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ABSTRACT 

Sadeghi, Reza. PhD, Department of Computer Science and Engineering, Wright State 
University, 2020. PREDICTING SUBJECTIVE SLEEP QUALITY USING OBJECTIVE 
MEASUREMENTS IN OLDER ADULTS. 

Humans spend almost a third of their lives asleep. Sleep has a pivotal effect on job 
performance, memory, fatigue recovery, and both mental and physical health. Sleep quality 
(SQ) is a subjective experience and reported via patients’ self-reports. Predicting subjective 
SQ based on objective measurements can enhance diagnosis and treatment of SQ defects, 
especially in older adults who are subject to poor SQ. In this dissertation, we assessed 
enhancement of subjective SQ prediction using an easy-to-use E4 wearable device, 
machine learning techniques and identifying disease-specific risk factors of abnormal SQ 
in older adults. 

First, we designed a clinical decision support system to estimate SQ and feeling refreshed 
after sleep using data extracted from an E4 wearable device. Specifically, we processed 
four raw physiological signals of heart rate variability (HRV), electrodermal activity, body 
movement, and skin temperature using distinct signal processing methodologies. 
Following this, we extracted signal-specific features and selected a subset of the features 
using recursive feature elimination cross validation strategy to maximize the accuracy of 
SQ classifiers in predicting the SQ of older caregivers. 

Second, we investigated discovering more effective features in SQ prediction using HRV 
features which are not only effortlessly measurable but also can reflect sleep stage 
transitions and some sleep disorders. Evaluation of two interpretable machine learning 
methodologies and a convolutional neural network (CNN) methodology demonstrated the 
CNN outperforms by an accuracy of 0.6 in predicting light, medium, and deep SQ. This 
outcome verified the capability of using HRV features measurable by easy-to-use wearable 
devices, in predicting SQ. 

Finally, we scrutinized daytime sleepiness risk factors as a sign of abnormal SQ from four 
perspectives: sleep fragmented, sleep propensity, sleep resilience, and non-restorative 
sleep. The analysis demonstrates distinguishability of the main risk factors of excessive 
daytime sleepiness (EDS) between patients suffering from fragmented sleep (e.g. apnea) 
and sleep propensity. We identified the average area under oxygen desaturation curve 
corresponds to apnea/hypopnea event as a disease-specific risk factor of abnormal SQ. Our 
further daytime sleepiness prediction demonstrated the significant role of the founded 
disease-specific risk factor as well.  
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1. Introduction 
 

1.1. Overview 
 

Humans spend almost a third of their life asleep [1]. This significant portion of life has 
pivotal effects on job performance [2], memory [3], fatigue recovery [4], and both mental 
[5] and physical health [6]. The discharge of anabolic hormones (e.g., prolactin, 
testosterone, luteinizing hormone) during sleep in addition to physical restoration lead to 
feeling refreshed after sleep [7]. When people experience difficulty sleeping, the 
detrimental effects range from daytime sleepiness to performance reduction and lack of 
attention [8]. As a result, sleep assessment has attracted much attention in recent decades. 

Sleep assessment methods can be categorized using distinct criteria such as subjective vs. 
objective measurements [9]. In subjective measurements, individual persons describe their 
own sleep quality (SQ). Sleep questionnaires and diaries are an organized way to provide 
a discrete approximation of real sleep quality based on individual reports. They are the first 
diagnostic test used in primary care, and they are cheap, self-administered, and validated 
through large statistical studies [10].  

In contrast, many objective measurements are proposed to provide pure quantitative SQ 
measurements extracted from either Polysomnogram (PSG), wearable devices, or 
contactless devices [11]. PSG measurements include electroencephalogram (EEG) signals, 
oximetry, and cardiovascular and respiratory measurements. As sleep is a complex and 
mysterious phenomenon, sleep doctors sometimes monitor sleep using audio, actigraphy, 
video, or temperature. 

Predicting SQ based on objective measurements can enhance diagnosis and treatment of 
SQ defects. Despite the existence of a great deal of sleep studies, predicting SQ based on 
objective measurements is still an evolving science [12]. This dissertation proposes 
solutions to the three existing challenges in SQ assessment detailed in Section 1.2 by 
addressing three research questions described in Section 1.3. Next, the thesis statement and 
contributions sections summarize the general ideas and main contributions of this study. 
Chapter 2 provides the preliminary knowledge for SQ assessment. Following this, the 
proposed methodologies to address the research questions are detailed in Chapter 3. 
Finally, Chapter 4 concludes the main findings and the limitations of this study.   
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1.2. Existing challenges 

 

Currently, there are several challenges to sleep assessment: 

1. Polysomnography (PSG) is expensive and destructive to the sleep routine. 

PSG is the primary method to assess sleep, but PSG is expensive and requires 
attaching electrodes to the bodies of participants, and should be conducted under 
medical surveillance. As a result, using PSG is probably destructive to the sleep 
routine, especially in older adults, who are susceptible to poor sleep quality as a 
result of aging and age-related comorbidities.  

 

2. The current knowledge regarding sleep quality prognostication factors is 
limited. 

The emergence of wearable technologies enables non-invasive, long-term 
monitoring of physiological signals during sleep, especially in older adults who 
may not be able to join PSG studies. The current knowledge regarding sleep quality 
explains how the recorded physiological signals have different characteristics in 
different sleep stages, and life style has a direct effect on sleep quality. However, 
the currently known sleep-related features extracted from both physiological 
signals and medical history do not completely describe an individual’s sleep 
quality.  

 

3. Abnormal sleep quality has distinct disease-specific risk factors.  

The raw physiological signals can be collected by a wearable device without 
changing the sleep routine. Machine learning techniques process these data and 
describe the corresponding SQ. Developing effective features can lead to an 
efficient way of predicting SQ by reducing both computational complexity and the 
number of required signals to be monitored during sleep. Such features are effective 
as they potentially point to the risk factors of abnormal SQ. However, objective 
sleep-related risk factors of abnormal SQ are affected by conditions like stress level, 
falling and fractures, and mental and respiratory diseases. 

 

1.3. Motivation 
 

In this dissertation, we endeavored to enhance SQ prediction using an easy-to-use and non-
invasive E4 wearable device in older adults. Using a wearable device enables us to 
inexpensively monitor required physiological signals to evaluate the SQ of different 
subjects sleeping in their usual home environments. Additionally, we extracted significant 
sleep-related risk factors from PSG data that can lead to an efficient way of predicting SQ. 
Identifying the risk factors of abnormal SQ can enhance both diagnosis [13] and treatment 
[14] of SQ defects. We addressed the three existing challenges in SQ prediction detailed in 
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Section 1.2 by addressing the following three research questions in estimating SQ using 
objective measurements, which are extracted from physiological signals and patients’ 
medical history. The main research questions for this study are described as follows: 
 

1. Can we predict sleep quality using non-invasive and easy-to-use wearable 
devices instead of PSG in family caregivers of people with dementia? 

A growing group of older adults, family caregivers of people with dementia 
(CPWD), are susceptible to poor SQ due to the high degree of stress and the 
demands of providing care to their loved ones. As SQ can be a measure of readiness 
for starting CPWD duties, SQ monitoring can be beneficial for the caregivers to 
identify potential concerns and provide potential interventions before reaching a 
detrimental level. However, using PSG is cost prohibitive and should be conducted 
under medical surveillance. As a result, we introduced a clinical decision support 
system to predict both SQ and feeling refreshed in caregivers using a wearable E4 
wristband in our published work in Computers in Biology and Medicine [15]. This 
easy-to-use device enabled us to monitor important physiological signals during 
sleep while not interrupting regular sleep patterns of CPWD. We recorded 100 sleep 
nights of eight CPWD, who aged 65+, for a period of two weeks each. As distinct 
physiological signals have different characteristics in deep sleep stage, our 
proposed method extracts signal-specific features from each of the four raw 
recorded physiological signals: heart rate variability (HRV), electrodermal activity, 
body movement, and skin temperature. Following this, our method selects a subset 
of the extracted features using recursive feature elimination cross validation 
strategy to maximize the accuracy of SQ classifiers in prediction of the SQ of 
CPWD. 
 

2. Can machine learning techniques enhance the current knowledge of sleep 
quality prediction? 
 

Using effective features extracted from physiological signals can encourage using 
wearable devices by reducing the number of required signals to be monitored 
during sleep. However, the computed features are highly dependent on feature 
engineering and sleep expert knowledge. This preprocessing limits the 
computational space to the expert knowledge and may remove the critical features 
in the decision-making process. We examined the capability of using machine 
learning techniques in pushing the boundaries for predicting SQ in our work 
submitted to Conference of the IEEE Engineering in Medicine and Biology Society 
[16]. We specifically assessed predicting SQ by investigating three methodologies 
based on electronic health records and HRV. Heart activities are effortlessly 
measurable by easy-to-use wearable devices. In addition, they can reflect sleep 
stage transitions [17] and some sleep disorders [8]. We scrutinized heart activity 
based on electrocardiogram (ECG) data extracted from 792 PSG samples of men 
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aged 65+ who participated in the Osteoporotic Fractures in Men (MrOS) sleep 
study. As obstructive sleep apnea (OSA) is a leading factor of sleep fragmentation 
and daytime sleepiness in older adults [18], the baseline methodology utilized nine 
features highly correlated to OSA extracted from electronic health records. The 
second methodology utilized 23 HRV features extracted from R-peaks annotation 
files. Annotated R-peaks are necessary in any heart variability analysis to remove 
ventricular ectopic beats, atrial ectopic beats, and artifacts. The third method 
utilized a convolutional neural network (CNN) to predict SQ based on ECG images. 
In the first two methodologies, the SQ prediction power were limited to the 
segregation power of engineered features while in the last methodology we fed the 
raw ECG images and let the CNN analyze and predict the outcomes. 
 

3. What are the disease-specific risk factors for abnormal sleep quality? 
 

Abnormal SQ or sleep quantity causes excessive daytime sleepiness (EDS) [19], 
[20], which is a highly prevalent condition in the older adult society [21]. EDS is a 
symptom of several diseases, such as neurological disorders, e.g. dementia [22], 
and sleep breathing disorders [19], [20], e.g. apnea [23]. Distinguishing disease-
specific risk factors of EDS can both reveal underlying reasons of abnormal SQ and 
enhance its prediction. To do so, we scrutinized EDS risk factors in our accepted 
paper in Annals of the American Thoracic Society [24]. We specifically investigate 
EDS risk factors in two groups of patients one group with and one group without 
severe sleep apnea where both groups may suffer from dementia. We evaluated 
sleep records from four distinct perspectives of sleep fragmentation, sleep 
propensity, sleep resilience to disruptive stimuli, and non-restorative sleep. Several 
statistical and classification analyses were performed on 4445 complete sleep 
records derived from the Sleep Heart Health Study (SHHS), which is the largest 
publicly available PSG dataset of people aged >=40. We also predicted daytime 
sleepiness using four simple and interpretable classifiers: logistic regression, naïve 
Bayes, decision tree, and K-nearest neighbors (KNN). We utilized F1-score as the 
objective function, weighted samples, and 10-times 10-fold cross-validation to 
reduce the chance of biasing majority samples and taking effects from time 
dependency between sample records. 
 

1.4. Thesis statement 
 

Sleep quality (SQ) is predictable using objective measurements of medical history and 
physiological signals (including heart rate variability, electrodermal activity, skin 
temperature, body movement, and blood oxygen saturation). Using easy-to-use wearable 
sensors, we can accurately and noninvasively acquire these physiological signals for a 
robust SQ prediction by leveraging machine learning techniques and extracting disease-
specific risk factors.  
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1.5. Contributions 
 

This dissertation introduces both computer science and biomedical contributions in the 
process of solving existing challenges in predicting SQ as follows: 

1.5.1. Computer science contributions 

CS1. Our work in predicting sleep quality (SQ) of caregivers of people with dementia 
(CPWD) published in Computers in Biology and Medicine [15] was a novel 
application of varied signal processing techniques to enable interpretable 
machine learning techniques to predict SQ. Also, our proposed clinical decision 
support system (CDSS) provides a prediction that is robust against the 
malfunction of a sensor on the wearable device and nonlinear relation among 
features by selecting the specific subset of divergent features. 
 

CS2. In the process of predicting SQ from HRV in our work accepted in Conference 
of the IEEE Engineering in Medicine and Biology Society [16], we came up 
with a CDSS that processes the raw electrocardiogram signals independently 
from the prior knowledge of sleep experts. This CDSS employs a convolutional 
neural network (CNN) to predict SQ based on heart activities during each night 
by analyzing images of two ECG signals during Polysomnography studies. To 
our knowledge, this is one of the first studies to predict SQ using HRV. 
 

1.5.2. Bioinformatics contributions 

BI1. Our work published in Computers in Biology and Medicine [15] was a 
pioneering study for predicting SQ in older adults using easy-to-use wearable 
devices compared to PSG, which is probably sleep destructive. We predicted 
the SQ of 100 sleep nights of older caregivers of people with dementia with an 
accuracy of 75%. We found that the most important features in the process of 
predicting SQ using the recorded physiological signals by E4 wearable device 
are sleep efficiency (ratio of amount of time asleep to the amount of time in 
bed) and skin temperature. 
 

BI2. In our accepted paper in Annals of the American Thoracic Society [16], we 
introduced a new metric of average hypoxia-specific area under the oxygen 
desaturation curve as a hypoxemia measurement. The high value of this metric 
is a significant risk factor of excessive daytime sleepiness in people who are 
suffering from obstructive sleep apnea (OSA) or hypopnea. This metric does 
not rely on a specific threshold in comparison to other common hypoxemia 
measurements, like oxygen desaturation index. Also, the metric reveals the 
duration and depth of hypoxia caused by partial or complete upper airway 
obstruction. 
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2. Preliminary knowledge 
 

Sleep study is a vast area that increasingly attracts much attention. For instance, the number 
of publications in PubMed [25] with sleep in their title shown in the figure below follows 
an exponential growth. This section reviews some of these studies from three aspects: sleep 
architecture, physiology, and measurement tools.  

 
Figure 1.5-1 The distribution of publications in PubMed with sleep in their title from 1834 to 2017 

 

2.1. Sleep architecture 
 

Sleep architecture comprises two broad parts of rapid eye movement (REM) and non-REM 
(NREM) [26]. Since about 80% of the sleep time of an adult is NREM sleep [7], most of 
the sleep studies focus on NREM sleep. NREM sleep can be further split into four stages 
(stages 1–4) according to the R-K scoring manual [27]. Due to the similarity of NREM 
stage 3 and stage 4, they are considered as one stage of slow wave sleep (SWS) based on 
the current American Academy of Sleep Medicine (AASM) scoring manual [28], primarily 
on the basis of electroencephalogram (EEG) criteria. 
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Sleep stages are recognized and scored based on characteristic rhythms and events 
observed in the brain waves (EEG). As shown in the following figure, relaxed wakefulness 
is associated with alpha waves seen as a rhythm with peaks in the 8- to 13-Hz range. In 
addition, drowsiness coincides with slow, rolling eye movements that may persist into light 
sleep. The lightest stage of NREM sleep, NREM1, is characterized by a loss of alpha 
rhythm and presence of theta waves, which are characterized by frequencies of 4–7 Hz. 
Stage NREM 2 is described by the expression of spindles, burst-like trains of waves in the 
11- to 16-Hz range with a total duration ≥0.5 seconds, and K-complexes, biphasic waves 
lasting ≥0.5 seconds and usually maximal over the frontal cortex. The deepest NREM sleep 
stage, NREM 3 and 4, is marked with large (≥75 µV) slow (0.5–3 Hz) waves known as 
delta waves. Typically, REM sleep is associated with the lowest skeletal muscle tone and 
with either sharp theta waves, smooth waves, or wake-like EEG patterns. 

 

Figure 2.1-1 Sleep stage identifiers based on EEG features [29] 

 

Among these sleep stages, SWS (deep sleep) has special characteristics relevant to SQ. For 
example, human growth hormone that corresponds to tissue repair is released during the 
first SWS episode [30], [31]. Also, it has been shown that taking sleeping pills is 
accompanied by extended deep sleep in patients suffering from insomnia [32]. 
Furthermore, patients who are suffering from sleep disorders like obstructive sleep apnea 
(OSA), periodic limb movement syndrome (PLMS), and insomnia experience less SWS 
than healthy subjects [33]. Moreover, the lessening of SQ in older adults is accompanied 
by the loss of deep sleep [34]. Since distinct sleep stages play different roles in SQ and its 
health outcomes, identification of length and specific physiological signal trends in distinct 
sleep stages can provide valuable information regarding the SQ prediction. 
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2.2. Sleep physiology 
 

During NREM, most of the physiological processes in terms of brain activity, heart rate, 
blood pressure, sympathetic nerve activity, respiration, and body temperature diminish 
from their usual amount during wakefulness. In contrast, there is an increase in these 
physiological processes in REM as compared to NREM [8]. These fluctuations are well 
tolerated in healthy subjects; however, they may break the fragile balance of individuals 
who suffer severe diseases [26]. Also these fluctuations help us distinguish sleep stages 
based on physiological signals as described below:  

The occurrence of intensive fluctuations in brain activities at stage 2, called K-complex, 
leads to a burst of sympathetic activities in NREM [26]. The sympathetic activity can be 
described by electrical changes of skin surface, called electrodermal activity (EDA) [35]. 
EDA recorded in overnight PSG has proven that EDA is more strongly associated with 
deep sleep than other stages [34]. In fact, various EDA studies have shown that people in 
SWS experience the highest level of both EDA values [36] and the number of local EDA 
peaks [37]. Also, [37] exhibits the stability of EDA properties in SWS by testing different 
places for wearable device attachment and different threshold selections for EDA peak 
definition; however, each individual has a different pattern and varied magnitude of EDA 
during sleep. 

Parasympathetic activity increases as sleep goes from stage 1 to SWS. Parasympathetic 
activity leads to a continuous reduction in cardiovascular output [38]. This decreasing 
pattern continues such that the heart rate reaches its lowest point at SWS [39]. Body 
movement is another physiological measurement that has a strong relation with sleep stages 
[40]. Short movements appear over all sleep stages; however, the frequency of their 
occurrence in SWS is significantly lower [41]. Like body movement, body temperature is 
also influenced by sleep stages. For instance, adults experience a reduction in temperature 
during their deep sleep [42]. The speed and amount of this temperature reduction has a 
strong relationship with SQ [43]. Sleep physiology aids sleep experts in identifying poor 
SQ risk factors and their underlying pathology, as a first step of an effective treatment. The 
sleep physiology enables us to extract signal-specific features from the physiological 
signals that point to SQ risk factors, such as: irregular sleep stage patterns, respiratory 
diseases, and the aging process.  

 

2.3. Sleep measurement tools 
 

PSG is the primary method to both assess SQ and diagnose sleep disorders [9]. It provides 
holistic information about sleep physiology by summarizing the results of various tests, 
listed in Table 2.3-1. PSG contains additional hardware in the case of treatment, like 
continuous positive airway pressure (CPAP) machines [44]. Also, physicians may reduce 
the number of PSG tests due to examining patients for special diseases or conducting sleep 
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studies in patients’ homes. For instance, the number of PSG channels in the home sleep 
test (HTS) can be reduced to airflow, respiratory effort, and oximetry [45]. 

 

Table 2.3-1 PSG tests 

Test name Monitoring target 
Electroencephalogram Brainwave activity 
Electrooculogram Eye movement 
Electromyogram Muscle activity 
Electrocardiogram Heart rate and rhythm 
Pulse oximetry Oxygen saturation 
Respiratory monitor Respiratory effort 
Capnography Inhaled and exhaled CO2 concentrations 
Transcutaneous monitors Diffusion of O2 and CO2 through the skin 
Microphone Snoring volume 
Video camera Identify body motion and position 
Thermometer Core body temperature 
Light intensity tolerance Influence of light intensity on sleep 
Nocturnal penile tumescence Identifying physiological erectile dysfunctions 
Esophageal Acidity test 
Nasal and oral airflow airflow and breathing rate 
Gastroesophageal monitor Detect gastroesophageal reflux disease 
Blood pressure Blood pressure change 

  

Many other sleep assessment tools are proposed to enhance both affordability and 
continuity of sleep studies. These gadgets can be categorized into three categories: contact 
devices, contactless devices, and sleep questionnaires and diaries. Contact devices shape 
the fastest-growing group of sleep trackers since the compact size of wearables enables the 
subjects to monitor their sleep-related physiological signals while continuing their usual 
lifestyle. Table 2.3-2 provides detailed information about some of the current wearable 
sleep trackers. 

Most sleep trackers are based on actigraphy such that some sleep surveys [46] divided sleep 
trackers into three categories of research-based devices, commercial devices based on 
actigraphy and others. All the information about some actigraphy devices, like FitBit Flex 
and Charge 2, is easily accessible; however, the information for others, like actiwatch 64 
and GT3X+, is accessible only by contacting their producers.  
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Table 2.3-2 Details about some contact sleep trackers 

Name Price Category Description 

FitBit Flex $55 (Amazon) Wristband 
Tracks steps, distance, calories 
burned and active minutes (total 
sleep time and time in bed) 

FitBit Charge2 $112 (Amazon) Wristband 
Activity tracker to total sleep 
time, time in bed 

OURA $197 (Amazon) Ring 

Steps and distance tracking, heart 
rate, activity, calories burned, 
sleep monitoring (measures light, 
deep, and REM sleep). 

Dream 2 $500 (https://shop.dreem.com) Headband 
Accelerometer, 4 EEG sensor, 
and oximetry 

Zmachine 
$500 
(https://www.generalsleep.com/zmachine-
insight.html) 

Three skin 
sensors 

Three skin sensors placed behind 
ears and back of the neck for 
recording EEG. 

E4 Empatica $1,690 (https://store.empatica.com) Wristband 
It provides Electrodermal activity, 
blood volume pressure, heart rate, 
temperature, and accelerometer 

Re-timer $119 (Amazon) Eyewear 
Program to improve winter blues, 
sleep, reduce jet lag or prepare for 
night shift work 

ResMed $189.99 (https://www.isleephst.com/) 
Home-based 
PSG 

Home Sleep Apnea Test 

Lofta $189.00 (https://lofta.com/) Wristband Home Sleep Apnea Test 

 

Not only do most sleep trackers report their outputs using smartphone applications, but 
also many sleep applications utilize smartphone sensors to analyze sleep duration, sleep 
efficiency, and quality of sleep [47]. Choi et. al [48] reported the existence of 2,431 sleep-
related smartphone apps, of which 73 apps offered sleep support self-management. Sleep 
as Android Unlock is the most popular app [9], [48], which estimates light and deep sleep 
stages, the level of snoring and environmental noise, and sleep duration. In addition to 
smartphone apps, video cameras [49] and pillow or mattress accelerometers [50] are 
employed to track sleep quality using contactless devices. 

Sleep questionnaires and diaries are sleep assessment methods that record subjective SQ 
in an organized way. Sleep questionnaires summarize information about a period of time, 
while sleep diaries are more accurate since they are not dependent upon the patient’s 
memory [10]. Sleep questionnaires and diaries with general goals contain a high number 
of questions and a point scale, while the others that are designed for a specific goal or 
participants have fewer questions and a smaller range of answers. For instance, the sleep 
disorders questionnaire [51], designed for initial sleep disorder identification, contains 175 
items with a 5-point scale, while the STOP-BANG questionnaire [52], predictor of severity 
of Apnea, includes only 8 items with a 2-point scale. 

Only five percent of the wearable sleep devices and applications are formally validated 
[53]. Most sleep tracker providers do not share the main algorithm, utilize one type of 
signals for decision making, and only reveal the processed data, such as the length of sleep 
stages [46]. However, using wearable devices that offer measurements of several raw 
physiological signals may lead to more reliable and reproducible sleep assessment 
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methodologies. As a result, in this dissertation, we used E4 wristband and PSG to provide 
the accurate synchronized multiple physiological signals. 
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3. The proposed methods 
 

This section introduces three proposed methods to enhance predicting sleep quality (SQ). 
The first method inexpensively predicted SQ of older adults using an easy-to-use and non-
invasive wearable device. This method tracked the physiological trends by processing the 
raw physiological signals measurable with an easy-to-use E4 wristband [54]. Using a 
wearable device for monitoring sleep enabled us to inexpensively evaluate the SQ of 
different subjects sleeping in their usual home environments. The second method employed 
machine learning techniques to enhance SQ prediction by selecting more effective features 
and reducing the dependability to the expert knowledge in feature computation. We 
evaluated SQ by applying a great range of machine learning techniques over electronic 
health records, heart rate variability (HRV) features, and the raw Electrocardiogram (ECG) 
signals. The third method predicted excessive daytime sleepiness (EDS) from 
physiological signals as a means to predict abnormal SQ. Additionally, we scrutinized the 
association of new sleep-related biomarkers and EDS with the aim of identifying disease-
specific risk factors of abnormal SQ. 

  

3.1. Predicting sleep quality using wearable data 
(Contributions: CS1 and BI1) 

 

3.1.1. Data 

 

We monitored the sleep of eight CPWD for a period of two weeks each. Two of the 
caregivers were adult children of dementia patients, and six were patient spouses. However, 
using the wearable E4 device, we were only able to record 100 nights of sleep (as opposed 
to 112 nights). The caregivers were requested to wear the wristband approximately 15 min 
before sleep and remove the device immediately after waking up. The wearable device 
reports the physiological signals during sleep via four raw signals: heart rate variability, 
electrodermal activity, body movement (accelerometer), and skin temperature. 

CPWD reported their SQ of the previous night through an Android tablet application, 
which contained the daily use caregiver sleep survey (DUCSS) [55]. As shown in 
contingency Table 3.1-1, 65% of the caregivers reported feeling tired after their sleep. 
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However, 82% of the sleep records are labeled as very good, good, or okay SQ. Indeed, 
98% of sleep records reported fragmented sleep as a result they had lower chance to 
experience restful sleep and deep sleep. Various conditions can cause sleep fragmentations. 
Studies specific to caregiver sleep disturbance have shown that the act of providing care to 
loved ones with dementia-related illness results in chronic stress [56]. CPWD can 
experience sleep difficulties because of both overwhelming caregiving responsibilities and 
unpredictable dementia patient behaviors. 

Table 3.1-1 Contingency table of Sleep quality and rest feeling after sleep in CPWD 

 
Sleep quality 

Very good Good Okay Fairly bad Bad Sum 

Mood 

Feeling tired 10 13 25 15 2 65 

Feeling rested 7 25 2 1 0 35 

Sum 17 38 27 16 2 100 

3.1.2. Methods 

 

We proposed a clinical decision support system to predict SQ based on trends of 
physiological signals in the deep sleep stage (SWS). As shown in the following figure, this 
sleep analysis strategy reuses the sleep investigations which have been conducted mainly 
using the expensive and accurate PSG. Then, it provides transparent outcomes based on 
proven medical evidence, and it is applicable for a wide range of users, especially for 
individuals experiencing stress or burden like CPWD. 

 

Figure 3.1-1 The proposed method 
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This methodology enables us to estimate SQ according to physiological signals, which are 
accessible by wearable devices like E4 wristbands. As shown in Figure 3.1-2, our sleep 
analysis system processes the recorded physiological signals through a four-state 
procedure, which includes signal preprocessing, feature extraction, feature selection, and 
classification. 

 

Figure 3.1-2 The proposed sleep analysis system for predicting sleep quality using E4 wearable device 

Since distinct signals have different characteristics in SWS, each signal was processed in 
different ways with the aim of highlighting the SWS portion of sleep. We preprocessed 

signals using Poincare plot [57], filtering methods, Cole's function [58], and first derivative 

as described below: 

PPG (also known as blood volume pulse), computed from pulse oximetry [59], is one of 
the four physiological signals recorded by E4 wristbands. We computed inter-beat intervals 
(IBIs) from PPG by taking the difference between two consecutive diastolic points, which 
indicates the lowest blood pressure in arteries when the heart rests between beats. IBI (RR 
intervals) describes the irregularity among two successive heart beats by measuring the 

variation in the beat-to-beat interval. To detect the SWS during sleep, we computed rRR 
(correlation coefficient of consecutive RR intervals) [57] in Poincare plot based 
on computed IBIs. This transformation distinguished intervals belonging to SWS if their 

rRR value was less than 0.1 units below the mean rRR of the initial 4 h for at least 10 min 

[57]. 



 
 

15 
 

In electrodermal activity (EDA) signal, we utilized the validated algorithm of Cole's 
function [58] to identify EDA signals recorded during sleep. Next, the low-pass finite 
impulse response filtering with cutoff frequency 0.4 Hz and 32nd order was applied over 
these EDA time series to remove possible artifacts [60]. Next, the first derivative of EDA 
provided a map of EDA fluctuations during sleep stages. To define the intensity level of 
EDA fluctuation based on [37], we detected EDA peaks, which had values higher than 0.01 
in a 30 s interval. The higher occurrence of peaks demonstrates a higher intensity level and 
a deeper sleep stage [37]. 

To investigate descending trends of accelerometer and skin temperature, we applied two 
transformation and filtering methods. We utilized the Poincare plot as described before to 
highlight the part of sleep showing a declining pattern in body movement and skin 
temperature signals. For the filtering method, a central moving average filter with a 
window length of 1 min was conducted over the two signals. Then, the portions of signals 
with negative slope are considered as decreasing trends of the time series. 

In order to predict sleep quality, we estimated SWS time and length from different 
processed signals with twenty quantitative features (listed in Appendix A). For instance, 
the processed HRV signal using Poincare plot of rRR distinguished SWS segments during 
sleep as shown in the following figure. The number of occurrences of these segments can 
be considered as the SWS time feature. Similarly, the accumulated sum of the lengths of 
these segments provided an estimation for the SWS length feature. 

 

Figure 3.1-3 Prediction of SWS occurrence from HRV signal based on the Poincare plot 

We employed a wrapper feature selection method called recursive feature elimination 
(RFE) [61] to reduce the complexity of models and faster training of the classifiers. To 
handle nonlinear relation between features, as well as reduce the risk of overfitting, we 
used a version of RFE called RFECV model, which incorporates resampling of k-fold 
cross-validation strategy [62]. 10-fold RFECV selects the optimal combination of features 
while maximizing the performance of the chosen classifiers. We selected three classifiers: 
naïve Bayes, random forest, and bagged tree with varying complexity. 
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 The overall accuracy of classifiers was highly sensitive to the number of input features. 
As shown in Figure 3.1-4, the classifiers’ performance does not follow a linear increasing 
trend with the growth of the number of features selected by RFECV. RFECV utilized the 
importance of features in each classifier to reduce the state space from 20! (20 factorial) 
possible subsets of features to only 20 cases. In this way, random forest and bagged tree 
gained the highest performance for feeling refreshed and sleep quality, respectively. The 
best model for feeling refreshed utilized 12 features while the sleep quality one employed 
18 features. 

 

Figure 3.1-4 10-fold cross-validation recursive feature elimination (10 RFECV) process over random forest (RF), 
Bagged tree (BT), and naïve bays (NB) classifiers 

3.1.3. Results 

 

To evaluate reliability of best predicted models, we scrutinized performance of classifiers 
in terms of sensitivity, specificity, precision, and accuracy. These metrics provided 
valuable information about precise patients’ diagnosis in medical assistant systems. By 
evaluating sleep records referring to feeling “refreshed” or “tired” after sleep, we 
considered it as a binary class problem. On the other hand, distinguishing SQs can be a 
multi-class problem. In this case, we employed one-vs-all evaluation methodology [63]. 
Finally, the average of all values per metric is reported as shown in Table 3.1-2. 
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Table 3.1-2 Comparison of the performance of classifiers with the best possible features 

Labeling Metric 
Classifier 

Random forest Bagged tree Naïve Bayes 

Feeling refreshed 

Accuracy 0.73 0.69 0.61 

Precision 0.75 0.58 0.42 

Sensitivity 0.34 0.42 0.34 

Specificity 0.94 0.83 0.75 

Sleep quality 

Accuracy 0.75 0.73 0.52 

Precision 0.75 0.74 0.52 

Sensitivity 0.75 0.70 0.52 

Specificity 0.92 0.91 0.84 

 

Random forest outperformed in both labeling approaches for all metrics. Also, bagged tree 
and naïve Bayes were the second and third best classifiers according to performance, 
respectively. The order of classifiers’ performance revealed there is a nonlinear relation 
among features such that more complex classifiers like random forest gain higher 
performance. Also, random forest obtains high specificity, which means the proposed 
method can detect records of tiredness in caregivers with high probability. As a result, our 
sleep recognition system can be a reliable system to alert the caregivers about the potential 
increase in caregiving-related stress or burnout.  

To investigate the feature importance in the best classifier, we employed the Gini index, 
which is an important impurity criterion [64]. As shown in Figure 3.1-5, the feeling 
refreshed model utilized a lower number of features for making decisions compared to the 
sleep quality model. This fact is as a result of, the feeling refreshed model having lower 
variability of possible cases compared to sleep quality. Also, sleep efficiency was an 
important factor in both the sleep quality and feeling refreshed models. These results 
coincide with previous results relevant to CPWD sleep characteristics showing they 
experienced less total sleep time while taking longer to fall asleep [65]. 

Moreover, features relevant to temperature have the substantial effect on decision making 
in both models, especially in sleep quality. Indeed, the nocturnal temperature dysregulation 
as an age-related sleep disturbance contributes to fragmentation of sleep, which is a 
common predisposing factor for sleep complaints in caregivers [66]. Since importance 
features provided by models agree with well-established CPWD sleep studies, the proposed 
models can be applicable to CPWD. 
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Figure 3.1-5 Feature Importance in the best models  



 
 

19 
 

3.2. Enhancing sleep quality prediction by machine learning 
techniques (Contribution: CS2) 

 

3.2.1. Data 

 

We utilized the PSG sleep records of Osteoporotic Fractures in Men (MrOS) sleep cohort 
[67]–[69]. Approval for the use of the MrOS sleep dataset in this study was obtained from 
the National Sleep Research Resource (NSRR). MrOS is a multi-center observational study 
of 5,994 men aged equal or greater than 65 years, who are the most susceptible group to 
sleep disorders, such as obstructive sleep apnea (OSA) [52], [70], [71]. Of the 3,933 
provided MrOS PSG data records in the national sleep research resource [72], [73], 847 of 
the sleep records contain their R-beat annotations. The annotated R-beats described normal 
heart activity by excluding ectopic beats and artifacts [74]. Analysis of R-beat annotations 
using PhysioNet Cardiovascular Signal Toolbox [75] demonstrated that 792 sleep records 
satisfy preliminary requirements for computing HRV features, such as having length 
greater than or equal to five-min [74]. 

We extracted three types of features from the selected sleep records. In the first category 
of features, we selected nine features (listed in Appendix B) highly correlated to OSA, the 
most prevalent sleep disorder, based on the STOP-BANG questionnaire [7]. As the MrOS 
dataset is comprised of sleep data of men aged equal to or greater than 65, we did not 
consider feature numbers 6 and 8 in STOP-BANG, which investigate people older than 65 
years and the gender of subjects, respectively. In the second category of features, we 
computed 23 HRV features (listed in Appendix C) based on the R-annotated files. Finally, 
the pictures of two ECG signals recorded during sleep nights formed the third category of 
features. To capture different lengths of sleep as another important feature, all ECG plots 
are drawn on the same axes such that they are plotted in the y ranges of -1 to 1 and x ranges 
of 1 to the length of the longest sleep night. 

3.2.2. Methods 

 

In this study, we investigated predicting SQ using three different methods: Two 
interpretable methodologies and one Deep Neural Network (DNN). The two interpretable 
methods were designed based on proven medical facts and transparent machine learning 
methods. The DNN method employs one of the current most powerful machine learning 
classifiers called Convolutional Neural Networks (CNN) with the aim of discovering the 
highest potential accuracy in explaining SQ through HRV. 

In the first method, we tried to predict SQ by estimating the severity of sleep apnea, 
episodic obstruction of the upper airway during sleep [76]. The occurrence of this condition 
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equal or higher than 30 times per hour is known as obstructive sleep apnea (OSA). It is a 
common condition in the US [77] that is a leading factor of many health issues such as 
sleep fragmented, excessive daytime sleepiness, hypertension, and stroke [18]. Since OSA 
can be screened with the STOP-BANG questionnaire [52], we predicted SQ based on the 
features specified with STOP-BANG (listed in Appendix B). We fed the selected features 
to well-known and easy-to-interpret classifiers: Naïve Bayes, k nearest neighbors (kNN), 
decision tree, random forest, bagged tree, and linear discriminant analysis (LDA). 

In the second method, SQ was predicted using estimated sleep stages extracted from HRV. 
As we elaborated in Section 2, the relation between physiological signals, like HRV, and 
sleep stages has been proven through abundant previous literature. In the case of HRV, this 
relation is so strong such that sleep stages can be distinguished using HRV [78]. 
Additionally, the transition and length of sleep stages are associated with SQ. For example, 
the reduction of SQ in the elderly is accompanied by the loss of slow wave sleep (SWS) 
stage [34]. Therefore, we predicted SQ from the estimated transition of sleep stages based 
on HRV during sleep in this method. We utilized annotated R-peaks for computing HRV. 
Since five-min is standard duration to ensure stationarity of the ECG time-series [74], HRV 
features were computed for each five-min window that slides 20 seconds of R-peaks using 
ten temporal, six frequency-based, two entropy, and five other features (listed in appendix 
C). The computed HRV features were fed into interpretable classifiers to estimate the 
dominant sleep stage, corresponding to each sliding window. Then the best classifier 
produced a sequence of predicted sleep stages for a recorded night. The generated sleep 
stages’ sequences comprised five possible stages of weak, non-rapid eye movement 
(NREM) 1, NREM 2, SWS, and rapid eye movement (REM). Each sequence of sleep 
stages was encoded into the following features: 
 

• The frequency of each sleep stage 
• The number of series of each sleep stage 
• The standard deviation of each sleep stage 
• The number of series (length>1) of each sleep stage 
• The longest series of each sleep stage 
• The number of transitions among sleep stages 
• Total length of sleep 
 

The 27 extracted features from the predicted sleep stages were fed to six classifiers: Naïve 
Bayes, kNN, decision tree, random forest, bagged tree, and LDA. 

Finally, we estimated SQ by feeding the raw electrocardiogram (ECG) signals of 
participants to a CNNs architecture. We fed the images of two ECG signals belonging to 
one night as the input. As shown in Figure 3.2-1, the proposed CNN architecture is 
comprised of two sections of feature extraction and classification. The feature extraction 
section extracted the complex relations between different regions of the input figures. This 
section is comprised of convolutional filters, max pooling, and dropout layers. The 
convolutional filters were employed to investigate the same patterns in different regions of 
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signals belonging to distinct sleep nights [79]. We utilized the pooling layers to reduce the 
dimension of data using non-linear down-sampling. The max pooling layers maximized 
values from each cluster of neurons at the prior layer [80]. The dropout layers reduced the 
chance of overfitting by randomly removing some of the neurons from the training process. 
The flattening layer connected the sections of feature extraction and classification by 
transforming two dimensional features to one vector as a required input of a dense layer 
(often called fully connected layer). In the dense layer, receptive fields, which are the inputs 
of neurons, are constructed from all the entire computed features. As a result, this layer 
investigated the relation between features processed via previous layers without any 
assumption. Following this, the softmax layer mapped all the computed relations to three 
types of SQ. 

 
Figure 3.2-1 The proposed convolutional neural network architecture 

3.2.3. Results 

 

The cohort data was divided into two sets of train and test from 80% and 20% of all data, 
respectively. Then three different methodologies as described in the previous section were 
trained. The average performance of each classifier in predicting light, medium, and deep 
SQ using STOP-BANG features are reported in Table 3.2-1. We ordered the performance 
of different classifiers based on the F1 score to take both false positives and false negatives 
into account. Bagged tree with an F1 value of 0.35 gained the highest performance in SQ 
prediction using STOP-BANG features. 

We conducted a suggested wrapping methodology called mean decrease accuracy (MDA) 
to estimate the variable importance in bagged tree [81], [82]. In this permutation 
importance, the feature whose ignorance in the training process led to the highest reduction 
was selected as the most important feature. As shown in Figure 3.2-2, feeling usual 
tiredness, BMI, and neck circumference are the most important features for distinguishing 
deep, medium, and light sleep records based on the STOP-BANG features. Usual tiredness 
is a common condition that forces patients who suffer from OSA to refer themselves to 
medical centers. High BMI and large neck circumference are two proven predictors of 
severe obesity, OSA, fragmented sleep, and low sleep quality [83]. 
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Figure 3.2-2 ROC curve variable importance of bag 

tree in STOP-BANG features 

 

Table 3.2-1 Performance of six interpretable classifiers in 
STOP-BANG method 

 

 F1 Accuracy Sensitivity Specificity 

Decision tree 0.27 0.35 0.33 0.67 
Naïve Bayes 0.30 0.38 0.37 0.68 
LDA 0.32 0.40 0.37 0.69 
Random forest 0.34 0.35 0.34 0.67 
KNN 0.34 0.37 0.35 0.68 
Bagged tree 0.35 0.36 0.36 0.68 

In the second methodology, the LDA classifier with an accuracy of 0.41 outperformed the 
other classifiers in predicting SQ. To scrutinize the impacts of HRV features in separating 
sleep stages, we also investigated variable importance of separating sleep stages using 
HRV. This analysis demonstrated that ultra-low frequency (ULF) was the most important 
feature in separating sleep stages. This finding coincided with the fact that the value of 
very low frequency was significantly lower in deep sleep stage than in the other sleep 
phases [84]. 

Figure 3.2-3 ROC curve variable importance of 
separating sleep stages using HRV 

 

Table 3.2-2. Performance of six interpretable classifiers in 
HRV method 

 

 F1 Accuracy Sensitivity Specificity 

Naïve Bayes 0.24 0.29 0.34 0.67 
Random forest 0.44 0.28 0.34 0.67 
Decision tree 0.44 0.28 0.33 0.67 
Bagged tree 0.44 0.28 0.33 0.67 
KNN 0.46 0.36 0.34 0.67 
LDA 0.47 0.41 0.38 0.69 

Finally, we fed ECG pictures into the CNN architecture with the aim of finding the SQ of 
participants. The evaluation results demonstrated that the CNN can achieve an average 
accuracy of 0.6 for separating SQ in three categories of light, medium, and deep sleep. 
These promising outcomes from a CNN demonstrated the capability of using AI 
methodology in processing raw data in contrast to using pre-engineered features. Also, it 
can enhance the speed of processing PSG data for predicting SQ by reducing the number 
of signals and removing the detecting R-peaks step.   
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3.3. Identifying the disease-specific risk factors of daytime 
sleepiness (Contribution: BI2) 

 

3.3.1. Data 

 

These study data were derived from Sleep Heart Health Study (SHHS) [85], [86] as a large 
home-based PSG database of people aged 40 years or older without a history of OSA 
treatment. Approval for the use of the SHHS sleep dataset in this study was obtained from 
the National Sleep Research Resource (NSRR). The baseline examination, visit 1, of the 
SHHS recruited 6441 individuals between 1995 and 1998. During the home visit, the 
technicians interviewed the participants using a standardized questionnaire to collect 
information on medical history and health-related characteristics.  

PSG was performed with 12-lead Compumedics PS equipment. This portable, unattended 
monitoring setup enabled recording of this large in-home PSG. The multiple channels 
recorded several physiological signals, including electroencephalogram, 
electrocardiogram, airflow, chin electromyogram, abdominal and thoracic excursions, 
oxyhemoglobin saturation, and body position. These leads were connected to a small 
monitor worn in a vest pocket so that participants could be fully ambulatory while awake. 
The PSG records and a great deal of covariates are publicly available at National Sleep 
Research Resource (NSRR) [72], [73]. 

Our analytical records included 5804 SHHS participants who successfully completed 
baseline PSG. Excluding sleep records with missing values in ESS left 5583 records with 
valid labels. Sleep efficiency and alcohol usage features contained 2281 and 403 missing 
values, respectively. Since these two features did not provide information for many records, 
we excluded them from further analyses. In addition, we narrowed our analyses to 4445 
complete records by removing all records that contained any missing value. All utilized 
features are listed in Appendix D. 

We employed the well-known Epworth sleepiness scale (ESS) [87] to measure subjective 
daytime sleepiness. ESS measures the probability of falling asleep in distinct situations, 
such as watching TV, reading, or laying down to rest. This metric reports the severity levels 
of sleepiness by an integer number in the range of 0-24 (The higher values show more 
severe daytime sleepiness). In the medical domain, this scale usually is dichotomized and 
converted to a binary category of Non-EDS (0-10) and EDS (11-24) [12], [88], [89]. 

To investigate EDS prevalence, we analyzed the distribution of ESS using three plots that 
do not use cutting points as shown in Figure 3.3-1. As plot C demonstrates, the two tails of 
ESS distribution in Q-Q (quantile-quantile) plot violate the normal distribution pattern. 
Indeed, the black circles did not fall on the two tails of red lines of the Q-Q plot. This fact 
is also reflected in plot B such that the right whisker of box plot has nearly twice the length 



 
 

24 
 

of other three quantiles. Such a left skewed distribution of ESS, also visualized in plot A, 
implied an imbalanced dataset of daytime sleepiness. The box plot illustrates that only one 
quantal (25% of sleep records) belongs to people who suffer EDS (ESS ≥11). As a result, 
we used F1-score in addition to sensitivity, specificity, accuracy metrics to describe the 
performance of classifiers in distinguishing sleep records of people with EDS condition 
from non-EDS. Using F1-score guaranteed that the probable high performance of a 
classifier in predicting EDS is a result of identifying real pattern of data without being 
disturbed by many false alarms. 

  

Figure 3.3-1 Epworth sleepiness scale (ESS) distribution in SHHS visit one across 4445 completed sleep records 

To better characterize and predict EDS, we investigated describing EDS in terms of several 
probable disease-specific risk factors of sleep fragmentations (measured by averaged 
respiratory event-related desaturation (HBEV) [24]), sleep propensity (calculated by odds 
ratio product (ORP) of EEG [90], [91] and sleep awakening index [20]), sleep resilience to 
disruptive stimuli (estimated using spindles activity [93]), and non-restorative sleep 
(observed by alpha intrusion [94], [95]).  

To measure HBEV, we detected significant reduction of nasal flow or abdominal respiration 
as a sign of airflow obstruction, known as obstructive sleep apnea and hypopnea. As shown 
in the following figure, these respiratory events cause significant reduction of oxygen 
desaturation in blood. We computed HBEV as the average area under the curve of oxygen 
desaturations corresponding to respiratory events. 
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Figure 3.3-2 Blood oxygen desaturation as a result of obstructive sleep apnea or hypopnea 

Additionally, we utilized both clinical and common PSG features as covariates. The 
clinical features are easily obtainable from a clinical interview, including: age, gender, 
race, Body mass index (BMI), systolic and diastolic blood pressures, diabetes, 
cardiovascular disease (CVD), depression, smoking, consumption of caffeinated 
beverages, having insomnia, and average sleep duration on working days. 

3.3.2. Methods 

 

We performed several statistical analyses in three levels to investigate the effect size of 
each PSG feature, a probable disease-specific risk factor, in predicting the target variable 
of ESS. In the first level, ESS was modeled by nine logistic regressions with new individual 
PSG features. Following this, the adjustment of level 1 was modeled using the clinical 
features from the models of level 2. Finally, the level 2 models were adjusted by common 
PSG features. Tracking the change of odds ratio and statistical significance of new PSG 
features by adjusting the other covariates can explain the direction and strength of each 
new individual feature in modeling EDS. Additionally, we performed several regression 
analyses using interaction terms and stratifying data based on different levels of sleep apnea 
severity. 

To control both type I and II errors in our statistical analyses, we utilized a recommended 
error control criteria for health studies called false discovery rate [96]. This criteria is 
defined as the expected proportion of falsely rejected hypotheses among all rejections [97]. 
We used the Benjamini and Yekutieli FDR [98], which can be used under general 
dependence among multiple tests. 
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To predict subjective daytime sleepiness via objective measurements, we employed four 
simple classifiers of logistic regression, naïve Bayes, decision tree, and K-nearest 
neighbors (KNN). The simplicity of these classifiers helped us to easily interpret and 
visualize the decision-making process in addition to investigating the nonlinear 
relationship among the predictive factors. We evaluated the performance of classifiers by 
10-times 10-fold cross-validation strategy to avoid predicting by chance or time 
dependency among records. The final reported metrics from our evaluation methodology 
were the results of 100 independent experiments. 

3.3.3. Results 

 

3.3.3.1. Identification of the disease-specific risk factors 

 

Since frequency features (HBEV and Awakening index) are affected by the apnea-hypopnea 
index (AHI) severity level, we compared frequency features and physiological trait features 
separately. As shown in Figure 3.3-3, our statistical tests for the physiological trait features 
revealed that ORPTRT, the sleep depth during all recording time, was an independent 
stimulator of daytime sleepiness even when adjusting for both clinical and conventional 
PSG features. Since lower ORP shows higher sleep depth, this outcome revealed that the 
patients with EDS had drowsiness in all the recording time in addition to sleep time.  

Increasing some brain activities in terms of spindles (C34_Power) and alpha intrusion 
(Average_alpha) may decrease daytime sleepiness; however, these features lose their 
statistical significance when adjusting for other features. Also, we found there was no 
relation between spindle duration and daytime sleepiness. 

 
Figure 3.3-3 Effect size of the trait features over all SHHS. The blue color (OR<1) is associated with 

 lower probability of EDS 
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We examined the roles of frequency features (HBEV and awakening index) in developing 
EDS in different severity levels of obstructive sleep apnea (OSA). We segregated AHI, the 
severity measurement of OSA, into four categories of normal (AHI<5), mild 
(5=<AHI<15), moderate (15=<AHI<30), and severe (AHI>=30). Using the interaction 
terms in the logistic models, we evaluated the association of the frequency features in 
different levels of sleep apnea. As shown in the following figure, both HBEV and awakening 
index odds ratios increased in response to the higher level of AHI. The effect size of these 
two features was more than twice in OSA in contrast to normal participants. Since both 
these two frequency features, AHI severity levels, and their interactions were statistically 
significant, both HBEV and awakening index in addition to AHI should be considered in 
daytime sleepiness prediction models. 

 
Figure 3.3-4 The statistically significant effects of HBEV and Awakening index at different levels of AHI severity 

The two previous analyses demonstrated the significance of ORPTRT, HBEV and 
awakening index in daytime sleepiness. To further assess the separate associations between 
these three risk factors of daytime sleepiness, we stratified the samples into those with 
moderate to severe OSA (AHI≥15 events/hour) and those with mild or Non-OSA (AHI<15 
events/hour). As shown in Table 3.3-1, HBEV, ORPTRT, and awakening index are distinct 
risk factors of EDS in patients suffering from OSA and Non-OSA. In those with moderate 
to severe, HBEV was a significant predictor of daytime sleepiness. For a one-unit increase 
in HBEV, the odds of having EDS increase by 43% (P-value<0.001) in Moderate/severe 
OSA patients. HBEV was no longer a significant predictor of sleepiness in those with 
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AHI<15. In contrast, ORPTRT and awakening index statistically significantly described 
sleepiness in those with mild or Non-OSA. As higher ORPTRT and Awakening index 
reversely describe the sleep propensity, the occurrence of EDS is directly associated with 
sleep propensity. These findings revealed that EDS has distinct disease-specific risk factors 
in OSA patients and Non-OSA people. The severer OSA-specific hypoxia, measured by 
HBEV, in OSA patients’ causes higher fragmented sleep which consequently leads to EDS. 
However, the high sleep propensity may be due to genetic bases [99] continuously 
presenting the sleepiness feeling in Non-OSA subjects. 

Table 3.3-1 The odds ratios per 2SD of the three significant risk factors of daytime sleepiness in stratified logistic 
regressions; P-value<0.001 ‘***’ 

 Mild or Non-OSA 
 

N= 2897 

Moderate or 
severe OSA 

N= 1548 
HBEV 0.81 1.43*** 
ORPTRT 0.70*** 0.86 
Awakening index 0.62*** 1.09 

3.3.3.2. Prediction of daytime sleepiness 

 

We examined the predictability of daytime sleepiness on SHHS dataset using both clinical 
and PSG features, especially the disease risk factors. The detailed definition of all the 
features is listed in Appendix D. As shown in Figure 3.3-5, Logistic regression and decision 
tree reported higher sensitivity while K-nearest neighbors (KNN) and Naïve Bayes (NB) 
provided higher specificity. In the first point of view, we would suggest using logistic 
regression with average sensitivity of 0.57 for the task of identifying people who suffer 
EDS, and KNN with average specificity of 0.9 for ruling out people who do not have the 
disease.  

However, physicians are more interested in utilizing a clinical decision support system 
(CDSS) that flags anything that could be dangerous with an acceptable range of false 
alarms. We used the common metric of accuracy to evaluate the performance of classifiers 
in detecting both EDS and non-EDS sleep records. The accuracy metric identified KNN 
and NB as the best classifiers with an accuracy of 0.70. However, this value was reached 
at the expense of very low average sensitivity values (0.13 for KNN and 0.24 for NB). The 
reason for such poor sensitivity is that SHHS is an imbalanced dataset from EDS 
prevalence point of view. By considering both false negative and false positive, F1-score 
reported the quality of classification for the both categories better than the accuracy. 
Logistic regression with an average F1-score of 0.42 outperformed the other classifiers. As 
logistic regression utilized a hyperplane to separate EDS and non-EDS sleep records, it 
managed to provide a generalized decision boundary in this large dataset with low variance 
in all metrics of sensitivity, specificity, accuracy, and F1-score. 
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Figure 3.3-5 The outcomes of classifiers in separating EDS and non-EDS records of SHHS visit one across 4445 

completed sleep records 

To examine the role of each feature in the best classifier, we computed the odds ratios of 
all the features in the logistic regression model. The odds ratio reveals both the direction 
and strength of association between exposures and daytime sleepiness. The odds ratios of 
value equal to, greater than, and less than one demonstrate neutral, positive, and negative 
effects of the predictors, respectively. Additionally, the descending order of |1-odds ratios| 
represents the features based on their importance. Figure 3.3-6 illustrates the features 
importance in logistic regression using odds ratios. In the following, we investigated the 
five most important features that have either positive or negative direct relation to daytime 
sleepiness.  

NTCA (non-tricyclic antidepressants), HB (hypoxic burden), and timest2p (the NREM2 
percentage) with odds ratios of 1.51, 1.48, and 1.34 are the three most important features 
that have a positive direct relation to daytime sleepiness. This analysis demonstrates that 
taking NTCA pills is associated with more daytime sleepiness. Indeed, some NTCA 
antidepressants disrupt the sleep as a result of activating side effects, including anxiety, 
agitation, and akathisia [100]. 

The odds ratio higher than one reveals that increasing the HB elevates the chance of 
suffering EDS. As HB demonstrates the total area under oxygen desaturation curve in 
association with airway obstruction, this metric describes both frequency of the airway 
obstructions, measured by AHI, and the severity of hypoxia, measured by HBEV.  
Therefore, the higher value of HB demonstrates the more fragmented sleep as a result of 
the airway obstructions and less time to have restorative sleep. The significant role of HB 
in predicting EDS is another sign that shows the need for considering this disease-specific 
risk factor in daytime sleepiness analyses. 
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 The higher NREM2 percentage (timest2p), which forms roughly half of the night [7], 
reduces the chance of longer SWS, which is the most restorative sleep stage. A one-unit 
increase in NREM2 sleep stage elevates 34% odds of having EDS. 

The fourth and fifth important features have negative direct relation to daytime sleepiness. 
HrsWD02, the average sleep duration on working days, with odds ratios of 0.69 has a 
reverse connection to EDS such that the more sleep duration is accompanied by less 
daytime sleepiness. This fact is aligned with our finding regarding higher sleep propensity 
in the normal people as a risk factor of higher daytime sleepiness. Finally, females’ odds 
of having daytime sleepiness are smaller by a factor of 0.73. As men are at the higher risk 
of suffering OSA [52], [101], the prevalence of daytime sleepiness is higher in men rather 
than women. 

   

Figure 3.3-6 Feature importance in logistic regression 
The red color (OR>1) and blue color (OR<1) are associated with higher probability of EDS and Non-EDS, respectively 
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4. Conclusion 
 

In this dissertation, we presented our work in enhancing sleep quality (SQ) prediction using 
an easy-to-use wearable device, machine learning techniques, and identifying significant 
disease-specific sleep-related risk factors in older adults. We demonstrated how using 
wearable devices and machine learning techniques can enhance the prediction of SQ by 
accessing the raw physiological signals without changing the sleep routine and analyzing 
the recorded signals independently from sleep-expert knowledge. Also, we identified 
disease-specific sleep-related risk factors in PSG data that can lead to an efficient way for 
SQ estimation. In this section, I review the main findings from the proposed methods and 
their limitations. Following this, I present my future work and the list of my publications 
throughout my Ph.D. 

4.1. The main findings 
 

Contribution CS1 enabled us to evaluate the SQ of older caregivers of people with 
dementia (CPWD) by incorporating easy-to-interpret time-domain features extracted from 
multiple physiological signals. Our proposed models for SQ and feeling refreshed selected 
18 and 12 computed features, respectively. Our analyses of the selected features 
demonstrated that sleep efficiency and skin temperature are significant features in 
predicting SQ and feeling refreshed in CPWD, respectively. 

The convolutional neural network (CNN)-based method proposed in contribution CS2 
outperforms the other interpretable methods in predicting SQ from medical history and 
heart rate variability (HRV). The developed CNN-based method predicts SQ using two 
electrocardiogram signals with an accuracy of 0.6. However, the interpretable 
methodologies based on STOP-BANG features (listed in Appendix B) and HRV features 
(listed in Appendix C) reached accuracies of 0.41 and 0.36, respectively. These outcomes 
demonstrated how using machine learning techniques enhances the current sleep expert 
knowledge of SQ prediction.  

Contribution BI1 leads to the introduction of a clinical decision support system that predicts 
both SQ and feeling refreshed in CPWD using an easy-to-use and non-invasive wearable 
E4 wristband. We managed to monitor the physiological signals of CPWD for two-week 
periods in their home environment. We reached an accuracy of 75% in predicting the SQ 
of CPWD based on the extracted features from the raw recorded signals. This outcome 
reveals the capability of using wearable devices in assessing the SQ of older adults. 

In contribution BI2, we identified a disease-specific sleep-related risk factor of excessive 
daytime sleepiness (EDS) as a sign of abnormal SQ. We showed that the average areas 
under the oxygen desaturation curve in association with apnea/hypopnea is a significant 
predictor of EDS in patients with OSA. We also illustrated that sleep depth measured by 
the odds ratio product of electroencephalogram is a significant risk factor for EDS in people 
with no history of OSA. 
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4.2. Limitations 
 

Through all the analyses, we demonstrated how using wearable devices and machine 
learning methods can aid older adults to track their own sleep quality. As a result, all our 
findings in this dissertation are limited to older adult communities. Although we performed 
our analyses on various sleep cohorts and reported the outcomes as accurately as possible, 
it is still essential to evaluate the proposed methods and reexamine our findings on other 
sleep cohorts. The introduced causalities and risk factors are based on cross-sectional data, 
and there is a need to assess these findings using longitudinal data. All the proposed 
methods were performed based on a predefined algorithm while sleep pattern can change 
during a night; therefore, there is a need to investigate real time algorithms that track these 
changes during a sleep. Finally, we emphasize that all our proposed methods should be 
considered as tools for helping sleep physicians in a process of sleep assessment not as a 
replacement. 

4.3. Future work 
 

This work was the pioneering study of predicting sleep quality using a great deal of 
machine learning techniques. The interpretable techniques provided easy-to-understand 
decision-making process based on the pre-engineered features. These were introduced by 
domain experts and extracted from both clinical and physiological signals. But, these 
techniques were limited to evaluating the segregation power of pre-engineered features. 
On the other hand, the black-box techniques provided higher performance in segregating 
sleep data by considering non-affine relationships. However, such techniques did not 
provide a clear explanation regarding the causality of its outcomes. 

To examine the capability of distinct physiological signals in predicting sleep quality, we 
will use deep learning techniques that are the most current powerful black-box techniques. 
Following this, we will evaluate how considering a group of physiological signals can 
elevate the overall performance of segregating sleep data. To bring light to the internal 
logic of black-box techniques, we will visualize different layers in the final model by 
reverse engineering of the deep learning architecture. 

Finally, we also plan on identifying the strength of the current physiological-based features 
using the interpretable classifiers. The direction and effect size of each feature in multiple 
datasets will demonstrate the reliability of current features in predicting sleep quality. The 
instability of the direction and effect size of features in distinct datasets highlight 
uncomplimentary of the current features. 
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4.4. Publications 
 

The list of publication directly related to sleep quality: 

 R. Sadeghi, T. Banerjee, J. C. Hughes, & L. W. Lawhorne (2019), “Predicting sleep 
quality of caregivers using physiological signals”, Computers in Biology and 
Medicine,110, 276-288. (Impact factor: 2.115) 

 R. Sadeghi, T. Banerjee, J. Hughes (2020), “Predicting sleep quality using heart rate 
variability”, Accepted in 42nd Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society (EMBC2020) 

 R. Sadeghi, M. Younes, S. Sands, L. Taranto-Montemurro, S. Bertisch, A. Wellman, S. 
Redline, T. Banerjee, A. Azarbarzin (2020), “Sleep Propensity And Sleep Apnea-
specific Hypoxia Are Associated With Excessive Daytime Sleepiness”, Accepted in 
Annals of the American Thoracic Society (ATS2020) 
 

The list of publication in analyzing physiological signals: 

 R. Sadeghi, T. Banerjee, W. Romine (2018), “Early Hospital Mortality Prediction using 
Vital Signals”, Smart Health, 9, 265-274. 

 R. Sadeghi, T. Banerjee, W. Romine (2020), “Predicting alcohol withdrawal in 
intensive care units”, presented at Symposium of Student Research, Scholarship, and 
Creative Activities Materials 2020. 
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Appendices 
 

Appendix A 

 

The list of extracted features from wearable data 

Number Abbreviation Name Feature description 
Physiological 

signal 

1 swsLengthHR 

The predicted fraction of sleep 

belonging to the deep sleep 

portion based on the heart signal 

Heart rate 

variability 

2 swsTimeHR 

The number of transitions to the 

deep sleep stage according to the 

heart signal 

3 epochCapacity 

The ratio of the number of the 

epochs in a sleep to the total 

possible epochs 

Electrodermal 

activity 

4 epochPeak 
The mean number of peaks in all 

epochs 

5 epochPeakCounter 
The number of epochs during a 

sleep 

6 stormPeak 
The percentage of peaks which 

occur in the storms 

7 largestStorm 
The number of epochs that 

construct the largest storm 

8 timesEdaStorm The number of distinct storms 

9 meanEdaStorm 
The average number of epochs 

comprising each EDA storm 

10 lengthEdaStorm 
The number of whole epochs 

shaping the storms 

  



 
 

39 
 

Number Abbreviation Name Feature description 
Physiological 

signal 

11 timesAwoken 
The number of times people 

awake from sleep 

Body movement 

12 sleepEfficiency 
The proportion of sleep time to 

the time a person tries to sleep 

13 amountAwake 
The length of night time subjects 

are awake 

14 amountAsleep 
The length of time subjects are 

asleep 

15 swsTimeMovement 

The predicted fraction of sleep 

belonging to the deep sleep 

portion based on body movement 

16 swsLengthMovement 

The number of transitions to the 

deep sleep stage according to the 

body movement 

17 %decreaseMovement 

The percentage of sleep time in 

which the body movement has a 

decreasing pattern 

18 swsLengthTemperature 

The predicted fraction of sleep 

belonging to the deep sleep 

portion based on the skin 

temperature 

Temperature 

19 swsTimeTemperature 

The number of transitions to the 

deep sleep stage according to the 

skin temperature 

20 %decreaseTemperature 

The percentage of sleep time 

which participants experienced 

temperature reduction 
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Appendix B 

 

STOP-Bang features extracted from PSG Morning Survey of MrOS study 

Row Abbreviation Definition 
STOP-
Bang 

1 POXNASAL 
Did you have nasal stuffiness, obstruction, or 

discharge last night? Y/N 
3 

2 POXINTER Did this interfere with your sleep last night? Y/N 3 

3 

 
 

POXCOUGH 
POXSNORT 
POXCPAIN 
POXSBRE 
POXSTUFF 

POXHBURN 
POXLEGK 

During the PAST MONTH, how often have you had 
trouble sleeping because of… 

Coughing 
Snorting or gasping 

Chest pain or discomfort 
Shortness of breath 

Nasal stuffiness 
Heartburn or reflux 
Leg jerks or kicks 

1, 3 

4 mhbp 
Has a doctor or other health care provider ever told 

you that you had hypertension of high blood 
pressure? 

4 

5 mhbpt 
Are you currently being treated for hypertension of 

high blood pressure by a doctor? 
4 

6 hwbmi Body mass index 5 
7 hwneck Average neck circumference 7 

8  The average of 26 questions in Functional Outcomes 
of Sleep survey range (1-4) 

2 
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Appendix C 

 

The list of computed HRV features from the annotated R-peaks 

Row Abbreviation Definition Type 

1 NNmean 
mean distance value of two normal consecutive R-
peaks (NN) 

Temporal 

2 NNmode mode of NN intervals 
3 NNmedian median value of NN intervals 
4 NNskew skweness of NN intervals 
5 NNkurt kurtosis of NN intervals 
6 NNiqr interquartile range of NN intervals 
7 SDNN standard deviation of all NN intervals 

8 RMSSD 
The square root of the mean of the sum of the 
squares of differences between adjacent NN 
intervals 

9 pnn50 
NN>=50ms count divided by the total number of all 
NN intervals 

10 btsdet average number of beats detected in 5 min intervals 

11 ulf 
power in the ultra-low frequency range  
(less than 0.003 Hz) 

Frequency
-based 

12 vlf 
power in very low frequency range  
(0.003 <= vlf < 0.04 Hz) 

13 lf 
power in low frequency range  
(0.04Hz  <= lf < 0.15 Hz) 

14 hf power in high frequency range (0.15 <= hf < 0.4 Hz) 
15 lfhf Ratio LF /HF  
16 ttlpwr total spectral power 
17 SampEn Sample entropy Entropy-

based 18 ApEn approximate entropy 
19 ac acceleration capacity 

Others 

20 dc deceleration capacity 

21 SD1 
standard  deviation  of  projection  of  the  Poincare 
Plot (PP) on the line perpendicular to the line of 
identity 

22 SD2 
standard deviation of the projection of the PP on the 
line of identity 

23 SD1SD2 Ratio SD1/SD2 
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Appendix D 

 

The list of utilized features in excessive daytime sleepiness analyses 

Number Name Definition 

1 
Hypoxic Burden 
(HB) 

The total area under the respiratory-event-related 
desaturation curve (SpO2) 

2 HBEV The average event-related area under desaturation curve 

3 C34_Density 
The number of spindles/min. Spindles: Bursts of sigma 
frequency band activity (11–15 Hz) of EEG signal 

4 C34_Duration The average duration of spindles (Seconds). 

5 C34_Power The average power of spindles (�V) 

6 C34_Frequency The average frequency of spindles (Hz) 

7 Average_alpha 
The intrusion of alpha activity, 8–12 Hz, in NREM sleep 
can be measured via the percentage of 3-second NREM 
epochs with alpha power equal to or greater than 30 μV2 

8 ORPWake 
The average of continuous sleep depth metric ( the odds 
ratio product (ORP) of sleep EEG) observed in awake 
sleep stage. 

9 ORP_Sleep The average of sleep depth during sleep 

10 ORPTRT The average of sleep depth during total recording time 

11 ORPLRCorr 
The correlation between right and left hemispheres sleep 
depth 

12 ai_all 

The number of arousals during sleep. Arousals: an abrupt 
shift in EEG to a higher frequency for at least 3 seconds 
and proceeded with greater or equal 10 seconds of stable 
sleep 

13 
Awakening 
index 

The number of awakenings during the night. Awakening: 
An arousal last more than 15 seconds 

14 
Apnea-hypopnea 
index (AHI) 

The per-hour frequency of all apneas (complete 
obstruction) and hypopneas (partial obstruction) 
associated with 3% oxygen desaturation during sleep. 
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15 
Nocturnal 
Hypoxemia 
(NH/PcTSa90H) 

The percentage of the night below 90% oxygen saturation 

16 timest1p The percentage of sleep that belongs to NREM 1 

17 timest2p The percentage of sleep that belongs to NREM 2 

18 timest34p The percentage of sleep that belongs to NREM 3 and 4 

19 timeremp The percentage of sleep that belongs to REM 

20 NTCA1Y Using non-tricyclic antidepressants drugs 

21 TCA1Y Using tricyclic antidepressants drugs 

22 bmi_s1 Body mass index 

23 HrsWD02 An average sleep duration on working days 

24 SystBP Systolic blood pressures 

25 DiasBP Diastolic blood pressures 

26 SingleYes Being single 

27 ParRptDiabYes Having diabetes 

28 CVDYes Having cardiovascular disease 

29 COFFEE15 
Consumption of caffeinated beverage four hours before 
sleep 

30 CgPkYr Number of cigaret packets 

31 age_s1 The age of participants 

32 gender Female/Male 

33 race White, Black, or Others 
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