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ABSTRACT 

Previous work has gone towards using moiré patterns formed with lenticular lenses to perform 

pose estimation for short ranges. This thesis investigates existing theory of moiré patterns, most 

notably the Fourier and first harmonic approximation models. This theory has been drawn upon 

to create a generalised model of planar moiré patterns in 3D. For example, those generated 

from two patterns with fine grids separated in space. This improves on previous research that 

does not investigate this specific kind of 3D pattern as closely. This thesis also developed a 

framework that simulates moiré patterns using this model. Along with this, the proposed 

framework can also solve pose information about a moiré pattern given an image. Experiments 

varying camera lateral translation were accurate for the close-range testing, with about 10 mm 

accuracy from a distance of 160 mm. Results from varying camera distance where 0–130 mm 

accuracy varied from ranges 100–2000 mm. A y-tilt estimation experiment was performed 

using the solver from this framework. At 3.116 m it was able to estimate an angle with an error 

of 5° for angles as wide as 30° and was able to estimate angles with an error of 0.25° for angles 

less than 5°. This is better than similar existing methods such as the Metria Moiré Phase 

Tracking marker’s maximum absolute errors of up to 2.8 mm and 2.1°.  
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1. INTRODUCTION 

The goal of this thesis is to attempt to utilize the phenomena that exist in moiré patterns and 

determine their aptitude for use in long-range positioning. To do so, theory is developed to 

model basic moiré patterns and some tests are carried out to determine some accuracies of this 

model. As well as get an idea of the improved accuracy the use of moiré patterns can bring. 

The specific questions this thesis was attempting to answer were, given a working range and 

required precision, what is the best choice of parameters of a moiré pattern; and, with patterns 

so sensitive to precision, can this be made accessible for an average user. That is, can the 

sensitivity be used to make a simple and easy to use, yet still accurate, marker. In pursuit of 

these questions, this thesis primarily focusses on developing and testing a model of 3D moiré 

patterns and using them to estimate pose information and determine the accuracy of it. 

Moiré pattern’s extra sensitivity to motion means that it has the potential to provide exceptional 

angle accuracy even for small almost planar angles. There is also potential for allowing 

improved distance estimation as well due to unique behaviours with certain types of patterns. 

In this thesis, specific moiré pattern setups will be investigated to determine the kind of 

potentially achievable accuracies. These case studies aid to attempt to validate the model and 

provide a concept for an approach for using these patterns for positioning. However, the theory 

developed can model any moiré pattern that consists of multiple planar patterns whose patterns 

are representable as functions. The theory developed and experiments ran will also aid in 

providing some answers to the proposed questions. 

This thesis also develops a MATLAB framework1 for simulating these patterns and solving 

their positions in space given images of them. The MATLAB model is based on the analytic 

model developed in the paper. Due to the generalised model this MATLAB framework uses, it 

can simulate any type of moiré pattern generated from any number of planar grating patterns 

in any configuration. It provides the tools to create any such pattern of this kind and 

theoretically to solve any set of pose information, provided it is set up in a sufficiently 

constrained way. 

This thesis looks specifically at moiré patterns generated by two planar grating patterns 

separated at a distance, such as in Figure 2. This will be the case study for applying and testing 

the developed model and MATLAB framework and for calculating the accuracy of estimates. 

Hence, some special cases of the general model are investigated in doing so. 

 

 

 

1GitLab repository: https://gitlab.com/bankssa/moire-simulations 

Contact e-mail provided for access. 

https://gitlab.com/bankssa/moire-simulations
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1.1. Moiré Patterns 

Moiré patterns are the phenomena that occur as a result of interference between two similar 

periodic patterns. This interference causes a more visually protenant tertiary periodic pattern 

that is not present in either of the two generating patterns. Figure 1 shows an example of a 

moiré pattern where overlaying two similar high frequency gratings causes a much lower 

frequency pattern to emerge. This new pattern becomes very sensitive to changes in either of 

the two superimposed patterns. Small shifts to the original patterns can cause large shifts in the 

interference pattern or even shifts in different directions or in other unexpected ways. As they 

shift, these emerging patterns can have all sorts of behaviours, such as the illusions of 

movement or depth [1]. If these patterns are set at a distance apart this interference pattern 

becomes sensitive to changes in viewing angle and viewing position, appearing to move as the 

viewpoint moves [2]. The main contribution of this report is in developing the Fourier and first 

harmonic approximation models of moiré patterns based on existing theory [3-9] and to apply  

to generating moiré patterns from two patterns set in 3D space at a distance from one another. 

The goal is to develop this model to estimate the position of a camera in space from a single 

image and investigate the accuracy of this model. 

 

Figure 1: Moiré pattern generated from two colinear gratings with slightly different 

frequencies. 

Specifically, this thesis’s case studies use the investigated properties of moiré patterns to 

estimate a camera’s x, y, or z position in space (in this thesis, the x-y position is referred to as 

lateral translation and the z position as distance) or to estimate the angle the moiré pattern is at 

about its y-axis, relative to the camera (called the pattern’s y-tilt or tilt). These goals are 

summarised by Figure 2. This work focusses on the estimation of these parameters in individual 

test cases. The case studies of this thesis involve a lateral translation estimation case (estimating 

ΔX shift only), a distance estimation case (estimating d1 distance), and a tilt estimation case 
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(estimating y-tilt angle). But, theoretically, the support and tools of this thesis lend themselves 

to estimation methods that could potentially estimate all of these together; however, this would 

require creating new moiré pattern(s) with careful constraint consideration. The findings of 

these investigation are used to draw conclusions about how adept the use of moiré patterns is 

alone for long-range positioning, if these tests show the model is capable of determining the 

best moiré pattern parameters for a working range, and if the method is accessible to a normal 

user. 

 

Figure 2: Cases study setup use in investigating the quations of this thesis. 

The main advantage this method of positioning has over other marker-based photogrammetric 

methods, such as using fiducial markers, is that it does not require precise camera calibration. 

However, precisely setting up the pattern itself can be necessary depending on the accuracy 

desired. The general sensitivity of moiré patterns, however, make it both easier to construct 

them with reasonable accuracy by hand and allow there to still be good accuracy even if it is 

constructed imperfectly. The nature of moiré patterns, however, can lead to small imprecisions 

having quite varied effects on how it affects precision. A pattern may still be accurate, say, 

head-on, but accuracy may “drift” as the pattern reaches its extremes (say, an extremely steep 

tilt angle). There is also a great future potential that moiré-based markers could be made more 

accurate than traditional photogrammetric methods due to their unique sensitivity. If this could 

be achieved, it could potentially greatly surpass existing methods while still maintaining 

relative simplicity and usability for a normal user. 
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1.2. Contributions 

• Unique look specifically at moiré patterns created from multiple planar grating patterns 

in 3D 

• A full model of 3D planar moiré patterns 

• Verified this model through experimentation 

• Created a MATLAB framework available in a GitLab repository 

o Implements the developed moiré theory 

o Provides visualisation tools 

o Developed a solver for pose-finding moiré patterns from camera images 

o Includes a repository of labelled ground-truth images of these moiré patterns 

• Investigated how to design these types of patterns for a specific application 

• Investigated the accuracies using these types of moiré patterns 

• Published a paper on this topic at an IVCNZ conference 

2. BACKGROUND 

The word “moiré” comes from the French word “moiré”, meaning “watered”. The name 

“moiré” pattern comes from being named after a French textile of the same name [10]. This 

fabric was made of two pieces of silk with fine patterns fixed together, one over the another, 

causing an intricate wavy “watered” interference pattern. Hence giving rise to the name of the 

moiré phenomenon where two similar patterns interfere to cause a third emerging tertiary 

pattern. Moiré patterns crop up in a vast number of varying places and have lots of very 

interesting and counter-intuitive properties [11]. Sometimes this moiré effect is sought after, 

perhaps for visual purposes. For example, [12] investigates the effects of moiré patterns caused 

by superimposing a lenticular plate in front of an LCD screen such that different patterns are 

seen from different viewing angles. The effect of separated generating patterns is also 

investigated. Dubbed “2.5-D” displays, the use cases discussed are for billboards or 

advertisements to make a more interesting display that changes with viewing angle and 

distance. Other work has also gone into investigating moiré patterns to intentionally avoid them 

occurring [13], or to utilise them for artistic or visual reasons. Like in [14], where the intricate 

moiré images that can form when transparent sheets with regular patterns are laid on top of one 

another are utilised to make interesting patterns that move when one of the sheets are moved. 

Depending on the patterns, this can cause all sorts of interesting interference patterns, being 

incredibly sensitive to shifts in either sheet. Weird results such as forming microstructures, 

moiré pattern rotation, scaling, and translation can appear. [14] uses these interesting 

behaviours and sensitivities to shifts in the sheets to specifically design moiré patterns which 

show specific images or text that reveal themselves or appear to move or animate as the top 

sheet is shifted, such as those shown by Figure 3. 
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Figure 3: Example of text resulting from the microstructures of moiré patterns [14]. As the 

top black sheet is shifted, the word "UNO" and the red bands appear to shift up and down. 

These unique and interesting properties of moiré patterns have made them useful in a wide 

variety of applications, such as displacement measurement, refractive index gradient 

measurement, interferometry, and others [15-19]. For example, moiré patterns have been used 

in past for use in surface imaging and contouring [20, 21]. One practical example of moiré 

patterns being uses this way is to look at the geometry of a person’s back to be able to find 

back deformities such as scoliosis [22, 23]. This requires capturing how a grid projected onto 

a surface interferes with another grid pattern (typically itself) in order to determine the contour 

of the surface, and hence, in this case, evaluate the spinal deformities of a patient. Figure 4 

shows an example of a moiré pattern being used to image a patient’s back by the way the 

interference creates an elevation height-map–like pattern on their back. This is achieved by 

projecting a grating pattern onto a patient’s back and using the natural interference of the 

projection and the grating casting the projection to determine height information about the 

patient’s back. This involves modelling how two periodic patterns interfere at a distance, where 

one pattern is deformed across a surface. This thesis focusses on a similar case of moiré pattern, 

except where the second grating, the one cast on the patient, in this case, is simply another flat 

grating pattern and can be different to the first in frequency. And with a different goal of 

positioning in mind. 
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Figure 4: Moiré patterns being used to image spinal deformities [22]. 

Another example where moiré patterns can form with weird behaviours is by positioning a 

lenticular lens above a grating pattern such as those explored in [24]. Figure 5 shows such an 

interference pattern caused by a lenticular lens placed at a separation from a grating pattern. 

Rotating, shifting, and raising the lenticular lens causes different resulting patterns to emerge 

as a result. 

 

Figure 5: Interference moiré patterns caused by positioning a lenticular lens over a grating 

pattern with different separations [24]. 

This behaviour with lenticular lenses is one that has been primarily utilised in several other 

mark-based positioning solutions that augment themselves with traditional fiducial marker–

based positioning. Moiré patterns in markers like this also have lots of potential for robotics 
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applications, in the many applications that are typically achieved with fiducial markers [25]. 

Marker-Based tracking is important in many other areas as well, such as for machine 

positioning [25] and calibration [26], augmented reality (AR)[27], virtual reality, and grade 

control. Many solutions for positioning without the use of moiré patterns already exist. 

Including non-passive approaches, and simple passive marker detection such as fiducial 

markers. These non-passive approaches have the issue that they require special equipment or 

special cameras to get high accuracy. For this reason, in many cases, simple marker-based 

solutions, such as the use of fiducial markers, are often used instead. Many kinds of fiducial 

markers exist, including ARToolKit, ARToolKitPlus, ARTag, and AprilTag[28-31]. Decently 

high accuracy can be achieved with fiducial markers [32], but their accuracy is still limited and 

breaks down specifically for distance estimates and small-angle estimation when the marker is 

almost planar to the camera and can also require great camera calibration for high accuracies. 

Effort has gone toward trying to solve the pose ambiguities that arise in these situations [33]. 

Fiducial markers and some other approaches also have the downside that they don’t work well 

at very long distances greater than about 5 metres [34]. Previous work has already gone toward 

incorporating moiré patterns into existing fiducial marker–based solutions for positions, such 

as the use of more accurate fiducial markers in AR [35]. Such an example is the LentiMark 

[36] marker shown in Figure 6, integrating moiré patterns created via the use of lenticular lenses 

with the existing fiducial marker ARToolKitPlus [29]. 

 

Figure 6: LentiMark pattern incorporating a fiducial marker (shown by arrow) and 

lenticular-based moiré patterns [36]. 

These markers work by using the existing fiducial marker to both detect and locate the marker 

and provide an approximate pose for the marker. The lenticular-based moiré patterns on the 

edges are then used to further refine the pose estimation. It does this by detecting where the 

two distinct fringes are positioned relative to their pattern on two different axes. This helps 
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refine pose information for both x and y rotation of the pattern, the type that is most difficult to 

get accurately using a fiducial marker. 

Most of these applications would benefit from or have applications in being able to perform 

more accurately or in long-range positioning. These existing marker-based solutions are not 

suited for these longer ranges, however. Other solutions for positioning exist such as non-

passive sensor methods, which are often used when these high accuracies at long ranges are 

desired. However, fiducial markers don’t work at very long ranges, and decrease significantly 

in accuracy for distance and angles when viewed head-on. This is due to the reduced sensitivity 

of changes in an image when a fiducial marker moves or rotates when viewed head-on. Work 

has gone into attempting to design fiducial markers that work at longer distances, but this is 

mostly for indoor purposes. Even so, these working longer ranges are only from 1250 mm to 

5000 mm and are required to be large (at 20 cm × 20 cm). These are also subject to poor 

detection under motion-blur [34]. 

Moiré pattern–based markers have the potential to be much less affected by motion-blur as the 

pattern of interest in a moiré pattern is of low frequency. Motion-Blur theoretically may even 

improve the detection of these frequencies. This lower-frequency pattern detection also makes 

them easier to be recognized at longer ranges, as well as the added longer-range accuracies 

they can provide due to their sensitivity. 

2.1. Relavant Papers 

There are existing fiducial markers that incorporate moiré effects to improve pose estimation 

of the marker. Other moiré tracking techniques have an advantage on other markers [37], 

getting higher accuracy. This primarily significantly improves rotation estimation; however, 

distance estimation is not as accurate. These types of markers can be achieved in a few ways. 

Either by small scale separation of periodic patterns or using lenticular lenses. Lenticular lenses 

magnify different parts of a printed image when viewed from different angles. The moiré 

interference is achieved by having the frequency of the pits of the lenticular lens slightly offset 

from the printed image of a grating. This can induce moiré patterns, adopting the same 

sensitivity to viewing angle [36]. One such marker incorporating this effect is Metria’s Moiré 

Phase Tracking Markers [38]. These can be purchased as a part of a kit provided by Metria 

which already comes with the pose estimating software. They achieve this by looking at the 

phase difference of several moiré patterns on a target that all change differently to position and 

rotation. However, these markers have their limitations. Most notably, these markers work 

optimally at a limited distance with an accuracy of 1.0 mm at distances less than 2.5 meters. 

Theories of moiré pattern interference, in general, have been investigated. Many methods of 

capturing the moiré phenomena exist, including the indicial, Fourier, first harmonic 

approximation, and parametric models, as well as others [3-9]. [3] itself is a very useful 

resource going over general theories and considerations of moiré phenomena. It has an 

emphasis on the benefits of the Fourier model as well as considerations and evaluations for 



15 

 

other methods. Some of these models are considered and evaluated here as well. The basis for 

the theory developed in this thesis is determined to be the first harmonic approximation model, 

which is a simplification of the Fourier model. Although there are moiré phenomena that are 

not entirely explainable by the Fourier model [39], these are fringe cases and it is more than 

suitable for types of moiré patterns explored here. 

2.2. Moiré Phase Extraction 

There was also been other similar work instead toward extracting phase information of moiré 

targets [40]. This work was instead looking at circular moiré patterns formed via concentric 

ring structures on a film, called a Fresnel Zone plate. An example of the Fresnel Zone plate is 

shown in Figure 7.  

 

Figure 7: An example of a Fresnel Zone plate [40]. 

This grating film was placed in front of a reflector and the interference moiré pattern that 

emerged was investigated and mathematically modelled by use of the Windowed Fourier 

transform and Herbert transform. A rough schematic of this type of moiré target is shown in 

Figure 8. A marker like this has the capacity for high accuracy for finer straight-on rotations 

but fails for particularly wide angles. It also does not perform well at long ranges due to the 

small intricate design. 
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Figure 8: Schematic diagram of the moiré targets investigated by [40]. 

This model was used to model and extract phase information about the moiré pattern from 

photographs. A similar overall method has been carried out here, where a specific type of moiré 

pattern setup has been investigated and modelled. However, in the case of this paper, the goal 

is to directly estimate and model pose information of the moiré pattern from the camera images. 

Most specifically the relative angle of the pattern to the camera (the tilt), however a concept 

for distance estimation is also investigated. A shortcoming with this research is that although 

fundamental moiré theory is discussed and used, the developed model is limited to the 

overlapping concentric ring structure–type moiré patterns. This thesis aims to model arbitrary 

3D planar moiré patterns.  

2.3. Indicial Model 

Varying theory exists to model basic moiré interference, each with different strength and 

weaknesses. One is the indicial model, described in [9], which discretises the periodic patterns 

as a series of indexed lines. Pairs of patterns can then have their interference represented in 

terms of these indices, creating a new indicial model that represents the interference. Different 

modes of interference can be calculated, however, there is no way to determine the prominent 

mode of interference (which is perceived). The mode of a two-pattern moiré is written as a (k1, 

k2)-moiré, where k1 and k2 are integers. The indicial model then relates the indices of the two 

patterns (n and m) to the indices of the moiré pattern (p) as shown in Equation 1, where n, m, 

and p are all integers. 

 𝑘1𝑛 + 𝑘2𝑚 = 𝑝 1 

If the two patterns are both linear patterns (made strictly of lines separated periodically) at an 

angle, then they can be represented as indexed lines equations on an xy-plane.  This is shown 

by Equation 2 and Equation 3, where pattern one is index by n and has a period of T1, and 
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pattern two is index by m, has a period of T2, and is rotated from pattern one by θ counter-

clockwise. 

 𝑥 = 𝑛𝑇1 2 

 𝑥 𝑐𝑜𝑠(𝜃) + 𝑦 𝑠𝑖𝑛(𝜃) = 𝑚𝑇2 3 

From this, the line index form of the resulting moiré pattern caused by the interference of these 

two generating patterns for the (1, −1)-moiré can be determined, shown in Equation 4. 

 𝑥

𝑇1
−

(𝑥 𝑐𝑜𝑠(𝜃) + 𝑦 𝑠𝑖𝑛(𝜃))

𝑇2
= 𝑝 4 

Then each index in p represents a band in the (1, −1)-moiré pattern formed from the interference 

between the two generating patterns. This theory can also be expanded to incorporate arbitrary 

numbers of generating patterns as well as represent other nonlinear types of patterns 

representable by functions. Figure 9 shows visually the representation of the indicial model, 

showing a (1, −1)- and (1, −2)-moiré interference patterns, as well as how this model would 

work for nonlinear generating patterns. 

 

Figure 9: Depiction of the indicial moiré model. n and m are the line indices of the 

generating pattern, p is the line index for a (1, −1)-moiré, and q is the line index for a (1, 

−2)-moirė. a) shows the model for the interference of linear patterns; b) shows the model for 

the interference of curvilinear patterns. Figure from [9]. 

The indicial model is a more computationally efficient model capable of representing 

interference of linear and some nonlinear patterns; however, it is limited to representing 

patterns as a series of lines not considering line thickness or pattern intensity. This model is 

also entirely encapsulated in the Fourier model, providing a strict subset of the analytical power 

that the Fourier model does. The indicial model also does not give a way to know which mode 

of the moiré pattern is the most visually prominent. The indicial model does still serve as a 
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useful basic intro to moiré pattern behaviours and theory expanded on by the Fourier model, 

such as the mode of a moiré interference pattern. 

2.4. Fourier Model 

The Fourier model is a more comprehensive model that captures more of the behaviour of 

moiré interference. However, it is more complicated and computationally expensive than other 

models. But it does give a fuller picture. The Fourier model works by considering the spectral 

decomposition of the generating patterns and modelling how they interact and looking at the 

resulting spectral pattern for signs of moiré interference. 

The act of overlaying patterns can be modelled either as multiplicative or as additive. It may 

appear natural to assume that overlaying patterns interferer additively, or as an average, 

allowing an amount of light through equal to the average of the light that would pass through 

the original patterns. This is a reasonable enough assumption to get meaningful result that can 

be used to analyse the patterns carrying out analysis purely in the image domain. However, it 

is more natural to conceptualise the interference as multiplicative, as is the primary focus of [3, 

41]. With this model, a value of zero indicates that no light can pass through, and a value of 

one indicates that all the light can pass through. In [3], this is called the transmittance of the 

pattern. Hence if all overlaying parts of a pattern allow light to pass, their product also allows 

light to pass. And if any one of the overlaying parts of a pattern does not allow light to pass 

through, their product will not allow light to pass through. This gives the desired interference 

behaviour. Analysing the Fourier spectral decompositions of generating patterns alongside 

their moiré interference pattern, the frequencies of the moiré pattern become clear. An example 

of this is shown in Figure 10. Note that the Fourier model interprets (k1, k2)-moiré patterns 

modes as having a frequency of k1f1 + k2f2, where f1 and f2 are the frequency vectors of the 

generating patterns. A frequency vector as a magnitude equal to the frequency of a grating and 

a direction pointing in the direction the grating is orientated (perpendicular to its grating lines). 

A (1, −1)-moiré pattern is shown to arise in the example of Figure 10. 
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Figure 10: Two sinusoidal patterns a) and b) and their overlaid pattern c). d), e), and f) are 

the respective Fourier decompositions showing the frequency locations in 2D; and g), h), and 

i) are the respective Fourier decompositions showing the impulse amplitudes. Figure from 

[3]. 

With an additive model, no other frequencies show in a Fourier analysis outside of the original 

frequencies, and the beat frequency in the image must be investigated directly to draw 

meaningful conclusions. However, this analysis can still be taken to draw some of the same 

conclusions but shows a less full picture. For this reason, focus will be on the multiplicative 

model, as was done in [3]. Notice that figure f) of Figure 10 is the convolution of d) and e) of 

Figure 10. This reflects the fact that multiplication in the image domain corresponds to 

convolution in the Fourier domain. This is the key property that causes the moiré frequencies 

to appear in the Fourier transform using the multiplicative model. This method also provides 

an easy method of determining what modes of moiré pattern are likely to be visible. In general, 

the lower the frequency of a moiré pattern, the more prominent it is to the human eye. [3] drew 

a circle around the origin and call it the “visibility circle,” indicating the range of lower 

frequencies at which a moiré pattern is seen. 

2.5. First harmonic approximation model 

The first harmonic approximation model involves taking only the primary frequency 

component of the generating patterns and the moiré pattern. This first-order frequency 

approximation of a 2D grating represented on the xy-plane and rotated by and angle θ1 is shown 

by Equation 5, where f1 is the fundamental frequency of the grating. This is a transmittance 

function, P1(x, y), of x and y of which parts of the pattern allow light to pass through. 
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𝑃1(𝑥, 𝑦) =

1

2
+

1

2
𝑐𝑜𝑠(2𝜋𝑓1(𝑥 𝑐𝑜𝑠(𝜃1) + 𝑦 𝑐𝑜𝑠(𝜃1)))  

5 

Alternatively, this can be put in a vector form, shown by Equation 6, with f1 = [f1cos(θ1), 

f1sin(θ1)]
T and x = [x, y]T, where the transmittance function is now written P1(x). 

 
𝑃1(𝒙) =

1 + 𝑐𝑜𝑠(2𝜋𝒇1 ⋅ 𝒙)

2
 6 

Overlaying two generating patterns, hence multiplying them, this becomes Equation 7. 

𝑃1(𝒙) =
1

4
(1 + 𝑐𝑜𝑠(2𝜋𝒇𝟏 ∙ 𝒙) + 𝑐𝑜𝑠((2𝜋𝒇𝟐 ∙ 𝒙)) + 𝑐𝑜𝑠(2𝜋𝒇𝟏 ∙ 𝒙) 𝑐𝑜𝑠(2𝜋𝒇𝟐 ∙ 𝒙)) 

7 

The using trigonometry rules and the properties of the dot product, this becomes Equation 8. 

𝑃1(𝒙) =
1

4
+

1

4
𝑐𝑜𝑠(2𝜋𝒇𝟏 ∙ 𝒙) +

1

4
𝑐𝑜𝑠(2𝜋𝒇𝟐 ∙ 𝒙) +

1

8
𝑐𝑜𝑠(2𝜋(𝒇𝟏 − 𝒇𝟐) ∙ 𝒙)

+
1

8
𝑐𝑜𝑠(2𝜋(𝒇𝟏 + 𝒇𝟐) ∙ 𝒙) 

8 

Where the first term is the DC component, the second and third terms the original frequencies 

of the generating pattern, and the fourth and fifth terms correspond to the frequency 

components of the (1, −1)- and (1, 1)-moirés respectively. In practice, with generating 

frequencies that are very similar the (1, −1)-moiré and DC components contribute most to the 

visible pattern observed as the other frequencies lie outside of the visibility circle [3]. 

Therefore, only the first and fourth terms are needed to approximate the moiré pattern, giving 

Equation 9. 

 
𝑃𝑚(𝒙) =

1

4
+

1

8
𝑐𝑜𝑠(2𝜋(𝒇𝟏 − 𝒇𝟐) ∙ 𝒙) 9 

This gives an equation which represents the overlaying moiré pattern while still maintaining 

the intensity component. The cosine term can be investigated on its own if the only interest is 

the frequency of the moiré pattern. The advantage of this approach is that it is algebraic and 

therefore simple algebraic manipulations and modifications can be made and their implications 

simply mechanically carried out. Such as if the frequency of a generating pattern depended on 

x, this could be injected algebraically. You also maintain some intensity information with this 

approach. However, you lose some of the elegance and generality given by the Fourier 

approach, as this approach is fully encapsulated in the Fourier approach. 

2.6. Evaluation 

Previous marker-based solutions are limited in one way or another or even rely on being 

incorporated with existing technologies such as fiducial makers. 

No models so far incorporate the effects of patterns separated by a distance in 3D for arbitrary 

planar patterns. However, a model can be developed based on the theory of [3]. The first 

harmonic approximation model provides the flexibility to investigate the implications of a 

separation between the two patterns. Simple transformations to scale the patterns based off 
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their distance from a camera can be done to model a pinhole camera model. Then the 

interference can be calculated as normal. This becomes more complex of a task for arbitrary 

planar patterns in space that aren’t planar to the camera but can still be done starting from this 

model. The indicial model falls short in the difficulty of adapting and changing it to model 

separated patterns like is desired. The Fourier model could also have been chosen to develop 

the solution; however, it was ultimately decided that the simpler nature of the first harmonic 

approximation model was easier to work with. Therefore, this thesis will aim to develop a 

model of the types of moiré patterns investigated from the ground up based upon previous 

existing theory of the moiré pattern phenomenon. 

3. PROPOSED METHOD 

A model was developed from previous research to represent the moiré phenomenon. This 

model was then used to create a MATLAB simulation that could simulate various planar moiré 

patterns. Several experiments were then run to both determine the accuracy of this simulation 

and its ability to determine pose information about photographs of moiré patterns and to 

attempt to determine the aptitude of the use of moiré patterns for long-range positioning. 

The experiments in this thesis are represented in 3D space. There’s a fixed camera at (0, 0) 

with its optical axis pointing along the z-axis. In front of it is a moiré pattern consisting of 

several overlapping grating patterns in 3D space. A grating pattern is a pattern with a simple 

grid pattern with alternating dark opaque and transparent stripes, as shown by Figure 11, with 

a separation (p) or frequency (f = 1/p) parameter, as well as a grating thickness parameter, 

which is typically 50%. 

 

Figure 11: An example of a grating pattern and its parameters. 

Overlapping in the context of projection means that portions of each grating pattern 

individually map to the same location in the camera’s image. This is what causes a moiré 

pattern to form. Figure 12 shows an example with only two grating patterns. This was 
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numerically simulated in MATLAB. To model this mathematically, the grating patterns are 

modelled as simple sinusoidal functions. Reverse projection also needs to be performed to 

determine the point on the pattern function in 3D space that corresponds to a given point in the 

camera image. This needs to be done for all grating patterns. After this, the moiré interference 

theory can be incorporated to generate the model of the moiré pattern. Two models were 

developed in this thesis to achieve this. The first was an initial model created more directly 

from previous work. This model was then expanded upon to create a more useful general 

model. This model has fewer restrictions on the types of planar moiré patterns it can model. 

 

Figure 12: Numerically simulated image of 3D planar moiré pattern. 

A MATLAB framework was developed to simulate these planar moiré patterns. This 

framework performs numeric and analytic simulation. The numeric simulation helps with 

creating visualisations of pattern setups for more visual direct comparison to the same real-

world setup. The analytic model uses the generalised theory developed and is used to generate 

simulated images to feed into a solver (which also takes true images) to determine the pose of 

the pattern. The types of images the analytic model generate can be directly compared to true 

images, whereas the numeric simulation cannot (as all geometry is represented as vectors with 

this type of simulation). 
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3.1. Initial Model 

The initial theory proposed was to expand upon the theory from [3] to account for separation 

between moiré patterns. This will only focus on moiré patterns between two patterns. Multiple 

bases from [3] that can be used in developing these new equations. The key takeaways will be 

investigating how moiré interference changes as the camera moves in space. Theory will be 

developed based on the first harmonic approximation method proposed by [3]. The gratings, 

then, can be represented by Equation 6. 

 
𝑃1(𝒙) =

1 + 𝑐𝑜𝑠(2𝜋𝒇1 ⋅ 𝒙)

2
 6 

And similarly, for pattern two. To model the fact the patterns are separated, both patterns are 

scaled, undergoing a pinhole camera projection, based on their distance from the camera. For 

example, with pattern one, this involves scaling the parameter x by d1/f to represent pinhole 

projection, where f is the focal length of the camera and d1 is the distance pattern one is from 

the camera in the z-axis shown in Figure 2 (the optical axis of the camera). Pattern one is 

considered as the pattern closest to the camera. However, to simplify this, the scaling will be 

incorporated into f1, labelling this fs1, as shown by Equation 10. 

 
𝒇𝒔1 =

𝑑1𝒇1

𝑓
 10 

And similarly, for pattern two to get fs2. However, pattern two’s distance will be defined as d2 

= d1 + d for some z-separation between pattern one and pattern two of d. Overlaying the 

projected patterns one and two, corresponding to multiplying them [3], and leaving only the 

visible components as discussed in Section II D, results in Equation 11, a transmittance 

function representing the moiré pattern, Pm(x). 

𝑃𝑚(𝒙) =
1

4
+

1

8
𝑐𝑜𝑠(2𝜋(𝒇𝒔1 – 𝒇𝒔2) ⋅ 𝒙) 11 

This corresponds to the (1, −1)-moiré interference pattern as described by [3]. This shows the 

limitation to the first harmonic approximation of the pattern as it ignores the possibility of other 

modes of moiré pattern formation. However, one can ensure that the (1, –1)-moiré will always 

be the most prominent moiré, typically by choosing two patterns with sufficiently similar 

frequencies. 

This gives the frequency of the resulting moiré pattern, fm, as fs1 − fs2. Equation 12 shows this 

in its expanded form, with θ2 = 0. 

𝒇𝒎  =  𝒇𝒔1 –  𝒇𝒔2 = [
𝑓𝑠1 𝑐𝑜𝑠(𝜃1) – 𝑓𝑠2

𝑓𝑠1 𝑠𝑖𝑛(𝜃1)
]  =

𝑓₁

𝐷𝑓
[
𝑑1𝐷 𝑐𝑜𝑠(𝜃1) – 𝑑2

𝑑1𝐷 𝑠𝑖𝑛(𝜃1)
] 12 

Defining D as f1/f2. Note that, with a non-zero θ1, the angle and magnitude of the moiré pattern’s 

frequency change with distance d1. With zero θ1, only the frequency vector’s magnitude 

changes. Equation 13 captures how the moiré pattern’s angle changes with distance, d1, where 

θm is the angle of the moiré pattern in the camera image. 
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tan(𝜃𝑚)  =

𝑑1𝐷 sin(𝜃1)

𝑑1𝐷 cos(𝜃1) − 𝑑₂ 
 13 

This shows a hyperbolic relationship between the slope of the moiré pattern and the distance 

of the pattern, d1. This corresponds to the fact that at some d1 the angle of the moiré will be 

90°, vertical. This also means that the moiré angle is much more sensitive around such a d1, 

which can be used in designing a pattern that needs to be more sensitive to a certain range. 

There is also a need for a separation and relative rotation between the patterns, otherwise 

distance has no effect on the slope of the moiré pattern. Rearranging to find d1, noting d2 = d1 

+ d, this becomes Equation 14. 

𝑑1 =
−𝑑 tan(𝜃𝑚)

𝐷 sin(𝜃1) + (1 − 𝐷 cos(𝜃1)) tan(𝜃𝑚)
 14 

Therefore, with a known separation, relative frequencies, and non-zero angle between the 

generating patterns, the distance the camera is from the patterns can be estimated. Also, note 

that this does not depend on camera focal length. 

From this, the frequency of the moiré pattern on the image has been calculated and can be used 

to determine how changes in viewing distance and camera panning affects the moiré pattern. 

To incorporate camera lateral translation, the following changes need to be made, shown in 

Equation 15, where ΔX = [ΔX, ΔY]T, of some shift in x and y. 

 
𝑃1(𝒙) =

1 + 𝑐𝑜𝑠(2𝜋𝒇1 ⋅ (𝒙 + 𝜟𝑿))

2
 

15 

Following the same process as before, this leads to Equation 16, where fd = f1 – f2. 

 
𝑃𝑚(𝒙) =

1

4
+

1

8
𝑐𝑜𝑠(2𝜋(𝒇𝒎 ⋅ 𝒙 + 𝒇𝒅 ⋅ 𝜟𝑿)) 

16 

From this, it can be observed that camera lateral translation purely contributes to the phase of 

the moiré pattern. If pattern one’s and pattern two’s frequency vectors are collinear (θ1 = 0), 

this can be used to determine pure x-translation of the camera, ΔX. In this case, there is no y 

contribution for any of the parameters, and therefore each parameter is simply represented as a 

scaler. With some rearranging, this gives Equation 17, where δx is the x-offset of the centre 

fringe of the resulting moiré pattern. Non-bolded terms represent the magnitude of their 

corresponding vector terms (which is purely their x-component in this case). 

𝑃𝑚(𝑥) =
1

4
+

1

8
cos (2π𝑓𝑚 (𝑥 +

𝑓𝑑

𝑓𝑚
𝛥𝑋)) =

1

4
+

1

8
cos(2π𝑓𝑚(𝑥 + 𝛿𝑥)) 17 

Since δx can be measured directly from an image, lateral translation, ΔX, can be calculated 

using fd and fm. Equation 18 shows how to calculate this lateral translation, where pm is the 

measured separation between peaks of the moiré pattern (inverse of fm), and pd is the inverse 

of fd. 

 
𝛥𝑋 =

𝛿𝑥𝑓𝑚

𝑓𝑑
=

𝛿𝑥𝑝𝑑

𝑝𝑚
 18 



25 

 

This can also be calculated without needing to know the camera’s focal length. Note that the 

offset in the moiré pattern can only be measured mod pm and as such this limits this method’s 

ability to estimate camera lateral translation to values mod pd. This can be overcome if the same 

fringe is persistently tracked, but that is not always possible if the fringe moves outside the 

moiré pattern. However, it is feasible that the position of the fringe, in this case, could be 

extrapolated from the visible part of the pattern. However, these methods require inter-frame 

processing, and this thesis is only concerned with single-frame processing. 

3.2. Generalised Model 

After experiments were run with the previous model to determine if it was correct or not, it was 

expanded upon to be more general. This generalised model builds upon the previous model, 

taking its core concepts and generalising some of them. An overview of the steps is as follows. 

Any number of patterns in 3D space can make up the moiré pattern. Each of these patterns are 

represented as a function (a sinusoid) on a 2D plane (its pattern plane). Each of the patterns 

need to have its function projected onto the image plane; to do so, the image planes coordinates 

need to be “reverse projected” and mapped onto each of the pattern planes. This mapping is 

then used to perform the Fourier moiré interference theory as before to calculate a function in 

the image plane of the moiré pattern. 

3.2.1. Reverse Projection 

Reverse projection is done by mapping an image point’s x-y location to a pattern plane’s r-s 

location. Figure 13 and Figure 14 show what is meant by reverse projection, where the black 

pyramid is the camera and its camera plane (the x-y plane), and the blue plane is the pattern 

plane (the r-s plane). The black line coming out of the back of the blue plane is its normal 

vector. The green line is a ray projected from the camera to the pattern plane at some point (the 

blue x), the red x indicating where this pattern’s point is projected to in the camera image. The 

red lines are the x and y coordinates of the point on the image plane, and the blue lines are the 

r and s coordinates of the point on the pattern plane. The goal is to perform this projection from 

the pattern plane point to the image plane point (the normal direction of projection) in reverse; 

that is, to be able to calculate the pattern plane coordinates (r, s) from a coordinate point on the 

image plane (x, y). 
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Figure 13: Side view of reverse projection (green line) from the x-y image plane to the r-s 

pattern plane. 

 

Figure 14: Three-quarters of reverse projection (green line) from the x-y image plane to the 

r-s pattern plane. 
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A pattern plane is therefore defined by the directions of its r- and s-axis vectors. These are 

labelled r ̂ and ŝ. The normal vector of the plane, n̂, can be calculated from the cross product of  

r ̂ and ŝ. If d is some point on the plane, and rX
 is a 3D vector in absolute space that points to 

any point on the plane, then the equation for all points that would lay on this pattern plane is 

shown by Equation 19. 

 𝒏̂ ⋅ 𝒓𝑿 = 𝒏̂ ⋅ 𝒅 19 

For reasons important later, the arbitrary point d is chosen to be the plane’s origin point. To 

perform the reverse projection from a point on this plane to the image plane, simultaneous 

equations of projection and the pattern plane equation needs to be solved. From this, the 3D 

location of the point on a pattern plane that corresponds to an image location can be determined 

through simple matrix transformation. And from that, we can get the r-s location on the pattern 

plane. 

Forward projection using homogenous transformations is done as follows, where xH becomes 

a 2D homogenous vector where the 3rd entry represents the scale of the vector. This is shown 

by Equation 20. 

 
[
𝑓𝑰2×2 𝟎2×1

𝟎1×2 1
] 𝒓𝑿 = 𝒙𝑯 20 

The x vector can be calculated from the xH by simply dividing the first two elements by its 

third element, as shown by Equation 21. 

 
𝒙 =

1

𝑥𝐻
𝑧

(
𝑥𝐻

𝑥

𝑥𝐻
𝑦

) 21 

To now find rX from x we need to perform the reverse of this transformation. To do so, it is 

easier to frame this process as a simple set of three simultaneous equations without using 

homogenous vectors. First, a substitution of Equation 21 into Equation 20 is done, noting that 

xH
z is merely equal to rX

z. This substitution is shown by Equation 22. The aim of this is to 

remove any mention of rX in the-right hand side. 

 
[
𝑓𝑰2×2 𝟎2×1

𝟎1×2 1
] 𝒓𝑿 = (

𝒙𝑟𝑋
𝑧

𝑟𝑋
𝑧

) 22 

With rearranging, this becomes Equation 23. 

 
[
𝑓𝑰2×2 −𝒙
𝟎1×2 1

] 𝒓𝑿 = (
𝟎2×1

𝑟𝑋
𝑧

) 23 

However, there is still an rX
z term left on the right-hand side. And this cannot be removed 

without under-defining the simultaneous equations, as rX
z is a free variable in this simultaneous 

equation alone. To solve this, we can use the fact that we know what rX
z is given we have a 

definition of the pattern plane from Equation 19. One could try and solve for rX
z directly and 

substitute, but this would be tedious and wouldn’t remove mention of rX and its terms from the 

right-hand side without more rearranging. Instead, we should notice that Equation 19 already 
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has rX separated onto the left-hand side, and so can be substituted directly, as shown by 

Equation 24. 

 
[
𝑓𝑰2×2 −𝒙

𝒏̂T
] 𝒓𝑿 = (

𝟎2×1

𝒏̂ ⋅ 𝒅
) 24 

This adds a solution for rX
z, making it no longer a free variable, and making the set of 

simultaneous equations solvable. From now on, this equation will be referred to in the form 

shown by Equation 25. Noting that χ is a function of x. 

 𝝌(𝒙)𝒓𝑿 = 𝒒 25 

Now rX can be simply determined by inverting χ and multiplying it by q. However, we want to 

find the 2D vector r, the coordinates on the pattern plane. To do this we can again use the 

definition of the pattern plane in Equation 26 to determine the local r coordinates on the plane 

from the global rX coordinates by first defining the orthogonal matrix Q. 

 𝑸 = [𝒓̂ 𝒔̂] 26 

This represents the transformation of the local pattern plane coordinates to global coordinates. 

Now the full transformation of points represented in the pattern’s local frame to the global 

camera frame can be calculated using Equation 27, where d is defined as the origin of the 

pattern. 

 𝑸𝒓 + 𝒅 = 𝒓𝑿 27 

Therefore, combining Equation 25 and Equation 27, we can determine r(x) as shown by 

Equation 28. 

 𝒓(𝒙) = 𝑸T(𝛘−1(𝒙)𝒒 − 𝒅) 28 

Note that χ-1(x)q can be simplified in form by defining the vector xX, a vector in global 

coordinates which represent points on the camera’s image plane centred at +f on the z-axis, 

shown by Equation 29. 

 
𝒙𝑿 = (

𝑥
𝑦
𝑓

) 
29 

Hence, the expanded form is shown in Equation 30, where n̂ = [a b c]T. 

𝝌−𝟏𝒒 =
1

𝒏̂ ⋅ 𝒙𝑿
[
(𝑓𝒙[𝑎 𝑏])−1 + 𝑐𝑰2×2

−[𝑎 𝑏]
𝒙𝑿] (

𝟎2×1

𝒏̂ ⋅ 𝒅
) =

𝒏̂ ⋅ 𝒅

𝒏̂ ⋅ 𝒙𝑿
𝒙𝑿 

30 

This makes the final simplified form of the coordinate reverse-projection as shown by Equation 

31. 

 
𝒓(𝒙) =

𝒏̂ ⋅ 𝒅

𝒏̂ ⋅ 𝒙𝑿
𝑸T𝒙𝑿 − 𝑸T𝒅 

31 

Notice that the n̂ ⋅ d / n̂ ⋅ xX term merely represents projection along the normal if n̂ ⋅ xX was 

the focal length of the camera. This turns out to be equivalent to camera projection of that point 

at a distance along the optical axis. 
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In general, for multiple patterns, a given pattern, i, would be defined by Equation 32. 

 
𝒓ᵢ (𝒙) =

𝒏̂𝒊 ⋅ 𝒅𝒊

𝒏̂𝒊 ⋅ 𝒙𝑿
𝑸𝒊

T𝒙𝑿 − 𝑸𝒊
T𝒅𝒊 

32 

3.2.2. Applying the Fourier Theory 

If we use Equation 32 to get the functions for the coordinate reverse-projection for two (or 

more) patterns, the Fourier theory can be applied to model the moiré pattern. Most generally, 

this boils down to the Equation 33 (to calculate the moiré frequency), the equation of the pattern 

phase as a function of its x-y image position, for a (k1, k2, …, kn)-moiré with n patterns. 

 𝝓𝒎(𝒙) = 𝑘1𝒇𝟏 ⋅ 𝒓𝟏(𝒙) + 𝑘2𝒇𝟐 ⋅ 𝒓𝟐(𝒙) + ⋯ + 𝑘𝑛𝒇𝒏 ⋅ 𝒓𝒏(𝒙) 33 

Or, more compactly, we get Equation 34. 

 𝝓𝒎(𝒙) = 𝑭𝑲𝑹T 34 

With the following definitions: 

𝑭 = [𝒇₁ … 𝒇𝒏] 

𝑹 = [𝒓₁(𝒙) … 𝒓𝒏(𝒙)] 

𝑲 = [
𝑘1 … 0
⋮ ⋱ ⋮
0 … 𝑘𝑛

] 

Substitute this into the transmittance function from Equation 6 and we get the general model 

for the function of a moiré pattern generated from an arbitrary number of planar grating 

(sinusoidal) patterns in space, as shown by Equation 35. 

 
𝑃𝑚(𝒙) =

1

2
(1 + cos(2𝜋𝝓𝒎(𝒙))) 

35 

3.2.3. Applied Two-Pattern Model 

For the case of a (1, −1)-moiré generated from only two patterns, we get Equation 36 from 

Equation 33. 

 𝝓𝒎(𝒙) = 𝒇𝟏 ⋅ 𝒓𝟏(𝒙) − 𝒇𝟐 ⋅ 𝒓𝟐(𝒙) 36 

This is the analogous to the moiré frequency as a function of x from Equation 16. However, 

more accurately, this term also incorporates the phase term (fd ⋅ ΔX). That is, it is the phase 

offset of the sinusoidal function representing the moiré pattern at a given x-y position in the 

camera image. 

If both patterns of the moiré pattern are co-planar, that is they are parallel, then this equation 

can be expanded and simplified into Equation 37. 

𝝓𝒎 =
𝒇𝟏

𝐷
⋅ 𝑸T (

𝒙𝑿

𝒏̂ ⋅ 𝒙𝑿
((𝐷 − 1)𝒏̂ ⋅ 𝒅𝟏 − 𝑑) − (𝐷 − 1)𝒅𝟏) 

37 

Where qd = [0, 0, d]T, D = f1/f2, and d2 = d1 + d. Also note that Q1 = Q2 = Q and therefore n̂1 = 

n̂2 = n̂, since the patterns are co-planar. 
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Further assumptions based on the setup can be made to further simplify the model. This can 

turn certain situations to have purely analytic solutions for certain moiré setups, given you can 

measure the information from the view of the moiré pattern. The initial simpler formula in 

Section 3.1 can be derived as special cases of this more general model. 

3.3. MATLAB Simulation 

A MATLAB simulation was developed that did both analytic simulation as well as a numeric 

simulation for comparison. This was an OOP-Based implementation which allows to easily 

make different types of moiré patterns and utilise the more general model defined above. This 

model makes no extra assumptions about the number of patterns, but only moiré patterns made 

of two patterns were investigated using it. The MATLAB simulation consists of a CGrating 

class to model individual grating patterns, a CMoiréPattern which consists of multiple 

CGratings to make a moiré pattern, and a CPinholeCamera class to model the pinhole camera. 

A CMoireSim class then takes a CMoirePattern and a CPinholeCamera and uses them to 

simulate a moiré pattern, being able to generate camera images of the moiré pattern. A simple 

overview of the simulation architecture is shown by Figure 15. CPose is just a class that 

contains a homogenous matrix representing pose information that provides useful methods for 

dealing with homogenous transformations. The “params” property of the CPinholeCamera 

stores information about camera parameters, such as its vertical and horizontal resolution. The 

function R(…) from the CGrating is the ri (for the ith pattern) from Equation 33. And the 

property K for CMoire is the vector of the k interference modes of each of the k patterns given 

to it. The model(…) function for each of the classes with a model function will return the n×m 

image of the moiré pattern, according to the image resolution. 

 

Figure 15: Overview of simulator architecture. 

This simulation first takes poses of where two (or more) patterns were in space, as well as the 

size (height and width) of these patterns. The only available type of patterns in the simulation 
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are grating patterns, so their spacing (and therefore frequency) is also given. These poses 

determined where the patterns are positions locally in the moiré pattern space. 

A pose for where the moiré pattern is positioned in global space is given to place the moiré 

pattern in space. The camera is also assumed to be at the origin pointing in the z-direction. 

Making the z-axis the optical axis of the camera, +y as down the camera image, and +x as across 

the image from left to right. The focal length and resolution of this camera are needed for the 

camera simulator. Figure 16 shows an example of a moiré pattern visualised in space using the 

CMoire class. The red, green, and blue lines are the x-, y-, and z-axis of the moiré pattern. This 

shows the two grating patterns that make up the moiré pattern in space. The XYZ axes are the 

global camera frame, where the camera is centred at the origin (not depicted) pointing along 

its optical (Z) axis. This visualisation can also be generated as a wireframe if the detailed 

grating patterns are too dense and cause a slowdown in the simulation or impair the 

visualisation. 

 

Figure 16: Simulated moiré pattern visualisation with axes generated by the CMoire class. 

The moiré pattern and the camera are then passed to a CMoireSim which then takes this 

information and applies the theory developed in Section 3.2 to be used to generate modelled 

images of the moiré pattern, taking into account the size of the moiré pattern (so only that 

portion is visible). The CMoireSim can generate analytic and numeric representations of the 

moiré pattern. The analytic method is used to generate a greyscale image. The numeric method 

exists mostly for visualisation and performs camera projection of all of the 3D points of the 

moiré pattern’s visualisation geometry shown in Figure 16. Figure 17 shows an example of the 

simulator generating these moiré pattern images, comparing them to a real-world example 
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moiré of the same setup at a −10° angle about the y-axis. This image is one of the images from 

the data gathered during testing. These images are cropped in on just the moiré pattern. 

 

 

 

Figure 17: Comparison of true image of moiré against the numeric projection and analytic 

model simulations. 

A CSolver class takes a CMoireSim and an observation of a camera image, which can either 

be a real or simulated image of the right dimensions, and tries to determine the parameters of 

the moiré pattern. The parameters can be set in advanced and, in this thesis, the solver is tested 

in only determining the y-tilt angle of a pattern from its image. The solver uses the Levenberg–
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Marquardt optimisation algorithm implemented by a 3rd party library called “levmar” to solve 

for the parameters [42]. 

A class for Monte Carlo sensitivity analysis was developed to process the data for the more 

vigorous angle experiments performed later. This class, CMoireMonteCarlo, takes in a CSolver 

and its associated CMoireSim and runs trials on a set of input data. This input data consists of 

images of a moiré pattern at various tilt angles. It then runs the solver for each data point and 

saves the results to be analysed later for determining the accuracy of the angle estimates of the 

solver at each angle. Following is a more detailed technical explanation of the object-oriented 

design of the MATLAB simulator. 

3.3.1. CGrating 

The CGrating class represents one pattern to be a part of a whole moiré pattern. This pattern is 

a grating pattern as of the kind shown in Figure 11. This keeps track of all the geometry of a 

pattern’s grating pattern for numeric simulation as well as the data about the geometry, such as 

its spacing and pose. This class also takes the local base pose of where the grating is in the 

patterns local frame, as well as its calculated absolute pose. The pattern can be moved using its 

“move” method. The class also provides methods for calculating its projection for a given 

camera as described by Equation 34 which can be used by the moiré class for performing the 

analytic model. It also contains the important R(…) function used to generate the moiré model 

for the later classes. This function takes three inputs: a vector of x values, a vector of y values, 

and the focal length of a camera. It performs the “reverse projection” in 3D space and returns 

where each of the x-y pairs map from the image plane to the r-s space on the pattern plane. This 

is used by the model function of the CMoire class to calculate how the grating’s function (a 

sinusoid) maps onto the image plane when calculating the moiré interference. 

3.3.2. CMoirePattern 

The CMoirePattern class takes in any number of created CGrating classes as well as the global 

pose of the moiré pattern in space. The pattern can be moved or rotated using its own “move” 

method. The moiré pattern can be projected onto a 2D plane given a camera, either numerically 

or analytically using the model. These methods call to each of the methods of the CGrating 

classes and combined them according to the model  in Equation 33.  

3.3.3. CPinholeCamera 

A pinhole camera model is the chosen camera model for this project. Hence, the 

CPinholeCamera class merely implements this camera projection model. The pinhole camera 

model merely scales the size of points in space based on their distance from a camera along its 

optical axis (the z-axis) centred at the origin. This is used purely for the numeric model, 

typically used for visualisation. The CPinholeCamera model is also useful having the 

information about the camera such as its focal length and horizontal and vertical resolution 

stored in its “params” property. 
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3.3.4. CMoireSim 

The CMoireSim class takes and manages a CMoirePattern object and a CPinholeCamera 

model. It serves as a wrapper for these objects, creating an abstracted interface with the 

CMoireSim class performing all camera projection based on the parameters of the 

CPinholeCamera. It also allows methods to “vectorise” and “devectorise” itself such that the 

entire CMoirePattern–CPinholeCamera system kept by the CMoireSim can be represented as 

a set of parameters. This is important for the optimisation algorithm as these are the parameters 

it can optimise for. 

3.3.5. CSolver 

The CSolver class is the class that takes a CMoireSim with some configuration and is then uses 

it to attempt to determine certain parameters of a moiré pattern from given images. The CSolver 

is given a CMoireSim class as well as configuration options for things such as the type of 

optimisation algorithm to use, the maximum iterations, and a Boolean vector indicating which 

CMoireSim parameters to care about. This vector tells the CSolver which parameters to adjust 

and solver for. In the experiments conducted, only the y-rotation (tilt) of the moiré pattern was 

of interest, so only the vector element corresponding to this parameter was set to true. The 

CSolver then has a “solve” method which takes an initial guess for this parameter as well as 

the image observation. This image should match the size and resolution of the image the 

CMoireSim will generate when using its analytic model. The CSolver then attempts to 

determine the original parameter(s) of the moiré pattern for that the image was taken of. 

To do this the solver uses a third-party implementation of the Levenberg–Marquardt 

optimisation algorithm. The solver takes the 2D correlation between the real image and a moiré 

simulator’s generated image and attempts to find the parameters, or tilt angle, that gets this 

value as close 1 as possible. This 2D correlation is calculated using MATLAB’s “corr2” 

function. Hence the objective function, λ, for the algorithm is as shown by Equation 38. 

𝜆(𝜽) = 1 − corr2(𝑰𝒎𝒂𝒈𝒆, 𝑴𝒐𝒅𝒆𝒍𝑰𝒎𝒂𝒈𝒆(𝜽)) 38 

Where θ is the vector of all parameters that are being optimised. In this case, this is a single-

element vector containing only the y-rotation (tilt) angle. Image is a matrix of all the greyscale 

image points captured by a camera, and ModelImage is the method “model” implemented by 

the CMoireSim which returns a simulated image using the model given a set of parameters θ. 

3.3.6. CMoireMonteCarlo 

The CMoireMonteCarlo class takes a CSolver as well as its corresponding CMoireSim and 

performs a Monte Carlo sensitivity analysis on the CSolver from a list of image files. The files 

need to have a consistent naming convention. The Monte Carlo analysis then runs the CSolver 

on each image for several different initial guesses and saves the results of the optimised 

parameters to a file for data analysis. This data is then compared against the true values of the 

original moiré pattern. In the experiments performed, the CSolver is only trying to determine 

the y-rotation (tilt) of the moiré pattern. So, each of the determined values for the tilt is saved 
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for each image with each initial guess. This is then compared against the measured value for 

the moiré tilt to determine the accuracy of the moiré simulation, its model, and the solver. 

3.4. Other Investigated Patterns 

This section serves to overview a few pattern ideas that were explored in the process of 

designing which patterns would be used for experiments. One of these pattern types can be 

modelled by the theory developed and MATLAB framework created. So, this section also 

serves to demonstrate some of the other types of patterns this model can simulate. 

One such pattern investigated early on was the idea of a moiré pattern where two generating 

grating patterns were angled relative to one another, as shown by Figure 18. The reason this 

pattern type showed interest is because when the patterns are angled like this, the moiré pattern 

generated seems to curve and point to the middle of the pattern. That is, when this centre pattern 

of this fringe is perfectly in the middle of the pattern, it means that the pattern is perfectly in 

line with the camera’s image plane, with no rotation or horizontal offset. 

 

Figure 18: A wireframe example of an angled moiré pattern. The lowest blue circle is the 

position of the camera. 

Figure 19 shows the fringe behaviour of this type of pattern as generated by the numeric 

MATLAB model. A parabolic pattern emerges where the y-asymptote is always the vertical y-

axis at x equals 0 in the image plane as long as the camera and pattern are parallel. This does 

not change even as the pattern moves laterally. The x-asymptote, on the other hand, will move 

as the pattern moves up and down. This kind of pattern could lend itself use in aligning 

something directly with a marker. Once the y-asymptote fringe is aligned directly in the centre 

of the moiré pattern, then that means the camera is directly in line with it. Comparing Figure 



36 

 

19 to Figure 20 also shows that the MATLAB model is capable of capturing this phenomenon 

using its analytical model described in Section 3.2. 

 

Figure 19: Numeric simulation of the projection of an angled moiré pattern. 

 

Figure 20: Analytically modelled representation of the angled moiré projection. 



37 

 

Some other concepts were also discussed but not significantly investigated or modelled. Such 

as the idea of curved or cylindrical patterns. Depending on the orientation of the gratings, these 

patterns have different sorts of interesting observed properties. If the pattern is wrapped 

horizontally, such as in Figure 21, then the moiré pattern has a similar “fixed 0-axis” behaviour 

as the angled pattern, except the cylindrical patterns are not affected by being viewed from 

different angles as they are rotationally symmetric. As seen in Figure 21, there is a line in the 

middle of the image that all other fringes curve away from. This is always centred vertically in 

the middle of the camera’s image so long as the camera is parallel to the closest side of the 

pattern. 

 

Figure 21: Cylindrical moiré pattern with grating wrapped horizontally. 

The behaviour of this type of moiré pattern idea shows promise for specific positioning 

applications such as centring or aligning a camera to be parallel to a plane or even use in 

determining the tilt angle of the camera in one direction 

When the grating pattern is wrapped vertically, like in Figure 22, you get fringes a lot like you 

would with a regular moiré pattern. However these fringes widen near the edges of the moiré 

pattern and, as with the other cylindrical pattern, these fringes do not change based on viewing 

angle. They only change phase as the viewer moves. 
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Figure 22: Cylindrical moiré pattern with grating wrapped vertically. 

This could potentially give a reliable and consistent way to determine camera position along 

an axis from any angle, as long as this phase is tracked. This differs from the previous example 

as you may not always be able to see the centre fringe of the horizontally aligned cylindrical 

pattern. Whereas for this pattern this would not be an issue. 

3.5. Tests 

3.5.1. First Tests 

Some preliminary experiments were run to test if the basic model was accurate before it was 

further developed. This was done in two separates tests. A lateral translation test and a distance 

test. A moiré pattern was set up by placing two grating patterns on stands in front of one 

another, as shown by Figure 23. The gratings’ distance apart was measured and, for the distance 

test, the front grating was rotated relative to the other, about the same axis as the camera’s 

optical axis, and this angle was measured. For the distance tests, several photographs were 

taken at distances ranging from 0.1 m to 2.3 m. For the lateral translations test, the phone was 

mounted to a heavy laterally sliding apparatus to keep it still and align it parallel to the moiré 

pattern. Both tests used patterns with spacings of 2 mm and 2.1 mm for pattern 1 and pattern 2 

respectively. 
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Figure 23: Experimental setup for first tests showing important parameters for the test. 

Several photographs were then taken at different positions along this slider, noting how far 

along the slider they had been moved from its starting position. A 12 MP, f/2.2, 1.25μm pixel 

size phone camera was used to capture the images. After the fact, the position for which the 

moiré pattern had a bright fringe directly down the centre of a camera image was taken as the 

“0” point, and all other positions on the slider were recalculated relative to this point. 

In the actual experimental setup, pattern 2 is affixed to the light source to shine the light through 

both patterns. Figure 24 shows a photograph of the actual setup used taken from the lateral 

translation dataset. 



40 

 

 

Figure 24: Photograph of the setup used for the first tests. 

An interesting phenomenon occurs when you rotate the front-most pattern (pattern 1) slightly 

(about the same axis as the camera’s optical axis). This causes the pattern to shift as the camera 

view moves closer and further to it. This is the basis of how the distance experiments work. As 

described and predicted by Equation 13, the shifting seen is that the moiré pattern appears to 

rotate clockwise in the plane as the view gets further or closer. This is assuming that the spacing 

of pattern 1 is smaller than that of pattern 2 and that the rotational offset of pattern 1 is anti-

clockwise and not too large (otherwise the moiré interference pattern is not prominent). This is 

demonstrated by Figure 25 and Figure 26, where the moiré pattern slowly rotates 

asymptotically to the vertical the further away the camera is from it. Here, this is the setup used 

for the distance experiments, and pattern 1 has been rotated counter-clockwise by 7°. 
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Figure 25: Moiré pattern distance experiment setup at roughly 0.7 meters. 

 

 

Figure 26: Moiré pattern distance experiment setup at roughly 1.2 meters. 
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What is interesting to note is that this moiré pattern behaviour will never rotate further than 90° 

from the horizontal, or positive x-axis (it will asymptotically approach the vertical). This is true 

both ways, as the moiré pattern will never rotate further than −90° from the positive x-axis as 

the camera slowly approaches zero. This causes the angle sensitivity of distances closest to 

zero to be the most sensitive, becoming less sensitive as the camera gets further away. 

However, one thing that can be done is that the moiré pattern can be designed such that the 

distance at which the moiré pattern is perfectly vertical is predetermined. This means that 

decisions can be made on the working range of the distance as the angles between –90° and 0° 

to the x-axis will be the most sensitive. This distance at which the moiré pattern is horizontal 

can be easily designed using either Equation 13 or Equation 14. In which case either equation 

should be rearranged in terms of D, d, or θ1. Two of these parameters will need to be decided 

by other means or constraints (such as not having a separation, d, larger than a certain distance), 

then the third can be calculated. D is typically calculated via its definition, f1/f2. For these 

distance tests, the distance at which the fringe is horizontal was designed to be about 1 m and 

was roughly 980 mm in practice. For the turntable tests this method was also used for designing 

the patterns and the exact calculations on how to do this will be discussed in that section. 

3.5.2. Turntable Tests 

Several tests were run to test the accuracy of the generalised model and the moiré estimation 

method. Two Perspex panels with grating panels affixed to the side were attached to a precise 

turn-table apparatus. This turntable could position itself accurately within 1 arcsecond of 

accuracy on two rotational axes. One pattern was an opaque printed grating pattern and the 

other was a transparent grating pattern. The opaque pattern, pattern 2, had a spacing of 5.5 mm 

and was placed at the back; and the transparent pattern, pattern 1, had a spacing of 5 mm and 

was placed at the front. These distances were calculated using the theory so that approximately 

three to four fringes would always be visible on the moiré pattern given the chosen separation 

and camera distance the experiment was to be run at. These two patterns also needed to be 

aligned properly so that the edge of a fringe of both patterns were aligned with the centre of 

rotation of the turntable. A photograph of this setup is shown by Figure 27. 
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Figure 27: Photograph of the turntable experimental setup. 

A camera was set up a distance away pointed parallel to the moiré pattern, and several images 

were taken with the pattern panned at varying angles to the camera. Figure 28 shows this full 

setup, detailing the measured and varied parameters in the experiment. In the figure, f is the 

focal length of the camera, dp1s is the distance from the front of pattern 1 to the image sensor 

of the camera, dp1c is the distance from the front of pattern 1 to the rotational centre of the 

turntable, dp1p2 is the inner distance between pattern 1 and pattern 2, and θoffset is the angular 

offset between the optical axis of the camera and the turntable’s resting 0° point. The rotational 

centre of the turntable is shown in green, with an indication of the y-tilt parameter, which is the 

varied parameter throughout the experiment. 

 

Figure 28: The setup for the turntable experiments detailing the measured parts of the setup. 

The black rectangles are pattern 1 and pattern 2, indicated by “1” and “2”. 
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The Perspex panels consist of two Perspex plates with the grating patterns sandwiched between 

them. Therefore, the thicknesses of the inner-most Perspex plate of each Perspex panel also 

needed to be known. These are not noted in Figure 28 but are called tp1 and tp2 for the thickness 

of pattern 1 and pattern 2 respectively, shown by Figure 29. 

 

Figure 29: The thickness of the inner Perspex plate (shown in black) for each of the Perspex 

pattern panels. 

Table 1 shows the measured values of each of these parameters. The focal length of the camera 

was merely taken from its specification. 

Table 1: Measurements made of the turntable setup. 

f [mm] dp1s [mm] dp1c [mm] dp1p2 [mm] tp1 [mm] tp2 [mm] θoffset [°] 

8 3125 1.38 63.35 3.80 3.79 5.05 

Certain constant parameters required for the model were calculated from these measured 

parameters. The parameters required to be calculated were d1, the distance from the camera’s 

focal point to the centre of the moiré pattern (which is the centre of rotation for the turntable), 

and d, the distance between the grating patterns on the Perspex panels. These are calculated as 

shown by Equation 39 and Equation 42. 

 𝑑1 = 𝑑𝑝1𝑠 − 𝑓 39 

 𝑑 = 𝑡𝑝2 + 𝑑𝑝1𝑝2 + 𝑡𝑝1 40 

The final values of all fixed parameters important to the model are shown in Table 2, including 

the spacing values of pattern 1 and pattern 2, p1 and p2 respectively. 
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Table 2: Fixed parameters required by the simulator. 

d1 [mm] d [mm] p1 [mm] p2 [mm] 

3115.6 70.9 5 5.5 

To design the patterns for this experiment, these parameters were determined by using the 

developed theory to design a pattern to be suited for the experimental setup. This was done by 

using the theory to determine an equation in terms of the free parameters of the experiment and 

deciding iteratively the vicinity of these parameters. It did not matter if the parameters were 

exactly where they were designed to be when creating the patterns if they were close. It only 

mattered that we knew what those parameters were accurately after the fact (by measuring them 

after the experiments were run). To choose these parameters, Equation 12 was used to create 

this dependant equation for the free variables that needed to be decided. These free variables 

where the spacing of pattern 1 and 2 (captured as the spacing of pattern 1, p1, and the ratio of 

their spacings, D = p2/p1), the separation between them, d, the length of the pattern, l, and the 

number of desired fringes visible, n, at a given distance, d1. The number of fringes is important 

for visibility and so that the solver has enough information. Given some decided distance d1, 

then the number of fringes visible is calculated by Equation 41. 

 
𝑛 =

𝑙𝑓𝑚𝑓

𝑑1
 41 

Where fm is the absolute value of fm as calculated by Equation 12. Since, in this example, the 

patterns are colinear (their gratings point in the same direction), then fm only consists of an x 

component. Therefore, combining Equation 12 and Equation 41 gives Equation 42, a way to 

calculate D from all of the other dependant components. Noting that the focal length of the 

camera, f, cancels out and the camera parameters do not need to be known to design the moiré 

pattern. 

 

𝐷 =
(1 +

𝑑
𝑑1

)

(1 −
𝑝1𝑛

𝑙
)
 42 

It was decided that the pattern should show roughly 4 fringes, therefore n = 4, as this gives 

good visibility of at least 3 dark fringes for any angle for the solver. Pattern 1’s spacing 

shouldn’t be less than 5 mm, as too small of a spacing reduces contrast, but too large of a 

spacing reduces the moiré effect. Therefore 5 mm was chosen. The length of the pattern was 

roughly that of an A4 sheet of paper at l = 297 mm. And the spacing was decided to be roughly 

50 mm. This was based on as large a spacing as could be feasibly tested in the turntable. The 

larger the spacing the more sensitive the moiré pattern is to rotation; hence this was changed 

later as the experiment was set up to be larger. Similarly, 3 m was chosen for d1 as this was the 

furthest distance the camera could be placed away from the pattern in the setup, although the 

pattern was also expected to work for distances of 1 m to 10 m. With a value chosen for all the 

other parameters, D was calculated and used to calculate the spacing for pattern 2, p2, using 

Equation 42. This gave a D of about 1.10, meaning that p2 was calculated to be 5.5 mm. 
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After the experiments were run, all the required parameters were measured that were shown by 

Figure 28 and Figure 29. The distance between the camera’s image plane/sensor and the front 

of the first pattern (dp1c) was measured using a laser sight. The laser sight was also used to 

measure the angular offset of the turntable required for the pattern to be parallel to the camera. 

This was done by setting the laser on the turntable and aligning the laser point with the centre 

of the camera by rotating the turntable’s y-tilt. This is important for matching the angles 

calculated via simulation with the real-world turntable angles. The distance between the two 

patterns (dp1p2), the thicknesses of the Perspex these patterns were affixed to (tp1 and tp2), and 

the distance the centre of pattern 1 was from the rotation centre of the turntable (dp1c) were all 

measured using Vanier callipers. 

Three experiments were run on the turntable. First with panning from −30° to 30° in steps of 

1°, second −5° to 5° in steps of 0.5°, and third −1° to 1° in steps of 0.1°. This means the total 

pictures taken for each experiment were 61, 21, and 21 respectively. A Python script was 

written to process the sets of images recorded. This script was a simple command-line interface 

to rename all images in a set to the angle the turntable was set to when each image was taken. 

It then also cropped each of the images to a specified size, which was used to crop the image 

to only contain the pattern itself. This is so they were in a form ready for the MATLAB solver. 

Once these images had been processed and cropped to the right scale, a MATLAB sensitivity 

analysis was performed using the CMoireMonteCarlo class. The simulator was calibrated with 

all the known measured parameters of the experimental setup which are passed to the solver 

and the Monte Carlo sensitivity analyser. This calibrated simulator, when passed the measured 

angles from the experiment, also serves as the base-line for the accuracy comparison to the 

estimated angles. This is important for determining the accuracy of the estimated angles. The 

Monte Carlo analysis was then run for the three different tilt angle ranges: −30° to 30,  −5° to 

5°, and −1° to 1°. During this Monte Carlo analysis, the solver is run 3 times for each given 

image with different initial guesses. These initial guesses are chosen to be roughly around the 

true solution. One guess to close to the solution and the two others are either side of this guess 

by the angle step amount. 

Figure 30 shows a flow diagram of the Monte Carlo simulations that were run. For the test 

using angles of −30° to 30° with 1° steps, there was a set of 61 images. For the other two tests, 

there was only a set of 21 images. In the diagram, the solver was run for every combination of 

three initial guesses and the image set used for a given test, storing each result for later grouped 

by image used from the image set (groups of three for each initial guess used). This means the 

solver was run a total of 183 times for the test using angles of –30° to 30° in steps of 1°, and 

63 times for the other two tests. 
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Figure 30: Monte Carlo simulations run. 

The Monte Carlo simulations took about 3 hours to run. Once all Monte Carlo analyses had 

been run, the data gathered was compared against the true tilt values recorded by the turntable. 

This value is offset by the measured tilt angle offset to get the true tilt value expected relative 

to the camera’s optical axis, which is how the model is represented. This data was then plotted 

and analysed. 

4. RESULTS 

4.1. First Tests 

Table 3 shows the set parameters used for the camera lateral translation estimation experiments 

and their uncertainties. The d parameter is the distance between the patterns, d1 is the distance 

to the first (closest) pattern. The p1 parameter is the printed grating separation (inverse 

frequency) of pattern 1, and p2 is the same for pattern 2. 

Table 3: Set parameters for the camera lateral translation estimation experiments. 

d [mm] d error [mm] d1 [mm] d1 error [mm] p1 [mm] p2 [mm] 

4 0.25 161 2 2 2.1 

Figure 31 shows the plot of the recorded data and their error bars from the experiment 

performed to test the camera lateral translation estimation. The relative position given is the 

position relative to the measured position that was determined to be the zero-point. This was 

determined after the fact by finding the point that corresponds to when a fringe is centred 
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directly down the centre of the camera image. This is necessary to match up with the 

assumptions of the theory. The spacing is the inverse of the moiré pattern frequency and is 

expected to be roughly the same between measurements. The raw data gathered to generate 

this graph can be found in Appendix A. The figure shows the behaviour of drifting down 

linearly before shooting back up close to the spacing value and drifting down again. However, 

due to under sampling this behaviour is not obvious and is broken from −100 to −30. 

 

Figure 31: Recorded data from the camera lateral translation estimation test. Showing the 

measured phase (blue), and spacing (orange) against the relative position. 

The accuracy of the model showing the propagated error bars for the camera lateral translation 

estimations are shown in Figure 32. The plot shows how close the values calculated using 

Equation 15 are to the real-world values that were recorded. All values are calculated mod pd 

as the moiré pattern is periodic in the camera lateral translation by this value. With this setup, 

pd is 42 mm. The graph has also been normalised so that values differing by roughly 42 mm 

are shown as being close estimates. The full calculated values for this figure can be found in 

Appendix A. 
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Figure 32:  Accuracy of camera lateral translation estimation using the model equation. 

Table 4 shows the fixed parameters for the camera distance estimation experiment and their 

uncertainties. The angle is the counter-clockwise rotation that pattern 1 had in relation to 

pattern 2, as was shown by Figure 25 and Figure 26. 

Table 4: Set parameters for the camera distance estimation experiments. 

d [mm] d error [mm] θ1 [deg] θ1 error [deg] p1 [mm] p2 [mm] 

90 5 7 1 2 2.1 

Figure 33 shows a plot of the recorded data and their error bars from the camera distance 

estimation experiments. The raw data for this plot can be found in Appendix B. The slope angle 

is the angle of the moiré pattern fringes in the camera image. This also shows the hyperbolic 

relationship that is expected by the theory. The slope value was calculated from the measured 

slope angle in the image. 
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Figure 33: Recorded data from the camera distance estimation experiments. 

The accuracy of the model for the camera distance estimation is shown in Figure 34. This 

shows how close the values calculated by using Equation 12 were to the real-world 

measurements. Propagated error for this model grows rapidly, so error bars larger than 500 mm 

have been omitted for clarity. The full calculated values for this figure without the omitted 

propagated errors can be found in Appendix B. 

 

Figure 34: Accuracy of camera distance estimation using the model equation. 
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4.2. Turntable Tests 

Figure 35 shows the results from the −30° to 30° tests, testing the tilt angle estimation accuracy 

for a wide range. These tests were recorded in courser steps of 1°. The figure shows the 

maximum, minimum, and average error of the several repeats run at each angle for this test. 

Each angle represents the turntable’s recorded angle when the image was taken before the angle 

offset calculation to determine the angle relative to the camera’s global coordinates. The large 

spikes are outliers where the solver has found a very close match to the image using a wildly 

different tilt angle.  

 

Figure 35: Maximum, minimum, and average estimated angle error for each tilt angle for the 

−30° to 30° tests. 

Figure 36 shows the results from the −5° to 5° tests, testing the tilt angle estimation accuracy 

for a wide range. These tests were recorded in steps of 0.5°. The figure shows the maximum, 

minimum, and average error of the several repeats run at each angle for this test.  
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Figure 36: Maximum, minimum, and average estimated angle error for each tilt angle for the 

−5° to 5° tests. 

Figure 37 shows the results from the −1° to 1° tests, testing the tilt angle estimation accuracy 

for a wide range. These tests were recorded in finer steps of 0.1°. The figure shows the 

maximum, minimum, and average error of the several repeats run at each angle for this test.  

 

Figure 37: Maximum, minimum, and average estimated angle error for each tilt angle for the 

−1° to 1° tests. 

The full raw recorded data for all these experiments can be found in Appendix C. 
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4.3. Discussion 

4.3.1. First Tests 

The results from the camera lateral translation experiments appeared to be accurate for the 

close-range testing. The small separation tested meant that a close range was needed in order 

to observe shifts in the moiré pattern. However, the issue with this method is it is restricted to 

estimations mod pd. This can be countered by trying to design a pattern with a large pd, i.e. with 

generating patterns with much closer frequencies. Another solution is to have multiple patterns 

with varying sensitivities to camera lateral translation, say a moiré pattern with fast-moving 

fringes and another with slow-moving fringes, and use that to calculate a combined estimation 

of the camera lateral translation. Alternatively, starting from a known reference, you could try 

and continuously track the phase changes between frames and estimate the distance that way. 

The results from the camera distance experiments showed some promise; however, they 

weren’t nearly as accurate as first anticipated when looking at the propagated errors. Especially 

at greater distances. This is partly since the model calculation has a suspected singularity point 

that causes large error propagation near a specific distance. This is since moiré patterns can be 

so sensitive that minor changes can have growing propagated effects on accuracy with distance. 

The error bars for this experiment were generous to begin with, however, as these were less 

precise tests. This is also since it is difficult to ensure that the two generating patterns were 

perfectly aligned and parallel at the much larger separation distance that was tested, causing 

unaccounted for errors. The size of the separation distance used is required in order to observe 

the rotating of the moiré pattern as distance changes; at too small of a separation, the rotating 

effect becomes less prominent. More accurate results might be observed if these issues can be 

addressed in future experiments. Due to the less precise nature of these tests, however, they do 

help get an idea of accuracies you may expect if an average user were to set up a moiré pattern. 

4.3.2. Turntable Tests 

The most notable thing about the turntable tests is that there were a lot of outlying solutions 

provided by the solver; especially for the larger range tests, such as the −30° to 30° tests. If 

these large outliers were removed, it shows a clearer trend of the inaccuracy starting small at 

around 0.05° error near a 0° angle and growing to around 5° error at –30°. This is best when 

the initial guess starts near the solution. Since in practice we’re likely to use a previously known 

initial guess (say, from a previous frame of continuous footage), it is not unrealistic to assume 

this. From the graphs, it tends to also show that the angle estimates for positive angles are way 

off and continue to grow as the angle gets larger. Looking at these values the solver finds shows 

that what is going on is that, since positive and negative angle tilts of the moiré pattern look so 

similar, for positive angles the solver is settling in on the exact opposite negative angle. For 

example, instead of determining the pattern was at an angle of +12°, it will think it was at about 

–12° and so the error becomes roughly 24°. This doesn’t happen for the negative angles as the 

solver always favours one side. In one sense it “checks” the negative side of the problem space 
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first before it gets to the positive side, and so it gets lost. Therefore, in this discussion data from 

positive angles is largely ignored. 

When comparing the images of the less accurate estimates (with errors greater than 5°) further 

from 0° by simulating them visually, they are almost perfectly matched. This suggests that the 

reason the accuracy gets larger is not the fault of the pattern or the simulator and solver. It is 

probably due to the many other potential error sources, such as measurement errors, alignment 

and construction errors, and calibration errors. Measurement errors include errors in taking 

measurements of the setup, one important one being the distance from the turntable’s centre to 

the camera. Alignment and construction errors include the ability to align and print the grating 

patterns correctly and accurately when creating the moiré pattern. Ensuring these two patterns 

are perfectly parallel and that the gratings are aligned is important as moiré patterns are very 

sensitive to slight variation in construction. The printing of these gratings patterns is also only 

so accurate. However, in these experiments, the calibration errors were likely the biggest source 

of error. Specifically, the camera calibration parameters, which were not precisely known. It is 

predicted that this factor caused majority of the error that appears to increase for larger angles. 

This effect on accuracy is more prominent for the wider/larger tilt angles, leading to a drift in 

accuracy caused by the imprecise camera parameters. At these extreme angles of ±30° the 

moiré pattern is much more sensitive to imperfections in how it is captured. Camera calibration 

isn’t significant for determining estimates of the angle of a moiré pattern from an image, but it 

is important for comparisons drawn in attempting to profile the accuracy and errors of the 

experiments run. That is, the angles from the solver are likely more accurate than the calculated 

reference angles due to not precisely knowing the camera parameters. 

This can also help explain the jagged nature and large errors of the data. When the solver is 

solving for a tilt angle, its initial guess starts near where the measured true solution is. However, 

if this determined “true solution” itself is not very accurate, then the solver may encounter a 

different closer local minimum than the one at the true solution. This is amplified by the fact 

that the moiré pattern used is periodically repeating through its angle sweep. If the pattern were 

closer, this would be reconcilable due to sharper field of view; however, at longer distances, 

the effects of perspective are very minimal. This causes the moiré pattern to look very similar 

at multiple different tilt angles, which effectively creates many periodic local minima across 

the solution space. 

Two ways to attempt to solve this issue using the same type of moiré pattern as used in this test 

would be to either use the moiré pattern in conjunction with a fiducial marker or two use two 

or more differently-designed moiré patterns. Using a fiducial marker would provide an initial 

guess for the moiré solver that was more accurate and already close to the true solution to allow 

a refinement of the estimate given by the fiducial marker. Of course, an accurate fiducial 

marker also requires having a calibrated camera. Using two or more moiré patterns of different 

periods would also help smooth out the solution space and widen out the spacing of local 

minima that do exist. 
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5. CONCLUSION 

An investigation into the properties of moiré patterns was carried out. Specifically looking at 

their potential use in aiding long-range positioning, what the best choice of moiré pattern 

parameters for a working range is, and if the extra sensitivity of moiré patterns makes greater 

accuracy patterns more accessible for the average user. It was found, for the lateral translation 

estimation experiment, the error was about 0.2 mm to 5 mm at a distance of 160 mm. For the 

distance estimation experiment, the error ranged from about 0 to 180 mm at distances ranging 

from 100 mm to about 2000 mm. A pattern was designed using the developed theory to choose 

suitable parameters for a moiré pattern for the application of angle estimation at roughly 3 

meters. The more precise turntable experiments performed at 3.116 m on this pattern showed 

that the angle estimation error was up to 5° off in the best-case excluding outliers. The 

estimation being particularly accurate for smaller angles less than 5° with an error of less than 

0.25°, going as low as 0.05° even in the worst-cases. This is better than similar existing methods  

such as the Metria Moiré Phase Tracking marker’s maximum absolute errors of up to 2.8 mm 

and 2.1° [37]. This showed that a moiré pattern could be successfully designed for the specified 

application and that reasonable accuracy is possible in a less precise environment at closer 

ranges, which would be useable for an average user. This also suggests that much greater 

accuracies are possible using these markers if they are set up more precisely. One issue here, 

however, was that the solver used led to several outliers. Another limitation encountered in this 

research that limits how well the accuracy of the turntable tests could be quantified is that the 

precise parameters of the camera used were not known, leading to amplified drift in accuracy 

for extreme angles. There were also many other potential sources of error which can contribute 

especially for sensitive moiré patterns. These errors include measurement error and 

construction errors; however, the camera calibration is likely the biggest cause of inaccuracies 

in the profiling of the accuracy of the moiré pattern. 

This research has developed a model specifically for arbitrary planar moiré patterns consisting 

of grating patterns. This model can theoretically even be used for any type of generating 

patterns that are representable as functions. It also provides an Object-Oriented MATLAB 

framework implementation of this model along with a solver. This framework allows the model 

to be used to generate moiré patterns and their images as well as feed real-world images of 

moiré patterns to the solver to determine their parameters, provided enough information is 

given to the solver. 

5.1. Future Work 

A limited amount of the model’s capacity was investigated and tested, as a lot of time went 

into creating this model and implementing the MATLAB framework. Future work would 

undergo more extensive testing to investigate what extreme accuracy is possible with these 

patterns and these models. Along-side this, the solver would be further fine-tuned to be more 

stable and provide fewer outliers. It would be ideal to investigate how the solver handles 
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estimating more pose information at once, and ideally if it can estimate all pose information 

given a specific moiré pattern or array of moiré patterns. Although the main goal was to see 

the application of these patterns for use-cases of that of an average user, higher more detailed 

and accurate data could still have been useful in drawing some of these conclusions about their 

use in these applications. Ideally with precisely machined moiré patterns and an accurately 

calibrated camera. This would also be interesting for determining precisely the best possible 

accuracies that are possible with these patterns. 

A possible long-term goal would also be to create a second kind of solver, a calibration solver, 

which could take in some video frames of a constructed moiré pattern made in a certain way 

and then determine the parameters of this moiré pattern to create an easily-made high-accuracy 

marker. A typical user may construct this pattern by folding a transparent template, and the 

calibration solver would adjust for the user-error in construction. The regular solver could then 

be fed this information in making its pose estimates. 

Future work could be put towards investigating different kinds of moiré patterns. Such as non-

colinear patterns and non-linear patterns as well as other interesting shapes, such as cylindrical 

or curved patterns. There are many potential pattern types and combinations that could be 

explored for positioning. The existing model would need to be significantly modified to model 

such pattern types; however, they could theoretically be simulated numerically using the 

MATLAB framework if more generating pattern types were created for it, instead of just 

grating patterns. Ideally, future work would have allowed the model and MATLAB framework 

to simulate even more types of moiré patterns. Perhaps using the full Fourier moiré theory to 

get a fuller picture that also encapsulates pattern intensity. Another possibility is that moiré 

patterns could be purely numerically simulated in the MATLAB framework. This would allow 

almost arbitrary moiré patterns to be used; however, numeric simulation is more difficult as it 

does not lend itself as naturally to estimating pose information from real-world images, as the 

data does not come in the same form. This approach would also be slower to run. 
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7. APPENDICES 

7.1. Appendix A – Lateral Translation Tests 

7.1.1. Raw Data 

Table 5 shows the raw recorded data and their uncertainties from the experiments performed 

to test the camera lateral translation estimation. The relative position given is the position 

relative to the measured position that was retroactively determined to be the zero-point. The 

zero-point corresponds to when a fringe is centred directly down the centre of the camera image 

in order to match up with the assumptions of the theory. 

Table 5: Recorded data from the camera lateral translation estimation test. 

Measured 

position 

[mm] 

Relative 

position 

[mm] 

Relative 

position error 

[mm] 

Phase 

[px] 

Phase 

error 

[px] 

Spacing 

[px] 

Spacing 

error [px] 

-103 -156 1 702 77 1012 166 

-75 -128 1 -18 86 1026 180 

-58 -111 1 540 70 1054 143 

-46 -99 1 350 94 1044 159 

-33 -86 1 48 81 1030 105 

-14 -67 1 608 62 1110 123 

0 -53 1 248 51 1074 147 

14 -39 1 -102 92 1038 155 

25 -28 1 -432 71 981 156 

46 -8 1 178 58 1140 146 

53 0 1 0 120 1152 156 

56 3 1 -120 72 1128 123 

69 16 1 -540 88 1038 138 

84 31 1 -870 82.5 1062 218 
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7.1.2. Calculations 

The results of the calculations and the propagated uncertainties for the camera lateral 

translation estimations are shown in Table 6. These are calculated using Equation 15 using the 

data from Table 5. Everything is calculated mod pd as the moiré pattern is periodic in the camera 

lateral translation estimation by this value. Here pd is 42 mm. Also, note that this implies that 

values differing by roughly 42 mm are close values. 

Table 6: Camera lateral translation calculations using the model equation. 

Mod relative 

position [mm] 

Relative 

position error 

[mm] 

Mod calculated 

position [mm] 

Mod calculated 

position error [mm] 

12 1 13 8 

40 1 1 4 

15 1 20 6 

27 1 28 6 

40 1 40 4 

17 1 19 5 

31 1 32 3 

3 1 4 4 

14 1 18 6 

34 1 35 3 

0 1 0 - 

3 1 4 3 

16 1 22 6 

31 1 34 10 
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7.2. Appendix B – Distance Tests 

7.2.1. Raw Data 

Table 7 shows the recorded data and their uncertainties from the camera distance estimation 

experiments. The slope angle is the gradient angle of the moiré pattern fringes in the camera 

image. The slope value was calculated from the measured slope angle in the image. 

Table 7: Recorded data from the camera distance estimation experiments. 

d1 [mm] d1 error 

[mm] 

Slope angle 

[deg] 

Slope angle error 

[deg] 

Slope Slope 

error 

100 2 81.5 1.0 6.70 0.80 

256 2 69.9 0.8 2.73 0.12 

390 5 59.9 1.2 1.73 0.08 

501 5 51.8 1.9 1.27 0.09 

565 5 46.2 2.3 1.04 0.08 

610 5 43.2 2.2 0.94 0.07 

700 5 38.2 3.0 0.79 0.08 

785 8 33.3 2.9 0.66 0.07 

848 8 30.2 2.8 0.58 0.06 

920 8 26.8 2.6 0.50 0.06 

1174 10 19.4 3.3 0.35 0.07 

1455 10 12.0 3.3 0.21 0.06 

1765 10 5.6 2.7 0.10 0.05 

2285 10 -0.5 2.3 -0.01 0.04 
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7.2.2. Calculations 

The results from the camera distance estimation and the propagated uncertainties are shown in 

Table 8. These were calculated using Equation 12 using the data in Table 7. 

Table 8: Results from camera distance estimation experiments. 

Calculated distance [mm] Distance error [mm] 

100 32 

230 54 

341 81 

440 116 

514 140 

554 149 

628 190 

711 220 

773 237 

848 280 

1035 467 

1303 787 

1637 1658 

2201 18134 
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7.3. Appendix C – Turntable Tests 

The following shows the raw data of the estimated angle results calculated from the model and 

optimisation solver for each of the turntable tests. The wide-angle variation test tested a range 

of −30° to 30° with steps of 1°; the small-angle variation test tested a range of −5° to 5° with 

steps of 0.5°; and the narrow-angle variation test testing a range of −1° to 1° with steps of 0.1°. 

7.3.1. Wide-Angle Variation Test 

Table 9 shows the raw data of the estimated angle results for the −30° to 30° test with steps of 

1°. 

Table 9: Table of raw data from the solver for the −30° to 30° test. 

True Angle Initial Guess 1 Initial Guess 2 Initial Guess 3 

-35.05 -35.75 -35.75 -29.53 

-34.05 -35.74 -29.52 -32.74 

-33.05 35.39 -28.47 -31.75 

-32.05 -33.95 -27.33 -30.75 

-31.05 15.59 -26.45 -19.01 

-30.05 -32.11 -28.85 -28.85 

-29.05 -31.22 29.42 29.42 

-28.05 36.00 36.00 36.00 

-27.05 -32.67 -5.94 7.45 

-26.05 -31.83 -4.32 -12.98 

-25.05 10.02 -24.01 -7.67 

-24.05 -36.00 -2.44 -23.16 

-23.05 -35.59 -22.16 -5.55 

-22.05 -4.22 -4.22 -21.12 

-21.05 -12.07 -20.25 -20.25 

-20.05 -11.12 -19.29 -19.29 

-19.05 -14.19 -18.28 -18.28 

-18.05 -17.37 -17.37 -17.37 

-17.05 -16.45 -3.55 -16.45 

-16.05 -15.50 -2.63 -15.50 

-15.05 -14.41 -14.41 -14.41 

-14.05 -0.37 -13.52 -13.52 

-13.05 -12.66 -12.66 -12.66 

-12.05 -11.70 -11.70 -11.70 

-11.05 -26.49 -26.49 -26.49 

-10.05 -9.67 -9.67 -5.26 

-9.05 -8.90 -8.90 -8.90 
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-8.05 -3.45 -3.45 -7.85 

-7.05 -6.87 -6.87 -6.87 

-6.05 -5.83 -5.83 -5.83 

-5.05 -4.97 -4.97 -4.97 

-4.05 -4.07 -4.07 -4.07 

-3.05 -3.06 -3.06 -3.06 

-2.05 -15.05 -19.14 -19.14 

-1.05 -1.15 -1.15 -1.15 

-0.05 -0.26 -0.26 -0.26 

0.95 -8.16 -8.16 -8.16 

1.95 1.84 -11.44 -15.67 

2.95 -18.83 2.73 -18.83 

3.95 -18.01 -18.01 -18.02 

4.95 0.03 -4.41 0.03 

5.95 -12.16 -7.82 -12.16 

6.95 -19.41 -19.37 -15.32 

7.95 -18.68 -18.68 -10.33 

8.95 -25.34 -17.70 -17.70 

9.95 -8.44 -12.75 -8.44 

10.95 18.73 18.73 -15.98 

11.95 -10.58 -10.58 -14.83 

12.95 -18.11 -32.49 -22.06 

13.95 -31.79 -31.79 -0.05 

14.95 -12.27 -12.27 -16.45 

15.95 -10.95 -10.95 -15.22 

16.95 -29.54 -29.54 -22.35 

17.95 -32.08 -28.78 -13.47 

18.95 -24.52 -12.57 -20.74 

19.95 -15.53 -15.53 -36.00 

20.95 -10.26 -32.93 -32.90 

21.95 -25.43 -35.28 -21.70 

22.95 -28.16 -28.16 -12.63 

23.95 -15.47 -15.47 -19.57 

24.95 -35.96 -35.96 -18.59 
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7.3.2. Small-Angle Variation Test 

Table 10 shows the raw data for the estimated angles results from the –5° to 5° tests with 0.5° 

steps. 

Table 10: Table of raw data from the solver for the −5° to 5° test. 

True Angle Initial Guess 1 Initial Guess 2 Initial Guess 3 

-10.05 -9.67 -9.67 -9.67 

-9.55 -9.24 -9.24 -9.24 

-9.05 -8.83 -8.83 -8.83 

-8.55 -8.33 -8.33 -8.33 

-8.05 -7.85 -7.85 -7.85 

-7.55 -7.42 -7.42 -7.42 

-7.05 -6.87 -6.87 -6.87 

-6.55 -19.02 -19.02 -19.02 

-6.05 -5.83 -5.83 -5.83 

-5.55 -5.38 -5.38 -5.38 

-5.05 -4.97 -0.52 -4.97 

-4.55 -4.54 -4.54 -4.54 

-4.05 -4.07 -4.07 -4.07 

-3.55 -3.58 -3.58 -3.58 

-3.05 -3.05 -3.05 -3.05 

-2.55 -11.29 -11.29 -2.51 

-2.05 -19.13 -19.13 -19.13 

-1.55 -1.55 -18.69 -18.69 

-1.05 -5.59 -1.15 -1.15 

-0.55 -0.69 -0.69 -0.69 

-0.05 -0.26 -0.26 -0.26 
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7.3.3. Narrow-Angle Variation Test 

Table 11 shows the raw data for the estimated angles results from the –5° to 5° tests with 0.5° 

steps. 

Table 11: Table of raw data from the solver for the −1° to 1° test. 

True Angle Initial Guess 1 Initial Guess 2 Initial Guess 3 

-6.05 -5.83 -5.83 -5.83 

-5.95 -5.73 -5.73 -5.73 

-5.85 -5.64 -5.64 -5.64 

-5.75 -5.55 -5.55 -5.55 

-5.65 -5.46 -5.46 -5.46 

-5.55 -5.38 -5.38 -5.38 

-5.45 -5.3 -5.3 -5.3 

-5.35 -5.21 -5.21 -5.21 

-5.25 -5.13 -5.13 -5.13 

-5.15 -5.05 -5.05 -5.05 

-5.05 -4.97 -4.97 -4.97 

-4.95 -4.88 -4.88 -4.88 

-4.85 -4.81 -4.81 -4.81 

-4.75 -4.71 -4.71 -4.71 

-4.65 -4.63 -4.63 -4.63 

-4.55 -4.54 -4.54 -4.54 

-4.45 -4.45 -4.45 -4.45 

-4.35 0.09 -4.36 -4.36 

-4.25 -4.27 -4.27 -4.27 

-4.15 -4.17 -4.17 -4.17 

-4.05 -4.07 -4.07 -4.07 

 


