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Spectral properties of heterostructures containing half-metallic ferromagnets in the presence
of local many-body correlations
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In this work, we investigate models for bulk, bi-, and multilayers containing half-metallic ferromagnets
(HMFs), at zero and at finite temperature, in order to elucidate the effects of strong electronic correlations
on the spectral properties (density of states). Our focus is on the evolution of the finite-temperature many-body
induced tails in the half-metallic gap. To this end, the dynamical mean-field theory (DMFT) is employed. For the
bulk, a Bethe lattice model is solved using a matrix product states based impurity solver at zero temperature and
a continuous-time quantum Monte Carlo (CT-QMC) solver at finite temperature. We demonstrate numerically,
in agreement with the analytical result, that the tails vanish at the Fermi level at zero temperature. In order to
study multilayers, taken to be square lattices within the layers, we use the real-space DMFT extension with
the CT-QMC impurity solver. For bilayers formed by the HMF with a band or correlated insulator, we find
that charge fluctuations between the layers enhance the finite-temperature tails. In addition, in the presence of
interlayer hopping, a coherent quasiparticle peak forms in the otherwise correlated insulator. In the multilayer
heterostructure setup, we find that by suitably choosing the model parameters, the tails at the HMF-Mott insulator
interface can be reduced significantly and that a high spin polarization is conceivable, even in the presence of
long-ranged electrostatic interactions.

DOI: 10.1103/PhysRevResearch.2.043263

I. INTRODUCTION

A half-metal is a material that has a metallic density
of states at the Fermi level for one spin channel and si-
multaneously a band gap for the other spin channel. This
extreme asymmetry between the spin channels is the source
of great promise for spintronic application [1,2]. Half-metallic
electrodes could provide fully spin-polarized currents and
large magnetoresistance in giant magnetoresistance and tun-
nel magnetoresistance devices [2].

Density-functional theory (DFT) [3–6] studies have iden-
tified a number of half-metallic bulk compounds, including
Heusler alloys [7], double perovskites, transition-metal ox-
ides, chalcogenides, and pnictides. Some of these proposed
materials have been realized in experiments. Within DFT, the
ground states of these materials are accessible from a single-
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particle picture. However, whenever many-body effects are
essential, the band theory is expected to fail [8]. In particu-
lar, in metallic ferromagnets spin fluctuations play a crucial
role [9]. Therefore, the scattering of charge carriers on such
magnetic excitations is expected to influence the macroscopic
properties of these materials including transport.

Contrary to the itinerant ferromagnets in which states near
the Fermi level are quasiparticles for both spin projections,
in half-metallic ferromagnets (HMFs) an important role is
played by incoherent nonquasiparticle (NQP) states. These
occur near the Fermi level in the energy gap [10–13], and
their tails crosses the Fermi level and produce significant
depolarization effects [2]. The density of the NQP states van-
ishes at the Fermi level but increases strongly on an energy
scale of the order of the characteristic magnon frequency.
Note the clear distinction between the minority and majority
half-metallic cases, corresponding to almost empty and almost
full occupation of the insulating spin channel. While for the
minority gap HMF the NQP states are located just above the
Fermi level, for the majority gap HMF they appear just below
the Fermi level. The NQP states are expected to contribute
to several physical properties such as polarization, specific
heat, and transport [2,14]. In the limit of very strong interac-
tions and close to a completely polarized band, a significant
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logarithmic singularity exists in the imaginary part of the
Green’s function, which corresponds to a finite jump in the
density of states [15]. Edwards and Herz investigated the
stability of the saturated ferromagnetic state using Green’s
function methods, which agree in the limit of large interac-
tions with variational calculations [16].

It should be noted that dynamical mean-field theory
(DMFT) yields qualitatively similar results in the limit of large
U/t [17]: The saturated ferromagnetic state is stable; however,
for realistic values of U its stability is far from being obvious.
(As usual, U and t denote the local interaction and the hop-
ping amplitude, respectively.) DMFT [18–21] in combination
with first-principles [22,23] calculations have been performed
for the prototype HMF, NiMnSb [24], other Heusler alloys
[25,26], zinc-blende structure compounds [27,28], and CrO2

[29]. Using cluster approaches beyond the local DMFT, the
many-body features were found to be enhanced [30,31].
While these effects have been studied for bulk half-metallic
systems, less is known for heterostructures containing half-
metals except some specific cases of zinc-blende structures
[32,33].

In this paper, we describe the behavior of the many-body
induced tails in the half-metallic gap for bulk systems as well
as for multilayers using model studies. In our approach, we
consider bi- and multilayers consisting of a finite number
of half-metallic layers in contact with different numbers of
metallic or insulating layers. It is expected that away from the
interface half-metallicity is preserved on the HMF side. At the
interface region, parameter optimization is important to pre-
serve half-metallicity. This involves the control of electronic
states in the vicinity of the gap to increase the spin polarization
(i.e., reduce the interaction-induced tails) at finite tempera-
tures. In order to produce a half-metal in the interface, a band
gap at the Fermi level either in the minority- or majority-spin
spectral function (density of states) needs to be created.

Using different single-band Hubbard Hamiltonians on dis-
tinct layers allows for optimization of their parameters such as
the magnitude of the interlayer hoppings, strength of local in-
teractions, on-site energies, and Zeeman splittings. Therefore,
we study such Hubbard Hamiltonians [34] for the multilayer
using the DMFT and its real space extension (R-DMFT)
[35,36]. R-DMFT considers a purely local self-energy for the
strong electron correlation in the layers. To study electronic
charge reconstruction, we extend the Hubbard Hamiltonian
to include long-ranged Coulomb repulsion between the lay-
ers. We treat the latter on a mean-field level, calculating the
electrostatic potential self-consistently from the Poisson equa-
tion. For a multilayer of five HMFs and the same number of
Mott insulator layers, the effect of the long-ranged repulsion
is found to lead to a slight redistribution of charges in the
metallic channel.

The focus of our analysis is on a narrow energy range
around the Fermi level. We show that by analytic continuation
of the self-energy (instead of the Green’s function) to real
energies, robust numerical results can be obtained. Some pre-
liminary results have been reported recently [37]. We demon-
strate that many-body effects (described by DMFT) lead to
a dynamical reduction of the Hartree part of the self-energy.
Therefore, the splitting between majority and minority spin
channels is reduced. Furthermore, a temperature-dependent

tail emerges in the half-metallic gap, reducing the polariza-
tion at high temperatures. The magnitude of these effects can
be modified by the optimization of Hamiltonian parameters.
We expect that our results will be useful for a systematic
engineering of heterostructures containing half-metals with
desired properties.

The paper is organized as follows. After the introductory
section, we provide in Sec. II the computational details and
discuss the relevant parameters and methods used to solve the
bulk system as well as the multilayer setup. For completeness,
we have included the derivation of the R-DMFT equations in
Appendix B. The results section, Sec. III, starts with a dis-
cussion of the finite-temperature behavior of the half-metallic
gap, in particular, of the results for the spectral function and
the susceptibility, and compares them with previous calcula-
tions. The analytic continuations of the self-energy and the
Green’s function for the finite-temperature spectral functions
are compared in Appendix A. This is followed by the results
for the bilayer structure, Sec. III B 1, where a square lattice
is considered within the layers. In Sec. III B 2, we consider
a heterostructure of five half-metallic and five Mott insulator
layers. Finally, Sec. IV presents the conclusions of our work.

II. COMPUTATIONAL METHOD

We use a single-band Hubbard model to describe correla-
tion effects in bulk, bi- and multilayer systems. The system
Hamiltonian reads:

Ĥ =
∑
i,σ

ε̃iσ n̂iσ +
∑
i j,σ

ti j ĉ
†
iσ ĉ jσ +

∑
i

Uin̂i↑n̂i↓. (1)

Here ĉ†
iσ and ĉiσ are the fermionic creation and annihilation

operators at site i with spin σ . We denote the number operator
at site i with n̂iσ = ĉ†

iσ ĉiσ . The on-site contributions are ε̃iσ =
εi + σhi − μ − Ui/2, with the on-site energy εi, the magnetic
splitting hi, and the chemical potential μ. Furthermore, the
parameters ti j are the hopping matrix elements, and Ui is
the Hubbard interaction. The hopping matrix is Hermitian,
ti j = t∗

ji. While there exists a solution for a one-dimensional
system [38], we cannot solve this problem in general in
higher dimensions. The dynamical mean-field theory (DMFT)
[18–21], however, provides a nonperturbative approach which
is applicable for any range of parameters and is exact in the
limit of infinite coordination number. It is furthermore exact
for both solvable limits, the noninteracting case, Ui = 0, and
the atomic limit, ti j = 0.

Continuous-time quantum Monte Carlo (CT-QMC) meth-
ods are a tool of choice to solve correlated electron problems
[39]. In the context of DMFT, the Hubbard model in the
limit of infinite coordination number maps onto that of the
single-impurity Anderson model (SIAM), which leads to
invaluable insight into the Mott transition [20]. Being an
action-based method, it allows the simulation of effective low-
energy models after integrating out high-energy degrees of
freedom. Further applications of the CT-QMC include, e.g.,
formulations along the Keldysh contour, applications within
the cluster extensions of DMFT to include spatial fluctuations
[40], the dual fermion approach [41], or the dynamical vertex
approximation [42]. The CT-QMC methods have different
formulations: The interaction expansion (CT-INT) [43], the
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auxiliary-field (CT-AUX) [44], and the hybridization expan-
sion (CT-HYB) [45]. We use the CT-HYB formulation for all
finite-temperature results presented here, since the efficiency
of the segment picture was shown for single-band problems
[39].

CT-QMC operates on “imaginary time,” and therefore an
analytical continuation is necessary to produce spectral func-
tions on the real-frequency axis. This is an ill-conditioned
problem and limits the precision of calculated spectral func-
tions. This issue may be especially severe for multiorbital
problems with complicated spectral lines. A solution to this
problem is to do time evolution directly on the real time axis
utilizing matrix product state (MPS) based impurity solvers
[46–49]. These solvers allow for a precise discretization of
the hybridization function (with several hundred bath sites
per spin) and have been shown to yield excellent results
even for sharp peaks at high energies in the spectral function
[48]. They have been generalized to multiorbital impurity
solvers [50–52] by employing tensor-network representations
of the impurity model, while still keeping very good results
at all energies, with moderate computational cost. For the
present work, we have extended the MPS solver presented in
Refs. [49,50] to allow for magnetically polarized calculations
at zero temperature, T = 0. We calculate the ground state us-
ing the density matrix renormalization group (DMRG) [53,54]
and we perform the time evolution using time-evolving block
decimation (TEBD) [55,56].

III. RESULTS

Section III A addresses the correlation effects for the bulk
setup for a semicircular density of states (DOS), which is
realized by the Bethe lattice with infinite coordination num-
ber. The results presented here address the mechanism of gap
closing as a function of temperature for the bulk HMF. Next,
in Sec. III B, we investigate the spectral function of bilayers
made of a metal, a band insulator, or a Mott insulator attached
to the HMF. In particular, we study the changes induced by
stacking a larger number of layers. Contrary to the Bethe DOS
in the bulk case, for the bi- and multilayers we use the DOS
of a square lattice within the layers.

A. Finite-temperature behavior of minority spin gap in bulk

In the one-band model, Eq. (1), a simple way to gen-
erate the half-metallic ferromagnetic state is to introduce a
sufficiently strong spin splitting such that one spin subband
is empty (or full) in the Hartree-Fock (Stoner) picture. Sec-
tion III A discusses the results for a homogeneous Hubbard
Hamiltonian Eq. (1) of a Bethe lattice with infinite coordi-
nation number with half-bandwidth D = 1 eV, spin splitting
h = 0.5eV, on-site energy ε − μ = 1.5 eV, and on-site inter-
action U = 2 eV. Difficulties in solving the Hubbard model
for such a saturated ferromagnet are well known [10].

For the real-frequency results at zero temperature, the
hybridization of the Bethe lattice �σ (E ) = (D/2)2Gσ (E )
was discretized using 251 bath sites per spin. We find the
ground state |GS〉 (T = 0) to be almost fully polarized (n↓ ≈
10−6, n↑ = 0.342). The interacting Green’s function and in
turn the spectral function were calculated [48] from the time-

evolved ĉ(†)
↓ |GS〉 and ĉ(†)

↑ |GS〉. This was done using time
steps of 0.05 eV−1, up to a maximal time of tmax = 150 eV−1.
A linear prediction [48,57] was performed for the Green’s
functions during the last 20 DMFT iterations up to a maximal
time of tmax = 1500 eV−1, so that no dampening of the time
series was required. For the singular-value decompositions,
a truncated weight of tw = 10−10 together with a maximal
matrix dimension of 700 was chosen. This maximal dimen-
sion was reached during the time evolution of ĉ(†)

↓ |GS〉 at
t = 100 eV−1. The truncated weight always remained below
10−8.

For the QMC results at finite temperature, we compute the
self-energy via the ratio of the two-particle Green’s function
Fσ and the one-particle Green’s function Gσ [58]:

Fσ (τ − τ ′) = 〈cσ (τ )c+
−σ (τ )c−σ (τ )c+

σ (τ ′)〉Seff , (2)

�σ (iωn) = UFσ (iωn)/Gσ (iωn). (3)

The brackets 〈·〉Seff denote the average in the effective impurity
model. This provides more accurate results than the Dyson
equation, such that the Padé analytic continuation [59,60]
of the self-energy is reasonably accurate. We calculate the
spectral function from the analytically continued self-energy:

Aσ (E ) = − 1

π
Im
∫ D

−D
dE ′ ρ(E ′)

E − E ′ + ε̃σ − �̃σ (E )
, (4)

where ρ(E ) is the one-particle density of states of the nonin-
teracting lattice and �̃(E ) is the Padé analytic continuation of
the self-energy, Eq. (3).

Figure 1(a) displays the results of the DMFT calculations
for zero, low (T = 0.02 eV), and high (T = 0.25 eV) temper-
ature. The dotted line shows the Hartree-Fock (HF) solution
as a reference. We first discuss the T ≡ 0 spectrum. As the ↓
spin is completely depleted, the result for the ↑ spin are nearly
identical to the HF result. The ↑-spin electrons are almost
uncorrelated, and the magnitude of the self-energy �↑(E ) is
negligibly small. For the ↓ spin, we see two main effects of
correlations. First, the size of the gap is reduced compared to
the HF approximation. For low energies, there is a dynamical
reduction of the (static) Hartree self-energy (compare Fig. 2).
Additionally, a many-body satellite appears at E ≈ 3.5 eV
in A↓(E ), as shown in Fig. 1(a). At low temperature T =
0.02 eV, the QMC result for the spectral function Eq. (4) is
in good agreement with the real-frequency results for zero
temperature. There is a deviation for the satellite; however,
analytic continuation is not expected to resolve features this
high in energy well. At high temperature, T = 0.25 eV, we
obtain a tail crossing the Fermi level E = 0 shown in Fig. 1(a),
which depolarizes the HMF. Because of the tail, the ↓ spin
is now partially filled, resulting in correlation effects also in
the ↑ spin. The many-body satellite is visible in both spin
channels for the high temperature.

Previous calculations [24] used a simplified quantum
Monte Carlo scheme within the so-called exact enumeration
technique [20], and therefore results for high temperature
(T = 0.25 eV) only were accessible. Our high-T results differ
from the previous ones [24], which show additional peaks
in the spectral function. In contrast to the previous calcu-
lations [24], we determine the spectra from the analytically
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FIG. 1. (a) Spin-resolved spectral function Aσ (E ) for the bulk
half-metal. Black dotted lines correspond to the Hartree-Fock (HF)
approximation. At high temperatures (T = 0.25 eV), the tail of the
spectral function A↓(E ) crosses the Fermi energy, while for low
enough temperatures (T � 0.02 eV) the half-metallic gap is pre-
served. (b) Evolution of the tail in the minority spin spectral function
A↓(E ) with temperature, the lowest temperature corresponding to the
low T result of panel (a). Again, the black dotted line shows the
HF result. The inset (c) displays the T dependence of the spectral
weight A↓(E = 0). Crosses indicate finite temperatures shown in
panel (b) as well as T = 0.25 eV; the circle corresponds to T ≡ 0.

continued self-energy using Eq. (4). In fact, we demonstrate in
Appendix A that a Padé analytic continuation of the Green’s
function—instead of the self-energy Eq. (3)—causes the ap-
pearance of these spurious features in the spectral function.

Figure 1(b) shows the temperature dependence of the spec-
tral function for the minority spin, A↓(E ), in particular its
tail crossing the Fermi level. The highest temperature is T =
0.16 eV, and subsequent lines correspond to always half the
previous value. The disappearance of the spectral weight at
the Fermi level with decreasing temperature is apparent. A
specific many-body feature in HMFs is attributed to spin-
polaron processes [11]: The down-spin electron excitations
forbidden in the one-electron description of HMFs arise due
to the superposition of up-spin electron excitations and virtual
magnons. In model calculations, the existence of this feature

FIG. 2. Imaginary (left) and real (right) part of the down-spin
self-energy �↓(E ) for the bulk half-metal. The dotted line for the
real part indicates the HF result. The peak in Im�↓(E ) for T ≡ 0
(truncated in the figure) extends downward until −9.1 eV.

has been shown by perturbation-theory arguments for the
broad-band case [10] (cf. next paragraph), and in the opposite,
infinite-U limit [2,11]. An analytic approximation allows us
to explore the shape of the temperature dependence of the
spectral function for the minority spins considering a con-
tact electron-magnon interaction described by the exchange
parameter [2,11,15]. According to this theory, a nonlinear
temperature dependence is obtained from the competing ef-
fects of the magnon contribution to the residue of the Green’s
function, ≈T 3/2, with the shift of the band edge states being
proportional to T 5/2. By a direct fit A↓(E = 0) ∝ T α to the
data in the inset of Fig. 1(c), an exponent α in the range of
3/2 to 2 is obtained.

Considering the perturbation-theory arguments in more de-
tail, we first note that for a completely depleted down-spin
channel as depicted in Fig. 1(a) for T ≡ 0 and T = 0.02 eV,
it is evident that an added up-electron (or hole) is not subject
to interactions. Therefore, the up-spin self-energy �↑(E ) van-
ishes. On the other hand, there is a significant contribution to
the down-spin self-energy, �↓(E ), due to scattering at up-spin
electron-hole pairs that arise because of electronic correla-
tions [2,10,11,15,61] (while down-spin electron-hole pairs are
not possible as the minority spin channel is depleted). The
ferromagnetic instability is triggered by the scattering of the
down electron and the up hole, and hence this electron-hole
triplet “bound-state” can be considered a magnon [2,10]. In
perturbation theory, the following expression for the imagi-
nary part of the self-energy is found:

Im�k,↓(E ) = −πU 2n↑
N

∑
q

(
1 − fεk+q,↑ + nωq

)
× δ(E − εk+q,↑ − h̄ωq), (5)

where ωq ∝ q2 is the magnon dispersion, fε denotes the
Fermi-Dirac distribution, and nω is the Bose-Einstein dis-
tribution. As a consequence of the local approximation of
DMFT, the momentum dispersion of the magnons is lost;
nevertheless, there is a pole in the magnetic susceptibility
corresponding to a local spin flip. We thus conclude that
the DMFT solver includes the scattering of electrons at
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FIG. 3. Imaginary part of the local spin-flip susceptibility at zero
temperature (dashed green line), and for a selection of finite temper-
atures (T = 0.02 and 0.08 eV: purple and blue solid lines). The inset
shows the susceptibility divided by energy: −Imχ+−(E )/E .

virtual “magnons” (of purely electronic origin), which can
be described by diagrams constructed from the local Green’s
function, and that the (numerical) local self-energy describes
the same type of effective low-energy physics as discussed
earlier [2,10,11,15].

Figure 2 presents the self-energy for down-spin electrons
corresponding to the spectral functions shown in Fig. 1(a). At
zero (T ≡ 0) and low (T = 0.02 eV) temperature, the imagi-
nary part of the self-energy Im�↓ vanishes at the Fermi level
(E = 0); for high temperature (T = 0.25 eV), there is a finite
tail, −Im�↓ > 0, crossing the Fermi level. The minimum of
Im�(E ) is located in the energy range 3 to 3.5 eV for the
temperatures considered, slightly below the energies where
the satellite in the spectral function is visible in Fig. 1(a).
The satellite is located in the range E − Re�↓(E ) ∈ (ε̃↓ −
D, ε̃↓ + D); this range is reduced further due to the peak in the
imaginary part of the self-energy. As a consequence, the satel-
lites in the spectral functions are found at energies slightly
above the peak of the imaginary part of the self-energy.

Furthermore, we investigate the local spin-flip susceptibil-
ity which we calculate from the effective impurity model:

χ+−(τ − τ ′) = 〈S+(τ )S−(τ ′)〉Seff

= 〈c+
↑ (τ )c↓(τ )c+

↓ (τ ′)c↑(τ ′)〉Seff , (6)

where Seff is the same effective impurity model action from
DMFT as in Eq. (2). At zero temperature, the spin-flip suscep-
tibility was obtained directly on the real axis by time evolving
the matrix-product state |ψ〉 = ĉ†

↓ĉ↑ |GS〉 using TEBD and
then calculating the overlap χ+−(τ − τ ′) = 〈ψ (τ )〉 ψ (τ ′).
Finite-temperature results were sampled with worm-sampling
in CT-HYB [62]; the analytic continuation to real frequencies
was performed using a sparse modeling approach [63,64].

Figure 3 shows the imaginary part of the susceptibilities
χ+−(E ) for different temperatures. For low and zero tem-
peratures, the imaginary part is gapped; i.e., it vanishes for
a finite region around E = 0, in correspondence with the
gapped spectral function shown in Fig. 1(b). For high tem-

t

FIG. 4. Illustration of coupled monolayers of square lattices. The
in- and interlayer hopping integrals are indicated.

peratures, on the other hand, we obtain a power-law behavior,
limE→0(−Imχ+−(E )/E ) > 0, as visible in the inset of Fig. 3;
this is in agreement with the closing of the gap in Fig. 1(b). All
curves have one peak; the peak position (in energy) seems to
slightly increase with temperature. The real-frequency results
show an additional shoulder around E ≈ 1.5 eV. In addition,
a small satellite is found near E ≈ 3.5 eV, outside the area
shown.

B. Bi- and multilayers

The starting point is the formulation of the Hamiltonian for
the coupled layers. For a given number of layers l it has the
form

Ĥ =
∑

l

Ĥl +
∑
〈l,l ′〉

Ĥll ′ ,

Ĥl =
∑
αβ,σ

[
t l
αβ + ε̃lσ δαβ

]
ĉ†

lασ
ĉlβσ

+ Ul

∑
α

n̂lα↑n̂lα↓,

Ĥll ′ = tll ′
∑
ασ

ĉ†
lασ

ĉl ′ασ
+ 1

2

∑
ll ′

Ṽll ′ n̂l n̂l ′ .

(7)

The indices α, β denote sites within a given layer l . The first
term in this Hamiltonian, containing Ĥl , describes isolated
layers; analogous to Eq. (1), this is a sum of single-band
Hubbard Hamiltonians. The second term, a double sum over
nearest-neighbor layers (Ĥll ′ ), contains the hopping between
adjacent layers as well as the interlayer Coulomb interaction.
The latter is treated, for simplicity, within a mean-field ap-
proximation:

1

2

∑
ll ′

Ṽll ′ n̂l n̂l ′ ≈
∑

l

Vl n̂l . (8)

This is equivalent to using Poisson’s equation [65,66] to
determine the potential self-consistently. Within the layers,
we consider a two-dimensional square lattices as depicted
in Fig. 4. The density of states in a single layers has a
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half-bandwidth of D = 1 eV, which corresponds to an in-
plane hopping t l

αβ = 0.25 eV for nearest neighbors α, β. The
inter-layer hoppings are chosen as tl,l+1 = 0.5 eV. For the re-
mainder of Sec. III B, we fix the temperature at T = 0.16 eV.

1. Bilayers

The systems studied next consist of two coupled layers;
one of the layers (l = 1) is half-metallic and the other (l = 2)
is either a metal, a band insulator, or a Mott insulator. The
half-metallic layers have the same parameters as in Sec. III A:
hl = 0.5 eV, εl = −1.5 eV, and Ul = 2 eV. We fix the filling
of the bilayer to match the sum of the fillings of the isolated
layers niso

l ; the HMF layer contributes a filling of niso
1 = 0.355.

The nearest-neighbor interlayer hopping t12 = t21 = t couples
the layers.

In the absence of interactions, Ul = 0 and Vl = 0, and in
the presence of a splitting field h1 acting only on the HMF
layer l = 1, the energy spectrum shows bonding [E−

σ (k‖)] and
antibonding [E+

σ (k‖)] subbands:

E±
σ (k‖) = ε(k‖) + ε̄σ ±

√
ε̄2
σ + �2

σ =: ε(k‖) + ε±
σ ,

ε(k‖) = −2t (cos kx + cos ky),

ε̄σ = (ε̃1σ + ε̃2)/2,

�2
σ = t2 − ε̃1σ ε̃2,

ε̃1σ = ε̃1 + σh1.

(9)

For the Green’s functions of the layers l = 1, 2, we get

G0
llσ (z, ε(k‖))

= 1

ε+
σ − ε−

σ

[
ε̃lσ − ε−

σ

(z − ε(k‖) − ε+
σ )

− ε̃lσ − ε+
σ

(z − ε(k‖) − ε−
σ )

]
. (10)

The magnetic field (h1) splits the two spin channels.
Figure 5 shows the spectral functions of the bilayer het-

erostructure with one HMF layer coupled to a metallic layer
(M). The metallic layer l = 2 is noninteracting, U2 = 0,
nonmagnetic, h2 = 0, and half-filled, ε2 = 0, niso

2 = 1; these
values imply a chemical potential of μ = −0.078 eV. Both
layer spectral functions Alσ (E ), l = 1, 2 are metallic; the gap
in the minority channel of the HMF layer l = 1 closes. The es-
sential physics is the charge transfer between the half-metallic
and the metallic layer, which increases the filling in the mi-
nority spin channel of the half-metal that closes the gap. This
effect also occurs in the absence of interactions.

Figure 6 shows the spectral function of a bilayer structure
of a HMF layer interfaced with a band-insulating (BI) layer.
The band-insulating layer l = 2 is noninteracting, U2 = 0,
nonmagnetic, h2 = 0, and completely empty, ε2 = −2.25 eV,
niso

2 = 5 × 10−5; these values imply a chemical potential of
μ = −0.129 eV. The layer-resolved spectral functions show
that the disappearance of the minority spin half-metallic gap
is due to the interactions in the half-metallic layer. According
to the HF solution of the bilayer, both layers show a gap
for down-spin electrons; cf. the dotted lines in Figs. 6(a)
and 6(b). The proximity to the correlated HMF layer causes
the appearance of electronic states around the Fermi level of
the band insulator. The many-body induced tail in the HMF

FIG. 5. Spin-resolved spectral function Alσ (E ) for one HMF
layer (a) interfaced with one metallic (M) layer (b). The solid lines
are DMFT (CT-HYB), and the dotted lines the HF results (t =
0.5 eV). The green lines show the spectral function for isolated layers
(t ≡ 0).

is enhanced, decreasing the polarization of the HMF layer
further.

Figure 7 shows the spectral functions of the bilayer formed
by interfacing the HMF layer and a Mott insulating (MI)
layer. Electrons in the MI layer are subject to a considerable
interaction, U2 = 5 eV, no magnetic splitting, h2 = 0, and for
the layer occupation the half-filled case (ε2 = 0, niso

2 = 1) is
considered; for these parameters, the chemical potential is
μ = 0.013 eV. At the level of HF, this corresponds to the
interface between the half-metallic and the ordinary metallic
layer as both spectral functions show states at and around the
Fermi level. Within the insulating layer, Fig. 7(b), the splitting
into lower and upper Hubbard bands is visible (separated by
≈U2). The proximity to the HMF layer induces a slightly
spin-polarized quasiparticle peak (QP) located at the Fermi
level of the MI layer. In contrast, the isolated Mott layer,
tll ′ ≡ 0, shows no QP peak for these parameters [67,68]. In
order to study the polarization of the QP peak, we performed

FIG. 6. Spin-resolved spectral function Alσ (E ) for one HMF
layer (a) interfaced with one band insulating (BI) layer (b). The solid
lines are the DMFT (CT-HYB) and the dotted lines show the HF
results (t = 0.5 eV). The green lines show the spectral function for
isolated layers (t ≡ 0).
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FIG. 7. Spin-resolved spectral function Alσ (E ) for one HMF
layer (a) interfaced with one Mott insulator (MI) layer (b). The solid
lines are the DMFT (CT-HYB), and the dotted lines the HF results
(t = 0.5 eV). The green lines show the spectral functions for isolated
layers (t ≡ 0). (c) Spectral weight at the Fermi level Alσ (E = 0) as
function of the hopping t between the layers.

calculations increasing the magnitude of U2 starting from
U2 = 1 eV.

In Fig. 8, we present the spectral function obtained
for fixed parameters of the HMF layer (U1 = 2 eV, ε1 =
−1.5 eV, h1 = 0.5 eV), while increasing the strength of the
Hubbard parameter U2 = 1, 2, 3 eV toward a Mott insulator
in the adjacent layer, l = 2 (ε2 = 0, h2 = 0). The quasiparticle
peak and the lower and upper Hubbard bands are already seen
for U2 = 2 eV in Fig. 8(b), and their separation increases with
increasing U2. The spectral function of the HMF layer shows,
besides the expected satellite at about 3.5 eV, some additional
spectral weight corresponding to the position of the lower
Hubbard band of the Mott insulating layer. Likewise, at higher
energies at the position of the upper Hubbard band a shoulder
in the spectral function of the HMF layer is visible. Contrary
to the homogeneous single layer, where increasing U2 leads to
a sharpening of the QP feature, the spectral weight induced by
the charge transfer seems to overlay the QP. While the spectral
weight around the Fermi level decreases with increasing U2, it
persists even for values as large as U2 = 10 eV. Accordingly,
the double occupation of the MI layer is not completely sup-
pressed in the bilayer case: While increasing the interaction U2

reduces it, the double occupation is larger than in the isolated
MI layer case.

(a)

(b)

(c)

FIG. 8. Spin-resolved spectral function Alσ (E ) for one HMF
layer interfaced with one layer of different interacting strengths U2.
The solid lines are the DMFT (CT-HYB), and the dotted lines the HF
results (t = 0.5 eV). The green lines show the spectral function for
isolated layers t ≡ 0.

We point out that we do not expect a strict Mott transition
in the sense of a vanishing quasiparticle weight, respectively
of a divergent effective mass. Instead, the mutual doping of
Mott and HMF layer leads to metallic behavior of the whole
bilayer, similar to that discussed previously [69,70]. Thus, the
system favors a certain amount of charge fluctuations, and
the hopping between the layers is never renormalized to zero.
Such a behavior has been coined “electronic reconstruction”
[71]. The common feature of these results indicates that the
transfer of charge between the layers is a general phenomenon
that produces metallic interfaces.

2. Half-metallic and Mott insulating multilayers

In the following, we scale up the system size and con-
sider a heterostructure made up of five HMF layers coupled
to five Mott insulator layers. We consider open boundary
conditions. In order to preserve the half-metallic gap, we
scale the on-site parameters of the half-metallic layers by a

043263-7



A. WEH et al. PHYSICAL REVIEW RESEARCH 2, 043263 (2020)

(a) (b) (c) (d)

FIG. 9. Spin-resolved spectral function, Alσ (E ), for five HMF layers interfaced with five MI layers. Panel (a) shows the results for the
first four layers (HMF); the spectra are shifted, their respective baselines are plotted in the same color. Panels (b) and (c) represent the HMF
interface layer, l = 5, and the MI interface layer, l = 6, respectively; in both cases, the HF results are included as dotted lines for easy reference.
The results for the last four MI layers are shown in panel (d); again the spectra are shifted. The spectral functions are evaluated by analytic
continuation, E → E + 0.04i eV.

factor of 2 in comparison to the previous bilayer calculations,
Sec. III B 1: Ul = 4 eV, hl = 1 eV, and εl − μ = −3 eV for
all layers l ∈ {1, . . . 5}. For the Mott insulating layers, we
choose the same Hubbard interaction, Ul = 5 eV, for all re-
maining layers l ∈ {6, . . . 10}.

Figure 9 shows the layer-resolved spectral function,
Alσ (E ), for this setup. The many-body effects in the half-
metallic layers [Figs. 9(a) and 9(b)] are qualitatively the same
as in bulk: We observe a dynamical reduction of the Hartree
part of self-energy, a tail crossing the Fermi level, and a
satellite at E ≈ 7 eV. Approaching the interface, the satellite
shifts to slightly higher energy, E ≈ 7.2 eV. Within the HF
approximation, the layers l = 6, . . . , 10 [i.e., on the MI side,
Figs. 9(c) and 9(d)] are found to be metallic, as to be expected;
in addition, the charge transfer at the interface introduces
small weight at the gap in the interface layer on the HMF side,
l = 5 [Fig. 9(b)].

Within DMFT, we see that the spectral weight in the MI
surface layer, l = 6, is strongly suppressed around the Fermi
level; however, the layer remains metallic despite the strong
interaction. On the other hand, a significant shift of spectral
weight toward the Fermi level is apparent in the down-spin
channel of the HMF interface layer, l = 5. Nevertheless, the
polarization in this layer (l = 5) is close to the polarization
obtained within HF. The closing of the Mott gap observed in
the interface layer on the MI side is similar to the bilayer;
cf. Fig. 7. This effect has the range of two layers; at l = 8
the gap is apparent again. The short range of penetration
is in agreement with the paramagnetic case for a metal-MI
interface [69]. The minimum of the spectral function A6σ ,
Fig. 9(c), of the MI interface layer shifts from zero energy
to roughly E ≈ −1 eV for both spin channels. Contrary to the
bilayer result, Fig. 7, there is no QP peak at E = 0, neither at
the interface nor in the subsequent MI layers. Surprisingly, the
spectral function shows a shoulder at the Fermi level for the
down-spin only.

Next we include the long-ranged Coulomb repulsion in
mean-field approximation for this multilayer setup [65,66,72–
74]. We apply the algorithm described in Refs. [65,66]; the

formula for the potential reads

Vl ({nl}) = −
∑

m

(
nm − nbulk

m

) max(m,l )∑
n=min(m,l )+1

(
es

n + es
n−1

)
(11)

with the layer occupation nl = nl↓ + nl↑; the material param-
eter, es, can be related to the screening length, as discussed
previously [65,66]. We use, however, a different update
scheme to solve the Poisson equation, which avoids the thou-
sands of iterations [65,66] necessary with a naive mixing
scheme. Instead, after every DMFT iteration, we temporarily
fix the self-energy, �lσ (iωn), to a self-consistent potential
Vl . We start from the occupation numbers nl (e.g., given by
the last DMFT iteration, or the noninteracting result). From
the occupations, we calculate the potential using the above
equation,

V = V (n), (12)

where we introduce the vector notation V = {Vl}, n = {nl}.
Given the potential and the self-energy, we can calculate a
new Green’s function,

G(iωn) = G(V ,�(iωn), iωn), (13)

with the vectors G(iωn) = {Gllσ (iωn)} and �(iωn) =
{�lσ (iωn)}. From the Matsubara sum of the Green’s
function, we then calculate new occupations, giving us
the self-consistency equation

n = n[G] = n[n,�]. (14)

After every DMFT step, we solve for the self-consistent
charge nl , Eq. (14), and therefore for a self-consistent po-
tential Vl for the given self-energy. This method significantly
reduces the number of required DMFT iteration; however, it
introduces costs for solving Eq. (14) after every iteration. The
main cost of Eq. (14) is the evaluation of the Green’s function
matrix. Numerically, it is more efficient to solve the equivalent
root-search problem, r(n∗) = 0, for the function

r(n) = n[n,�] − n. (15)
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FIG. 10. Change in spin-resolved occupations due to interlayer
Coulomb mean-field potential, Vl , Eq. (11). The graph shows the
deviation of the spin-resolved occupation of the layers from half the
bulk occupation nbulk

l /2. The blue markers show the occupations for
es ≡ 0 and therefore Vl ≡ 0, while for the other markers (es �= 0)
the self-consistent mean-field potential is included. The vertical bar
indicates the interface between the HMF region (l ∈ {0, . . . , 5}) and
the MI region (l ∈ {6, . . . , 10}). The upward triangles represent the
up-spin σ = ↑, and the downward triangles indicate the down-spin
σ = ↓.

A Newton-Krylov solver [75], as implemented in Ref. [76],
is found to be most suitable for this problem. Furthermore,
we also include the search for the chemical potential, μ,
necessary for fixing the total charge and therefore guarantee-
ing charge neutrality,

∑
l nl =∑l nbulk

l , when performing the
root search, Eq. (15). This is easily implemented using the
modified equation

r̃(n, μ) =
(

r(n)∑
l

(
nl [n,�, μ] − nbulk

l

)), (16)

where we append a row for the difference in total charge to
the vector-valued function r(n) [77].

We fix the material parameter to the following selection
of representative values: es

l = 0.2, 1.0, 5.0, and 25 eV. The
bulk occupations are nl = 0.205 for the HMF layers, l ∈
{1, . . . , 5}, and half-filling (nl = 1) for the MI layers, l ∈
{6, . . . , 10}.

Figure 10 shows the spin-resolved occupation for the mul-
tilayer, without (blue) and including the long-ranged Coulomb
repulsion. The magnitude of es mainly affects the occupation
of the metallic spin channel σ = ↑, due to charge fluctua-
tions in this channel, while the rest is nearly invariant with
respect to inclusion of long-ranged effects. Likewise, the spec-
tral function is nearly identical to Fig. 9. We see, however,
an increase of the magnitude of the proximity-induced local
magnetic moment nl↑ − nl↓ in the Mott layer at the interface
(l = 6).

IV. CONCLUSION

In summary, we have presented detailed model studies
for the spectral properties of bulk half-metallic ferromagnets
(HMFs) as well as for bi- and multilayers containing half-
metallic ferromagnets. Dynamical mean-field theory has been

employed to describe the local correlations between charge
carriers, while a mean-field approach was used to include the
long-ranged Coulomb interactions.

Our numerical results show that the correlation-induced
tails in the vicinity of the Fermi level in bulk HMFs are
significantly reduced at zero temperature, in agreement with
analytical predictions [2]. On the other hand, for bi- and
multilayers we find an enhancement of the tail contribution
at the half-metallic side, as well as coherent quasiparticle
states on the Mott insulating side. In the multilayers, these
mobile carriers are confined to a relatively narrow region at the
interface. Furthermore, the Fermi liquid states at the interface
reduce the full spin polarization characteristic for bulk HMFs.
Note that the formation of Fermi liquid states at such inter-
faces is similar to the lanthanum aluminate-strontium titanate
(LaAlO3/SrTiO3) interfaces, which have been theoretically
[78–81] studied and experimentally observed [82,83] some
time ago; however, to the best of our knowledge, such effects
have not been studied for heterostructures containing HMFs.

On the technical side, we have demonstrated that the
real-space DMFT allows, in a rather transparent way, the
inclusion of long-ranged Coulomb interactions via the Pois-
son equation. In this approach, the charge distribution in
the presence of strong short-range interactions and spatially
inhomogeneous hoppings is determined self-consistently. In
contrast to previous implementations of the R-DMFT [36],
we use the Hubbard model and a state-of-the-art CT-QMC
[39] implementation for the impurity solver. The Poisson
equation is solved as an effective one-dimensional problem
in combination with the R-DMFT self-consistency condition
as discussed above. For the bi- and the multilayer setup, we
have considered the case where the layers can be modeled as
square lattices. For our bilayer setup, we have considered a
half-metallic monolayer in contact with either a metal, a band,
or a Mott insulator. We have seen that charge reconstruction
at the interface causes the existence of metallicity, even in the
presence of large Hubbard U parameters at the Mott insulator
layer. In the R-DMFT analysis, the HMF/MI bilayers are
Fermi liquids with well-defined quasiparticles, and thus the
present approach offers a way to access Fermi liquid quanti-
ties on the basis of a microscopic model.

On the experimental side, most studies have concentrated
on the question of whether the half-metallic properties extend
to the surface or interface. Using DFT calculations, a genuine
half-metallic interface of NiMnSb with InP and CdS has been
obtained only for the anion terminated (111) direction [84].
Interfaces of semi-Heuslers NiMnSb or NiMnSi with large
gap insulators such as MgO have been also studied [85].
A high spin polarization has been obtained only under the
prerequisite of structural optimization [85].

However, the microscopic origin of the HMF/Mott insu-
lator interface has never been addressed. In this context, we
thus considered a minimal model in which half-metallic layers
are in contact with correlated insulator layers. We solved the
corresponding Hubbard Hamiltonian in Hartree-Fock (HF)
approximation and beyond using dynamical mean-field theory
(DMFT). Within the HF approximation, when crossing the
interface from the HMF side into the metallic side, we find
a sharp transition, i.e., the half-metallic layer is followed di-
rectly by a metallic layer. In contrast, by including dynamical
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TABLE I. Residues wσ j and poles εσ j of Eq. (A1).

wσ0(eV2) εσ0(eV) wσ1(eV2) εσ1(eV)

σ = ↑ 0.01066442 − 0.01755259i −1.00707761 − 0.95609594i 0.22879782 + 0.01755259i 2.87718127 − 0.23207868i
σ = ↓ −0.00282778 − 0.09524875i 0.19827565 − 1.61153127i 0.89041685 + 0.09524875i 2.86888131 − 0.29918925i

correlations within DMFT, we find a continuous transition
from the half-metallic region through a pseudo-gapped in-
terface into an insulating region. Our simplified model thus
indicates that a high spin-polarization within the interface
region can be preserved in the presence of correlated Mott
insulators.
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APPENDIX A: PADÉ ANALYTIC CONTINUATION

In the following, we show that a Padé analytic continuation
of the Matsubara Green’s function instead of the self-energy
leads to artifacts in the spectrum. The self-energy, Eq. (3)
in Sec. III A, for T = 0.25 eV can be fitted by the two-pole
function

�σ (z) = �HF
σ +

1∑
j=0

wσ j

z − εσ j
(A1)

with the residues wσ j and poles εσ j given in Table I, as shown
in Fig. 11. Below, we will use this analytic expression as a
realistic test case for the quality of analytic continuation.

First, we need to fit the parameters in Eq. (A1). They can be
obtained using Padé analytic continuation of the self-energy
Eq. (3), as it yields an analytic formula (with numerical co-
efficients) in form of a rational polynomial f (z) = p(z)/q(z),
with polynomials p and q [59]. The poles εσ j can be calculated
as the zeros of the denominator q. Instead of using Thiele’s
reciprocal difference method to determine the rational poly-
nomial, we directly calculate the poles in Eq. (A1) employing
the algorithm presented in Ref. [86]. We write the linearized
Padé approximation f (z)q(z) = p(z) in matrix form,

FV qq = V p p, (A2)

where (F )i j = f (zi )δi j is the diagonal matrix of function val-
ues, V q and V p are the Vandermond matrices corresponding
to q and p, and q and p are the polynomial coefficients. We
rewrite the equation as

0 = (FV q,V p)(q,−p)T =: Cx. (A3)

The number of poles M is then determined such that the nu-
merical null dimension of the matrix C is one. To calculate the

poles, we rewrite the rational polynomial f (z) = p(z)/q(z) by
factorizing a pole εm from q(z) = (z − εm)q̃m(z), which leads
to

z f (z)q̃m(z) − p(z) = εm f (z)q̃m(z). (A4)

Again, we rewrite this set of equations in matrix form:

(zFV q̃,V p)(q̃,−p)T = εm(FV q̃, 0)(q̃,−p)T. (A5)

This is a generalized eigenvalue problem, where the eigenval-
ues are the poles εm, and the eigenvectors are the coefficients
of the polynomials p and q̃. Using the knowledge of the poles
εσ j , the residues wσ j can be obtained solving the linear equa-
tion in wσ j . To reproduce noisy input, Padé places artificial
poles along the imaginary axis. We verify that the residues
of these poles are small and neglect them subsequently, and
recalculate the residues including physical poles only [87] It
is necessary to verify that the contribution of unphysical poles
is small. In the case of a pole close to or on the real axis, like,
e.g., in the Mott insulating phase, Padé might incorrectly place
such poles in the upper complex plane. However, it is essential
not to neglect these poles.

Using Eq. (A1), we can evaluate the spectral function di-
rectly on the real axis

Aanalytic
σ (E ) = − 1

π
Im
∫ D

−D
dE ′ ρ(E ′)

E − E ′ − ε̃σ − �σ (E )

= − 1

π
Img(E − ε̃σ − �σ (E )), (A6)

FIG. 11. Imaginary (top) and real (bottom) part of the self-energy
for T = 0.25 eV. The main plots show the data (markers) of the first
30 Matsubara frequencies; the continuous line is the fit Eq. (A1). The
insets show the remaining Matsubara frequencies (31–1024); note
the different scale for the imaginary part.
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(a) (b)

FIG. 12. (a) Comparison of the Padé analytic continuation of the
Matsubara Green’s function, Eq. (A8), with the direct evaluation of
Eq. (A6), using the fit Eq. (A1) as input to both. (b) Padé analytic
continuation of the raw data of the Matsubara Green’s function
not employing the fit Eq. (A1). The HF approximation is given as
reference (dotted line).

where the integral evaluates for the Bethe lattice with infinite
coordination number to

g(z) :=
∫ D

−D
dE

ρ(E )

z − E
= 2z

D2

⎡⎣1 −
√

1 −
(

z

D

)−2
⎤⎦. (A7)

We compare it with the Padé analytic continuation APadé
σ (E ) =

−ImG̃σ (E )/π of the Green’s function evaluated on the imag-
inary axis,

Gσ (iωn) =
∫ D

−D
dE ′ ρ(E ′)

iωn − E ′ − ε̃σ − �σ (iωn)

= g(iωn − ε̃σ − �σ (iωn)). (A8)

In Fig. 12(a), we use the fitted �σ (z) as input to Eq. (A8). The
figure shows that the analytic continuation of the Matsubara
Green’s function Eq. (A8) leads to spurious features similar to
those in Ref. [24], in stark contrast to the analytic continuation
of the self-energy used in Fig. 1. Figure 12(b) shows the
Padé continuation using the noisy raw data Eq. (3) as input
to Eq. (A8). The result qualitatively agrees with the previous
results [24].

We conclude that, independent of the presence of noise,
Padé is unable to reproduce the branch cut of the nonin-
teracting Bethe DOS ρ(E ) from Matsubara frequency data
Eq. (A8), as it approximates the function with a finite number
of poles. The sharp band edges cannot be resolved, and oscil-
lations similar to the Gibbs phenomenon in Fourier transform
occur. We can further support this argument by looking into
the analytic continuation of the hybridization function. From
Eqs. (A1) and (A8), we can calculate the hybridization func-
tion on the Matsubara axis,

�σ (iωn) = iωn − ε̃σ − �σ (iωn) − 1/Gσ (iωn). (A9)

This function encapsulates the effect of the DOS ρ(E ); if we
perform the Padé analytic continuation �̃σ (E ), we get the
spectral function

APadé hyb
σ (E ) = − 1

π
Im

1

E − ε̃σ − �̃σ (E ) − �σ (E )
, (A10)

which shows the same features as APadé
σ (E ) = −ImG̃σ (E )/π

in Fig. 12.
An analytic continuation of the self-energy avoids this

problem; the analytic expression for ρ(E ) is used directly, and
the self-energy lacks such sharp features.

APPENDIX B: R-DMFT

In the following, we derive the R-DMFT equations [35,36]
used in Sec. III B. We use an expansion in the coupling be-
tween the layers in the action formalism.

We start from the action S of the multilayer heterostructure,
which we split into two parts,

S =
∑

l

Sl + �S. (B1)

Sl is the action of the isolated layer l , and �S contains the
hopping in between the layers. To ease the notation, we intro-
duce the convention that indices with a bar are summed over:
l̄ is summed over layers, ᾱ, β̄ over sites within a layer, and σ̄

over spins. The contributions to the action Eq. (B1) read

Sl =
∫ β

0
dτ
(
c+

lᾱσ̄

[
(∂τ + ε̃l )δᾱβ̄ + t l

ᾱβ̄

]
c

lβ̄σ̄
+ Ulnlᾱ↑nlᾱ↓

)
,

(B2)

�S =
∫ β

0
dτc+

l̄ᾱσ̄
tl̄ l̄ ′cl̄ ′ᾱσ̄

. (B3)

We suppress the τ dependence of the Grassmann fields
c+(τ ), c(τ ). The action Sl and �S correspond to the parts Hl

and Ĥll ′ of the Hamiltonian, Eq. (7), neglecting the interlayer
Coulomb interaction. The corresponding partition function
reads

Z =
∫
D[c+, c]e−S[c+,c] =

[∏
l ′

Zl ′

]
〈e−�S〉∑

l Sl
. (B4)

Next we introduce auxiliary fields and expand the contri-
butions of the isolated layers in cumulants. We truncate this
expansion after the first order, keeping only the quadratic
part in the auxiliary fields. This approximation results in a
self-energy which is diagonal in the layers, �lα;l ′β = �l

αβδll ′ .
We perform the Grassmannian Hubbard-Stratonovich

transformation following Ref. [88]. We rewrite the exponen-
tial e−�S as Gaussian integral over auxiliary Grassmann fields
ψlασ

(τ ) and ψ+
lασ

(τ ):

e−�S = 1

Z0

∫
D[ψ+, ψ ]e−S0−

∫ β

0 dτ (ψ+
l̄ᾱσ̄

c
l̄ᾱσ̄

+c+
l̄ᾱσ̄

ψ
l̄ᾱσ̄

), (B5)

where we introduce the noninteracting auxiliary action

S0[ψ+, ψ ] = −
∫ β

0
dτψ+

l̄ᾱσ̄
(T−1)l̄ᾱ;l̄ ′β̄ψ

l̄β̄σ̄
, (B6)

with the matrix (T )lα;l ′β = tll ′δαβ . The corresponding parti-
tion function Z0 is

Z0 =
∫
D[ψ+, ψ ]e−S0 . (B7)

Using Eq. (B5), we rewrite the partition function Z as
a field integral over auxiliary fields. The average 〈·〉∑

l Sl
in
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Eq. (B4) can be split into the contributions of the isolated layers, yielding

Z =
∏

l ′ Zl ′

Z0

∫
D[ψ+, ψ ]e−S0[ψ+,ψ ]

∏
l

〈
exp

(
−
∫ β

0
dτ (ψ+

lᾱσ̄ clᾱσ̄ + c+
lᾱσ̄ ψlᾱσ̄ )

)〉
Sl

. (B8)

We re-exponentiate the average 〈·〉Sl and expand the logarithm of the averages 〈·〉Sl in terms of connected Green’s functions,

ln

〈
exp

(
−
∫ β

0
dτ (ψ+

lᾱσ̄ clᾱσ̄ + c+
lᾱσ̄ ψlᾱσ̄

)〉
Sl

= −
∞∑

n=1

∑
α1...βn

′ ∫
dτ1· · ·

∫
dτ ′

nψ
+
lβ1...n

ψlα1...n
Gl

c α1...n;β1...n
, (B9)

with the connected Green’s function

Gl
c α1...n;β1...n

= −〈clα1
. . . clαn

c+
lβ1

. . . c+
lβn

〉
Sl c; (B10)

we use the abbreviation ψ+
lβ1...n

= ψ+
lβ1

. . . ψ+
lβn

, and the prime at the sum denotes an ordered sum. The σ indices are suppressed.
The next step is to establish a relation between the fermionic Green’s functions G of the full lattice and the auxiliary field

Green’s functions G. To shorten the notation, we introduce new indices a and b which denote sets (l, α, σ, τ ). Evidently a
fermionic n-particle Green’s function can be generated by differentiating the average 〈·〉(

∑
l Sl ) in Eq. (B8) with respect to the

auxiliary fields:

G(n)
a1...anb1...bn

= −〈ca1
. . . can

c+
b1

. . . c+
bn

〉
S

= − 1

Z

∫
D[ψ+, ψ ]e−S0

δ2n

δψb1
. . . δψbn

δψ+
a1

. . . δψ+
an

〈
e−∑a (ψ+

a ca+c+
a ψa )
〉∑

l Sl
. (B11)

Using integration by parts [89], we can relate the fermionic G to the auxiliary fields Green’s functions:

G(n)
a1...anb1...bn

= − 1

Z

∫
D[ψ+, ψ ]

⎛⎝e−S0

↼

δ
2n

δψb1
. . . δψbn

δψ+
a1

. . . δψ+
an

⎞⎠〈e−∑a(ψ+
a ca+c+

a ψa )
〉∑

l Sl
. (B12)

The arrow in this equation indicates that the right derivative [89] is used, which means that the derivative acts from the right
side on the Grassmann fields. We explicitly calculate the expression for the one-particle Green’s function. The differentiation
yields

e−S0

↼

δ
2

δψaδψ
+
b

= e−S0

[
(T−1)ab +

∑
a′b′

(T−1)ab′ψb′ψ
+
a′ (T −1)a′b

]
, (B13)

and thus the one-particle Green’s function is

Gab ≡ G(1)
ab = −(T−1)ba +

∑
a′b′

(T−1)ba′Ga′b′ (T−1)b′a. (B14)

We still need to calculate the auxiliary field Green’s function G. At this point, we truncate the expansion Eq. (B9), keeping only
keep the first order, n = 1, and hence the action is quadratic in the auxiliary field:

S =
∫ β

0
dτψ+

l̄ᾱσ̄

(−(T−1)l̄ᾱ;l̄ ′β̄ + δl̄ l̄ ′G
l̄
ᾱβ̄ σ̄

)
ψ

l̄ ′β̄σ̄
. (B15)

Then a Gaussian integration yields the auxiliary field Green’s function G:

Gab = (T−1 − diag(Gl ))
−1
ab . (B16)

We plug this back into Eq. (B14) and obtain the matrix equation

G = −T−1 + T−1(T−1 − diag(Gl ))
−1

T−1 = (diag(Gl )
−1 − T )

−1
. (B17)

Here the second equality is the Woodbury matrix identity
[90]. Thus, we can calculate the Green’s function G of the
full heterostructure from the Green’s functions of the iso-
lated layers Gl . Written in terms of the self-energy, we
get

G−1 = diag(iωn − εl − �′
l (iωn)) − T , (B18)

where the self-energies �′
l are determined by the Dyson equa-

tions of the isolated layers,

�′
l = Gl

0
−1 − Gl −1

. (B19)

We determine these self-energies �′
l by using DMFT for every

distinct isolated layer. This approximation is evidently correct
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in the limit of isolated layers, T = 0, and in the limit of
noninteracting layers, Ul = 0. This approximation is supple-
mented by self-consistency.

Self-consistent R-DMFT equations. We are going to replace
the self-energy of the isolated layers, �′

l , by a self-consistently
determined self-energy. We can also write Eq. (B18) in the
form

G−1 = diag((G−1)ll ) − T ; (B20)

i.e., the inverse Green’s function is written as sum over the
diagonal and the off-diagonal elements. The Green’s function

then reads

G = [diag((G−1)ll ) − T ]
−1

. (B21)

This looks like a self-consistency equation, because it involves
the same Green’s function G on the left- and right-hand sides
of the equation. Finally, the Dyson equation for the self-
energy reads

�l = G−1
0 ll − G−1

ll . (B22)

We determine the self-energy �l by a DMFT scheme [35],
instead of using �′

l from Eq. (B19).
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