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ABSTRACT

Duncan, Kayleigh E. M.S.C.E., Department of Computer Science and Engineering, Wright State
University, 2019. Islands of Fitness Compact Genetic Algorithm for Rapid In-Flight Control Learn-
ing in a Flapping-Wing Micro Air Vehicle: A Search Space Reduction Approach.

On-going effective control of insect-scale Flapping-Wing Micro Air Vehicles could be

significantly advantaged by active in-flight control adaptation. Previous work demonstrated

that in simulated vehicles with wing membrane damage, in-flight recovery of effective ve-

hicle attitude and vehicle position control precision via use of an in-flight adaptive learning

oscillator was possible. Most recent approaches to this problem employ an island-of-fitness

compact genetic algorithm (ICGA) for oscillator learning. The work presented provides the

details of a domain specific search space reduction approach implemented with existing

ICGA and its effect on the in-flight learning time. Further, it will be demonstrated that the

proposed search space reduction methodology is effective in producing an error correcting

oscillator configuration rapidly, online, while the vehicle is in normal service.
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Introduction

1.1 Motivation

The Harvard RoboFly triggered tremendous theoretical and practical advances towards

achieving a stable and autonomous flight in Flapping-Wing Micro Air Vehicles (FW-MAV)

[1] [2] [11] [13]. There are rather obvious applications for FW-MAV technology and con-

trolling such vehicles in 3D space - search, recovery and reconnasiance.

In previous work, researchers at Wright State studied evolvable hardware and soft-

ware approaches to exploring in-flight learning of control methods on FW-MAVs. These

vehicles, especially, at insect sized scales, have limited payload capacity. This restricts

the size and weight of the computers that can be carried. The payload limits also restrict

weight of batteries that can be carried. This thesis adopts a variant on the compact genetic

algorithm in an attempt to ameliorate the above mentioned computational and power lim-

its. In so doing, it explicitly explores the use of dynamic control of the underlying genome

representation to enable initial coarse scale search followed by more detailed search if such

becomes necessary with the goal of shortening overall time to solution. The remainder of

this chapter will expand upon motivation and explain deliverables. The remainder of this

thesis will explain expiremental setup and conclusions.
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1.2 Problem Overview

Most proposed approaches to the control of flapping-wing air vehicles are based on empir-

ically verified models of the relationship between wing motion and net forces and torques

applied to the vehicle by those motions. The idea is that an outer-level controller decides

what forces and torques should be applied to the body, on average, over a flap of the wings,

and then an inner-level controller, using a model of wing force generation, chooses how

to move the wings to achieve the forces required by the outer-level controller. In a sense,

the outer-level controller makes a decision about whole body forces and torques once per

wing flap and then an inner-level controller moves the wings in a way that the net sums

of the forces and torques on the body meet that specification. The prescription for how to

move the wings is found by inverting a wing force generation model that would have been

derived analytically and tuned and verified empirically.

Success of a static model based control approach depends on continuous consistency

between the model and the underlying wing properties. However, the likelihood of manu-

facturing a vehicle that has no fabrication faults and does not suffer damage during flight is

not probable at micro scales [12]. Even for real insects, normal flight can result in perma-

nent physical wing damage that is not healed. In fact, the age of many flying insects can

be reliably estimated via accumulated wing damage, but insects in nature do adapt to these

damages overtime to sustain stable flight behaviors [3].

It has been demonstrated that mismatches between actual and modeled wing force

generation introduces difficulties with maintaining pose and position control of the vehicle.

Changes in wing force generation can be caused by acute or chronic wing damage. An ex-

ample of acute damage could include a tear after hitting a wall in flight, or manufacturing

faults such as the membranes of the wings not layering correctly. Chronic damage can in-

clude the wearing down of the parts over time such as changes in stiffness of the wing due

to excessive flexing. One might consider multiple strategies to employ to maintain accept-

able flight behavior in the face of ongoing and accumulating wing damage. One strategy
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would be to adapt the wing models inside the control laws. Another strategy would be to

learn new wing flap motions that allow broken wings to produce the forces predicted by

the model that is already present. Calculating the control laws of the vehicle every wing

flap is computationally expensive and impracticle while the vehicle is in service. Previous

research at Wright State studied the idea of learning wing motion patterns that allowed

damaged wings to comply with the motion-to-force models derived for undamaged wings.

In short, the controllers for undamaged wings presumed cosine wing motion that was mod-

ulated by speed (frequency) and a single shape parameter that warped the cosine envelope

in a manner defined later in this thesis. Previous work employed an Evolutionary Algo-

rithm (EA) embedded in the oscillator to learn new periodic wing motion envelopes that

would be modulated via the same frequency and shape parameter based warping functions.

Over time, the vehicle would learn new wing motions that restored appropriate flight per-

formance leaving the main controllers intact.

Early work utilizing EAs to evolve wing flap motions focused entirely on showing

that such learning was possible and could be accomplished consistently. EA learning in

this context faces at least three challenges that stem from the requirement to modify wing

motion envelopes without taking the vehicle out of service:

1. Learning must be accomplished while the vehicle is in normal service. There is no re-

setting of the vehicle state between evaluations of candidate wing motion definitions.

This opens the door to serialized deceptive evaluations. Evaluating a particularly bad

candidate could place the vehicle in such a state that even a very good candidate

cannot fully recover. Therefore a good candidate would receive a bad fitness score

essentially inherited by the poor performance of the candidate previously evaluated.

2. The EA system must find a workable, error-correcting solution as quickly as possible.

Taking several hours of flight time to correct a problem is not likely acceptable to

users.

3



3. No candidate can be so bad that it crashes the vehicle.

With item (1) being addressed at least in an empirical sense in previous work [7] and

item (3) being beyond the scope of this work, this thesis will focus on improvements to

item (2). This thesis will demonstrate how to leverage search space features to reduce the

effective size of the search space and thereby reduce the amount of time it takes to learn

corrective wing motions when a wing is damaged.

1.3 Thesis Organization

Chapter 2 begins with an overview of evolutionary algorithms (EAs), genetic algorithms

(GAs), compact GAs (CGAs) and how the ”islands” concept can be applied to a CGA.

Chapter 2 will also introduce the vehicle kinematics and touch on the restrictions this poses

to learning alorithms.

Chapter 3 will provide detailed descriptions of the experimental setup employed and

present results of the proposed search space reduction technique across a variety of fault

types that would effect net vehicle lift.

Finally, in Chapter 4, this thesis will discuss insights gained from the experiments

performs and propose future work that can improve the in-flight learning performance for

practical real world flight scenarios.
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Background

This chapter will focus on background information. It is meant to be representative to

understanding the approach of this thesis. Topics discussed will include Evoltionary Al-

gorithms (EAs), Genetic Algorithms (GAs) and Compact Genetic Algorithms (cGAs) and

introduce the Islands of Fitness approach. It will also discuss the FW-MAV model and

modified adaptive controller employed for in-flight learning of corrections for membrane

wing faults.

2.1 Evolutionary Computation

This section will give an overview of evolutionary alogrithms. Based on this foundation,

this section will then detail genetic algorithms, and compare those to compact genetic al-

gorithms, which is core to understanding the islands of fitness approach of compact genetic

algorithms applied in this work.

2.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a problem solving model that take heavy influence from

the biological process of evolution. In natural evolution, populations of organisms adapt to

meet the demands of their environment. The fittest members reproduce and create offspring

that are, ideally, a combination of suitable traits from their parents. These offspring then
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compete with the previous generations. Population size is maintained by age and survival

against predators and natural resources. Variety can be introduced to the population via

mutation, which explores new traits at random. These new traits can be advantageous,

such as a mutation of albinoism in a snowy enviroment or detrimental, such as a mutation

of albinoism in a forest environment. If ideal, these traits will be perpetuated through

reproduction. If detrimental, the new traits will be weeded out through survivor selection.

Determining how to map the ”real world” solution (phenotype) to a corresponding

genotype is a primary factor in selecting the type of EA to utilize. This bridge is known

as representation, which can refer to the encoding (the genotype space) or decoding (the

phenotype space). An individual can be in reference to the original problem or the genotype

representation. The elements within the individual are referred to as genes or alleles. In a

genetic algorithm, the genotype could be a bit string, where each 0 or 1 within the string

would be the gene at that position.

EAs fall into a variety of classifications. The principles can be generalized to the

model in Figure 2.1. Two of the categories of EAs, genetic algorithms and evolution strate-

gies, are the models that will be referenced in this work. For a more thorough overview of

the different algorithms, reference Introduction to Evolutionary Computing [14].

There are generally six components to evolutionay algorithms:

1. Initial population - population can be initialized at random, at zero, or with a default

value

2. Fitness function - scores the individual or population with how well it meets the needs

of a potential solution

3. Selection - the set of individuals that move to the next generation or is choosen to be

a parent - usually based on age and / or fitness

4. Recombination - the creation of one or more children from the traits of one or more

parents

6



5. Mutation - one parent creates one offspring with changes to the traits that may or

may not be based on values of the parent

6. Termination - a set of finishing conditions for the algorithm

An EA begins with an initial population set to values that cast a net over the space

of possible solutions. During each iteration of the EA, the population can experience two

stages of selection - parent and survival selection. Both processes rely on evaluations of

the individual or the population by a fitness function. Population size is usually determined

by how much variance is desired in the population. A larger population, depending on

initialization, can perhaps better explore a search space of potential solutions with greater

variety, but may evolve slowly. A smaller population may have less variance, and settle on

a less than ideal solution without exploring the entirety of the search space.

The fitness function, also referred to as the evaluation function, can be thought of as

a scoring for individuals, where the most correct individuals minimizes the error between

the actual and desired features. It assigns a quality measure to genotypes which is usually

based on the quality measure from the phenotype space. This measure can be direct, such

as a solution to a factoring problem, based on subjective measures, such as aesthetics, or

based on physical contraints, as the vehicle is in this work. Here, the fitness of a candidate

solution can be scored by calculating the absolute value of the difference between the actual

altitude of the vehicle and the desired height of the vehicle.

Parent selection is utilized in recombination or mutation, which are known as variation

operators. The process of creating one or more offspring from two or more parents is

known as recombination, or crossover. Recombination typically takes two individuals with

desirable traits (as determined by their fitness scores) and combines them to create new

individuals with desirable features. Determining which portions of each parent is subject

to the type of EA being employed. Mutation creates an offspring from one parent by

changing to the child’s genes. Mutation is a good way to explore or exploit the search

space to find solutions that may not have been tried by parents using recombination. In
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genetic algorithms, mutation is the primary variation operator, while recombination is the

primary search operator. Survival selection will determine which individuals, be it parents,

offspring, or high-scoring candidates, participate in the next generation.

Figure 2.1: Evolutionary Algorithm General Scheme.

Survival selection (or replacement) determines which members of the population re-

main for the next iteration of the algorithm, usually after offspring are created. Two meth-

ods are traditionally used. One method evaluates all individuals of the population, ranks

them based on score, then keeps top performing individuals - this is referred to as elitism.

The other is to replace all parents with their offspring in a generational replacement strat-

egy. Some function of both methods can be used so that the continuing population factors

in rank and age, and keeps a portion of low ranking individuals in case they may create

high ranking individuals over time.

The parts of the cycle described above continue until a termination condition is met.

Termination conditions can include any of the following:

1. After a set number of computational (CPU) cycles.

8



2. After a set number of fitness evaluations.

3. Due to a lack of improvement to the candidate ranking.

4. Due to stagnation of population diversity.

Conditions one and two are typically based on time or hardware limitations. For ex-

ample, the flapping-wing vehicle needs to aquire a solution that recovers flight quickly, and

is therefore time restricted. It would be apropriate to utilize the second or third conditions

to check for a good enough candidate being found quickly (making it futile to continue

searching), or lack of population diversity (all candidates favoring one wing movement

exclusively, despite attempts by mutation to combat stagnation).

2.1.2 Genetic Algorithms

Genetic Algorithms (GAs) reflect the process of natural selection, and borrows much ter-

minology from biology. For the purposes of understanding the algorithm used in this the-

sis, this work will focus on information needed to compare genetic algorithms method

against compact genetic algorithms in the following subsection. Table 2.1 describes the

most generic GA format.

Representation Bit-strings
Recombination 1-Point crossover

Mutation Bit flip
Parent Selection Fitness proportional

Survival selection Generational

Table 2.1: Simple Genetic Algorithm [14]

To build a GA, first the representation of individuals needs to be mapped from geno-

type (the encoded representation) to phenotype (its real-world form). Binary representa-

tion is the simplest, where the genotype consists of a binary string. This is best suited

for boolean decision variable problems. Integer representation is suitable for phenotypes,

9



such as ordinal coordinates, that are best assigned a unique number. For this work, a wing

motion is mapped to a 12 bit binary representation. There are 8 wing motions per wing, cre-

ating a genome of length 16. A more comprehensive description of the genome is provided

in Section 3.1.

Mutation is applied to a parent to create a child after a randomized change as deter-

mined by a mutation rate. For binary representations, bits on the string can be randomly

flipped, usually with a low probability. This process can be applied per generation, or per

offspring. For integer representations, mutation can take the form of random resetting (sim-

ilar to bit flipping in a binary representation), where a new value is chosen for that position

at random, or creep mutation, where a small chance (positive or negative) of mutation can

be added to each gene, that should make small changes.

Figure 2.2: Mutation Applied to 2nd Position of Genome.

The process of selecting parents and combining them to create offspring recombina-

tion (also known as crossover), has similar options for binary and integer representations.

These methods require a minimum of two parents to create two offspring. Offspring could

then be evaluated by the fitness function in order to determine if only one of the two should

be added to the population. For two-parent crossover, the genomes are split at one-point

or n-points and recombined to create two children. Uniform crossover divides the parents

based on a random number at each gene, then creates the first offspring based on the chance

of each gene being carried over from each parent (the second offspring is then the inverse

mapping of the first). One-point and n-point crossover can be subject to positional bias -

genes that coadapted next to each other may stay next to each other. Uniform crossover, on

the other hand, is subject to distributional bias, which means it may lose genes that coad-

apted next to each other. Understanding which bias may work in favor of the problem being

10



solved may allow explotation of the search space. Figure 2.3 shows a diagram of one-point

crossover recombination, with the crossover point set to the 3rd allele.

Figure 2.3: One-Point Crossover Recombination.

Once a population is randomly initialized, it is then a matter of which individuals cre-

ate new populations over time. There are two primary models for evolving a population -

generational and steady-state. In a generational model, all members of the population re-

combine and produce offspring, and then the offspring replace all parents. In a steady state

model, some number of parents are selected (not the whole population), and those parents

are replaced by their offspring. The competitive elements (selection and replacement) are

based on individual scores given by the fitness function.

Parent selection is the competition among individuals to create offspring. Selection

methods include fitness proportional, rank, and tournament based. Fitness proportional

selection compares the rank of the individual to the rank of the population. This method

can fall prey to premature convergence (when one outstanding individual takes over the rest

of the population), and lack of selection pressure (fitness values of individuals of high rank

are nearly indistinct from each other). Rank based selection is an answer to maintianing

selection pressure - the population is sorted based on fitness, then assigns a probability of

selection to individuals. Both rank and fitness proportional selection require knowledge

of the population. Tournament selection is best for large populations or complex search

spaces, and is the selection method used in the algorithm in this work. Tournament selction

takes a portion, or sampling, of the individuals in a population, then compares their fitness

values to identify the best members of the population sample.
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Survivor selection determines the set of parents and offspring that continue to the next

generation. There are four categories of schemes for survior selection:

• Age-based. No dependency on fitness, only on how many generations an individual

may stay in the population. In a SGA, all members are replaced by their offspring

every generation.

• Fitness-based. Contains some basis of age, and then use fitness to decide which

parents move to the next generation.

• Replace worst. Worst members are removed from the population. This allows fast

convergence, and therefore is best partnered with large populations or by disallowing

duplicate individuals.

• Elitism. The fittest individual is kept until a higher ranking offspring is generated.

2.1.3 Compact Genetic Algorithms

This works uses the Compact Genetic Algorithm (cGAs), introduced by Golberg [4]. The

cGA was chosen in previous works related to this thesis as a solution to the limited compu-

tational power and memory capabilities on the FW-MAV. There are some key differences

between a standard GA and a cGA. One of these is that the population in a cGA is repre-

sented as a probability distribution of the set of solutions.

The primary reason for investigating cGAs are their space saving memory require-

ments. A traditional GA has a memory requirement of l ∗ n bits, the cGA requires only

l ∗ log2(n+ 1) bits.

The probability distribution of a population stores the odds that the best allele for a

position on a genome should generate a 1. The probabilities at each position are updated

over time via tournaments, where candidates are generated according to the distributions,
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the candidates are evaluated, and then the probability vectors are adjusted to favor the

winner.

Figure 2.4: Sample Probability Vector Generating Candidates.

cGA’s does not have mutation capabilities in the same sense as GAs. A GA would

reset an allele to 0 or 1. For a cGA, mutations set a position in the probability distribution

back to 50%. This allows the next candidates generated by the probability vector to be

given a fresh chance of a 0 or 1 at that position. A hypermutation, as used in this work,

is defined as reset of the whole probability distribution, or setting all probabilities to 50%,

essentially forcing the population probability distribution to evolve anew.

GA’s allow subpopulations in the search space - essentially clouds of good candidates

that have no common properties. cGA’s, due to the nature of the probabillity vector rep-

resenting the population, generate population members with fixed properties over time. If

a cGA has a population probability vector of 0, 0.5, 1, 0, 1, 0.5, then the members of the

population generated from the probability vector would be the same at positions 0, 2, 3,

and 4 and only vary for positions 1 and 5. This removes the ability to look at completely

new search spaces (short of hypermutation) that have no connective features to other good

search spaces, which is why this work utilizes islands in combination with cGA.

2.1.4 Islands of Fitness

Islands of Fitness is utilized in this work as an addition to the Compact Genetic Algorithm

(cGA) [4] [10]. It can be thought of as a community of CGAs, each acting as an island
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in an islands-of-fitness arrangement [5]. Islands-of-Fitness approaches are often used for

multi-objective problems. Islands-of-Fitness approaches could be explored for cases in

which one would desire evaluation of the oscillators abilities to correct for multiple types

of faults (altitude, roll, yaw, translation, etc.). Alternatively one could turn to islands-

of-fitness approaches for cases where one would expect a superposition of manufacturing

faults across a vehicle and individual damage faults. Islands running on different vehicles

could presumably help find common solutions to solve systemic problems while individual

adaptation in local islands could tune those for local needs [6]. This work uses simulated

islands within a single vehicle with the goal that each island explores a unique area of the

search space.

Figure 2.5: Sample of Islands with Varying Probability Vectors.

Like the cGA, the ICGA uses a probability vector to represent a population, or popu-

lation island. That probability vector maintains the likelihood that each bit in the candidate

solution should generate a 1. While the population is not stored directly as a collection of

individuals, candidate tournaments can be held by generating candidates according to the

distributions, running a tournament, and adjusting the probability vectors to in the future

favor the winner. cGA, due to the probability vector that makes up the population, would

explore spaces with common properties. Introducing islands allows the solution space to

explore solutions with non-connective properties. This is demonstrated in 2.5, where each

island can generate candidates unique to their probability vectors.

ICGA, like cGA, does not implement variation operations in the manner they would
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be in an EA that stores individual members of a population. Unmodified cGA simulates

uniform crossover among candidates constructing candidates from the population repre-

sented by the probability vector. We add immigrants by specifying a probability that the

champion genome of one island is copied into the champion slot of another island. In our

initial studies, the islands probability vector is adjusted to be 25% more similar to that of

the genome that immigrated. Novelty is introduced through an aggressive hypermutation,

which randomizes the island. Hypermutation, like immigration, occurs at a set probabil-

ity. If hypermutation is triggered, the local champion genome, and its probability vector

are reset, and the local champion score is recalculated accordingly. It should be noted that

hypermutation was found to be a vital piece of the ICGA in terms of finding good solu-

tions and not converging on unacceptable solutions, which implies that the search space

has wide swaths of unacceptable solution valleys in which non-hypermutated islands could

get trapped.

2.2 Vehicle and Basic Controller

This section will begin with a description of the physical vehicle, which is loosely based on

the Harvard RoboFly [12]. An overview will be provided on the controller for the vehicle,

as well as the basis set of wing motions used in this research.

2.2.1 Vehicle Model

An orthographic drawing of the top, front, and side views of the vehicle can be found in

Figure 2.6. The two triangular wings are passively hinged to their respective support spars,

which can be independently driven to angles [−φ, +φ] (see the front view in Figure 2.6).

The forward and backward stroking of the wing spars results in lifting the triangular wing

plan forms to an angle α under the plane of the spars due to dynamic air pressure. These
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movements results in net body forces and torques based on the lift and drag forces they

produce by using the kinematic and dynamic models derived in other work, as will be

reviewed later in this section [9] [13] [15].

Figure 2.6: Orthographic View of Insect Scale Flapping Wing Vehicle.

The vehicle relies on two coordinate systems - body and world. The origin of the body

coordinate system is at the center of mass, displayed as the rectangle in Figure 2.6. The

body coordinate system is used to calculate forces and accelerations on the vehicle. The

world coordinate system is conventional, where Z is the vertical (or elevation) coordinate,

and X and Y are positions on planes orthogonal to Z.

The library used to simulate the vehicle in this research supports two modes: a model

that constrains movement to the world Z axis (the body x axis), and a model that constrains

movement to the world X and Y axis on a frictionless puck system. Both models set the

wings to flap at the same frequency and both wings are at fully forward positions at the end

of each wingbeat. This research is only concerned with achieving hover after wing damage,

so only the first model will be considered. Since the vehicle is constrained, roll, pitch, and

yaw are constant. The next section will explore split-cyle control and the altitude tracking

controller for the vehicle.
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2.2.2 Split Cycle Control and Wing Motion

Split-cycle control [9] provides each wing with a wing-beat frequency and a waveform

shape parameter at the beginning of its wing stroke. The wing motion is defined by a split-

cycle cosine wave in which the upstroke phase (motion from +1 to −1 radians) is a cosine

whose frequency is impeded or advanced by an amount δ rad/sec, and whose down-stroke

phase (motion from −1 radians back to +1) is governed by a cosine that is impeded or

advanced so that it reaches 1 radian at the same time it would have if it had been driven

by a nominal cosine with the base frequency. The wing beat cycle-averaged body forces

and torques can be related to wing frequency and shape parameters through blade element

analysis. Further, correction to the body pose or position can be given by a single-input and

single-ouput (SISO) control law, which maps the computed desired body force or torque to

wing shape parameters, which are applied to the appropriate wing on the next wing beat.

Over the course of a complete wing beat cycle, each wing produces forces and torques

at the point of attachment of the wing to the body and these can be resolved to the forces

and torques that will be applied to the center of the body. These forces applied to the

body, determine the motion of the body and from this, the position and pose of the vehicle

in the world coordinate system can be determined. Cycle-averaged methods model vehicle

motion by applying body forces and torques and updating the bodys position and pose once

per wing beat. Simulations of this form would be accurate in position and pose at clock

ticks corresponding to the end of a wing-beat cycle. Considering the fast nominal flapping

frequency of the wings, vehicle motions between wing flaps would be slight and it is likely

safe to not model them directly.

The controller used in this vehicle operates on cycle-averaged values and employs

split-cycle control where the wing parameters could differ between the upstroke and down-

stroke phases of the wing motion [9]. Cycle-averaged control [9] is control of the vehicle

based on the average of the torques and forces acting on the body over the course of an

entire wing-beat cycle.
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Figure 2.7: Altitude Command Tracking Controller.

2.2.3 Altitude Command Tracking Controller

The simulated vehicle in this work is restricted to one degree of freedom for a constrained

hover. In constrained hover, the vehicle can only translate along the world Z axis (altitude).

Given that both wings beat at the same frequency on a cycle-averaged basis, all forces

and torques with the exception of the upward force are canceled in cases where the wing

motions are otherwise symmetric. The motions made by the wings are metaphorically

similar to the arm motions of a swimmer treading water to maintain position the swimmer

must make symmetrically timed and equivalent motions. A basic altitude error feedback

and cycle-averaged controller is combined conceptually in Figure 2.7.

This controller, referred to as the Altitude Command Tracking Controller (ACTC)

consists of an oscillator and a plant dynamics module that feed into the controllers output.

The plant dynamics module uses the drive angles, φ, to calculate the force produced by the

movement, which is then twice integrated once to get the current velocity of the vehicle (ẋ)

and again to get the vehicles position, or altitude. This information and the desired position

of the vehicle (xdes) is fed to the controller, which computes a wing flap frequency that is

passed to the cosine oscillators on each wing. Further details of ACTC can be found in [7]

[8].
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The issue with the ACTC as decribed is that the oscillator cannot learn new wing

motions. A new oscillator model was created to ”adapt” to wing damage scenarios and

generate forces needed to regain elevation control. The following section will provide

more detail.

2.2.4 Adaptive Oscillator Controller

In this and previous work the simple cosine oscillator used by the Altitude Command

Tracking Controller (ACTC) has been replaced with an Adaptive Learning Oscillator -

(ALO) [7], a schematic for which can be found in Figure 2.8. The original oscillator

worked for models of the vehicle that had no flaws. The model of the vehicle used in

this work needs learning applied in order to generate wing motions after damage to the

wing(s).

Figure 2.8: Adaptive Learning Oscillator Schematic.

The ALO learns new wing motion schedules, or waveforms, that better approximate

and restore the desired relationship between wing flap frequency and upward force. The

adaptive oscillator maintains an internal library of pre-computed wing motion basis func-

tions that are combined to produce specific wing motions. Machine learning is used in

flight to combine the basis functions to enable near-optimal control for specific vehicles
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damaged in service or suffering from manufacturing flaws in the wings. The oscillator

learns which basis functions should be combined based on real time samples of the error

between the desired (xdes) and actual (x) altitude. Both the basis function and the learn-

ing algorithm used in this thesis, cGA, were designed to minimize the amount of digital

components required for implementation and to limit the number of computational cycles

required to achieve learning. A reference implementation of the required hardware can be

found in previous work [8] [9].

2.2.5 Wing Motion Basis Functions

This thesis uses a modified version of cGA as the learning engine. The learning engine,

once every one hundred and fifty wing flaps, receives a measure of the desired and actual

vehicle altitude and computes the error towards learning to find apt indices to mix basis

functions to produce unique left and right wing motion functions, to minimize the error

in the altitude. Internally, each of the two wing motion functions is stored as an eight

element coded vector, where each of the eight positions correlates to the table index of one

of the pre-computed wing position tables. When the vehicle is in operation, a digital timer

advances through one of 256 time steps in each wing position table and adjusts each wings

position to the average of the eight basis functions associated with that wing.

The four wing motion core basis functions are given below:

A(x) = cos(x)

B(x) =
cos(x) + cos(3x)

2

C(x) =
2cos(x) + cos(3x)

3

D(x) =
4cos(x) + cos(3x)

5
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These four basis functions satisfy the following constraints:

1. Wings are fully forward (φ = 1) at the beginning and end of each wing beat

2. Each is a cosine function sometimes with faster frequency cosines superimposed over

them

3. They encapsulate non power-of-two divides and multiplies into pre-computed basis

table functions

The lookup table inside the oscillator stores 16 classes of pre-computed functions that

combine the upstrokes and downstrokes of the above equations. For hardware implemen-

tations, only shifters and adders would be required for the computational portions of the

circuit. Each of the 16 combinations of waveforms comes in 256 time shifted varieties

where the lowest valley is time shifted along the x-axis [9]. Note that this implies there are

16 ∗ 256 = 4096 distinct basis functions, which correlates to the range of each of the eight

indices for each wing. The 16 basis functions can be seen in Figure 2.9.
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Figure 2.9: The 16 Composite Up/Down Stroke Basis Functions.
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Experimental Setup and Results

This section will discuss the expirements designed to shed light on questions raised in the

introduction. It will describe a method of state space restriction unique to this genome and

expirements that will help uncover the potential value of those restrictions.

3.1 Describing the Genome

The genome representation for this problem is somewhat unusual and requires additional

explanation. The genome consists of 16 basis function indices, split into 8 indices per

wing. This number was originally chosen based on hardware consideration and ease of

implementation on comodity FPGAs. Each index is a 12 bit number, which represent the

binary value of one of 4096 possible basis functions defined by the basis table set as defined

in the previous chapter. The average of the eight functions specified by the indices specifies

a wing motion function used by the wing. Because the allele values are indices into a

table of basis functions that are averaged to produce a composite function, the location of

the alleles on the genome is irrelevant as an index in any one allele location has exactly

the same effect on the composed average wing motion function as it would in any other

location.

This effect imbues the genome for this problem with several interesting properties.

First, there is high chance of redundancy in the encoding. In this case, redunancy means
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Figure 3.1: A Genome Bit Position Representing Cosine Basis Function.

there is more than one genome that will decode to the same pheotype. The genome is actu-

ally a multi-set of fixed cardinality, and there are multiple encodings for most wing motion

functions. This multi-set genome contains the following properties: order of allele values

does not matter, and weight is based on redundancy (or multiplicity) in the set. Any permu-

tation of the genome averages to the same result if reordered, same as multiset {1, 2, 3} is

the same as {3, 1, 2}. Figure 3.2 shows an evolved genome where each wing has a multiset

of {AA : 3, AD : 2, CD : 1, DC : 1, DD : 1}, thus each wing would average to the

same wing motion funtion. Second, because of the encoding, forcing symmetries internal

to the genome have the effect of evolving on a smaller genome. For example, restricting

the genome so that positions 0 − 7 are identical to positions 8 − 15 would functionally be

equivalent to just evolving on a four element genome that had only positions 0 − 7. The

implications of the second point is the basis for reducing the search space.

Figure 3.2: Genome with Basis Functions at Each Bit Position.

3.2 ICGA Evaluation Function

The algorithm stores a global champion, which is initialized to a set of indices that encode

a pure cosine function. Over time, that global champion is updated to hold the genome
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that, to present time, produced the least altitude error - the absolute value of the difference

between the actual and desired height. This is an aggressive form of elitism. The algo-

rithm is encoded such that every island maintains its own local champion and probability

vector. A tournament is held between one randomly generated candidate and the islands

champion, then again between the randomly generated candidate and the global champion.

If the random candidate wins, it replaces the local champion, updates the local champion

score to reflect that of the random candidate, and updates the probability vector to favor

the random candidate. If the random candidate is not better than the local champion then

probability vector of the island is updated to better reflect the local champion. If the ran-

domly generated candidate is better than the global champion, then the global champion

genome is replaced with the random candidate and its score. Pseudo-code for the ICGA

implementation is shown in Psuedo-code 1.

Termination of the ICGA search will occur should any of the following be met:

1. The champion genome allows the vehicle to fly within 0.1 mm of the desired target

height

2. The population is completely converged (all probability vector bit positions are at

0.0% or 1.0%)

3. The maximum number of evaluations has been exceeded (in this case, 80,000)

The first termination condition reflects a successful solution the target goal has been

reached. The second condition reflects complete convergence on an unacceptable solution

and would eliminate the possibility of finding an acceptable solution. For this work, the

very aggressive hypermutation essentially excludes this outcome. The third condition acts

as a timeout should no good solution be found. At 80,000 evaluations, this correlates to

about 28 hours of vehicle flight time. Since this is likely an unreasonable amount of time

to expect the vehicle to fix itself, it is a reasonable cut off for further learning. In addition,

in this work is counting any solution that takes more than eight hours of flight time to be
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unacceptable. In practice, however, mission requirements might cause us to bring that limit

significantly lower.

Algorithm 1 Psuedocode for ICGA Champion Update Function
function ICGA UPDATE

while termination condition 6= 1 do
for all islands do

EVALUATE(global champion)
global champion score← EVALUATE(global champion)
local champion score← EVALUATE(local champion)
EVALUATE(global champion)
GENERATE RANDOM CANDIDATE()
random candidate score← EVALUATE(random candidate)
if random candidate score ≤ local champion score then

UPDATE PROBABILITY VECTOR(random candidate)
local champion← random candidate
local champion score← random candidate score

else
UPDATE PROBABILITY VECTOR(local champion)

end if
if random candidate score ≤ global champion score then

global champion← random candidate
global champion score← random candidate score

end if
if immigration flag = 1 then

UPDATE PROBABILITY VECTOR(global champion)
end if
if hypermutation flag = 1 then

RANDOMIZE LOCAL CHAMPION()
RESET PROBABILITY VECTOR() . Bit positions to 0.5

end if
end for

end while
end function

3.3 Search Space Reduction

As mentioned earlier, each genome is encoded to consist of 16 basis functions, which is

divided into 8 basis functions for the left and right wing. The eight basis functions per wing
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are averaged to create a composite function that correlates to one of 409616 combinations

of cosine functions. Because of the averaging operator on 8 basis functions (per wing),

there exists a possibility that any one solution can have multiple correlating average sets,

meaning that multiple sets can have a variation of basis functions, but they can average to

the same solution. This encoding, where solutions are multi-sets and not directly positional,

makes it reasonable to use multi-fold symmetry constraint to reduce the number of multi-

sets that average to the same solution when attempting to evolve wing patterns. Reducing

the effect of cardinality in the multi-sets reduces the search space, thus aiding it to learn a

good solution faster and improve yield.

In this vein, three different types of multi-fold symmetric constraints have been im-

plemented and experimented in the current work. These three types are:

• Zero-fold symmetric constraint (ZSC).

• One-fold symmetric constraint (OSC).

• Two-fold symmetric constraint (TSC).

• Four-fold symmetric constraint (FSC).

As shown in Figure 3.3(b), a one-fold symmetric constraint assumes symmetry across

the wings, thus duplicating the eight indices for one wing over the other. This first sym-

metry is actually not only a search space restriction in the sense already discussed - it is

also a restriction on phenotypes that requires two potentially physically different wings to

produce a sum of forces that is both correct and generated by symmetrical wing motions.

The two-fold symmetric constraint inherits the one-fold symmetric constraint and as-

sumes one-fold symmetry within each wings individual genome segment at the 4th index,

thus duplicating 4 times across the wings as shown Figure 3.3(c). As shown in Figure

3.3(d), a four-fold symmetric constraint inherits the two-fold symmetric constraint and as-
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(a) Zero-Fold

(b) One-Fold

(c) Two-Fold

(d) Four-Fold

Figure 3.3: Symmetric Constraints to Reduce Search Space
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sumes one-fold symmetry at 2nd index of the wing, thus duplicating 8 times across the

wings.

Without the symmetric contraints, each of the 16 positions can pick one of 4096 basis

functions, or 409616 possibilities. On forcing symmetric motion across the wings (OSC),

the possibilities are reduced to 40968, which is the same as only choosing 8 basis functions

to average. TSC chooses 4 basis functions to average, with a total of 40964 possibilities.

The most restrictive symmetry, FSC, chooses only two basis functions to average, or 40962

possibilities. In effect, the dimensionality of the search space is reduced with each type of

constraint.

3.4 Simulated Vehicle Operating Conditions

To evaluate the effectiveness of the learning module in conjunction with the search space

reduction techniques mentioned above, four vehicle operating conditions are simulated:

1. Wings with no damage: Experiments in this set employ unbroken wings. The pur-

pose of these experiments is to see how long it takes for the learning system to acquire

working wing motion functions when they are started randomly.

2. 75% lift one wing: Experiments in this set have ONE broken wing with up to a 25%

lift force deficit uniformly selected from the range [0.0% .. 25.0%]. This means each

trial has one unbroken wing and one wing with up to 25% loss is lift force capability.

3. 87.5% lift both wings: Experiments in this set have TWO broken wings with up to

a 12.5% lift force deficit in EACH of the two wings. This means each trial has two

broken wings with individual lift faults of up to 12.5% each. The can have up to the

same overall deficit as the 75% one wing lift case (25%), but distributed over two

wings.
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4. 80% lift both wings: Experiments in this set have TWO broken wings with up to 20%

lift fault per wings. This vehicle could have up to a 40% lift fault over two wings.

At 60% lift capability, a vehicle would require very fast wing flapping rate and/or

aggressive wing gaits just to remain hovering. This represents the most difficult type

of fault considered in this thesis.

This thesis will introduce experiments to demonstrate the effectiveness of search space

reductions in each of the four above categories.

3.5 Experimental Results

Over 250 experiments (actual N listed in Tables 3.1 - 3.4) were run for each type of vehicle

operating condition and with the three proposed multi-fold symmetric constraints. As men-

tioned earlier, an acceptable solution was defined as one that maintains hover of the vehicle

within 0.1 mm of the target height and is found in fewer than 8 hours of simulated flight

time. While the algorithm could have terminated early due to convergence, it never did,

likely due to aggressive hypermutation. All experiments terminated either after reaching

the evaluation limit or once they found an acceptable solution. Further, all the experiments

were run with a 12.5% immigration probability, a 12.5% hypermutation probability, an

evaluation limit of 80,000, and 16 islands in ICGA. This work will address possible ex-

ploitation of the symmetric (multi-set) features of the encoding and hold all these other

values to settings that have been empirically observed to produce good yield, if not stel-

lar learning times. The set of experiments with vehicle operating with no wing damages

and without any multi-fold symmetric constraint is chosen as the baseline experiments to

compare the effect of multi-fold symmetric constraint based search space reduction. Fur-

ther the two performance metrics employed to measure the improvement of the proposed

search space reduction techniques are:

1. Yield: This is defined as the number of the total conducted evaluation runs that pro-

30



vided an acceptable solution (with criteria mentioned in the evaluation function).

2. Learning Time: This is defined as the time taken by each evaluation run to arrive at

the acceptable solution (with criteria mentioned in the evaluation function).

Thus, the above two performance metrics are calculated for all the experiments con-

ducted for each type of vehicle operating conditions with three proposed multi-fold sym-

metric constraints and tabulated in Tables 3.1 - 3.4. The columns in the tables represent

the constraint performed, the 25th percentile of learning times, the 50th percentile of learn-

ing times, the 75th percentile of learning times, the minimum learning time, the maximum

learning time, and the number of successful experiments run, respectively. All table entries

except for N are in minutes of flight time. The N entries are the number of trials in each ex-

periment. Yield of the expirements, or how long each experiment took to complete for each

scenario, can be observed in Histograms 4.1 - 4.16. The list below decribes the acronyms

in the tables.

• N - Number of trials in the set

• ZSC - Baseline scenario (no symmetry)

• OSC - One-fold symmetric constraint

• TSC - Two-fold symmetric constraint

• FSC - Four-fold symmetric constraint

• Q1: First quartile (25th percentile) of flight time to learn solution

• Q2: Second Quartile (50th percentile / median) of flight time to learn solution

• Q3: Third Quartile (75th percentile) of flight time to learn solution

• Min: minimum flight time to learn solution
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• Max: maximum flight time to learn solution

• Mean: mean flight time to learn solution.

Table 3.1 lists metrics from the experiments where the vehicle is operating without any

damages to wings. Table 3.2 lists metrics from the experiments where the vehicle is op-

erating with randomized damage to one wing, limiting it to generating 75% of maximum

expected lift. Table 3.3 lists metrics from the experiments where the vehicle is operating

with randomized damage to one wing, limiting it to generating 75% of maximum expected

net lift. Table 3.4 lists metrics from the experiments where the vehicle is operating with ran-

domized asymmetric damage to both wings, limiting them to generating 60% of maximum

expected net lift.
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Q1 Q2 Q3 Min Max Mean N
ZSC 49.16 103.32 207.73 3.29 538.67 141.99 956
OSC 44.22 96.89 196.45 1.66 523.87 135.97 961
TSC 31.41 68.05 144.08 1.65 510.34 102.03 989
FSC 33.84 77.73 163.92 1.68 536.70 114.19 988

Table 3.1: Experimental Results of Wings with No Damage

Q1 Q2 Q3 Min Max Mean N
ZSC 75.25 168.96 312.92 3.13 538.11 202.72 709
OSC 58.83 131.44 257.99 1.63 538.10 175.41 836
TSC 38.00 95.18 184.12 1.62 521.64 129.12 957
FSC 32.62 80.76 169.52 1.65 539.17 119.97 983

Table 3.2: Experimental results of one wing up to 25% damaged: can produce 75% net lift
force

Q1 Q2 Q3 Min Max Mean N
ZSC 79.34 169.35 313.97 1.63 538.75 206.04 713
OSC 64.98 151.53 290.20 1.62 537.93 186.77 845
TSC 34.44 81.98 168.74 1.63 694.15 120.55 978
FSC 30.27 76.90 158.45 1.65 528.09 110.75 989

Table 3.3: Experimental results of each wing up to 12.5% damaged: can produce 75% net
lift force

Q1 Q2 Q3 Min Max Mean N
ZCS 109.46 205.39 342.00 3.27 538.99 230.92 535
OSC 69.10 161.79 285.78 1.59 536.82 191.25 719
TSC 45.76 109.02 213.48 1.65 539.25 144.54 943
FSC 38.29 83.78 167.35 1.61 532.73 120.69 975

Table 3.4: Experimental results of each wings up to 20% damaged: can produce 60% net
lift force
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Conclusion

In this thesis, the challenges of in-flight learning for the FW-MAV oscillator control prob-

lem have been outlined. Further, a multi-fold symmetric constraint based search space

reduction technique has been proposed and implemented for the adaptive ICGA based

learning module in a FW-MAV flight controller.

In the expiremental results Tables 3.1 - 3.4, Kruskal-Wallis ANOVA tests establish

that the rows do not represent distributions with the same mean. Pairwise Mann-Whitney

tests made between subsequent rows in each table allow rejection of the null hypothesis (the

rows have the same means) with the levels of significance listed in Tables 4.1 - 4.4. Green

cells represent that there is a significant difference in the means, and the null hypothesis

can be rejected. Red cells represent that there is not a significant difference in the means,

and the null hypothesis can not be rejected. Yellow cells represent that there is a weakly

significant difference in the means, and the null hypothesis can be rejected.

There is a signicant difference in the means between not applying symmetric con-

traints (ZSC) and applying four-fold symmetric contraint(FSC). This implies that having

the vehicle pick two basis functions provides working solutions for pendulum stable ver-

tical flight. Due to this observation, it can be assumed that the solution space has large

quantities of duplicate solutions. Anecdotally, it was observed that the hypermutation set-

tings used by the algorithm are necessary to explore the search space efficiently.
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ZSC OSC TSC FSC
ZSC 1.00 0.36751 0.00 5.6e-8
OSC 0.36751 1.00 4.3e-12 6.5e-6
TSC 0.00 4.3e-12 1.00 0.0094
FSC 5.6e-8 6.5e-6 0.0094 1.00

Table 4.1: Mann-Whitney Mean Comparison Tests for No Wing Damage

ZSC OSC TSC FSC
ZSC 1.00 0.00018 0.00 0.00
OSC 0.00018 1.00 5.0e-12 0.00
TSC 0.00 5.0e-12 1.00 0.03295
FSC 0.00 0.00 0.03295 1.00

Table 4.2: Mann-Whitney Mean Comparison Tests for One Wing Damaged up to 25%

ZSC OSC TSC FSC
ZSC 1.00 0.007 0.00 0.00
OSC 0.007 1.00 0.00 0.00
TSC 0.00 0.00 1.00 0.08656
FSC 0.00 0.00 0.08656 1.00

Table 4.3: Mann-Whitney Mean Comparison Tests for Boths Wings Damaged up to 12.5%

ZSC OSC TSC FSC
ZSC 1.00 7.03e-7 0.00 0.00
OSC 7.03e-7 1.00 2.44e-12 0.00
TSC 0.00 2.44e-12 1.00 0.00004
FSC 0.00 0.00 0.00004 1.00

Table 4.4: Mann-Whitney Mean Comparison Tests for Boths Wings Damaged up to 20%
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Experimental evidence seems to indicate with statistical significance desirable effects

on both solution yield and learning time. Completed trials versus time (in minutes) can be

observed in Figures 4.1 - 4.16. These effects are presumably due to reductions in the vol-

ume of the search space and there existing workable solutions within the four-fold symmet-

ric constraint (FSC) criteria. It was anecdotally observed that running search experiments

with only one basis function (choosing from exactly one of the 4096 core basis functions)

leads to terrible, near zero, yields. Although the nature of how basis functions combine to

produce required frequency to lift force is not yet fully studied, at least two basis functions

are required for consistent success.

It is relatively certain that combinations of two basis functions are sufficient to balance

lift faults. It is not clear that merely two would be able to correct other motion faults like

roll control deficits. Previous work learned oscillation functions that simultaneously cor-

rect for altitude and roll faults. Naturally these restriction experiments need to be updated

for those and expanded situations. An interesting possibility, however, might be to impose

a symmetry condition to more quickly regain appropriate control of altitude (presumably

more important than precise control of roll) and then release the symmetry to allow addi-

tional degrees of freedom to better correct additional vehicle fault conditions.

This idea of space restriction via symmetry is independent of the specific EA used.

Improvements to ICGA via other means or constructing an EA more suited to this specific

problem, should find that this form of symmetry restriction remains compatible and contin-

ues to provide the benefit of producing an error correcting oscillator configuration rapidly,

online, while the vehicle is in normal service.
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Figure 4.1: Number of Trials vs. Time to Completion without Wing Symmetry - No Dam-
age

Figure 4.2: Number of Trials vs. Time to Completion with One-Fold Symmetry - No
Damage
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Figure 4.3: Number of Trials vs. Time to Completion with Two-Fold Wing Symmetry - No
Damage

Figure 4.4: Number of Trials vs. Time to Completion with Four-Fold Wing Symmetry -
No Damage
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Figure 4.5: Number of Trials vs. Time to Completion without Wing Symmetry - Up to
25% Damage to One Wing

Figure 4.6: Number of Trials vs. Time to Completion with One-Fold Wing Symmetry - Up
to 25% Damage to One Wing
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Figure 4.7: Number of Trials vs. Time to Completion with Two-Fold Wing Symmetry - Up
to 25% Damage to One Wing

Figure 4.8: Number of Trials vs. Time to Completion with Four-Fold Wing Symmetry -
Up to 25% Damage to One Wing
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Figure 4.9: Number of Trials vs. Time to Completion without Wing Symmetry - Up to
12.5% Damage to Both Wings

Figure 4.10: Number of Trials vs. Time to Completion with One-Fold Wing Symmetry -
Up to 12.5% Damage to Both Wings
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Figure 4.11: Number of Trials vs. Time to Completion with Two-Fold Wing Symmetry -
Up to 12.5% Damage to Both Wings

Figure 4.12: Number of Trials vs. Time to Completion with Four-Fold Wing Symmetry -
Up to 12.5% Damage to Both Wings
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Figure 4.13: Number of Trials vs. Time to Completion without Wing Symmetry - Up to
20% Damage to Both Wings

Figure 4.14: Number of Trials vs. Time to Completion with One-Fold Wing Symmetry -
Up to 20% Damage to Both Wings
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Figure 4.15: Number of Trials vs. Time to Completion with Two-Fold Wing Symmetry -
Up to 20% Damage to Both Wings

Figure 4.16: Number of Trials vs. Time to Completion with Four-Fold Wing Symmetry -
Up to 20% Damage to Both Wings
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