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ABSTRACT Generating high-fidelity conditional audio samples and learning representation from unlabelled
audio data are two challenging problems in machine learning research. Recent advances in the Generative
Adversarial Neural Networks (GAN) architectures show great promise in addressing these challenges.
To learn powerful representation using GAN architecture, it requires superior sample generation quality,
which requires an enormous amount of labelled data. In this paper, we address this issue by proposing Guided
Adversarial Autoencoder (GAAE), which can generate superior conditional audio samples from unlabelled
audio data using a small percentage of labelled data as guidance. Representation learned from unlabelled
data without any supervision does not guarantee its’ usability for any downstream task. On the other hand,
during the representation learning, if the model is highly biased towards the downstream task, it losses its
generalisation capability. This makes the learned representation hardly useful for any other tasks that are not
related to that downstream task. The proposed GAAE model also address these issues. Using this superior
conditional generation, GAAE can learn representation specific to the downstream task. Furthermore, GAAE
learns another type of representation capturing the general attributes of the data, which is independent of the
downstream task at hand. Experimental results involving the S09 and the NSynth dataset attest the superior
performance of GAAE compared to the state-of-the-art alternatives.

INDEX TERMS Audio generation, representation learning, generative adversarial neural network, guided
generative adversarial autoencoder.

I. INTRODUCTION
Representation learning aims to map higher-dimensional data
into a lower-dimensional representation space where the vari-
ational factors of the data are disentangled. Learning a disen-
tangled representation from an unlabelled dataset opens a
window of opportunity for researchers to utilise the vastly
available unlabelled data for any downstream tasks [1]. Such
as, a representation learnt from freely available YouTube
audios (movie, news etc.) can be used to improve a task such
as emotion recognition from audio where a large labelled
dataset is unavailable.

Generative Adversarial Neural Network (GAN) [2] has
shown great promise for learning powerful representation.
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GAN is comprised of a Generator network and a Discrim-
inator network, where these networks are trained to defeat
each other based on a minimax game. During training,
the Generator tries to fool the Discriminator by generating
real-like samples from a random noise/latent distribution,
and the Discriminator tries to defeat the Generator by differ-
entiating the generated sample from the real samples [2].
During this game-play, the Generator disentangles the under-
lying attributes of the data in the given random latent
distribution [3]. This helps in learning powerful representa-
tions [3]–[9] in a unsupervised manner. GAN based models
pose great promise in audio research where limited or no
labelled data is available.

The representation learning performance of the GANs
usually improves along with its’ sample generation quality.
Intuitively, GAN models that can generate high-quality
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samples, intrinsically learns powerful representation [6].
GAN-based models are successful at generating high-fidelity
images, however, they fail to perform likewise for the
complex audio waveform generation as it requires modelling
higher-order temporal scales [10]. To successfully generate
audio with GANs, many researchers have worked with the
spectrogram of the audio which can be converted back to the
audio with minimal loss [10]–[12]. Recently proposed high
performing GAN architectures such as BigGAN [13] and
StyleGAN [9] are not well explored in the audio field, leaving
a room to explore the compatibility of these models for audio
data.

A representation learnt with GANs in a completely unsu-
pervised manner does not guarantee the usability of the learnt
representation for any particular downstream task. This is
because it can ignore the important characteristics of the data
during the training which is important for succeeding in the
downstream task [14]. So, some bias towards the downstream
task is necessary during the unsupervised training to succeed
in that downstream task [1].

GAN models perform better for conditional generation
using labelled data. The labels add useful side information
during the training, which helps the GAN models to decom-
pose overall sample generation tasks into sub-tasks according
to the conditioned labels. Though the conditional generation
helps to improve performance significantly, it requires an
enormous amount of labelled data [15], which is costly and/or
error-prone. Using the GAN models to generate high-quality
samples with a minimum amount of labelled data therefore
remains a crucial challenge [14].

In our previous work, we propose a BigGAN based
architecture called ‘‘Guided Generative Adversarial Neural
Network (GGAN),’’ which can generate state-of-the-art
(SOTA) conditional audio with fewer labelled data. This
labelled data is used as a guidance to force GGAN to learn
guided representation for any downstream task at hand. Note
that, the learned representation for any particular downstream
task makes it less useful for any other task that is unrelated
to the downstream task [14]. In many cases, it is desirable
to learn representation in a manner so that it can be used for
any particular downstream task as well as can be used for any
future tasks independent of the downstream task at hand [16].
It is a challenging problem to learn both generalised and
guided representation at the same time with conditional GAN
architectures. During the training of any conditional GAN,
the latent noise/samples are independent of the given condi-
tion. So, GAN learns to map the general characteristics of
the training data from the latent samples, which is indepen-
dent of the condition. On the other hand, if the condition is
imposed on the latent samples/noise like GGAN, the latent
cannot learn general characteristics as it is biased towards the
conditioned attributes. In this paper, we address this problem.
Our contributions are as follows:
• We propose a novel autoencoder based GAN model
GAAE, which can generate high-fidelity audio samples
capturing the diverse modes of the training data

distribution leveraging the guidance from a fewer
labelled data samples from that dataset or a related
dataset.

• We evaluate the conditional sample generation quality
of the proposed model based on two audio datasets:
the Speech Command dataset (S09) and the Musical
Instrument Sound dataset (Nsyth). We demonstrate that
the GAAE model performs significantly better than the
SOTA models.

• We achieve generalised and guided representation
in our GAAE model. Evaluation results on three
different datasets: the Speech Command dataset (S09),
the Audio Book Speech dataset (Librispeech), and the
Musical Instrument Sound dataset (Nsyth) show that
the proposed GAAE model performs better than SOTA
models.

II. BACKGROUND AND RELATED WORK
A. AUDIO REPRESENTATION LEARNING
While there is a rich literature of supervised representa-
tion learning, due to our focus on unsupervised represen-
tation learning we will only discuss the related literature
here. In the field of unsupervised representation learning,
the self-supervised learning has become very popular recently
due to its unprecedented success in the field of computer
vision [17]–[23] and natural language processing [24]–[27].
Self-supervised learning uses information presents in the
unlabelled data to create an alternative supervised signal to
train the model for learning feature/representation. For an
example, learning representation through predicting the rota-
tion angel of imageswhere rotation angel serves as supervised
signal and this learned representation can be used to improve
other related image classification tasks [28].

Likewise, in the audio field, researchers have achieved
good performances using self-supervised representation
learning. In their work, DeepMind [29] have proposed a
model to learn a useful representation from unsupervised
speech data through predicting a future observation in the
latent space. In another work from Google [30], the repre-
sentation is learnt by predicting the instantaneous frequency
based on the magnitude of the Fourier transform. Further-
more, Arsha et al. (2020) [31] proposed a cross-modal
self-supervised learning method to learn speech representa-
tion from the co-relationship between the face and the audio
in the video. Other efforts have been made by researchers to
learn a general representation by predicting the contextual
frames of any particular audio frame like wav2vec [32],
speech2vec [33], and audio word2vec [34]. Likewise,
there are other successful implementations [35]–[38] of the
self-supervised representation learning in the field of audio.

Though self-supervised learning is good for learning
representations from unlabelled datasets, it requires manual
endeavour to design the supervision signal [39]. To avoid
this, researchers have focused on fully unsupervised repre-
sentation learning mainly using autoencoders [40]–[42].
In [43], the authors learnt representationswith an autoencoder

223510 VOLUME 8, 2020



K. N. Haque et al.: High-Fidelity Audio Generation and Representation Learning With GAAE

from a large unlabelled dataset, which improved the
emotion recognition from speech audio. Similarly, in another
work, the authors used a denoising autoencoder to
improve affect recognition from speech data [44]. Several
works [5], [45], [46] have utilised Variational Autoencoders
(VAEs) [47] to learn an efficient speech representation from
an unlabelled dataset. Recently, given the popularity of
adversarial training, different works have been conducted
by researchers to learn a robust representation with
GANs [48], [49] and Adversarial Autoencoders [50], [51].

Though learning a representation from prodigiously avail-
able unlabelled datasets is very intriguing, the recent work
from Google AI has proved that completely unsupervised
representation learning is not possible without any form of
supervision [1]. Also, representation learnt from an unsu-
pervised method does not guarantee the usability of this
learnt representation for any post use case scenario. Thus,
as outlined, we proposed the Guided Generative Adversarial
Neural Network (GGAN) [14], which can learn a powerful
representation from an unlabelled audio dataset according
to the supervision given from a fewer amount of labelled
data. Therefore, in the learnt representation space, the GGAN
disentangles attributes of the data according to the given cate-
gories from the labelled dataset, which benefits the related
post-use case scenario.

B. AUDIO GENERATION
Most of the audios are periodic, and high-fidelity audio gener-
ation requires modelling a higher order magnitude of the
temporal scales, which makes it a challenging problem [10].
Most of the research works related to audio generation are
based on the audio synthesis viz; Aaron and et al. (2016)
have proposed a powerful autoregressive model named
‘‘Wavenet,’’ which works very well on text to speech (TTS)
synthesis for both English and Mandarin. Later, the authors
have improved this work by proposing ‘‘Parallel Wavenet,’’
which is 20 times faster than the original Wavenet. Other
researchers have utilised the seq2seq model for TTS such
as Char2Wav [52] and TACOTRON [53]. However, these
audio generationmethods are conditioned on the text data and
mainly focused on speech generation. Thus, these methods
cannot be generalised to all other audio domains, even for
speech data where transcripts are not available.

In the context of generating audio without any condi-
tion on the text data, the GANs are very promising due to
their massive success in the field of computer vision [6],
[9], [54]–[56]. However, porting these GAN architectures
directly to the audio domain does not offer similar perfor-
mance as the audio waveform is mostly more complex than
an image [10], [11]. Therefore, researchers have focused on
generating spectrogram (2D image-like representation of
audio) rather than generating directly a waveform. Then,
the generated spectrogram is converted back to audio.
Chris et al. (2019) [11] have trained a GAN-based model to
generate spectrograms and successfully converted them back
to the audio domain with the Griffin-Lim algorithm [57].

In their TiFGAN paper [12], the authors have proposed a
phase-gradient heap integration (PGHI) [58] algorithm for
better reconstruction of the audio from the spectrogram with
minimal loss. As the PGHI algorithm is good at recon-
structing audio from the spectrogram, now the challenge is
to generate a realistic spectrogram. As the spectrogram is—
as outlined—an image-like representation of the audio, any
GAN based framework from the image domain should be
compatible. Hence, the BigGAN architecture [13] has shown
promising performance at generating conditional high reso-
lution/fidelity images, but it was not well explored for audio
generation. In this paper we address this gap.

C. CLOSELY RELATED ARCHITECTURES
The proposed GAAE model is a semi-supervised model,
as we leverage a small amount of labelled data during the
training. In [59], the authors proposed a semi-supervised
version of the InfoGANmodel [4] to capture a specific repre-
sentation and generation according to the supervision which
comes from a small number of labelled data. But, the success
of this model in terms of the complex data distribution
is not evident. Other researchers have explored the scope
of semi-supervision in GAN architectures [15], [60], [61] to
improve the conditional generation, but most of these works
are not explored in the audio domain which leaves a major
gap for the researchers to address. The GAAE model is
based on an Adversarial Autoencoder (AAE) [8], where we
have extended the AAE model to learn both guided and
generalise/style representation from an unlabelled dataset in
a semi-supervised fashion. Furthermore, in the GAAEmodel,
we have implemented a unique way to leverage the small
amount of labelled data for conditional audio generation.
Here, we have also proposed a way to utilise the gener-
ated conditional samples for improving the representation
learning during the training. Moreover, the building block
for our GAAE model is a BigGAN architecture; thus,
we further contribute by exploring the use of a BigGAN in
an autoencoder-based model for audio data.

D. AUDIO REPRESENTATION LEARNING
While there is a rich literature of supervised representa-
tion learning, due to our focus on unsupervised represen-
tation learning we will only discuss the related literature
here. In the field of unsupervised representation learning,
the self-supervised learning has become very popular recently
due to its unprecedented success in the field of computer
vision [17]–[23] and natural language processing [24]–[27].
Self-supervised learning uses information presents in the
unlabelled data to create an alternative supervised signal to
train the model for learning feature/representation. For an
example, learning representation through predicting the rota-
tion angel of imageswhere rotation angel serves as supervised
signal and this learned representation can be used to improve
other related image classification tasks [28].

Likewise, in the audio field, researchers have achieved
good performances using self-supervised representation
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learning. In their work, DeepMind [29] have proposed
a model to learn a useful representation from unsuper-
vised speech data through predicting a future observation
in the latent space. In another work from Google [30],
the representation is learnt by predicting the instanta-
neous frequency based on the magnitude of the Fourier
transform. Furthermore, Arsha et al. (2020) [31] proposed
a cross-modal self-supervised learning method to learn
speech representation from the co-relationship between
the face and the audio in the video. Other efforts have
been made by researchers to learn a general representa-
tion by predicting the contextual frames of any partic-
ular audio frame like wav2vec [32], speech2vec [33], and
audio word2vec [34]. Likewise, there are other successful
implementations [35]–[38] of the self-supervised representa-
tion learning in the field of audio.

Though self-supervised learning is good for learning
representations from unlabelled datasets, it requires manual
endeavour to design the supervision signal [39]. To avoid
this, researchers have focused on fully unsupervised repre-
sentation learning mainly using autoencoders [40]–[42].
In [43], the authors learnt representationswith an autoencoder
from a large unlabelled dataset, which improved the
emotion recognition from speech audio. Similarly, in another
work, the authors used a denoising autoencoder to
improve affect recognition from speech data [44]. Several
works [5], [45], [46] have utilised Variational Autoencoders
(VAEs) [47] to learn an efficient speech representation
from an unlabelled dataset. Recently, given the popu-
larity of adversarial training, different works have been
conducted by researchers to learn a robust representation with
GANs [48], [49] and Adversarial Autoencoders [50], [51].

Though learning a representation from prodigiously avail-
able unlabelled datasets is very intriguing, the recent work
from Google AI has proved that completely unsupervised
representation learning is not possible without any form of
supervision [1]. Also, representation learnt from an unsu-
pervised method does not guarantee the usability of this
learnt representation for any post use case scenario. Thus,
as outlined, we proposed the Guided Generative Adversarial
Neural Network (GGAN) [14], which can learn a powerful
representation from an unlabelled audio dataset according
to the supervision given from a fewer amount of labelled
data. Therefore, in the learnt representation space, the GGAN
disentangles attributes of the data according to the given cate-
gories from the labelled dataset, which benefits the related
post-use case scenario.

E. AUDIO GENERATION
Most of the audios are periodic, and high-fidelity audio gener-
ation requires modelling a higher order magnitude of the
temporal scales, which makes it a challenging problem [10].
Most of the research works related to audio generation are
based on the audio synthesis viz; Aaron and et al. (2016)
have proposed a powerful autoregressive model named
‘‘Wavenet,’’ which works very well on text to speech (TTS)

synthesis for both English and Mandarin. Later, the authors
have improved this work by proposing ‘‘Parallel Wavenet,’’
which is 20 times faster than the original Wavenet. Other
researchers have utilised the seq2seq model for TTS such
as Char2Wav [52] and TACOTRON [53]. However, these
audio generationmethods are conditioned on the text data and
mainly focused on speech generation. Thus, these methods
cannot be generalised to all other audio domains, even for
speech data where transcripts are not available.

In the context of generating audio without any condi-
tion on the text data, the GANs are very promising due to
their massive success in the field of computer vision [6],
[9], [54]–[56]. However, porting these GAN architectures
directly to the audio domain does not offer similar perfor-
mance as the audio waveform is mostly more complex than
an image [10], [11]. Therefore, researchers have focused on
generating spectrogram (2D image-like representation of
audio) rather than generating directly a waveform. Then,
the generated spectrogram is converted back to audio.
Chris et al. (2019) [11] have trained a GAN-based model to
generate spectrograms and successfully converted them back
to the audio domain with the Griffin-Lim algorithm [57].
In their TiFGAN paper [12], the authors have proposed a
phase-gradient heap integration (PGHI) [58] algorithm for
better reconstruction of the audio from the spectrogram with
minimal loss. As the PGHI algorithm is good at recon-
structing audio from the spectrogram, now the challenge is
to generate a realistic spectrogram. As the spectrogram is—
as outlined—an image-like representation of the audio, any
GAN based framework from the image domain should be
compatible. Hence, the BigGAN architecture [13] has shown
promising performance at generating conditional high reso-
lution/fidelity images, but it was not well explored for audio
generation. In this paper we address this gap.

F. CLOSELY RELATED ARCHITECTURES
The proposed GAAE model is a semi-supervised model,
as we leverage a small amount of labelled data during the
training. In [59], the authors proposed a semi-supervised
version of the InfoGAN model [4] to capture a specific
representation and generation according to the supervision
which comes from a small number of labelled data. But,
the success of this model in terms of the complex data
distribution is not evident. Other researchers have explored
the scope of semi-supervision in GAN architectures [15],
[60], [61] to improve the conditional generation, but most
of these works are not explored in the audio domain which
leaves a major gap for the researchers to address. The GAAE
model is based on an Adversarial Autoencoder (AAE) [8],
where we have extended the AAE model to learn both
guided and generalise/style representation from an unla-
belled dataset in a semi-supervised fashion. Furthermore,
in the GAAE model, we have implemented a unique way
to leverage the small amount of labelled data for condi-
tional audio generation. Here, we have also proposed a way
to utilise the generated conditional samples for improving
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FIGURE 1. This figure illustrates the overall architecture of the GAAE model. Different networks of the GAAE model are shown along with
the connections between them. In the figure, the arrows are coloured to highlight the flow of any input/output of the model. For the
discriminator, the red boxes show the fake samples and the green boxes indicate the real samples. Here, xu is the unlabelled data sample,
xl is the labelled data sample,x̂u is the reconstructed data sample, yr is the random conditions, and z is the known latent distribution.

the representation learning during the training. Moreover,
the building block for our GAAE model is a BigGAN archi-
tecture; thus, we further contribute by exploring the use of a
BigGAN in an autoencoder-based model for audio data.

III. PROPOSED RESEARCH METHOD
A. ARCHITECTURE OF THE GAAE
The GAAE consists of five neural networks: the Encoder E ,
the Decoder D, the Classifier C , the Latent Discriminator L
and the Sample Discriminator S. Let the parameters for these
networks be θe, θd , θc, θL , and θS respectively. Figure 1 shows
the whole architecture of the model and the description is as
follows.

1) ENCODER
The Encoder E takes any unlabelled data sample xu ∼ pdata
and outputs two latent samples zxu ∼ uz and z′xu ∼ qz,
where pdata is the true unlabelled data distribution, and uz,qz
are two different continuous distributions learned by the E .
We require the latent zxu to capture the post-task-specific
attributes/characteristics of the data and the latent z′xu to
capture the general/style attributes of the data.

2) CLASSIFIER
We have a classifier network C which is trained with limited
labelled data xl ∼ pldata, where pldata is the labelled data
distribution and not necessarily pldata ⊂ pdata. Here, with this

pldata, the whole model gets guidance—thus, we call this data
as ‘‘guidance data.’’ Now, the C network takes any latent
sample and predicts the category class for that latent sample.
To train C , we pass xl through the E network and get two
latent vectors {zxl ,z

′
xl}= E(xl; θe). Then, we only forward zxl

through C to get the predicted label ŷxl = C(zxl ; θc) and train
C against the true label yl ∼ Cat(yl, k = n) of the sample
xl , where Cat(yl, k = n) is the categorical distribution with n
numbers of categories/labels. These labels are used as one-hot
vector. For now, lets consider that C can classify the label of
any sample correctly.

3) DECODER
The Decoder D maps any latent and categorical class/label
variable to the data sample. Now, to get the reconstructed
sample of xu, we pass the latent z′xu and the label of xu
through the D network. As xu is an unlabelled data sample,
we get the label ŷxu = C(zxu , θc) through the network C and
obtain the reconstructed sample x̂u = D(z′xu , ŷxu; θd ) from the
D network. Here, we alsowant to use theD network for gener-
ating samples according to the given condition along with the
reconstruction. Therefore, the same latent z′xu is used with
a random categorical variable (one-hot vector) yr , sampled
from categorical distribution Cat(yr ,K = n, p = 1

n ), where
n is the number of categories/labels, and the sampling prob-
ability for each category is 1

n . Now, we obtain the gener-
ated sample x̂g ∼ pgdata, where pgdata is the generated data
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distribution by theD network, and it is trained to match pgdata
with the true data distribution pdata. Here, the size of n is
the same as of the guided data, and we want the D network
to generate data according to the categories from the guided
data. Therefore, we ensure this with the Discriminator where
the Discriminator receives the labels of the data from the
network C . As we use a small number of labelled data, it is
hard to train C due to the problem of overfitting. Hence,
we use the generated sample x̂g and train the C network
considering yr as the true label/category, where the predicted
label is ŷx̂g = C(E(x̂g, θe), θc).
Here, C depends on the correct conditional generation

from D, and D depends on the classification from the
network C . During the training, the C network starts to
predict the category of some samples from the given labelled
data correctly. Likewise, the Discriminator learns to identify
the correct category for those samples and forces the D
network to generate samples with the attributes related to
these correctly classified samples. These generated samples
bring more characteristics with them, which are not present
in the given labelled data but belong to the data distribution.
Now, as we feed these generated samples again to the C
network with the associated conditional categories as correct
labels, it learns to predict the correct category for more
samples related to that generated samples. Then again, these
new correctly classified samples improve the conditional
generation of the D network. Hence, throughout the training,
the C network and D network improve each other contin-
uously. Meanwhile, during the training, the representation
learning (latent generation) capability of the E network is
also ameliorated via the process of reconstructing sample xu,
which also improves the performance of theC andD network
eventually.

4) DISCRIMINATORS
The GAAE model has two discriminators: the Sample
Discriminator S and the Latent Discriminator L. S makes sure
that the generated sample x̂g and the reconstructed sample
x̂u match the sample from the true data distribution pdata.
We train S with the sample and its label. Now, for the samples
x̂g and x̂u, we have the labels yr ,ŷxu respectively. Hence,
the pairs (x̂g, yr ) and (x̂u, ŷxu ) are considered fake labels for
the discriminator S. For the true data, both xl and xu are
used together, where we get the label for the sample xu
fromC , and, for the sample xl we use the available true labels.
Hence, in terms of distribution perspective, we obtain the data
distribution pmdata, mixing the distributions pldata and pdata.
Accordingly, S is trained with the true sample data x ∼ pmdata
along with its associated label y if it exists, otherwise with the
predicted label from C .
Here, the network E learns to map the general character-

istics of the data onto the latent distribution qz, excluding
the categories from the guided data. Now, if we can draw
the sample from the qz distribution, then, by using the cate-
gorical distribution as condition, we can generate diverse
data for different categories (categories from the guided

data) from the Decoder D. We can only sample from qz,
if the distribution is known to us. Therefore, we use another
Discriminator L so that the E network is forced to match qz
to any known distribution pz, where pz can be any known
continuous random distribution (e. g., Continuous Normal
Distribution, or Continuous Uniform Distribution). The L
network is trained through differentiating between the true
latent z ∼ pz and the fake latent z′xu .

B. LOSSES
1) ENCODER, CLASSIFIER AND DECODER
For the E and D networks, we have the sample generation
loss Gloss, the sample reconstruction loss Rloss, and the latent
generation loss Lloss. To calculate the generation and discrim-
ination loss, we use hinge loss, and for the reconstruction loss
theMean Squared Error (MSE) loss. For theGloss, we take the
average of the generation loss for x̂u and x̂g. Therefore,

Gloss = −
1
2
(S(x̂u, ŷxu; θs)+ S(x̂g, yr ); θs). (1)

Lloss = −(L(z′xu; θl). (2)

Rloss =
1
N

N∑
i=1

(x̂ui − xui )
2. (3)

Now, for theC network, we calculate the classification loss
Clloss, Cgloss for the labelled data sample xl and the generated
sample x̂g respectively. Here, x̂g is used as a constant, so it is
considered like a sample data xl . We only forward propagate
xu through E and D and no gradient is calculated for gener-
ating x̂g when it is only used for the loss Cgloss. The model is
implemented with pytorch [62] and we detach the gradient of
xg when Cgloss is calculated. Therefore,

Clloss = −
∑

yl log ŷxl . (4)

Cgloss = −
∑

yr log ŷx̂g . (5)

We get the a combined loss EDCloss for E ,D and C . The
EDCloss is calculated as

EDCloss = α · (ω1 · Gloss + ω2 · (λ · Rloss))

+β · (ω3 · Clloss + ω4 · Cgloss + ω5 · Lloss). (6)

Here, the weights of the E ,C , and D networks are updated
to minimise the loss EDCloss, where ω1, ω2, ω3, ω4, ω5, α, β,
and λ are the hyperparameters. The successful training of our
GAEE model depends on these parameters. At the beginning
of the training, we noticed that the value of Rloss falls rapidly
compared to other losses and results in a very small gradient
value. To mitigate this problem, we multiply Rloss with a
hyperparameter λ ∈ R>0 and after hyperparameter tuning,
we found 20 as an optimal value for λ. The D network of the
model is tuned for both the reconstruction loss Rloss and the
generation loss Gloss. Therefore, to balance between these
two losses, the hyperparameter ω1 and ω2 is used where ω1,
ω2 ∈ [0, 1] and ω1 + ω2 = 1. Here, we can force the model
to focus more on either loss by increasing the hyperparameter
for that particular loss. Likewise, for Clloss, Cgloss and Lloss,
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we use the hyperparameters ω3, ω4, ω5 respectively, where
ω3, ω4, ω5 ∈ [0, 1] and ω3 + ω4 + ω5 = 1. In the EDCloss,
Gloss and Rloss are responsible for the sample generation
quality, where Clloss, Cgloss and Lloss are responsible for
the latent generation quality. So, to balance between sample
generation and latent generation, we use two hyperparameters
α and β, where α, β ∈ [0, 1], and α + β = 1.

2) DISCRIMINATORS’ LOSS
For the Discriminators S and L, we use hinge loss. The
discrimination loss for the fake samples are averaged as we
calculate the loss for both x̂u and x̂g. Let the discrimination
loss for S and L be Sloss, Lloss respectively. Therefore,

Sloss = −min(0,−1+ S(x,C(E(x, θe); θc); θs))

−
1
2
(min(0,−1− S(x̂u, ŷxu; θs))

+min(0,−1− S(x̂g, ŷr ; θs))). (7)

Lloss = −min(0,−1+ L(z, θl)

−min(0,−1− L(ẑxu , θl)). (8)

Here, we update the parameters θs and θl to maximise
the loss Sloss and Lloss respectively. Algorithm 1 shows the
training mechanism for the GAAE model.

IV. DATA AND EVALUATION METRICS
A. DATASETS
The effectiveness of the GAAE model is evaluated on
both speech and non-speech audios. For the speech audio,
we chose the S09 dataset [63] and the Librispeech
dataset [64]. For the non-speech audio, we use the popular
Nsynth dataset [65]. The S09 dataset consists of utter-
ances for different digit categories from zero to nine. This
dataset comprises 23,000 one-second audio samples uttered
by 2618 speakers, where it only contains the labels for the
audio digits [63].

The Librispeech dataset is an English speech dataset with
1000 hours of audio recordings, and there are three subsets
available in the Librispeech dataset containing approximately
100, 300, and 500 hours of recordings, respectively. For our
work, we use the subset with 100 hours of clean recordings.
In this subset, the audios are uttered by 251 speakers where
125 are female, and 126 are male [64]. For our experiment,
we only apply the audios along with the gender labels of the
speakers.

The Nsynth audio dataset contains 305,979 musical notes
of size four seconds from ten different instruments, where
the sources are either acoustic, electronic, or synthetic [65].
We use three acoustic sources: Guitar, Strings, and Mallet
from the Nsynth to test the compatibility of the GAAEmodel
for a non-speech dataset.

B. DATA PREPROCESSING
We use the audio of length one second and the sampling rate
of 16kHz. For the Librispeech dataset, the one-second audio
is taken randomly from any particular audio clip where for

Algorithm 1 Minibatch Stochastic Gradient Descent
Training of the Proposed GAAE Model. The Discriminator
Is Updated k Times in One Iteration. Here, for Our
Experiment, We Use k = 2 for Better Convergence
1: for number of training iterations do
2: for k steps do
3: Sample the latent/noise samples {z(1) . . . , z(m)}

from pz, the conditions (labels) {y(1)r , . . . , y(m)r }

from Cat(yr ), the unlabelled data samples
{x(1)u , . . . , x(m)u } from pdata and the labelled
data samples {x(1)l , . . . , x(m)l } from pldata. Here,
m is the minibatch size.

4: Update the discriminator S by ascending its
stochastic gradient:

∇θs

1
m

m∑
i=1

[
Sloss(i)

]
.

5: Update the discriminator L by ascending its
stochastic gradient:

∇θl

1
m

m∑
i=1

[
Lloss(i)

]
.

6: end for
7: Repeat step [3].
8: Update the Encoder E , DecoderD, and ClassifierC by

descending its stochastic gradient:

∇θe,θd ,θc

1
m

m∑
i=1

[
EDCloss(i)

]
.

9: end for

the Nsynth dataset, the first one-second is taken from any
audio sample as it holds the majority of the instrument sound
representation.

The audio data is converted to the log-magnitude spectro-
grams with the short-time Fourier Transform, and the gener-
ated log-magnitude spectrograms of the GAAE model are
converted to audio using the PGHI algorithm [58]. In the rest
of the paper, we refer to the log-magnitude spectrogram as
the spectrogram.

To obtain the spectrogram representation of the audio
we followed the procedure from this paper [66]. The
short-time Fourier Transform is calculated with an overlap-
ping Hamming window of size 512ms, and the hopping
length 128ms. Therefore, we get the size of the spectrogram
as 256 × 128, 1D matrix. We standardise the spectrogram
with the equation X−µ

σ
, where X is the spectrogram, µ is

the mean of the spectrogram, and σ is the standard deviation
of the spectrogram. We clip the dynamic range of the spec-
trogram at −r , where, for the S09 and Librispeech dataset,
we determine the suitable value of r to be 10, and for the
Nsynth dataset we determine it 15. Here, the log-magnitude
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spectrograms is a normal distribution and any inappropriate
value of the r can make the distribution skewed, which is not
appropriate for training the GAAE network. We investigate
the histogram of the values combining all the log-magnitude
spectrograms from thewhole training dataset to determine the
value of r . After the clipping, we normalise the spectrogram
values between −1 and 1. The spectrogram representation of
the audio is used as the input to the GAAE model, which
then generates spectrograms with values between -1 and 1.
We then convert these spectrograms to audios via the PGHI
algorithm. In this paper we refer to these audios calculated
from generated spectrograms as ‘‘generated audios.’’

C. MEASUREMENT METRICS
We measure the performance of the GAAE model based on
the generated samples and the learnt representations. The
generated samples are evaluated with the Inception Score
(IS) [67] and Fréchet Inception Distance (FID) [68], [69],
which have become a de-facto standard for measuring the
performance of any GAN based model [70].

To evaluate the representation/latent learning, we consider
classification accuracy, latent space visualisation, and latent
interpolation.

1) INCEPTION SCORE (IS)
The IS score is calculated based on the pretrained Inception
Network [71] trained on the ImageNet dataset [72]. The logits
are calculated for the images from the bottleneck layer of the
Inception Network. Then, the score is calculated using

exp(ExKL(p(y|x)||p(y))). (9)

Here, x is the image sample, KL is the Kullback-Leibler
Divergence (KL-divergence) [73], p(y|x) is the conditional
class distribution for sample x predicted by the Inception
Network, and p(y) is the marginal class distribution. The IS
score computes the KL-divergence between the conditional
label distribution and the marginal label distribution, where
the higher value indicates good generation quality.

2) FRÉCHET INCEPTION DISTANCE (FID)
The IS score is computed solely on the generated samples;
thus, no comparison is made between the generated and real
samples which is not a good measure for the samples’ diver-
sity (mode) of the generated samples. The FID score solves
this problem by comparing real samples with the gener-
ated samples [70] during the score calculation. The Fréchet
Inception Distance (FID) computes the Fréchet Distance [74]
between two multivariate Gaussian distributions for the
generated and real samples, parameterised by the mean and
the covariance of the features extracted from the intermediate
layer of the pretrained Inception Network. The FID score is
calculated using

||µr − µg||
2
+ Tr(6r +6g − 2(6r6g)1/2), (10)

where, µr , µg are the means for the features of the real and
generated samples, respectively, and similarly,6r ,6g are the

covariances, respectively. A lower value of the FID score
indicates good generation quality.

The Inception Network is trained on the imagenet dataset,
thus, offering reliable IS and FID scores for a related image
dataset, but the spectrograms of the audios are entirely
different from the imagenet samples. So, the Inception
Network does not offer trustworthy scores for the audio
spectrograms. Hence, instead of using the Inception model,
we train a classifier network based on the audio datasets and
use this trained classifier to calculate the IS and FID scores.
For S09 dataset, we use the pretrained classifier released by
the authors of the paper ‘‘Adversarial Audio Synthesis’’ [11].
For the Nsynth dataset, we train a simple Convolutional
Neural Network (CNN) as the Classifier, as there was no
pre-trained classifier available.

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION
For implementing our GGAN model, we follow the network
implementations, optimisation, and hyperparameters from
the BigGAN paper [13]. For the optimisation, we use the
Adam optimiser [75]. Learning rate of 5 ·10−5 is used for the
networks E , D, and C , where 2 · 10−4 is the learning rate for
both S and L. Details of the network architectures are given
in the appendix (Architectural Details).

A. IMPACT OF LABELLED DATA FOR CONDITIONAL
SAMPLE GENERATION
1) SETUP
First, we evaluate the conditional sample generation quality
(measured with IS and FID score) of the GAAE model for
different percentage of labelled data (1% - 5 %, 100%) as
guidance.

The IS and FID scores is calculated based on the
50,000 generated samples [67] for the random latent z, and
the random condition yr . The spectrograms of the samples
are generated using the Decoder D network and converted to
audios. These generated audios are then used to calculate the
IS and FID scores. For all the datasets, we use a continuous
normal distribution of size 128 to sample the latent z ∼
N (µ = 0, σ 2

= 1). For the S09 dataset, we use the ten
digit categories (0-9) as the conditions yr ∼ Cat(yr ,K = 10,
p = 0.1). We use the three instrument categories (1-3) as
conditions yr ∼ Cat(yr ,K = 3, p = 0.33) for the Nsynth
dataset.

For any percentage of data used as guidance, we train
the GAAE model three times. Each training takes approx-
imately 60,000 iterations with mixed-precision [76] for the
batch size 128. Each time, a dataset is sampled randomly for
guidance. Rest of the data is used as unsupervised manner.
We limited ourselves to three times due to having high
computation time: approximately 21 hours on the two Nvidia
p100 GPUs. The total computation time for the S09 and the
Nsynth dataset is approximately 21 × 3 × 6 (1-5%,100%
data) × 2 (two datasets) = 756 hours or 31.5 days.
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The results of theGAAEmodel are comparedwith a Super-
vised BigGAN [77] and an Unsupervised BigGAN [77]. For
the S09 dataset, we take the results from the GGAN publica-
tion [14]. For the Nsynth dataset, we train these models with
a similar setting as was used in the GGAN paper. To calculate
the IS and FID score for the Nsynth dataset, we use our
pretrained supervised CNN classifier (details in the appendix)
trained on three classes: Guitar, Strings, and Mallet.

2) RESULTS AND DISCUSSIONS
The percentage of labelled training data used as guidance
has a significant impact on the IS and FID score, which can
be found from the table 3. The more we feed the labelled
data during the training, the more we boost the performance
of the GAAE model for sample generation and diversity.
However, notably only with 1% labelled data, the GAAE
model achieves acceptable performance. For 5% labelled
data, GAAE achieves scores close to that of using 100%
labelled data. So, we compare the scores for 5% data, with
other models in the literature.

TABLE 1. Comparison between the sample generation quality of the
GAAE model and the other models for the S09 dataset. The generation
quality is measured by IS score and FID scores.

The results for S09 dataset are summarised in Table 1.
Using only 5% labelled training data as guidance, the GAAE
model achieves IS score 7.28±0.01 and FID score of 22.60±
0.07. The IS score of GAAE is close to that produced by
the supervised BigGAN model (7.33± 0.01) and better than
other models mentioned in table 1. Even the GAAE model
has outperformed the supervised BigGANmodel (FID score:
24.40 ± 0.50) in terms of diverse image generation, where
the GAAE has used only 5% labelled data and the supervised
BigGAN is trained with all available labelled training data.

For the Nsynth dataset, the GAAE model has achieved the
IS score of 2.58 ± 0.03 and the FID score of 141.71 ± 0.32
again with 5% labelled training data as guidance. Perfor-
mance of GGAN in terms of IS score is very close to that
of the supervised BigGAN (2.64± 0.08) and better than that
of the unsupervised BigGAN (2.21±0.11). The performance
in terms of FID score is even better than that of the supervised
BigGAN (148.30± 0.23). Table 2 presents the comparisons.
The decoder is trained for both reconstruction and gener-

ation of the training data. During the reconstruction, it tries
to reconstruct all the training samples, which helps it to
learn more modes of the data distribution than the supervised
BigGAN model. Figure 3 and 2 display the spectrogram

TABLE 2. Comparison between the sample generation quality of the
GAAE model and the other models for the Nsynth dataset. The generation
quality is measured by IS and FID scores.

of the generated and the real samples of the Nsynth,
S09 datasets, respectively. From these figures, we observe
that the generated samples are visually indistinguishable from
the real samples. This attests the superior generation quality
of the GAAE model. This is also true when we convert
these spectrograms to audios. The audios can be found at:
https://bit.ly/3coz5qO.

B. EVALUATION OF CONDITIONAL SAMPLE GENERATION
BASED ON GUIDANCE
1) SETUP
In this section, we evaluate the effectiveness of guidance for
accurate conditional sample generation. It is cumbersome to
check all the generation manually. Therefore, we manually
check only a few audio samples. For large-scale validation,
we use an approach similar to [70]. We train a simple CNN
classifier with the samples generated for different random
conditions/categories and use the random categories asso-
ciated with the generated samples as the true labels. Then,
we evaluate the CNN classifier on the test dataset based on
the classification accuracy. The rationale is that if the GAAE
model does not learn to generate correct samples for any
given category and the generated samples do not match the
training data distribution; the CNN model will not be able to
achieve good accuracy on the test dataset. We compare this
CNN classifier with another CNN classifier which is trained
using all the available training data. For further comparisons,
we train two more CNN models with the generated samples
from the supervised BigGAN and the GGAN model.

2) RESULT AND DISCUSSION: MANUAL TEST
The generated samples for the S09 and Nsynth dataset are
shown in figure 2 and figure 3, respectively. It is not visually
evident that the model was able to generate correct samples
according to the given conditions/categories. However, when
we convert these spectrograms to audios, it is clear that
the model is able to generate audios correctly according to
the categories demonstrating the effectiveness of the guid-
ance data to learn the specific categorical distribution of the
training dataset (cf. under the above link).

3) RESULTS AND DISCUSSIONS: CNN BASED
CLASSIFICATION ACCURACY
For the S09 dataset, the test data classification accuracy
for the CNN model trained with all the available labelled
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TABLE 3. The relationship between the percentage of the data used as guidance during the training and the sample generation quality of the GAAE
model, measured with the IS and the FID score. The scores are calculated for the S09 and the Nsynth dataset.

FIGURE 2. A. Illustration of the difference between the generated spectrograms and the real spectrograms of the data for the S09 dataset. The top
two rows show the randomly generated samples from the GAAE model, and the bottom two rows are the real samples from the training data.
Notice the visual similarity between the generated and the real samples. B. This figure shows the generated spectrograms of the S09 dataset from
the GAAE model according to different digit categories. Each row represents the samples generated for a fixed latent variable where the digit
condition is changed from 0 to 9. Furthermore, any column shows the generated spectrogram for a particular digit category.

FIGURE 3. Difference between the generated spectrograms of the GAAE model and the real spectrograms of the data for the Nsynth
dataset. The top row shows the generated samples, and the bottom row shows the real samples. The first block shows the spectrogram of
the guitar, and the other two illustrate the spectrograms for the strings and mallet.

data is 95.52% ± 0.50. The accuracy is 91.14% ± 0.17,
when the CNN model is trained based on the generated
samples from the GAAE model (trained with 5% labelled
data). The table 4 shows the comparison with other models.

With the generated samples from the GAAEmodel, the CNN
model achieves greater classification accuracy than the super-
vised BigGAN (86.58% ± 0.56) and the GGAN model
(86.72% ± 0.47).
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TABLE 4. The comparison between different CNN classifiers based on the
test data classification accuracy from the S09 dataset. The CNN models
are trained with the generated samples from different models.

TABLE 5. The comparison between different CNN classifiers based on the
test data classification accuracy from the Nsynth dataset. The CNN
models are trained with the generated samples from different models.

Whenwe trained the CNNmodel mixing the train data, and
the generated samples from the GAAE model, the accuracy
of the CNN model increased from 95.52% ± 0.50 to 97.33%
± 0.19. Along with the accuracy, the stability of the CNN
model is also improved significantly. This can be observed
through the standard deviation in the results. We conducted
the same evaluation on the Nsynth dataset and received
similar results which we present in table 5.

These results demonstrate the superior performance of our
GAAEmodel for generating samples for different categories.
It can potentially be used as a data augmentationmodel where
the generated samples from themodel can be used to augment
any related dataset or same dataset.

C. CONDITIONAL SAMPLE GENERATION USING
GUIDANCE FROM A DIFFERENT DATASET
In the above two experiments, we used the guidance data from
the same dataset. In this section, we explore the feasibility of
guidance from a completely different dataset.

1) SETUP
In the S09 dataset, there are both male and female speakers,
but no label is available for the gender of the speakers.We aim
to verify if GAAE can generate samples from S09 dataset
according to the condition on the gender category, where
the guidance comes from a different dataset for gender cate-
gory. To achieve this, we collect ten male and ten female
speakers’ audio data (randomly chosen with labels) from the
Librispeech dataset to use as guidance during the training
with the S09 dataset. During the training of the GAAEmodel,
the guidance data from Librispeech dataset is also merged
with S09 dataset as unlabelled data. So, GAAE learns to
generate both samples from Librispeech dataset as well as
from S09 dataset.

The network we used before to calculate the IS and
FID score, is trained on the digit classification tasks for

S09 dataset, not for the gender classification task thus will
no longer offer a meaningful evaluation. To eradicate this
problem, we train another simple CNN model for the gender
classification to calculate the IS and the FID score. For this
purpose, we randomly select 15 male and 15 female speakers
from Librispeech dataset. We use data from ten male and
ten female speakers for training and data from others for
testing. We achieve an accuracy of 98.3 ± 0.50. We use this
model to calculate the IS and FID Score for the generated
samples from different models. Now, the calculated scores
will reflect the quality of the generated samples according to
gender distribution.

We define two GAAE models: one is trained with
gender guidance, and another is trained with digit guidance.
We compare the IS and FID score of these models. Note that
gender information is being collected from a different dataset:
Librispeech. If the gender guidedmodel achieves better score,
then we can establish the feasibility of guidance using an
external dataset. To further validate this, we add results from
other models (Unsupervised BigGAN, Supervised BigGAN
and GGAN) trained based on digit guidance.

We choose a continuous normal distribution of size 128 for
latent z ∼ N (µ = 0, σ 2

= 1) and two gender categories for
the conditions yr ∼ Cat(yr ,K = 2, p = 0.5).

2) RESULTS AND DISCUSSIONS
The calculated scores are presented in table 6. Gender guided
GAAE produces the best FID and IS scores, which establish
that it is feasible to get guidance from a different dataset in
the GAAE model.

TABLE 6. Comparison between the performance of the GAAE model
trained with gender guidance and the other models on the S09 dataset,
in terms of the quality of the generated samples based on the gender
attributes of the speaker, measured with the IS and the FID score.

D. GUIDED REPRESENTATION LEARNING
The GAAE model learns two types of representations/latent
spaces: (1) it uses zxu ∼ uz to learn guidance specific char-
acteristics of the data (Guided representation) and uses (2)
z′xu ∼ qz to learn general characteristics of the data (General
representation/Style representation).

1) SETUP
In the GAAE model, the Classifier C is built on top of the
latent zxu ∼ uz (see Fig. 1). The encoder network E , therefore,
learns this latent variable to disentangle the class categories
according to the guided data. For the S09 dataset, we use digit
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classes as guidance, so, in this latent space (representation
space), the digit category should be disentangled. To observe
this disentanglement, we visualise the higher dimensional
(128) latent space generated for the S09 test data in the
2D plane with the t-SNE (t-distributed stochastic neighbour
embedding) [78] visualisation method.We use the same visu-
alisation for the Nsynth dataset.

2) RESULTS AND DISCUSSIONS
Figure 4 shows the representation space for S09 test dataset
and figure 5 shows the visualisation for the Nsynth dataset.
From both figures, it is noticeable that the guided cate-
gories are well separated in the representation space, and
data points of the similar categories are clustered together.
So, the encoder E learns to map the data sample to the repre-
sentation space uz ensuring data categories used as guidance
are well separable in the representation space.

FIGURE 4. t-SNE visualisation of the learnt representation of the test data
of the S09 dataset. Here, different colours of points represent different
digit categories. In the representation space, the different digit categories
are clustered together and easily separable.

E. GENERAL REPRESENTATION/STYLE REPRESENTATION
LEARNING
1) SETUP
The encoder network E of the GAAE model is trained to
match the qz distribution with the known pz distribution. This
allows sampling z′xu from the qz distribution.
Now, it is expected that when Decoder D learns to

generate samples from the latent space qz, it disentangles the
general characteristics/attributes (independent of the guided
attributes) of the data in the qz latent space. To evaluate
this disentanglement in the representation space z′xu ∼ qz for
both S09 and Nsynth dataset, we generate audio samples for
different categories/conditions keeping the z′xu the same.

In our model, Decoder can achieve disentanglement
implies that the pretrained E extracts general attributes in

FIGURE 5. t-SNE visualisation of the learnt representation of the test data
of the Nsynth dataset. Here, different colours of points represent
different instrument categories. In the representation space, the different
instrument categories are clustered together and easily separable.

latent z′xu from any related dataset, which was not used during
the training. To validate, we pass the test data from S09 and
Nsynth dataset throughE to get the general representation z′xu .
Then for a fixed z′xu and different conditions (digit categories),
we generate samples from the pretrained D network.

As the GAAE model learns general/style attributes in
the z′xu latent space, it should disentangle the gender of
the speaker in the latent space for S09 dataset. To evaluate
this, we use the trained E network from the GAAE model
to extract latent representation z′xu for an entirely different
Librispeech dataset where gender labels are available. For
5000 randomly sampled data from the Librispeech dataset,
we extract the feature/latent z′xu fromE and visualise the result
in 2D plain using t-SNE visualisation for exploration.

2) RESULTS AND DISCUSSIONS
After investigating the generated audios of the S09 dataset,
the digit categories are changed according to the given condi-
tion yr and the general characteristics (such as the voice of
the speaker, audio pitch, background noise etc.) of the audio
is changed with the change of z′xu . So, the D network learns
to capture general attributes of the data in the latent space z′xu .
For the Nsynth dataset, we notice a similar behaviour.

We investigate the audio samples generated based on the
extracted feature z′xu of the input data sample. Exploration
of the audios shows that they preserve some characteristics
(like speaker gender, voice, pitch, tone, background noise
etc. for S09 test data) from the input data sample. We also
notice similar scenarios for the Nsynth dataset. The audios
can be found at: https://bit.ly/36Oz9z9. Note that the initial
one second is the input audio data and rest are the generated
audios.

Figure 6 shows the visualisation of the extracted repre-
sentation for the Librispeech dataset. We observe that the
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FIGURE 6. t-SNE visualisation of the learnt representation of the Libri
speech dataset. Here, different colours of points represent the gender of
the speakers. The representations of the different gender categories are
clustered together.

latent representation for the same gender of the speakers are
clustered together and are easily separable from the latent
space. This exploration exhibits that the GAAE model is
able to learn the gender attributes of the speaker from the
S09 dataset successfully even though gender information of
the speaker was never used during the training.

F. COHERENCE OF THE GENERAL REPRESENTATION/
LATENT SPACE
1) SETUP
It is expected that the D network can learn the latent space qz
in a way so that it is coherent and if we move in any direction
in the latent space the generated samples should be changed
accordingly. To investigate this, we conduct linear interpola-
tion between two latent points as described in the DCGAN
paper [3]. A particular point zi within two latent points z0 and
z1 is calculated with the equation zi = z0+ η(z0− z1), where
η is the step size from z0 to z1. With this equation, we get
the latent points in between z0 and z1. Using this D network,
we obtain the generated samples for these latent points, where
the random categorical condition yr is fixed.

2) RESULTS
Figure 7 shows the generated samples for both the S09 and
Nsynth datasets based on the interpolated points. We observe
that the transition between two spectrograms generated based
on two fixed latent samples z0 and z1 is very smooth. More-
over, when we convert the spectrograms to audio, we observe
the same smooth transition, which indicates the disentangle-
ment of the general attributes in the latent space qz The audios
can be found at: https://bit.ly/2yPcTIE.

FIGURE 7. Generated spectrograms based on the linear interpolation
between two latent samples; z0 and z1. The first two rows show the
generated spectrograms for the S09 dataset (one and zero) and the
bottom two rows exhibit the spectrograms for the Nsynth dataset (mallet
and string). For any particular row, the first and the last spectrograms are
the generations based on the fixed two latent points and the in-between
spectrograms are the generation based on the interpolation between
these two fixed points.

VI. HYPERPARAMETER TUNING
We tune the hyperparameters based on the S09 dataset as
tuning is resource and time-intensive. We then use the hyper-
parameters for other datasets. From equation 6, ω1, and ω2
are two important hyperparameters for training the GAAE
model, where ω2 = 1 - ω1. When we increase ω1, the model
focuses more on the generation loss Gloss and less on the
reconstruction lossRloss. If we reduceω1, the model increases
the focus for reconstruction and reduces the focus for the
generation. The impact of ω1 and ω2 on the IS scores, FID
scores, and classification accuracy are presented in figure 8.
The best value for ω1 is 0.6 and for ω2, it is 0.4.
The α and β from equation 6 are two other important

hyperparameters. The value of the α parameter determines
how much the model will focus on generation (Gloss) and
reconstruction loss (Rloss), where the β parameter determines
the focus for the classification (Clloss, Cgloss) and latent
generation loss (Lloss). From figure 8, we observe that 0.5 is
the best value for both of the hyperparameters.

There are three more hyperparameters: ω3, ω4, and ω5
(See equation 6). Here, ω3 and ω4 control the classification
loss (Clloss, Cgloss) for labelled data. And, ω5 controls the
latent generation loss (Lloss). Here, wemaintain equal balance
between the classification and the latent generation loss.
Likewise, we use 0.25 for ω3,ω4 and 0.50 for ω5.

VII. CLASSIFIER OF THE GAAE MODEL
The success of the GAAE model is mostly dependent on its
internal Classifier C . In this section, we evaluate the perfor-
mance of C . We benchmark its performance using a super-
vised Classifier, the Classifier from GGAN and the Classifier
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FIGURE 8. Relationship between the hyperparameters and the measurement metrics of the GAAE model. The top left plot explains the
relationship between ω1 and IS and FID scores. Similarly, the top right explicates the relationship between α and IS and FID scores. Here,
The bottom left box illustrates the relationship between ω1 and the classification accuracy. Furthermore, the bottom right plot demonstrates
the impact of α on the classification accuracy.

TABLE 7. Relationship between the percentage of the data used as the guidance during the training and the S09 test dataset classification accuracy of
the GAAE model.

TABLE 8. Relationship between the percentage of the data used as the guidance during the training and the Nsynth test dataset classification accuracy of
the GAAE model.

from BiGAN [55]. For the supervised Classifier, we train a
simple CNN classifier using 1% - 5%, 100%, of training
data, where the data is heavily augmented using techniques
like adding random noise, rotation of the spectrogram, multi-
plication with random zero patches, etc. ( [79]). We train
a BiGAN model on top of the unsupervised BigGAN and
extract BiGANs’ feature network after the training. We then
train another feed-forward classifier network on BiGANs’
feature network using similar percentages of labelled data.
We keep the weights for the feature network fixed during

the training. We evaluate all these Classifiers using the test
dataset. As the Classifier C of the GAAE model is trained
with fewer labelled data along with the generated samples
from the decoderD, it will only perform better if generation is
accurate according to the different categories and the quality
of the generated samples is close to the real samples.

The relationship between the percentage of the data used
as guidance and the test data classification accuracy is
shown in table 7, 8 for S09 and Nsyth dataset, respectively.
Results from both tables demonstrate that the GAEE model
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outperforms other models in terms of classification accuracy
leveraging the minimal amount of labelled data (average
5%-8% percent improvement for both datasets while using
1% labelled data).

VIII. CONCLUSION AND LESSON LEARNT
In this paper, we propose the Guided Adversarial Autoen-
coder (GAAE), which is capable of generating high-quality
audio samples using very few labelled data as guidance.
After evaluating the GAAE model using two audio datasets:
S09 and Nsynth, we show that the GAAE model can outper-
form the existing models with respect to sample gener-
ation quality and mode diversity. Harnessing the power
of high-fidelity audio generation, the GAAE model can
disentangle the specific attributes of the data in the learnt
latent/representation space according to the guidance. This
learnt representation can be beneficial to any related down-
stream task at hand. We also show that besides the guided
representation learning, the GAAE model learns to disen-
tangle other attributes of the data independent of the
given guidance. Hence, the GAAE model learns a repre-
sentation for the specific downstream task at hand and
a generalised representation for future unknown related
tasks.

We evaluate the GAAE model based on the audio of size
one second; thus, it remains a challenge to make this model
work for longer audio sample generation. In representation
learning, the GAAE model can be used efficiently for any
long audio sample by dividing it into one-second chunks.
GAAE model successfully learns generation and representa-
tion using a minimum of 1% labelled data. We believe this
will encourage other researchers to explore the GAAE model
further for few-shot learning.

Furthermore, we built the GAAE model based on
BigGAN architecture. This leaves an excellent opportunity
for studying other high performing GAN architectures such
as progressive GAN [80] or the Style GAN [9].

APPENDIX
ARCHITECTURAL DETAILS
This section presents the details of the neural networks used in
this paper. We follow the abbreviations and description style
from the original work of Mario et al. [15].

A. SUPERVISED BigGAN
We use the exact implementation of the Supervised BigGAN
from our former GGAN paper [14]. Therefore, for the imple-
mentation of both the Generator and the Discriminator,
we apply a Resnet architecture from the BigGAN work [13].
The layers are shown tables 10 and 11. The Generator and
Discriminator architectures are shown in Tables 12 and 13,
respectively.We use a learning rate of 0.00005 and 0.0002 for
the Generator and the Discriminator, respectively. We set the
number of channels (ch) to 16 to minimise the computational
expenses, as the higher number of channels such as 64 and
32 only offer negligible improvements.

TABLE 9. Abbreviations for defining the architectures.

TABLE 10. Architecture of the ResBlock generator with upsampling for
the supervised BigGAN.

TABLE 11. Architecture of the ResBlock discriminator with downsampling
for the supervised BigGAN.

TABLE 12. Architecture of the generator for the supervised BigGAN.

B. UNSUPERVISED BigGAN
Similarly, for the unsupervised BigGAN, follow the same
implementation from the original GGAN work [14].
Tables 14 and 15 show the upsampling and downsampling
layers, respectively. The architectures of the Generator and
Discriminator are shown in the tables 16 and 17, respectively.
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TABLE 13. Architecture of the discriminator for the supervised BigGAN.

TABLE 14. Architecture of the ResBlock generator with upsampling for
the unsupervised BigGAN.

The learning rate and channels are the same as for the
supervised BigGAN.

C. BiGAN
For the BiGAN model, we train a Feature Extractor and
Discriminator network on top of the unsupervised BigGAN.
The Feature Extractor network creates the features for real
samples, and the Discriminator tries to differentiate between
the generated features and the random noise. The detail
is exactly followed from the original BiGAN work [55].
The downsampling layer is the same as the unsupervised
BigGAN and can be found in table 15. The architecture of the
Feature Extractor network is shown in table 18. Furthermore,
the architecture of the Discriminator is given in table 19.

TABLE 15. Architecture of the ResBlock discriminator with downsampling
for the unsupervised BigGAN.

D. GAAE
In the GAAE model, the downsampling and upsampling
layers are the same as those shown in table 10 and 11,
respectively.

TABLE 16. Architecture of the generator for the unsupervised BigGAN.

TABLE 17. Architecture of the discriminator for the unsupervised BigGAN.

TABLE 18. Architecture of the Feature Extractor Network for the BiGAN.

The Encoder architecture is given in table 20, where we
use two dense layers to obtain zxu and z

′
xu from a global sum

pooling layer. For the Decoder, the conditional vector yr or
ŷxu is given through the conditional Batch Normaliser (cBN)
from the upsampling layer. The classifier network is built
upon some dense layer, and the architecture is given in
table 22. For the Sample Discriminator, we exactly follow
the implementation in table 13. Here, in the table 13, y is
the conditional vector, and h is the output from the global
sum pooling layer. For the Latent Discriminator, we have
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TABLE 19. Architecture of the Discriminator for the BiGAN.

TABLE 20. Architecture of the Encoder for the GAAE.

TABLE 21. Architecture of the Decoder for the GAAE.

use multi dense layers, and the architecture is given in
table 23.

The learning rates for both Discriminators are 0.0002, and
for other networks, the learning rate is 0.00005. We set the
number of channels to 16 for all the experiment carried out
with the GAAE.

TABLE 22. Architecture of the Classifier for the GGAN.

TABLE 23. Architecture of the Latent Discriminator for the GGAN.

TABLE 24. Architecture of the Simple Spectrogram Classifier.

E. SIMPLE CLASSIFIER
For many classification tasks, we mention a Simple Classifier
throughout the paper. The architecture of these classifiers are
as in table 24. Here, c is the number of outputs according
to the classification categories. The learning rates is used as
0.0001 for this classifier network.
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