-fidelity modeling using the non-deterministic localized-

Galerkin approach to address potential practical challenges such as how to combine models 

with various fidelities, how to deal with Low Fidelity (LF) models that show localized 

correlations to the high-fidelity (HF) model, and how to consider samples from simulations 

and physical data under uncertainty. The Localized-Galerkin Multi-Fidelity (LGMF) 

model is expressed as an expansion function with an arbitrary number of selected basis 

functions. The basis functions can be derived as multiplicative, additive, or 

hybrid/comprehensive corrections, which are consolidated using participation functions in 

𝑡 𝐿⁄  𝛿 𝐿⁄  

LF dominance  

• Orange surface: 𝐿𝐹1 𝑁𝐷𝐾 dominance 

• Green surface: 𝐿𝐹2 𝑁𝐷𝐾 dominance 
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the proposed LGMF framework. First, the localized-Galerkin approach is applied to 

determine the participation functions of the multiple LF models. Once the participations 

are determined, all LF models are consolidated into a single globally correlated model, 

which will be refined in the second stage of the proposed LGMF framework, resulting in 

the final MF model. LGMF does not require user-defined ranks of fidelity or accuracy to 

combine multiple models with differing fidelities. The degree of local correlation or 

dominance is estimated based on available sample data from the HF model.  

 The proposed LGMF modeling method has been successfully demonstrated using 

fundamental mathematical one- and two-dimensional problems with two LF models, which 

show localized correlations within different local domains. The dominance information can 

be useful in understanding the characteristics of the HF model behavior in terms of 

fundamental LF models. If the dominance boundary is available a priori, the LF 

consolidation stage can be skipped since this is essentially the same case as having a 

globally well-correlated LF model. Potential applications and technical contributions 

include: 1) along with other existing data classification or clustering algorithms, the model 

dominance information can enable a physics-based data clustering, 2) the non-

deterministic LGMF model can provide aleatory and epistemic uncertainty bounds along 

with the MF mean prediction, which can be used to enable an adaptive sampling scheme 

to optimize the LF and HF sample evaluations, and 3) based on the goal of the MF model 

application, the MF prediction model can be designed to provide either optimistic (risk-

taking) or conservative (risk-averse) predictions. 
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4.2 Expected Effectiveness (Adaptive Sampling for Global Optimization) 

 In the previous section introducing LGMF, HF training samples were added using the 

LHS method while LF training samples were usually considered computationally trivial 

and directly sampled at each prediction point. Adaptive sampling yields a more efficient 

way of collecting HF and LF training samples. Which adaptive sampling method is 

appropriate depends on the desired information, which in this section is determination of 

the global optimum. The Expected Improvement (EI) metric works well for adaptively 

adding HF samples to an LGMF fit. However, adaptively adding LF samples requires a 

new methodology. In this section the Expected Effectiveness (EE) acquisition function for 

adaptive sampling of LF models is introduced. Surrogates are created from the limited 

number of LF samples and used to construct the LGMF fit. To accommodate aleatory 

uncertainty in the LF samples, the surrogates used are NDK models. If the data are known 

to be deterministic, NDK will behave like conventional kriging. 

4.2.1 Changes to LGMF Implementation for adaptive sampling 

 The LGMF methodology used here follows the procedures described in the previous 

section with minor changes. First, lack of data from sparse initialization at the start of 

adaptive sampling can result in poor selection of the ℎ parameter during LOO optimization. 

In these examples the ℎ parameter is set to a user-defined constant. Second, a final stage 

of filtering using NDK helps improve the accuracy of the final LGMF model. 

Filtering of final LGMF model using NDK: Because of lack of data, the LGMF response 

in Eq. 43 can lead to some discontinuities even with an optimal ℎ parameter, especially 

with a small number of data samples in the beginning of the adaptive sampling process. 

This problem is addressed by using a low-pass filtering process, in which the LGMF Stage 
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2 responses are resampled and applied to build an NDK model. The filtering parameter for 

the low-pass frequency can be determined based on the minimum distance of an expected 

stationary response. This NDK model is used as the final LGMF fit.  

4.2.2 Proposed EE Adaptive Sampling for LGMF 

 EGO [9] was introduced to use the estimation and uncertainty bounds of a kriging fit to 

balance exploration and exploitation efficiently for global optimization. It works by 

sampling at the point with maximum EI, where EI is the value by which a point taken at a 

given sampling location can be expected to improve over the current best sample, where a 

worse or equal value yields an improvement of 0. The formulation of expected 

improvement was given in Eq. 13 in Chapter III. Based on expected improvement, the new 

Expected Effectiveness (EE) method for adaptive sampling of multiple fidelities is 

introduced. The EE method makes use of the EI of the LGMF surrogate, given by  

 𝐸𝐼𝐿𝐺𝑀𝐹(𝑥) = (𝑦̂𝑚𝑖𝑛 − 𝑦̂LGMF(x)) ∗  Φ (
𝑦̂𝑚𝑖𝑛−𝑦̂𝐿𝐺𝑀𝐹(𝑥)

𝜎𝐿𝐺𝑀𝐹(𝑥)
) +  

 𝜎𝐿𝐺𝑀𝐹(𝑥) ∗ 𝜙 (
𝑦̂𝑚𝑖𝑛−𝑦̂𝐿𝐺𝑀𝐹(𝑥)

𝜎𝐿𝐺𝑀𝐹(𝑥)
) (56) 

where 𝑦̂𝑚𝑖𝑛 is the current LGMF predicted optimum, 𝑦̂𝐿𝐺𝑀𝐹(𝑥) is the LGMF prediction at 

x, and 𝜎𝐿𝐺𝑀𝐹(𝑥) is the standard deviation of the LGMF prediction at 𝑥. Also, 𝜙( ∙ ) and 

Φ( ∙ ) are the standard normal density and cumulative distribution functions, respectively. 

An example using EI is included in the “Existing Surrogate Modeling Methods” section of 

this thesis.  

 The EE method combines the EI of the LGMF surrogate with the Modeling Uncertainty 

(MU), Dominance under Uncertainty (DU), and evaluation cost of the model being 

evaluated. That is, the EE of the 𝑚𝑡ℎ LF model is given by 
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   𝐸𝐸(𝑥, 𝑚) = 𝐸𝐼𝐿𝐺𝑀𝐹(𝑥, 𝐿𝐺𝑀𝐹) × 𝐷𝑈(𝑥, 𝑚) × 𝑀𝑈(𝑥, 𝑚)/𝐶𝑜𝑠𝑡(𝑚) (57) 

where MU is the ratio of Epistemic to Aleatory uncertainty in the NDK model of the LF 

function: 

           𝑀𝑈(𝑥, 𝑚) = 𝜎𝐿𝐹𝑚 𝑁𝐷𝐾 𝐸𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐(𝑥)/𝜎𝐿𝐹𝑚 𝑁𝐷𝐾 𝐴𝑙𝑒𝑎𝑡𝑜𝑟𝑦(𝑥) (58) 

 As more data points are added, the model will become saturated, the epistemic 

uncertainty will trend toward 0 and sampling of the LF function will cease. DU is defined 

as the dominance of the LF model plus the change in dominance that resulted from the last 

adaptive sample, that is 

 𝐷𝑈(𝑥, 𝑚) = 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒_ 𝐿𝐺𝑀𝐹 (𝑥, 𝑚) +  ∆𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒_ 𝐿𝐺𝑀𝐹(𝑥, 𝑚) (59) 

where the change in dominance for the 𝑘𝑡ℎ iteration is calculated as 

 ∆𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝐿𝐺𝑀𝐹(𝑥, 𝑚) =   

 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒_𝐿𝐺𝑀𝐹𝑘(𝑥, 𝑚) − 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒_𝐿𝐺𝑀𝐹𝑘−1(𝑥, 𝑚) (60) 

 Each iteration of the adaptive sampling, the LF model 𝑚 and location 𝑥 with the highest 

EE value are sampled, and the LGMF fit is updated. If all LF models are converged below 

tolerance, the HF model is evaluated at the location of maximum EI. The flowchart for the 

algorithm’s behavior is shown in Fig. 28.  
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Figure 28. Flowchart for behavior of EE adaptive sampling method for LGMF models 

4.2.3 Numerical Examples 

 This section presents numerical examples and discusses the behaviors of the proposed 

EE adaptive sampling method. The EE-based approach is demonstrated with multiple 

fundamental equations, as well as a fundamental cantilever beam example representing a 

long-span aircraft wing with store masses under dynamic loads. Since all examples start 

with small numbers of initial samples, the LGMF kernel shape parameters are fixed to 

cover sufficiently large distances of 0.8, 1.1, and 1.3 within normalized design spaces for 

1D, 2D and 3D examples respectively. 

Example 1:  

Non-Deterministic One-Dimensional Optimization Problem leveraging two LF models 

 In this design optimization example, it is desired to find a design x that minimizes the 

cost function f(x) within a given design domain D={x| 0<x<1.1} as in Eq. 61 

 𝑥∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐷𝑓(𝑥) (61) 
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where 𝑓(𝑥) = (6𝑥 − 2)2𝑠𝑖𝑛(12𝑥 − 4). Here, the true function f(x) is unknown, and only 

its measurement can be sampled. The measurement is modeled as the HF model with a 

stochastic variation of 10% Coefficient of Variance (CoV) from the true mean f(x) as  

 𝑓𝐻(𝑥)~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑓(𝑥), 10% 𝐶𝑜𝑉) (62) 

 Instead of using only the HF model, an adaptive MF model is built iteratively within the 

iterative optimum design search by leveraging two LF models. The LF models are derived 

as abstracted models of the HF model. It is assumed that they are inexpensive but inaccurate 

having estimation uncertainties of 𝜎𝐿𝐹1 = 0.2  and 𝜎𝐿𝐹2 = 1.0  as well as nonlinear 

deviations from the mean of the HF model  

 𝑓
𝐿𝐹1

(𝑥) = 1.5𝑠𝑖𝑛(8𝑥 − 4) + 5(𝑥 − 0.5) − 5  (63) 

 𝑓
𝐿𝐹2

(𝑥) = −6sin(8𝑥 − 4) − 7   (64) 

 The HF and LF functions and HF uncertainty are shown along with the true optimum 

solution marked with the red star symbol in Fig. 29.  

 

 

 

 

 

 

 

Figure 29. Surrogate models used in Example 1. Optimum denoted by star. 

 As shown in Fig. 30, five HF samples are generated while both LF NDK models are 

prepared with four samples at the beginning. Here, the ±3 bounds of NDK models include 

𝑥 

𝑦 

𝐿𝐹1 𝐿𝐹2 

𝐻𝐹 

𝐻𝐹 ± 3𝜎 

𝐻𝐹 model 
𝐿𝐹1 model 
𝐿𝐹2 model 
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both the aleatoric random variations of 𝜎𝐿𝐹1 = 0.2  and 𝜎𝐿𝐹2 = 1.0  and modeling 

uncertainty due to lack of samples.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Initial LF samples and surrogates. 

 The MU and DU terms during this first iteration are shown in Fig. 31. Notice how the 

lack of LF2 data in the range of between x=2.5 and x=0.8 translates to a high Model 

Uncertainty shown in Fig. 31a. Note also from Figs. 29 and 30 how NDK 𝐿𝐹1  better 

follows the trend of the HF function in the first half of the design domain, while NDK 𝐿𝐹2 

better follows the trend in the second half, even though they are still premature. This is 

reflected in the Dominance under Uncertainty plot (Fig. 31b).  

  

LF2 – 4 samples 𝑦 

𝑥 

𝐿𝐹2 samples 

true 𝐿𝐹2 

𝐿𝐹2 NDK 

𝐿𝐹2 NDK ±3𝜎 

LF1 – 4 samples 𝑦 

𝑥 

𝐿𝐹1 samples 

true 𝐿𝐹1 

𝐿𝐹1 NDK 

𝐿𝐹1 NDK ±3𝜎 

𝑥 

𝑦 LGMF fit – 5 HF samples 

𝐻𝐹 samples 

true 𝐻𝐹 

𝐿𝐺𝑀𝐹  

𝐿𝐺𝑀𝐹 ± 3𝜎  

a) LF function 1 b) LF function 2 

c) HF samples 
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Figure 31. Information used for adaptive sampling during first iteration.  

 The resulting LGMF fit, as well as the EI of the LGMF fit, are shown in Fig. 32. Notice 

how the high uncertainty and low prediction between x=0.6 and x=0.8 results in a high EI 

value.  

 

 

 

 

 

 

 

 

 

Figure 32. LGMF fit and corresponding EI values. 

𝑥 

LF1  LF2  

Dominance Uncertainty 𝐷𝑈(𝑥, 𝑚) 
Dominance 

𝑀𝑈(𝜎𝐸/𝜎𝐴) 

LF1  

LF2 

Model Uncertainty 𝑀𝑈(𝑥, 𝑚) 

𝑥 

𝑥 

𝑦 
𝐿𝐺𝑀𝐹 

𝐸𝐼𝐿𝐺𝑀𝐹(𝑥) 

𝑥 

𝐻𝐹 samples 

true 𝐻𝐹 

𝐿𝐺𝑀𝐹  

𝐿𝐺𝑀𝐹 ± 3𝜎  

a) Modeling Uncertainty for each LF function. b) Dominance under Uncertainty for each LF function. 

a) HF samples and LGMF fit using LF information. b) Expected Improvement of LGMF fit. 
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 Finally, the EE values for the identical-cost LF functions are shown in Fig. 33. The 

locations of maximum EE value for each LF function are marked with stars. 

Unsurprisingly, LF2 has a significantly higher Expected Effectiveness considering both 

model and dominance uncertainties. In a case where only one adaptive sample is allowed, 

the next sample will be added for LF2 NDK modeling at the maximum EE location. New 

samples are added for both LF NDK models every iteration as long as the EE values are 

above the tolerance value of 10−6.  

 

 

 

 

 

 

Figure 33. EE value for each LF function across the domain. 

 After sampling both LF functions, the NDK of the LF models and the LGMF surrogate 

are updated and the new locations with maximum EE are calculated. Both LF functions are 

sampled each step until their EE values become insignificant or less than the EE tolerance. 

In this example 𝐿𝐹1  converges quickly in one step. Once both LF NDK exhibit 

insignificant EE, it means that there is no more information to be gained from the LF 

models with the current set of HF samples. When this is observed, a new non-deterministic 

HF sample is added at the location of maximum EI. When a new HF sample is added, not 

only LGMF, but also the dominance uncertainties of the LF models are updated, which can 

𝐸𝐸(𝑥, 𝑚)  

𝑥 

Next adaptive sample of LF1 

Next adaptive sample of LF2 

𝐿𝐹1 EE 
𝐿𝐹2 EE 
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make the LF EEs significant again. Figs. 34-35 show the updated LF NDKs, MU, DU, EI, 

EE, and LGMF with the two adaptive samples of both LF models. 

 

Figure 34. Data samples and LF NDK surrogates after models are updated. 

  

𝐻𝐹 samples 

True 𝐻𝐹 

𝐿𝐹1 𝑁𝐷𝐾  

𝐿𝐹1 𝑁𝐷𝐾 ± 3𝜎  

𝐿𝐹2 𝑁𝐷𝐾  

𝐿𝐹2 𝑁𝐷𝐾 ± 3𝜎  

True 𝐿𝐹 

𝑥 

𝑦 
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Figure 35. Information used for adaptive sampling during second iteration. 

 It is observed that DU is changed only slightly while MU, EI, and EE are changed 

significantly especially in magnitudes and their maximum locations. Over the iterations, it 

is desirable to see decreasing magnitudes of EE and EI. At the end of adaptive sampling, 

the maximum EEs of the LF models should be all zero, which means that the LF models 

are fully exploited around the expected optimum design location. Unlike the conventional 

EI from kriging, LGMF EI does not become zero, but converges to a finite value at the end 

𝑀𝑈(𝜎𝐸/𝜎𝐴) Model Uncertainty 𝑀𝑈(𝑥, 𝑚) Dominance Uncertainty 𝐷𝑈(𝑥, 𝑚) 

𝐸𝐼𝐿𝐺𝑀𝐹(𝑥) 

𝑥 

𝐿𝐹1 EE 
𝐿𝐹2 EE 

𝐸𝐸(𝑥, 𝑚) 

Next adaptive sample of LF2 

LF1  

LF2 

𝑥 

𝑥 

LF1  LF2  

Dominance 

a) Modeling Uncertainty for each LF function. b) Dominance under Uncertainty for each LF function. 

c) Expected Improvement of LGMF fit. d) EE value for each LF function across the domain. 
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of adaptive sampling due to the non-deterministic nature of the cost function. Therefore, 

through the iterations, either LF or HF samples are adaptively added until EE becomes 

insignificant, and both the minimum of HF and LGMF EI are converged within 0.1%. For 

this example, the samples and NDK surrogates once the adaptive sampling is complete are 

shown in Fig. 36. An iterative history of the percent error in the optimum response is 

included. In the end, the algorithm found the converged optimum design x=0.75 after 

adding one 𝐿𝐹1 sample, three 𝐿𝐹2 samples, and six 𝐻𝐹 samples. Because it started with 

four 𝐿𝐹1 samples, four 𝐿𝐹2 samples, and five 𝐻𝐹 samples, the final result is obtained with 

a total of five 𝐿𝐹1 samples, seven 𝐿𝐹2 samples, and eleven 𝐻𝐹 samples. Because of the 

stochastic randomness of HF, it is shown that multiple samples are drawn around the 

optimum design; five of the HF samples are clustered together.  

 

 

 

 

 

 

 

 

 

Figure 36. The completed adaptive sampling process.  

 A comparison between the final LGMF fit and a kriging fit built by using only the HF 

samples is shown in Fig. 37. Kriging’s interpolation requirement results in significant 

overfitting and unreasonable kriging uncertainty bounds (±3) which will lead to wrong 

𝑥 

𝑦 

Iterative history of 

𝐿𝐺𝑀𝐹 min 𝑌  error (%) 

𝐻𝐹 samples 
True 𝐻𝐹 
𝐿𝐹1 𝑁𝐷𝐾  
𝐿𝐹1 𝑁𝐷𝐾 ± 3𝜎  
𝐿𝐹2 𝑁𝐷𝐾  
𝐿𝐹2 𝑁𝐷𝐾 ± 3𝜎  
True 𝐿𝐹 

a) Final surrogates and samples. b) Percent error in the optimum response over 

the iterations. 
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EI estimations. The overfitting issue can be suppressed by using regression kriging or 

general Gaussian process with the nugget [10] which basically alleviates the interpolation 

requirement. However, since those methods capture the stochastic randomness as a random 

white noise, the measures of EI and EE can mislead adaptive sampling.  

 

 

 

Figure 37. Comparison between LGMF surrogate and Kriging 

Example 2: Hartman 3D problem 

 In this mathematical example, minimization of the 3D Hartman function is considered, 

 𝑓
𝐻

(𝑥) = − ∑ 𝑐𝑖
4
𝑖=1 𝑒𝑥𝑝 [− ∑ 𝛼𝑖𝑗 (𝑥𝑗 − 𝑝

𝑖𝑗
)

2
𝑑
𝑗=1 ]  (65) 

where 𝛼, 𝑐, and 𝑝 are matrices defined as  

 𝛼𝑖𝑗 = [

3 10 30
0.1 10 35
3

0.1
10
10

30
35

], 𝑐𝑖 = [

1
1.2
3

3.2

], 𝑝𝑖𝑗 = [

0.37 0.11 0.27
0.47 0.44 0.75
0.11
0.04

0.87
0.57

0.55
0.88

]  

 Having the Hartman equation as the HF model, the LF model is defined in Eq. 66 with 

a systematic deviation from HF. The deviation function is a second order polynomial 

function (MA3), introduced in [31] and shown in Eq. 67. The scale factor 7.6 applied to 

                                  

𝐻𝐹 samples 
true 𝐻𝐹 
𝐿𝐺𝑀𝐹  
𝐿𝐺𝑀𝐹 ± 3𝜎  

                                  

𝐻𝐹 samples 
true 𝐻𝐹 fit 
𝐾𝑟𝑖𝑔𝑖𝑛𝑔  
𝐾𝑟𝑖𝑔𝑖𝑛𝑔 ±3𝜎 

a) HF samples and final LGMF surrogate. b) Kriging fit constructed using HF samples. 
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the MA3 deviation function in Eq. 66 is to make the deviation as large as the full range of 

the HF response changes.  

 𝑓
𝐿𝐹

(𝑥) = 𝑓
𝐻

(𝑥) + 7.6 × 𝑀𝐴3(𝑥) (66) 

where 𝑀𝐴3(𝑥) = 0.585 − 0.324𝑥1 − 0.379𝑥2 − 0.431𝑥3 

                    −0.208𝑥1𝑥2 + 0.326𝑥1𝑥3 + 0.193𝑥2𝑥3 

         +0.225𝑥1
2 + 0.263𝑥2

2 + 0.274𝑥3
2 (67) 

 Additionally, evaluations of both HF and LF models are assumed to have random noise 

that is normally distributed with standard deviations of 0.01 and 0.02 for HF and LF 

models, respectively. Contours of the HF model in 3D are shown in Fig. 38. The optimum 

location is marked by a red star 𝑥𝑜𝑝𝑡 = (0.1146    0.5556    0.8525) and the minimum 

function values 𝑦𝑜𝑝𝑡 is = −3.8628.  

 

Figure 38. Contours of the Hartman 3D function. Optimum denoted by star. 

 The proposed adaptive sampling iteration starts with the initial 10 HF and 30 LF 

samples. The initial samples are generated by using the Latin Hypercube Sampling (LHS) 
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method to minimize the sample clustering. The initial contours are shown in Fig. 39. The 

true contours are shown as the red surfaces and the initial LGMF contours are shown as 

the colormap surfaces, which show significant errors. 

 

 

 

 

 

 

 

Figure 39. Contours of Hartman 3D function (red) and LGMF surrogate (colormap) at 

the beginning of optimization. (10 total HF evaluations and 30 total LF evaluations) 

 The adaptive sampling converges after adding an additional 8 HF samples and 23 LF 

samples. The converged LGMF surrogate (colormap) matches the HF function (red) much 

more closely around the optimum location as shown in Fig. 40.  

 

 

 

 

 

 

 

Figure 40. Contours of Hartman 3D function (red) and LGMF surrogate (colormap) at 

the end of optimization. (18 total HF evaluations and 53 total LF evaluations) 
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The final estimated optimum using the LGMF surrogate is  

 𝑥𝐿𝐺𝑀𝐹 𝑜𝑝𝑡 = (0.0000   0.5609    0.8511) (68) 

 𝑦
𝐿𝐺𝑀𝐹 𝑜𝑝𝑡

= −3.8534 (69) 

which is close to the true optimum values of 

 𝑥𝑜𝑝𝑡 = (0.1146    0.5556    0.8525) (70) 

 𝑦
𝑜𝑝𝑡

= −3.8628 (71) 

 Therefore, in a relatively small number of function evaluations, EE converged to an 

accurate solution. The iteration history of the estimated optimum value, estimated optimum 

location, and EE and EI values is shown in Fig. 41.  
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Figure 41. Iteration history of optimization 

 The iteration history of the expected optimum response shows gradual convergence to 

the nearly true value. From the iteration history of the estimated optimum location, it is 

observed that LGMF initially identified the general optimum, and then EE gradually 

refined its precise location. 

 As in the previous example, the EE value of the LF function eventually converged 

towards 0. When it converges, there is no more information to be gained from the LF model 

with the current set of HF samples. Therefore, a new HF sample is added at the location of 

𝑴𝒊𝒏.  𝒚 history 

Max. EI history Max. EE history 

Min. x history 

𝑥1 Optimum 

𝑥2 Optimum 

a) Estimated optimum value. b) Estimated optimum location. 

c) Maximum EE value. d) Maximum EI value 
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maximum EI. When a new HF sample is added, the LGMF fit and the LF EE values are 

re-calculated. This can make the LF EEs significant again, as shown as the fluctuations of 

the Maximum EE history plot in Fig. 41. 

 Also like the previous example, the EI values converge to a non-zero finite number. 

This is because of the way LGMF and NDK are designed to avoid interpolating and 

maintain non-zero uncertainty bounds at data samples in order to handle the white noises 

in HF and LF models.  

Example 3: Fundamental Aircraft Wing Model with a Cantilever Beam under Dynamic 

Loads 

 A fundamental aircraft wing structure abstracted as a cantilever beam as shown in Fig. 

42 is considered. The cantilever beam is modeled with 12 finite beam elements with two 

concentrated mass elements (300kg per each) that represent two stores attached to the wing. 

The length of the beam is 6m and the radius of the circular cross section is 7cm. The 

Young’s modulus and mass density are 20106 N/cm2 and 0.02 kg/cm3 respectively. The 

proportional damping model with the coefficients of =0.01 and =0.01 is considered for 

the dynamic analysis. Sinusoidal excitations with uniformly distributed loads are applied 

within the frequency range shown in Fig. 43 with the magnitude of 1000kN to simulate 

aerodynamic loads at a certain flight speed.  
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Figure 42. Cantilever beam with attached masses and applied forces, used to model an 

airplane wing with tip stores. 

 

 

Figure 43. Excitation force applied to the cantilever beam. 

 In this example, it is assumed that the wing structural and store design changes are 

reflected by varying the 𝑟1 and 𝑟2 coefficients of the element stiffnesses and concentrated 

masses, which have the ranges of 𝑟1 ∈ [0.1,  1.5] and 𝑟2 ∈ [0.1,  1.5]. The goal is to find 

the optimum design which will minimize the maximum stress at a predefined critical 

location i.e., Element 7, as in Eq. 72.  

 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐷 𝜎𝑚𝑎𝑥@ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡_7 (72) 

 Here, the design domain 𝐷 ∈ [0,  1]2  is the normalized space of the design change 

coefficients with the variable transformation, 𝑟1,2 = 1.4𝑥1,2 + 0.1, respectively. It is noted 

that the dynamic excitation causes non-stationary nonlinear responses (i.e., maximum local 

stresses) of the cantilever beam due to potential mode switching within the design domain 

of interest as shown in Fig. 44. Without considering any randomness of the structural 

design and loading condition,  the optimum solution can be located as denoted in the figure. 

(Hz) 

1000kN 
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Instead of design exploration with the single-fidelity model alone, two low-cost LF 

functions that approximate the maximum stress are included in the proposed adaptive 

sampling process. These LF models are constructed by using the dynamic sub-structuring 

method, the Craig-Bampton (CB) Method [47]. This method works by breaking the 

cantilever beam structure into two components, which are then solved as separate but made 

to interact each other. The CB method allows us to reduce the computational costs of 

structural dynamic analysis by ignoring higher-order natural frequencies of components. 

Fig. 45 illustrates the division of the beam into two components and the interface node.  

Figure 44. Maximum stress responses of Element 7 from the HF model and the optimum 

solution 

 

Figure 45. Craig-Bampton Method was used to generate LF stress responses at  

Element 7. 

𝜎𝑚𝑎𝑥  
HF optimum solution 

𝑥2 

𝑥1 
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 As additional higher order frequencies are dropped from the CB analysis, the cost saving 

increases with the sacrifice of analysis accuracy. In this problem two different LF models 

are used that enable different cost savings. For 𝐿𝐹1, the computational cost saving is about 

25% from the HF model cost by using up to 9th modal information in the CB analysis, while 

the cost saving of 𝐿𝐹2 is about 80% by including only first two modal information. As 

expected in Fig. 46, the LF1 model is more accurate in predicting the maximum stress with 

higher costs (more than 3 times) than LF2.  

 

 

 

 

 

 

 

Figure 46. Maximum stress responses of Element 7 from the LF models. 

 The proposed adaptive sampling was initialized with 15 samples from each LF function 

and 3 samples from the HF function. The initial samples and surrogates are shown in Fig. 

47. 

𝑥2 

𝑥1 

𝜎𝑚𝑎𝑥  LF1 (25% cost saving) 

LF2 (80% cost saving) 
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Figure 47. Initial stage: LF and HF samples and NDK models. Here, true responses are 

given as solid color surfaces, while NDK models are transparent color-map surfaces. 

 After the algorithm sampled an additional 6 HF samples, 11 𝐿𝐹1 samples, and 12 𝐿𝐹2 

samples, the algorithm found the solution converged to the optimum design variables as 

shown in Fig. 48, 

 𝑥𝐿𝐺𝑀𝐹 𝑜𝑝𝑡 = (0.1672,     0.7542) (73) 

 𝜎𝐿𝐺𝑀𝐹 𝑚𝑎𝑥 𝑜𝑝𝑡 = 13.002 (74) 

  

𝐿𝐹2 – 80% reduction 𝐿𝐹1 – 25% reduction 

HF samples 

LGMF model 

𝐿𝐹2 samples 𝐿𝐹1 samples 
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Figure 48. Final stage: LF and HF samples and NDK models. Here, true responses are 

given as solid color surfaces, while NDK models are transparent color-map surfaces. 

Also, initial and adaptive samples are black and blue respectively while the optimum is 

marked with red circles. 

 The discrepancy between the true and predicted response optimum is about 2% 

compared to the total range of the HF maximum stress within the design domain. As shown 

in Fig. 48, the EE adaptive sampling algorithm sampled very near the optimum twice. A 

comparison using EI and kriging is also shown, which took 5 times as many samples to 

sample the optimum so precisely. The optimum is marked by red circles. 

 It was observed during the sampling iterations that the proposed method explored and 

exploited the cheapest model LF2 at the initial stage, and started to have more samples 

from LF1 and HF gradually to increase the LGMF prediction accuracy even though they 

are more costly, which is the desirable and expected behavior of the proposed method. 

𝐿𝐹2 – 80% reduction 𝐿𝐹1 – 25% reduction 

HF samples 

LGMF model 

𝐿𝐹2 samples 𝐿𝐹1 samples 
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Overall, the final LGMF surrogate had 9 HF samples, 26 𝐿𝐹1 samples, and 27 𝐿𝐹2 samples. 

Therefore, the optimization had a total cost of 26 ∗ 0.75 + 27 ∗ 0.2 + 9 = 33.9  HF 

equivalent samples, as opposed to the 45 HF samples needed by EI based adaptive 

sampling with the single-fidelity kriging modeling. In general, the cost savings would 

depend on the selections of LF models and could increase significantly if there are big cost 

ratios between HF and LF models. The EE iteration history is shown in Fig. 49.  

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Iteration history of EE for LGMF. 

 The iteration histories for the “LGMF Predicted Optimum” and “Deviation from the 

Optimum” show eventual convergence to near the true optimum response prediction. The 

iteration history of the estimated optimum location 𝒙∗ shows normal convergence towards 

the optimum, except at iteration 13. At that iteration LGMF produced a poor fit, as shown 

in Fig. 50. However, additional samples rapidly corrected the fit and the EE values of both 

𝑥1 Optimum 
𝑥2 Optimum 

𝐿𝐹1 EE 
𝐿𝐹2 EE 

LGMF optimum 𝜎𝑚𝑎𝑥 history Deviation (%) from true optimum 

Max. EI history Max. EE history LGMF optimum 𝒙∗ history 
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LF functions converged towards 0, while the EI value of the LGMF fit converged to a small 

constant value, as shown by Fig. 49. 

 

Figure 50. Poor LGMF fit at iteration 13. 

 For comparison, a single-fidelity test is run using EI for kriging, as shown in Fig. 51. EI 

took 45 HF evaluations instead of the EE method’s 9. That is, EE required only 1/5th as 

many HF samples. 

 

 

 

 

 

 

 

 

Figure 51. Samples and surrogate for EI adaptive sampling using kriging. 

Kriging surrogate 𝐻𝐹 samples using EI 

Red solid color surface: HF  
Colored-map surface: LGMF 

a) Final kriging fit. The true function is the 

red surface, while the kriging fit is the 

colormap surface. 

b) Final data samples. Initial samples are 

black, while added samples are blue. The red 

point is the final sample at the optimum 
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4.2.4 Summary of Proposed EE Adaptive Sampling Method 

 This section introduced the EE based adaptive sampling method for sequential multi-

fidelity modeling approach in the framework of design optimization. This method 

leverages Multi-Fidelity (MF) models to address the question of how to orchestrate data 

acquisition from multiple available information sources which provide different 

approximated predictions with different costs. This adaptive sampling technique built off 

the Localized Galerkin Multi-Fidelity (LGMF) modeling method, which can provide MF 

modeling uncertainty and model dominance of the multiple low-fidelity models along with 

the approximated MF prediction. The Expected Effectiveness is proposed to account for 

not only the expected improvement, but also modeling uncertainty, dominance uncertainty 

and costs of all useful LF models by using LGMF and Non-Deterministic Kriging (NDK). 

The adaptive LGMF-NDK model also does not interpolate data, thereby improving 

stability and addressing randomness that pose challenges in other existing methods dealing 

with both physical experimental and high-fidelity computational data exhibiting white-

noise and systematic measurement and prediction errors. It is demonstrated successfully 

that the proposed method enables adaptive MF modeling addressing the practical 

challenges with data under uncertainty and multiple LF data sources through multiple 

numerical examples. 

4.3 Expected Usefulness (Adaptive Sampling of Constraints) 

 The previous section dealt with an adaptive sampling methodology to determine the 

global optimum. This section introduces an adaptive sampling method for determining 

contours, which is useful for finding constraint failure boundaries.  



77 
 

 The Expected Feasibility Function (EFF) works well as an acquisition function for 

adaptively adding HF samples to an LGMF fit. However, adaptively adding LF samples 

requires a new methodology. In this section the Expected Usefulness (EU) acquisition 

function for adaptive sampling of LF models is introduced. 

 As in the section on EE, surrogates are created from a limited number of LF samples 

and used to construct the LGMF fit.  

4.3.1 Changes to LGMF Implementation for Adaptive Sampling 

 The changes to LGMF in this section are the same as the changes made in the EE 

section. First, lack of data from sparse initialization at the start of adaptive sampling can 

result in poor selection of the ℎ parameter during LOO optimization. In these examples the 

ℎ parameter is set to a user-defined constant. Second, a final stage of filtering using NDK 

helps improve the accuracy of the final LGMF model. 

Filtering of final LGMF model using NDK: Because of lack of data, the LGMF response 

in Eq. 43 can lead to some discontinuities even with an optimal ℎ parameter, especially 

with a small number of data samples in the beginning of the adaptive sampling process. 

This problem is addressed by using a low-pass filtering process, in which the LGMF Stage 

2 responses are resampled and applied to build an NDK model. The filtering parameter for 

the low-pass frequency can be determined based on the minimum distance of an expected 

stationary response. This NDK model is used as the final LGMF fit.  

4.3.2 Proposed EU Adaptive Sampling for LGMF 

 The Efficient Global Reliability Analysis (EGRA) methodology [24] was developed to 

evaluate the reliability of systems for engineering design. The method uses the Expected 
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Feasibility Function (EFF) metric as an acquisition function for adaptive sampling of a 

kriging surrogate model. This is useful for evaluating the failure boundary of a constraint. 

The metric balances between sampling locations predicted to be near the failure boundary 

and sampling locations with high uncertainty. The formulation of the EFF was given in Eq. 

15.  

 When multiple constraints exist, it may not be necessary to find the contours of each 

constraint function everywhere. Contours in the infeasible regions of other constraints are 

redundant and do not need to be accurately found. The constraints 𝑔  only need to be 

sampled until their composite failure contour is known, at which point the feasible region 

is fully understood. This leads to the concept of a composite expected feasibility function, 

which was given in Eq. 16.  

 Based on these concepts, Expected Usefulness (EU) is defined, which combines the 

Composite EFF of the LGMF models with the individual EFF, Modeling Uncertainty 

(MU), Dominance under Uncertainty (DU) and evaluation cost of the LF model being 

evaluated, 

 𝐸𝑈(𝑥, 𝑚) = 𝐶𝐸𝐹𝐹𝐿𝐺𝑀𝐹(𝑥) × 𝐸𝐹𝐹𝐿𝐺𝑀𝐹(𝑥, 𝑐) ×  

 𝐷𝑈(𝑥, 𝑚) × 𝑀𝑈(𝑥, 𝑚)/𝐶𝑜𝑠𝑡(𝑚) (75) 

where 𝐸𝐹𝐹𝐿𝐺𝑀𝐹(𝑥, 𝑚) is described by Eq. 15 except the mean and uncertainty of the 

gaussian process, 𝜇𝑔 and 𝜎𝑔 respectively, are replaced by the mean and standard deviation 

of an LGMF model, 𝜇𝐿𝐺𝑀𝐹 and 𝜎𝐿𝐺𝑀𝐹 , respectively. Similarly, 𝐶𝐸𝐹𝐹𝐿𝐺𝑀𝐹(𝑥) is described 

by Eq. 16 except that the mean and uncertainty of the gaussian process, 𝜇𝑔
∗  and 𝜎𝑔

∗ 

respectively, are replaced by the mean and standard deviation of an LGMF model, 𝜇𝐿𝐺𝑀𝐹
∗  

and 𝜎𝐿𝐺𝑀𝐹
∗  respectively.  
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 DU is identical to its previous formulation for EE in Eq. 59. Because the given examples 

used deterministic kriging instead of NDK to model LF data, the MU formulation is 

changed to be either the Saturation of the LF model or the Scaled Uncertainty of the LF 

model, whichever is smaller.  

 𝑀𝑈(𝑥, 𝑚) = min (𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑚), 𝑆𝑐𝑎𝑙𝑒𝑑𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑥, 𝑚)) (76) 

 Saturation is the ratio of Epistemic to Aleatory uncertainty in the NDK model of the LF 

function:  

 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑚) = 𝜎𝐿𝐹𝑚 𝑁𝐷𝐾 𝐸𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐(𝑥)/𝜎𝐿𝐹𝑚 𝑁𝐷𝐾 𝐴𝑙𝑒𝑎𝑡𝑜𝑟𝑦(𝑥) (77) 

 As more data points are added, the epistemic uncertainty will trend toward 0, the model 

will become saturated, and sampling of the LF function will cease. The Scaled Uncertainty 

is given by the ratio of the total uncertainty of the LF model to the scaled range of the LF 

data. The factor of 100 is added so the model does not converge prematurely 

 𝑆𝑐𝑎𝑙𝑒𝑑𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑥, 𝑚) =  

 100 ∗ 𝜎𝐿𝐹𝑚 𝑁𝐷𝐾 (𝑥) / (max(𝑦𝑚) − min(𝑦𝑚)) (78) 

 DU is defined as the dominance of the LF model plus the change in dominance that 

resulted from the last adaptive sample, that is 

 𝐷𝑈(𝑥, 𝑚) = 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐿𝐺𝑀𝐹 (𝑥, 𝑚) +  ∆𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐿𝐺𝑀𝐹(𝑥, 𝑚) (79) 

where the change in dominance for the 𝑘𝑡ℎ iteration is calculated as 

 ∆𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐿𝐺𝑀𝐹(𝑥, 𝑚)  =   

 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐿𝐺𝑀𝐹
𝑘  (𝑥, 𝑚) − 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝐿𝐺𝑀𝐹

𝑘−1 (𝑥, 𝑚) (80) 

Each iteration of the adaptive sampling, the constraint 𝑐, model 𝑚 and location 𝑥 with the 

highest EU value are sampled, and the corresponding LGMF fit is updated.  
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4.3.3 Numerical Examples 

 This section presents numerical examples for the proposed EU adaptive sampling 

method. The EU approach for multiple constraints is demonstrated with fundamental 

equations, as well as a nonlinear thermoelastic hat-stiffness aircraft panel problem. 

Example 1: Estimation of Two 2D Constraints, Each with Two LF Models 

This contour estimation example uses two constraints, both of which were used as 

examples in the EGRA paper [24]. The constraints are given by 

 𝑔1𝐻𝐹
(𝑥1, 𝑥2) = (𝑥1

2 + 4) ∗ (𝑥2 − 1)/20 − sin (5/2 ∗ 𝑥1) − 2 (81) 

 𝑔2𝐻𝐹
(𝑥1, 𝑥2) = (𝑥1 + 2)4 − 𝑥2 + 4 (82) 

the LF approximations for the first constraint, which include bilinear and nonlinear 

deviations from the HF model are given by  

 𝑔1𝐿𝐹1
= 0.5 ∗ 𝑔1𝐻𝐹

(𝑥1, 𝑥2) + 𝑥1 ∗ 𝑥2 (83) 

 𝑔1𝐿𝐹2
(𝑥1, 𝑥2) = 2 ∗ 𝑔1𝐻𝐹

(𝑥1, 𝑥2) + 0.2 𝑥1
2 𝑥2 + 0.3 𝑥2

2 (84) 

and the LF approximations for the second constraint have the same deviations as the first 

constraint, given by 

 𝑔2𝐿𝐹1
= 0.5 ∗ 𝑔2𝐻𝐹

(𝑥1, 𝑥2) + 𝑥1 ∗ 𝑥2 (85) 

 𝑔2𝐿𝐹2
(𝑥1, 𝑥2) = 2 ∗ 𝑔2𝐻𝐹

(𝑥1, 𝑥2) + 0.2 𝑥1
2 𝑥2 + 0.3 𝑥2

2 (86) 

Both constraints are initialized with 6 HF samples selected using LHS design, and 12 

samples for each LF function (4 at the corners and 8 selected using LHS design), for a total 

of 12 HF samples and 48 LF samples. The initial and final fits are compared with the true 

constraints in Fig. 52. The contour is only highly accurate at the boundary of the feasible 

region, and less accurate further away in the design space. In total 35 HF samples were 
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required for the accurate feasible region shown. The model also evaluated 66 LF samples 

total.  

  

 

 

Figure 52. Example of adaptive sampling using EE 

  

𝑔1 true 
𝑔1 LGMF fit 
𝑔1 HF samples 
𝑔2 true 
𝑔2 LGMF fit 
𝑔2 HF samples 
 

𝑔1 true 
𝑔1 LGMF fit 
𝑔1 HF samples 
𝑔2 true 
𝑔2 LGMF fit 
𝑔2 HF samples 
 

a) Initial fit. 

b) Final fit using Expected Usefulness in Example 1. 
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Example 2:  

Feasibility bound study for 3D Nonlinear Thermoelastic Aircraft Panel problem 

 The nonlinear thermoelastic panel presented within this section is adapted from the hat-

stiffened SR-71 like panel by Lee and Bhatia [48], leveraging spring Boundary Conditions 

(BCs) and TI-6242 following Deaton and Grandhi [46]. The panel is shown in Fig. 53. In 

this example, the parametric representation of Lee and Bhatia’s 300 × 300 mm panel was 

achieved using five shape parameters: 𝑊𝑠𝑡𝑖𝑓𝑓, width of the hat-stiffener, 𝐻𝑠𝑡𝑖𝑓𝑓, height of 

the stiffener, 𝜂𝑠𝑘𝑖𝑛, curvature of the top skin, 𝜂𝑠𝑡𝑖𝑓𝑓, curvature of the bottom of the hat, and 

𝑟𝑟𝑎𝑡𝑖𝑜, the percentage of the bottom-stiffener width that transitions to the top of the panel. 

There are also two sizing parameters, 𝑡𝑠𝑘𝑖𝑛  and 𝑡𝑠𝑡𝑖𝑓𝑓 , Fig. 53a. This two-dimensional 

representation is extruded into the z-direction 300 mm to complete the panel, Fig. 53b with 

the spring BCs indicated by circles. For more details regarding this panel and its validation, 

see Clark et al. [49].  
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a) Panel parameterization, Fig. 9a from [46]. 

 

 

b) Panel assembly including spring boundary conditions, Fig. 10b from [46].  

Figure 53. Parametric thermoelastic aircraft panel representation. a) the red skin region 

faces the environment and the blue stiffeners are internal. 

 The upper and lower bounds of each design variable are shown in Table 1.  

Table 1. Design variables to be included and their descriptions. Distances are in meters. 

 

Design 

Variable 

𝑥1 

Hat 

Height 

𝑥2 

Hat 

Width 

𝑥3 

Hat 

Ramp 

Ratio 

𝑥4 

Delta Skin 

(outer skin 

curvature) 

𝑥5 

Delta Hat 

(hat bottom 

curvature) 

𝑥6 

Thickness 

Top 

𝑥7 

Thickness 

Bottom 

Lower 

bound 
0.012 0.04 0.05 -0.0075 -0.003 0.002 0.002 

Upper 

bound 
0.02 0.08 0.45 -0.0001 0.003 0.01 0.01 

 The panel is subject to two constraints: the stress may not exceed the maximum 

allowable value of 680.36 MPa, and the lowest natural frequency may not drop below the 
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minimum allowable value of 706.8 Hz. If the lowest resonant frequency drops below the 

allowable value, vibrations in flight may cause the panel to flutter and fail. The maximum 

stress in the panel, and the lowest natural frequency, is calculated using FEA analysis in 

Abaqus. Two LF models of the hat panel are also considered. For the same FE model, the 

first LF model uses a linear solver instead of the nonlinear Riks solver. The second LF 

model also uses the linear solver, while aggressively simplifying the FE model as a thin 

strip model constrained to the x-y plane, as shown in Fig. 54. To avoid the stress 

concentration, stress in elements near the ends is not considered. 

 

Figure 54. Thin strip model used for second LF model. Colors indicate stress values. 

 The computational cost differences are not significant in this example because the HF 

model is already defeatured and simplified. In an actual design the FE model may include 

more details including fasteners, off-set connections, multiple materials, combination of 

different stiffeners, etc., which would cause a wide range of cost differences for the FE 

simulations. In this abstract example problem only the first three variables, Hat Height, Hat 

Width, and Hat Ramp Ratio are considered. The EU-LGMF adaptive model was initialized 

with 256 samples from each LF model (8 at the corners and 248 LHS samples), for a total 

of 1024 LF samples. The HF models were initialized with 10 LHS samples each, for a total 

of 20 HF samples.  
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 For each iteration, the approximate accuracy of the model is estimated using 2000 LHS 

samples. By comparing the predicted feasibility at these points to the actual feasibility, it 

is possible to compute the percentage of feasible points that are not predicted as feasible 

(False Negative), which may result in an overly conservative design. It is also possible to 

compute the percentage of points which are predicted to be feasible but are not (False 

Positive), which can result in system failure. These metrics are recorded over the iterations 

as shown in Fig. 55.  

 

Figure 55. Percent of points that were feasible but predicted to be infeasible (blue line) or 

predicted to be feasible but were not (red line). 

 The surrogate model is surprisingly accurate from the beginning, with only a 4.8% false 

negative rate and 3.6% false positive rate. The early accuracy probably occurred by chance, 

as adding more information causes the model to drop in accuracy before returning to a 

more accurate solution. The optimization ended with a total of 66 HF samples, 179 LF 
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stress and frequency evaluations from the linear model, and 177 LF stress and frequency 

evaluations from the strip model. 

4.3.4 Summary of Proposed EU Adaptive Sampling Method 

 This section introduced the EU acquisition function for sequential multi-fidelity 

modeling for contour estimation. This method addresses the question of how to orchestrate 

data acquisition from multiple available information sources which provide different 

approximated predictions with different costs. The method computes the composite 

feasible region, i.e. the region that is feasible when all constraints are included. By ignoring 

redundant constraint boundaries and exploiting low fidelity data sources, the method 

greatly reduces the required number of high-fidelity samples and by extension the 

computational cost. 

 This adaptive sampling technique built off the Localized Galerkin Multi-Fidelity 

(LGMF) modeling method, which can provide modeling uncertainty and model dominance 

values of multiple low-fidelity models along with the approximated MF prediction. EU is 

formulated as a function of composite Expected Feasibility, individual Expected 

Feasibility, model Dominance under Uncertainty, Modeling Uncertainty, and Cost of 

evaluation of each LF model. HF models are evaluated using composite Expected 

Feasibility and individual Expected Feasibility values. The proposed adaptive sampling 

approach was demonstrated with a numerical example and a three dimensional nonlinear 

thermoelastic hat-stiffened aircraft panel problem.  
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V. CONCLUSIONS 

 This thesis work introduced a novel multi-fidelity modeling framework designed to 

reduce the time and cost of engineering design when using computer simulations. The 

framework leverages surrogate models, which inexpensively approximate computer model 

outputs using data from a limited number of runs. The proposed localized-Galerkin multi-

fidelity surrogate modeling method addresses the practical challenges encountered in 

Aerospace vehicle design when 1) multiple low-fidelity models exist, 2) each low-fidelity 

model may only be correlated with the high-fidelity model in part of the design domain, 

and 3) models may contain noise or uncertainty. The proposed approach consolidates 

multiple low-fidelity models into a single model by using the localized Galerkin 

formulation. The method has been successfully demonstrated using fundamental 

mathematical problems with two LF models, which show localized correlations within 

different local domains.  

 Two adaptive sampling methods were also introduced to iteratively select new data 

samples in regions of the design space where increased accuracy is important. The first 

acquisition formulation, Expected Effectiveness (EE), searches for the global optimum and 

is intended to model engineering objectives. EE is used to sample the LF models and 

accounts not only for Expected Improvement (EI), but also Modeling Uncertainty, 

Dominance under Uncertainty, and model Cost. EI is used to sample the HF model. In this 

section the localized-Galerkin multi-fidelity method is combined with Non-Deterministic 

Kriging (NDK) to form a model that does not interpolate data. This enables the method to 

handle randomness in both HF and LF data that pose challenges in other existing methods 

dealing with both physical experimental and computational data exhibiting white-noise 
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errors. In multiple numerical examples, the method was successfully demonstrated to 

enable adaptive MF modeling while addressing the practical challenges associated with 

data under uncertainty and the existence of multiple LF data sources.  

 The second adaptive sampling formulation, EU, estimates contours to identify feasible 

design domains and is intended to model engineering constraints. The method computes 

the composite feasible region, i.e. the region that is feasible when all constraints are 

included. By ignoring redundant constraint boundaries and exploiting low fidelity data 

sources, the method greatly reduces the required number of high-fidelity samples and by 

extension the computational cost. Each constraint is approximated by an LGMF model. EU 

is formulated as a function of composite Expected Feasibility, individual Expected 

Feasibility, model Dominance under Uncertainty, Modeling Uncertainty, and Cost of 

evaluation of each LF model. HF models are evaluated using the composite Expected 

Feasibility and individual Expected Feasibility values. The proposed adaptive sampling 

approach was demonstrated with multiple examples. 

Future Work 

 A promising area of research for future work is handling multi-fidelity constrained 

optimization problems where constraints and objectives both require expensive simulations 

to evaluate. In such situations extraneous regions of the design space may be ignored, i.e., 

feasibility of a sub-optimal region of the design space is irrelevant, as is optimality of an 

infeasible region of the design space. Therefore, considering constraints and objectives 

simultaneously can result in significant cost savings.  

 Care must be taken to avoid an acquisition function that tends to be overly non-smooth, 

where most of the design space is unpromising (acquisition value near 0) and sudden 
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“spikes” exist in a few local regions. Especially in high-dimensional cases, this may make 

the optimization required to maximize the acquisition function computationally expensive, 

offsetting the savings gained from fewer simulation runs. 

 Another area for future study is extension of LGMF to high-dimensional problems. Any 

Kriging-based modeling including NDK is impractical for modeling non-stationary system 

responses or problems above 10-20 dimensions, and LGMF itself develops prohibitive 

memory requirements above around 15-20 dimensions.  

 Reduced modeling techniques such as dimensionality reduction may be able to cope 

with this issue. Dimensionality reduction methods are used to reduce a problem from 𝑑-

diminsional space to 𝑛 -dimensional space, where 𝑛 < 𝑑 , while retaining the major 

contents of information. Methods include Principal Component Analysis (PCA), Partial 

Least Squares Regression (PLSR), and autoencoders. Replacing Kriging-based methods 

with more scalable surrogates such as Deep Gaussian Processes [50-53] or Artificial Neural 

Networks [6, 54-55] may also alleviate the curse of dimensionality. Finally, data-clustering 

methods [56] may allow subsets of the design space to be analyzed separately, reducing 

computational challenges.  
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