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Abstract

Bhatt, Shreyansh. Ph.D. Department of Computer Science and Engineering, Wright State
University, 2019. Data-driven and Knowledge-Based Strategies for Realizing Crowd
Wisdom on Social Media.

The wisdom of the crowd is a well-known example of collective intelligence wherein

an aggregated judgment of a group of individuals is superior to that of an individual.

The aggregated judgment is surprisingly accurate for predicting the outcome of a range

of tasks from geopolitical forecasting to the stock price prediction. Recent research has

shown that participants’ previous performance data contributes to the identification of a

subset of participants that can collectively predict an accurate outcome. In the absence of

such performance data, researchers have explored the role of human-perceived diversity,

i.e., whether a human considers a crowd as a diverse crowd, to assemble an intelligent

crowd. In fact, diversity among participants and independent decision making are the

two most important criteria for a crowd to provide an accurate aggregated judgment.

However, perceived diversity based crowd selection does not scale. This dissertation

explores whether we can infer the diversity and independence from user generated social

network data to inform intelligent crowd selection.

This dissertation first provides a data-driven bottom-up diversity measure and shows

that participant diversity can be inferred from social media data and that it can be used

to perform diverse crowd selection. It then provides a multi-objective optimization based

diverse crowd selection method using this measure. The results show that the diverse
iii



crowds significantly outperform both randomly selected and expert crowds. A top-down

approach then provides explainable diversity measures to select such a diverse crowd.

The data-driven diversity measures do not utilize the social media profile and link

information. Community detection using shared content and link information can both

inform diverse crowd selection. However, the existing methods do not consider “contextual”

similarity that could play a crucial role in identifying and characterizing contextual communities.

This dissertation provides a state-of-the-art contextual similarity measure and a knowledge

graph-enhanced community detection approach to select a diverse crowd as well as explain

the domain-specific diversity that could affect crowd wisdom. It is shown that such a

diverse crowd can accurately predict the outcome of real-world events. These results have

implications for numerous domains that utilize aggregated judgments - from consumer

reviews to econometrics, to geopolitical forecasting and intelligence analysis.

iv
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1 Introduction

Thesis Statement: Cognitive diversity inferred from social media enables intelligent

crowd selection for decision making without requiring analysis of past judgment-outcome

data.

One of the well-known examples of human collective intelligence is the “wisdom of

crowds” (WoC) in which an aggregated judgment of a group of individuals is, in some

cases, better than an average and even an expert individual. First described in the scientific

literature over a century ago [1], WoC more recently vaulted into the public consciousness

with the publication of James Surowiecki’s best-selling book of the same name [2]. The

book describes the following as essential conditions to realize the wisdom of crowd,

• Domain Knowledge: The individuals are expected to have some degree of domain

knowledge.

• Motivation: There should be a reward associated with making a correct judgment.

• Aggregation: There should be a proper mechanism to aggregate a crowd judgment.

• Diversity of Opinions: A crowd must consist of individuals bringing diverse information

into the decision making.

• Independence: Individuals should not be influenced by each other.

Existing studies exploring wisdom of crowd, without using historical performance

data of the individuals, are human driven and require assembling a crowd in one place,
1



or involve complex monitoring techniques designed by humans. These techniques do

not scale. On the other hand, social networks are increasingly used to share opinions

regarding some real-world events. The significant contribution of this dissertation is to

explore whether social network data can be used to infer diversity and influence so as to

assemble a crowd that satisfies all the conditions defined above. This shall enable large

scale wisdom of crowd studies in various domains ranging from geo-political forecasting

to fantasy sports.

For this purpose, this dissertation first explores whether the social network data has

enough signal to be used to infer diversity. Then it examines whether such diversity can

inform intelligent crowd selection. An explainable diversity measure is also explored as

one of the diversity inference techniques. We studied several attributes from social network

data that can be used to infer diversity. Moreover, the different context of attributes can lead

to different diverse crowds. For example, a group of individuals may be diverse based on

their location attribute associated with their profile. Or location attribute can be considered

in the context of housing-price, leading to a different diverse crowd than location attributes

considered for example in the context of their interest in sports teams. This dissertation

proposes and develops an algorithm that can automatically select important attributes and

contexts that are relevant to a given network of individuals in forming a group.

We use the domain of Fantasy Sports to evaluate diverse crowd selection. Fantasy

sports such as (and in the case of our study) Fantasy Premier League (FPL) soccer can serve

as a useful domain for studying WoC effects precisely because participants (called fantasy

team “owners”) make frequent, on-the-record judgments about future real-life outcomes

(i.e., a real-life player’s performance in an upcoming game week)[3]. These judgments are

then scored in accordance with the rules of the fantasy league. A detailed description of

FPL rules is beyond the scope of this dissertation: here we provide only a brief overview.

As in most fantasy sports, an FPL team owner selects a fantasy team composed of realworld

2



players. An FPL team (or squad) consists of 15 players: two goalkeepers, five defenders,

five midfielders, and three forwards. Points are accrued based on each player’s real-life

performance in each game week (e.g., goals scored, total number of minutes played, and

number of assists). A fantasy team owner’s selections are constrained by various factors

such as budget caps, a limit on the maximum number of players that can be selected from

any one real life team, and so on. While the selection of an initial squad occurs only once

per season, a team owner may repeatedly make changes to his/her team roster throughout

the season via player transfers. For each game week, a team owner chooses 11 of the 15

players on his/her roster to serve as the starting lineup. Points are assessed only for these

11 players. From among the starting lineup, an owner nominates one player to serve as

the team captain. The captain earns double points for that week, so an owner is strongly

motivated to select the captain whom he/she believes is most likely to perform well for that

particular game week.

Following [3], we focused on the team owners’ captain selection as our judgment of

interest. Because captain selection is a categorical judgment, one cannot simply average

the judgments of multiple owners. For this reason, we interpreted an owner’s choice of a

particular captain as a “vote” for that captain (similar to [3]). We then assembled virtual

crowds of team owners and computed each crowd’s captain choice as the captain receiving

the most votes. The benefits of diversity still apply with voting because a diverse crowd’s

choice of captain reflects a variety of valid, performance related predictors, such as a

captain’s recent performance trends, recent injuries, opponent’s strength and playing style.

1.0.1 Diversity and wisdom of crowds

In order for individual judges’ errors to cancel one another out (thereby producing

a collective judgment close to the truth), the spread of judgments must fall on both sides

of (or bracket) the correct answer. Hence, the likelihood of bracketing is increased when
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individual judges are diverse. Diverse judges are likely to produce such an accurate judgement

as they bring diverse viewpoints, knowledge, and perspectives in the decision making. This

in turn leads judges to produce uncorrelated errors. Indeed, diversity is such a critical

ingredient for WoC that crowds of diverse agents can, under certain conditions, outperform

crowds of experts [4] [5].

Given the essential role of diversity in WoC, surprisingly little work has focused on

measuring and manipulating diversity for the purpose of enhancing WoC effects (for an

exception, see [6]). Perhaps this is because diversity - which has been formally modeled in

domains ranging from machine learning [7] to genomics [8] to biological ecosystems [9]

- remains an “analytically neglected” [10] concept with respect to human social systems.

This is an important gap because if one were able to measure crowd diversity a priori, then

one could purposefully select crowd members who possess a broad range of information

and analytic approaches. Moreover, a validated method for quantifying diversity would

empower researchers to explore additional questions concerning the role of diversity in

collective intelligence, such as the relative importance of (and tradeoffs between) diversity

and expertise as factors for crowd selection.

This dissertation first explores whether we can infer diversity from openly available

social media communications using data-driven methodologies. It then presents a knowledge

driven methodology that complements social media data with real-world crowd sourced

knowledge to explore a better and moreover, explainable, crowd selection technique. Social

influence may trigger individuals to revise their estimates, which can have a substantial

impact on the statistical wisdom of crowd effect [11]. Hence, the knowledge driven methodology

also considers influence captured by retweet/follower/friends relationships to form a crowd

of judges that are diverse as well as independent.
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1.1 Data-driven diversity quantification

We discuss data-driven diversity quantification using bottom-up (word embedding

based) and top-down (captain-selection strategy based) user representation techniques.

1.1.1 Word embedding for diversity representation

While multiple formal definitions of diversity have been proposed (see [10] for a

review), we chose as our starting point a simple measure based on the semantic distance

between user content (text). Specifically, we measured the distance between crowd members

(i.e., Twitter users) by applying a popular word embedding technique, Word2Vec [12].

Word2Vec represents each user within a high dimensional semantic vector space such that

a measure of crowd diversity can be computed based on the distance between users within

this space. The farther apart users are, the more diverse they are. A weak but statistically

significant result indicated that diverse crowds, formed using this measure, are likely to

produce a better judgement than crowds generated at random. Next, we explored crowd

selection using this user representation technique.

1.1.2 Word embedding, clustering, and multi-view objective optimization

based crowd selection

We propose a diverse crowd selection approach (SmartCrowd) based on social media

posts (tweets). Each user is represented by the collection of their FPL tweets; the diversity

of users is reflected in the topic and other latent communication patterns between their tweet

collections. We adopt word2vec [12] to summarize a user’s set of tweets, generating one

equal-length summary word vector for each participant and then clustering these vectors

to derive user clusters.1 With the summary word2vec vector for each user, we cluster

1Other text summarization methods (e.g. TF-IDF and LDA [13] for topic extraction and summarization)
might also work.
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their vectors to generate user clusters. Multiple clustering strategies have been tested here,

such as cosine distance and Euclidean distance measures, single-view spectral clustering

and multi-view clustering. The best strategy is multi-view clustering that synthesizes

views based on both cosine distance and Euclidean distance. Finally, to select optimal

representatives from the clusters to compose the final crowd, we employ a multi-view

objective optimization method using both distance measures as the objectives.

The crowds selected with our SmartCrowd approach beat a random crowd 85% of

the time and outperformed individual participants 93% of the time. We also compared

our approach to the Goldstein et al. [3] method, which forms crowds based on users’

“expertise” derived from the performance history in the past seasons. The crowds generated

with SmartCrowd outperformed the expert crowds consisting of the top-10% experts and

the top-20% experts, and did only slightly worse than crowds of the top-2% experts.

A bottom-up diversity measure combined with crowd selection can produce crowds

that achieved significantly better wisdom score than crowds generated at random and even

experts. However, these methods do not explain the kind of diversity that plays a role in

crowd selection. Next, we developed a more explainable, top-down, diversity measure.

1.1.3 Top-down diversity quantification

We explore whether top-down diversity quantification can help assemble an intelligent

crowd. We define diversity in terms of the solution strategies employed by a participant

for generating a prediction. Specifically, we hypothesize that diverse solution strategies

lead to a more robust aggregated crowd prediction, where solution strategies are inferred

using participants’ social media posts. We provide real-world evidence that such diversity

can help achieve an accurate prediction. We first characterize each participant according

to whether his/her tweets refer to a particular strategy by classifying individual tweets.

Using a binomial test-based participant categorization, we then identify a set of participants
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employing similar solution strategies. Finally, we form a diverse virtual crowd by selecting

participants from each category.

We found that a diverse crowd determined by strategy is likely to perform better in the

FPL captain prediction task than 90% of the individual participants. We also compared

a diverse crowd with a randomly selected crowd of comparable size and found that a

diverse crowd is 63% likely to outperform a randomly selected crowd. Crowds based

on diverse strategies also perform favorably relative to standard word2vec methods for

clustering users.

To explain the diversity in captain selection strategies and its effect on captain selection,

we used a domain specific knowledge graph extracted from DBpedia[14]. The extracted

knowledge graph is a concept hierarchy where a parent concept subsumes child concepts.

To explain diversity, we mapped the keyword features used in classification to the knowledge

graph and investigated the parent concepts that maximally subsume these keywords. We

found that features identifying both - Popular choice and Differential choice tweets mapped

to two parent soccer players who happened to be the top performers in terms of scoring

FPL points. This supports the claim that diverse strategies ensure that a selected captain is

effective from both perspectives.

1.2 Knowledge-driven diversity quantification

These data-driven methods use only tweet content for clustering, missing an important

attribute for the wisdom of crowd–influence. Social influence can affect crowd wisdom.

For social network, we have the potential influence information available in form of retweet

or follower/followee relationship. Hence, we developed a method that clusters users based

on their shared content as well as “link” between these users. Such a group detection is

solved as community detection in node attributed networks where nodes are users, node

attribute can be their tweet content, and link can be reweets.
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1.2.1 Knowledge graph enhanced community detection and crowd selection

“Does interest in sports or music form conversational communities among participants?”

Recent approaches model such problems as community detection and characterization.

These approaches report both state-of-the-art community detection accuracy and effective

community characterization with node attributes driving community detection[15][16]. These

approaches increase edge weights between nodes belonging to the same community if

these nodes share similar node attribute values. While such techniques detect whether

communities form around the particular sports teams or music bands referenced explicitly,

they fall short on identifying whether communities are formed from participants’ general

interest in sports or music. Such problems require meaning-oriented community characterization

with an assessment of accuracy that combines network nodes, edges, and node attributes.

Instead of relying on apparent attribute relations, i.e., exact matching for nominal attributes

and Euclidean distance for numeric attributes, we seek contextual relations between attribute

values. The resulting meaningful community detection is also crucial for applications such

as network visualization [17] and online-marketing[18].

Consider the friendship network of participants shown in Figure 1.1 with the available

node attributes expressed as the city in which a participant lives. The existing approach

to community detection on such a network considers“Austin”, “Dallas”, and “Houston” as

different attribute values [15][16], missing the important subsuming relationship (i.e., they

are in the same state). Considering such relationships can improve community characterization.

Moreover, detecting such relationships provides a basis for updating edge weights.

We explore the use of domain-specific knowledge graphs to find such contextually

meaningful attribute relationships. Domain-specific hierarchical knowledge graphs (HKGs)

provide particularly relevant real-world clustering information. The domain-specific HKG

in Figure 1.2 indicates that all states of United States are subsumed by “States in United
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Figure 1.1: Friendship network with nodes representing user, edges representing
friendship, and node attribute as the home-city.
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Figure 1.2: Hierarchical knowledge graph for USA geo-location.

States”. The decomposition starting from each concept of such an HKG provides a context.

E.g., all the concepts subsumed by “Cities in Ohio” along with “Cities in Ohio” provides a

context “Ohio”. Such knowledge graphs can be generated automatically with demonstrated

benefit to applications such as personalization [19]. HKGs provide complementary real-world

information regarding communities or clusters that may not be explicit in the network but

are nevertheless useful in finding and characterizing communities. However, incorporating

domain-specific HKGs in community detection raises three key challenges. 1. There is no

clear measure for computing node similarity using an HKG characterization. For example,

at the city level, “Austin”, “Dallas”, and “Houston” are different, although they are similar

in the context of “Cities in Texas”. Additionally, we need to determine the optimal context

characterizing the community structures. E.g., in Figure 1.1, “Cities in Texas” characterizes

Community 1(V1, V2, and V3). 2. Optimal Context reflects multiple factors. Moving up

the hierarchy towards the root, we obtain a more general context subsuming lower level

attribute values. However, the generalization disguises the differences between attribute

values, potentially losing details that distinguish node groups. 3. Optimizing context

generalization should coordinate with the discovery of topological structure, which should

reflect computed community contexts.
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We develop an algorithm that iteratively optimizes two tasks: (i) Optimal community

label assignment while keeping the community context unchanged, (ii) Optimal community

context assignment while keeping the community labels constant. For the first task, we

propose a contextual similarity measure for defining node pair similarities to capture community

contexts. We employ a widely used community label assignment algorithm, the Louvain

community detection algorithm [20], which finds community labels for nodes using modularity

maximization.

For the second task, we find a concept generalization scheme that balances two criteria:

1. Informativeness, which is essentially the specificity of a concept in a hierarchical

knowledge graph. The lower the concept is in the hierarchy, the more specific information

the generalization preserves and 2. Purity which is the difference between the number of

nodes subsumed by a concept of a given community and neighboring communities.

Our framework has three unique features: (i) It can accept any predefined domain-specific

hierarchies for any attributes (numeric or nominal), together with a topological network

structure (i.e., nodes and edges). (ii) The algorithm does not assume a priori that a domain

must correlate with the communities we want to discover. Instead, it will quantify the

relationship between a certain domain and communities. If one exists, the algorithm will

progressively find it. (iii) It allows us to analyze competing contexts on the same attributes.

For example, the location attributes may have multiple different context hierarchies: one

based on the geographical concepts, another on housing markets, and the third on household

income levels.

As the resulting algorithm can assign more appropriate edge weights than using only

attribute values, the algorithm can facilitate the discovery of an accurate community structure.

We evaluated community detection accuracy on four real-world networks and five baseline

community detection algorithms. The proposed algorithm improves community detection

accuracy by nearly 20%. We also evaluated the accuracy of community structure characterization
10



and found that the proposed approach was able to discover correct underlying community

“types” for all four datasets while two baseline methods [15][16] failed to characterize

communities for at least two datasets. We also demonstrate that contextual community

detection and characterization effectively mediates the representation of the original data

for two practical problems: Harassment in online social networks and diversity in crowd

sampling.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 differentiates the current

research from existing work and positions it from the wisdom of crowds perspective.

Chapter ?? describes the dataset and data-collection processes. Chapter 4 provides the

details on word embedding-based user characterization. Chapter 5 details the crowd selection

approach. Chapter 6 describes the top-down diversity characterization and diversity explanation

approach. Chapter 9 introduces the knowledge graph enhanced crowd selection algorithm

and provides details on crowd selection and diversity explanation. Chapter 7 identifies

possible research directions with Chapter 8 concluding the dissertation.
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2 Background and Related Work

In this chapter, we review the existng related literature that covers data-driven wisdom

of crowd and community detection.

2.1 Wisdom of crowds

Wisdom of crowd is observed in many real-world applications ranging from guessing

a weight of an ox to the web-page ranking using Pagerank[2]. Several research studies

explore the domains in which such an effect exists [21][22][23]. Some of the recent studies

also explore the conditions in which such an effect may not exist for certain domains [24].

These studies identify the importance of studying the conditions that determine the wisdom

of crowds effect.

2.2 Diversity and wisdom of crowds

With the apparent benefits from studying the wisdom of crowds, several studies have

explored the effect of diversity and crowd size on wisdom of crowd. This dissertation can be

understood in the context of several related research veins. For instance, one implication of

our findings is that, by recruiting maximally diverse group members, one might minimize

the group size needed to form an accurate judgment without forfeiting the benefits of a

larger crowd. In this sense, our work can be situated within a larger body of research that

seeks to develop methods for identifying smaller, wiser sub-crowds within larger crowds

- most notably recent work by Goldstein et al. [3], whose methods for analyzing fantasy

sports data provide the groundwork for the present study (see also [25]). Minimizing crowd
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size is of practical importance, because many tasks that have been shown to benefit from

WoC methods, such as geopolitical forecasting [26], are time and labor-intensive, otherwise

depending on rare expertise. Thus it is often desirable to reduce the number of group

members tasked with producing a judgment.

A large body of work deals with finding a virtual small and smart crowd from a large

set of participants. The traditional wisdom of crowd research has explored the correlation

between the diversity and accuracy of the collective judgment in crowd selection [22].

These experiments solicit participants to indicate diversity explicitly. Teng et al. asked

participants to define their similarity to other members of groups [27]. They found that

more diverse teams were more creative than less diverse teams. Thus explicitly indicated

participant diversity plays a vital role in generating a smart crowd. In contrast, we infer

diversity from online social media data to build a smart crowd and compare it with other

crowd selection strategies.

A rich organizational psychology literature examines the impact of diversity on group

performance. A key research concept in this field is social category diversity, i.e., diversity

defined by surface characteristics such as race or gender [28]. This form of diversity –

which is more closely aligned with the popular understanding of the term – is not the

focus of our study; however, we expect that such “superficial" forms of diversity do in

fact correlate with deeper differences in mental models derived from a lifetime of divergent

experiences. While we expect that social category diversity would be less likely to contribute

to WoC effects in narrowly defined tasks having less of a cultural dimension (such as

fantasy sports), the literature suggests that such differences can have important impacts

in small group settings in a variety of domains.

This work is also related to a broader research thread within computational social

science aimed at modeling self-organizing structures, such as communities and cliques,

using social media data [29]. We also developed methods to analyze community structure
13



in this research. Our approach is consistent (in a methodological sense) with diversity

modeling techniques used in other disciplines, like ecological science, where diversity

measures are often based on how many individuals from various discrete categories (e.g.

species) are represented within a system [30] (with a “species" being analogous in the

social sense to a well-defined clique). In general, the role of social influence in modulating

heterogeneity among group members’ beliefs is a well-explored topic that has previously

been investigated in the context of WoC [11]. Twitter, in conjunction with fantasy sports,

is a ripe medium/domain for further examining these effects.

Other research explores the correlations between content diversity and crowd wisdom.

For example, Hong et al. showed that opinion diversity derived from participant-generated

content is positively correlated with crowd performance[31]. However, they did not explore

a crowd selection strategy, and used cosine similarity between traditional word vectored

representations to compute participant diversity. This word vectored representation neglects

contextual similarity [12] especially for short social media texts. Robert Jr. et al. explored

diverse crowd formation for the generation of quality Wikipedia articles[32]. They computed

crowd diversity using Wikipedia authors’ stated topics of interest and showed that such

diversity could help to form smart crowds. However, they do not explore crowd selection

based on such diversity. Moreover, they used explicit participant topic characterization

data in their diversity measure instead of inferring diversity from raw social media posts.

Several predictive analysis problems, such as the one discussed in this dissertation, do not

provide explicit participant indications of topics. For example, we do not have participants’

FPL specific topic affinity listed on the FPL website. Instead, we use social media to infer

diversity. Moreover, Ren et al. reported that communication variables also play a key

role in defining diverse/smart crowd along with the topic of interests[33]. Word2vec word

vector generation captures such latent communication patterns along with topic-specific

words. As a result, SmartCrowd had such inputs to sample “wiser” crowds.
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The results of this dissertation are also interesting for their application to the Fantasy

Sports. Several research studies explore team selection for maximizing reward in a season-long

fantasy tournament[34][35][36]. Some studies also explore the maximum number of wins

a player will have in sports [37][38]. More recent studies explore team selection for daily

fantasy sports[39][40]. These approaches work on sports player data collected by a user.

The model selecting a team or predicting a successful player considers specific features.

The use of sophisticated features can benefit performance with these models. However,

the collection of such broad data can be challenging, e.g., each injury report of a player,

player dynamics, player leadership skills, gambling specific knowledge related to Fantasy

Sports. Moreover, we consider a different problem from the Fantasy Sports perspective,

i.e., a captain selection within a team. Unlike existing approaches, our approach exploits

crowd wisdom as a substitute for sports player-specific information.

2.3 Knowledge driven diversity quantification using community detection

Another important contribution of this dissertation is a novel community detection

and characterization algorithm. Community detection in node attributed graph has a rich

history of work due to its applicability in graph visualization, understanding graph data,

link prediction, and graph summarization. Table 2.1 provides a quick summary of the

community detection and characterization approaches and position the current work.

Bothorel et al. provides a good summary of community detection methods that incorporate

graph attributes [41]. Among the recent approaches, Wang et al. works for non-text

real-valued node attributed graphs unlike several others [41]. In an approach proposed

by Qin et al., link and node attributes are combined at different rates during community

detection for improved community detection accuracy. Contrary to the proposed approach,

this work does not focus on characterizing community structures. CPCD [42] and UNCut[43]

used in the comparison also focus on identifying communities than characterizing these
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Table 2.1: Comparison of methods for community detection in node-attributed graphs.
NAG: Node attributed graph clustering, SC: Community structure characterization,
Non-text: Allows non-textual attributes. Topics: Community detection based on topics
related to node attributes.

Method Class NAG SC Non-text Topics
Clustering [41] 3 6 3 6

LDA [44][45][46] 3 3 6 6

SI [15] 3 3 3 6

JCDC [16] 3 3 3 6

KDComm 3 3 3 3

communities.

Several generative models also detect communities and provide information regarding

the labels that nodes in a community have in common[44][45][46]. Among recent approaches,

He et al. finds communities by jointly optimizing over node attributes and links using

a generative model [47], similar to Wang et al.[48]. These approaches characterize a

community structure by revealing latent topics within the textual node attributes of a community.

They do not work for non-textual node attributes nor do they find communities along

given set of topics. The latent community description is less informative compared to

the community descriptions identified by proposed approach.

Community detection in node attributed graphs from Zhang et al. [16] and Newman et

al. [15] inspires our own method. Such methods find communities based on edges and then

refine these communities, i.e., by changing edge weights, based on node attribute values.

However, Zhang et al. and Newman et al. do not make use of attribute semantics as we

suggest here. Hence, these approaches can not identify communities for different domains

as required by the application discussed in section ??.

Our belief in external knowledge-enhancing community detection in a network is

rooted in past work that demonstrated the prominent role of semantics in social network

analysis. For example, El et al. combines social data with data semantics to create a
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semantic social network [49]. Pool et al. argues that a knowledge graph-based description

should inform community structures based on user interests and beliefs [50]. A survey on a

semantic social network by Ereto et al. summarizes the use of semantics in social network

analysis[51]. Palma et al. focuses on predicting drug targeted Interaction using semantic

similarity and edge partitioning [52]. These approaches integrate the social network links

with existing ontologies for generic social network analysis. However, community detection

on such combined graphs can be biased with one graph (social graph or ontology) being

larger than the other. Wang et al. reported that real-world knowledge represented in

knowledge graphs could improve document clustering [53]. Nevertheless, they did not

focus on community detection with links connecting nodes and attributes identifying nodes.
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3 Data collection

Table 3.1: Description of Twitter Dataset.

Tweet Type Total, Median* Description
All

2M, 2529
Tweets crawled

Tweets from users’ timelines
Soccer

1M, 591
Tweets with soccer

Tweets keywords
FPL

90K, 13
Tweets with keywords

Tweets
(OfficialFPL, FPL,

Fantasy Premier League)
*Median tweets per user

Figure 3.1 outlines our tweet and FPL captain pick collection procedure. We used the

Twitter streaming API to collect tweets containing FPL related keywords (Table 3.1) over

the time period of August-November 2016 corresponding to the first four months of the

2016-17 English Premier League season.

From these tweets, we extracted the names of the associated Twitter users. To obtain

captain pick data, we matched these Twitter users using their names on Twitter with names

on the official FPL website 1, on which registered users post their team lineup, including

weekly captain picks. Although we could not be 100% certain of a match, we reasoned

that an individual tweeting repeatedly about FPL is likely to be the same person as an

FPL website user having the same first and last name. To further reduce uncertainty in

our matching process, we eliminated from our analyses any non-unique names and their

associated data, i.e., names appearing more than once on either Twitter or the FPL website.

We then scraped the FPL website to obtain captain picks for these matched users for each

1fantasy.premierleague.com
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Figure 3.1: Data Collection.

of the 25 game weeks that had occurred from the time of our analysis, along with each

captain’s score for each game week. Because Twitter’s streaming API captures only a

few tweets for each user, we crawled users’ publicly available Twitter timelines to collect

additional tweets.

Table 3.1 summarizes the dataset. Column 2 shows the total number of tweets and the

median number of tweets per user. Our analysis identified 912 users who tweeted at least

five times about FPL. Scraping the timelines of these users resulted in a total of 2M tweets,

of which about 1M contained at least one soccer related keyword and about 90K contained

at least one FPL related keyword. These 90K tweets form the basis for our group diversity

measure.
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4 Word embedding for diversity representation

In this chapter, we describe the detailed approach for our bottom-up, data driven user

characterization to assemble diverse crowds. We used a word embedding approach to

characterize a user who is essentially represented using user generated text in the form

of an n-dimensional vector.

A word vectored text representation improves and simplifies Natural Language Processing

(NLP) applications such as search, language translation, and information extraction [12][54].

Here, we intend to capture the topical and conversational diversity among these participants.

A word vector captures a context of a word, where a context is identified by the surrounding

words. Thus word vectors can be used to capture the latent topic as well as the communication

pattern of a user’s tweet. Specifically, given preceding words, such word vectors predict

a probability distribution over the “next” word. Of the available methods, skip-grams

represent a word as a vector (known as word2vec) and provide state-of-the-art performance

for word similarity tasks [12]. These word-based vectors explicitly encode linguistic regularities

and patterns as linear translations. For example, the result of a vector calculation vec(“Madrid”)

- vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other word vector

[55][54]. Hence, word2vec has been used to represent the similarity of social media posts,

especially tweets, by averaging tweet word vectors [56].

The next section describes an approach to generate word embeddings and characterize

a Twitter user using such word embedding.
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4.1 Word embedding generation

Figure 4.1 shows the architecture for our method.

Word2Vec quantifies the semantic similarity between words and has been used in

various natural language processing tasks such as sentence completion [57], POS tagging

[58], and Twitter hashtag prediction [59]. Word2Vec applies to social data as well, and

has been shown to work well in representing short text sentences, social media messages

(tweets), and in identifying similar Twitter users [60] [61].

We trained our Word2Vec model with 2M tweets collected as described in Section 2

(Table 1). As a pre-processing step, we converted each word of a tweet to its lowercase,

and removed stop words and URLs. We used a Skip-gram model with a negative sampling

for training. The negative sampling rate 10 works well with medium sized datasets [12].

Because most of our tweets were short (on average eight words), we used a context window

of three so that the training process considered three words to the left and three to the right

of the word in question. We ignored words that appeared less than three times by setting

min_word_frequency = 3.

We computed user diversity based on FPL related tweets, i.e. tweets with at least one

FPL keyword (Table 3.1). After we applied similar pre-processing for the FPL related

tweets, we used the trained Word2Vec model to transform each word of a tweet to a

300-dimensional vector. To produce a single vector representation for each user, we aggregated

each word vector from each tweet and averaged the vectors, because the average of word

vectors has been shown to represent a short sentence effectively, that is, a tweet [60], as

well as a set of tweets [61]. Equation 1 formalizes this process.

Let t = {w1, w2, w3, . . . , wp}, where t is a tweet andwi is a word vector representation

of a tweet word. Let Twitter user U = {t1, t2, . . . , tl} where each ti is a tweet for a user U ,
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l is total tweets of a user, p is total words per tweet. Then U can be rewritten as a collection

of words,

U = {w1, w2, . . . , wp, wp+1, wp+2, . . . , wn}.

For each user we then define a vector, UV, which locates the user within a 300-dimensional

semantic vector space, such that users who are close together in space are deemed similar.

We define UV as,

UV =

∑n
1 wi
n

(4.1)

This vector representation is then used to compute a diversity value for any group of

two or more users. We use average pairwise cosine distance as our diversity measure of a

group. For a group G = {UV1, UV2, . . . , UVn}, the diversity value of G is computed by

Equation 2,

DG =

∑
i,jεnCOS(UVi, UVj)(

n
2

) (4.2)
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Figure 4.1: Method for Computing Diversity.

4.2 Results

To avoid confusion, we hereafter refer to crowds as groups. Virtual groups of various

sizes were composed as follows. Because the total number of unique groups was prohibitively

large for the group sizes examined here, we chose a sampling process for constructing

groups. For each group of size n, we first generated 5000 unique groups selected randomly

from 912 total users. We then computed the diversity of each of these 5000 groups as

described earlier. To ensure that the 5000 randomly generated groups were representative

of the total universe of potential groups in terms of their diversity values, we repeated this

process 100 times for each group size n. We then computed (for each of the 100 runs) the

difference in average diversity values between the top 10% of the most diverse (500) and

bottom 10% of the least diverse groups (500). We then ranked all 100 runs based on this

difference and selected the run with the median difference.

For each group, we measured a group’s “wisdom" – i.e., the score obtained by the

group’s “elected" captain in a given game week (hereafter referred to as the group’s “wisdom
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score"). For each groupG = {U1, U2, . . . , Un}, we generatedC whereC = {c1, c2, . . . , cn}

and ci = {captain picked by ui}. Equation 3 formulates the group wisdom score as,

GS =

∑25
1 Mod(Ci)

25
(4.3)

Here, Mod(Ci) represents the score of the individual captain receiving the most votes from

the group in the ith game week. In cases where there was a non-unique mode – i.e., a tie

– we used a tie-breaker strategy that selected a mode randomly from the set of non-unique

modes. A group’s wisdom score was then computed as the average of its scores over all 25

game weeks considered in our analysis.

In addition to a group’s diversity and wisdom score, we measured its diversity in

judgements (captain picks). We defined a group’s pick diversity (PickDiversity) as the total

number of unique picks divided by the total number of picks. For eachG = {U1, U2, . . . , Un}

and their corresponding captain picks C = {c1, c2, . . . , cn},

PickDiversity =
Unique(C)

n
(4.4)

Here, Unique(C) is the number of unique captains picked by a Group G.

We found that most of the groups of size 10 or larger had at least two group members

who agreed on a captain pick. This was also reflected by average PickDiversity <0.5 for

groups size ≥ 10. In contrast, smaller groups (sizes 3 - 6) often ended up picking unique

captains (PickDiversity ≥ 0.9), i.e., in most cases, we did not observe any captain pick

agreement. To avoid this, and to ensure we could compute a meaningful wisdom score for

our small groups, we employed a modified approach for generating small groups. For each

group size n (3-6), we generated 5000 unique groups in which all group members picked

the same captain. We reasoned that this approach would not interfere with our ability to
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Figure 4.2: Example of Wisdom Score Distributions for Group Size 5 (Most Diverse vs
Least Diverse Groups). MD groups outscored LD groups by a statistically significant
margin (p <0.005; Mann-Whitney test). Dotted lines are medians. Distributions for
additional small group sizes are summarized in Figure 4.

detect a relationship between group diversity and wisdom score for small groups, because

one would still expect that a unanimous pick by a diverse group would perform better on

average than a unanimous pick by a less diverse group.

We first tested our main hypothesis that semantics-based diversity measures can predict

WoC effects. Focusing initially on small groups (sizes 3-6), we compared the wisdom

scores of the 500 most diverse (MD) groups to those of the 500 least diverse (LD) groups.

MD and LD groups were selected by ranking all 5000 unique groups (of size n) according

to their diversity and then choosing the top/bottom 500 groups, respectively. Figure 3 shows

an example of the wisdom score distributions for MD and LD groups of size 5. Dotted lines

indicate medians. We computed similar distributions for group sizes 3, 4 and 6. Figure 4
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Figure 4.3: Summary of Distributions for Small Groups (Most Diverse vs Least Diverse
vs Randomly Sampled). Distributions are summarized as box and whisker plots (box
length indicates upper/lower quartiles, notch indicates median, whiskers indicate max/min
values). Although differences in medians were small (see Table 2), MD groups
outperformed LD groups for all small group sizes 3-6 (p <0.005; Mann-Whitney test).
Differences between MD and R groups were less pronounced (MD >R for group sizes
5 and 6; p <0.05). See Table 2 for corresponding numerical data, including associated
diversity values.
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summarizes these distributions in the form of box and whisker plots. As expected, the

MD groups outperformed the LD groups (p <0.005 for all group sizes; Mann-Whitney U

test). For comparison, we also show the wisdom score distributions for 500 groups selected

randomly (R) from the total 5000. The difference in wisdom scores between MD and R

groups, and between LD and R groups, was generally less pronounced than the difference

between MD and LD groups. This was expected, because randomly selected groups tended

to have diversity values somewhere between those of MD and LD groups. According to

our hypothesis, their group wisdom scores should therefore also fall somewhere between

those of MD and LD groups.

Table 2 lists the median diversity values for each of the distributions shown in Figure 4,

along with the corresponding group wisdom score data (median plus upper/lower quartiles).

Although the wisdom score difference between LD and R groups was significant for all

small group sizes (p<0.05), the difference between MD and R groups was statistically

significant only for group sizes 5 and 6. We believe this is due to the fact that random

selection provides some diversity “for free," and thus for MD groups to outscore R groups

represents a high performance bar. Indeed, Table 2 shows that, on average, the median

diversity of R groups was closer to that of MD groups than to LD groups.

We next extended our analysis to larger group sizes (10-20). Data for all groups

– including wisdom scores and diversity values – are shown in Table 2. As for small

groups, MD groups significantly outperformed LD groups for all group sizes 10-20. Figure

5 shows an example of the MD and LD wisdom score distributions for group size 16. The

small difference in median values (dotted lines) highlights the fact that, while statistical

differences between MD and LD wisdom scores were overall robust, effect sizes were

generally small. Box plots comparing distributions (MD vs LD vs R) for three representative

group sizes (13, 16, 19) are shown in Figure 6. Table 2 provides a more complete set of

numerical data for all group sizes 10-20. These data show the same general relationship
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Figure 4.4: Example of Wisdom Score Distributions for Group Size 16 (Most Diverse
vs Least Diverse Groups). MD groups significantly outscored LD groups (p <0.0005;
Mann-Whitney test). Dotted lines are medians. Distributions for additional larger group
sizes are summarized in Figure 6.
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Figure 4.5: Summary of Distributions for Larger Groups (Most Diverse vs Least Diverse
vs Randomly Sampled). MD groups outperformed LD groups for each of the group sizes
shown. (p <0.005; Mann-Whitney test). Differences between MD and R groups were less
pronounced (MD >R for each of the three group sizes shown; p <0.05). See Figure 4 for
explanation of box plots. Data for additional group sizes are shown in Table 2.

Table 4.1: Wisdom Scores and Median Diversity Values for Various Group Sizes.

Group Most Diverse Least Diverse Random
size LQ Median UQ Diversity LQ Median UQ Diversity LQ Median UQ Diversity

3 2.000 3.000 5.200 0.930 2.000 2.667 5.000 0.701 2.000 3.000 5.333 0.863
4 1.000 3.000 5.500 0.924 1.000 2.000 4.500 0.736 1.000 3.000 5.000 0.865
5 1.000 3.000 7.000 0.918 1.000 2.000 3.333 0.751 1.000 2.000 5.000 0.864
6 1.000 2.000 6.500 0.913 1.000 2.000 3.000 0.762 1.000 2.000 5.000 0.864

10 3.400 3.680 3.960 0.892 3.280 3.640 3.960 0.765 3.320 3.640 4.000 0.841
11 3.400 3.680 3.960 0.891 3.240 3.560 4.000 0.768 3.360 3.680 3.960 0.845
12 3.360 3.600 3.880 0.889 3.240 3.560 3.920 0.771 3.360 3.640 3.960 0.842
13 3.360 3.600 3.920 0.889 3.200 3.520 3.880 0.775 3.280 3.600 3.840 0.843
14 3.360 3.600 3.840 0.886 3.240 3.520 3.800 0.779 3.280 3.560 3.840 0.844
15 3.320 3.600 3.840 0.884 3.240 3.520 3.800 0.778 3.320 3.560 3.840 0.841
16 3.360 3.600 3.840 0.883 3.200 3.480 3.800 0.783 3.320 3.560 3.800 0.841
17 3.320 3.560 3.840 0.882 3.240 3.520 3.800 0.783 3.280 3.560 3.800 0.840
18 3.360 3.560 3.800 0.881 3.200 3.520 3.800 0.786 3.280 3.520 3.800 0.843
19 3.320 3.560 3.800 0.881 3.240 3.520 3.760 0.787 3.280 3.520 3.760 0.839
20 3.320 3.520 3.760 0.878 3.240 3.480 3.720 0.787 3.240 3.520 3.760 0.839

LQ = Lower Quartile Wisdom Score, UQ = Upper Quartile Wisdom Score, Median =
Median Wisdom Score
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Figure 4.6: Box Plots Showing Differences in Pick Diversity for Most Diverse vs Least
Diverse vs Randomly Sampled Groups. For each of the three group sizes shown, we
observed a clear relationship between our semantic measure of group diversity and diversity
of group members’ judgments (captain picks).
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between diversity and wisdom score for larger groups as for small groups, with MD groups

significantly outscoring LD groups (p <0.05) for 10 out of 11 group sizes examined. As

with small groups, differences between MD and R wisdom scores were more modest, with

MD significantly outperforming R groups (p <0.05) for 5 out of 11 group sizes.

The preceding analyses suggest that a semantics-based diversity measure can be useful

for selecting wiser groups. But is our measure valid? That is, does our diversity measure

predict actual diversity of judgments (in this case, diversity of captain picks)? To test

this, we analyzed pick diversity (as defined earlier) within our larger groups. (We focused

on larger groups because our method for small group selection effectively eliminated any

diversity among group members’ picks.)

Note that, while the maximum pick diversity for each group size is 1 according to

Equation 4, the minimum pick diversity varies as a function of group size. Thus it is

more instructive to compare pick diversities within a particular group size than across

group sizes. Figure 7 shows the relation between group diversity and pick diversity for

three representative group sizes (13, 16, 19). For each group size, pick diversity differed

substantially between MD and LD groups (p <0.001), with R groups showing intermediate

pick diversity. This was true for all group sizes 10-12 (p <0.001).

One might argue that, because users are likely to tweet about their captain picks, any

correlation between a tweet-based diversity measure and pick diversity is unsurprising.

To estimate the frequency with which a user tended to tweet about his or her captain

picks, we counted the number of times captain names – or to be more precise, the names

of players whom the user happened to have captained during one or more game weeks

– were mentioned in the user’s tweets. For each of the 912 users, and for each word

tweeted by each user, we checked whether the word matched the first or last name of

any player captained by that user during weeks 1-25. The total number of words that

were captain names (first or last) was 8,598 out of 1,294,294, or 0.7%. We also analyzed
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individual tweets and found that 7050 out of 86,938 total tweets (or 8%) contained captain

names. Given that the large majorities of words and tweets did not refer specifically to

captains, captain mentions alone are unlikely to explain the strong relationship between

our tweet-based diversity measures and pick diversity.

4.3 Summary

These results demonstrate useful measures of crowd diversity inferred from linguistic

analyses of crowd members’ communications. By “useful" we mean that these measures

can be exploited to create more effective (“wiser") crowds. We were able to extract such

measures from a source, Twitter data, that has been criticized for its shallowness1 and

whose hallmark characteristic is a brevity constraint imposed on individual tweets (140

characters). Although statistically significant, the observed effect size was nevertheless

small. A potential reasons for this is the absence of a crowd selection method. The current

technique randomly sampled n crowds and selected the top 10% as diverse crowds. The

next chapter investigates more sophisticated crowd selection.

1http://www.salon.com/2011/10/23/why_chomsky_is_wrong_about_twitter
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5 Choices In Crowd Selection: Word embedding,

clustering, and multi-view objective optimization

In the previous chapter, we discussed word vector generation and a diversity measure.

In this chapter, we discuss a crowd selection approach using these word vectors.

5.1 Crowd selection methodology

We refer to the mechanism as SmartCrowd from hereon. To find diverse participants,

our SmartCrowd approach first clusters similar participants according to their social media

posts, concerning both topics and communication style. Participants within the same cluster

are less diverse compared to those between clusters. We then approximate diverse crowds

by sampling from different clusters. From a set of such crowds we selected those that

maximize average pair-wise diversity measures.

As shown in Figure 5.1 our approach consists of three core components, further

described below: social-media based participant representation (Process arrow P1), participant

clustering (Process arrow P2), and diversity-based crowd selection (Process arrow P3).
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Figure 5.1: Approach overview
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P1: Social-Media Based Participant Representation. We generated a vector corresponding

to each user as described in the previous chapter.

P2: Participant Clustering. Clustering the participants before crowd selection helps

identify groups of similar users regarding topics and communication patterns. A group of

users may be following the same teams, players, and use the same linguistic cues. We want

to select an equal number of participants in a crowd, from each type of user set, to avoid

oversampling users that follow one kind of signal. Such information may be captured by the

multiple dimensions of word vector or multiple distance measures computing word vector

similarities. For word2vec, cosine similarity describes the similarity between documents

(e.g., a set of tweets) so that topic rather than document length determines similarity.

Nevertheless, the summary vector already eliminates social media post size. Thus, Euclidean

distance might also be appropriate. Related studies [56][61] show that both measures may

work for some word-vector based applications. In the absence of a clear rule on which

measure should be used for a particular application, we separately evaluate both measures.

We chose the spectral clustering algorithm because it shows exceptional performance

in identifying clusters of irregular distributions[62]. Spectral clustering constructs an n ×

n similarity matrix A where n is the number of participants (users) in our application.

To convert a distance matrix to a similarity matrix, we define an entry Aij for a pair of

participants (i, j) as,

Wij = e−
δ(xi,xj)

2σ2 (5.1)

Here, xi is a word2vec participant representation, δ can be Euclidean distance or

Cosine distance (1-cosine similarity), and σ functions as a hyperparameter. We chose the

standard σ value of 2.0. Using this matrix, spectral clustering returns a graph partition. As

spectral clustering requires a given number of clusters, we use the well-known Silhouette

Coefficient (SC) method [63] to find the optimal number of clusters. Thus, we run spectral
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clustering with different numbers of clusters, e.g., between [2, 30]. The SC is computed

for each clustering result, and the maximum SC indicates the best clustering structure.

As the kind of diversity (similarity) that helps create a “good” clustering structure

is unknown, we used multi-view clustering to synthesize views from multiple distance

measures. For word2vec vectors, cosine similarity and Euclidean distance potentially

capture different aspects of user clusters, albeit with modest divergence. Our experimental

results confirm that multi-view clustering works substantially better than single-view spectral

clustering with either Euclidean distance or cosine similarity for our application. It can also

be applied for other types of word vectors with distance measures as a separate view or a

view resulting from each dimension of a word vector.

P3: Diversity-based Crowd Composition. We considered two selection strategies

from each cluster to compose a diverse crowd: random representative selection and average

pairwise diversity-guided representative selection. Using random selection, we directly

sample n participants at random from each cluster such that n is not larger than the minimum

cluster size. Experimental results show that with a small number n, e.g., in [1, 3], the

random representative selection method performs reasonably.

We may improve the selection strategy further by maximizing the desired diversity

between representatives. The diversity of each generated crowd can be described as the

average of pairwise distances between the selected representatives. Cluster-based representative

selection already provides a good diversity measure, which can be further improved with

the following method. We performed crowd selection based on maximizing both average

pair-wise cosine distance and Euclidean distance using Pareto optimization. Here the

Pareto front indicates a set of optimal crowds based on the two distance measures.

Algorithm 3 describes the crowd selection process that finds all of the crowds on the

Pareto frontier. Let o1 and o2 represent two diversity measures. In each iteration, the

35



Input: Clusters C = c1, c2, . . . , ck. c1 = u1, u2, . . . , up. Representatives n
Output: a subset with n participants u
P={}
for i ≤ I do

Generate s = {p1, p2, . . . , pn×k} by selecting n participants from each cluster
at random

if @z ∈ P such that
((s.o1 < z.o1 ∧ s.o2 6 z.o2)or(s.o1 6 z.o1 ∧ s.o2 < z.o2)) then
Q = {z ∈ P |z.o1 < s.o1 ∧ z.o2 < s.o2}
P = (P \Q)

⋃
{s}

end
i = i+ 1

end
Algorithm 1: Crowd selection from clusters

algorithm generates a crowd s by selecting n participants at random from each cluster to

compare with the existing optimal solution. Comparison ensures that the generated crowd

s is not strictly worse than existing crowds in P , such that either its o1 or o2 is better than

one of the crowds in P . The process repeats for I iterations and results in set P that consists

of crowds satisfying Pareto optimality.

Among all candidate crowds in P , a “knee point” reveals the best final crowd with

conditions over the Pareto frontier [64]. Here, we do not select the best crowd from P but

consider all the crowds in P as our final set of diverse crowds. We compute the wisdom

score (described below) for each crowd of our final crowd set P . We then compare this set

of wisdom scores to the set of wisdom scores of a different crowd selection strategy.

5.2 Results

We evaluated our SmartCrowd for the FPL captain prediction problem [3] for these

goals: (1) how do the dominating factors in our approach, such as the chosen clustering

algorithms and crowd composing methods, affect the performance of the selected crowds;

(2) does our crowd selection strategy lead to wiser crowds, compared to other crowd

selection methods; and (3) does the wisdom of the crowd effect depend on diversity.

36



5.2.1 Experiment designs

For participant clustering, we used spectral clustering with Euclidean distance or

Cosine distance (1-cosine_similarity), and multi-view clustering, synthesizing the clustering

structures on Euclidean distance and Cosine distance. We evaluated two representative

participant selection strategies, 1) random sampling over clusters, and 2) average pairwise

distance maximization based sampling. We maximized two average pairwise distance

measures (Cosine and Euclidean distance) using Pareto optimization, as our multi-view

clusters were generated using both measures. Pareto optimization resulted in 3-6 optimal

crowds from our dataset each time we ran the experiment. We repeated the process several

times, crowd formation with Pareto optimization (Algorithm 3), to obtain l crowds. In this

thesis, we chose l = 250.

Wisdom Score: To compare crowds, we computed each crowd’s “Wisdom Score”

G = {U1, U2, . . . , Un}. We first extracted their captain picks for a week windex as Cindex =

{c1, c2, . . . , cn} where ci is a captain picked by participant Ui in week windex. Crowd

wisdom is computed as,

WS =

∑25
1 Mod(Cindex)

25
(5.2)

Here, Mod(Cindex) represents the points from the individual captain receiving the most

votes from the crowd in the index game week. In case of a non-unique mode - i.e., for a

tie, we randomly selected one of these modes. A crowd’s wisdom score was the average of

its scores over all 25 game weeks considered in our analysis.

5.2.2 Data collection and implementation

We collected FPL related tweets using two FPL keywords, FPL and @OfficialFPL.

As the tweets also contained their Twitter usernames, we matched these usernames to
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their FPL1 usernames to extract their captain pick data. We manually verified 2786 such

matches. We further collected their soccer related Twitter data by scraping their Twitter

timeline (for a total 4,299,738 tweets)2.

For evaluation purposes only, we collected 25 weeks of captain picks for 2015-16

FPL season for each participant. We also collected that captain’s score based on his game

performance from the same FPL portal. We further collected participant performance data

for seven seasons (2009-2015), to compare with an expert-based crowd selection strategy

that assumes the existence of historical performance data for defining expertise. 3

5.2.3 Results and analysis

The results are organized according to the evaluation goals: (1) Factors affecting

the SmartCrowd, to show how methods for clustering and proposed crowd composition

method affect final SmartCrowd performance; (2) Comparison of different crowd selection

methods. Based on the optimal SmartCrowd, we first compare the performance of SmartCrowd

with a random crowd selection method, both of which do not depend on historical crowd

performance data. Further, we show that the performance of SmartCrowd is comparable to

expert crowds when expert participants can be selected using historical performance data;

(3) Finally, we analyze the effect of diversity on crowd wisdom.

Factors Affecting the SmartCrowd

As described in Section 9.1, participant clustering, and diversity-based crowd composition

are two key influences. Hence, we examined their effects on final crowd performance.

Participant clustering: The best number of clusters were 6(0.27), 7(0.23), and 7(0.45),
1fantasy.premierleague.com
2As the keyword list is not exhaustive, we may have more than ∼ 1M FPL tweets in our source dataset.
3As the dataset contains actual tweets and usernames, we have not uploaded the dataset. It will be made

available from the corresponding author upon request.
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(b) Monte carlo simulation comparing wisdom scores of MV
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(d) Monte carlo simulation comparing wisdom scores of MVP
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Figure 5.2: (a) and (b) compares crowds generated using Multi View clustering(MV),
Cosine(Cos), and Euclidean(Euc) distance based clustering. (c) and (d) compare crowds
generated by maximizing one distance measure (CosC, EucE) versus maximizing both
distance measures (MVP). MVP crowds perform the best.
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for Euclidean-spectral (spectral with Euclidean), Cosine-spectral(spectral with cosine), and

Multi-view, respectively. The bracketed values indicate the corresponding maximum silhouette

value. Note that Multi-view clustering produced the best clustering structure.

We used these clustering structures in subsequent analysis. We sampled crowds by

selecting n participants from each cluster at random for a given clustering structure (Euclidean-spectral,

Cosine-spectral, and Multi-view). We selected l such crowds from each clustering structure.

Figure 5.2a,b shows the mean and standard error for the wisdom score for crowds generated

from each clustering structure. Crowds from a multi-view clustering structure(MV) achieved

the best average wisdom score. They also outperformed crowds generated from Cosine(Cos)

and Euclidean clustering(Eu) structures, (T p-value < 0.05).

We also used Monte Carlo simulation to compare the wisdom score of a randomly

selected crowd from set one to the wisdom score from a randomly selected crowd from set

two. We repeated this 1000 times - each time counting whether the wisdom score of a set

one crowd was higher than the wisdom score from a set two crowd. The ratio of the total

counts to 1000 provides the Monte Carlo simulation score. A Monte Carlo score of ∼ 0.5

indicates that two sets of crowds are equally likely to beat each other. Monte Carlo score

of ∼ 1.0 indicates that a crowd from set one almost always beats a crowd from set two.

Figure 5.2b shows the Monte Carlo simulation score for comparing MV to Eu, and Cos.

The Monte Carlo simulation score > 0.6 indicates that MV crowd is likely to outperform

both Cos and Eu crowds.

Diversity-based Crowd Composition Next, we evaluated a more sophisticated crowd

composition method, i.e., the proposed Algorithm 3 for multi-view clustering. For single-view

clustering, we had we separately maximized crowd selection based on Average pairwise

Euclidean and Cosine distance respectively. Specifically, we sorted crowds generated by

selecting n participants at random from each cluster for a given distance measure and

selected the top l crowds. For multi-view clustering, we maximized both average pairwise
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Euclidean and cosine distance for crowd selection. Figure 5.2c shows the average and

standard error of l crowds’ wisdom scores. Multi-view clustering combined with Pareto

optimization based crowd selection generated crowds (MVP) that achieved the best wisdom

score. These crowds also outperformed crowds generated using a single distance-based

clustering and maximization (EuE and CosC) method (T-test p-value < 0.05). Figure

5.2d shows the Monte Carlo simulation scores comparing MVP crowds to EuE and CosC

crowds. An MVP crowd was ∼ 80% likely to have a higher wisdom score than EuE and

CosC crowds. MVP crowds also outperformed MV crowds, i.e., crowds selected without

distance measure maximization.

Comparison with Other Crowd Selection Strategies

Using the optimal settings obtained from the first set of experiments (Multi-view

clustering and Pareto optimization based crowd selection), we compared SmartCrowd with

other crowd selection methods. Without participants’ prior performance knowledge, we

considered randomly selected crowds as our baseline. Specifically, we generated random

crowds by selecting n × k participants at random from all participants. Here, n indicates

the number of representatives that we considered for SmartCrowd and k indicates the

number of clusters in SmartCrowd. As we found 6 clusters in our SmartCrowd selection,

we generated random crowds in multiples of 6, i.e., 6, 12, 18, 24 corresponding to n =

{1, 2, 3, 4} representatives per cluster.

Figure 5.3a shows the box plot of wisdom scores for SmartCrowds and random crowds

for different numbers of crowd participants. On each box, the central mark indicates the

median, and the bottom and top edges of the box indicate the upper and lower quartile.

Whiskers extend to the most extreme data points not considered outliers, and outliers appear

as ’+’. SmartCrowds (SC) have consistently larger wisdom scores than random crowds (R)

for all crowd sizes. SC provided significantly higher wisdom scores than R (T p-value
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(c) Box plots comparing crowds
sampled using various crowd
selection strategies

Figure 5.3: SmartCrowd(SC) crowds compared with Random(R), Expert(E),
Euclidean(EDis), and Cosine(CDis) distance based crowds. (a) shows that SC performs
significantly better than R. As shown in (b) and (c), SC performs better than R, EDis, and
CDis. SC outperforms E20, E10, and E5 while almost equivalent to E2 and slightly worse
than E1.

< 0.05). Figure 5.3b shows the Monte Carlo simulation score for comparing SC to R

selection (SC vs R line). SC is 85% likely to beat a random crowd. The probability that

SC outperforms a random crowd does decrease with increasing crowd size. Increasing

crowd size in the random sample begins to approximate a better choice in aggregate. Thus,

a smaller crowd size, e.g., one representative per cluster, to form a diverse crowd using

SmartCrowd is sufficient.

Next, we compared SmartCrowd with expertise-based crowd selection. Expert crowds
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with a known performance history often perform very well [3]. For evaluation purposes,

we sampled expert crowds only from the top performing participants. Figure 5.3c shows

the box plots for expert crowds E2, E5, E10, and E20 generated from the top 2%, 5%,

10%, and 20% performance thresholds, respectively of crowd size six (one representative

per cluster). E2 crowds do have the highest wisdom scores. SmartCrowd (for crowd size

six) had comparable wisdom scores as E5. SmartCrowd significantly outperformed E10,

E20 (T p-value<0.05). Moreover, the E2 expert crowd advantage is marginal and therefore

comparable to SmartCrowd.

Figure 5.3b indicates Monte Carlo simulation scores comparing diverse crowds to

various expert crowds. Monte Carlo scores of 0.7 and 0.58 for comparing SmartCrowd to

E20 and E10 also show that a SmartCrowd crowd is quite likely to outperform E10 and

E20 expert crowd for crowd size six. Increasing crowd size does not benefit SmartCrowd.

Hence, we did not observe an improved wisdom score with increasing crowd size. Next,

we compared the performance of a SmartCrowd to one assembled by maximizing either

average pairwise cosine or Euclidean distance measure. We generated l random crowds

and sorted them based on average pairwise Euclidean and Cosine distance, selecting the

top 10% (l) crowds as representative. AvgE and AvgC in Figure 5.3b shows the resulting

box plots of the wisdom scores. Figure 5.3a shows the Monte Carlo simulation scores

comparing the SmartCrowd selection strategy to average pairwise Euclidean and Cosine

distance-based crowd selection strategies. A Monte Carlo simulation score of 0.7 indicates

that the SmartCrowds substantially outperformed these crowds.

Next, we compared various crowd formation strategies based on whether a crowd of

size n outperforms an average individual. We ranked all 2786 participants using aggregated

season scores, i.e., an average of all 25 weeks’ captain scores. Figure 5.4 shows the

percentile of participants that a crowd outperforms on average. We computed an average

of the l crowds and computed the percentile of participant scores that it outperforms. On
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Figure 5.5: Cluster wise most frequent words

average a randomly generated crowd of size 6, achieves a better “wisdom score” than 72%

of total participants. However, a diverse crowd of size 6 achieves a better “wisdom score”

than 93% of the participants.

Diversity, Expertise, and Wisdom of Crowd Effect Analysis

Finally, we examined the diversity that SmartCrowd captures, including topic diversity,

the effect of crowd size on diversity, and the relationship between social media-based

diversity and other diversity measures.

Topic diversity. We computed the TF-IDF4 score for each word in the tweets contributed

by the participants in the same cluster, excluding stop words. We selected words with

the highest TF-IDF scores to capture the most frequent topics discussed in each cluster as

shown in Figure 5.5. Apparently, participants in different clusters show different interests in

4https://en.wikipedia.org/wiki/Tf-idf
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Figure 5.6: Inferred diversity (a) and Judgment diversity (b) comparison. SC has higher
inferred and judgment diversity. Inferred diversity correlates with judgment diversity.

teams, players, and the informative FPL accounts. Thus, SmartCrowd finds representatives

having diverse perspectives in soccer and FPL for captain choice.

Some words, e.g., join, team, etc. do not appear in the figure as these words do not

explain the clusters. Moreover, some teams appear in more than one cluster. However, the

TF-IDF scores of these words varied for each cluster. To capture this, we ran a Spearman’s

correlation analysis for each pair of six clusters. Thirteen of fifteen cluster pairs were

negatively correlated, confirming cluster diversity.

Next, we confirmed whether SmartCrowd’s outperformance truly results from diversity.

Multi-view clustering creates clusters of different sizes. If small clusters contained mostly

experts, we effectively assure at least n experts in our diverse crowds. SmartCrowd’s

outperformance could merely reflect expertise instead of diversity. To exclude this explanation,

we eliminated the two smallest clusters of sizes four and seven and followed our crowd

generation strategy based on Algorithm 3. We compared the resulting crowds without

these clusters to crowds generated with all clusters(SmartCrowds). The resulting Monte

Carlo simulation score∼ 0.5 indicated that the two sets of crowds had similar performance.

Therefore the eliminated crowds do not account for SmartCrowd outperformance.

Inferred diversity vs. judgment diversity. SmartCrowd selects diverse crowds by

clustering similar participants represented by their word2vec vector. We refer this diversity
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Figure 5.7: Inferred diversity comparison for SmartCrowd & Random crowd. SC has
higher inferred diversity than R.

as “inferred”. This is computed as the summation of average pairwise cosine and Euclidean

distance of a group. Figure 5.6a compares crowds based on “inferred diversity”, and shows

that SC crowds are more diverse than Random crowds. Inferred diversity decreases with

increasing crowd size as a newly added participant’s social media is likely to be closer

(regarding Euclidean and Cosine) to at least one existing participant.

We examined whether inferred diversity produces a set of participants with different

judgments. We randomly sampled 10,000 participant pairs from a single cluster (selected

at random) – “ similar participants”. The probability of a participant pair selecting different

captain choices is

pd =
NDtotal

10000
(5.3)

Here, NDtotal is the number of times a participant pair differed in captain choice. We

also generated another set of participant pairs, “diverse participants” by selecting two

participants from different clusters and computed pd. pd for “similar participants” was

0.81 while pd for “diverse participants” was 0.85. Hence, a crowd sampled from “inferred

diversity” measure is also likely to demonstrate judgment diversity.

Further, we examined Merayo et al. ’s. [21]“judgment diversity” measure to compare

SmartCrowd with Random crowds. Accordingly, judgment diversity likely implies a less

biased sample of participants, which provides a better-aggregated opinion. Merayo et al. ’s
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judgment diversity measure is

D =

∑
i,j d(ui, uj)

n(n− 1)
, (5.4)

where d(ui, uj) is the difference between the performance scores of participants ui and uj

(e.g., scores corresponding to their captain picks) and n is the total number of participants in

the crowd. Using this metric, we investigated whether SmartCrowd generates crowds with

better judgment diversity than a random crowd. We represented the judgment diversity

of a crowd with the average of D over 25 weeks. Figure 5.6b confirms that SmartCrowd

results in greater judgment diversity than a randomly selected crowd. Judgment diversity

concerning captain score increases with increasing crowd size as participants chose a captain

among 100+ soccer players. Hence, a new participant may choose a captain that is not

already chosen by other members of the existing crowd.

The consistency between judgment diversity and inferred diversity is further confirmed

with crowds formed by sampling only within a specific cluster. SmartCrowd samples

crowds by selecting participants from each cluster. Hence, crowds formed by participants

from the same cluster should have low diversity. We sampled crowds from each cluster by

selecting n participants at random. Figure 5.7a compares the wisdom score of SmartCrowd

and non-diverse crowds. C1, C2, C3, and C4 represent crowds sampled from cluster1,

cluster2, cluster3, and cluster4 respectively. We ignored two clusters with less than ten

users as we cannot generate l crowds of size ≥ 6 from these clusters. Crowds generated

using SmartCrowd consistently outperformed crowds generated from one cluster regarding

wisdom score. Figure 5.7b shows the average judgment diversity of crowds generated using

SmartCrowd (SC) and (non-diverse) crowds generated from each cluster. SC also has the

highest overall judgment diversity. Thus, in the absence of historical judgment data, our

inferred diversity measure can serve as an effective proxy for judgment diversity and the

attendant benefits to accuracy consistent with the findings of Merayo et al.[21]. Because

the judgment diversity measure is a measure of variance, a larger variance is correlated with
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a larger mean and hence is expected to correlate with a better answer in aggregate. As a

diverse crowd provides different judgments, it results in increased variance, and hence we

expect a crowd to perform better than a non-diverse crowd. We examined whether diversity

is meaningful in sampling crowds from users in different ranges of expertise. We generated

crowds with the top-k experts, k ∈ [50, 2500]. Figure 5.7c shows the wisdom score

achieved by crowds sampled using SmartCrowd(SC) and crowds sampled at Random(R).

Crowds sampled using SmartCrowd benefit performance regardless of the expertise range.

Moreover, the best performance results from diverse experts. In other words, one can

effectively predict a captain despite the differing (and uncontrolled) expertise range inherent

in Twitter data. Interestingly, crowds sampled from the top 50 and 100 experts achieve

better wisdom score than any single user.

We also examined whether diversity can replace the expertise and the performance of

hybrid (consisting of both experts and diverse non-experts) crowds. For this, we considered

the top 100 users as experts and the rest of the users as non-experts. We formed crowds

of size six from the top 100 expert users and kept on replacing n users with n non-expert

but diverse users, n ∈ [0, 6]. We sampled the n users from the remaining r clusters. For

example, if the initial set of expert users are already selected from the three out of six

clusters, and we want to replace n = 3 users, then we select one user from each of the

remaining three clusters. To select a user from a given cluster, we again maximize the

two average pairwise distance measures. Figure 5.8b shows the results for replacing n

experts with diverse non-experts. Diverse but non-expert participants can replace experts

without trading performance. In fact, diverse participants replacing 1-2 experts results in

better-performing crowds than all experts. All non-expert crowds do not perform better

than all experts. Note that in this case, these crowds do not consist of any of the top

100 expert participants, unlike the experiments for comparing diverse crowds with expert

crowds.
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Figure 5.8: (a)SmartCrowd(SC) and Random crowd(R) wisdom score comparison. SC
with 6 participants achieve wisdom score that is achieved by 100+ participants of R., (b)
shows the effect of replacing experts with diverse non-experts.

Finally, we examined the effect of crowd size and wisdom score. Crowd size potentially

affects prediction performance. Figure 5.8a plots the mean and standard error wisdom

score for increasing crowd size. With increased crowd size, random crowd performance

approaches a SmartCrowd, while SmartCrowd’s performance slightly decreases. They

achieve similar wisdom scores for crowd size at or above 108. However, even at a large

crowd size, e.g., 150, random selection does not perform better than SmartCrowd with

only 6-12 representatives. With only six participants SmartCrowd can judge as accurately

as 100+ Randomly selected users.

5.3 Summary

This chapter demonstrated that social media data can be used to infer diversity, sampling

diverse, and consequently smart, crowds for the selection of top performing FPL captains.

A crowd sampled using the proposed technique is notably more accurate than a crowd

sampled at random and comparable to crowds of the top 2-% experts. Hence, social media

data provide an effective proxy for often unavailable historical expertise data. We clustered

participants based on their social media content, and showed that multiple similarity measures

improve clustering over a single similarity measure. Clustering users in this way allowed

us to sample by diversity to improve FPL captain prediction. Average pairwise diversity

maximization further improved crowd wisdom. We also showed that the performance was
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truly attributed to diversity and diverse non-experts can replace expert participants in a

crowd without compromising performance. Hence, such a technique is crucial when one

does not have an access to expert opinion.
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6 Top-Down diversity and wisdom of crowd

The previous chapters showed that word2vec based diversity, that is, bottom-up diversity,

can help identify diverse and subsequently smart crowds. This chapter investigates top-down

diversity and its effect on diverse crowd selection and its wisdom. This chapter also

investigates the explanation of diversity.

6.1 Top-down diversity and crowd selection

Figure 6.1 describes our approach to generating diverse crowds based on FPL captain

selection strategies in social media posts. Each participant is categorized based on the

number of tweets indicating the two captain selection strategies. Hence, classifying tweets

indicating a captain selection strategy and participant categorization are the two key components

of our diverse crowd generation. Crowd selection from these categories completes the

crowd formation process. Subsequent knowledge graph analysis provides an explanation

for calculated diversity.

6.1.1 Tweet classification

Consistent with common practice [65], we used machine learning-based text classification

for identifying player selection strategy from tweets. We manually annotated 165 of tweets

as Popular choice and 258 tweets as Differential choice tweets. We considered an equal

number of non-popular and non-differential choice tweets in training the classifiers. The

two classification categories (popular choice and differential choice) are not orthogonal; the

same tweet may provide evidence for both popular as well as differential choice. Hence,
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we trained two tweet classification models. Model 1 identifies whether a tweet belongs to

popular choice and Model 2 determines whether a tweet belongs to differential choice.

We used a Bag of Words approach combined with term frequency and inverse document

frequency (TF-IDF) for generating a feature vector for each tweet [66]. We considered

uni-grams and bi-grams as features and found whether each feature is present in a tweet.

These vectors are then processed for TF-IDF computation, and each feature is represented

with its TF-IDF value instead of “1” or “0”. To avoid over-fitting in training based on these

sparse tweet vectors, we used k-best feature selection. This feature selection technique uses

Singular Value Decomposition, widely used in feature selection for text classification [67].

We trained two models using a Random Forest classifier with ten-fold cross-validation with

a 70%, 30% train-validation split. We also reserved 10% of the labeled data as test data to

determine classifier performance accuracy. We report the final accuracies for each model,

i.e., popular choice, and differential choice classification, accuracies in Section ??.

We processed the tweets for each participant using Model 1 to identify the number of

tweets in popular choice and Model 2 to identify number of tweets in Differential choice.

Formally, for each participant Ui, we have Ui = {nP , nP , nD, nD} (Same as TSi in Figure

6.1). Here each n is a number where nP is popular choice tweets, nP non popular choice
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tweets, nD Differential choice tweets, and nP is non-differential choice tweets.

6.1.2 Binomial test based categorization

Each n in Ui may result from different distributions. Hence, we normalize each n

by computing the Z-score for each n with respect to all participants. These Z-scores

represent each participant relative to others in terms of nP , nP , nD, and nD. As each

participant provides tweets suggesting both strategies or neither, we require a decision rule

to categorize each participant according to the different amounts of data they provide. We

do not consider these strategies as mutually exclusive and investigate whether a popular (or

differential) choice best characterizes the participant or non-popular (or non-differential).

We assign a participant as one of the following four participant types: 1. Popular Choice,

2. Differential Choice, 2. Popular and Differential, 3. Neither popular Nor differential.

As the names suggest, Type 1 refers to participants most likely to exhibit popular choice

tweets, Type 2 are participants most likely to exhibit Differential choice, Type 3 participants

are ambiguous, providing substantial evidence for both, and Type 4 participants do not

provide any evidence for either one of these strategies. We used a binomial test with a

null hypothesis that the two strategies are equally likely to occur. Formally, a binomial

test (BiTest) Bq for an event with q as the probability for an event to succeed and q as the

probability of failure can be described as,

Bq,q =

(
N

q

)
· pq0(1− p0)q (6.1)

Here, N is defined as the sum of q and q. p0 is the probability of occurrence of a success in

each one of the N trials. In our study, we set p0 = 0.5 and the binomial test was performed

at 5% alpha level1. This determines whether q is likely to occur more than q, 95% of the

time.
1http://www.statisticshowto.com/what-is-an-alpha-level/
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Input : Ui = {nP , nP , nD, nD}
Output : T1 ∨ T2 ∨ T3 ∨ T4

BnP ,nP = BiTest(nP , nP )
BnP ,nP = BiTest(nP , nP )
BnD,nD = BiTest(nD, nD)
BnD,nD = BiTest(nD, nD)
BnP ,nD = BiTest(nP , nD)
BnD,nP = BiTest(nD, nP )
if BnP ,nP > 0.05 and BnD,nD ≤ 0.05 and BnP ,nD ≤ 0.05 then

return T2

else if BnP ,nP ≤ 0.05 and BnD,nD > 0.05 and BnP ,nD ≤ 0.05 then
return T1

else if BnP ,nP ≤ 0.05 and BnD,nD ≤ 0.05 then
return T3

else
return T4

end if
Algorithm 2: Binomial test based categorization of participants at 5% significance.
Given the Z-scores of a participant Ui, the algorithm categorizes participants in one of
following types: Type 1(T1), Type 2(T2), Type 3(T3), Type 4(T4)

The participant exemplifies Popular choice (Type 1) or Differential choice (Type 2)

when the Binomial tests find significant evidence for only the corresponding type. Specifically,

B(nP,nP) should indicate that likelihood of nP over nP is more than 95%, and the

possibility of other events is less than 95% to consider a participant as Type 1. Algorithm 3

formalizes this participant type assignment process. It starts with six binomial tests (lines

3-8). Based on the condition described above, it decides the participant type (line 9-17).

6.1.3 Diverse crowd selection

Type 1 (Popular) and Type 2 (Differential) participants provide strong evidence of

using the corresponding strategy in player selection. About half of the participants are

Type 3 (Both) or Type 4 (Neither), who provide ambiguous or unclear strategy indicators

that will likely muddy diversity. Hence, we avoided participants belonging to these two

types in our diverse crowd formation and created our diverse crowd using clear Type 1 and

Type 2 participants. We selected n participants from Type 1 and Type 2 to build our diverse
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crowd.

6.1.4 Understanding diversity

The diverse crowds that we generated in the previous step depend on tweet classification.

To explain the kind of diversity such a tweet classification captures in Fantasy Premier

League domain, we extracted the top most informative features (keywords) from our Random

Forest Classifier[68]. We mapped these keywords to an English Premier League domain-specific

knowledge graph extracted from DBpedia using a domain-specific knowledge graph extraction

tool[19]. Such a knowledge graph provides a good representation of a corresponding

domain [19][69]. The resulting hierarchy for the English Premier League in Figure 6.1

indicates that the top concept Chelsea F.C. subsumes Eden Hazard who has two attributes

(subsumes) Forward and Winger. Hence, a parent concept subsuming multiple child concepts

explains child concepts. We use the parents in this hierarchical structure to encompass the

keywords identifying multiple strategies.

We seek the concept in a knowledge graph subsuming most of these keywords. As

we had two classification models corresponding to two of the captain selection strategies,

we obtain two lists of keywords from each model. Each keyword has an importance

value between 0 and 1 from the Random Forest Classifier. We use these values to assign

each concept in the domain-specific knowledge graph a weight, as shown in Figure 6.1.

Specifically, we compute 3-hop parents of each concept and assign a score for each of

parent concept as follows,

S =
Cw
Pl

(6.2)

Here,Cw refers to the concept weight indicated by the keyword weight and Pl indicates

a parent level of the current concept. For each concept C associated with the keyword, we

get the parents of C and compute its corresponding S. If we find that the parent concept

being processed as part of C is already identified as a parent for another concept, then we
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add this score to the existing score. Hence, a score associated with each parent concept

indicates the number of keywords the particular parent concept subsumes. We repeat the

same procedure for two hops, and three hop parents. As 1-hop parents are more relevant

than 2-hop and 3-hop parents, the concept score is multiplied by the inverse of parent

level Pl. As shown in Figure 6.1, we found Forward and Winger as important keywords

to distinguish popular choice tweets and differential choice tweets respectively. In the

English Premier League knowledge graph, we start with these two concepts and ascend

the hierarchy (extracting Eden Hazard, and Chelsea F.C.) and compute S for each concept.

As concepts with high scores can best explain multiple keywords and hence the player

selection strategies, we score each concept in the knowledge graph and consider the top-N

concepts for understanding diversity. This allows us to identify concepts that unify the

categories with implicit contents that are not explicit in the tweets themselves.

6.2 Results

In this section, we describe the dataset, evaluation measure, and results.

6.2.1 Dataset

We collected FPL related tweets using the Twitter streaming API with two FPL related

keywords, FPL, and @OfficialFPL. We determined captain pick data from the FPL portal2

by matching Twitter usernames associated with these tweets to their FPL usernames. We

used FPL captain pick data for the 2016-17 season.

We manually verified 3385 participant matches based on Twitter username and FPL

username and collected their additional tweets by crawling their Twitter timelines. For

each participant, we collected tweets ranging from 2014 to August 2016 (before the start of

FPL 2016 season). We filtered these tweets using FPL related keywords to consider only

2fantasy.premierleague.com
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relevant tweets in the participant representation. We obtained ∼1M participant tweets for

the 3385 participants with 1282 median tweets and 1385 average tweets per participant.

Hence, for each participant, we have a set of his/her FPL related tweets, and captain picks

for 25 game weeks. 3

6.2.2 Evaluation measure

Consistent with Goldstein et al.[3], we computed a crowd’s wisdom score (WS) as the

FPL score of a captain receiving the greatest number of votes from a crowd. For a crowd

of participants, G = {U1, U2, . . . , Un}, we extracted their captain picks for a week windex

as Cindex = {c1, c2, . . . , cn} where ci is a captain picked by participant Ui in week windex.

The wisdom score for a crowd is computed as,

WS =

∑25
1 Mod(Cindex)

25
(6.3)

Here,Mod(Cindex) represents the corresponding real-world points of the individual captain

receiving the most votes from the crowd in the index game week. In case of a non-unique

mode - i.e., for a tie, we selected one of these modes randomly. A crowd’s wisdom score

was the average of its weekly scores over the 25 game weeks considered in our analysis.

6.2.3 Results and analysis

We first show the results for tweet classification. We used ten-fold cross-validation for

training and unseen labeled test data for validating the resulting classifier.

Table 6.1 shows the cross-validation results for tweet classification and Table 6.2

shows results for tweet classification on the unseen test data. We report the classifier’s

performance for both identifying popular (or differential) and non-popular (or non-differential)

3We have not provided unrestricted access to the dataset, as it contains actual tweets and usernames.
However, the dataset is available from the corresponding author upon request.
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Table 6.1: Tweet classification cross-validation results. Labels ‘0’ and ‘1’ indicate results
for classifying a tweet to P (D) and P (D), respectively. The classifier achieved 0.85
average F-score.

Strategies Label Precision Recall F-score

Popular
0 0.87 0.90 0.93
1 0.97 0.66 0.76

Differential
0 0.97 0.67 0.79
1 0.87 0.99 0.93

Table 6.2: Tweet classification results on the test dataset. Labels have the same meaning as
in Table 6.1. The classifier achieved a 0.79 average F-score for labels ‘0’ and ‘1’.

Strategies Label Precision Recall F-score

Popular
0 0.86 0.92 0.89
1 0.86 0.76 0.81

Differential
0 0.77 0.50 0.61
1 0.78 0.92 0.84

judgments. The label ‘0’ indicates Popular choice (or Differential choice) tweets and label

‘1’ indicates non-popular choice (or non-differential choice) tweets. Rows with ‘1’ indicate

the classifier’s performance for identifying Popular choice (or Differential choice) and

Rows with ‘0’ the indicate classifier’s performance for identifying non-popular choice (or

non-differential choice) tweets. For each participant, we computed the four Ui values with

the count of tweets identified in ‘1’ and ‘0’ using Model 1 and Model 2 as follows: 1) nP

is the number of tweets identified by Model 1 in class ‘1’. 2) nP is the number of tweets

identified by Model 1 in class ‘0’. 3) nD is the number of tweets identified by Model 2 in

class ‘1’. 4) nD is the number of tweets identified by Model 2 in class ‘0’. In other words,

we ignored tweets for which the classifier was not able to decide which class (either ‘1’ or

‘0’) it belongs.

Model 1 achieved an 84.5% F-score for the Popular Choice tweet classification model

and Model 2 achieved an 86% F-score for the Differential Choice tweet classification in

cross-validation. A classification model with high training accuracy may also indicate

over-fitting. To guard against over-fitting, we measured these results on test data that the

classifier did not encounter while training. On test data, the models achieved adequate 85%
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Figure 6.2: Box plots comparing wisdom scores of diverse crowds (D) and random crowds
(R). Diverse crowds achieved a better wisdom score with a smaller standard deviation
compared to random crowds.{D8,R8}: Diverse and Random crowd of size 8.
and 72.5% F-scores for Popular choice and Differential Choice, respectively which rules

out over-fitting.

We used these classifier models to generate participant representations and select

diverse crowds (see 9.1). Out of 3385 total participants, we had 895 participants identified

as Type 1 (Popular choice) and 789 participants identified as Type 2 (Differential choice).

Next, we evaluate diverse crowd formation using the wisdom score achieved by crowds

selected from these types. As described in Section 6.1.3 we generated diverse crowds

by randomly picking n participants from the two participant types. We generated l such

crowds, where l = 5000 referred to as D (Diverse crowds). We compared these crowds

with R (Random crowds), i.e., crowds generated by randomly selecting the same number

of participants from the complete set of 3385 participants. Figure 6.2 shows box-plots for

different crowd sizes. Here, crowd size is a multiple of 2 as we had two types of participant

categories to generate diverse crowds. For each crowd, we computed its wisdom score

based on the Wisdom Score formula resulting in two score lists (the diverse crowd score list

and random crowd score list). On each box, the central mark indicates the median, and the

bottom and top edges of the box indicate the upper and lower quartile, respectively for these

lists. The whiskers extend to the most extreme data points not considered outliers, and the

outliers are plotted individually using the ‘+’ symbol. Diverse crowd lists always achieved
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Figure 6.3: A diverse crowd consistently out performed Random crowds for group sizes
10 to 100. Our diverse crowds also outperformed crowds sampled using word2vec based
diversity, w2VDiv.

a better median wisdom score than Random crowds for crowd sizes ranging from 8 to 200.

Such an effect was also indicated by p < 0.05 for the t-test between Diverse crowds and

Random crowds for each crowd size. We had a modest yet statistically significant effect

for the diverse crowd out-performing Random crowds. As larger crowds tend to be more

accurate than smaller crowds[2], we get better wisdom scores for large crowds than small

crowds.

Figure 6.2 indicates that diverse crowds achieved a better median wisdom score than

Random crowds. However, it is also of interest to know how likely a diverse crowd is to

produce a better wisdom score than a Random crowd. We used Monte Carlo simulation for

this purpose. Specifically, we randomly selected a single diverse crowd from the Diverse

crowd set and a single random crowd from the Random crowd set. We then computed a

win if the diverse crowd had a higher wisdom score than the random crowd. We repeated

this for 1000 times and calculated a Monte Carlo simulation score as a ratio of the number

of wins to 1000. A Monte Carlo simulation score of ∼ 0.5 indicates that the two sets of

crowds are equally likely to beat each other. A Monte Carlo score of ∼ 1.0 suggests that a

crowd from set one almost always beats a crowd from set two. Figure 6.3 shows the results

for these Monte Carlo simulations.
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Figure 6.4: Wisdom of crowd effect. Diverse crowd of size 60 outperforms 89% of the
individual participants.

We observed a ∼ 0.63 Monte Carlo simulation score indicating that a Diverse crowd

is 63% likely to outperform a Random crowd. We also compared our Diverse crowds

generated from solution strategy to a diverse crowd formed using our previous word2vec

based diverse crowd selection approach. For this analysis, we created word2vec representations

of participants based on their tweets and generated l × 10 = 50, 000 random crowds. For

each crowd, we computed an average pairwise cosine distance between participants of the

crowd using their word2vec representations[70]. We selected the top 10% (l = 5000) of the

crowds having the highest average pairwise distance, referred to as w2VDiv, and compared

them with the Diverse crowds. A Monte Carlo simulation score of∼ 0.59 indicated that the

proposed top-down, strategy-based method for assembling diverse crowds can assemble a

better crowd than word2vec based diverse crowd selection.

Next, we evaluated our Diverse crowds regarding the wisdom of crowd effect. In

other words, we measured the number of participants that a crowd, on an average, can

outperform. Specifically, we computed the season score achieved by each participant (using

the same formula as WS) and found the number of participants that had a lower season

score than an average wisdom score of a comparison crowd. Figure 6.4 plots the number

of participants a crowd outperforms on an average.

On average, a random crowd of size 8 outperforms 74.2% of the individual participants
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while a diverse crowd of the same size outperforms 80.3% of the individual participants. On

average, a diverse crowd of size 60 is better than almost 90% of the individual participants

and approximates the performance of a random crowd more than three times as large.

We also examined whether diverse crowds produce diverse judgments. The intuition is

that crowds producing diverse judgments likely imply a less biased sample of participants,

which in turn likely yields a better-aggregated opinion. For this purpose, we used a judgment

diversity measure proposed by Merayo et al.[21]. Formally the measure is defined as

follow,

M =

∑
i,j d(ui, uj)

n(n− 1)
(6.4)

Here, d(ui, uj) is the difference between wisdom scores of participants ui and uj and n is

the total number of participants in the crowd. Figure 9.3 shows the results for this metric

for Diverse and Random crowds. We found that diverse crowds were more generally

more diverse regarding the judgment diversity metric M. This suggests that a crowd

of participants with a diverse player selection strategy ends up producing more diverse

judgments than Random crowds. Our method assembles a crowd who can produce diverse

and accurate judgment using only their social media data.

To explain this diversity, we used an English Premier League domain specific knowledge
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Table 6.3: Highly ranked knowledge graph concepts subsuming both Popular choice and
Differential choice keywords.

DBpedia Concept Score
Eden_Hazard 0.34
Category:Chelsea_F.C._players 0.17
Romelu_Lukaku 0.17
Category:West_Bromwich_Albion_F.C._players 0.17
Category:Manchester_United_F.C._players 0.08
Midfielder(Winger) 0.05
Daniel_Sturridge 0.005

graph. We mapped the keywords identifying Popular choice and Differential choice strategies

to the knowledge graph concepts using DBPedia lookup4. We then found concept scores

using Equation 6.2. The concept that subsumes most of these keywords and are not far up

in the concept hierarchy are ranked higher according Equation 6.2. We ranked each concept

in the knowledge graph and sorted them in reverse order based on these scores.

Table 6.3 shows the resulting concept scores for a few concepts receiving high scores.

We found Eden Hazard and Romelu Lukaku, two soccer players, subsuming both popular

choice and differential choice features (keywords). These two players happened to be in the

top 10 players scoring the most FPL points for the 2016-17 season. As our diverse crowd

reflects both popular choice and differential choice strategies, they select a better player

than Random crowds, albeit for different reasons. Hence, diversity in solution strategies

leads to a better captain selection. Moreover, the concepts with high scores also help us

interpret these two strategies. For FPL, we can determine whether diversity in solution

strategy is related to the specific English Premier League teams or locations. We can also

learn about teams whose players are chosen by both popular and differential choice. This

information is helpful especially in deciding the kind of factors one should focus on in

decision making so that the decision is not biased.

4https://wiki.dbpedia.org/lookup
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6.3 Summary

Our strategy-based diversity framework can be used to interpret diversity in several

domains, explaining the correlation between various domain features and collective intelligence.

We also demonstrated that machine learning-based tweet classification methods work for

classifying tweets by solution strategy. As the proposed approach only requires strategy

characterization and training data, it applies to domains other than Fantasy Soccer.

The proposed diverse crowd selection achieved a statistically significant effect. Though

of potential practical significance in some domains, the effect size was modest compared

with simple random crowd selection strategy. One of the possible reasons is the limited

number of strategies and the likely presence of additional strategic differences. Another

explanation lies in the crowd selection strategies. The proposed methodology does not

explore optimal crowd selection from the clusters. A crowd selection strategy that is

consistent with the bionomial condition could potentially improve the consequent wisdom

score the way it did for the word2vec based user characterization.
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7 Future Work

while fantasy sports provide an ideal test bed for examining diversity-based approaches

due to the availability of outcome measures, follow-on research should extend and validate

these findings in other domains having more practical relevance, such as marketing, election

prediction, and geopolitical forecasting.

Another facet of online communication not considered in the present study is sentiment.

Twitter especially is a personality-driven medium featuring no shortage of affective content

[71]. This sentiment content is likely to convey important predictive information about a

user’s future judgments.

These results suggest that, if deployed on more content-rich information sources –

such as full-length blog postings, and articles – our methods may prove to be even more

robust. Hence, future work may combine multiple data sources describing users, e.g., blog

posts, different social media profiles, and prediction problem specific descriptions given by

users.

The technique we have developed for captain selection can be extended to measure

the wisdom of crowd effect in the choice of a whole team at the beginning of the season.

The proposed approach can easily be extended to other Fantasy Sports.

The knowledge graph enhanced community detection improves community detection

and characterization though it’s just a scratch on the surface for using external knowledge

in data-driven machine learning techniques. The current work opens up future direction

for combining knowledge within the optimization to various machine learning and deep
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learning algorithms to achieve more accurate and explainable results.
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8 Conclusions

A key contribution of this dissertation is the demonstration of the successful use of

social media data to perform wise crowd selection. Traditional wisdom of crowd research

studies either rely on the availability of performance data or require manual effort to compose

diverse crowds. This dissertation shows that a crowd sampled using their openly available

volunteered social media data allows wise crowd selection. Such a crowd outperforms

random crowds and even crowds of experts. Further, there is a correlation between online

social media conversations and individuals’ judgments, with diversity in communications

predicting sounder judgments. We also showed that random sampling may not always be

the best sampling strategy especially for the applications that require diverse samples.

The proposed methodologies do not make domain-specific assumptions and hence

can be extended to other domains. For instance, the bottom-up diversity quantification can

be applied to geo-political forecasting domain. These techniques can be used to analyze

wisdom of crowd effect for problems that involve the factors of skill and luck.

Fantasy Sports is a 7.2 billion dollar industry. Applying these techniques for a player

prediction and a team prediction in Fantasy Sports can benefit individual users as well as

Fantasy Sports organizers - to determine optimal price of the fantasy player.

The proposed knowledge graph based diversity explanation can be used to better

explain machine learning algorithm feature importance. Specifically, the framework proposed

in Chapter 6 can be used to explain random forest classification for a range of applications.

Another important contribution of this dissertation is knowledge graph enhanced community
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detection. This dissertation demonstrates that an optimization in machine learning that

includes data and external knowledge can result in the improved results than considering

only data. As demonstrated by the proposed community detection algorithm, appropriate

inclusion of external knowledge in optimization can result in an explainable machine learning

algorithm. The proposed community detection algorithm can serve as an excellent choice

for network data exploration. In the context of wisdom of crowd, such a framework can

be used to understand the kind of diversity that one needs to consider to make an accurate

prediction. Accurate and explainable graph clustering is of an advantage to a number of

domain specific applications. The proposed iterative optimization technique can be used

for several domain specific leaning problems.

Finally, bottom-up diversity measures can identify a better preforming crowd than

randomly selected crowds. However, contextual and independent crowds were found to

have the most accurate prediction.
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9 Knowledge-driven wisdom of crowd

The previous chapter described a top-down diversity measure, computed based on the

solution strategies applied by individuals. These groups are often formed at highly abstract

concept level. Moreover, the previous chapter did not consider an important criterion for

the wisdom of crowd - influence. Twitter data contains influence information in terms of the

follower as well as retweet relationship. A methodology considering both content and links

can identify such a crowd. Hence, we need an algorithm that identifies contextually diverse

crowd(s) that do not have individuals influencing each other. Moreover, we also need

to explain the diversity measure. Traditional community detection and characterization

algorithms fall short of this requirements as they do not consider the context. This chapter

describes an approach that uses the context identified by a knowledge-graph and performs

community detection and characterization to identify closely connected contextually similar

groups of users. The proposed algorithm has applications beyond the wisdom of crowd

analysis.

P1
Edge weight 
computation 

using 
Contextual 
similarity 
measure

P2
Louvain 

community 
detection

P3
Optimal 

community-
context 

computation

G

H

O

G G
L

L

O

S

Figure 9.1: Overview of the proposed approach. P1 computes contextual similarity
between nodes and edge weights, inputs an updated graph to P2 which computes
community labels (L). P3 computes community context O and concept weight vector S.
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9.1 Approach

The proposed algorithm to generate community labels(communities) iteratively optimizes

1) community label assignment, keeping the community context constant and 2) community

context assignment, keeping the community labels constant. We then recompute edge

weights with the updated community context (O). Figure 9.1 summarizes this approach.

Next, we describe the proposed contextual similarity measure (P1), community-context

computation (P3), and the proposed way of integrating new node similarity values to find

final community labels L and descriptions(O).

9.1.1 Contextual similarity measure

We describe our proposed similarity measure, φ(v1, v2, hi, oij), to compute a similarity

score between nodes v1 and v2 in hj with othij context. Here, i is the community to which

the edge v1 − v2 belongs. Similarity is computed in the jth domain-specific HKG. Note

that similarity is computed in the context of oij , i.e., a hierarchy starting from oij . We

extend this semantic similarity measure to compute similarity between two lists of concepts

represented in a HKG. In a taxonomy with a given root node, similarity between two

concepts can be computed [72], by finding the least common ancestor subsuming these

concepts in the hierarchy. Similarity is the “informativeness” of that least common ancestor.

More generic concepts provide less information. For example, in Figure 1.1, “USA” has

less informativeness than “Ohio”. Hence, the semantic similarity between “Cincinnati”

and “Columbus” subsumed by Ohio is higher than “Columbus” and “Dallas” subsumed by

USA. Informativeness, in its simplest form, is identified as 1 − ηi
ηroot

where ηi is number

of concepts subsumed by i. Sanchez et al. proposed that inner HKG concepts should be

evaluated separately from the leaves and revised informativeness formula as follows [72],

70



Ic =

(
2.0−

∑
l<c

1
Sl∑

l<root
1
Sl

)
(9.1)

Here, Sl refers to the number of concepts that subsumes l. The informativeness I of

a concept c is summation of the subsumers over all leaves l such that l < s. We subtract

the value from 2.0 as we want the values in (1.0, 2.0). In figure 1.2, SCincinnati = 2 and

SColumbus = 2 as they are subsumed by two concepts, “Cities in Ohio” and “Cities in USA”.

Hence, ICitiesinOhio = 2 −
1
2

+ 1
2

1
2

+ 1
2

+ 1
2

+ 1
2

. The denominator has four terms corresponding to

each one of the four leaves subsumed by “Cities in USA”(root).

As we have the nodes represented as a list of concepts, the existing similarity measure

must find the least common ancestor of each pair of concepts from v1 and v2 and consider

their informativeness score to compute semantic similarity. Instead, we compute the similarity

between two lists. We extend each vertex list, v1 and v2, by recursively computing the

subsuming “parents” of each concept c ∈ vi until oij . Along with each concept, we also

compute its informativeness score. Consider an extended vertex list with concepts and

informativeness score as vext1 and vext2. Similarity is computed as the weighted Jacquard

similarity [73] between vext1 and vext2.

J(vext1, vext2) =

∑
lmin(vlext1, v

l
ext2)∑

lmax(vlext1, v
l
ext2)

(9.2)

Here, l represents vector dimensions. In our case, each one of these dimensions is a

concept c and the value is its informativeness score. We chose weighted Jacquard similarity

as it satisfies the following requirements. 1. v1 and v2 yield a low similarity value if they

have fewer concepts in common. 2. v1 and v2 yield a low similarity value if the concepts are

repeated a different number of times. If the concept c appears three times in vext1 and four

times in vext2 then the numerator’s value for that concept will be less than the denominator

leading to reduced similarity. 3. v1 and v2 yield a low similarity value if the concepts in
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common have less informativeness.

This similarity computation depends on oij , i.e., a concept of hthj knowledge graph

representing community i. As an example, the similarity between v1 = {Cincinnati} and

v2 = {Columbus} results in vext1 = {(Cincinnati, 1.8), Ohio(1.6), USA(1.0), Columbus(0.0)}

and vext2 = {Columbus(1.8), Ohio(1.6), USA(1.0), Cincinnati(0.0)}. The bracketed

value is the informativeness score for each concept according to HKG in Figure 1.2. The

weighted Jacquard between vext1 and vext2 results in similarity 0.419.

We used the Louvain algorithm to find community labels L for each node in the

weighted graph. Next, we describe the process of finding an appropriate concept describing

each community.

9.1.2 Optimal community context computation

In this subsection, we describe how we compute oij , an optimal context of hj ∈ H

describing community i ∈ C. As described, context oij is essentially a hierarchy starting at

concept oij in hj . Hence, oij is represented by the concept c ∈ hj that is the most relevant

concept for the community c. Such a concept is found based on two criteria: 1. appropriate

generality (referred as purity) of a concept and 2. informativeness. Next, we describe the

detailed procedure.

hj hierarchies provide real-world clustering knowledge. As an example, in the context

of “Cities in USA”, “Austin”, “Dallas”, and “Houston” forms the cluster “Cities in Texas”.

In other words, as “Cities in Texas” subsumes three cities, it can represent and even validate

these three cities being in one cluster. Each concept of hj can potentially represent a

community i based on node attribute values of nodes belonging to a community i. Our

intuition for finding such a concept is as follows. For any community, a concept can

represent that community if it happens to subsume more concepts in a community than
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if the concepts of the community were distributed at random in a HKG. As described above

in Section 9.1.1, the use of 2 − informativeness can serve as a better approximation

for “concepts distributed at random” than ηi
ηroot

. Hence, maximizing the following with

respect to the concept of a knowledge graph can indicate the optimal context representing

a community,

maxc

(
ηc − ηc ×

∑
l<c

1
Sc∑

c<root
1
Sl

)
(9.3)

Here, ηi is the number of concepts (belonging to a community i) subsumed by c. We

also minimize the number of concepts subsumed from neighboring communities. Considering

this and rearranging terms, the final maximization term is:

oij = maxc ((ηn∈i − ηn∈ī)× Ic) (9.4)

where ηn∈i indicates the number of concepts in i subsumed by c and ηn∈ī indicates the

number of concepts in the neighboring communities of i subsumed by c. The first term

corresponds to “purity” while the second term corresponds to the informativeness of c. In

addition to the concept c maximizing the score, we also retain the actual score as sij which

indicates the relative context importance of context j in community i.

For the attribute list T = {c1, c2, . . . , cf} and T̄ = {c̄1, c̄2, . . . , c̄f} indicate the

concepts of community i and neighboring communities in hj respectively, Algorithm 3

finds the concept maximizing Equation 9.4. We pre-compute the hierarchical level, e.g.,

the root is set to ‘0’ and all the leaves are at level “tree height ” and the informativeness

of each c ∈ hj . We create a list with concepts at the lowest level and a score associated

with each concept indicating the difference between the number of concepts each subsumes

from T and number of concepts it subsumes from T̄ . Then, we compute a score for each

concept and update the concept with the maximum score thus far and the maximum score.
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Next hop “parents”, i.e., concepts subsuming the current concept, are included in the list to

investigate. The scores associated with the parent concepts are also attached as it indicates

the number of concepts subsumed from T and T̄ . As a vertex may be represented with

concepts other than leaves, there may be some concepts left in T and T̄ that belong to

higher level. They are added using add_list whenever the level that they belong to is

processed. Because the root has no parents, the temp_list will eventually become empty.

To avoid loops, we also condition on level ≥ 0.

Input: T , T̄ , and hj
Output: copt, smax
copt = root, smax = root_score
Associate score with each concept. -1 for T̄ and 1 for T
level = lowest_level()
list = add_list(T , T̄ , level)
while list not empty and level ≥ 0 do

temp_list = empty
for c ∈ list do

scur = score(c) ×Ic
update_optimal(copt, smax, c, scur)
for p ∈ parents(c) do

add_parent(temp_list, p, score(c))
end

end
level = level - 1
add_list(T , T̄ , level)
list = temp_list

end
Algorithm 3: Optimal community-context computation

One of the most important steps in the algorithm is add_parent. The concept maximizing

the criteria must subsume at least one of the concept of i. Thus, we explore for a solution

among hierarchical “parents” of any c ∈ T . We avoid adding a parent (stop looking for a

solution in the path) if its informativeness score decreases so much so that even if it were

to subsume rest of the remaining concepts, it could not get a higher score than max_score.
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a: Edge weight computation
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Figure 9.2: Demonstration on an example network. (a) Normalized edge weights are first
computed using ω = 1.0 and contextual similarity kernel with root node as the context identifying
each community. (b) Community labels are computed using Louvain. (c) Optimal contexts “cities
in texas’ and “cities in ohio” computed for c1, and c2 respectively, (d) Normalized edge weights
recomputed using new contexts. Note the modularity increase from (a) to (d).

9.1.3 Unified framework

Algorithm 4 describes the final algorithm and Figure 9.2 demonstrates the algorithm

on an example network shown in Figure 1.1. We start by computing node pair similarities

between all nodes for which Eij 6= 0. We consider each edge ij as an edge from i’s

community to j’s community. Hence, edge weight Eij is computed with contexts for both

communitiesLi andLj . Next, it computes community labels L by maximizing a modularity

equation with respect to L. Note that f(ij, L) is a function that determines whether i and

j are in the same community based on their community labels. Specifically, ij ∈ l iff

Li = Lj = l.

Modularity is an evaluative measure of community structure. Accordingly, a part of

graph (a group of nodes) is interesting if the number of edges within that group is higher

than if the nodes were to assign into groups at random, formally:
∑k

i=1 (ei − a2
i ). Here,

ei is the number of edges in a community i, and ai is the expected number of edges in

community i. Note that we used a similar idea in designing our optimal community context

computation.

ki×kj
4m2 provides a better estimation of a2

i as the probability of an edge belonging within a

community depends on the degree of nodes connected that edge [74]. Modularity maximization
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is one of the most widely used community detection technique. We used Louvain algorithm

based modularity maximization as it has identified qualitatively robust community structure[20].

It is a greedy algorithm that processes each vertex at random and assigns a community label

based on the one that can result in the maximum modularity gain. Details appear in [20].

Using the newly located community labels, we compute the optimal context representing

each community i ∈ K. The process is repeated until maximum modularity is achieved or

a max number of iterations. di in modularity Q(E,L) is the degree of a node i, computed

Input: G=(V, E, A), H = {h1, h2, . . . , ht},max_iters, threshold
Output: L, O, S
while mod < threshold or until max_iters do

wij(ω, i, j,H,O, l) = ω +
∑t

q=1 φ(i, j, hq, oq, l)
Eij = wij(ω, i, j,H,O, Li) + wij(ω, i, j,H,O, Lj)

Q(E,L) = 1
2m

∑
lεK

∑
f(ij,L) Eij −

didj
4m2

L = maxLQ(E,L)
for i ∈ K do

for hj ∈ H do
oij = maxc ((ηn∈i − ηn∈ī)× Ic)

end
end

end
Algorithm 4: Community detection and characterization algorithm

as the summation of all edges incident on i and m is the summation of all edge weights.

ω is a hyper-parameter indicating the relative importance of edge to the node pair similarity

computed using the contextual similarity. We iteratively update community label assignment

and community-context vector oi for each community i. Such an algorithm is likely to be

stuck in local maxima. Thus, we repeated the process 10 times for each dataset, randomly

selecting the vertex order to be processed by the Louvain algorithm. We consider the result

that for which we achieved the maximum modularity value.
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9.1.4 Algorithm complexity and convergence

Each iteration consists of the three steps (P1, P2, and P3) described in Figure 9.1. P1

and P2 process each edge resulting in O(n) time complexity where n indicates the number

of edges. P3 maps nodes from each community to a knowledge graph and computes

an optimal context for each community resulting in the time complexity of O(ck) for

c communities and knowledge graph of k concepts. Hence, the time complexity of the

algorithm is O(n+ kc) as the number of iterations i << n.

The Louvain algorithm (P2) optimizes Modularity to find a community structure. The

algorithm could diverge if the optimal community context results in edge weights that could

decrease Modularity. A generic community context will result in relatively less similarity

and indicates that the communities should be computed only using ω that won’t affect the

Modularity value. A specific community context will change the edge weights to make the

current community structure stronger. Hence, it is likely to increase the modularity value.

Either way, the modularity value is not expected to decrease due to P3. We also found

the algorithm converges to a satisfactory modularity value for all of datasets used in our

experiments.

9.2 Results

9.3 Evaluation

The datasets, measures, comparison baselines and results follow. We refer to the

proposed approach as “KDComm”.

9.3.1 Datasets

We used four datasets to assess community detection accuracy and community structure

characterization.
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G+ ego network

This is a G+ user dataset with friends of a given user represented as nodes and friendship

relationship represented as an edge[75]. Circles (communities) result from densely-connected

sets of friends [74]. Each node has four features: job title, current place, university, and

workplace. A user-pair(edge) is compared using knowledge graphs based on, Category:Occupations,

Category:Companies_by_country_and_industry, Category:Countries, Category:Universities_and_colleges_by_country.

Twitter

The Twitter dataset consisted of tweets about the configuration of a team for the

Fantasy Premier League (FPL). We created a re-tweet network between these users based

on information about their tweets. The re-tweet network between these users represents

agreement. We used DBpedia spotlight [76] to identify soccer player mentions in these

tweets. The final network consisted of users as nodes, re-tweet as edges, and FPL players

mentioned by a user as node attributes.

These users have different types of teams where they select players of one position

more than the others. These types include 1. Forwards, 2. Defenders, 3. Mid-fielders. As

they discuss their players in their FPL related tweets, a dense re-tweet network between

these users with community type characterization indicates a group of users interested in

similar types of teams. Hence, given a network of these users, the task divides users into

three circles — users with more “Forward” players in their team, more “Defender” players

in their team, and more “Mid-fielder” players in their team. For KDComm, we generated

three HKGs with following root nodes, Category:Association_football_defenders, Category:Association_football_forwards,

and Category:Association_football_midfielders.

We created ground truth circles using these users’ actual team configurations available
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on the FPL website[70]. Users with more than the usual 1 number of players for any

position is included in that circle 2.

DBLP

The DBLP dataset [77] is a co-author network, where each author is characterized

by a set of keywords. Ground truth labels for authors are available for four categories: 1.

Machine learning, 2. Data mining, 3. Databases, and 4. Information retrieval. We use a

knowledge graph generated with root nodes Category:Data_Mining, Category:Machine_Learning,

Category:Databases, and Category:Category:Information_retrieval.

Reddit

Each node in this dataset is a user, an edge indicates users are commenting/replying

to the same post, and a node attribute is a set of comments made by that user. Each post

has a “sub-reddit” that indicates the type of a post. The communities in this network can

be evaluated using each user’s subreddits. Users belonging to the same community are

likely to discuss the same sub-reddits [78] We considered the first four days of April 2015

to create this network3. We considered subreddits related to Economics and the NFL as

they were the most discussed subreddits in the dataset. The domain-specific HKGs were

extracted for Category:Economics and Category:National_Football_League as root nodes.

9.3.2 Evaluation measures

To evaluate community detection accuracy in G+, DBLP, and Twitter datasets, we

used Yang et al. ’s community F-Measure and a Jacquard measure [79]. The evaluation

1http://www.soccer-training-guide.com/soccer-formations.html#.Wmk6GZM-eAI
2Please contact the corresponding author for the dataset.
3https://archive.org/details/2015_reddit_comments_corpus
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function is,

1

2 |C∗|
∑
C∗
i ∈C∗

max

Cj ∈ Cδ (C∗i , Cj) +
1

2 |C|
∑
Cj∈C

max

C∗i ∈ C∗δ (C∗i , Cj) (9.5)

Here, δ(C∗i , Cj) is a similarity measure, either Jacquard or F-score similarity (F-Measure).

C is the community label set found by the algorithm and C∗ is the ground truth community

label set. For community detection evaluation in Reddit dataset, we used Hartman et al.’s

rank entropy measure for a given community Re =
−

∑L
j=1

ncj
nc

log2
ncj
nc

log2nc
. Here, j is a subreddit

in a community c. ncj is the number of times users of community i comment on subreddit

j. nc is total comments. A community c is likely to have a lower entropy value if the users

of community c are commenting on a few subreddits most of the time.

9.3.3 Results and analysis

To evaluate KDComm, we use Liu et al.’s CPCD approach, which is superior to eight

other community detection[42]. We also consider JCDC [16] which outperforms five other

community detection approaches. Like CPCD, JCDC concerns edge weights based on

We used UNCut [43], which outperforms three other graph clustering approaches.

We used Newman’s community detection approach (referred to as SI) [15] that also uses

attribute values in community structure detection and characterization. Finally, we also

compared results with the Louvain algorithm, using only edge information. Evaluation

results appear below for: 1. the similarity kernel. 2. community detection accuracy, 3.

community structure characterization.

Contextual similarity measure evaluation

First we compare the proposed contextual similarity measure (referred as KGsim) with

attribute value-based similarity. Two sets of user pairs (n = 1000) are created from four
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Figure 9.3: Similarity measures comparison. KGsim was able to assign appropriate edge
weights to node pairs, resulting in lower inconsistencies corresponding to community
labels.

datasets with ground truth community labels. IntraCommunitySet = {s1, s2, . . . , sn}where

each si = {(u1, u2)|u1andu2 ∈ samecommunity}. InterCommunitySet = {d1, d2, . . . , dn}

where each di = {(u1, u2)|u1andu2 ∈ differentcommunities}. We compared each

si ∈ IntraCommunitySet to all the di ∈ InterCommunitySet resulting with n2 comparisons.

Ideally, each si ∈ the IntraCommunitySet should be higher than all the di ∈ the InterCommunitySet.

The number of times that si ∈ IntraCommunitySet is lower than di ∈ InterCommunitySet

is computed as number of “inconsistencies”. We computed similarity using the proposed

similarity measure and Jacquard similarity as Jacquard computes similarity using attribute

values. Figure 9.3 plots the “inconsistencies” to the total comparison (n2) ratio.

For the G+1 and G+2 datasets, we used the four features associated with each node

as attribute values. For Twitter and DBLP, we used player names and author keywords

respectively as attribute values. The proposed similarity measure (KGsim) had lower

“inconsistencies” than Jacquard for all four datasets. Hence, KGsim can best assist edge

re-weighting. We did not compute an appropriate context relevant to each community and

used the “root” node as the context for each dataset.
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Algorithm DBLP G+ Twitter Reddit
F Jcc F Jcc F Jcc Re

Louvain 0.45 0.40 0.53 0.45 0.30 0.25 0.78
UNCut 0.57 0.51 0.5 0.42 0.35 0.30 0.75
CPCD 0.58 0.49 0.56 0.46 0.34 0.29 0.68
JCDC 0.54 0.5 0.58 0.48 0.33 0.28 0.62

SI 0.56 0.48 0.6 0.53 0.38 0.31 0.63
KDComm 0.66 0.59 0.71 0.60 0.47 0.39 0.48

Table 9.1: Community detection accuracy results. KDComm achieved the best F-score and
Jacquard score for all three datasets.

Community detection accuracy

We compared community detection accuracy to other approaches. CPCD, SI and,

UNcut used nominal node attribute values in the form of a 1/0 vector. We focused on the

100 most frequently used words of Reddit forums as attribute value vectors. For JCDC, we

used the Jacquard similarity measure to compute similarities. Table 9.1 shows the results

for the four datasets. The F-Measure and Jacquard scores reported for G+ are averaged

over all the 20 ego networks. The proposed approach achieved better average scores for

both measures (F-score and Jacquard) than all other approaches. For comparison with the

G+ ego network dataset, we also performed a t-test between the set of F-scores received

by KDComm and set of F-scores received by other approaches. A p − value < 0.05 also

indicated superior performance of KDComm over all other baseline methods. Similarly, A

p− value < 0.05 for Jacquard measure comparison confirms superior performance.

KDComm achieved the best F-score and Jacquard for the Twitter dataset, dividing

users into three communities. As the Louvain algorithm found more than three communities,

we merged communities based on community-context scores, merging users divided into

two different "Defender" communities. KDComm also outperformed the other methods for

the DBLP dataset as well, requiring similar community merging.

For the Reddit dataset, UNCut, CPCD, JCDC, and SI require a pre-determined number

communities. We set the number of communities using KDComm. We report rank entropy
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Dataset JCDC SI KDComm
M11 M22 M11 M22 M11 M22

Twitter 0.168 0.154 0.41 0.285 0.6 0.7
G+1 0.56 0.381 0.36 0.263 0.7 0.8
G+2 0.482 0.58 0.7 0.536 0.6 0.75
DBLP 0.32 0.232 0.56 0.377 0.56 0.64

Table 9.2: Users within community characterization. M is a relevancy score matrix.
KDComm found appropriate topics characterizing users within a community for all four
datasets while JCDC found appropriate topics for two datasets.

averaged over all the communities. Lower entropy indicates a better community structure

according to this measure [78]. KDComm achieved the lowest entropy among all methods.

Characterization of community structure

Next, we evaluated whether KDComm characterized users belonging to different communities

with an appropriate community type. For each dataset, we considered users from two

communities and evaluated whether KDComm, SI, and JCDC can find underlying two

communities and compute an appropriate type of community-based node attributes. We

considered attributes such that attribute type can identify community type. All the three

methods(KDComm, SI, and JCDC) compute a “relevancy score” of each attribute type to

each community, E.g., S for KDcomm. These “relevancy scores” for two attribute types

and two communities can be represented as a 2x2 matrix, M . Each cell of this matrix

indicates the relevancy score of attribute type to a community.

The relatively larger score for an attribute type indicates greater importance for that

attribute type. All four datasets had community type and labels for nodes. We selected

Twitter users from “Forwards” & “Defenders” communities, G+ users from “University” &

“Workplace” communities and DBLP authors from “Data Mining” & “Machine Learning”

communities. We considered two G+ ego networks (referred to as G+1 and G+2) for which

we distinguished two ground truth communities based on “University” and “Workplace”
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attributes/contexts.

As the inputs were provided with two contexts/attribute types, a correct attribute type

assignment is reflected by a higher score assigned to that attribute type relative to the other

attribute type. As we used a normalized attribute/context score for each method, a score

> 0.5 indicates a particular attribute type as the community type. We had attribute type

1, “forwards”, “University”, “Data Mining” as more relevant to Twitter, G+, and DBLP

datasets’ community one according to ground truth. We expect a context1 (T1) score higher

than 0.5 for community 1 and a context2 (T2) score higher than 0.5 for community 2.

Hence, we expect the relevancy score matrixM11 andM22 to be higher than 0.5. KDComm

found the expected community-context scores for all the four datasets (see Table 9.2). Both

JCDC and SI failed to find the expected community-context scores for at least two datasets.

9.3.4 Wisdom of crowds

Here we describe how we employed the proposed algorithm for the wisdom of crowd

analysis. We considered the Twitter network and performed community detection considering

two contexts,

• Soccer Positions: HKG of Defenders, Forward, and Mid-fielders as described in the

Twitter dataset.

• Soccer Teams: HKG of soccer teams collected using the automatic hierarchical

knowledge graph extraction framework[19].

We performed community detection and characterization using these two contexts.

From the resulting communities, we formed 100 diverse crowds of size six by randomly

picking two users from each type of community. Here, type of community refers to the type

(specific soccer position or a team) for which the community had a maximum sij score. We

explored both sets of community semantics: DiversePositions and DiverseTeams.
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Crowd selection Avg higher than % users

Random 76%
BottomUp 78%

DiversePositions 81%
DiverseTeams 86%

Table 9.3: Diversity based crowd selection and wisdom of crowd. DiverseTeams crowds
outperform individual users 81% and 86% of the time depending upon community
semantics.

Table 9.3 shows results for the number of individual users that a crowd outperformed

on an average. Specifically, an average captain score of DiversePositions and DiverseTeams

was compared with the captain score achieved by individual crowd members. We also

created one more set of Random crowds, by selecting 100 crowds of six individuals at

random. We found that a random crowd, on an average, performed better than 75% of

the individual users. However, the DiversePositions crowd set outperformed 81% of the

individual crowd members, and the DiverseTeams outperformed 86% of the individual

crowd members. As the knowledge-driven community detection resulted in contextually

diverse and independent crowds, these crowds achieved better scores than the crowds

formed using bottom-up diversity measures introduced in previous chapters. Note that

the crowd selection using multi-objective optimization wasn’t performed.

9.3.5 School student communication network analysis

The proposed algorithm improves the state-of-the-art community detection and hence

can be used for several applications. Here, we use this algorithm for the analysis of a

network that resulted from high school students’ Twitter conversation. We explore whether

certain topics/contexts form a dense conversation community structure and contribute to

the identification and characterization of insider-outsider [80], phenomena that contribute

to harassment potential. We crawled for 388 high school students’ tweets and had each

student as a node, a mention or reply as an edge, and relevant domain-words from tweets

as node attributes.
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C(size) Sports(Relevancy) Music(Relevancy)
C1(47) U.S. Women’s soccer(0.36) Bob Marley(0.64)
C2(40) Cleveland Browns(0.45) Keke Palmer(0.55)
C3(38) American Football in Boston(0.39) Machine Gun Kelly(0.61)

Table 9.4: Top 3 communities identified using Sports and Music contexts. Community
description in Sports and Music contexts provided along with the normalized relevancy
scores. Music context was found to be more relevant in creating community structure.

We explored two contexts, American Sports and American Music, to find whether they

form modular conversational communities. First, we analyzed the conversation network

without considering node attributes. The final modularity value of 0.32 does indicate a

community structure based on edges alone. However, using a domain-specific knowledge

graph created with “Category:Sports_in_the United_States”, we also generated node (student)

attributes as domain relevant concepts characterizing each node and performed the proposed

community detection. We discovered community structure with improved modularity of

0.35. Similar processing with “Category:American_music” resulted in community structure

with a higher modularity score of 0.38. Next, we used both contexts in community detection.

We found a slightly better modularity score of 0.4. All of the modularity scores improve

with node attributes, supporting the claim that the proposed algorithm favored American

music (more informative context) and downplayed Sports (less informative context).

As described in Table 9.4, community-context relevancy scores also indicated that

Music was more informative in finding community structure than sports. It also provides

the most relevant contexts associated with four of the largest communities. To analyze

the divergence from the edge-based community structure, we computed the F-measure

defined in the evaluation. An F-score of 0.38 between edge-based community structure and

community structure with both contexts suggested a divergence in assigning community

labels to nodes in the presence of the contexts. Hence, contextual analysis has the potential

to improve insider-outsider identification and characterization (with contexts identified for

communities). Isolated nodes (student) suggest harassment potential [81]. Moreover, by
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characterizing context, the approach can also provide the foundation for predicting the

harassment potential for a new node not considered in the original community detection.

9.4 Summary

This chapter presented an algorithm to incorporate hierarchical concepts about node

attributes into community detection. Our core contributions include (1) a combined metric

that describes concept informativeness in the hierarchy and concept purity in summarizing

communities, which are used to guide the search for optimal concept generalization; (2)

a node similarity measure that synthesizes multiple generalized concepts for community

detection; and (3) a community detection algorithm that alternatively optimizes concept

generalization and community structures. Our evaluation results showed that concept generalization

can not only improve the quality of community detection, but also provides a meaning-oriented

characterization of community structure. The results vary depending on the choice of

domains and knowledge sources. The chapter also demonstrated that readily available and

automatically extracted knowledge source can also have vital improvements on data-driven

Machine Learning algorithms.

The chapter also demonstrated that the knowledge driven approach achieved was able

to assemble a crowd that was better than 87% of the individuals and it can be applied for

other network analysis tasks.
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