
SupRB: A Supervised Rule-based Learning System for
Continuous Problems

Michael Heider∗
University of Augsburg

Organic Computing Group
Augsburg, Germany

michael.heider@informatik.
uni-augsburg.de

David Pätzel∗
University of Augsburg

Organic Computing Group
Augsburg, Germany

david.paetzel@informatik.
uni-augsburg.de

Jörg Hähner
University of Augsburg

Organic Computing Group
Augsburg, Germany

joerg.haehner@informatik.
uni-augsburg.de

ABSTRACT
We propose the SupRB learning system, a new accuracy-based
Pittsburgh-style learning classifier system (LCS) for supervised
learning onmulti-dimensional continuous decision problems. SupRB
learns an approximation of a quality function from examples (con-
sisting of situations, choices and associated qualities) and is then
able to make an optimal choice as well as predict the quality of a
choice in a given situation. One area of application for SupRB is
parametrization of industrial machinery. In this field, acceptance of
the recommendations of machine learning systems is highly reliant
on operators’ trust. While an essential and much-researched ingre-
dient for that trust is prediction quality, it seems that this alone is
not enough. At least as important is a human-understandable ex-
planation of the reasoning behind a recommendation. While many
state-of-the-art methods such as artificial neural networks fall short
of this, LCSs such as SupRB provide human-readable rules that can
be understood very easily. The prevalent LCSs are not directly ap-
plicable to this problem as they lack support for continuous choices.
This paper lays the foundations for SupRB and shows its general
applicability on a simplified model of an additive manufacturing
problem.

KEYWORDS
Learning Classifier Systems, Evolutionary Machine Learning, Man-
ufacturing

1 INTRODUCTION
Parametrization of industrial machinery is often determined by
human operators. These specialists usually obtained most of their
expertise through year-long experimental exploration based on
prior knowledge about the system or process at play. Transferring
that knowledge to other operators with as little loss as possible
(e. g. to new colleagues whenever experienced operators retire or
to end users of the machinery after commissioning is finished)
is a challenge: Humans’ ability of exactly attributing parameter
choices to the situations that led to them and then communicating
this knowledge in a comprehensible manner tends to be rather
restricted—which leads to new operators being forced to repeat
exploration to learn for themselves. Machine learning (ML) can
help with this, for example, by supporting new operators or users
with recommendations or simply by recording existing experiences
and extracting knowledge to make it available at a later point.

∗These authors contributed equally to the paper.

Parts of an operator’s knowledge can be seen as a collection
of mappings from parametrizations for the machine and variables
beyond their influence to an expected process quality resulting
from them—abstractly speaking, a collection of if-then rules with
outcomes subject to noise. While many ML methods represent
knowledge in a less or differently structured way, this is not the case
for learning classifier systems (LCSs) whose models are collections
of human-readable if-then rules constructed using ML techniques
and model structure optimizers [12, 31]. This learning scheme is
thus suited naturally to incorporate an operator’s knowledge as
externally specified rules can be included directly. Also, due to their
inner structure, LCSs can more easily provide explainations for
their predictions. Due to this transparency towards human users,
compared to black box systems, an increased trust by operators that
contained knowledge and thus recommendations are correct can be
expected; which is essential for these system’s actual applicability.

This paper proposes the SupRB learning system, a new accuracy-
based Pittsburgh-style LCS for supervised learning on continuous
multi-dimensional decision problems such as the one of parametriza-
tion of industrial machinery. Pittsburgh-style LCSs [26] have a
model structure optimizer (in classic Pittburgh-style systems, a
genetic algorithm (GA)) operate on a population of rule collections
of variable length each of which represents a potential solution to
the learning problem at hand.

This work focuses on solving the problem of parametrization
optimization of industrial machinery, which is defined in Section 2.
An LCS architecture that solves this problem, SupRB, is introduced
in Section 3 alongwith its first implementation SupRB-1 in Section 4.
SupRB-1 is evaluated on different function approximation problems
in Section 5. Section 6 gives an account of related research.

2 PARAMETRIZATION OPTIMIZATION
Parametrization optimization is the process of finding the best pa-
rameter choice, or parametrization, for a given system S with regard
to some quality measure q. One such parametrization can be viewed
as a vector a ∈ A ⊆ RDA where A is the parametrization space,
DA is the number of parameters to be optimized and each com-
ponent of a corresponds to one adjustable system parameter for S .
Which parametrization is optimal regarding q depends on a number
of environmental factors (e. g. ambient temperature or humidity)
in addition to characteristics of process, machine, material and the
part to be produced. For a given system S , we call one instance of
those additional factors a situation; situations can again be assumed
to be represented by a vector x ∈ X ⊆ RDX where X is called the
situation space and DX is the fixed dimensionality of situations

ar
X

iv
:2

00
2.

10
29

5v
1

 [
cs

.L
G

]
 2

4
Fe

b
20

20

for S . Having defined parametrizations and situations, we can now
specify the quality measure’s form as

q : {X,A}T → R (1)

where every {x ,a}T = (x1, . . . ,xDX ,a1, . . . ,aDA)T ∈ {X,A}T is
a stacked vector consisting of a situation (x1, . . . ,xDX) ∈ X and
a parametrization (a1, . . . ,aDA) ∈ A. For readability, we write
q(x ,a) instead of q({x ,a}T). The target of q is a single scalar which
is possibly derived appropriately from a vector of multiple quality
features. We assume that q(x ,a) is at least continuous in a which
we think is realistic in most real-world scenarios:

lim
a→a0

q(x ,a) = q(x ,a0) (2)

With the definition for q, we can now define the optimization prob-
lem that describes the search for an optimal parametrizations for a
given situation x :

maximize
a

q(x ,a) (3)

Note that, realistically, neither q nor its derivative can be assumed
to be known (albeit either of those would simplify the problem
greatly). Instead, we assume that the only information about q is a
fixed set of examples.

Thus, the learning problem we consider is: Given a fixed set of
N examples for situations and parametrizations {{x ,a}T } as well
as their respective qualities {q(x ,a)}, learn to predict for a given
unknown situation x ∈ X a parametrization âmax(x) ∈ A for which

âmax(x) ≈ amax(x) = argmax
a

q(x ,a) (4)

where amax(x) is the actual optimal parametrization in situation x .
A natural way of measuring improvements on this learning

problem is the following: A model can be said to be an improvement
over another on a set of situations Xeval ⊂ X if the actual quality of
the predicted optimal parametrizations on those situations is closer
to the actual quality of the actual optimal parametrizations. This
can be quantified, for example, by using the mean error for an error
measure L on the model’s prediction:

1
|Xeval |

∑
x ∈Xeval

L(q(x ,amax(x)),q(x , âmax(x))) (5)

3 AN LCS ARCHITECTURE FOR
CONTINUOUS PROBLEMS

This section presents a high-level view of SupRB, the overall LCS
architecture we propose, in order to solve parametrization opti-
mization problems which were introduced in the previous section.

3.1 Model structure
Just like other LCSs, SupRB forms a global model from a population
C of local models, called classifiers; in the case of SupRB, the global
model is meant to approximate the quality measure q defined in
Section 2. Each classifier is responsible for a subspace of the input
space X; which subspace it is for a certain classifier is specified
by that classifier’s condition which is also sometimes called its
localization. The set of classifier conditions forms the overall model
structure of SupRB; this structure fulfills a similar role as the graph
structure of a neural network in that it needs to be chosen carefully
in order for the system to perform well. At that, performing well

is not just about approximating q as close as possible; there are
usually additional goals such as being explainable (cf. Section 1)
which require the model structure’s complexity to be as low as
possible.

3.2 Local models: Classifiers
A classifier c consists of three main components:

• Some representation of a matching function mc : X →
{T, F}. We say that c matches situation x iffmc (x) = T. Cor-
respondingly, we say that c does not match x iffmc (x) = F.

• Some local model approximating q on all x ∈ X which the
classifiers matches.

• An estimation of the classifier’s goodness-of-fit on the situa-
tions it matches (solely used in classifier mixing).

Be aware that the classifiers’ matching functions’ domain is
X and not {X,A}T . This increases explainability greatly as an
ideal partitioning of X (total, without overlaps) entails that there
is exactly one rule regarding the parametrization for each possible
situation. Conversely, if we partitioned in {X,A}T optimally, there
would possibly still be multiple rules for a given situation as the
systemmight have partitioned in the dimensions ofA as well. Since
we assume continuity of q(x ,a) regarding a (see (2)), partitioning
in A would only be necessary if the local models could not capture
q’s behaviour in A, for example because it is highly multi-modal.
In that case, partitioning in A might be sensible, as would using
more sophisticated local models.

3.3 Epoch-wise training
Training an LCS can generally be divided into two subproblems:
For once, the classifiers’ local models need to be trained so that
the predictions they make on the subspace they are responsible for
are as accurate as possible. Secondly, the overall model structure
of the LCS has to be optimized: the classifier’s localizations have
to be aligned in such a way that every local model can capture the
characteristics of the subspace it is assigned to as well as possible.

Michigan-style LCS such as XCS(F) [6, 37] or ExSTraCS [32]
try to solve these problems incrementally by, for each seen exam-
ple, performing a single update on some of the classifier’s local
models and then improving these classifier’s localizations. This
approach is especially sensible when learning has to be incremental
(e. g. in reinforcement learning settings). However, due to the learn-
ing problem being non-incremental (all training data is available
from the very start), SupRB can be trained non-incrementally. This
means that training can be done in two separate phases that are
repeated alternatingly until overall convergence [8], each phase
being responsible for solving one of the subproblems:

(1) (Re-)train each local classifier model on the data that it (now)
matches.

(2) Optimize the model structure (i. e. the set of classifier condi-
tions), for example using a heuristic such as a GA.

At that, each phase is executed until it converges or some termi-
nation criterion, such as a fixed number of updates, is met. It is
important to note that during fitting of each phase’s parameters, the
parameters of the respective other are considered fixed—otherwise,
convergence cannot be guaranteed. If a GA is used for the model

2

structure optimization, then this GA works on a population of
classifier populations—these kind of systems are commonly called
Pittsburgh-style LCS. However, since we expect many optimization
methods to be applicable to this (see Section 7), an implementation
of SupRB does not necessarily contain a GA. Nevertheless, the gen-
eral SupRB architecture should probably be placed into or close
to the Pittsburgh-style category. The implementation of SupRB we
present in Section 4 is definitely a Pittsburgh-style LCS since it uses
a GA to optimize the model structure.

Dividing the learning process into two distinct phases is advan-
tageous. First of all, optimization of the process’s hyperparameters
can be done more straightforwardly because hyperparameters are
divided into two disjoint sets, one for each of the two phases. Be-
sides that, the learning process is analysed more easily because
the overall optimization problem of fitting the model to the data
decomposes nicely into the two subproblems solved by the phases
[8]—‘nicely’ meaning, that solving the subproblems independently
of each other solves the overall problem. For example, if learning
does not work and, upon inspection, the classifier weight updates
converge correctly and fast enough, it is immediatly clear that
the model structure optimization is the culprit and corresponding
measures can be taken.

3.4 Prediction
After training, SupRB can make two kinds of prediction. A quality
prediction consists of using SupRB’s internal function approxima-
tion to predict the quality resulting from a certain parametrization
a given a certain situation x . To do so, SupRB retrieves all classifiers
from the classifier population that match x , that is, the set

M(x) = {c ∈ C | mc (x) = T}. (6)

The predictions of these classifiers then need to be mixed in order
to yield the overall system prediction for the inputs, q̂(x ,a). One
way of mixing is a simple sum which is weighted by some accuracy
measure Fc defined for each classifier c:

q̂(x ,a) =
∑

c ∈M (x)
Fc q̂c (x ,a) (7)

Here, q̂c (x ,a) denotes the quality value that the local model of c
predicts for parametrization a in situation x . It is important that∑

M (x)
Fc = 1 (8)

or otherwise the classifier’s combined predictions systematically
over- or undershoot the actual value as the local models must be
trained independently [8], which means that they are unaware of
the other local model’s predictions during training.

A parametrization choice (or âmax-prediction) consists of pre-
dicting the best parametrization for a given fixed situation x0, that
is, performing (3) to yield (4)—which is the more central kind of
prediction for parametrization optimization. The way of doing this
highly depends on the used form of local models. For example, if
the local models are polynomial functions of a degree of less than
five, an exact analytical solution exists (Abel-Ruffini theorem) as
partial derivatives can be used to find the set of local optima Alocal
from which SupRB then can retrieve the global optimum by using

its function approximation:

âmax = argmax
a∈Alocal

q̂(x0,a) (9)

For other functions, where an exact analytical solution is unknown
or impractical, there are other options that range from root-finding
algorithms [4] to heuristics such as hill climbing with random
restarts [24], genetic algorithms [11] or chemical reaction opti-
mization [15]. Although these non-analytical methods require a
comparably larger amount of computation time, they are feasible
in the setting SupRB targets: Industrial processes that are being
optimized are usually preplanned anyway, which takes a lot longer
than any of the heuristics needs to find SupRB’s parametrization
choice.

4 SUPRB-1: A FIRST IMPLEMENTATION OF
SUPRB

While the previous section introduced SupRB’s general architecture,
learning process as well as its desired prediction capabilities, we
now want to give a detailed account of SupRB-1, a first implemen-
tation of that system1.

4.1 Training and validation sets
SupRB-1 randomly splits the available training data, {X ,A}T , into
two disjoint sets of configurable sizes, {X ,A}Ttrain ⊔ {X ,A}Tvalid, a
training and a validation set. The training set is used exclusively to
fit the classifier’s local models to the data they match whereas the
validation set is used exclusively to optimize the model structure.
This approach is rather simplistic; incorporating more sophisticated
sample management (k-fold cross validation etc.) is planned for the
future.

To simplify representation and computation, we assume that
parametrization and situation values are normalized to [−1, 1]DA

and [−1, 1]DX , respectively; this means that A ≃ Aactual needs to
hold where Aactual is the actual action value that is reported back
to an external system. Given the context of optimizing parame-
ters of industrial machinery it is reasonable to assume that upper
and lower bounds for Aactual exist in all cases which makes this
normalization trivial.

4.2 Classifiers
Classifier conditions are interval-based using an ordered bound rep-
resentation [29, 36]; an extension to hyper-ellipsoids [5] is already
in the works.

All classifiers’ local models are a simple linear regression2 on a
subset of the second order polynomial features of the input which
is fitted on {X ,A}Ttrain and qtrain. In order to be able to analytically
derive the âmax-prediction, we exclude all combinations of different
dimensions of A resulting in the following features set:

{xix j ,xiak ,a2k | i, j ∈ 1, . . . ,DX ,k ∈ 1, . . . ,DA } (10)

1Which we will make available in the camera-ready version.
2We use the one from the Python library scikit-learn [23].

3

The reasoning behind our choice for second order polynomial fea-
tures instead of linear models alone is that a linear model’s max-
imum is always at one of the boundaries of the domain, if they
exist.

The classifiers’ goodness-of-fit is measured using amean squared
error on {X ,A}Ttrain. We don’t use a separate validation set for es-
timating the goodness-of-fit in order to be as sample efficient as
possible; in the industrial machinery context this system mainly
targets, labeled data sets are comparably small. Nevertheless, a
separate validation set for goodness-of-fit estimation would most
certainly help the system to evolve better generalizing solutions
faster.

4.3 GA for optimizing the model structure
We optimize the model structure (the classifier’s localizations) using
a simple GA whose population consists of classifier populations. As
already stated above, this makes SupRB-1 a Pittsburgh-style LCS.

The GA is generational with a configurable number of elitists
(cf. for example [11]); a steady-state version was implemented as
well but in a few short preliminary tests did not perform signifi-
cantly better (albeit there is still no conclusive answer yet). The GA
performs mutation and crossover on classifier populations.

For a single classifier population, mutation changes the bounds
of the interval-based conditions of all classifiers by a normal dis-
tribution widened by a step-size s . Mutation steps are clipped at
the minimum lower and maximum upper interval bounds, −1 and
1 respectively (this can be disabled via a hyperparameter) in order
to keep the hyperrectangle described by the classifier’s condition
entirely within [−1, 1]DX (confer Section 4.1). Given any bound
(lower or upper) b ∈ X, its mutated value is distributed according
to

max(1,min(−1, {b + s ∗ N(µ = 0,σ = 1)})) (11)

The step size s is initially set to one thousandth of the maximum in-
terval width, which is 2

1000 in our normalized case. SupRB-1 adapts
s by the well-known one-fifth rule as it is used in [1] with a small
update factor of F = 1.05.

Crossover is done similarly as in [8] but using a normal distri-
bution instead of a uniform one in order to keep offspring sizes
closer together and less often generating really small offspring.
Given two parents of lengths l1 and l2, a number l ′1 is drawn from
N(µ = l1 + l2/2,σ = 1) repeatedly until 1 ≤ l ′1 ≤ l1 + l2 − 1 (the
condition ensures that each offspring contains at least one classi-
fier). After that, the classifiers of both parents are shuffled together
and divided randomly among two children, one of size l ′1, the other
of size l1 + l2 − l ′1. Performing this kind of crossover too often might
be too disruptive making a crossover rate necessary.

SupRB selects parents for crossover using a simple tournament
selection with tournaments of size 2 and the individual with the
highest fitness always winning [21]. We measure fitness relatively
between two individuals i1 and i2 based on their respective mean
squared errors e1 and e2 on the validation set {X ,A}Tvalid and their
respective lengths l1 and l2 which is a naïve measure for their model
structure’s complexity. Individual i1 wins the tournament if either
of the following is true:

e1 < e2 ∧ l1 ≤ e2
e1
l2 (12)

or
e1 ≥ e2 ∧ l1 ≤ k

e2
e1
l2 (13)

where k ∈ [0, 1] is a hyperparameter weighing higher solution
complexities against lower errors. This means that if i1’s error on
{X ,A}Tvalid is smaller than i2’s, i1’s complexity is allowed to be up
to e2

e1 (> 1) times larger than the one of i2. On the other hand, in
order for i1 to win the tournament with a higher error, it needs to
have an at least k e2

e1 (< 1) times smaller complexity than i2.

4.4 Initialization
The GA’s population of classifier populations is initialized by ran-
domly generating a number of individuals of a user-specified fixed
size. We experimented with initializing randomly-sized individuals
up to an upper bound to have a higher chance of finding the ‘cor-
rect’ individuals’ size early on. However, that did not (yet) work
out—it seems that an initially larger overall amount of classifiers is
more important than finding the correct solution size quickly.

Classifiers for an individual are generated randomly by sampling
the bounds of their match function’s intervals uniformly from X.
Although this is one of the least sophisticated methods and results
in a high chance of initial overlaps and unmatched examples, it
seemed to result in far larger overall stability when compared to
initializing classifier populations with evenly spaced individuals.
The reason is probably the greater genetic diversity in the system.

At the end of initialization, all classifiers of all classifier popu-
lations are fitted to the examples from {X ,A}Ttrain that they match
once.

4.5 Fitting classifiers
SupRB uses the most simple linear regression model from scikit-
learn 3 as the local model for each classifier. These models provide
a builtin means of fitting them to data which we use with standard
parametrization, which minimizes the L2-norm by Ordinary Least
Squares.

4.6 Prediction
Due to the simplicity of the classifier’s local models, SupRB-1 can
easily perform the two kinds of prediction the SupRB architecture
postulates. To predict a quality value given a situation and an action,
{x ,a}T , the linear regression models of all classifiers c that match
x are queried for their respective predictions q̂c ({x ,a}T). These
predictions are then mixed with weights based on the classifiers’
normalized goodness-of-fit д which we calculate from their mean
squared error on {X ,A}Ttrain. The unnormalized goodness-of-fit of
a single classifier is:

д′c =
1

ec+1
E

(14)

where E =
∑
c ′∈M (x) ec ′ + 1 is the sum of the errors of all classifiers

matching x and serves as normalization term for the error. Note
the—for now—naïve addition of 1 to all errors in order to avoid zero
terms. We further have to normalize д′ again, in order to fulfill (8)
yielding

дc =
д′c
G ′ (15)

3sklearn.linear_model.LinearRegression

4

whereG ′ =
∑
c ′∈M (x) д

′
c ′ is the sum of the unnormalized goodness-

of-fit values of the classifiers matching x . Substituting into (7) re-
sults in the following mixing model:

q̂(x ,a) =
∑

c ∈M (x)
дc q̂c (x ,a) (16)

An parametrization choice âmax(x) for a given situation x again
results from mixing each matching classifier c’s prediction. At
that, âmaxc (x) can be derived analytically based on the implicit
paraboloids that performing a linear regression on a second order
polynomial feature space yields. For example,

• if the paraboloid opens downwards, the parametrization
choice is the position of the vertex in A whereas

• if the paraboloid opens upwards, it is one of the points in

{(a1, . . . ,aDA) | a1, . . . ,aDA ∈ {−1, 1}}. (17)

The parametrization choices of the matching classifiers are then
mixed using the same procedure based on their respective mean
squared errors on {X ,A}Ttrain which gives

âmax(x) =
∑

c ∈M (x)
дc âmaxc (x). (18)

4.7 Summary of hyperparameters
We now want to give a quick overview of all the hyperparameters
introduced so far and a discussion of their impact.

Test set size is the percentage of the training data used exclusively
for evaluating the individuals’ fitness (see Section 4.1). This value
is only really critical whenever there is only little data available as
in that case, a trade-off has to be made between giving more data
to the process of fitting local model predictions versus the problem
structure optimization. By incorporating more sophisticated train-
ing data organisation techniques, however, this hyperparameter
loses some if not most of its impact.

The size of the initial individuals corresponds to the initial num-
ber of classifiers in the system (see Section 4.4). Having enough
genetic diversity from the start is extremely relevant, so a higher
value is generally better. However, higher values naturally tend to
increase the time until a compact solution is found.

The GA’s population size is a less sensitive hyperparameter
as long as there exist enough classifiers at the very start. Higher
values allow the system to explore more search space in the same
number of generations while generations themselves need more
computation time. A similar argument goes for the number of
elitists: While it is certainly important to have some amount of
elitism for most problems in order to not accidentally forget good
solutions, the actual amount of elitists in the population seems not
to be that relevant.

Last, but not least, k (see (12) and (13)) is the most impactful
hyperparameter as it directly interferes with the used fitness mea-
sure and thus with the evolutionary pressures within the system. A
higher value (closer to 1) emphasizes the generation of less complex
solutions while allowing for a higher error. In the long-term, this
value should probably made dependant on the dimensionalities of
the input space,DX andDA , because in higher-dimensional spaces,
a slight deviation from the intended target can lead to comparably
larger errors than in spaces of lower dimensionality. We expect this

effect to lead to different behaviour for the same k on problems
that only differ in their dimensionality but not in their general
characteristics. However, we defer a closer look at this to future
work.

The other hyperparameters have not that high of an impact and
are discussed more in-depth in the publications referenced at their
first mention. Table 1 gives a quick reference of all hyperparameters,
their expected impact as well as a proposed default value.

5 EVALUATION
We evaluated SupRB-1 on two computable problems which are dis-
cussed together with the obtained results in the following sections.

5.1 Frog Problem
The 2-dimensional frog problem [38] was already used in the eval-
uation of systems with similar goals as SupRB, namely GCS [39],
XCSFCA [30] and XCSRCFA [14] (cf. Section 6 for more information
on these systems), which is why it was chosen for this work as well.
Essentially a reinforcement learning problem with episode length
1 and continuous states, actions and rewards, achieving maximal
performance constitutes choosing an action which is equal to the
situation.

P(x ,a) =
{
x + a, if x + a ≤ 1
2 − (x + a), if x + a ≥ 1

(19)

We trained and evaluated SupRB-1 with standard parameter
settings (cf. Table 1) and k = 0.1. After 100 generations with only
50 training and 50 validation examples, the fitness elitist was able to
consistently (averaged over 30 runs) reach an MSE of less than 0.05
on choosing the optimal action when given states from a holdout
evaluation set. Regarding predicting the quality of a state-action
pair the MSE was below 0.03 on the same data. The fitness elitist
of the final generation contained 36 classifiers.

GCS, XCSFCA and XCSRCFA all evaluate the function 100,000
times, which is considerably more than SupRB-1’s 100 evaluations
which took place to generate the training data. However, this di-
rect comparison is slightly unfair as the three other systems could
probably also have used a sample far smaller than 100,000 with
a similar training procedure: They showed system errors below
0.05 after only 10,000 evaluated samples. Nevertheless, given the
few examples required for training SupRB-1, a high sample effi-
ciency is very likely. GCS stagnates at an error of 0.05 with about
1400 classifiers, while XCSFCA achieves an error below 0.01 after
30,000 samples with 740 classifiers whereas XCSRCFA solves the
problem perfectly after 18,000 samples using about 740 classifiers
[14]. It should be noted that SupRB-1 achieves a much greater rule
compactness, while definitely performing worse in terms of overall
function approximation error.

It can be assumed that the higher function approximation error
originates in the fact that SupRB-1 does not partition the search
space inA (see Section 3.2) and therefore has to fit the non-continuous
function with paraboloids, which can not achieve a perfect approx-
imation performance.

5.2 AM-Gauss
The AM-Gauss problem is a simplified model of an FDM-based
additive manufacturing (AM) process’s part quality and was created

5

hyperparameter impact default
validation set size usually low 0.5
individuals’ initial sizes medium to high 30
GA population size usually low 30
number of elitists depends on GA population size 1
k (fitness parameter) high too problem dependent
F (one-fifth rule parameter) low 1.05
crossover rate medium 0.9 (more results pending)

Table 1: Overview of hyperparameters of SupRB-1 and their default value.

using expert knowledge. The process itself consists of material
(usually thermoplastic polymers) being melted and then extruded
to gradually construct a part whose quality depends on a number of
factors such as the temperature to which the material is heated. For
a given material (one dimension of X), the resulting part quality
varies at increasing temperatures: Up until the melting point any
resulting part’s quality can be expected to be zero as no part can
be produced at all. With a further increase in temperature, quality
tends to increase as well at a rate depending on material properties
up until some—unknown—point where the material becomes too
soft to remain in shape which degrades part quality. At even higher
temperatures, material might simply fail to successfully construct
the part at all at which point quality can effectively be treated as
zero again. This relationship of material, temperature and resulting
quality can be simplified to a Gaussian function.

The FDM-based AM process we consider contains five contin-
uous (obviously a simplification by itself) situation dimensions:
Material, printer, room temperature, humidity and the kind of part
to produce. These situations interact with six continuous param-
eters: Extrusion temperature, print bed temperature, cooling fan
speed, extruder movement speed, material retraction speed and
retraction distance (the first four parameters are rather self explana-
tory; the latter two come into effect whenever the extruder can not
construct the part using continuous movement and has to move
without extruding material). Assuming that every combination of
situation dimensions and parameters can be modeled by a Gaussian
function as motivated above leads to the following overall model
for the quality function:

q(y) = q

©«

©«

x1
...

x5
a1
...

a6

ª®®®®®®®®®®¬

ª®®®®®®®®®®¬
=

∑
j ∈1, ...,11,
k ∈1, ...,11,

k,j

exp

(
−

((
yj
yk

)
− s

)T
Pj,k

((
yj
yk

)
− s

))

(20)
Here, the Pj,k ’s are randomly generated positive semi-definite ma-
trix inR2x2 with eigenvalues in [0, 30] (ensures sensible scaling) and
s is a randomly generated vector in [−1, 1]2 representing the shift
of the Gaussian function. We did not include noise in our model,
however, an evaluation on more realistic noisy environments is
already planned.

We generated 30 such functions from consecutive random seeds
and used these to create 30 sets of training data for SupRB-1. These

sets each contained 2000 examples for training (1000 training and
1000 validation examples) and 1000 examples we held out for eval-
uation. On each of those data sets SupRB-1 was run once for 500
generations using all standard parameters but initial individual
sizes of 50 and k = 10−6 and then evaluated; the results are shown
in Figures 1 and 2. Note that, having 30 different functions to test
SupRB-1 on leads to a better estimate of its general performance at
the cost of having a higher variance of results than when repeatedly
testing on a single function.

We compare SupRB-1’s results with those achieved by a two-
layer fully connected artificial neural network (ANN) trained on
identical data and functions. We performed simple automated archi-
tecture optimization on the ANN in terms of error during validation,
determining optimal architecture for the given problems at 512 and
8 hidden cells respectively, while using ReLu activation functions
twice; model complexity was not factored into the architecture
optimization strategy. We show the results of this architecture on
the holdout datasets as a baseline.

It can be seen in Figure 1a that SupRB-1’s quality predictions’
RMSE on holdout data improves rapidly over the first 50 gener-
ations and then seems to converge at around 1.02 in generation
100 which is on par with the ANN baseline. At around generation
200, however, the error starts to increase again and later fluctu-
ates around a value of 1.1. The same behaviour can be observed
on parametrization choices’ RMSE on holdout data (Figure 1b) al-
though the baseline is missed on that metric. The same can be
seen, however, when looking at the quality prediction’s RMSE on
the training data (Figure 1c); this means that the problem can be
detected and averted during training especially since the number
of examples that are not matched by any classifier increases in a
similar manner (Figure 2b).

When looking at the number of classifiers in SupRB-1’s elitist
(Figure 2a), a steady decrease up to a convergence at only 2-4 classi-
fiers can be observed. By construction it is highly unlikely that the
AM-Gauss problem can be solved satisfyingly by this few local mod-
els. We tried to alleviate that problem by during mutation adding a
random classifier with a probability of 0.5 (this is also used for the
shown runs)—but to no avail. It can be seen that, between genera-
tions 100 and 200, the number of classifiers lies between 13 and 35
which seems to be the sweet spot with the used hyperparameters.

The fact that after finding that sweet spot model complexity still
decreases leads us to to believe that there is an issue with SupRB-1’s
fitness measure. And indeed: It accepts individuals with slightly
worse error in favour of a lower complexity (see (13)), which, when
applied repeatedly can result in classifier population deterioration

6

0 100 200 300 400 500
Generations

1.0

1.1

1.2

1.3

1.4

(a) Quality predictions on holdout data
with ANN baseline.

0 100 200 300 400 500
Generations

3.00

3.25

3.50

3.75

4.00

4.25

4.50

(b) Parametrization choices on holdout
data with ANN baseline.

0 100 200 300 400 500
Generations

0.9

1.0

1.1

1.2

1.3

(c) Quality predictions on training data
{X , A}T .

Figure 1: Root mean squared error (with standard deviation (SD)) of different metrics on SupRB-1’s elitist’s performance,
averaged over 30 random AM-Gauss problems.

0 100 200 300 400 500
Generations

0

10

20

30

40

50

(a) Number of classifiers in
SupRB-1’s elitist on AM-Gauss
problem holdout data.

0 100 200 300 400 500
Generations

0

500

1000

1500

(b) Number of unmatched
examples of training data
{X , A}T .

Figure 2: Simplistic complexity and knowledge gapmeasure-
ments with SD of SupRB-1’s elitist.

such as the one observed. This problem can easily be fixed by
making (13) dependent on the error of the best individual ever seen.

Besides, due to the k hyperparameter being more delicate than
expected (see Section 4.7) we assume that the value we determined
for these runs was by far not optimal.

6 RELATEDWORK
The SupRB learning system is inspired by previous research work
in the field of learning classifier systems. LCS have been applied to a
diverse field of problems resulting in a diverse field of applications,
e. g. function approximation [33, 37], complex multiplexers [32],
robot kinematics [20, 27]. LCS research can be further divided
into Michigan- and Pittsburgh-style systems, with Michigan-style
systems featuring a GA operating on the level of individual rules,
where the entirety of rules represents a solution to the problem,
while in Pittsburgh-style (also abbreviated as Pitt-style) systems the
GA operates on sets of rules, where each set represents a complete
solution to the problem.

The most famous and well researched family of LCS stem from
Wilson’s XCS classifier system [34] following the Michigan-style.
XCSR [35] expanded rule representations and therefore input op-
tions from ternary to continuous by using interval predicates; a
representation used by many following systems such as XCSF [37],
BioHEL [3] and of course SupRB-1. XCSF is an extension for XCS to

perform function approximation by replacing the constant payoff
prediction with a local linear model, thus performing a piecewise-
linear approximation of the overall function. The linear local models
have subsequently been replaced by more complex models, such
as higher order polynomials [17], interpolation [28] or neural net-
works [16].

Pittsburgh-style systems perform well when following a super-
vised learning setup and have usually been applied to classifica-
tion/data mining problems. GALE [18] performed data mining for
various classification tasks such as the detection of breast cancer,
solving multiplexers and the classification of irises. NAX [19] has
been applied to the diagnosis of prostate cancer without human in-
put. GAssist [2, 9] was build for supervised learning of classification
tasks and uses a standard GA to evolve rules basing on GABIL [7].
As typical for Pittsburgh-style LCS, individuals consist of a set of
rules that represent a complete problem solution of variable length.
The solution returned at the end of training is the highest fitness
individual. The basic system uses discrete inputs and continuous
inputs get discretised into dynamically generated micro-intervals.
Not covered samples get predicted as a default class whose samples
were not used for training.

A more recent example of Pittsburgh-style systems for classifica-
tion on discretised data is EDARIC [25]. It is designed to deal with
both over-fitting and class-imbalance by evolving populations for
each class separately and using ensemble techniques for unknown
samples. Generalisation is achieved by starting from maximally
specific rules and gradually deleting constraints on less relevant
input attributes. It was shown to perform well when compared
to XCS, decision trees and GAssist for a number of classification
datasets.

BioHEL [3, 9], a descendent of GAssist leaving the traditional
Pittsburgh-style behind, is using an iterative rule learning approach
to learn continuous and discrete attributes for bioinformatic datasets.
It uses XCSR’s hyper-rectangle representation for continuous inputs
and GABILs representation for discrete inputs. Fitness is based on
GAssist’s fitness function with the addition of including coverage
of rules. It uses the default classification mechanism of GAssist.

In reinforcement learning real world applications can often not
be represented by discrete actions. Thus, the field of continuous

7

actions in XCS has found much research. While the problem de-
scribed in section 1 is not understood to be in a reinforcement
learning context and would only be of a single step nature, the
optimal parametrization follows a similar design principle to multi-
dimensional continuous actions. Wilson proposed three architec-
tures [39]: IAL, a second XCSF interpolating the choices of the
decision making XCSF, CAC, an actor-critic approach, and GCS,
where a continuous action is aggregated with the input and a func-
tion of both is learned using XCSF. In GCS the optimal action is the
action maximizing the learned function. The general approach of
GCS is thus related to SupRB with the important distinction that
GCS matches on both action and state.

Tran et al. introduce XCSFCA [30] as another way to deal with
continuous actions by computing the action directly from the input.
XCSFCA approximates a function (X, (X → A)) → R which,
due to currying, corresponds to X → ((X → A) → R). Since
A is never a domain, XCSFCA only learns exactly one (the best
regarding the quality measure) action âmax(x) for each x ∈ X . That
optimal âmax(x) is modelled using a linear model which is optimized
separately using (1+1)-ES. SupRB instead learns (X,A) → Rwhich
can be written as X → (A → R). Thus it is able to approximate
the quality q(x ,a) of every possible actions a ∈ A, which is far
more informative than only getting the best possible action, as
the resulting action quality function q̂ could be analysed at will
afterwards. The same argument can be made for all systems using
computed actions. Besides the above, the structure of Tran et al.’s
system is deliberately close to the one of XCS(F).

Howard et. al. [13] expanded on the idea of computed actions
in XCSF by using a neural network to determine both matching
and actions from the given inputs. Iqbal et al. [14] also dealt with
continuous actions by computing them in XCSRCFA, where the
action is represented by a code fragment of a two branches deep
binary tree that is evolved when creating new classifiers, similar
to genetic programming. Naqvi and Browne [22] incorporated this
approach to solve symbolic regression problems.

Hashemnia et al. [10] incorporate continuous actions into XCSR
to balance an unmanned bicycle in simulation. However, to choose
an action to execute they discretise the actions, determine a discrete
set by a fitness-weighted roulette wheel selection mechanism and
choose the continuous action of the fittest classifier within the
determined set.

7 FUTUREWORK
Given that SupRB-1 was deliberately designed to implement SupRB
while being as simplistic as possible there are numerous additions
that can and will be made. Some of them are already in the works,
such as an expansion to hyper-ellipsoid conditions [5] and testing of
different polynomial and non-polynomial local models such as sine,
exponential and radial basis functions (e. g. similar to the Gaussians
already used as a testbed for SupRB-1). An expansion to neural
networks seems plausible as well [16], although, in order to keep
the degree of explainability high, they have to be kept as simplistic
as possible.

Further, an investigation of a heterogeneous model landscape
seems desirable, as some parts of a function might be harder to ap-
proximate even with very specific classifier conditions while others

can be described linearly with ease. SupRB keeps model complexity
low while keeping performance high (see Section 3.1), we can thus
expect that simpler models will be chosen where appropriate, for
example, by including model type into the mutation operator.

In SupRB-1, the model structure is evolved by a GA, however,
other algorithms such as CRO [15] are capable of improving an
underlying model structure. Although this would arguably make
SupRB no longer a strict representative of Pittsburgh-style LCS,
as this name is strongly linked to GAs, an investigation seems
appropriate. Both improvement techniques for GAs (e. g. n-point-
crossover, different crossover and mutation rates) and different
model structure optimizers should thus be investigated. As explain-
ability is a key feature of SupRB, we will compare it with other
machine learning techniques commonly seen as explainable such
as decision trees.

In SupRB-1 the search space is not partitioned in A to increase
explainability, as understanding a singular function is much eas-
ier than understanding a combination—possibly including mixing
models—of multiple heterogeneous functions. Note, that under-
standing a single function even of low order polynomials is non-
trivial. A hierarchical approach where multiple classifiers will be
located within a classifier matching a situation will be investigated
in terms of performance and critically evaluated with regard to
explainability.

Finally, SupRB-1 should be applied to real industrial datasets.

8 CONCLUSIONS
We introduced the SupRB learning system, a general accuracy-
based Pittsburgh-style LCS architecture for supervised learning
on continuous multi-dimensional decision problems. We laid the
ground work for further investigation of this system by clearly
defining parametrization optimization, the task SupRB is primarily
meant to perform, describing the overall architecture and providing
a first, deliberately simplistic, implementation (SupRB-1) of it. Said
implementation was evaluated on a problem from the continuous-
action LCS literature as well as on an abstract, simplified model
of an industrial FDM manufacturing process. SupRB-1 has some
shortcomings but these can be attributed to its simplicity. The
overall approach shows a lot of prospect.

ACKNOWLEDGMENTS
This work was in part supported by the German Federal Ministry
for Economic Affairs and Energy (BMWi).

REFERENCES
[1] Anne Auger. 2009. Benchmarking the (1+1) Evolution Strategy with One-fifth

Success Rule on the BBOB-2009 Function Testbed. In Proceedings of the 11th An-
nual Conference Companion on Genetic and Evolutionary Computation Conference:
Late Breaking Papers (GECCO ’09). Association for Computing Machinery, New
York, NY, USA, 2447–2452. https://doi.org/10.1145/1570256.1570342

[2] Jaume Bacardit. 2004. Pittsburgh Genetic-based Machine Learning in the Data
Mining Era: Representations, Generalization, and Run-time. Ph.D. Dissertation.
Universitat Ramon Llull.

[3] Jaume Bacardit, Edmund K. Burke, and Natalio Krasnogor. 2009. Improving the
Scalability of Rule-based Evolutionary Learning. Memetic Computing 1, 1 (01
Mar 2009), 55–67. https://doi.org/10.1007/s12293-008-0005-4

[4] Richard P. Brent. 1973. Algorithms for Minimization Without Derivatives. Prentice-
Hall.

[5] Martin V. Butz. 2005. Kernel-based, Ellipsoidal Conditions in the Real-valued
XCS Classifier System. In Proceedings of the 7th Annual Conference on Genetic and

8

https://doi.org/10.1145/1570256.1570342
https://doi.org/10.1007/s12293-008-0005-4

Evolutionary Computation (GECCO ’05). Association for Computing Machinery,
New York, NY, USA, 1835–1842. https://doi.org/10.1145/1068009.1068320

[6] Martin V. Butz and Stewart W. Wilson. 2002. An Algorithmic Description of XCS.
Soft Computing 6, 3 (Jun 2002), 144–153. https://doi.org/10.1007/s005000100111

[7] Kenneth A. DeJong andWilliamM. Spears. 1991. Learning Concept Classification
Rules Using Genetic Algorithms. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence, vol. 2. Morgan Kaufmann Publishers Inc.,
651–656.

[8] Jan Drugowitsch. 2007. Learning Classifier Systems from First Principles: A Proba-
bilistic Reformulation of Learning Classifier Systems from the Perspective of Machine
Learning. Ph.D. Dissertation. University of Bath (United Kingdom).

[9] María A. Franco, Natalio Krasnogor, and Jaume Bacardit. 2013. GAssist vs.
BioHEL: Critical Assessment of Two Paradigms of Genetics-based Machine
Learning. Soft Computing 17, 6 (01 Jun 2013), 953–981. https://doi.org/10.1007/
s00500-013-1016-8

[10] Saeed Hashemnia, Masoud Shariat Panahi, and Mohammad Mahjoob. 2018.
Continuous-action XCSR with Dynamic Reward Assignment Dedicated to Con-
trol of Black-Box Mechanical Systems. Asian Journal of Control 20, 1 (2018),
356–369. https://doi.org/10.1002/asjc.1659

[11] John H. Holland. 1975. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI, USA. second edition, 1992.

[12] John H. Holland. 1976. Adaptation. In Progress in Theoretical Biology. Vol. 4.
Academic Press, New York, 263–293.

[13] Gerard D. Howard, Larry Bull, and Pier-Luca Lanzi. 2009. Towards Continuous
Actions in Continuous Space and Time Using Self-Adaptive Constructivism
in Neural XCSF. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’09). Association for Computing Machinery,
New York, NY, USA, 1219–1226. https://doi.org/10.1145/1569901.1570065

[14] Muhammad Iqbal, Will N. Browne, and Mengjie Zhang. 2012. XCSR with Com-
puted Continuous Action. In AI 2012: Advances in Artificial Intelligence, Michael
Thielscher and Dongmo Zhang (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 350–361.

[15] Albert Y. S. Lam and Victor O. K. Li. 2010. Chemical-reaction-inspired Meta-
heuristic for Optimization. IEEE Transactions on Evolutionary Computation 14, 3
(June 2010), 381–399. https://doi.org/10.1109/TEVC.2009.2033580

[16] Pier-Luca Lanzi and Daniele Loiacono. 2006. XCSF with Neural Prediction.
In 2006 IEEE International Conference on Evolutionary Computation. 2270–2276.
https://doi.org/10.1109/CEC.2006.1688588

[17] Pier-Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
2005. Extending XCSF beyond Linear Approximation. In Proceedings of the
7th Annual Conference on Genetic and Evolutionary Computation (GECCO ’05).
Association for Computing Machinery, New York, NY, USA, 1827–1834. https:
//doi.org/10.1145/1068009.1068319

[18] Xavier Llorà and Josep M. Garrell. 2001. Knowledge-Independent Data Mining
with Fine-Grained Parallel Evolutionary Algorithms. In Proceedings of the 3rd
Annual Conference on Genetic and Evolutionary Computation (GECCO ’01). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 461–468.

[19] Xavier Llorà, Rohith Reddy, Brian Matesic, and Rohit Bhargava. 2007. Towards
Better than Human Capability in Diagnosing Prostate Cancer Using Infrared
Spectroscopic Imaging. In Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’07). Association for Computing Machinery,
New York, NY, USA, 2098–2105. https://doi.org/10.1145/1276958.1277366

[20] Didier Marin, Jérémie Decock, Lionel Rigoux, and Olivier Sigaud. 2011. Learning
Cost-Efficient Control Policies with XCSF: Generalization Capabilities and Fur-
ther Improvement. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’11). Association for Computing Machinery,
New York, NY, USA, 1235–1242. https://doi.org/10.1145/2001576.2001743

[21] Brad L. Miller, David E. Goldberg, et al. 1995. Genetic Algorithms, Tournament
Selection, and the Effects of Noise. Complex systems 9, 3 (1995), 193–212.

[22] Syed S. Naqvi and Will N. Browne. 2016. Adapting Learning Classifier Systems to
Symbolic Regression. In 2016 IEEE Congress on Evolutionary Computation (CEC).
2209–2216. https://doi.org/10.1109/CEC.2016.7744061

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[24] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach
(3rd ed.). Prentice Hall Press, USA.

[25] Shubhra K. K. Santu, Mustafizur Rahman, Monirul Islam, and Kazuyuki Murase.
2014. Towards Better Generalization in Pittsburgh Learning Classifier Systems.
In 2014 IEEE Congress on Evolutionary Computation (CEC). 1666–1673. https:
//doi.org/10.1109/CEC.2014.6900388

[26] Stephen F. Smith. 1980. A Learning System Based on Genetic Adaptive Algorithms.
Ph.D. Dissertation. USA. AAI8112638.

[27] Patrick O. Stalph and Martin V. Butz. 2012. Learning Local Linear Jacobians for
Flexible and Adaptive Robot Arm Control. Genetic Programming and Evolvable
Machines 13, 2 (01 Jun 2012), 137–157. https://doi.org/10.1007/s10710-011-9147-0

[28] Anthony Stein, Simon Menssen, and Jörg Hähner. 2018. What about Interpo-
lation? A Radial Basis Function Approach to Classifier Prediction Modeling in
XCSF. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’18). Association for ComputingMachinery, NewYork, NY, USA, 537–544.
https://doi.org/10.1145/3205455.3205599

[29] Christopher Stone and Larry Bull. 2003. For Real! XCS with Continuous-Valued
Inputs. Evolutionary Computation 11, 3 (Sep 2003), 299––336.

[30] Trung Tran, Cédric Sanza, Yves Duthen, and Thuc Nguyen. 2007. XCSF with Com-
puted Continuous Action. Proceedings of GECCO 2007: Genetic and Evolutionary
Computation Conference, 1861–1869. https://doi.org/10.1145/1276958.1277327

[31] Ryan J. Urbanowicz and Jason H. Moore. 2009. Learning Classifier Systems: A
Complete Introduction, Review, and Roadmap. J. Artif. Evol. App. 2009, Article
Article 1 (Jan. 2009), 25 pages.

[32] Ryan J. Urbanowicz and Jason H. Moore. 2015. ExSTraCS 2.0: Description and
Evaluation of a Scalable Learning Classifier System. Evolutionary Intelligence 8, 2
(01 Sep 2015), 89–116. https://doi.org/10.1007/s12065-015-0128-8

[33] Ryan J. Urbanowicz, Niranjan Ramanand, and Jason Moore. 2015. Continuous
Endpoint Data Mining with ExSTraCS: A Supervised Learning Classifier System.
In Proceedings of the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation (GECCO Companion ’15). Association for
Computing Machinery, New York, NY, USA, 1029–1036. https://doi.org/10.1145/
2739482.2768453

[34] Stewart W. Wilson. 1995. Classifier Fitness Based on Accuracy. Evolutionary
Computation 3, 2 (1995), 149–175.

[35] Stewart W. Wilson. 2000. Get Real! XCS with Continuous-Valued Inputs. In
Learning Classifier Systems, Pier-Luca Lanzi, Wolfgang Stolzmann, and Stewart W.
Wilson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 209–219.

[36] Stewart W.Wilson. 2001. Mining Oblique Data with XCS. In Advances in Learning
Classifier Systems, Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 158–174.

[37] Stewart W. Wilson. 2002. Classifiers That Approximate Functions. Natural
Computing 1, 2 (01 Jun 2002), 211–234. https://doi.org/10.1023/A:1016535925043

[38] Stewart W.Wilson. 2004. Classifier Systems for Continuous Payoff Environments.
In Genetic and Evolutionary Computation – GECCO 2004, Kalyanmoy Deb (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 824–835.

[39] Stewart W. Wilson. 2007. Three Architectures for Continuous Action. In Pro-
ceedings of the 2003-2005 International Conference on Learning Classifier Systems
(IWLCS ’03–05). Springer-Verlag, Berlin, Heidelberg, 239–257.

9

https://doi.org/10.1145/1068009.1068320
https://doi.org/10.1007/s005000100111
https://doi.org/10.1007/s00500-013-1016-8
https://doi.org/10.1007/s00500-013-1016-8
https://doi.org/10.1002/asjc.1659
https://doi.org/10.1145/1569901.1570065
https://doi.org/10.1109/TEVC.2009.2033580
https://doi.org/10.1109/CEC.2006.1688588
https://doi.org/10.1145/1068009.1068319
https://doi.org/10.1145/1068009.1068319
https://doi.org/10.1145/1276958.1277366
https://doi.org/10.1145/2001576.2001743
https://doi.org/10.1109/CEC.2016.7744061
https://doi.org/10.1109/CEC.2014.6900388
https://doi.org/10.1109/CEC.2014.6900388
https://doi.org/10.1007/s10710-011-9147-0
https://doi.org/10.1145/3205455.3205599
https://doi.org/10.1145/1276958.1277327
https://doi.org/10.1007/s12065-015-0128-8
https://doi.org/10.1145/2739482.2768453
https://doi.org/10.1145/2739482.2768453
https://doi.org/10.1023/A:1016535925043

	Abstract
	1 Introduction
	2 Parametrization optimization
	3 An LCS architecture for continuous problems
	3.1 Model structure
	3.2 Local models: Classifiers
	3.3 Epoch-wise training
	3.4 Prediction

	4 SupRB-1: A first implementation of SupRB
	4.1 Training and validation sets
	4.2 Classifiers
	4.3 GA for optimizing the model structure
	4.4 Initialization
	4.5 Fitting classifiers
	4.6 Prediction
	4.7 Summary of hyperparameters

	5 Evaluation
	5.1 Frog Problem
	5.2 AM-Gauss

	6 Related Work
	7 Future Work
	8 Conclusions
	Acknowledgments
	References

