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ABSTRACT

AL-OLIMAT, HUSSEIN S. PhD., Department of Computer Science and Engineering, Wright State
University, 2019. KNOWLEDGE-ENABLED ENTITY EXTRACTION.

Information Extraction (IE) techniques are developed to extract entities, relationships,

and other detailed information from unstructured text. The majority of the methods in the

literature focus on designing supervised machine learning techniques, which are not very

practical due to the high cost of obtaining annotations and the difficulty in creating high

quality (in terms of reliability and coverage) gold standard. Therefore, semi-supervised

and distantly-supervised techniques are getting more traction lately to overcome some of

the challenges, such as bootstrapping the learning quickly.

This dissertation focuses on information extraction, and in particular entities, i.e., Named

Entity Recognition (NER), from multiple domains, including social media and other gram-

matical texts such as news and medical documents. This work explores the ways for low-

ering the cost of building NER pipelines with the help of available knowledge without

compromising the quality of extraction and simultaneously taking into consideration feasi-

bility and other concerns such as user-experience. I present a type of distantly supervised

(dictionary-based), supervised (with reduced cost using entity set expansion and active

learning), and minimally-supervised NER approaches. In addition, I discuss the various

aspects of the knowledge-enabled NER approaches and how and why they are a better fit

for today’s real-world NER pipelines in dealing with and partially overcoming the above-

mentioned difficulties.

I present two dictionary-based NER approaches. The first technique extracts location

mentions from text streams, which proved very effective for stream processing with com-

petitive performance in comparison with ten other techniques. The second is a generic

NER approach that scales to multiple domains and is minimally supervised with a human-

in-the-loop for online feedback. The two techniques augment and filter the dictionaries to

compensate for their incompleteness (due to lexical variation between dictionary records

and mentions in the text) and for eliminating the noise and spurious content in them. The

iii



third technique I present is a supervised approach but with a reduced cost in terms of

the number of labeled samples and the complexity of annotating. The cost reduction was

achieved with the help of a human-in-the-loop and smart instance samplers implemented

using entity set expansion and active learning. The use of knowledge, the monitoring of

NER models’ accuracy, and the full exploitation of inputs from the human-in-the-loop was

the key to overcoming the practical and technical challenges. I make the data and code for

the approaches presented in this dissertation publicly available.
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Introduction

1.1 Overview

Information Extraction (IE) techniques recognize entities and extract relationships and

other detailed information from unstructured text. In this dissertation, I focus on the task

of entity extraction, i.e., Named Entity Recognition (NER), which consists of multiple sub-

tasks. Entity delimitation is typically the first step of entity extraction, which is meant to

identify the boundaries of an entity mention in the text. Depending on whether we are

extracting multiple entity types simultaneously, our NER techniques should be able to type

the delimited entities with the correct class (e.g., Location, Organization, or Auto Part

Name). The final step to NER is usually the linking step, which also includes resolution or

disambiguation. This step links the entity mention of a particular class to its corresponding

unambiguous record in a knowledge base or knowledge graph (e.g., linking the location

name “Dayton” to its dictionary (aka., gazetteer) record, since gazetteers contain location

names and all of their spatial information).

The challenges posed to entity extraction techniques differ between domains due to

differences in sentence structure and delimitation issues. The majority of the techniques

in the literature focus on designing supervised machine learning methods [135], which

are not very practical due to the high cost of obtaining annotations and the difficulty in

creating high quality (in terms of reliability and coverage) gold standards. Therefore, semi-

supervised and distantly-supervised techniques are getting more traction lately as they tend

1



to bootstrap learning [118].

Top-down (knowledge-driven) and bottom-up (data-driven) NER approaches rely on

internal and external evidence information to extract named entities from unstructured text

[84]. The internal evidence is the one we gather from the text itself (the sequence of charac-

ters); from the surface form of the tokens. On the other hand, we gather external evidence

from the contextual features of the mention in the text, such as the bag of surrounding

words. Due to the differences in business contexts, enterprise data sometimes would have a

different definition for some entity types, such as a product name [18], making the extrac-

tion task using only the internal evidence a challenging one. Additionally, while rule-based

systems are widely used in industry [18], they still capture a specific need for a particular

application. Rule-based systems achieve high precision but still suffer from low recall due

to the sparsity and specificity of rules. Similarly, the use of supervised models, which usu-

ally exploit internal and external evidence, is unattractive due to the high annotation cost.

New labels are usually required each time we have a different use case due to data sparsity

and semantic drift problems, such as what a product is for a given company (e.g., “Chrome”

being a product of Google, which is different than the common chromium surface treatment

to metals) [126].

The challenges faced by unstructured social media data are of no less import. The

ungrammatical, ill-formed, and improper sentence structure exhibited by social media con-

tent requires creative IE techniques to interpret them because natural language syntactic

or semantic cues may be inadequate to rely on. The novel use of social media data, e.g.,

to monitor a real-time event, also poses constraints on the type of technique that can be

used1. NER from text streams with novel domains, novel linguistic contexts, and different

language styles across countries make deep neural networks or any supervised technique,

which requires a considerable amount of data or extended time for training, impractical.

While there are technical challenges posed on the delimitation problem, such as the

1See our disaster response use cases of location extraction from targeted text streams in [54, 76]

2



ones mentioned above, other non-technical or user-centered design-aware challenges might

also arise. These challenges would influence the design of the delimitation and linking tech-

niques, such as when trying to accommodate practical and intellectual property concerns

(e.g., ease of use and privacy preservation).

In my opinion, all of the following are key in helping to tackle the challenges mentioned

above: the use of background knowledge, the monitoring of NER models certainty (while

exploiting a model’s encoded knowledge), and the full exploitation of inputs from a subject

matter expert (SME)-in-the-loop. In this dissertation, I focus on lowering the cost of build-

ing NER pipelines with the help of available knowledge without compromising the quality

of extraction while simultaneously taking into consideration feasibility and other concerns

such as user-experience. I explore a type of distantly supervised (dictionary-based), su-

pervised (with reduced cost using entity set expansion and active learning), and minimally-

supervised NER approaches. Below, I discuss the various aspects of the knowledge-enabled

NER approaches in this dissertation and how and why they are a better fit for today’s real-

world NER pipelines in dealing with and partially overcoming the difficulties mentioned

above.

1.1.1 Knowledge Sources, Creation, and Reuse

Knowledge is equivalent to expertise and required to perform complex tasks [89]. It is

also known that knowledge has two dimensions—the knowledge in people’s heads (i.e.,

tacit or hidden) and the codified and captured/elicited knowledge (i.e., explicit) [82]. Rules

can capture and represent the SMEs’ tacit knowledge [129], their expertise in their field,

and their judgments given a particular task and in specific situations. Additionally, the

interaction between humans and machines improves the usefulness of machines and their

models as they benefit from the knowledge transfer process [21].

Knowledge is either reused or created [82] and is captured using logic (as in symbolic

AI) [95] or other forms such as in machine learning models, informal knowledge bases, or
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databases. In this dissertation, I use readily available conceptual knowledge, the knowl-

edge that was created by others at some point and captured in any form— dictionaries,

taxonomies, knowledge graphs, pre-trained machine learning models, gold labels, or rules

(the most commonly used form for knowledge representation [95]).

Knowledge creation, on the other hand, is what we do by capturing the SME’s input

(the expert’s knowledge elicited/captured from their inputs or feedback by being part of the

pipeline as human-in-the-loop), by training machine learning models from available/cre-

ated information and knowledge (i.e., inductive learning), by combining knowledge from

different sources, and by deriving knowledge from information and knowledge sources

(such as creating n-gram models from dictionaries). In inductive learning, the knowledge

is elicited/captured from negative and positive labeled instances (e.g., valid and invalid in-

stances of an entity class such as Disease Name). Knowledge can also be derived from

data using analogical learning techniques [95], such as Entity Set Expansion (see Chapter

3). Entity Set Expansion involves learning through the use of similar concepts and solu-

tions. For example, the technique retrieves candidate entities by analogy through the use of

textual information (i.e., explicit linguistic features) and explicit knowledge (from online

sources such as WordNet [88]).

The intuition behind using background knowledge and a human-in-the-loop is that if

knowledge can improve and affect the human’s comprehension of scientific texts, it should

also improve the performance of NLP models when used effectively [56]. Ultimately,

this aims to improve the performance and accuracy of systems, and to reduce the cost

of building them. Furthermore, as the elicitation of new knowledge from SMEs is slow,

tedious, expensive, and error-prone [95], a reduction in the number of labels or requiring

different forms of labels from SMEs might be wise (as I will show in Chapter 3 and 4).

In reality, the knowledge used to solve complex real-world problems can sometimes be

uncertain or imprecise (i.e., contain errors and noise or is vaguely defined), incomplete (i.e.,

missing in part or whole), and sometimes inconsistent (e.g., in the case of multiple knowl-
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edge sources) [95]. In the context of NER, uncertainty and imprecision can be introduced

when the SME-in-the-loop provides wrong inputs or wrong labels, or when a dictionary

contains noise and wrong values (such as wrong examples of class membership). These is-

sues can also be introduced when there are disagreements between human annotators, when

the task is vaguely defined or when it comes to subjective judgements. Hence, knowledge

acquisition is very difficult and challenged by the availability of resources, the acquisition

techniques, and the knowledge quality requirements. We avoid the knowledge acquisi-

tion bottleneck by using off-the-shelf dictionaries, any available background knowledge,

and diverse knowledge sources. We also automate knowledge acquisition using machine

learning from other sources of knowledge or different information sources (such as learn-

ing sequence models from labels and word embeddings from the unstructured text). As

for the errors introduced from human labelers, I did not study that effect in this disserta-

tion. Instead, I emulated the SME input using gold labels from pre-annotated gold standard

datasets available online (such as CoNLL-2003 [127] or GENIA [99]).

Verification procedures done for checking the consistency and completeness of knowl-

edge can be done for rule- and logic-based systems. However, as we are not building

logic rules, it is not very easy to test the correctness and consistency of our knowledge.

Hence, we rely on probabilistic models that we learn from gold labels with the help of the

knowledge to overcome the negative effect of noise. Additionally, we design a few rules

to filter and augment dictionaries in order to lower the effect of noise and incompleteness

(see Chapter 2).

1.1.2 NER from Text Streams using Dictionaries

Targeted text streams collected using a set of keywords or a bounding box from sources

such as Twitter are of high value and are very informative [64], and have the potential to

satisfy an event-related information need [103], especially in the case of natural disasters

[91]. However, for a given piece of information to be actionable, it should be pinned to

5



a point on the map, enabling context-aware computing [50, 66]. For example, unless we

know where Ganapathy Colony in the tweet “water level in Ganapathy Colony is around

2 m” is, we will not be able to use the water level information in a storm surge model or in

models where sensor readings are missing.

The mention of an entity, such as a location name, regardless of the linguistic context,

can be extracted/matched using the lexical surface form (i.e., the sequence of characters)

of that mention when matched with a dictionary record. Hence, the use of a dictionary to

aid in the delimitation task is an excellent alternative to supervised techniques, especially

in the case of stream processing, where rapidly evolving linguistic contexts would be a

challenge to cover adequately. Having said that, the design choice of such context-agnostic

extraction methods still poses a challenge when faced with semantic drift and context-

sensitive mentions [126]. However, as I will discuss in Chapters 2 and 4, the sole reliance

on the internal evidence for extraction is highly dependent on the entity class for which

we are trying to extract. Some entity classes, such as chemical names or location names,

can be extracted with reasonably good precision as they are less prone to homonymy. On

the other hand, other instances of entity classes such as restaurants names or anatomical

organs, which are context-sensitive, require external evidence to decide whether a given

mention is an instance of the entity class or not (e.g., head in “the head of the animal” vs.

“the head of the department”).

In Chapter 2, I introduce our location name extraction method (LNEx). The technique

uses lexical statistics (using language models built from region-specific gazetteers) to spot

location mentions in targeted Twitter text streams (collected using event-specific hashtags).

LNEx extracts fine-grained location mentions in a stream from an area of interest with high

accuracy, without relying on explicit and computationally complex syntactic and semantic

analysis.

6



Comparison with other techniques

The distinction between delimitation and linking/resolution/disambiguation is important,

particularly in the location extraction literature. To address the delimitation problem, other

researchers [71, 75, 52] have applied both syntactic heuristics (using lexical cues, e.g., “in

New Orleans”) as well as semantic heuristics (i.e., content-based, for different types of lo-

cations such as buildings and streets). These heuristics have serious limitations, such as

failing to delimit metonyms2 and location names that begin sentences (i.e., outside locative

expressions, e.g., “New Orleans is flooded”). They also cannot assist in hashtag segmen-

tation (required for the extraction of locations from hashtags). Moreover, simply identify-

ing a location name still leaves open the problem of linking the entity to a corresponding

gazetteer record for geocoding, which is fundamental to subsequent actions. Simple fixed

phrase matching with gazetteer entries, as in [86, 75], solves the linking problem but re-

mains vulnerable in two respects. With simple fixed phrase matching, the tendency for

authors to shorten names while the gazetteers extend names creates conflicting conditions

causing poor recall. On the other hand, simply relaxing matching criteria exacerbates the

disambiguation problem.

Lexical variations, and dictionary noise and incompleteness

Gazetteers are invaluable resources as they contain location names along with their asso-

ciated spatial information (e.g., latitudes and longitudes). Having such gazetteers would

allow us to link entities to their associated meta-data needed for the above mentioned

context-aware computing. Our method (LNEx) treats location names as a sequence of

ordered words known as collocations [80]. Collocations are neither strictly compositional

nor always atomic. We cannot identify them with grammatical rules, and fixed phrase

matching is not reliable for longer names. Fortunately, gazetteers provide a resource for

2Metonyms are words or expressions that are substitutes of other things, such as “Washington” being the
US federal government.
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establishing region-specific naming regularities. Given a region-specific gazetteer, which

retains the same location/spatial-context as the text, we can construct a statistical model

of the token sequences it contains. However, location gazetteers are overly specific in two

respects. First, due to pragmatic influences on writing style for example in conversation-

like social media, users tend to shorten names to reduce redundant content. We call this

the location name contraction problem. For example, “Balalok School”, appears in the

Chennai flood tweets in contrast to the full gazetteer name, “Balalok Matriculation Higher

Secondary School”. This phenomenon, therefore, requires us to augment the gazetteers

with different surface forms of some location names, to overcome the lexical variation

between mentions in text and their respective records in a gazetteer (e.g., adding “Bal-

alok School” as an alternative name for the long gazetteer record). Second, gazetteers are

imperfect, including highly ambiguous, or adjacent auxiliary (and sometimes extraneous)

content. For example, they sometimes contain personal names as location names, such

as “George, Washington”, that threaten precision. Extraneous lexical items attached to

location mentions also threaten recall, such as bracketed usage, status, or branding (e.g.,

“Location Name (Private)” or “Location Name (New)”).

Dictionary augmentation and filtering

Carroll [15] examined the complex phenomenon of alternate name forms (called Name-

heads). The study distinguishes between four shortening processes: (1) Appellation Forma-

tion, (2) Explicit Metonomy, (3) Category Ellipsis, and (4) Location Ellipsis. Our method

in Chapter 2 partitions the location NER into two tasks: location delimitation and reso-

lution/linking/disambiguation. Carroll’s first two subprocesses fall under disambiguation

more than delimitation. Disambiguation requires situational context for name resolution,

which is beyond the scope of this dissertation. I therefore only briefly describe Appellation

Formation and Explicit Metonomy before discussing the Category Ellipsis and Location

Ellipsis processes in detail.
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Appellation Formation occurs when, for example, the author refers to the location name

“The Erie Canal” as “The Canal”. People may also refer to the only airport in a city as just

“The Airport”. Referring to “Cleveland Hilton” as “Cleveland” is an example of Explicit

Metonomy, where “Cleveland” is a possible metonymic variant of “Cleveland Hilton” in

a narrow situational context (e.g., when an employee works for the Hilton Corporation

they might accept it as a variant of the original name) [15]. Common ground or shared

understanding between the author and the recipient establishes the referent [108]. Such

contractions require situational context such as the author’s location to resolve. Explicit

Metonomy is at least as context-sensitive as Appellation Formation and likely to depend

on anaphora resolution for disambiguation, i.e., prior exchange concerning workplaces.

Therefore, both pose disambiguation problems, and require situational context such as the

author’s location and other background information to resolve.

In contrast, Category Ellipsis and Location Ellipsis pose delimitation problems that can

be resolved with a statistical language model. Category ellipsis occurs when the author

strips words related to the location category (e.g., “City” from “Houston City” to become

“Houston”). Location Ellipsis occurs when an author drops the specific location reference

in the location name (e.g., when “New York Yankee Stadium” becomes “Yankee Stadium”

or “Cars India - Adyar” becomes “Cars India”).

What we observed in the OpenStreetMap gazetteer is inconsistency in representing

category ellipsis and location ellipsis, and that would account for some of the mismatches

between location mentions and gazetteer records. To mimic these processes, we judiciously

apply a skip-gram method to token sequences in the gazetteers, thereby including, for ex-

ample, “Balalok School” as a variant of the complete name and point to the same original

gazetteer record. Second, we eliminate auxiliary or ambiguous gazetteers’ content (e.g.,

“George, Washington”) that would otherwise threaten recall. LNEx requires a bounding

box of the area of interest to build initial region-specific gazetteer and then augment it au-

tomatically for locations delimitation. An added benefit to using region-specific gazetteers
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is that they improve the disambiguation process as only the location inside the area of inter-

est should be extracted. For example, despite the abundance of “Main Streets” all over the

US, a region-specific gazetteer can be focused enough to include just one “Main Street”.

In Chapter 2, I demonstrate the successful spotting of location names in targeted texts

using lexical statistics (word and phrase frequencies) built from high-quality augmented

and filtered gazetteers. Although LNEx relies on a targeted Twitter stream, it does not

exploit the unreliable metadata attached to tweets (such as latitudes and longitudes), as

they, in the majority of the cases, do not provide accurate spatial context for the text in

tweets. Also, LNEx is well-suited for stream processing, easy to set up and use, does not

require any supervision (i.e., training data), and needs only freely available data.

1.1.3 User-centered and Cost-effective NER

For a machine learning engineer or a data scientist, the easiest way is to use a NER pipeline

that does not need labels, hand-crafted rules, or a human-in-the-loop (similar to the above

dictionary-based approach). However, for an evolving domain, a domain with no available

knowledge, gold data, rules, or previously trained models (needed for transfer learning), the

only way is to label some data, build a knowledge base, write some rules, have a human-

in-the-loop, or a combination of some or all of the above. However, due to the associated

cost, it is desirable to build cost-effective and user-friendly NER pipelines that would take

into consideration the number of labels required, the design of the labeling task, the com-

putational cost associated with the designed technique, and the ways we can reduce and

improve all of the above.

Many practical limitations put a ceiling on the success of NER techniques. Some

of these techniques suffer from noisy or unavailable annotations (especially for domain-

specific entities) due to the cost, lack of resources and expertise, the time it takes to set-up

labeling guidelines [25], the risk of discarding crowd-sourced labels [44], or incomplete

and weak hand-crafted rules and patterns [1].
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ba The risk of cancer, especially lymphoid 
neoplasias, is substantially elevated in 
A-T patients and has long been 
associated with chromosomal instability.

The risk of cancer, especially 
lymphoid neoplasias, is 
substantially elevated in A-T 
patients and has long been 
associated with chromosomal 
instability.

The 786?0 cell line, 
like many cancer 
cells, fails to exit 
the cell cycle upon 
serum withdrawal.

The APCI1307K allele 
and cancer risk in a 
community-based study 
of Ashkenazi Jews.

To evaluate the role of 
I1307K in cancer, we 
genotyped 5, 081 
Ashkenazi volunteers in 
a community survey.

...

cancer

Figure 1.1: Two SME-in-the-loop labeling techniques: (a) disease mentions span labeling
and (b) cancer concept binary labeling.

Hence, the annotation approach (affecting user experience) and training data (affecting

cost) are the two focal points of any supervised method. In Chapters 3 and 4, I present our

two NER techniques, which, with the help of a human-in-the-loop, knowledge, automat-

ically induced rules, active learning, or transfer learning, can reduce the cost of building

fairly accurate NER pipelines for different domains including medical, news, and user-

generated content. Below, I introduce some of the key points regarding these systems.

User-centered design (UCD)

Some of the main UCD requirements in the context of NER concern data privacy, annota-

tion cost, annotation approach, and feedback. Data privacy concerns arise from the fact that

enterprises do not want to compromise their intellectual property (IP) by crowd-sourcing

their labeling tasks. While this concern can be eliminated with in-house annotations, the

high cost remains, in this case, requiring us to lower the cost of annotations to preserve

privacy. Besides, the majority of the time, such labeling tasks require domain expertise and

careful annotations, making crowd-sourcing difficult, and prone to duplication and many

modifications.

Furthermore, mainstream entity annotation approaches typically present a large body

of text or full documents to annotate entities, which can be time-consuming as well as

lead to low-quality annotations (see (a) in Figure 1.1). Additionally, the majority of these

techniques require labeling for multiple entity classes, which makes the annotation task

harder and more complex. Therefore, sentence-level and single-entity-class annotation are
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desirable to improve tractability and reduce cost, which also ensures a much improved

human-in-the-loop experience. Moreover, using knowledge and transfer learning, minimal

supervision (with reduced cost in terms of time and quantity), and minimized required user

feedback (such as requiring binary labels instead of labeling text spans), can also improve

the user experience (see (b) in Figure 1.1 where this context-agnostic labeling technique

lowers the cost by not requiring the user to read the source sentences that provide these

concepts are coming from).

The evaluation criterion is a point often overlooked as an important UCD requirement.

NER pipelines, once designed, need some gold data to be evaluated on to test the quality

of the built models. As we are usually building the pipelines for a novel domain, we will

typically not have any gold labels to evaluate the system on. Therefore, an unsupervised

evaluation technique is highly desirable in this case. Below, I will discuss how using pool-

based active learning can help in this by providing a confidence measure on the subject

matter expert (SME) labels.

NER cost

The cost associated with developing and running NER pipelines can be estimated based on

many aspects: (1) the availability of pre-annotated data for building models, (2) the number

of labeled sentences or entities required (the less, the better), (3) the need to modify and

redo any of the annotations (e.g., in the case of misunderstanding of the labeling require-

ments), (4) the type of labels required from SMEs (e.g., binary labels being less costly than

labeling of text spans in terms of time and effort), (5) the complexity of annotations (i.e.,

labeling for a single or multiple classes at the same time), and (6) the computational cost

of building and running the pipelines.

There are many pre-annotated and publicly available corpora such as CoNLL-2003

[127], GENIA [99], and BioCreative II [33] that can be used to lower the cost of building

NER pipelines. However, having such data leaves us with two challenges: (i) no train-
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ing dataset can be found for many of the domain-specific entity classes in enterprise cor-

pora due to data privacy concerns, IP restrictions, and problem-specific use cases (needing

new/de novo annotations), and (ii) data sparsity, which hinders the performance of super-

vised models on unseen data (needing incrementally augmented annotations to the anno-

tated sentence pool).

In Chapter 3, I present our active learning-based NER approach that reduces the number

of data points required to only 55%. The approach achieves this desirable performance

using a hybrid approach of entity set expansion (ESE) along with an entropy-based CRF

sequence labeling approach allowing for active learning. While the ESE approach alone

would allow us to sample the sentences with a higher potential to have an instance of

the entity class for which we are labeling, the active learning approach allows us to rank

order and then pick the sentences that are more likely to contribute to rapid learning (and

therefore to remove any duplicate labeling). For instance, the combination of ESE and

active learning contributed to a 45% reduction in the number of sentences, on average,

required to achieve the same overall accuracy of the models if trained on all instances from

the pools of sentences.

According to [34], the average reading rate of technical material is approximately 50

to 75 words a minute. By looking at ten datasets (see Section 4.5.1 in Chapter 4), the

average number of tokens per dataset is around 112,910. So if we take the higher read-

ing rate (i.e., 75 wpm), merely reading without labeling would require around 25 hours.

Furthermore, ergonomic estimates of baseline error rates on such a detection-action task

(i.e., labeling named entity spans) range from 0.011 to 0.16 per word, depending on the

analysis method [41], assuming unlimited time and appropriate expertise. There is a dire

need for improving such costly and error-prone task by minimizing text reading, avoid-

ing span labeling, and reducing the complexity of labeling by annotating for a single class

rather than multiple classes at the same time. However, imposing the UCD requirements

above, including loosening the labeling requirements to binary labels, can cause what we
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call a labeling starvation problem (i.e., querying annotators to label sentences containing a

low frequency of entities from the desired class, see Chapter 3). Therefore, we designed

the graph embedding-based ESE approach mentioned above to work side by side with ac-

tive learning to reduce the labeling starvation problem (e.g., where some entity classes are

present only in 8% of the sentences). ESE accelerates the learning rate by incorporating

and exploiting the semantics of the desired entity class to more informatively sample sen-

tences that are likely to have entities of the desired class. Ultimately, if each binary label

takes, on average, a generous 10 seconds, the full annotations will take close to one-hour

in comparison with 25 hours only for reading.

Moreover, as we aim to annotate all mentions of a single entity class in the corpora,

our design choice lowers annotation cost (while relaxing the requirement of full coverage)

by using a realistic approach of flexible stopping criteria using online evaluation. The

online method calculates the confidence of a model on unseen data without the need for

a held-out evaluation set. Having such an online feedback method supports incremental

learning, allowing us to partially overcome the data sparsity problem (see Section 3.2).

Also, it annotates a corpus without requiring annotators to scan all sentences using rapid

auto-annotation based on predefined confidence levels (e.g., accepting the induced labels

by a given model if the entropy of the labels is below 20%). In Chapter 3, I describe in

more detail, the incremental learning solution (SpExtor) we developed for the extraction of

sparse entities, and how we use ESE to accelerate the annotation.

Finally, the computational cost of building and executing these pipelines are of no less

import. While recent NER models have achieved commendable accuracy improvements,

they still require vast computational resources, which is not only expensive to build and use

but also consumes a significant amount of energy. For example, training a BERT model

would cost anywhere between $2,000 to more than $12,000 in cloud computing cost and

close to the same CO2 emission of an air trip for a single passenger from New York to San

Francisco [123]. Luckily, the solutions introduced in this dissertation can be built and live
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on a commodity laptop or server and would cost much less than the alternatives making it

among the Green AI options [114].

1.1.4 From Candidate Entities To Named Entities

Given a sentence such as the following from the BioNLP’13 corpus [93]:

c-myb is a frequent target of retroviral insertional mutagenesis in murine leukemia

virus - induced myeloid leukemia.

A fluent English reader who has never before encountered the domain-specific terminolo-

gies, such as “c-myb”, “murine leukemia virus”, or “myeloid leukemia”, would neverthe-

less infer that they are concepts of some kind. The reader would have reached this conclu-

sion by examining the syntax and the morphological forms of these concepts. We try to

extract all such concepts and label them as candidate entities. We featurize them to learn

what is, and what is not an entity of the desired class by judiciously combining the lexical,

syntactic, and semantic patterns characterizing them.

Our technique (KnowEx) extracts promising candidate entities, employs a SME-in-

the-loop for labeling and filtering, and learns to classify the candidates into valid/invalid

entities. The technique is minimally supervised, which exploits rich sets of multi-view

features for candidate entities. The design of the method has key practical merit and is

consistent with the rising interest in alternatives to fully supervised approaches that are

costly to build, and are challenged by the requirement of scaling to multiple domains,

and preserving IP and data privacy (see Chapter 2 and 3). KnowEx requires off-the-shelf

domain-specific dictionaries, readily available online knowledge sources (e.g., WordNet,

BabelNet, and pre-trained word embeddings), and minimal inputs from SMEs (i.e., binary

labels). This allows us to achieve minimal supervision.
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Candidate entities extraction

Using the same dictionary-based n-gram model from above, we determine the set of can-

didate entities that appear in all of the sentences of a given corpus using an off-the-shelf

domain-specific dictionary. This language model-based technique allows us to determine

the validity of an n-gram as a candidate entity in a sequence of tokens using a boolean

function. Simple n-gram matching based on segment-based inverted indexing [65] or ex-

haustive matching [125] can replace this language model technique. However, these tech-

niques are slower than our language model technique in Chapter 2 and our article [5]. For

example, for the sentence from the BioNLP’13 corpus above, in a dictionary of organisms,

“retroviral”, “murine”, “leukemia”, and “virus” are valid unigrams but “c-myb”, “muta-

genesis”, and the rest are not. Similarly, the trigram “murine leukemia virus”, is a valid

trigram matching a complete record from the dictionary, which makes it an organism can-

didate entity.

The incompleteness of dictionaries contributes to a reduction in the recall of the dictionary-

based extraction techniques. However, regular expressions can expand the set of candi-

date entities from above [18]. We designed our second candidate entity extraction method

(RegEx) to address this limitation. In our ESE method above, we use regular expressions

to extract noun phrases as candidate entities and then ask the user to provide binary labels

of yes/no as being an entity or not. However, those candidate entities were extracted using

a single regular expression that did not scale well to multiple domains and suffered from

low recall due to under-expressiveness [61]. We address this problem by automatically in-

ferring regular expressions from a set of positive candidate entities exploiting the implicit

sentence structure (i.e., using the descriptive tags of a sentence’s tokens provided by part-

of-speech (POS) tagging) then using these regular expressions for extraction. For example,

in the LaptopReview dataset [104], the POS tags of the aspect terms “hard disk drive” and

“1 GB of RAM” are 〈JJ, NN, NN〉 and 〈CD, NN, IN, NNP〉, respectively. Conse-

quently, regular expressions can be constructed to extract such candidate entities using their
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sequence of POS tags, as I discuss in Chapter 4.

Representation enhancement using knowledge

To learn what makes a candidate entity a valid instance of an entity class, we need rich

feature sets and gold labels. Then, using these features and labels, we can learn binary

classifiers to classify the candidate entities into valid/invalid instances. Available knowl-

edge that we can exploit for the featurization of candidate entities allows us to enhance

their representation, therefore allowing us to learn more accurate candidate entity classi-

fiers. Hence, the use of knowledge allows us to minimize supervision by (1) constructing

feature-rich embeddings of candidate entities for ranking and classification (allowing us to

reduce the number of required labels for improving classification accuracy), (2) requesting

SMEs to give only valid/invalid labels instead of labeling entity spans in text (reducing the

effort of labeling). The use of pre-labeled instances of the other entity classes in the same

corpora (as instances of the negative class), to automatically filter out the candidate entities

set, can also improve precision, as I show in Chapter 4. For example, having gold anno-

tations for some of the candidate entities labeling them as instances of some other entity

class can be useful to remove them from the set of candidate entities for the current entity

class for which we are labeling.

We create three feature views: (1) Lexical, Syntactic, and Semantic View, which ex-

ploits some unsupervised features from the text and the word senses of candidate enti-

ties from WordNet knowledge base [88], (2) Wikipedia Categories View, which exploits

the Wikipedia categories retrieved using BabelNet [92] (such as “Rare diseases”, “Diges-

tive system”, or “Urban animals”), and (3) Contextual Embeddings View, which we con-

struct using BERT contextual embeddings [27] as the bottom-up distributional semantics

(an example of transfer learning).

Candidate entity classifiers can then be learned from these enhanced feature sets using

binary labels from a SME-in-the-loop. Chapter 4 contains the details of the technique
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and comprehensive empirical evaluation on public benchmarks spanning six datasets, to

examine the scalability of the approach across multiple domains. The results show that the

technique scales well to various domains, enhancing recall while maintaining precision in

the face of noisy and incomplete off-the-shelf dictionaries.

1.2 Thesis Statement

Gathering explicit and contextual features for entity recognition is chal-

lenging due to data sparsity, the need for reliable annotation, and timeliness

in the face of evolving data streams. Background knowledge, minimal supervi-

sion from subject-matter-experts, and machine learning models’ certainty can

be leveraged to develop reliable named entity recognizers at reduced cost.

1.3 Research Questions

I base my thesis on the following research questions:

• Question 1: Can we accurately and rapidly spot named entities in text solely relying

on a statistical language model synthesized from a dictionary or gazetteer? (Chapters

2 and 4, and in publication [5]).

• Question 2: How much improvement in accuracy can be gained by cleaning up the

background knowledge used for NER? (Chapters 2 and 4, and in publication [5]).

• Question 3: How effective is the use of knowledge and smart sampling techniques

in reducing the cost of building and running NER? (Chapters 3 and 4), and in publi-

cation [4]).

• Question 4: Can we provide an accurate online evaluation method that relies on
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the certainty of a sequence labeling model to avoid creating a held-out set solely for

evaluation? (Chapter 3 and in publication [4]).

• Question 5: What was the trade-off between the reduction in human annotation

effort where SME’s input is indispensable and the overall accuracy of the extraction

method? (Chapter 4).

• Question 6: How effective and generalizable were the NER techniques presented

in this dissertation in comparison with state-of-the-art and other similar techniques

from literature? (In all chapters).

1.4 Contributions

In this dissertation, I make the following contributions:

1. I focus on the use of knowledge for named entity extraction problems, which low-

ers the cost and improves the human-in-the-loop experience by focusing on user-

centered design requirements. I show that different levels of supervision can be

achieved while using knowledge, which is key to different use cases such as stream

processing. As a result, I provide different techniques developed with a focus on

practicality, which lowers the cost, improves accuracy, and provides business value

for industrial applications.

2. A method for preparing high-quality location name dictionaries (gazetteers) from on-

line open data (e.g., OSM, Geonames, and DBpedia) and then deriving a language

model from them for the task of location name extraction. I also provide a com-

prehensive analysis of the contribution of gazetteer quality to overall performance.

Then, I demonstrate how our dictionary-based entity extraction (LNEx) convincingly

outperforms commercial-grade NER and Twitter-specific tools with at least a 33%
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improvement on average F-Score. Examples reveal the true challenges of location

name extraction and the locus of tool failure in the face of these challenges.

3. A framework to annotate sparse entities rapidly in unstructured corpora using en-

tity set expansion, active learning, and auto-annotation. The technique includes

flexible stopping criteria using an online evaluation method without the need for

gold-standard evaluation data, allowing us to learn sequence labeling models incre-

mentally from annotated sentences without compromising the quality of the learned

models. I also provide a comprehensive empirical evaluation of our sparse entity

extraction framework (SpExtor) by testing it on six entity classes from three public

datasets.

4. A competitive, knowledge-enabled, weakly supervised domain-adaptable named en-

tity recognition technique (KnowEx). I provide a comprehensive empirical evalua-

tion on public benchmarks spanning six datasets and ten entity classes, to examine

the scalability of the approach across multiple domains. KnowEx exhibits inher-

ent precision-recall trade-off and provides a general solution that scales to multiple

domains using off-the-shelf dictionaries and generic knowledge with minimal su-

pervision. The final results show that the pipeline improves recall by 27% while

sacrificing 5% in precision, still improving the F1-score by 10% over the baseline.

5. A referent corpus that represents the full scope of location name extraction chal-

lenges and a challenge-based categorization of place names found in the corpora of

three targeted streams. The corpus contains data from three different Twitter streams

from flooding events in three different locations: the 2015 Chennai flood, the 2016

Louisiana flood, and the 2016 Houston flood, for the evaluation of our technique and

also for use by others.

6. Open source implementations of the LNEx, SpExtor, and KnowEx frameworks.

Codes and data can be found at https://github.com/halolimat/LNEx,
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https://github.com/halolimat/SpExtor, and https://github.com/

halolimat/KnowEx.

1.5 Dissertation Structure

Chapter 2 contains the details of the dictionary-based location name extraction method

published in [5]. I give a detailed overview of the system’s component, the data annotation

criteria for evaluation, and illustrative examples comparing the performance of our method

with ten other tools on the same task.

Chapter 3 contains the details of the active learning-based sparse entity incremental

learning framework published in [4]. I give the details of the components and the methods

used to achieve the goals of the system, including the information on the use of entity set

expansion and graph embedding to enhance the learning speed.

Chapter 4 contains the details of the minimally-supervised NER technique. I describe

the technique, how we extracted candidate entities, enhanced their features using knowl-

edge and rules, and how we built the pipeline to allow for minimal supervision from SMEs.

Chapter 5 contains the conclusions of the dissertation and a discussion of possible future

directions.
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Location Name Extraction

Extracting named entities from informal and unstructured social media data requires the

identification of referent boundaries and partitioning compound names. Variability, partic-

ularly systematic variability in named entities such as location names [15], challenges the

identification task. Some of this variability can be anticipated as operations within a statis-

tical language model, in this case, drawn from gazetteers such as OpenStreetMap (OSM),

Geonames, and DBpedia. Language models permit evaluation of an observed n-gram in

Twitter targeted text as a legitimate location name variant from the same location-context.

Using n-gram statistics and location-related dictionaries, our Location Name Extraction

tool (LNEx) handles abbreviations and automatically filters and augments the location

names in gazetteers (handling name contractions and auxiliary contents) to help detect the

boundaries of multi-word location names (aka., atomic toponyms [6]) and thereby delimit

them in texts.

We evaluated our approach on 4,500 event-specific tweets from three targeted streams

to compare the performance of LNEx against that of ten state-of-the-art taggers that rely

on standard semantic, syntactic and/or orthographic features. Our technique improved the

average F-Score by 33% to 179%, outperforming all taggers. Further, it is capable of stream

processing.
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2.1 Introduction

In this chapter, I introduce our LNEx technique [5]. The technique successfully spots lo-

cation mentions in the text given a targeted Twitter stream (collected using event-specific

hashtags) and lexical statistics (using language models built from region-specific gazetteers).

LNEx extracts fine-grained location mentions in a stream from an area of interest, such as

an event with a known zone or spatial extent, or a natural disaster with a known affected

area. It extracts locations with high accuracy without relying on explicit and computa-

tionally complex syntactic and semantic analysis, such as analyzing the text for detecting

locative expressions (as in “... across from LOC ...”) or looking for semantic tags such as

location categories in extracted candidate entities (as in “... LOC Street ...”) [71, 75, 52].

Location names consist of a sequence of ordered words known as collocations [80],

which reflect complex regularities implicit in the distribution of terms in the region-specific

gazetteer that a language model can capture. Nevertheless, gazetteer matching is not a

straightforward process due to two problems: (1) gazetteers contain extraneous information

to location names (e.g., meta tags as “(Closed)” in “GM Locomotive (Closed)”), and (2)

gazetteer records may differ from the references people use due to shortening and other

processes that human written communication exhibit (e.g., referring to “New High School”

as “New School”). These two challenges make gazetteers inadequate for direct phrase

matching, which requires further augmentation and modification or filtering of the records.

For filtering, we developed stopword lists containing phrases that we consider as extraneous

or auxiliary, or ambiguous such as proper names (e.g., “George, Washington”) that should

be filtered out and removed. As for the augmentation, consistent with Carroll [15], we

address two kinds of location name contractions: category ellipsis and location ellipsis.

We augment gazetteers with skip-grams (e.g., to include “Balalok School” as a variant of

the full location name in the gazetteer). The technique requires a bounding box of the area

of interest to build initial region-specific gazetteer and then augment it automatically for

locations delimitation. The data and the full source code of the technique are available
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online at https://github.com/halolimat/LNEx.

In the remaining parts of this chapter, I demonstrate the successful spotting of location

names in targeted text streams using lexical statistics (word and phrase frequencies) built

from high-quality augmented gazetteers. Although our method (LNEx) works on a targeted

Twitter stream collected using event-specific keywords, it does not rely on geo-coordinates

associated with tweets, which are rarely available, and it does not need any supervision (i.e.,

training data). It is well-suited for stream processing and requires only freely available

data. Our technique provides the foundation for localizing social media information on

a map, thereby supporting demographic studies, disaster management applications, and

other computational models. With the increased availability of open data, we expect our

approach based on region-specific knowledge to be widely applicable in practice.

2.2 Challenges of Location Name Extraction

Table 2.1 contains the example challenges and different types of location mentions in the

sample unstructured social media data that we examined. The following is a list of these

types, highlighting the challenges of the location name extraction problem:

T1- Ambiguous locations: These are the locations that are context-dependent and

cannot be resolved unless we have background knowledge about the author.

T2- Full locations in hashtags: These are typical locations that are written inside

hashtags.

T3- Abbreviated locations: These include standard abbreviations of locations names

such as “LA” for “Louisiana” and “OH” or “Ohio” and so on.

T4- Numeric locations: These include house numbers that map to a particular build-

ing in a certain street.
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Table 2.1: Example challenges and types of location names in the social media text.

Now have a very nice lake in

T1︷ ︸︸ ︷
my backyard accompanied with geese. #

T2︷ ︸︸ ︷
LouisianaFlood

T6︷ ︸︸ ︷
Highway 288 in

T3︷ ︸︸ ︷
HOU unflooded & back in business. Stay strong,

T11︷ ︸︸ ︷
HTown

2 ppl need to be evacuated frm #

T4︷︸︸︷
21 ,

T5︷ ︸︸ ︷
New Avadi Rd,

T2︷ ︸︸ ︷
Kilpauk Garden

T6︷ ︸︸ ︷
LA 339 (

T5︷ ︸︸ ︷
Verot School Rd.) between

T6︷ ︸︸ ︷
US 90 and

T7︷ ︸︸ ︷
College Drive in

T7︷ ︸︸ ︷
Lafayette Parish #

T8︷︸︸︷
la wx

Slow-moving storms from

T9︷ ︸︸ ︷
Central to

T10︷ ︸︸ ︷
Clinton

T12︷ ︸︸ ︷
sou th kr koil street︸ ︷︷ ︸

T13

near

T16︷ ︸︸ ︷
Oxford school︸ ︷︷ ︸

T15

.west mambalam︸ ︷︷ ︸
T13

urgent RT pls, any near

T13︷ ︸︸ ︷
saligramam

T14︷ ︸︸ ︷
balalok school elderly cpl, not reachable last 3 days
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T5- Locations with abbreviations: These are the locations that contain an abbrevi-

ated location category such as “Ave” for “Avenue” and “Str” for “Street”. This

type poses a lexical variation problem when matching location records from

gazetteers and location mentions in the unstructured text.

T6- Alphanumeric locations: These location names can be very challenging to noun

phrase-based named entity extraction techniques as they are not easily detected

as noun phrases.

T7- Normal locations: These are the location names that can be found in a gazetteer

and have none of the problems or challenges in the other types.

T8- Abbreviated locations in hashtags: These are the T3 locations in hashtags.

T9- Highly ambiguous locations-1: These include the common words used to name

locations such as “Central” or “People” (a shop name in Chennai, India). A

longer list of these ambiguous and very unusual names can also be found at en.

wikipedia.org/wiki/Wikipedia:Unusual_place_names.

T10- Highly ambiguous locations-2: These are homographs that have the same spelling

as location names, but they are not location names such as “Turkey” and “Clin-

ton” or given names such as “Paris” and “Berlin”.

T11- Nicknamed locations: These are locations that have alternative nicknames such

as “H-Town” for “Houston”, “Big Apple” for “New York”, or “Beantown” for

“Boston”.

T12- Misspelled locations: Sometimes, location names, like any other token in a sen-

tence, can be misspelled. Later in the chapter, I report our findings on misspelled

locations, which shows that they are not statistically significant.
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T13- Wrong cased locations: These are locations that were mistakenly lower cased

w.r.t the first letters, which would result in challenging part-of-speech (POS) tag-

ging.

T14- Contracted locations: These are locations that authors contracted into fewer

tokens than the full location names by dropping the more general terms while

retaining more specific ones. For example, “Amman High School” can be con-

tracted to “Amman School” by retaining the essential tokens and ignoring the

general tokens like “High”, which can be part of many other location names.

T15- Mixed cased locations: Locations that have their case mixed, suggesting that the

following tokens might not be part of the same phrase.

T16- Ungrammatical writing: This highlights ungrammatical and ill-formed sen-

tences in social media data posing challenges to the tokenization and parsing

procedures.

In the next sections, I explain our solution for extracting locations from tweets of the

above types. Figure 2.7 also shows the prevalence of these types of location references in

a random sample from our three datasets.

2.3 Approach

I discuss the details of our approach in four subsections. First, I present the general idea of

statistical inference via n-gram models. The core of LNEx is a statistical language model

consisting of a probability distribution over sequences of words (collocations) that rep-

resent location names in preexisting, region-specific gazetteers. Then, I separately discuss

several modifications to both gazetteers and text samples, including gazetteer augmentation

and filtering, spelling correction, and hashtags breaking and tweet preprocessing. Finally, I
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illustrate the full location analysis and matching process that reliably spots location names

and their boundaries in text.

2.3.1 Statistical Inference via n-gram Models

LNEx constructs an n-gram model from the collocations that exist in the gazetteer to de-

termine the valid location names (LNs) that might appear in tweets. Given tweet content

such as“texas ave is closed”, the model can check the validity of one to n-grams. From

the gazetteer, “texas” and “ave” are valid gazetteer unigrams, but “is” and “closed” are not.

Similarly, “texas ave” is a valid and preferred bigram (over two unigrams).

Specifically, as shown in Algorithm 1, we first tokenize all location names in the

gazetteer to construct the n-gram model and then save the resulting lists of unigrams, bi-

grams, and trigrams (Lines 2-5). Next, for bigrams and trigrams, in Lines 6-9 we create

Conditional Frequency Distributions (CFD) to count the collocations (i.e., c(·) in Equa-

tions 2.1-2.2). Conditional Probability Distributions (CPD) are then constructed from the

recorded n-grams using Maximum Likelihood Estimation (MLE). We found in our dataset

that roughly 98% of location mentions in tweets have less than three words. Therefore,

we assume that only the previous two words determine the probability of the next word

(Markovian assumption of order two). MLE assumes zero probability values for tokens

missing from the gazetteers. This data sparsity problem is mitigated by augmenting the

gazetteers with location name variants (see Section 2.3.2). In lines 11-13, we determine

the validity of an n-gram (the string s) using the boolean function VALID-N-GRAM(s)

with the help of Equations 2.1-2.4, where c(wy
x) ≡ c(wxwx+1 . . . wy), wy

x is the collocation

count (i.e., the occurrences of consecutive words, wx to wy), P (wz|wy
x) is the conditional

probability of a word wz given previous collocation wy
x, and the chain of probabilities P1

(for unigrams), P2 (for bigrams), and P3 (for tri or larger grams).
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Algorithm 1: Language model generation algorithm using terms distribution in

a region-specific gazetteer. We create conditional frequency distributions (CFD)

to count location names, then calculate the conditional probability distributions

(CPD) using maximum likelihood estimation (MLE).

1 Function Compute-Model(Gazetteer):

2 for ln ∈ Gazetteer do

3 unigrams← tokenize(ln)

4 bigrams, trigrams← generate from unigrams

5 end

6 for n-grams ∈ [bigrams, trigrams] do

7 CFD← create using n-grams

8 CPD← create using CFD

9 end

10

11 Function Valid-N-Gram(string = s):

12 wn
1 = (w1, . . . , wn)← tokenize(s)

13 return P (wn
1 ) > 0 . calculated using the Equations 2.1-2.4
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P (wz|wy
x) =

c(wz
x)

c(wy
x)

(2.1)

P1 = P (w1
1) =

c(w1)∑|unigrams|
i=1 c(wi)

(2.2)

P2 = P (w2
1) = P1 × p(w2 | w1

1) (2.3)

P (wn
1 ) = P2 ×

n∏
i=3

P (wi | wi−1
i−2), n ≥ 3 (2.4)

2.3.2 Gazetteer Augmentation and Filtering

We faced two primary challenges when building our language model using raw gazetteers,

which are not adequately explored in previous work [86, 132]:

1. Conditional Collocation Contractions: Some atomic n-gram location names (col-

locations) cannot be shortened, e.g., “New York”. However, contraction can preserve

the meaning of longer names, especially when the first and the last words denote a

specific part and a generic part, respectively, such as in “Balalok School”.

2. Auxiliary and Spurious Content: Gazetteer entries may contain extraneous content

that can cause location matching to fail. Consider the examples in Table 2.3, where

bracketed strings can refer to the usage, status, or branding. Hyphens also are used

to reflect a part-of relationship between two location names, a relative reference to

another location name, or the names of two places connected by a road. Cleaning

such entries improves matching reliability.

To address these challenges and inform a generative method for gazetteer augmentation

and filtering, we implemented variants of the two Nameheads subprocesses [15]: Category
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Table 2.2: Gazetteer augmentation to generate alternative names.

Balalok Matriculation Higher Secondary School

Balalok School,

Balalok Matriculation School,

Balalok Higher School,

Balalok Secondary School,

Balalok Matriculation Higher School,

Balalok Higher Secondary School

Ellipsis (for collocation contraction) and Location Ellipsis (for filtering the auxiliary con-

tent). Category and Location Ellipsis can be readily used to augment gazetteers, allowing

us to overcome much of the lexical variation between the authors’ text and the gazetteers’

records. Category ellipsis occurs when the author strips words related to the location cate-

gory (e.g., any of the intermediate tokens inside “Balalok Matriculation Higher Secondary

School” or “City” from “Houston City” to become “Houston”). Location Ellipsis occurs

when an author drops the specific location reference in the location name (e.g., when “New

York Yankee Stadium” becomes “Yankee Stadium” or “Cars India - Adyar” becomes “Cars

India”). The following are the details of our implementation:

1. Skip-grams: Given a location name t1 . . . tn, we retain t1 and tn while varying

t2 . . . tn−1. To avoid adding “City York” as a legitimate variant of the location name

“City College of New York”, we require tn to be a location category name (e.g., build-

ing, road). Therefore, “Balalok Matriculation Higher Secondary School” generates

{Balalok School, Balalok Secondary School, ...}, see Table 2.2. This

technique results in a small number of contractions that are either useful collocations

or are too random to cause many false positives [46]. For example, “New Univer-

sity” is mistakenly established as a legitimate variant of “New York University”. The

problem here is that “New York” is an inseparable, idiomatic listeme. A more sophis-

31



Table 2.3: Extraneous text in raw gazetteers.

Content Description Example Gazetteer Record

1 Descriptive Tags (Private Road)

2 Life-cycle/Status Tags Little Rock School (historical)

3 Alternative/Old Names Scenic Road (Frontage Road)

4 Acronyms International House of Pancakes (IHOP)

5 Hyphenations

Cars India - Adyar

Pilot - Hammond

Beacon Health - Westchase

6 Branding/Descriptive TAJ KAZURA (A Comfort Stay)

ticated name model that ignores the generic parts and retains the specific parts when

augmenting a location name (e.g., adding “Sam’s” as a variant of “Sam’s Club”) is

beyond the scope of the current work [24].

2. Filtering: We compiled a generic list of phrases to address bracketed auxiliary con-

tent and remove specific words on a case-by-case basis (e.g., 1-2 in Table 2.3). The

remaining bracketed names are deemed legitimate alternatives (e.g., 3-4 in Table

2.3). We treat hyphenated location names as Location Ellipsis and split them on the

hyphen and add the two splits (e.g., 5 in Table 2.3). We expect that the majority of

these location names represent a partonomy relationship where the hyphen may be

read as a “part of” relation between split tokens. We do not add the second token as

a variant when it already exists in the gazetteer on its own as location name entity

(e.g., “Hammond” in “Pilot - Hammond”).

These two methods augment and filter partial OSM, Geonames, and DBpedia gazetteers

sliced from the original sources using a bounding box for the area of interest. Further, we

can attach the metadata of the original location name to the generated variants. Moreover,
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Table 2.4: Statistics of location mentions inside hashtags, where, # UHs is the number of
unique hashtags, UHs* are the unique hashtags excluding the ones used for crawling.

Dataset # UHs % in UHs % in UHs* % in all hashtags

Chennai 229 37% 17.4% 26.3%

Louisiana 471 24% 17.3% 31.3%

Houston 274 29% 17.6% 28.3%

by treating derived names as synonyms for existing names, we avoid creating additional

demands on disambiguation or equivalencing. We add the derived, variant location name

to the gazetteer as long as it does not collide with an existing location name. Additional

filtering of proposed variants is required to prevent false alarms. Similar to the use case

in [132, 38], we compiled a list of 11,203 words, including 678 inseparable bigrams, such

as “Building A”, as gazetteer stop words. This list also includes unusual location names

(e.g., “Boring” in Maryland and “Why” in Arizona) and proper nouns (e.g., “James” in

Mississippi) that could appear as non-location tokens. We then eliminate from all gazetteers

the location names that overlap with our gazetteer stop words to reduce false positives.

Next, I discuss the modifications to text before the step of extracting locations.

2.3.3 Tweet Preprocessing

To complement the gazetteer preprocessing, we also require potentially non-trivial tweet

preprocessing. We start by removing the retweet handles, URLs, non-ASCII characters,

and all user mentions. Then, we tokenize tweets using TweetMotif’s Twokenizer [98],

which treats hashtags, mentions, and emoticons as a single token. We do not tokenize on

periods (e.g., “U.S.”). The use of Twokenizer improved the location extraction performance

by around 2% F-score in the observed datasets.
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Hashtag Segmentation: In our Twitter datasets, on average, around 29% of the hashtags

include location names. Excluding hashtags used to crawl the data, approximately 17% of

the unique hashtags contain locations. As the number of locations in hashtags is significant,

similar to [75], we adopted a statistical word segmentation algorithm to break hashtags to

their respective discrete words for location spotting [97]. We used the implementation

provided in wordsegment module1.

The algorithm uses a list of 333,333 types (distinct unigrams) and their counts extracted

from Google’s 1 billion token corpus. For a given hashtag (e.g., “#ChennaiFloods”), we

remove the hash symbol and try to segment the hashtag to “chennai” and “floods”. The

method assumes independence between hashtag tokens and finds the best segmentation of

a given string by maximizing its probability: best = argmax c ∈ candidates(s) P (c), where c

is the current segmentation of the string s (e.g., seg1 = “ch” and seg2 = “ennaifloods”),

candidates(s) is the set of segmentations of the string s, and P (c) =
∏

i P (segi).

Spelling Correction: We consider a tweet token as misspelled if it is an out-of-vocabulary

token, where the vocabulary is gazetteer words and a large English vocabulary word list2.

LNEx corrects all misspelled tokens using the Symmetric Delete Spelling Correction al-

gorithm (SymSpell)3 that is six orders of magnitude faster than Norvig’s spelling corrector

[97], which was used by [40] in their location extraction tool.

SymSpell is based on the Damerau-Levenshtein distance algorithm and finds matches

for a given word from the dictionary of unigrams with the smallest edit distance. As

computing edit distances between the query word and each unigram is expensive, Sym-

Spell pre-generates all terms with an edit distance of ≤ 3 from each of the gazetteer uni-

grams and adds them to a dictionary during initialization. For example, delete(new, 1) =

{ew, nw, ne}, where 1 is the edit distance. At the time of correction, SymSpell also gen-

erates all edit variations of the tweet token to match them with the previously generated
1http://www.grantjenks.com/docs/wordsegment/
2https://github.com/norrissoftware/words3
3https://github.com/wolfgarbe/symspell

34

http://www.grantjenks.com/docs/wordsegment/
https://github.com/norrissoftware/words3
https://github.com/wolfgarbe/symspell


Preprocessing

Case folding,  tokenization,  and       Hashtag Breaking

Stop words filtering, abbreviations expansion, and splitting

 Vectors*

Location Extraction

new avadi rd is closed chennai floods
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Figure 2.1: Extracting locations using the LNEx tool.

variations in the dictionary. As we shall see, spelling correction has only a small influence

on system accuracy.

2.3.4 Extracting Location Names using LNEx

After modifications to the gazetteers and texts, LNEx extracts location names, as illustrated

in Figure 2.1. In a , LNEx reads the raw tweet text, preprocesses it (as in Section 2.3.3)

starting with case-folding. After tokenizing the tweet, the hashtag segmenter breaks hash-

tags into tokens. Later, stop words are used to split a tweet into consecutive word fragments

where each tweet split of size n can have zero to n potential location names. We custom

build the tweet stop list starting with around 890 words4 excluding the gazetteer unigrams.

LNEx now takes each tweet split and converts each of its tokens into a vector of to-

4http://www.ranks.nl/stopwords
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kens v using two dictionaries: the USPS street suffixes dictionary5 and the English OSM

abbreviations dictionary6. This conversion adds possible expansions and abbreviations of

a token (e.g., “Rd” to “Road”, and vice versa). Ultimately, this overcomes the lexical vari-

ations between location mentions in tweets and their corresponding gazetteer entries for

robust matching.

In b , the language model is used to find the valid n-grams from the Cartesian product

of the consecutive vectors. It builds a bottom-up tree for each tweet split starting from 1 to

n-grams by gluing the consecutive tokens together if they represent a valid segment in the

gazetteer. We improve the speed of the algorithm significantly by splitting the tweet and

eliminating invalid n-grams. LNEx then selects a subset of valid n-grams from the tree;

for overlapping n-grams, we prefer the longest full mentions (e.g., “New Avadi Road” over

“Avadi Road”) and keep both if they are of the same length. When full location names

appear inside partial ones, we keep only full names in the set of possible locations (e.g.,

extracting “Louisiana” from “The Louisiana”). The final list of full location mentions found

in all splits of a tweet comprises the result of LNEx.

2.3.5 Time and Space Complexity

LNEx extracts and links a full location mention to its corresponding gazetteer entry through

a simple dictionary lookup that takes constant time O(1). The location extraction time is

bounded by the time for creating the bottom-up tree of tokens which takesO(|v|s) where |v|

is the length of the longest vector of token synonyms (i.e., all the expansions and abbrevi-

ations of a token) and s is the largest number of tokens with synonyms in a location name.

Splitting the tweet into smaller fragments significantly lowers the asymptotic growth of

the algorithm, enabling stream processing. In practice, for our dictionaries and gazetteers,

|v| ≤ 4 and s ≤ 3. So, a pessimistic upper bound on the number of candidates for each

5http://pe.usps.gov/text/pub28/28apc_002.htm
6wiki.openstreetmap.org/wiki/Name_finder:Abbreviations
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location (though rarely realized) is 43. The space complexity of the method is bounded by

the product of the number of gazetteer entries, L, and the number of variants of a location

name (Skip-gram method 1), that is, 2m−2, where m is the number of tokens in a location

name. Effectively, the space complexity is O(L.2m−2) where typically, 2 ≤ m ≤ 5. Fur-

ther, according to our tests, LNEx needed only up to 650 MB of memory and can process,

on average, 200 tweets per second.

2.4 Evaluation

To demonstrate the effectiveness of our context-aware location extractor LNEx, we col-

lected event-specific tweets from three different targeted streams corresponding to floods

in Chennai, Louisiana, and Houston. Below are the details of how we collected, filtered

(to get a set of tweets with higher potential to have location mentions in them), and cate-

gorized and annotated them (to benchmark each component of LNEx, and for comparing

LNEx with other state-of-the-art tools for the location extraction task). Our approach re-

quires an innovation in the conceptualization of effective performance.

2.4.1 Data Collection

To collect geographically limited, disaster-related tweets, we compiled a list of event-

specific hashtags in order to filter the Twitter stream at the time of the event. The following

is the list of hashtags used to collect each dataset:

• 2015 Chennai flood: #chennairescue, #chennairainshelp, #chennaifloods, #helpchen-

nai, #chennaifloodrelief, #chennairains, #chennaimicro, #chennaivolunteer, #chen-

naiflood, #volunteerforchennai, #tnflood, #chennaiweather, #tnfloods, #chennaiup-

dates, #chennaihelp

• 2016 Louisiana flood: #louisiana, #lousianaflood, #lawx, #lafloods, #laflooding
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• 2016 Houston flood: #prayforHouston, #houwx, #houstonflood, #txwx

2.4.2 Data Filtering and Preparation

To retrieve tweets with higher potential to have location mentions in them, we sampled

tweets from each dataset that contains one or more of the following terms:

• Location verbs: We consulted Levin verbs [62] to compiled a list of verbs that

corresponds to a change of state which in many cases would accompany a location

mention in a sentence. The list includes: avoid, cross, depart, escape, evacuate, leave,

and shelter.

• Building suffixes: We took this set, which contains the suffixes of building names

such as abbey, academy, airport, clinic, school, station, and university from [38].

• Direction markers: This set contains direction markers and their abbreviations,

combination, and different forms such as north, south, south-west, nwest, and s-east.

• Distance markers: This set contains markers such as mile, kilometer and yard, and

their abbreviations such as mi, km, and yd or yds.

• Prepositions: This set contains prepositions that accompany locations in sentences

such as above, across, along, around, behind, beside, and outside.

• Street suffixes: We used the same dictionaries mentioned before, i.e., the USPS

street suffixes and the English OSM abbreviations dictionaries to compile a list of

terms and their abbreviations such as avenue, ave, bridge, brg, highway, hwy, park-

way, street, str, and way.

After prepossessing the tweets as in Section 2.3.3, we lemmatize tweets using CoreNLP

[81] and then use the list of location indicative terms from above to only keep the tweets

that include these terms. Finally, we filtered out duplicates to retain unique tweets and

sampled 1,500 from these filtered tweets for each dataset randomly.
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2.4.3 Benchmarking and Annotations

Consistent with the problem of determining whether or not a location mention is inside

the area of interest, our novel benchmark categorization scheme is based on where these

locations lie in relation to the area of interest drawn using a bounding box. For example,

with respect to Chicago, IL, USA:

1. inLOC: These are locations that are inside the area of interest, (e.g., Millennium

Park or Burlington Ave.)

2. outLOC: These are locations that are outside the area of interest (e.g., Central Park,

5th Ave, New York.)

3. ambLOC: These are ambiguous locations that need context for identification (e.g.,

“our house” or “Louisiana Rivers”.)

In contrast to [83, 38], our categorization is not based on location types (e.g., buildings,

facilities, schools) but on the relative position (i.e., inLOC or outLOC) and the type of the

location mention (i.e., inLOC or ambLOC). This approach identifies the true scope of the

challenges in extracting location names. Other schemes that annotate for a limited set of

location types, such as Geoparse Twitter Benchmark Dataset7, miss other types of location

mentions in tweets, such as “New Zealand” and “Christchurch”, making the datasets anno-

tated with this scheme incompatible for testing the tools in Section 2.4.8 including LNEx.

On the other hand, our annotation scheme allows us to test any location extraction tool by

ignoring the optional additional expressivity. Additionally, we do not make the distinction

between whether a mention is a POI (hotel, restaurant) or a geo-location (country, city,

river)— we consider all of them as locations.

Although disambiguation is out of the scope of this chapter, reducing the ambiguity of

the extracted and linked location names is very desirable. Fortunately, only around 14%,

7https://web-001.ecs.soton.ac.uk/
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RT @GraceLimWeather: Evangeline Parish Sherif

20 people evacuated from flooded homes in Ville Platte. #lawx

Toponym

1

2

brat/HazardSEES-BRAT/Louisiana/final_set/764483789040918529

OKLogin required to perform "searchT

ambLoc inLoc inLoc

Figure 2.2: Example location name annotations using the BRAT tool in the context of the
2016 Louisiana flood.

Figure 2.3: 2016 Louisiana floods map: the 21 Louisiana parishes that were declared fed-
eral disaster areas by FEMA (Source [130]).

24%, and 26% of Chennai, Louisiana, and Houston tweets respectively need disambigua-

tion due to the linking of locations with more than one possible geo-coordinate.

Tweet Annotations Figure 2.2 shows an example of manual annotation from the Louisiana

flood tweets using the BRAT tool [122]. It allows us to define search functionalities and

additional resources such as Google Maps, Photon8, and Mapzen9 for the annotators to use.

In the rare case that no match is found, the annotators may consult other resources,

including the standard Google Search. An ambLOC annotation covers cases not otherwise

found. Annotators decide whether a location name is an inLOC or outLOC by consulting

a pre-defined bounding box of the affected area as declared by officials (see the example

map of the 2016 Louisiana floods in Figure 2.3).

8photon.komoot.de
9https://mapzen.com
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We annotated three datasets: the 2015 Chennai flood, the 2016 Louisiana flood, and the

2016 Houston flood ( collected with Twitter’s streaming API using the most relevant hash-

tags of each event, e.g., #ChennaiFloods2015 and #LouisianaFloods2016). We recruited

three annotators and had a meta annotator to review and resolve any issues in the data. In

Chennai, there was 4,589 location names (75% inLOC, 4% outLOC, and 21% ambLOC);

in Louisiana, 2,918 (66% inLOC, 13% outLOC, and 22% ambLOC); and in Houston, 4,177

(66% inLOC, 7% outLOC, and 27% ambLOC). We randomly selected 1,000 tweets (500

each from Chennai and Louisiana) as a development set and the remaining 3,500 as the test

set for evaluation.

2.4.4 Evaluation Strategy

Because BRAT records the start and the end character offsets of the annotated LNs, we

evaluate the extraction task by checking the character offsets of the spotted location name in

comparison with the annotated data. We used the standard comparison metrics: Precision,

Recall, and balanced F-Score. In the case of overlapping or partial matches, we penalize

all tools by adding 1
2
FP (False Positive) and 1

2
FN (False Negative) to the precision and

recall equations (e.g., if the tool spots “The Louisiana” instead of “Louisiana”).

As we aim to extract location names that are inside the area of interest, we evaluate

all tools based on the category of the extracted location in our annotation scheme. For

the inLOC mentions, we count all hits and misses of a tool and ignore all hits when the

category of the extracted location is outLOC or ambLOC. However, we take a particularly

conservative approach and additionally penalize LNEx for extracting location names of

outLOC and ambLOC categories, counting them as false positives (FPs) as our tool is not

supposed to extract these.
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Figure 2.4: Hashtag breaking accuracy.

2.4.5 Spell Checking

The literature on location names emphasizes the effect of misspellings in tweets [40, 75,

125]. SymSpell fixed the misspellings of 105 tokens from Chennai (3.64%), six from

Louisiana (0.35%), and 21 from Houston (1.22%). While this led to a 1% increase in recall,

the F-Score decreased by 2% on average due to the influence of increased false positives

on precision. In the final system, we opted to exclude the spelling corrector component.

2.4.6 Hashtag Breaking

Using the annotated data, we evaluated the performance of the hashtag breaking component

only on the hashtags that contain locations (see Figure 2.4). The accuracies were 97%,

87%, and 93% for Chennai, Louisiana, and Houston respectively, reduced due to examples

such as, “#lawx” which was broken into “law” and “x”, instead of “la” and “wx”, because

the combined probability of the word “law” and the character “x” is higher than the other

combinations.
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2.4.7 Picking a Gazetteer

The augmentation and filtering of gazetteers improved the F-Scores (See Figure 2.5). After

this process, combinations of gazetteer sources had similar performance (based on the aver-

age F-Score) where the difference between the worst and the best was around 0.02 F-Score

units (see Figure 2.6). In the final system, we relied on OSM, which performed the best.

Moreover, DBpedia is not focused on geographical information; therefore, it does not con-

tain the metadata useful for the system’s future use (e.g., extents and full addresses). Also,

OSM has more fine-grained locations and more accurate geo-coordinates than Geonames

[39].

2.4.8 Comparing LNEx with Other Tools

We compared LNEx with the following ten tools, either using their public APIs or using

their available open-source implementations. The tools mentioned in the related work sec-

tion and not mentioned below are not available online for our evaluation and comparison.

However, many of them retrained and used Stanford NER or OpenNLP. Therefore, we also

retrained both for comparison.

1. Commercial Grade: Google NL10, OpenCalais11, and Yahoo! BOSS PlaceFinder12.

All of these tools have REST APIs and are black box tools that use Machine Learn-

ing techniques. However, Google mentions that their API is based on deep neural

network technology.

2. General Purpose NER: Stanford NER (SNER) 13 and OpenNLP Name Finder14.

To spot named entities in texts, SNER learns a linear chain Conditional Random

Field (CRF) sequence model [35], while OpenNLP uses the maximum entropy (ME)
10https://cloud.google.com/natural-language/
11http://www.opencalais.com/
12https://developer.yahoo.com/boss/geo/
13https://nlp.stanford.edu/software/CRF-NER.html
14https://opennlp.apache.org/
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framework [10]. We trained both tools interchangeably on our annotated datasets

in addition to all the data from W-NUT 201615. As the W-NUT dataset contains

other entity classes besides locations, we retained the annotated locations and unified

the other classes we recognize as locations (i.e., geo-loc, company, facility) into one

type and ignored the rest. We used the LNEx-OSM gazetteer’s features while training

SNER. Additionally, we used DBpedia Spotlight [85].

3. Twitter NLP: OSU Twitter NLP [109]16 and TwitIE-Gate [12]17. Both are pipelined

systems with POS-tagging followed by NER. They adapted CRF-based POS taggers

and trained them on manually annotated tweets as part of the full pipeline. TwitIE-

GATE also supports normalization, gazetteer lookup, and regular expression-based

tagging. For a fair comparison, we also augmented them with LNEx OSM gazetteers.

4. Twitter Location Extraction: Geolocator 3.0 [40]18 and Geoparsepy [86]19. Geolo-

cator 3.0 uses a tweet-trained CRF classifier and other rule-based models to extract

street names, building names, business names, and unnamed locations (i.e., location

names containing a category such as “School”). Also, it only geocodes the extracted

toponyms and business names. Geoparsepy is the implementation of the work in

[86].

All tools have been evaluated using the same metrics and on the same annotated data.

In the case of hashtags, we count all hits for all tools, and when a tool misses, we penalize

only the ones that were designed to break hashtags (namely, TwitIE-Gate20 and LNEx).

Additionally, we consider all spotted mentions from PlaceFinder, Geolocator 3.0, Geop-

15http://noisy-text.github.io/2016
16https://github.com/aritter/twitter_nlp
17https://gate.ac.uk/wiki/twitie.html
18https://github.com/geoparser/geolocator-3.0
19https://pypi.python.org/pypi/geoparsepy
20http://rebrand.ly/gatea336f
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Figure 2.5: Raw vs. augmented and filtered (AF) gazetteers combinations. Each of the seven
combinations is a subset of {OSM Geonames DBpedia}.
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Figure 2.6: Gazetteer combinations performance. Each of the seven combinations is a
subset of {OSM Geonames DBpedia}. E.g., 100 stands for {OSM} while 011 stands for
{Geonames DBpedia}.

Table 2.5: Types considered as location classes per tool.

Tool Name Entity Types of Location Names

Google NLP Location, Organization

OpenCalais
City, Company, Continent, Country, Facility,

Organization, ProvinceOrState, Region, TVStation

DBpedia Spotlight Place, Organization

OSU TwitterNLP Geo-Location, Company, Facility

TwitIE-Gate Location, Organization
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Figure 2.7: Random sample evaluation showing the prevalence of the challenges and the
frequency of the different form types discussed in Section 2.2.

arsepy, SNER, and OpenNLP as location names. But for other tools, we consider only

the entity types in Table 2.5 as location entities. As we trained SNER and OpenNLP on a

single class (i.e., location names), the two tools extract entities of this type only.

Figure 2.7 shows that the three corpora exhibit different challenges to location extrac-

tion (see the full list of challenges in Section 2.2). Nevertheless, LNEx outperformed all

other tools on all datasets in terms of F-Score, and the average F-Score (see Table 2.6).

LNEx also achieved statistical significance across the board when using the Mann-Whitney

U test, with a P < 0.05. Furthermore, LNEx showed stability on the test and development

sets from Louisiana with only a 0.2% F-Score reduction and around a 2.6% reduction on

the test set from Chennai.

The augmentation and filtering method significantly improved the average F-Score from

0.69 to 0.81. However, limitations of the gazetteer augmentation and filtering methods did

contribute to lowering precision. For example, on average, around 5% of the extracted

location names were outLOC and ambLOC, mistakenly extracted from Chennai, Louisiana,

and Houston tweets. Example errors include the augmentation of location names such

as “The x Apartments” to “The Apartments”, causing LNEx to extract the phrase “The

Apartments” as an actual full location name. Fixing such limitations should contribute to

around a 2% F-Score improvement on average. The inability of the similar OSM-gazetteer-
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Table 2.6: Location extraction tools vs. LNEx with a raw (RawGaz), and augmented and
filtered gazetteer (AFGaz). LNEx improves its performance by using AFGaz and outper-
forms all tools with at least 33% F1-Score improvement.

Datasets

Chennai Louisiana Houston AVG

P R F P R F P R F F

Google NLP 0.40 0.49 0.44 0.55 0.75 0.64 0.39 0.51 0.44 0.51

OpenCalais 0.43 0.10 0.17 0.81 0.77 0.78 0.62 0.35 0.45 0.47

DBpedia Spotlight 0.31 0.44 0.36 0.57 0.88 0.70 0.35 0.53 0.42 0.50

Yahoo! PlaceFinder 0.67 0.39 0.49 0.83 0.80 0.81 0.64 0.42 0.50 0.61

Stanford NER 0.72 0.29 0.41 0.78 0.42 0.55 0.74 0.32 0.45 0.47

OpenNLP 0.55 0.15 0.24 0.62 0.19 0.29 0.60 0.23 0.34 0.29

OSU TwitterNLP 0.74 0.40 0.52 0.84 0.69 0.76 0.66 0.39 0.49 0.59

TwitIE-Gate 0.51 0.36 0.43 0.66 0.84 0.74 0.35 0.39 0.37 0.52

Geolocator 3.0 0.43 0.54 0.48 0.32 0.71 0.44 0.38 0.58 0.46 0.46

Geoparsepy 0.41 0.28 0.33 0.45 0.72 0.55 0.44 0.46 0.45 0.45

LNEx-RawGaz 0.80 0.78 0.79 0.51 0.80 0.62 0.63 0.66 0.64 0.69

LNEx-AFGaz 0.91 0.80 0.85 0.83 0.81 0.82 0.87 0.67 0.76 0.81
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based approach by [86] to filter and augment the gazetteers hindered the performance of

Geoparsepy as the tool was unable to extract location mentions using the raw gazetteers or

mistakenly extract false positive locations.

We trained Stanford NER (SNER) and OpenNLP to emulate their use in other studies

mentioned in Section 2.5. Performance was calculated by interchangeably training them

using three datasets at a time and testing on the fourth one (the gazetteer of the area of the

test data was also used in training the SNER models). We always used the W-NUT ’16

dataset to train the models with more than 10k tweets each time.

We observed that the ill-formatted text of tweets with ungrammatical text and miss-

ing orthographic features impact the F-Score of tools we compared with LNEx. While

the performance of each tool differs, we observed that Google heavily relies on ortho-

graphic features and expects grammatical texts (although it scored a 0.38 average F-Score).

Additionally, TwitIE-GATE was not always successful in extracting location names from

hashtags or text even if they are part of the gazetteers that we added to the tool. Finally,

OpenCalais extracts only well-known location names of coarser granularity than street and

building levels unless a location has an attached location category (e.g., school or street).

2.4.9 Illustrative Examples

Table 2.7 shows the comparative handling of three tweets, one each from Chennai, Louisiana,

and Houston datasets, covering most challenges faced by all tools. The location name “Ox-

ford school” allowed us to examine if a tool relies on capitalization for delimitation. Only

OpenCalais, Geolocator and LNEx were able to extract the name correctly while the rest

either partially extracted it or missed it. For example, PlaceFinder extracted “Oxford” and

geocoded it with the geocodes of “Oxford city” in England. Although we trained SNER

and OpenNLP on the same datasets, OpenNLP extracted “Oxford” while SNER did not,

which suggests that the cue word “near” was insufficient evidence for SNER to spot at least

48



Table 2.7: Example tool outputs: the bracketed bold text is the identified location names,
and braces highlight the types from Section 2.2.

Original
Text’s
Manual
Annotations
& Types

T12︷ ︸︸ ︷
(sou th kr koil street)︸ ︷︷ ︸

T13

near

T16︷ ︸︸ ︷
(Oxford school)︸ ︷︷ ︸

T15

. (west mambalam)︸ ︷︷ ︸
T13

We r lucky where I am in

T7︷ ︸︸ ︷
(New Iberia). #PrayFor

T2︷ ︸︸ ︷
(Louisiana) #(

T8︷︸︸︷
la )wx

Didn’t (Houston)︸ ︷︷ ︸
T7

have a bad flood last year now again poor (htown)︸ ︷︷ ︸
T11

Google
NLP

sou th kr (koil street) near (Oxford) school.west (mambalam)..
We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx
Didn’t (Houston) have a bad flood last year now again poor htown

OpenCalais
sou th kr koil street near (Oxford school).west mambalam..
We r lucky where I am in New Iberia. #PrayForLouisiana #lawx
Didn’t (Houston) have a bad flood last year now again poor htown

DBpedia
Spot-
light

sou th kr koil street near (Oxford) school.west (mambalam)..
We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx
Didn’t (Houston) have a bad flood last year now again poor htown

Yahoo!
PlaceFinder

sou (th) kr koil street near (Oxford) school.west mambalam..
We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx
Didn’t Houston have a bad flood last year now again poor htown

Stanford
NER

sou th kr koil street near Oxford school.west mambalam..
We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx
Didn’t Houston have a bad flood last year now again poor htown

OpenNLP
sou th kr (koil street) near (Oxford) school.west mambalam..
We r lucky where I am in (New Iberia.) #PrayForLouisiana #lawx
Didn’t Houston have a bad flood last year now again poor htown

OSU
Twit-
terNLP

sou th kr koil street near (Oxford) school.west mambalam..
We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx
Didn’t Houston have a bad flood last year now again poor htown

TwitIE-
Gate

sou th kr koil (street) near (Oxford) school.(west mambalam)..
We r lucky where I am in New Iberia. #PrayForLouisiana #lawx
Didn’t Houston have a bad flood last year now again poor htown

Geolocator
3.0

(sou th) (kr) (koil) street near (Oxford school).(west mambalam)..
We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx
Didn’t (Houston) have a bad flood last year now again poor (htown)

Geoparsepy
sou (th) (kr) koil street near (Oxford) school.west mambalam..
We r lucky where I am in (New (Iberia)). #PrayForLouisiana #lawx
Didn’t (Houston) have a bad flood last year now again poor htown
sou th kr koil street near (Oxford school).(west mambalam)..

LNEx We r lucky where I am in (New Iberia). #PrayFor(Louisiana) #lawx
Didn’t (Houston) have a bad flood last year now again poor htown
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“Oxford”. Correspondingly, as “New Iberia” is a correctly capitalized full location name,

almost all tools were able to extract it. However, TwitIE-Gate missed it although it is part

of the gazetteer we added to the tool, and Geoparsepy extracted Iberia in addition to the

full mention, not favoring the longest mention as LNEx. OpenCalais is a black box, so we

do not know why it failed.

Regarding T3-T5 annotations, LNEx and TwitIE-Gate are designed to break hashtags,

but TwitIE-Gate was not able to extract any locations from the hashtags in the table. LNEx

extracted “Louisiana” but was not able to extract “la” from “#lawx” due to the statistical

method that broke the hashtag into “law” and “x” as this combination is more probable.

Only Geolocator was able to extract the Houston nickname “htown”. In the future, a dic-

tionary of region-specific acronyms, abbreviations, and nicknames can augment LNEx’s

region-specific gazetteers.

Google NLP does not handle T6. However, adding space between the dot and “west”

to create “. . . school. west . . . ”, results in the extraction of “west mambalam” but omits

“Oxford school”. Google NLP relies on capitalization and so that changing the case of “s”

to create “Oxford School” does help. OpenCalais cannot extract “west mambalam” despite

fixing all grammatical mistakes, normalizing the orthographic features, and even introduc-

ing cue words. The tool only extracts well-known location names of coarser granularity

than street and building levels unless they have an attached location category (e.g., school

or street). PlaceFinder, on the other hand, tries to find geocodable location names in text.

Therefore, the tool extracts “th” as the country code of Thailand and “Oxford” as the city

in England. Hence, geocoding is influencing some of the mistakes of the tool.

The correct location for “sou th kr koil street” is “South K R Koil Street”. This location

mention has two problems: a misspelling (“sou th”) and a T6-compound mention problem

(“kr”). LNEx system cannot rejoin a word partitioned by misspelling, or break words

other than hashtags. LNEx examines each token individually and joins them only if they

are valid n-grams in the language model (see Section 2.3.1). Moreover, this particular
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record is missing from our gazetteers. Without gazetteer repair, LNEx would not extract

it. Moreover, this particular record is missing from the OSM gazetteer, exacerbating the

problem.

2.5 Related Work

The majority of the location-related techniques in the literature are focused on locating so-

cial media users and then inferring the location of the authored texts. These studies rely

heavily on tweet metadata, such as the profile location field and the attached geocoordi-

nates. Also, some studies analyze a user friend’s network to infer the location of the user

[113, 31, 106]. In contrast, our approach seeks to extract location mentions from the text

to localize referents and support location-aware applications.

Extracting location names from texts is a special kind of Named Entity Recognition

(NER) where the extracted entities are only of type location. Here, we extract entities of

type location only. When describing other general-purpose entity extractors (i.e., the tools

that extract entities of other types besides locations like Google NL, TwitIE-GATE), we

focus only on the entity types that represent a location (e.g., Organization, Facility).

Twitter messages (tweets) lack features exploited by mainstream NLP tools. Informal-

ity, ill-formed words, irregular syntax, and non-standard orthographic features of tweets

challenge such tools [55]. We agree with [8] that some issues might be exaggerated. In-

deed we found that spelling corrections only contributed to 1% recall improvement. There-

fore, text normalization alone is insufficient for NER [26]. Specially designed tools such as

[109, 40] use pipelined systems of POS tagging followed by NER. The latter also perform

Regex tagging, normalization, and gazetteer lookup to deal with these challenges.

Relying on the orthographic features for POS tagging or Regex tagging, previous meth-

ods extract locations from the text chunks and phrases of sentences using the following

techniques:
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1. Gazetteer search or n-gram matching: [65] and [40] use a gazetteer matching

technique that relies on a segment-based inverted index. [125] use an exhaustive

n-gram technique. [86] use location-specific gazetteers for matching phrases from

tweets. TwitIE-GATE uses a gazetteer lookup component. None of these techniques

deal with the important issue of gazetteers’ auxiliary content and noise.

2. Handcrafted rules: [132] and [75] use pattern and Regex matching that rely on cue

words or orthographic features for POS-tagging. TwitIE-GATE adapts rules from

ANNIE [22] for extraction.

3. Supervised Methods: Tweet-trained models: The majority of the methods trained

SNER on tweets [40, 138] or other CRF implementations [71, 57, 48, 63] or retrained

OpenNLP [68]. News-trained models: [75] use tools like SNER and OpenNLP.

4. Semi-supervised methods: [53] use beam search and structured perceptron for ex-

traction and linking to Foursquare entities. However, they did not address the noise

that is prevalent in such sources (e.g., “my sofa” or “our house”) [24].

Handcrafted rule-based methods are hard to develop, and supervised methods are labor-

intensive. As our specific application is time-critical, annotating tweets during an ongoing

disaster is likely infeasible, and is undoubtedly ineffective for real-time processing. While

many state-of-the-art methods retrained different location extraction models, I showed that

these models need a considerable amount of data, and with around 13k tweets, the best

model still scored on average 0.47 F-Score.

The closest work to ours is TwiNER [64] and LEX [30]. Both use Microsoft Web n-

grams (which capture language statistics) for chunking, but the former uses DBpedia for

entity linking. For example, [64] used Microsoft web N-grams to segment tweets and then

match the valid segments with DBpedia pages as a way to recognize segments as entities.

On the other hand, LEX works with web data and relies heavily on capitalization, which is
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not a reliable feature in tweets. In contrast, our method uses a region-specific gazetteer for

delimitation and linking.

Finally, a few other methods extract locations from hashtags. [75] uses a statistical

hashtag breaker technique similar to ours. [53] removes only the # symbol and treats the

hashtag as a unigram. [138] uses a greedy maximal matching method for breaking. TwitIE-

GATE uses two methods for hashtag breaking: a dynamic programming-based method for

finding subsequences and a camel-case-based method for tokenization.

2.6 Conclusions, Limitations, and Next Steps

Does an augmented region-specific gazetteer successfully extract location names from a

targeted text stream? I demonstrated that the answer is a resounding yes. LNEx accurately

spots locations in text, relying solely on statistical language models synthesized from aug-

mented and filtered region-specific gazetteers. It outperforms state-of-the-art techniques

and mainstream location name extractors. By exploiting the knowledge in a gazetteer,

we retain the benefits of n-gram matching to access location metadata. LNEx does not

employ any training and does not depend on syntactic analysis or orthographic conven-

tions. We compensate for limitations in fixed phrase matching with gazetteer augmentation

and filtering. Although we do not solve the disambiguation problem here, still the geo/-

geo ambiguity is reduced by preserving the spatial (and cultural) context through location-

specific gazetteers. Furthermore, systematic gazetteer augmentation ties legitimate variants

to known locations, minimizing potential ambiguity.

Although our statistical method outperforms other state-of-the-art approaches, it still

can benefit from textual cues that help in detecting ambiguous location names such as

proper names instead of always filtering them out using stop word lists. Additionally, as

the linking procedure drives the method, it does not extract location names missing from

gazetteers (e.g., “our house”). It presents an effective precision-recall trade-off apparent in
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the F-Score. In Chapter 4, I demonstrate the use of a dictionary-based technique based on

the same n-gram model as in this chapter. However, in Chapter 4, I show how effective the

use of knowledge and a human-in-the-loop can be in partially overcoming the difficulties

faced by the context-agnostic dictionary-based NER approach that uses incomplete and

noisy dictionaries.
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Sparse Entity Extraction

Extracting sparse named entities from textual data using supervised techniques faces the

following challenges: (1) sparsity of labels and the high cost of data labeling (requiring

massive amount of data to learn accurate models), (2) quality of annotations (posing a

limitation on who can perform the annotation task and other related issues such as de-

veloping, expensive but clear, guidelines), and (3) selection of an appropriate evaluation

criteria (mainly to avoid the additional cost of having a held-out set for evaluation). In this

chapter, I present our SpExtor framework [4]1, which integrates entity set expansion (ESE)

and active learning (AL), to reduce the annotation cost of sparse data and provide an on-

line evaluation method as feedback. This incremental and interactive learning framework

allows for rapid annotation while maintaining high accuracy. Consistent with the theme

of this dissertation, this method also lowers the cost of building a robust entity extraction

mechanism exploiting the knowledge of a subject matter expert (SME) and other intelligent

sampling techniques (i.e., ESE and AL).

I also present the evaluation of the framework on three publicly available datasets and

show that it drastically reduces the cost of sparse entity annotation by an average of 45%

to 85% while reaching 1.0 and 0.9 F-Score (on the same sentences pool), respectively.

Moreover, the method exhibits robust performance across all datasets.

1Part of this work was also patented in the US. [32].
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3.1 Introduction

Supervised machine learning methods exploit the inductive power of NER models learned

from gold annotations labeled for all mentions of an entity class/type in unstructured text

(e.g., Location Names, Proteins, or Auto Parts IDs). These techniques have proven to be

effective in extracting named entities [135]. However, the prohibitive cost of obtaining a

large volume of labels for training makes them unattractive and hard to use in realistic set-

tings where resources may be scarce or costly to acquire (e.g., the time cost that aviation

engineers need to annotate engine maintenance data). In this chapter, I present our SpExtor

framework that addresses the dire need for a practical solution that exploits the strengths of

the supervised sequence labeling techniques [137] while reducing the high cost of annota-

tion.

Building solid entity extraction models that are based on, for example, conditional ran-

dom field [35] or other sequence labeling techniques require two things: rich feature sets

(for capturing the semantics of the entity class of interest) and a large number of (accurately

labeled) training samples. To featurize sentences, we use the comprehensive list of features

provided by CoreNLP’s NERFeatureFactory [81]. As to labeling, we use a smart sampling

technique using ESE (with graph embedding) and AL to decrease the number of labeled

sentences required for training models without sacrificing the accuracy of the extraction.

Our approach is similar to the work proposed by [128] in that we aim to annotate all

mentions of a single entity class in corpora while relaxing the requirement of full coverage.

Our design choice lowers annotation cost by using a realistic approach to flexible stopping

criteria. It annotates a corpus without requiring annotators to scan all sentences. However,

it differs from [128] in that we use ESE to learn semantics and retrieve similar entities

by analogy to accelerate learning (therefore using ESE as a smart sampling technique).

Moreover, our approach provides Fast (FA), Hyper-Fast (HFA), and Ultra-Fast (UFA) auto-

annotation modes for rapid annotation (The full code is available online at https://

github.com/halolimat/SpExtor).
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In the upcoming sections, I describe our incremental learning solution developed using

AL, and how we use ESE, which is based on graph embedding to accelerate the annotation.

Finally, I present the evaluation of the approach on publicly available datasets demonstrat-

ing its effectiveness.

3.2 Incremental and Interactive Learning

In a realistic setting, domain experts have datasets from which they want to extract entities,

and then use them to build various applications, starting from inverted indexes or catalogs,

to targeted analysis, e.g., to obtain sentiments. Next, I describe how we used AL to ac-

celerate learning, auto-annotate sentences, and to provide feedback for flexible stopping

criteria.

3.2.1 Active Learning (AL)

Supervised sequence labeling techniques require labeled data to induce a model that can

be used to extract entities from unstructured text. Traditional supervised machine learn-

ing frameworks randomly or sequentially query SMEs to label sentences from a pool of

unlabeled sentences U . The labeled instances are then placed in the labeled pool L once

labeled. These frameworks usually keep querying users for labels and adding the sentences

to L until U is empty. Using this labeling method is quite expensive, requiring us to label

the whole sentence pool without any chance of minimizing the wasteful effort that might

result from duplication in the semantics of annotations without improving the model’s ac-

curacy.

Active learning minimizes wasteful effort by intelligently sampling sentences from U

based on some selection criterion and then querying the user to label the sentences, learn

a model from L, and determine the next batch of sentences for labeling. Selection criteria
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are usually implemented with the help of the learned model, which factors the knowledge

learned from L in the previous step to choose the sentences for labeling in the current step.

For example, the top b sentences can be sampled from a ranked list of sentences from U

based on the model’s accuracy on tagging them.

We adopt the linear-chain Conditional Random Field (CRF) implementation by [35]

to learn a sequence labeling model to extract entities. However, we use pool-based AL

for sequence labeling [115] to replace the sequential or random samplers during online

corpus annotation. Our iterative AL-enabled framework requires a pre-trained/base model

to sample the next batch of sentences to be labeled. As stated before, this iterative sampling

allows us to reach higher accuracies with fewer data points by incrementally factoring the

new knowledge encoded in the trained models. This more informative sampling is achieved

due to the added requirement of model training on all previously annotated sentences as

well as new batches of annotated sentences2. In Section 3.3, I show how learning the base

model by annotating sentences sampled using the entity set expansion (ESE) method that

we developed is better than learning a model from a random sample.

As for the selection criterion, which is the method needed for selecting the candidate

sentences to be labeled by annotators based on measuring their informativeness, we employ

an uncertainty-based sampling technique, the n-best sequence entropy method [60]. While

the default inductive behavior of a pre-trained CRF model is to provide one sequence (the

most probable one), we instead employ an n-best sequence method which uses the Viterbi

algorithm to return, for each sentence, the top n sequences with their probabilities. We then

query the annotator to annotate b number of sentences (equal to a pre-selected batch size)

with the highest entropies [115] calculated using the following equation:

2We train all CRF models using the default set of features for CoNLL 4 class - https://rebrand.
ly/corenlpProp
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nSE(m, s) = −
∑
ŷ∈Ŷ

pm(ŷ|s; θ) log pm(ŷ|s; θ) (3.1)

wherem is the trained CRF model, s ⊂ U , Ŷ is the set of n sequences, and θ is the features’

weights learned by the model m during the supervised training.

3.2.2 Annotation Modes

In this framework, we devise four AL-enabled annotation modes:

1. EAL: Entity set expansion for learning the base model (see Section 3.3) plus active

learning for the remaining steps. For sampling, this mode uses model confidence on

sentences estimated using nSE.

2. FA: Fast auto-annotation mode plus EAL.

3. HFA: Hyper Fast auto-annotation mode plus EAL.

4. UFA: Ultra Fast auto-annotation mode plus EAL.

The last three annotation modes use a thresholded auto-annotation method that we de-

veloped to accelerate the annotation procedure. Auto-annotation employs a pre-trained

CRF model m to annotate all unlabeled sentences in the pool. Then, we accept the anno-

tation of sentences from the model if they satisfy the following condition: if SE1(s)
SE2(s)

≤ t,

where SEi(s) is the entropy of the sequence i of the sentence s and t is a predefined thresh-

old representing the desired marginal ratio between the entropies of the two sequences 1

and 2. We chose t empirically. We found that the thresholds below 0.10 were tight (result-

ing in no auto-annotations), and the ones above 0.20 were large (resulting in many incorrect
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annotations). Therefore, we chose 0.10, 0.15, and 0.20 for the FA, HFA, and UFA auto-

annotation modes, respectively. In Section 3.4.4, we evaluate the effectiveness of these

annotation modes.

3.2.3 Interactive Learning

Active learning is useful in sampling the next batch of sentences so that labeling them

would increase model accuracy. However, AL alone will not be useful without a stopping

criterion needed to stop annotating more sentences from the pool U . Therefore we designed

an online evaluation method σ (Equation 3.3) that provides feedback to annotators on the

confidence of a model m for a given sentences pool S, where S = U ∪ L. This feedback

is an alternative to the F1-measure and is very valuable in the absence of a gold standard

dataset that could otherwise provide this kind of feedback.

nSE(m,S) = 1

|S|
∑
s∈S

nSE(m, s) (3.2)

σ = 1− nSE(m,S) (3.3)

As nSE is based on uncertainty-based measurement (entropy) [119], the mean of all

nSEs (i.e., nSE(m,S)) would, therefore, provide us with the uncertainty of the model m

on the labeling of the sequences of words in the sentences from the pool S. As σ is equal

to 1 minus the uncertainty of the model, then σ would contain the certainty of the model,

which gives the annotator a clearer picture of whether to keep the model as is or learn a new

model, interactively. We use σ both during the incremental learning steps from the same

sentence pool and to test the model’s accuracy/confidence on unseen sentences. Therefore,

using this feedback, we can decide to stop annotating from a certain sentence pool and

augment it with sentences from a new pool, or simply stop annotating and train a final
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model. Consequently, deciding to annotate new sentences that contain novel entities helps

reduce the effect of data sparsity and increases the accuracy of models, which highlights

the importance of this online feedback method.

Improvement(m1,m2,S) = 1− nSE(m2,S)
nSE(m1,S)

(3.4)

Equation 3.4 helps in knowing the percentage improvement a new model m2 exhibits

in comparison with the old model m1 when trained on more sentences from U . While

Equation 3.3 can alone be used to help the extraction from a new unseen dataset, this equa-

tion can be used to show the improvement of the accuracy of the model with new batches

of labeled sentences from the same sentence pool. Hence, given a small improvement or

learning rate, the annotator can stop the annotation or may decide to use another pool of

sentences and see if a significant improvement can be achieved.

We compare our online evaluation method with the estimated coverage method in [128],

which computes the expected number of entities in S as follows:

EC(S) = EL
EL +

∑
u∈U Eu

(3.5)

where EL is the number of annotated entities in the labeled sentences L, and Eu is the

expected number of entities in the unlabeled sentence u. Eu is calculated by summing the

probability of each entity in all of the n-best sequences.

3.3 Entity Set Expansion for Base Model Learning

Active learning requires a base (pre-trained) model to start sampling sentences for anno-

tation [115]. Learning the base model from annotated sentences sampled using sequential

or random sampling can be very expensive due to a problem we call labeling starvation,

i.e., querying annotators to label sentences containing a low frequency of entities from the
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desired class. As our framework imposes sentence-level and single-entity-class annotation

requirements (to improve tractability and reduce cost), that causes the labeling starvation

problem. For example, in Table 3.1, only 8% of the sentences have virus entities. There-

fore, we developed the Entity Set Expansion (ESE) method that incorporates and exploits

the semantics of the desired entity class to sample sentences more informatively that are

likely to have entities of the desired class.

We assume that all noun phrases are candidate entities and extract all of them from the

unstructured text.3 Then, we record five features for each noun phrase (np) and model the

data as a bipartite graph with noun phrases on one side and features on the opposite side,

as described below.

3.3.1 Noun Phrase Extraction (NPEx)

The first step of our method is to extract noun phrases, which we consider as candidate

entities. We POS tag and parse sentences to the tagged sequence form: [(wi posi) ∀w ∈ W ]

(e.g., “Kankkunen NNP was VBD runner-up JJ in IN his PRP$ Toyota NNP .

.”). Then, we use the following regular expressions to extract the noun phrases:

NPs = JJs + NNs + CDs
JJs = (?:(?:[A-Z]\\w+ JJ )*)
NNs = (?:[ˆ\\s]* (?:N[A-Z]*)\\s*)+
CDs = (?:\\w+ CD)?

where NPs are noun phrases, JJs are adjectives, NNs are nouns, and CDs are cardinal

numbers. The final set of noun phrases from the above example contains {“Kankkunen”,

“Toyota”}.
3While not all candidate noun phrases are positive examples of an entity, a human-in-the-loop would

interactively give feedback to the system by choosing the positive ones.
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3.3.2 Featurization

To draw relationships between the extracted noun phrases to retrieve them by analogy, we

automatically extract and record five kinds of features for each noun phrase that we can

extract from the text (see Section 3.3.1). The list of features follows:

1 Lexical Features (LF): We extract these from the surface form of words and se-

quences of letters in text. The following are the two types of lexical features we

extract:

• Orthographic Form (OF): We abstract OF features from the actual word and

obtain its type (i.e., numeric, alpha, alphanumeric, or other). Additionally, we

classify the word as all upper, all lower, title case, or mixed case.

• Word Shape (WS): We define WS to abstract the patterns of letters in a word

as a short/long word shape (SWS/LWS) features. In LWS, we map each letter

to “L”, each digit to “D”, and retain the others. On the other hand, for SWS, we

remove consecutive character types. For example, LWS(ABC-123) → “LLL-

DDD” and SWS(ABC-123)→ “L-D”.

2 Lexico-Syntactic Features (LS): We use a skip-gram method to record the explicit

LS-patterns surrounding each NP, i.e., for each np in s we record the pattern wi−1 +

np+ wi+1, where w(.) are the two words that precede and follow np.

3 Syntactic Features (SF): We use dependency patterns to abstract away from the

word-order information that we can capture using contextual and lexico-syntactic

features. We use Stanford’s English UD neural network-based dependency parser

[17] to extract universal dependencies of noun phrases. For each np in s, we record

two dependency patterns of the noun phrase that serve in governor and dependent

roles.
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4 Semantic Features (SeF): To capture lexical semantics, we use WordNet [88] to get

word senses and draw sense relations between noun phrases if they have the same

sense class.

5 Contextual Features (CF): To capture latent features, we use a Word2Vec embed-

ding model [87] trained on the sentence pool S as the only bottom-up distributional

semantics method. We exploit the word-context co-occurrence patterns learned by

the model to induce the relational similarities between noun phrases.

The use of semantic (i.e., word senses) and contextual (i.e., word embeddings) features

on sparse or domain-specific data (such as enterprise data) is not enough and sometimes

impossible due to unavailability [126]. Therefore, we tried to use diverse features in a

complementary manner to capture as many meaningful relations between potential entities

as possible. For example, the absence of SeF for domain-specific entities, such as protein

molecules or parts numbers, is compensated by the use of WS-LF (e.g., by drawing a

relation between the noun phrases “IL-2” and “AP-1”).

3.3.3 Feature-Graph Embedding

Here, I discuss the construction of the bipartite graph, which we use to allow for calculating

the similarity between noun phrases by modeling the edges from multi-modal edge weights.

We model edges in the bipartite graph by assigning a weight w between each pair of a noun

phrase n and a feature f using one of the following:

w1
n,f = Cn,f (3.6)

w2
n,f = log(1 + Cn,f )[log|N | − log(|N |f )] (3.7)

64



w3
n,f = log(1 + Cn,f )[log|N | − log(

∑
n̂

Cn̂,f )] (3.8)

where Cn,f is the co-occurrence count between n and f , |N | is the number of noun phrases

in our dataset, |N |f is the size of the set of noun phrases with a feature f , and
∑

n̂Cn̂,f is

the sum of all noun phrase co-occurrences with the feature f . Equations 3.7 and 3.8 are

two variations of the term frequency–inverse document frequency (TFIDF) measurement,

intended to reflect the importance of a feature in the embedding graph. The latter is adapted

to weigh the edges in [120, 110]. Rong et al. [110] found Equation 3.8 to work better than

PMI. Therefore, we did not implement and compare it with the other weighing methods

here.

Algorithm 2: The entity set expansion algorithm we developed to return a ranked

list of candidate entities to bootstrap the learning of the base model needed for

active learning.
Data: e: input seed; S: text sentences

Result: N = {n}: ranked similar noun phrases

1 Start

2 N̂ = ∅; // all noun phrases

3 F = ∅; // all features

4 for s← S do

5 N̂ = N̂ ∪ ExtractNounPhrases(s);

6 F = F ∪ Featurize(N̂ ); // Section 3.3.2

7 end

8 G = BuildBipartiteGraph(N̂ , F ); // Section 3.3.3

9 N = CalculateSimilarity(e, G); // Equation 3.9 or 3.10

10 return rank(N);
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Figure 3.1: The three stages of graph embedding for candidate entities ranking.

3.3.4 Set Expansion using Graph Embedding

Our method starts by taking a seed entity e from the annotator input and returns a ranked list

of similar noun phrases (See Algorithm 2). After constructing a graph using the embedding

method mentioned in the previous section (See Figure 3.1), we calculate the similarity

between the seed entity e and all other noun phrases npi in the graph G using one of the

following similarity methods:

Sim1(np1, np2|F ) =

∑
f∈F

wnp1,fwnp2,f√∑
f∈F

w2
np1,f

√∑
f∈F

w2
np2,f

(3.9)

Sim2(np1, np2|F ) =

∑
f∈F

min(wnp1,f , wnp2,f )∑
f∈F

max(wnp1,f , wnp2,f )
(3.10)

where Sim(np1, np2|F ) is the similarity between the two noun phrases np1 and np2 given

the set of features F they have in common, and w(.,.) is the weight of the edge between the

noun phrases and features (defined using one of the Equations 3.6-3.8). Equation 3.9 is the

cosine similarity and Equation 3.10 is the context-dependent similarity by [120].
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Figure 3.2: Coarse features ensemble method for ranking candidate entities.

3.3.5 Feature Ensemble Ranking

Similar to the use in SetExpan [120], we ensemble the coarse features4 and rank noun

phrases in sublists to reduce the effect of inferior features on the final ranking. The size of

each sublist is equal to |F̂ | − 1, where F̂ is the set of all features from Section 3.3.2. We

then use the mean reciprocal rank (Equation 3.11) to find the final ranking of each noun

phrase using the rank from each sublist (See Figure 3.2).

MRR =
1

|F̂ |

|F̂ |∑
i=0

1

ranki
(3.11)

where ranki is the rank position of the relevant noun phrase for the i-th sublist of features.

3.4 Experiments and Results

In this section, I present our results for evaluating the components of the framework on

three publicly available datasets while varying the different parameters of the framework.
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Table 3.1: Datasets statistics showing the entity classes, the number of sentences (|S|)
containing entities, and the number of entities across all sentences.

Dataset Name Entity Class |S| (with Entities) # Entities

CoNLL-2003
Location 13519 (36%) 1258

Person 13519 (31%) 3388

BioCreAtIvE II Gene 12500 (51%) 10441

GENIA 3.02

Protein Molecule 14838 (55%) 3413

Cell Type 14838 (27%) 1569

Virus 14838 (8%) 324

3.4.1 Data Preparation

To test our framework while emulating the full annotation experience of annotators, we

use three publicly available gold standard datasets, CoNLL-2003 [127], GENIA [99], and

BioCreative II [33], labeled for several entity classes.

We tokenize documents into sentences, then query the emulator (which plays the role of

annotators) to label sentences, thus avoiding the required annotation of full documents for

better user experience. We require the emulator to label only a single entity class from each

dataset, to avoid the complexity of multiple class annotations. Therefore, we created six

versions of the datasets, where we keep only one class in each version. Table 3.1 includes

some statistics of the datasets. The percentage of sentences with entities of a given class

shows the sparsity of those entities.
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Table 3.2: Noun phrase extraction performance.

Dataset Name Entity Class Accuracy

CoNLL 2003
Location 0.84

Person 0.76

BioCreAtIvE II Gene 0.51

GENIA 3.02
Protein Molecule 0.60

Cell Type 0.24

Virus 0.50

3.4.2 Noun Phrase Extraction Evaluation

As the ESE method operates at the noun phrase level, the performance of Noun Phrase Ex-

traction (NPEx) influences the overall performance of ESE significantly. Table 3.2 includes

the accuracy of NPEx as the percentage of the actual class entities that were extracted as

candidate entities (i.e., noun phrases). In the future, ESE performance can be improved by

enhancing the performance of candidate entities extraction through, for example, extracting

noun phrases formed from typed-dependencies.

3.4.3 Entity Set Expansion (ESE) Evaluation

As ESE requires a seed entity to retrieve the candidate entities and then annotate them in

sentences, we tested the influence of seed entity frequency on the method performance.

We manually selected two seeds -the most frequent and the least frequent- among all noun

phrases (See Table 3.3). Additionally, we varied the weighting measure of the graph edges

using one of the three equations (3.6-3.8). Finally, we varied the similarity measure when
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Table 3.3: The frequencies of the seed entities (in all sentences) used in the evaluation of
the ESE method. One high-frequent and one low-frequent seed entities were used to test
the effectiveness of the ranking mechanism per dataset.

Dataset Name Entity Class Seed Entity (Count)

CoNLL-2003
Location U.S. (296), Washington (26)

Person Clinton (70), Von Heesen (1)

BioCreAtIvE II Gene insulin (64), GrpE (1)

GENIA 3.02

Protein Molecule NF-kappa B (552), IL-1RA (1)

Cell Type T cells (489), MGC (2)

Virus HIV-1 (336), adenovirus E1A (1)

Table 3.4: ESE performance (p@k) while using the feature ensemble method. The best
performing combination is boldfaced.

Location Person Gene

Eq.# 3.6 3.7 3.8 3.6 3.7 3.8 3.6 3.7 3.8

Seed 1
3.9 0.37 0.40 0.50 0.23 0.23 0.30 0.00 0.03 0.13

3.10 0.63 0.73 0.73 0.03 0.17 0.20 0.03 0.07 0.07

Seed 2
3.9 0.33 0.33 0.57 0.53 0.40 0.30 0.63 0.63 0.63

3.10 0.57 0.70 0.63 0.47 0.37 0.37 0.60 0.57 0.60

Protein Cell Type Virus

Eq.# 3.6 3.7 3.8 3.6 3.7 3.8 3.6 3.7 3.8

Seed 1
3.9 0.17 0.23 0.20 0.27 0.50 0.53 0.20 0.13 0.17

3.10 0.43 0.43 0.53 0.17 0.23 0.23 0.07 0.10 0.07

Seed 2
3.9 0.17 0.60 0.27 0.10 0.20 0.13 0.07 0.03 0.03

3.10 0.07 0.30 0.30 0.07 0.07 0.07 0.03 0.10 0.03
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Figure 3.3: End-to-End system pipeline. Arrows represent paths that can be followed to
annotate the text.

ranking noun phrases (Equations 3.9 and 3.10).

We tested the performance of ESE with and without using the feature ensemble method

from Section 3.3.5. We measured the precision of the method in ranking positive examples

of entities similar to the seed entity (Seed 1 and Seed 2) in the top k noun phrases. We

designed ESE to output thirty candidate entities (i.e., noun phrases) ranked based on the

similarity to the seed term. Therefore, we calculate precision at k (p@k), where k is always

30. Table 3.4 shows the best results when using the feature ensemble method, which is

more stable than the non-ensemble one (due to the lower standard deviation and non-zero

precisions). According to the results, the best combination in terms of the mean and stan-

dard deviation is obtained when using TFIDF (Equation 3.7) to weigh the edges and the

context-dependent similarity (Equation 3.10) to rank noun phrases.
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Figure 3.4: Percentage of sentences annotated while using EAL to reach different F-Scores.

3.4.4 Full System Evaluation

We tested our pipeline on three different settings following three different paths in Figure

3.3, where (·)∗ is a recurrent path:

1. All Random (AR): (E,B,C)∗, where E is a random-based sampler.

2. ESE and AL (EAL): A,B,C, (E,B,C)∗, where E is an nSE-based sampler.

3. EAL in addition to auto-annotation (EAA): A,B,C, (D,C,E,B,C)∗

We iterate through the loop paths in the starred parentheses (·)∗ while successively sam-

pling 100 sentences until we finish all sentences in the pool or reach full F-Score. In Figures

3.5 to 3.7, I show the performance of the first two settings (i.e., AR and EAL) in terms of

F-Score. The use of AL and ESE methods always outperformed random sampling. ESE

increased the performance of the base model by 35% F-Score on average, allowing us to

reach 0.5 F-Score while the random sampler reached only a 0.37 F-Score.

As shown in Figure 3.4, the percentage consumption of the sentence pool to reach

up to 0.95 F-Score follows almost a linear growth. However, this cost proliferates if we
4Coarse features are the five groups of features in Section 3.3.2 as opposed to the fine ones which are part

of each of them.
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Table 3.5: Pipeline testing results of the EAL and EAA annotation modes showing the
model confidence (σ), F-Scores, and percentage cut from the pool of sentences.

Dataset Name Entity Class

EAL EAA Annotation Mode

@ 1.0 F FA HFA UFA

σ % cut F-Score (percentage cut)

CoNLL-2003

Location 0.97 55% 0.99 (46%) 0.93 (83%) 0.82 (91%)

Person 0.97 59% 0.99 (48%) 0.95 (81%) 0.85 (90%)

BioCreAtIvE II Gene 0.94 35% 1.00 (35%) 0.96 (50%) 0.89 (69%)

GENIA 3.02

Protein Molecule 0.99 33% 0.98 (36%) 0.87 (71%) 0.74 (85%)

Cell Type 0.99 62% 0.94 (70%) 0.82 (86%) 0.74 (91%)

Virus 0.94 24% 0.97 (79%) 0.89 (94%) 0.84 (96%)

Average 0.97 45% 0.98 (52%) 0.90 (78%) 0.81 (87%)

want to reach 1.0 F-Score (needing, on average, around 33% more sentences). Practically

speaking, we might want to sacrifice the 5% F-Score improvement to minimize manual

labor significantly.5

In order to measure the performance of our σ method in comparison with the F1-Score

curve (see EAL curves in Figures 3.5 to 3.7), and to compare it with the estimated coverage

(EC) method (Equation 3.5), we used the Jensen-Shannon distance metric [67] to measure

similarity between the output values of the two methods as in Equation 3.13 below:

DKL(P‖Q) = −
∑
i

P (i)log(
Q(i)

P (i)
) (3.12)

JSD =

√
DKL(d̂‖m) +DKL(f̂‖m)

2
(3.13)

5This would, therefore, make the annotated data a silver standard instead of a gold standard.
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Figure 3.5: Learning curves of the approach on two entity classes from the CoNLL 2003
dataset with different querying strategies. Y-axis value for AR and EAL is the F-Score, and
for Sigma confidence (σ) and Estimated Coverage is the value from Equations 3.3 and 3.5,
respectively.
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where d̂ and f̂ are the two distributions (i.e., 1-D arrays of the output values) of σ or EC

and F1 scores from all iterations, respectively, m is the pointwise mean of d̂ and f̂ , and

DKL is the Kullback-Leibler divergence from Equation 3.12.

Our method σ outperformed the estimated coverage method with a decrease of 96% in

dissimilarity, which makes our method more reliable. Additionally, as shown in Table 3.5,

on average, σ gives an accurate estimation of the F-Score without labeled data with an error

margin of 3% while reaching 1.0 F-Score (i.e., @ 1.0 F). Finally, it is worth mentioning

that the σ curves of GENIA-Cell-Type and GENIA-Virus highly overestimated the F-Score

curve in the first iterations, which is due to missing entity annotations we found in the

gold standard, which mistakenly suggests that we had many false positives. To list a few,

GENIA-Cell-Type has missing annotations for “transformed T cells”, “transformed cells”,

and “T cells”, where GENIA-Virus have some missing annotations for “HIV-1” and “HIV-

2”.

Our EAL method also outperformed EC method [128] on the three overlapping entity

classes we tested our methods on, from the two datasets Genia and CoNLL-2003. EAL

needed 2800, 2900, and 400 fewer sentences to reach the same coverage as [128] for the

Location, Person, and Cell-Type datasets, respectively.

Finally, for the last setting, we tested the system using the three auto-annotation modes

(i.e., FA, HFA, and UFA) as shown in Table 3.5. While the auto-annotation mode can allow

us to reduce up to 87% of the data pool, this drastic saving also reduces the accuracy of

the learned model, achieving, on average, around 81% F-Score. Overall, our framework

presents a tradeoff between coverage and annotation cost. The HFA auto-annotation mode

shows the benefit, especially in a realistic enterprise setting, where the cost to annotate

33% of the data to only increase 10% F-Score (when comparing the average performance

of HFA with ESA) is unreasonable.

Table 3.5 appears to show FA being inferior to EAL for the Location class, for example.

In reality, FA reduced sentence annotation by 65% to reach 0.99 F-Score. Further, as our
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testing criteria demanded that we either reach 1.0 F-Score or finish the sentences, FA tried

to finish the pool without performance improvement.

3.5 Related Work

Our work encompasses entity extraction, entity set expansion (ESE), pool-based active

learning, and corpora pre-, auto-, and rapid-annotation.

Using a pattern-based ESE (a.k.a., seed set expansion) technique on top of active learn-

ing helped our approach in discovering rare patterns and rules that might have been hidden

when using only a feature-based system [18]. Our ESE method is similar to [120, 126, 111],

where the system starts with a few positive examples of an entity class and tries to extract

similar entities. We also use a richer set of features than those in [45, 43, 90] while training

a CRF model and to further find positive examples of a given entity class using our ESE

method.

Methods such as [112] compute the degree of membership of an entity to a group of

predefined entities called seed entities where the class of each group is predefined. Their

method does not focus on entity extraction. Rather it focuses on detecting the class of

entities during the evaluation step, which makes their method different from what we are

trying to achieve here.

Regarding corpus annotation, many notable previous works such as [69] use dictionar-

ies to pre-annotate texts. However, inaccurate pre-annotations can harm the performance

and would require an added overhead of modifications and deletions [107]. The techniques

in [58] and [128] are AL-based annotation systems. However, their work differs from ours

in the following ways: (1) we propose a more accurate online evaluation method than theirs,

(2) we use ESE to bootstrap the learning framework collaboratively with a human-in-the-

loop, and (3) we provide auto-annotation modes that reduce the number of sentences to be

considered for annotation and so allows for better usability of the framework.
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3.6 Conclusions, Limitations, and Next Steps

I presented our practical and effective solution to the problem of sparse entity extraction.

Consistent with our goal of lowering the cost of annotation (regarding the number of la-

beled samples and the complexity of labeling) and maintaining the accuracy of NER, our

framework builds supervised models and extracts entities with a reduced annotation cost

without compromising extraction quality using entity set expansion, active learning, and

auto-annotation. Additionally, we provided an online method for evaluating model confi-

dence that enables flexible stopping criteria.

While the technique was able to reduce, on average, around 45% of the data needed to

reach about the same accuracy if we consumed all of it, the technique still can benefit from

the use of knowledge to further lower the cost of annotating the remaining sentences. In the

next chapter, I discuss our knowledge-enabled technique, which exploits online knowledge,

rules, and a human-in-the-loop to allow for minimal supervision for NER.
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Minimally Supervised Entity Extraction

In this chapter, I introduce our adaptable minimally-supervised technique for entity recog-

nition. While the majority of the NER techniques require domain expertise and extensive

manual labor to create labeled data, our approach here reduces that labor with the help of

off-the-shelf domain-specific dictionaries and readily available online knowledge sources.

The technique starts by extracting candidate entities using these dictionaries. Subsequent

processing automatically induces regular expressions with the help of a subject matter ex-

pert (SME) as a human-in-the-loop to further expand the candidate entities set. Finally, the

system learns entity classifiers to decide which candidate entities are of the desired class,

exploiting multi-view lexical, semantic, and contextual features associated with candidate

entities. I also present the performance of the technique on six datasets spanning multiple

domains (user-generated content, biomedical, and news data). The results show that the

pipeline improves recall by 27% while only sacrificing 5% precision, still improving the

F1-score by 10% over the NER dictionary-based baseline, thereby justifying the tradeoff.

4.1 Introduction

Numerous practical limitations put a ceiling on the success of NER techniques; some

of these techniques suffer from noisy or unavailable annotations (especially for domain-

specific entities), due to the high cost, lack of resources and expertise, the time it takes to

set-up labeling guidelines [25], the risk of discarding crowd-sourced labels [44], or incom-
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plete and weak hand-crafted rules and patterns [1].

Recent state-of-the-art techniques in information extraction use deep neural nets for

entity extraction [135]. While these techniques have achieved very good accuracy, they

are still limited in two respects. First, they need a considerable amount of data to learn

even fairly accurate models (challenging feasibility). Second, they are usually built for

generic domains and entity classes (such as people, location, and organization). Specific

applications may require new models built from scratch, depending upon new labeled data

(challenging reusability). Prior work, such as [118], has attempted to overcome such prob-

lems by introducing a dictionary-based, deep neural net entity extraction technique. The

technique learns NER models with the help of dictionaries, generic and domain-specific

word embeddings, and key phrases from the target corpus. However, the technique remains

vulnerable to the vagaries of key phrases and the dictionaries used (see Section 4.5).

I introduce in this chapter our knowledge-enabled, multi-view, minimally supervised,

feature-rich entity extraction technique (KnowEx) that addresses the pressing need for

more efficient information extraction methods. The design of the method has key prac-

tical merit and is consistent with the rising interest in alternatives to costly, fully super-

vised approaches that do not scale to multiple domains nor preserve IP and data privacy

[4]. KnowEx requires off-the-shelf domain-specific dictionaries, readily available online

knowledge sources (e.g., WordNet, BabelNet, and pre-trained word embeddings), and min-

imal input from SMEs.

KnowEx starts by extracting promising candidate entities, employs SMEs-in-the-loop

for labeling and filtering, and learns to classify the candidates into valid/invalid entities.

Our minimally supervised method exploits rich sets of multi-view features for the candidate

entities. Below, I discuss the different aspects of the system and show how our minimally

supervised NER solution is a better fit for today’s information extraction pipelines in terms

of adaptability, growth over time, accuracy, and reduced cost. (The code is available online

at https://www.github.com/halolimat/KnowEx).
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4.2 Candidate Entity Extraction

Given a sentence such as the following from the BioNLP’13 corpus [93]:

c-myb is a frequent target of retroviral insertional mutagenesis in murine leukemia

virus - induced myeloid leukemia.

A competent English reader who has never before encountered the domain-specific termi-

nology, such as “c-myb”, “murine leukemia virus”, or “myeloid leukemia”, would never-

theless infer that they are concepts of some type. The syntax and the morphological forms

of these concepts enable this conclusion [20, 102]. We try to extract all such concepts and

label them as candidate entities. We featurize them to learn what is, and what is not an

entity of the desired class combining the lexical, syntactic, and semantic patterns charac-

terizing them.

Next, I discuss the two methods we use to extract candidate entities and the types of

features we gather for each candidate. We use the candidates’ features to rank-order them

for targeted labeling, and to learn a classifier that retains the instances of the desired entity

class and ignores the rest.

4.2.1 Language Model-based Extractor (LMEx)

One candidate entity extraction method constructs an n-gram model from the collocations

[80] that exist in a domain-specific dictionary. An n-gram model determines the set of

valid candidate entities C that appear in the set of sentences S of a given corpus exploiting

the naming regularities captured by dictionaries.

We first filter the dictionary records by removing the digit-only records, records that

are of lengths less than two characters, and records overlapping with our stop word list1.

Then, we tokenize the filtered dictionary records to construct the n-gram model. This

1We used the generic English long stop list from https://www.ranks.nl/stopwords
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language model-based technique allows us to determine the validity of an n-gram as a can-

didate entity in a sequence of tokens using a boolean function. A simple segment-based

inverted index [65] or exhaustive matching [125] could replace this language model tech-

nique. However, such techniques are slower than the n-gram-based technique in Chapter 2

and [5].

More specifically, given a token sequence in a sentence sj = 〈t1, . . . , tn〉, where sj ∈ S,

the goal is to find the valid candidates Cj = {c1, . . . , cm} to be added to the candidates set

C, each represented as a pair ci = (b, e), where b and e are the begin and end indices of ci in

sj (i.e., 1 ≤ b < e ≤ n), and ĉi is the surface form of the candidate entity. For example, for

the sentences from the BioNLP’13 corpus above, in a dictionary of organisms, “retroviral”,

“murine”, “leukemia”, and “virus” are valid unigrams but “c-myb”, “mutagenesis”, and the

rest are not. Similarly, ĉi =“murine leukemia virus”, represented as ci = (11, 13), is a valid

trigram, matching a complete dictionary record and making it an organism candidate entity

(i.e., one instance in Cj).

4.2.2 Regular Expression-based Extractor (RegEx)

Dictionaries are incomplete and contribute to low recall. A second candidate entity ex-

traction method addresses this limitation. Automatically induced regular expressions can

expand the set C from above [18]. The implicit sentence structure provided by the descrip-

tive tags of a sentence’s tokens, e.g., from part-of-speech (POS) tagging, can be used to

extract candidate entities. Previous studies, such as [37] and our method in Chapter 3 and

in [4], used POS tag-based regular expressions to extract noun phrases as candidate entities.

However, the extraction is done using regular expressions that did not scale well to multiple

domains and suffered from low recall due to lack of expressiveness [61]. We address this

limitation by automatically inferring regular expressions from a set of positive candidate

entities by exploiting their POS tag-based patterns, then using these regular expressions

(generalizations) for extraction.
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For example, in the LaptopReview dataset [104], the POS tags of the aspect terms

“hard disk drive” and “1 GB of RAM” are 〈JJ, NN, NN〉 and 〈CD, NN, IN, NNP〉,

respectively. Therefore, regular expressions can be constructed to extract such candidate

entities using these POS patterns. Formally, we construct a regular expression from a POS

sequence 〈POS1, . . . ,POSn〉 by filling regex templates:

(A) X\S+ (B) (?:X\S+\s*)+

(C) \sX\S+ (D) (?:\sX\S+\s*)+

where X is the first character of a POS tag (e.g., N and V for NNP and VB, respectively), \S

is any non-whitespace characters, \s is a whitespace character, and ?: is a non-capturing

group to exclude submatches [124]. (A) and (B) are templates for the beginning of a reg-

ular expression while (C) and (D) are templates for the rest. (B) and (D) represent the

recurrent POS tags in a given sequence. For example, 〈NN,NNP〉 would induce the regular

expression (?:N\S+\s*)+. As distinct patterns can produce different regular expres-

sions, we construct the union of all extractions and filter the overlapping ones, preferring

the longest. Hence, if the extraction of the induced regular expression N\S+ overlaps with

the extractions of (?:N\S+\s*)+, we would discard the extraction of N\S+.

4.3 Minimal Supervision

The set of candidate entities C extracted using LMEx and RegEx is noisy (needing filtering)

and incomplete (needing expansion). Additionally, the methods leave the challenge of

determining what is, and what is not an instance of a given entity class. Therefore, we

need gold labels of a subset of the candidate entities to be able to classify the rest and

expand the set of valid entities from S. However, human-centered requirements, such as

high-level and minimal inputs from SMEs, are highly desirable in the age of data-hungry

AI [7], to reduce the cost of building an accurate candidate classifier. We achieve minimal
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supervision by extracting candidates and then: (1) constructing feature-rich embeddings of

candidate entities for ranking and classification, (2) requesting SMEs to give only binary

valid/invalid labels instead of labeling entity spans in text (see Figure 1.1), and (3) using

pre-labeled instances of the other entity classes in the same corpora, to automatically filter

out the set C and improve precision by removing negative candidate instances.

Next, I present the three techniques that underlie our weakly-supervised knowledge-

enabled entity extraction method (KnowEx): candidate entity featurization, pattern-based

ranking, and partial labels exploitation.

4.3.1 Candidate Entity Featurization

We generally gather two types of features for candidate entities: (1) Internal Evidence:

The sequences of characters and words that form them, and (2) External Evidence: The

contexts that surround them. Constructing a semantic model [84] of the candidate entities

can, for subsequent semantic processing allow us to rank-order these candidates for SME’s

input, or for classifying them (see Sections 4.3.2 and 4.4).

Formally, given a candidate ci in the sentence sj , we gather the set of features using

feature functions g(·) defining its internal and external evidence. Commonly used features

include lexical, syntactic, and semantic features as in [4] and Chapter 3. The use of se-

mantic and contextual features on sparse or domain-specific data (such as enterprise data)

is not enough and sometimes not available [126]. Therefore, we use diverse features in a

complementary manner to collect rich feature sets for effective subsequent processing. For

example, the absence of word senses or semantic features for domain-specific entities, such

as chemical compounds or auto parts numbers, is compensated by the use of orthographic

features.

Using the lexico-orthographic features, we capture the word shape and letter patterns

and their abstractions (i.e., short/long word shape (SWS/LWS) features) as follows:
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g1(ĉi) = LWS(ĉi) (4.1)

g2(ĉi) = SWS(ĉi) (4.2)

where LWS(ĉi) and SWS(ĉi) are the long and short (i.e., sans duplicates) abstracts of digits

and orthographized letters of ĉi, mapping each letter to the character “L” and each digit to

the character “D” and retaining the rest. For example, if ĉi =“ABC-123”, the long word

shape LWS(ĉi) =“LLL-DDD” and the short word shape SWS(ĉi) =“L-D”.

To exploit the syntactic patterns, we record the POS tags and the explicit lexical patterns

surrounding the candidate entities:

g3(ci, sj) = LR-POS(ci, sj) (4.3)

g4(ci, sj) = LR-LEX(ci, sj) (4.4)

where LR-POS and LR-LEX record the left-right (LR) contextual POS tags (i.e., 〈pb−1,pe+1〉)

and tokens (i.e., 〈tb−1, te+1〉), respectively.

To abstract from the word-order information while describing the universal dependen-

cies of ci, we employ syntactic dependency parsing using Spacy2 as follows:

g5(ci, sj) = DEP(ci, sj) (4.5)

where DEP extracts a set of patterns from dependency arcs, describing the syntactic re-

lations (i.e., the head, lefts, or rights) ci has with some other tokens in sj . For example,

2spacy.io/usage/linguistic-features
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{〈amod,J〉, . . . } where amod is the arc label and J is the first character of the POS tag of

the other token in the relation.

To capture the word semantics for each candidate entity, we use WordNet [88], Babel-

Net [92], and BERT contextual-embeddings [27]:

g6(ĉi) = WordNet(ĉi) (4.6)

g7(ĉi) = BabelNet(ĉi) (4.7)

g8(ci, sj) = BERT(ci, sj) (4.8)

where g6 and g7 returns the unordered sets of senses and Wikipedia categories (such as

“Rare diseases”, “Digestive system”, or “Urban animals”) of ĉi, respectively. g8, as the

bottom-up distributional semantics, returns the average vector of all the contextual embed-

dings of ci’s tokens in the sentence sj .

Finally, we consolidate and vectorize the features of the set C of all candidate entities

in sentences, creating three feature views:

1. Lexical, Syntactic, and Semantic View (lsv): To capture the syntax and semantics

of a candidate entity in a sentence, we get the set of features L(·) ⊆ L from its lexico-

orthographic (4.1-4.2), lexico-syntactic (4.3-4.4), syntactic (4.5), and word senses

(4.6), where L is the set of all the features of c(·) ∈ C. Then, for a c(·) in sj , we create

a binary vector vlsv(·) ∈ {0, 1}|L|.

2. Wikipedia Categories View (wcv): Given a domain-specific dictionary D, we get

the set Wr containing the Wikipedia categories of a dictionary record r using (4.7).

Then, we create a binary vector vwcv
(·) ∈ {0, 1}|W| for each ĉ(·), where W =

⋃
r∈D Wr is

the set of all such Wikipedia categories of the dictionary records. Using the categories

of the dictionary records as a reference for vectorizing the candidate entities allows us
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to maintain some degree of relatedness to the subject area inherent in the dictionary

records.

3. Contextual Embeddings View (cev): For each ci in sj , we construct the view vcevi

by running sj through BERT’s pre-trained transformer architecture (4.8) and con-

catenating the output of the last four hidden layers per token. Formally, vcevi ∈ R|D|,

where D is the dimension of the embedding.

4.3.2 Pattern-based Candidate Entity Ranking

To fully exploit and minimize SME input, we show them only a subset of candidate entities

that have the greatest potential to improve the overall coverage/recall instead of labeling

each occurrence [78, 134]. Therefore, given a set of rank-ordered candidate entities, a

SME labels the top k candidates as valid or invalid instances of the targeted entity class (cf.

relevance feedback). We expect the top k candidates (e.g., 50) to characterize the majority

class (via being either most probably negative or most probably positive).

We rank order the candidate entities C using a linear model of their aggregated feature

weights, as I discuss below.

The ultimate goal of our ranking procedure is to surface candidate entities that are

semantically related [14] to the target class. The significance of a feature f of a candidate

entity for class membership is determined by the frequency of occurrence of the feature in

related entities of the same class, thereby measuring their similarity. Formally, given the set

of candidate entities C, we consider the frequency of a feature f from lsv3 as the feature’s

weight: wf,C = count(f), where f ∈ L and count(·) is the frequency over all candidates

in C. To score each c(·), we use the aggregated weights as follows:

Scorelsv(ĉi) =
∑
sj∈S

∑
ĉi≡ci∈Cj

wT
L · vlsvi (4.9)

3The rich lsv view was superior to the sparse wcv.
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where wT
L is the transposed vector of weights of the features in L. This linear scoring

model surfaces the top candidates that exhibit the majority class features (i.e., the most

frequent ones). Therefore, labeling them would allow us to learn the categorization of

many instances.

4.3.3 Partial Labels Exploitation

As we extract and label instances of a single entity class at once (e.g., Locations, Organ-

isms, or Diseases), we are interested in a further minimization of false positives in the

candidates set C. For that, we consider other (semantically disjoint) labeled entity classes

in a given corpus as negative examples for the current class at hand. Formally, given a set

of sentences S which contains entities from the set of classes E (e.g., {Location, Organi-

zation, Person}), we call S a partially labeled corpus if the current labeled classes L ⊂ E ,

e.g., L = {Location, Person}. Given S, the set C of the instances of targeted class T (e.g.,

Organization), where T ∈ E − L, can be filtered to improve the precision using instances

from L, as negative examples for T— as the instances in C that might (erroneously) be

from the negative classes L.

4.4 Multiview-based Classification

After extracting candidate entities, featurizing them, and acquiring for some candidates

their valid/invalid category labels from a SME, we train a classifier to learn to categorize

the rest of the candidates (for which we lack gold labels), to construct the final set of

entities.

Consider the two concepts “murine leukemia virus” and “myeloid leukemia” from Sec-

tion 4.2 labeled by a SME, the first as an instance of the Organisms entity class and the

second as a Non-organisms mention (an instance of the negative class Cancer). We want to
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learn the set of features that represent the positive class (e.g., g7(·) =“Gammaretroviruses”)

and the negative class (e.g., the dependency feature g5(·) = 〈amod,V〉 from the syntactic

relation between “myeloid leukemia” and “induced”). Similarly, after extracting candidate

entities, featurizing them, and acquiring valid/invalid category labels for some of them from

a SME, we train a classifier to categorize the remaining candidates (lacking gold labels), to

construct the final set of entities.

Binary classification and voting using the multi-views: Given a set of candidate enti-

ties C, we learn three classifiers, one per each feature view from Section 4.3.1 using their

feature vectors (i.e., vlsv, vwcv, and vcev). As each classifier can now learn and indepen-

dently predict a valid/invalid entity instance using its feature view, we designed a voting

mechanism to obtain consensus labels using majority voting rule. Formally:

l =


0, if

∑
q∈V σ(v

q) ≤ 1

1, otherwise
(4.10)

where V = {lsv, wcv, cev} and σ(vq) is the binary classification result on the feature view

vq.

Partial labels as negative/invalid instances: To expand the set of invalid instances ob-

tained from a SME input, we featurize and add all of instances of the negative classes from

L (see Section 4.3.3) to the set of gold labels for training the classifiers.

Data Imbalance: To partially overcome the effect of data imbalance, we use oversam-

pling [51, 16] and undersampling [77] techniques. SMOTE [16], for example, oversamples

the minority class by adding synthetic samples based on feature-space similarities among

the existing instances in that class.
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4.5 Experiments

This section answers the following questions. First, how does KnowEx perform on bench-

mark datasets in comparison with other NER techniques (both supervised and dictionary-

based)? Second, how effective was the idea of regular expressions induction for improving

recall? Third, how effective was the use of multi-view features and knowledge? Fourth,

how much cost reduction or accuracy improvement was our approach able to provide in

comparison with other techniques?

Figure 4.1 shows the KnowEx pipeline, including the candidate entity extractors (LMEx

and RegEx), the multi-view features, the classifiers, and the SME-in-the-loop. The pipeline

initially extracts a set of candidates using LMEx. The candidates are then featurized using

our multi-view featurizers. We then rank order the candidate entities based on the frequency

of their features (assuming that LMEx extractions are high precision but low recall) and

query the SMEs-in-the-loop to label them as valid/invalid instances. The pipeline then

passes these labeled candidates to RegEx to automatically induce regular expressions (to

expand the set of candidates further). After doing the same for RegEx extractions, we

pass the labeled instances to learn a binary classifier (to classify the unlabeled candidates

automatically).

Below, I present the details about the experimental settings (listing the dataset we eval-

uated the system on, and the knowledge we used to allow for minimal supervision). Then,

I present the evaluation of each component of the pipeline (to highlight the strengths and

weaknesses of each component and how each component is contributing to the overall per-

formance of the pipeline) and compare our pipeline with other NER techniques.

4.5.1 Experimental Settings

I compare our method with our base-line and the multi-domain dictionary-based NER

method AutoNER [118]. To highlight the trade-off between cost and accuracy, I also show
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Figure 4.1: The system architecture of our adaptive knowledge-enabled pipeline
(KnowEx).
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Table 4.1: Datasets statistics: The number of sentences and entities in each corpus (C# 1 to
10).

Train Data Test Data

C# Dataset Name Entity Class # Sentences # Entities # Sentences # Entities

1 Laptop Review AspectTerm 2436 801 800 393

2 NCBI Disease 5432 1577 940 403

3 BC5CDR Chemical 4560 1007 4797 1020

4 Disease 4560 1384 4797 1337

5 MIT Restaurent Restaurant Name 7660 1028 1521 296

6 Cuisine 7660 475 1521 179

7 CONLL 2003 Location 14041 1105 3250 426

8 Organization 14041 2295 3250 634

9 BioNLP13CG Organ 3033 58 1906 55

10 Organisms 3033 128 1906 101

the results of the best performing supervised technique [96] across multiple domains, i.e.,

Flair [3].

Datasets: To examine the effectiveness and generalizability of the different NER meth-

ods on English text, we evaluate them on ten entity classes from three domains (see Table

4.1). All methods are tested using the test datasets, while the train datasets were only used

to train the supervised technique, Flair. Following are the details domains of the datasets:

1. Crowd Sourced or Transcribed:

• Laptop Review [104]: This dataset is from the SemEval-2014 Task 44, which

was extracted from customer reviews of laptops. The data is annotated for

aspect terms as entities (e.g., “performance”, “build quality”, and “warranty”).

4http://alt.qcri.org/semeval2014/task4/

93

http://alt.qcri.org/semeval2014/task4/


• MIT Restaurant [72]: This dataset is tagged for multiple entity classes in BIO

format. We use the restaurant name and cuisine classes in our experiments (e.g.,

“Burger King” and “Steak House”).

2. Medical Domain:

• BioCreative V Chemical Disease corpus (BC5CDR) [131]: The corpus of

this dataset is from PubMed articles annotated for chemicals, diseases, and their

interactions. In our experiments, we use the chemical and disease entity classes

(e.g., “Calcitriol” and “hypercalcemia”).

• NCBI [29]: The corpus of this dataset is taken from PubMed abstracts and was

annotated for disease names (e.g., “hereditary ovarian cancer”).

• BioNLP’13 [93]: This dataset is from the BioNLP Shared Task (BioNLP-ST)

20135 annotated originally using the standoff format. We use the organ and

organism entity classes in our experiments (e.g., “kidney” and “murine”).

3. News Domain:

• CoNLL 2003 [127]: The dataset was originally taken from a collection of news

wire articles from the Reuters Corpus. We use two out of the four annotated

entity classes in the dataset, locations and organizations (e.g., “Jordan” and

“U.N.”).

For AutoNER [118], we formatted the input data as required using their Tie or Break

scheme, used AutoPhrase [117] to extract key phrases, and used the same dictionaries

we tested our method (see details below about the dictionaries used). For the biomedical

domain, we used the same embeddings as in [105], and for the other domains, we used

GloVe [101].
5http://2013.bionlp-st.org/
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Domain-specific Dictionaries: We used the Aspect Term, Chemical, and Disease dictio-

naries from AutoNER. The rest of the dictionaries were either taken off-the-shelf or scraped

from online sources (e.g., Wikipedia). We used the following dictionaries:

• Fast Food Restaurants [47]: This dictionary has 548 unique names of fast restau-

rants in USA taken from a data science class materials at UBC.

• Cuisine [49]: This dictionary was built automatically from Zagat.com and contains

145 unique cuisine names.

• World Cities and Countries [11]: This dictionary contains 23809 unique city names

with above 15,000 inhabitants extracted from geonames.

• Organizations [100]: This dictionary contains 9015 unique organization names taken

from the FreeLing project codebase.

• Organs [59]: This dictionary contains 66 unique organ names scraped from online.

• Organisms dictionary [133]: This dictionary contains 395 unique organisms names

scraped from Wikipedia.

For AutoNER, we used AutoPhrase [117] to extract key phrases to build dictionaries

from the data (i.e., Full Dictionary). As for the core dictionaries that AutoNER requires,

we used the same domain-specific dictionaries mentioned above.

Pre-trained Word Embeddings: We use BERT’s contextual word embeddings provided

by [36]. For AutoNER in the biomedical domain, we used the same embeddings as in [105],

and for the other domains, we used GloVe [101].

Domain-specific Knowledge: We used BabelNet indices version 4.0.1 (∼ 29Gb) and

their API6 to query the indices for the Wikipedia categories of each candidate entity. As
6github.com/marcevrard/BabelNet-API
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Table 4.2: The aggregated weights of Wikipedia categories for the domain-specific dictio-
naries.

C# Wikipedia Category (Weight)

1 American inventions (19), Computer storage devices (9), USB (5)

2 Rare diseases (96), Syndromes (22), Rare cancers (8)

3 Hepatotoxins (48), Alcohols (36), Phenol ethers (30)

4 Psychiatric diagnosis (65), Medical emergencies (40), Pain (17)

5 Fast-food franchises (92), Yum! Brands (8), Kentucky cuisine (3)

6 American cuisine (8), Mediterranean cuisine (8), Street food (5)

7 Cities in Ohio (49), Holy cities (41), City-states (33)

8 German brands (18), Central banks (15), Serie A clubs (12)

9 Digestive system (12), Exocrine system (9), Endocrine system (8)

10 Urban animals (24), Scavengers (17), Livestock (13)

in Section 4.3.1, given a domain-specific dictionary D, we create the Wikipedia categories

view (wcv). Using the categories of the dictionary records as a reference for vectorizing the

candidate entities would allow us to maintain a certain degree of relatedness to the subject

area inherent in the dictionary records (see examples of the top categories and their weights

in Table 4.2).

Metrics: To measure the performance of the binary classifier, we use macro-averaged

scores, giving equal weights to all the classes, since our candidate entities sets are im-

balanced [79]. As for evaluating candidate entity extraction and the final set of extracted

entities, we use precision, recall, and F1-score for a given entity class from each of the

sentences pools separately.
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Table 4.3: Performance of the dictionary-based entity extractor (LMEx) while using raw
and filtered dictionaries. Bold-faced is for the improved precision while the underlined
show the ones without a difference.

Raw LMEx Filtered LMEx

C# P R F1 P R F1

1 0.77 0.53 0.63 0.79 0.51 0.62

2 0.69 0.60 0.64 0.82 0.59 0.69

3 0.91 0.59 0.71 0.93 0.58 0.71

4 0.88 0.64 0.74 0.88 0.64 0.74

5 0.89 0.23 0.37 0.89 0.23 0.37

6 0.67 0.61 0.63 0.67 0.61 0.63

7 0.38 0.75 0.50 0.54 0.76 0.63

8 0.58 0.66 0.62 0.65 0.65 0.65

9 0.49 0.37 0.42 0.49 0.37 0.42

10 0.84 0.29 0.43 0.84 0.29 0.43

Table 4.4: Performance of the dictionary-based entity extractor (LMEx) with filtered dic-
tionaries vs. AutoNER. Bold-faced values reflect the best performances.

LMEx AutoNER

C# P R F1 P R F1

1 0.79 0.51 0.62 0.71 0.47 0.57

2 0.82 0.59 0.69 0.77 0.57 0.66

3 0.93 0.58 0.71 0.91 0.55 0.68

4 0.88 0.64 0.74 0.83 0.61 0.70

5 0.89 0.23 0.37 0.74 0.20 0.32

6 0.67 0.61 0.63 0.65 0.59 0.62

7 0.54 0.76 0.63 0.55 0.65 0.60

8 0.65 0.65 0.65 0.68 0.50 0.58

9 0.49 0.37 0.42 0.35 0.37 0.36

10 0.84 0.29 0.43 0.82 0.28 0.42
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4.5.2 Performance Evaluation

In this section, I separately present evaluation results for our pipeline on each pool of

sentences. The SMEs-in-the-loop are emulated using gold annotations from each public

benchmark mentioned above.

LMEx and RegEx evaluation: As in Section 4.2.1, filtering the domain-specific dic-

tionaries to build language models for LMEx improved precision for 5 datasets while the

other 5 had no change (see Table 4.3). The maximum improvement in precision was 16%

for the CoNLL-2003 Location dataset. Ultimately, filtering dictionaries improved average

precision by 4 points, improving F1 from 0.57 to 0.59.

In Table 4.4, our baseline language model-based extractor (LMEx)7 beats AutoNER

on all datasets in terms of precision, recall, and F1, except for precision on corpora 7 and

8. However, as with any dictionary-based extraction method, they both suffer from low

recall. The break-and-tie scheme of AutoNER fails to improve precision significantly, and

the technique is still prone to dictionary incompleteness. Hence, the need for our complete

pipeline without the high cost associated with supervised methods.

As for RegEx, it was able to improve recall by an average of 0.19, with a minimum of

0.05 for the BC5CDR-disease class and a max of 0.42 for the organisms class.

Candidate ranking and SME labels evaluation: As mentioned before, we featurize and

rank the extractions of LMEx and RegEx in two steps using the best performing ranking

mechanism with which we experimented (i.e., lsv). First, we rank the extractions of LMEx

and query SMEs to label the top 50 of them. The precision at k (p@k) of this ranked list,

on average, was around 0.88 (i.e., 44/55 were valid entities, see Table 4.5). Additionally,

over all datasets, almost 10% of the candidate entities were eliminated by filtering the

7For the remaining parts of this chapter, I use LMEx to refer to the method while using filtered dictionaries
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Table 4.5: Precision at k (P@k) and the number of instances covered in sentences (Instance
Count) for the best performing ranking mechanism (lsv) on LMEx extractions. SMEs-in-
the-loop label at most 50 instances.

C# k P@k Inst. Count

1 50 0.94 218

2 50 0.94 349

3 50 1.00 1350

4 50 0.98 1132

5 32 0.88 93

6 50 0.90 303

7 50 0.80 709

8 50 0.74 254

9 18 0.78 55

10 8 0.88 132

Table 4.6: The number of candidate entities extracted using LMEx (with and without fil-
tering) and the combined extractions of LMEx with filtered dictionaries and RegEx.

Candidates Count

C# Raw LMEx Filtered LMEx Filtered LMEx + RegEx

1 482 456 3030

2 842 707 7582

3 3517 3399 52347

4 3287 3282 50025

5 106 106 3847

6 485 485 4797

7 3550 2588 16102

8 1507 1356 18562

9 118 118 16970

10 179 179 21131
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Table 4.7: The number of labeled candidates by a SME and the precision of labels (P-Valid
and P-Invalid).

SME Labels

C# # Valid # Invalid # Unlabeled % Unlabeled P-Valid P-Invalid

1 315 657 2058 0.68 0.71 1

2 471 1118 5993 0.79 0.78 1

3 1552 8764 42031 0.80 0.97 1

4 1377 8177 40471 0.81 0.87 1

5 95 1004 2748 0.71 0.98 1

6 582 1834 2381 0.50 0.54 1

7 960 2148 12994 0.81 0.88 1

8 363 2275 15924 0.86 0.71 1

9 192 3610 13168 0.78 0.40 1

10 409 4676 16046 0.76 0.73 1

dictionaries used by LMEx (see Table 4.6). Second, we query SMEs to label the next batch

extracted using the induced regular expressions from the first 50. This step allows us to

filter out invalid entities and reduce the noise in RegEx extractions. RegEx expanded the

set of candidates by 93% across all datasets (from 12676 to 194393 candidates).

On average, the precision of the 100 SMEs’ binary labels was around 0.76 for the valid

entities and 1.0 for the invalid ones (see Table 4.7). The lost precision of SME labels is

due to our minimally supervised, context agnostic labeling technique. This design choice

to minimize supervision allows the SME to label surface forms instead of spans of texts

without looking at the context of the mentions. This allowed the SME to label 50 candidate

entities that corresponded to 1099 instances with a precision of 0.98 and 1.0 for the valid

and invalid classes, respectively, in the case of corpora 5. This excellent performance was

because some domains are more suitable to reliance on internal evidence, which is what

the SME is exploiting while giving binary labels (e.g., see the precision for corpora 3, 4, 5,

and 7). Notably, all labels account for only around 25% of the candidates, leaving the rest

100



Table 4.8: The precision (P), Recall (R), and F1 of the Micro- and Macro-averaged candi-
date entity classifier scores.

Micro Averaged Macro Averaged

C# P R F1 P R F1 Support

1 0.86 0.86 0.86 0.73 0.80 0.76 2058

2 0.86 0.86 0.86 0.68 0.89 0.77 42031

3 0.86 0.86 0.86 0.60 0.80 0.69 40471

4 0.81 0.81 0.81 0.61 0.76 0.68 5993

5 0.91 0.91 0.91 0.58 0.74 0.65 2748

6 0.77 0.77 0.77 0.57 0.68 0.62 2381

7 0.96 0.96 0.96 0.89 0.86 0.87 12994

8 0.72 0.72 0.72 0.58 0.82 0.68 15924

9 0.99 0.99 0.99 0.64 0.80 0.71 13168

10 0.99 0.99 0.99 0.78 0.61 0.68 16046

Average 0.87 0.87 0.87 0.67 0.78 0.72 15381

to be classified using our binary classifier to be built next.

Candidate entity classification: Using the labeled set of 100 candidates, we learn binary

classifiers for the valid/invalid categorization of candidates. To avoid over-fitting, we re-

move the features that have a document frequency of less than a threshold of 0.01. Finally,

we train Multi-layer Perceptron classifiers [42] with the following best-performing config-

urations: the LBFGS method [70] to optimize the loss-function, two hidden layers of sizes

500 and 200, and a batch size of 10.

Table 4.8 contains the micro and macro-averaged scores measuring various perfor-

mance metrics of each binary classifier on the candidate entity classification task to au-

tomatically label the 75% of the candidate entities without gold labels. The results show

the best performing balancing technique (SMOTE).

The macro-averaged F1 score of classifiers across all sentences was, on average, 0.72.
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Table 4.9: Pipeline performance after using the classifier on top of LMEx and RegEx meth-
ods, and with partial labels on the test corpora (C# from 1 to 10). Absent partial labels are
replaced with strikethrough text.

Classifier Extractions Partial-1 Partial-2

C# P R F1 P R F1 P R F1

1 0.64 0.67 0.66 0.64 0.67 0.66 0.64 0.67 0.66

2 0.44 0.65 0.52 0.44 0.65 0.52 0.44 0.65 0.52

3 0.45 0.85 0.59 0.52 0.85 0.64 0.52 0.85 0.64

4 0.28 0.71 0.41 0.37 0.71 0.49 0.37 0.71 0.49

5 0.42 0.37 0.39 0.44 0.37 0.40 0.48 0.37 0.42

6 0.33 0.75 0.46 0.42 0.75 0.53 0.53 0.75 0.62

7 0.78 0.84 0.81 0.93 0.84 0.88 0.96 0.84 0.89

8 0.19 0.81 0.30 0.21 0.81 0.34 0.41 0.81 0.55

9 0.31 0.60 0.41 0.31 0.60 0.41 0.42 0.60 0.49

10 0.72 0.69 0.71 0.72 0.69 0.71 0.73 0.69 0.71

However, in terms of the average micro-averaged F1, the performance of the classifier

was around 0.87. The difference between the macro and micro scores were due to the

severe class imbalance problem that we partially solved using SMOTE. The proportional

frequency of the positive class to the negative class was around 1:19 (in the worst case) and

1:2 (in the best case). Nevertheless, the classifier improved the precision of the candidates’

pool by 0.39 while sacrificing only 0.02 recall with an overall increase in F1 score on

average by 0.40. This performance was due to a 10 out of 10 improvement in terms of

precision, 4 out of 10 in terms of recall, and 10 out of 10 in terms of F1 over all datasets.

Table 4.9 lists the performance of the pipeline that relies on the classifier to decide the

final set of entities in all sentences. As we were initially motivated to improve the recall

of our baseline (LMEx), the table shows a significant improvement of around 0.17 points

(on average) over LMEx. This performance was due to a 10 out of 10 improvement in

recall but with an average sacrifice of 0.29 in precision (i.e., decreasing precision for 9 out
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of 10 datasets). Nevertheless, at this stage, our technique exhibits inherent precision-recall

trade-off and provides a general solution that scales to multiple domains using off-the-

shelf dictionaries and generic knowledge with minimal supervision. Next, I will discuss

the use of partial labels and SMEs-in-the-loop to improve precision while maintaining the

improved recall.

Partial Labels and SMEs-in-the-loop: While maintaining our commitment to weak su-

pervision, we further improved the resulting precision using partial labels (see Section

4.3.3) and minimal SME input. In Table 4.9, as expected, the use of partial labels improved

the average F1-score from 0.53 to 0.60 (with a max of 0.22 increase in precision). This

performance was due to an improvement between 0.09 to 0.22 for 8 out of the 10 datasets

in terms of precision.

After rank-ordering the pipeline extractions following the filtering by partial labels, we

query the SME-in-the-loop for binary labels to improve the overall performance of the

pipeline. The SME’s job at this stage is to filter out the false positives (among the top

50-250) to improve precision. Ultimately, our system obtained (on average) a precision,

recall, and F1-score of 0.70, 0.68, and 0.67, respectively. By labeling only 50 instances,

we were able to obtain (on average) a percentage improvement of 7.3% in precision, and

by using 250 labels, the percentage improvement was around 27%. Finally, we obtained an

F1 score of 0.67, suggesting that having SMEs-in-the-loop providing only minimal input

significantly improved overall performance.

Table 4.10 contains the final results in one place. As listed in the table, using only avail-

able online knowledge and 350 binary labels from the SMEs-in-the-loop8, our full pipeline

was able to significantly improve the performance of the NER in comparison with other

dictionary-based techniques (i.e., LMEx and AutoNER). The full pipeline was able to, on

average, maintain similar precision to AutoNER but with an increase in the recall by 0.20,
8Recall, if each label takes, on average, a generous 10 seconds, the full annotations will take close to

one-hour in comparison with 25 hours only for reading, see Section 1.1.3
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Table 4.10: Multi-domain NER performance comparison (Corpus # and precision/recall/F1
score). Gold data are labeled with IOB formatted labels. A SME-in-the-loop for KnowEx
provides minimal supervision.

Method Human Effort / Knowledge \C# 1 2 3 4 5 6 7 8 9 10

Flair
Gold Labels

+ Flair Embeddings

P 0.84 0.85 0.88 0.80 0.89 0.87 0.91 0.97 0.73 0.88
R 0.78 0.83 0.83 0.75 0.81 0.82 0.94 0.96 0.51 0.73
F 0.81 0.84 0.85 0.78 0.85 0.84 0.92 0.97 0.60 0.80

AutoNER Dictionary + Embeddings
P 0.71 0.77 0.91 0.83 0.74 0.65 0.55 0.68 0.35 0.82
R 0.47 0.57 0.55 0.61 0.20 0.59 0.65 0.50 0.37 0.28
F 0.57 0.66 0.68 0.70 0.32 0.62 0.60 0.58 0.36 0.42

LMEx Dictionary
P 0.79 0.82 0.93 0.88 0.89 0.67 0.54 0.65 0.49 0.84
R 0.51 0.59 0.58 0.64 0.23 0.61 0.76 0.65 0.37 0.29
F 0.62 0.69 0.71 0.74 0.37 0.63 0.63 0.65 0.42 0.43

KnowEx
Dictionary + Embeddings

+ SME-in-the-loop

P 0.77 0.60 0.59 0.47 1.00 0.71 0.97 0.53 0.57 0.78
R 0.66 0.64 0.85 0.71 0.34 0.73 0.84 0.81 0.59 0.69
F 0.71 0.62 0.70 0.56 0.51 0.72 0.90 0.64 0.58 0.73

leading to an increase in F1 of 0.12 (a percentage increase of around 22%). This perfor-

mance reflects an improvement in precision on five datasets out of the 10, an improvement

of 10 out of 10 for recall, and an improvement of 8 out of 10 in terms of F1. Using the

Mann-Whitney U test, with an alpha level of P < 0.05, our results achieved a statistically

significant P = 0.036. Relative to our baseline dictionary-based NER approach, which

suffered from low recall, our full pipeline improved recall across the board on all datasets.

Specifically, it showed an improvement on 6 out of 10 datasets in terms of F1 scores (0.17

on average), and for the remaining four corpora, it had an average decrease in F1 of only

around 6.8% due to the decrease in precision.

The technique, when compared with its supervised counterpart (Flair) [3], provides

a much cheaper alternative though sacrificing 0.16 F1 points, on average. However, a

reasonable increase in SMEs effort can improve the performance of the pipeline further.

Additionally, a more precise user study to calculate the cost of each method is a natural next

step. However, as in Section 1.1.3, supervised techniques are still much more expensive
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computationally and in terms of time and effort than our Green AI solution.

4.6 Related Work

The KnowEx technique relates to work in the areas of entity set expansion, knowledge-

enhanced NER, and dictionary, weakly-supervised, and regex-based entity extraction.

Dictionary-based NER techniques such as AutoNER [118] extract noisy candidate phrases

using keyphrase extraction techniques. AutoNER then learns a neural network-based se-

quence labeling model that tries to minimize the noise effect of distant supervision using

their tagging scheme, Tie or Break, which helps in predicting whether two adjacent tokens

are part of the same entity or not. However, the technique is still prone to noise and lack

of coverage of off-the-shelf dictionaries [2], and does not scale well to multiple domains

(see Section 4.5.2). Similarly, our dictionary-based technique in Chapter 2 and in [5] used

a language model in addition to a set of domain-specific stop word lists. The use of the stop

word list was able to partially address the problem of incorrect extractions, which improved

precision but harmed recall. KnowEx improves these by learning a feature-rich classifica-

tion model with minimal supervision that still uses internal evidence but also incorporates

external evidence that (1) induces regular expressions to improve recall, (2) eliminates the

need for stopword lists which improves scalability, and (3) filters the extractions of the

pipeline further, which improves specificity.

The dictionary learning NER approach by [94] starts by creating a high-recall/low-

precision candidates set and then learns a classifier to filter out the set and update the

dictionary. However, they use handcrafted domain-specific rules to extract candidate enti-

ties, which we induce automatically using regular expressions. On the other hand, the IKE

tool [23], an interactive pattern-based extraction method, similar to ours, has a SME-in-

the-loop to provide feedback on the pipeline extractions. However, it requires SME inputs

in multiple iterations while ours requires only one iteration. The idea of candidate entity
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extraction and ranking using diverse features is also similar to the work on entity set expan-

sion (ESE) in Chapter 3 and in [126, 120, 4]. ESE requires a seed set to allow the extraction

and retrieval of similar entities based on their features set similarity. Instead, we use LMEx

extractions and then rank-order the extractions based on their features in a similar manner

to allow for minimal supervision.

Other techniques, such as [2], use only off-the-shelf dictionaries. The technique slightly

underperforms state-of-the-art fully-supervised deep neural network word plus character

models [19] with only 0.26% F1-Score difference on the English datasets. For the Drug

Name Recognition (DNR) task, the state-of-the-art technique [73], which is based on word

embeddings plus semantic features based on drug dictionaries, beat the state-of-the-art

Deep Neural Network-based techniques on the same task [136]. While the deep learn-

ing method does not require dictionaries, it is still a supervised method that requires fully

labeled datasets and is more computationally expensive (a cost we seek to minimize).

The use of regular expressions to extract entities is advantageous, given a low budget.

However, given a sizable budget, data labeling and supervised approaches are known to

perform better than rule-based methods [139]. Many techniques infer regular expressions

for entity extraction [121, 9, 140, 13]. However, the majority of these focus on learning

regular expressions that extract entities with a uniform structure, such as phone numbers,

course numbers, and dates. In contrast, our approach expands the set of candidate entities

by learning from the POS patterns synthesized from the extractions of the dictionary-based

method.

Recent work used knowledge to improve the performance of NER. Seyler et al. [116]

used background knowledge to expand the set of features for CRF, which ultimately im-

proved the performance but found to have a trade-off with more external knowledge. Other

neural-based NER methods [28, 74] also improved the performance of their models using

dictionaries, showing the value of using external knowledge relative to pure data-driven

deep neural net approaches.
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4.7 Conclusions, Limitations, and Future Steps

In this chapter, I presented our adaptable, minimally-supervised entity extraction method

that is using domain-specific knowledge (i.e., dictionaries), general-purpose knowledge

(e.g., Wikipedia categories and contextual word embeddings), and rich lexical and syn-

tactic features that showed improvement of up to 22% in average F1 score over other

multi-domain dictionary-based NER methods. The approach generalizes well to multi-

ple domains, enhancing recall while maintaining precision in the face of noise. It requires

only off-the-shelf dictionaries, online knowledge, and minimal supervision in comparison

with other methods.

We did not test our method on social media corpora, but we expect a diverse set of

features to compensate for the noise caused by such ungrammatical text. Additionally, we

emulated our SMEs-in-the-loop using gold data. In the future, conducting a user study is

a possibility to account for noisy user input and measure the time savings while using our

minimally supervised pipeline. Finally, we see the strong potential of the approach when

integrated with an active-learning-enabled pipeline.
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Conclusions and Future Directions

In this dissertation, I presented our knowledge-enabled named entity recognition (NER)

methods as effective alternatives to the techniques that require accurate and large amounts

of gold annotations and challenged by the evolving content in text streams. Presently, the

availability of knowledge and pre-trained machine learning models online can lower the

cost of NER, and incorporating them in our pipelines is straightforward. Additionally, re-

quiring minimal supervision or feedback from subject matter experts (SMEs) makes their

involvement as human-in-the-loop a possibility rather than outsourcing the labels to work-

ers in services such as Amazon’s Mechanical Turk. I proposed three NER techniques that

require minimal/reduced levels of supervision via effectively using background knowledge

and exploiting the models’ certainty and knowledge to lower the cost and improve the ac-

curacy of extraction.

Although supervised and rules-based NER techniques have proven useful for generic

or domain-specific use cases, they still suffer from the high computational cost, sparsity

of labels or rules (therefore incurring a high cost), infeasibility in the face of challenging

use cases (such as for stream processing), and inability to conform to user-centered re-

quirements (such as ease of data annotation). Our techniques, on the other hand, lower

the cost of NER, satisfy practical and user-centered requirements, and provide scalable and

adaptable NER solutions.

In Chapter 2, I presented our dictionary-based location extraction solution from text

streams. I showed how augmenting and filtering dictionaries is essential to improving the
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accuracy of NER (the same behavior can be seen in Chapter 4). This includes how the

use of dictionaries allowed us to support context-aware computing by extracting location

names from streams of text, in an online fashion, even when challenged by ill-formed,

nonstandard, and ungrammatical social media text. The technique outperformed ten other

location name NER techniques on our evaluation set by at least 33% F1 improvement.

In Chapter 3, I presented our sparse entity extraction technique. The main focus of that

technique was to tackle practical user-centered requirements such as privacy preservation

by allowing SMEs to label data instead of costly crowdsourcing the labeling. Hence, the

need for cost reduction (in terms of the number of labels, the labeling technique, and the

complexity of the labeling task). Eventually, the technique allowed us to label for a sin-

gle entity class (to reduce complexity) and cut (on average) around 45% of the data with

the help of a hybrid approach that combined entity set expansion, active learning, and a

human-in-the-loop. This makes the NER technique attractive and practical for SMEs in the

industrial setting (where less time and cost, and high accuracy is desirable).

In the last NER technique in Chapter 4, I presented our knowledge-enabled NER tech-

nique. The main focus of that technique was to overcome the challenges to the domain-

agnostic NER technique from Chapter 2, including dictionary incompleteness and scalabil-

ity to multiple domains. At the end, the use of rich multi-view features (for representation

enhancement of candidate entities) and a SME-in-the-loop allowed us to scale the NER

solution to multiple domains and to comfortably improve recall with a modest sacrifice of

precision while using off-the-shelf dictionaries (not requiring careful cleaning, edits, and

adaptation to each entity class).

There are multiple future directions to build on top of the work in this dissertation, some

stemming from the limitations of the presented approaches:

• Out of dictionary entity detection: In Chapter 4, I presented our KnowEx approach,

which partially solved the limitation imposed on the language model extractor in

Chapter 2 due to dictionaries incompleteness. The KnowEx approach automatically
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induces regular expressions and learns to classify noisy candidate entities with the

help of a SME-in-the-loop. While that partially solved the problem, the technique

still suffers from the class imbalance between the valid and invalid candidates. There-

fore, there is a need to find alternatives to the currently used classifier to work on top

of the high-precision/low-recall dictionary extraction.

• Improving the minimal supervision: The context-agnostic labeling criterion we

implemented in this dissertation queries SMEs to provide binary valid/invalid labels

to minimize the labeling cost. However, this labeling technique introduced some

noise, as I presented in Chapter 4. Hence, there is a need for developing a technique

that can score the labels for individual instances and only accept the binary labels if

the score is above a certain threshold, for example. Alternately, using a keyphrase

extraction technique might help in ruling out partial matches (due to the composition-

ality of mentions) to not label them erroneously (e.g., labeling “cancer” as a disease

name rather than the full mention “colon cancer”).

• Detailed user study: In the techniques I presented in this dissertation, we emulated

SMEs-in-the-loop using gold data. Conducting a more detailed user study while

having SMEs-in-the-loop would, therefore, have the following benefits: (1) provide

an accurate measure of how much cost reduction our techniques were able to provide,

(2) provide a more detailed view on how prone our techniques are when faced with

noisy SME labels, and (3) provide a critical view on the techniques when having

multiple SMEs and how to account and deal with their disagreements in their labels.

Gathering explicit and contextual features for entity recognition is challenging due to

data sparsity, the need for reliable annotation, and timeliness in the face of evolving data

streams. Background knowledge, minimal supervision from subject-matter-experts, and

machine learning models’ certainty can be leveraged to develop reliable named entity rec-

ognizers at a reduced cost. As a conclusion and an answer to this thesis statement, the
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techniques presented in this dissertation, when compared with state-of-the-art supervised

and rule-based NER systems, require fewer labels, exploit readily available knowledge,

scale to multiple domains, honor practical and user-centered requirements. Hence, it com-

pensates for the need to rigorously supervise and prepare vast amounts of labeled data via

minimal supervision and a kind of distant supervision. Ultimately, in our generalizable

techniques, we tried to solve pressing technical and practical problems that I hope would

make NER more attractive to use. Finally, I hope that my research will motivate other

researchers in the future to pursue practical aspirations and motivate them to open source

their solutions, which would accelerate the advancement of our field.
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