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Abstract

In this paper, we investigate the performance of two deep learning paradigms for the audio-based tasks of acoustic
scene, environmental sound and domestic activity classification. In particular, a convolutional recurrent neural
network (CRNN) and pre-trained convolutional neural networks (CNNs) are utilised. The CRNN is directly trained on
Mel-spectrograms of the audio samples. For the pre-trained CNNs, the activations of one of the top layers of various
architectures are extracted as feature vectors and used for training a linear support vector machine (SVM).
Moreover, the predictions of the twomodels—the class probabilities predicted by the CRNN and the decision function
of the SVM—are combined in a decision-level fusion to achieve the final prediction. For the pre-trained CNN networks
we use as feature extractors, we further evaluate the effects of a range of configuration options, including the choice
of the pre-training corpus. The system is evaluated on the acoustic scene classification task of the IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events (DCASE 2017) workshop, ESC-50 and the multi-channel
acoustic recordings from DCASE 2018, task 5. We have refrained from additional data augmentation as our primary
goal is to analyse the general performance of the proposed system on different datasets. We show that using our
system, it is possible to achieve competitive performance on all datasets and demonstrate the complementarity of
CRNNs and ImageNet pre-trained CNNs for acoustic classification tasks. We further find that in some cases, CNNs
pre-trained on ImageNet can serve as more powerful feature extractors than AudioSet models. Finally, ImageNet
pre-training is complimentary to more domain-specific knowledge, either in the form of the convolutional recurrent
neural network (CRNN) trained directly on the target data or the AudioSet pre-trained models. In this regard, our
findings indicate possible benefits of applying cross-modal pre-training of large CNNs to acoustic analysis tasks.
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1 Introduction
We are regularly surrounded by dynamic audio events,
from which some are quite pleasant, such as singing
birds or nice music tracks, other less so, like the sound
of a chainsaw or a siren. Even at a young age, humans
have the ability to analyse and understand a large num-
ber of audio activities and the interconnections between
them, whilst filtering out a wide range of distractions
[1]. In the era of machine learning, computer audition
systems for intelligent housing systems [2, 3], recogni-
tion of acoustic scenes [4, 5] and sound event detection
[4, 6, 7] are being developed. Therefore, it is essential for
such systems to perform with high accuracy in real-world
conditions. Despite recent developments in the field of
audio analysis, contemporary machine learning systems
are still facing a major challenge to perform the men-
tioned tasks with human-like precision. Moreover, deep
learning-based technologies lack a mechanism to gener-
alise well when faced with data scarcity problems. In this
regard, we follow a threefold strategy by (i) proposing a
cross-modal transfer learning strategy in the form of Ima-
geNet pre-trained convolutional neural networks (CNNs)
to cope with the limited data challenges, (ii) utilising a
CRNN for learning tempo-spatial characteristics of audio
signals, and (iii) fusing various neural network strategies
to check for further performance improvements.
In particular, we investigate the performance of our

methodologies to solve a 9-class audio-based classifica-
tion problem of daily activities performed in a domes-
tic environment [8], and further evaluate the system for
acoustic scene and environmental sound classification.
Recently, Vecchiotti et al. [9] demonstrated the efficacy

of CNNs for the task of voice activity detection in a multi-
purpose domestic environment, and Versperini et al. [10]
showed that CNNs can achieve great performance when
applied to the detection of rare audio events. At the same
time, recurrent neural networks (RNNs) have been widely
utilised in order to model the sequential nature of audio
data and capture their long-term temporal dependencies
[11–15]. With respect to the above-mentioned literature,
we propose our hybrid CRNN approach to obtain repre-
sentations from both CNNs and RNNs. It is worth men-
tioning that CRNNs, which have been first proposed for
document classification [16], are considered as state-of-
the-art in various audio recognition tasks, includingmusic
classification [17], acoustic event detection (AED) [18]
and recognition of specific acoustic vocalisation [19]. Fur-
thermore, they have been successfully applied for speech
enhancement [20] and detection of rare audio events, for
example, in smart home systems [7].
In addition to our proposed CRNN system, we investi-

gate the efficacy of a transfer learning approach by utilis-
ing VGG16 and VGG19 [21], ResNet [22] and DenseNet
[23] models for the aforementioned audio classification

problem [8, 24]. These models are popular CNN archi-
tectures pre-trained on the ImageNet corpus [25]. The
main reason behind using pre-trained CNNs is the robust
performance that such systems have found across vari-
ous audio classification and recognition tasks [26, 27]. We
further want to investigate if the features learnt for the
task of visual object recognition can provide additional
information for acoustic scene classification complimen-
tary to training a deep CRNN model on the audio data
from scratch. For this, we implemented a late fusion strat-
egy based on support vector machine (SVM) classifiers
which are trained on the predictions obtained from our
two systems. Finally, we compare ImageNet pre-training
to random weight initialisation and models trained on
large-scale audio classification tasks in the form of openl3
models [28, 29] and PANNs [30].
The remainder of this paper is organised as follows.

In the proceeding section, the datasets used in our
experiments are presented. Then, the structure of our
proposed framework is introduced in Section 3. After-
wards, the experimental results are discussed and anal-
ysed in Section 4. Finally, conclusions and future work
plans are given in Section 5.

2 Datasets
We evaluate our proposed systems on three datasets.
The first set originates from the “Monitoring of domes-
tic activities based on multi-channel acoustics” task of
the IEEE AASP Challenge on Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE 2018)1
[8, 24]. It contains audio data labelled with the partic-
ular domestic activity occurring in the recording. The
data has been recorded with 7 microphone arrays, each
consisting of four linearly arranged microphones. Those
microphone arrays were placed in a studio sized hol-
iday home and the person living there was continu-
ously recorded for the period of 1 week. The con-
tinuous recordings were then split into 72,984 single
audio segments of 10-s length and labelled with 9 dif-
ferent activities (absence, cooking, dish washing, eating,
other, social activity, vacuum cleaning, watching TV and
working). Segments containing more than one house-
hold activity were discarded. The development data of
the challenge consists of audio samples recorded by four
microphone arrays at different locations. For the evalua-
tion, partition data of seven microphone arrays is used,
consisting of the four microphone arrays available in
the development partition, and three unknown micro-
phone arrays [8]. We use the exact setup as provided
by the challenge organisers. For detailed information
about this dataset, the interested reader is referred to
[8, 24].

1http://dcase.community/challenge2018/task-monitoring-domestic-activities

http://dcase.community/challenge2018/task-monitoring-domestic-activities
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Further, we show the efficacy of the proposed fusion
approach on two additional datasets: the acoustic scene
classification challenge (task 1) of the IEEE AASP Chal-
lenge on Detection and Classification of Acoustic Scenes
and Events (DCASE 2017) workshop [31] and the environ-
mental sound classification dataset ESC-50 [32]. DCASE
2017 contains 4680 10-s audio samples of 15 distinct
acoustic scenes in the development partition and another
1620 samples for model evaluation. Furthermore, a cross-
validation setup is provided for the development partition
which we also use for our experiments. ESC-50’s 2000
samples of environmental sounds are spread evenly across
50 categories. As for DCASE, a cross-validation setup
is also given. In order to have a similar setup for our
experiments, we use four of the five folds during train-
ing and development while setting the fifth fold aside for
evaluation. This allows us to optimise model parameters
using 4-fold cross-validation and afterwards test the best
configurations on unseen data.

3 Methods and experimental settings
An overview of our deep learning framework is given
in Fig. 1. First, Mel-spectrograms are extracted from
the audio data (cf. Section 3.1). After this, the extracted
spectrograms are forwarded through the CRNN
(cf. Section 3.2) and DEEP SPECTRUM (cf. Section 3.3)
systems. Subsequently, our CRNN is trained on these
Mel-spectrograms, and deep feature representations are
extracted by a range of CNN networks which serve as
input for SVM classification. Finally, in a decision-level
fusion, the results achieved by different configurations are
fused (cf. Section 3.4). We have decided to choose SVM
classifiers for our experiments as they have consistently
performed well on DEEP SPECTRUM features [1, 26, 27]
and are very efficient in high-dimensional feature space
[33].

3.1 Spectrogram extraction
To create the Mel-spectrograms from the audio data,
we apply periodic Hann windows with length 0.32 s
and overlap 0.16 s. From these, we then compute 128
of log-scaled Mel-frequency bands. Mel-spectra features
have been shown to be useful for audio tasks, such
as speech processing and acoustic scene classification
[14, 19, 27, 34]. The Mel-spectra are then normalised,
so that the maximum amplitude is at 0 dB. In our ini-
tial experiments on DCASE 2018, we also clip the spec-
trograms at different amplitudes—− 30 dB, − 45 dB and
− 60 dB—to minimise the effect of background noise and
eliminate higher amplitude signals that are not correlated
with the class of the audio recordings.

3.2 CRNN framework
As indicated in Section 1, deep models trained by CNNs
and RNNs are suitable for AED and an array of other audio
classification tasks. CNNs are trained by learning filters
that are shifted in time and frequency. This automatically
enables them to extract high-level features that are shift-
invariant in both the frequency and time axes [35, 36].
This also means that those features will mostly contain
short-term temporal context. Due to the inherent nature
of CNNs, the ability to extract long-term temporal con-
text is limited. In contrast, an RNN can extract long-term
temporal features and struggles to capture short-term and
shift-invariant information [37].
The advantages of CNNs and RNNs can be leveraged

by combining them into a CRNN, replacing a specified
amount of the final layers of the CNN with recurrent
layers.

3.2.1 DCASE 2018
Our CRNN for DCASE 2018, task 5 consists of 3 convolu-
tional blocks where each block contains one convolutional

Fig. 1 An overview of our deep learning framework composed of a pre-trained CNN (here exemplified with VGG16) used as feature extractor and a
CRNN block. First, the spectrograms are created from the audio recordings. Afterwards, using the pre-trained CNN and our CRNN, block predictions
are obtained. In the last step, a decision-level fusion is conducted to get the final predictions. For a detailed account on the framework, refer
to Section 3
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layer, batch normalisation along the channel axis [38],
exponential linear units (ELUs) as activation function [39],
two-dimensional max-pooling and a dropout layer with
30% dropout [40]. The convolutional layers use a 5 × 5,
4×4 and 3×3 convolutional kernel. We have used a max-
pooling with a size of 2 for the time dimension and a size
of 32 for the frequency dimension in the third convolu-
tional layer. The three convolutional blocks are followed
by two gated recurrent units [41] each with 256 hidden
units. We then apply a final dropout with 30% to minimise
the possible overfitting effects [40]. The probabilities for
each class are computed by a softmax layer with 9 logits.
The loss of the CRNN is calculated with the cross

entropy on the logits and the network is trained with the
ADAM optimiser with β1 = 0.9, β2 = 0.999, a combina-
tion of two learning rates lr ∈ [ 0.01, 0.001], and batch size
∈ [ 64, 128] were evaluated. A learning rate decay of 0.002
was adjusted and the network was trained for 30 epochs.

3.2.2 DCASE 2017 and ESC-50
On DCASE 2017 and ESC-50, the CRNN is slightly
adapted to use 4 convolutional blocks and smaller 3 × 3
convolutional kernels throughout based on initial experi-
ments. We use the same optimiser with a learning rate of
0.001 and train for 50 epochs on DCASE 2017 and 100
epochs on ESC-50 due to the smaller dataset sizes. Fur-
thermore, we refrained from using amplitude clipping at
different rates; instead, we clip every spectrogram below
− 80 dB.

3.3 Pre-trained CNNs as feature extractors
In addition to CRNNs, we also employ the DEEP SPEC-
TRUM toolkit2 [42] to extract deep features from the
audio samples with VGG16, VGG19 [21], 50-layer ResNet
[22] and DenseNet121 [23] networks that have been
pre-trained on ImageNet. In combination with differing
machine learning algorithms, these features have per-
formed well for various audio-based recognition tasks
[1, 26, 27, 43].
For the extraction of these features, Mel-spectrograms

(with 128 Mel-frequency bands) are first plotted from
the audio clips with the matplotlib library and the result-
ing images are then forwarded through the networks. For
VGG16 and VGG19, we use the neuron activations of
the second to last fully connected layer as representa-
tions, while for the ResNet andDenseNet networks, global
average pooling is applied to the convolutional base to
form the audio features. For the work presented herein,
we also evaluate the ImageNet pre-training against ran-
dom initialisation of weights and using features extracted
from models trained on audio data in with the open

2https://github.com/DeepSpectrum/DeepSpectrum

source toolkits openl33 [28, 29] and PANNs4 [30]. While
openl3 uses mel-spectrograms as input just as DEEP
SPECTRUM, PANNs employs a hybrid wavegram feature,
combining a small 1D CNN trained directly on the raw
audio waveform with mel-spectrograms by concatena-
tion along the channel axis. Both approaches make use
of CNNs as feature extractor. For openl3, we further use
the network trained on environmental sounds instead of
the one for music recognition as the former fits bet-
ter with our target tasks. As classifier, we use a linear
SVM to which we feed the DEEP SPECTRUM features after
applying input standardisation. We optimise the classi-
fier’s complexity parameter on a logarithmic scale from
10−9 to 1 to achieve the best macro averaged F1 score
on the suggested 4-fold cross-validation (CV) setup. The
same procedure is also applied on DCASE 2017 and
ESC-50.

3.4 Decision-level fusion
In order to assess whether the different systems trained
in our experiments are complimentary to each other, we
apply a decision-level fusion approach to the predictions
of the CRNN models and the SVM classifiers trained on
the deep features extracted by the various CNNs. On all
three datasets, we perform classifier stacking by utilising
the predictions generated by all of the individual trained
models, i. e. we concatenate the class probabilities or
decision function values generated by CRNN and SVM
models to form a new set of features. These features are
then used to train another linear SVM as a meta-model to
predict the correct class labels. We use feature standard-
isation and optimise the SVM’s complexity parameter on
a logarithmic scale from 10−9 to 1 with the official 4-fold
cross-validation schemes on the development partition
for both DCASE tasks, and the first four folds of ESC-50.
The best performing configuration is then trained on the
whole development partition and used to predict the class
labels on the test set.

4 Experimental settings and results
For training and evaluating our deep learning models,
we utilise 4-fold CV plus a held-out test set partition-
ing described in the previous sections. For the Domestic
Activity Classification task of DCASE 2018 [8], we use
macro average F1 as evaluation measure, as was done in
the challenge. In the case of DCASE 2017 and ESC-50
which have balanced class distribution, we use accuracy
as measure to make comparisons to the state-of-the-art
easier. The results and experimental settings for the three
tasks will be presented in their own respective sections,
starting with the domestic activity classification task of

3https://github.com/marl/openl3
4https://github.com/qiuqiangkong/panns_inference

https://github.com/DeepSpectrum/DeepSpectrum
https://github.com/marl/openl3
https://github.com/qiuqiangkong/panns_inference
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DCASE 2018. The final results for all three tasks are
aggregated in Table 3.

4.1 DCASE 2018, task 5
In each fold, we train our CRNNs for each the Mel-
spectrogram data and evaluate it on the test partition. We
perform mean fusion of the class probabilities generated
by each of the fourfold models to arrive at the final predic-
tions on the test set. We further experiment with different
learning rate and batch size combinations, specifically lr ∈
[ 0.001, 0.01] and batchsize ∈ [ 64, 128]. Additionally, here,
we investigate the impact on performance of clipping the
spectrograms at − 30 dB, − 45 dB and − 60 dB. Optimal
results are achieved with a batch size of 64 and learn-
ing rate set at 0.01. Predictions from these three CRNN
configurations are then fused among themselves and with
those of the other systems.
The results provided in Table 1 demonstrate that the

CRNN systems perform best when trained with a batch
size of 64 and a learning rate of 0.01.We choose onemodel
for each of the clipping values for evaluation on the test
set and for decision-level fusion. On the development par-
tition, a lone CRNN model performs best when clipping
noise is below − 60 dB, achieving an F1 score of 78.8%.
Clipping more noise (at − 45 dB and − 30 dB) results in
worse performance on the development partition, indicat-
ing a loss of useful information found in the input signal.
When looking at the results on the evaluation partition,
clipping noise below − 45 dB leads to the strongest result
of 79.3% F1. This behaviour might be caused by the intro-
duction of recordings from microphones which are not
present in the development partition. Therefore, clipping
further might counteract the influence of the unfamiliar
sound characteristics of these microphones. Furthermore,
noise clipping has a regulating effect on CRNN training,

acting against overfitting on the recording setting of the
development partition. While clipping less of the input
signal allows the model to perform better on the devel-
opment set, it in turn loses some of its generalisation
capabilities.
The training procedure of the SVM models utilis-

ing various CNN networks as feature extractors is as
described in Section 3.3. For DCASE 2018, we also eval-
uated the impact on classifier performance resulting from
choosing different colour maps for the plots of the mel-
spectrograms used in the DEEP SPECTRUM system. In
Table 2, results with five different colour mappings for
an ImageNet pre-trained 50-layer ResNet are presented.
From these results, it can be seen that choosing different
colour mappings only has a marginal effect on classifi-
cation accuracy. Based on these findings, we do not use
multiple colour maps for the remaining databases.
Of larger interest are the results achieved with differ-

ent configurations of model architecture and pre-training,
as can be seen in Table 3. Notably, ImageNet pre-trained
DenseNet121 and ResNet50 achieve the highest perfor-
mance on the test partition measured by macro aver-
age F1, with 81.1% and 80.3%, respectively. For all net-
work architectures, pre-training on ImageNet improves
the saliency of the extracted features when applied to
domestic activity classification when compared to using
randomly initialised weights. These performance deltas
are in the range of 5 to 10 percentage points. Compared to
the two evaluated audio pre-trained CNNs, ImageNet pre-
trained CNNs further are very favourable. While PANN
achieves a higher F1 score of 84.6% than any of the DEEP
SPECTRUM systems, openl3 features perform worse than
every other feature extractor, even when taking the ran-
domly initialised image CNNs into account. When late
fusion is applied to the different system configurations,

Table 1 Performance of CRNNs. All results are given in macro average F1. Tamp amplitude threshold, lr learning rate. All results are
measured in macro average F1

CRNN

lr Batch size Tamp [dB] Devel Test

0.001 128 − 30 66.5 –

0.001 128 − 45 57.8 –

0.001 64 − 30 55.4 –

0.01 128 − 30 66.2 –

0.01 128 − 60 69.2 –

0.01 64 − 30 70.7 72.3

0.01 64 − 45 73.7 79.3

0.01 64 − 60 78.8 74.2

Fusion of best 3 CRNNs 81.4 82.2

DCASE 2018, task 5 baseline [8]

0.0001 256 – 84.5 83.1
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Table 2 Evaluation of the impact different colour maps have on the efficiency of an ImageNet pre-trained ResNet as an audio feature
extractor on DCASE 2018’s domestic activity classification task. All results are given in macro average F1

Network Pre-training Colour map Devel Test

ResNet ImageNet Cividis 82.6 80.2

ResNet ImageNet Gray 82.2 79.4

ResNet ImageNet Hot 82.0 79.8

ResNet ImageNet Magma 81.9 80.3

ResNet ImageNet Viridis 81.2 79.9

several observations can be made. First of all, fusing
the different DEEP SPECTRUM configurations makes the
resulting classification system more robust and improves
performance over the best individual system to 84.3 on
the test partition. However, adding the DEEP SPECTRUM

systems with random weights into the fusion does not
improve over just fusing all ImageNet pre-trained models.
Fusing DEEP SPECTRUM with the CRNN trained only on
the target domain data leads to a slightly improved F1 of
85.5. However, combining audio and image pre-training in

Table 3 Results of DEEP SPECTRUM, pre-trained audio models, CRNN and their fusion on DCASE 2018, task 5, DCASE 2017, task 1 [31]
and ESC-50

DCASE18 (F1 [%]) DCASE17 (Acc [%]) ESC-50 (Acc [%])

Devel Test Devel Test Devel Test

Proposed DEEP SPECTRUM [42]

Network Pre-training

Densenet121 ImageNet 82.8 81.1 78.9 64.4 73.6 75.0

Densenet121 None 77.7 75.7 71.2 59.0 45.3 44.0

ResNet50 ImageNet 81.9 80.3 76.5 55.9 70.3 72.0

ResNet50 None 70.1 69.9 72.7 61.0 44.8 44.8

VGG16 ImageNet 79.4 77.0 70.1 54.1 63.0 64.8

VGG16 None 73.3 71.6 72.2 57.8 44.6 45.3

VGG19 ImageNet 78.6 77.9 71.8 57.1 62.9 62.5

VGG19 None 74.6 73.2 72.0 61.0 42.9 46.0

Pre-trained audiomodels

openl3 [28] AudioSet 73.3 68.4 79.3 67.7 69.8 70.8

PANN [30] AudioSet 84.6 84.6 69.3 65.7 91.0 89.3

Proposed fusion

Proposed CRNN 81.4 82.2 68.9 59.2 62.3 68.8

ImageNet pre-trained DEEP SPECTRUM 84.4 84.0 77.7 63.5 70.7 73.5

All untrained DEEP SPECTRUM 77.9 78.1 74.5 63.3 44.9 46.8

All DEEP SPECTRUM 84.6 84.3 78.7 67.3 69.8 75.8

CRNN + DEEP SPECTRUM 85.0 85.5 80.6 70.0 73.5 78.8

DEEP SPECTRUM + AudioSet nets 87.0 87.0 82.7 71.2 90.9 92.3

CRNN + AudioSet nets + DEEP SPECTRUM 86.8 86.8 82.5 71.7 89.6 90.8

Baselines and SOTA

Challenge baselines with CNNs [8, 31, 32] 84.5 85.0 74.8 61.0 72.4* 72.4*

CNN + Data augmentation [2] 90.0 88.4 – – – –

Data augmentation with GANs [44] – – 87.1 83.3 – –

Fine-tuned PANNs [30] – – – – 94.7* 94.7*

*ESC-50 baseline given for 5-fold CV which is different from the evaluated 4-fold plus test setup. The best results of every type of evaluated system are marked in bold
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a cross-modal fashion by fusing DEEP SPECTRUM, openl3
and PANN shows a larger performance improvement to
the highest F1 of 87.0%. This perceived complementar-
ity of features indicates the viability of transfer learning
across modalities. The confusion matrix of this best result
is also displayed in Fig. 2. While this result falls shortly
behind the top performing submission of the challenge
which utilises data augmentation with generative adver-
sarial networks (GANs) at 88.4%, it improves on the
strong baseline of 85.0%.

4.2 DCASE 2017, task 1
In the case of DCASE 2017’s acoustic scene classifica-
tion task, the CRNN trained only on the corpus performs
slightly below the challenge’s baseline system, achiev-
ing an accuracy of 59.2% on the test set. Using deep
CNNs as feature extractors leads to better results. With
an ImageNet pre-trained DenseNet121, an accuracy of
64.4% on the test set can be achieved. This compares
very favourably to features from the audio pre-trained
models from openl3 and PANN which reach 67.7% and
65.7% test set accuracy but should intuitively be far better
suited to audio analysis tasks than image CNN descrip-
tors. However, on this database, an interesting observation

regarding the pre-training of the CNNs can be made: For
all DEEP SPECTRUM systems apart from the one based
on DenseNet121, pre-training on ImageNet leads to less
salient features than randomly initialising the network
weights. This disparity is most pronounced with the 50-
layer ResNet where random weights lead to an accuracy
increase of 5.1 percentage points. By applying the pro-
posed late fusion on all ImageNet pre-trained and all
randomly initialised DEEP SPECTRUM systems separately,
it can be seen that test set performance is on the same
level, while ImageNet pre-training only makes a positive
impact during validation. On the other hand, the fusion of
both sets of features indicates that the features are com-
plimentary here, increasing test set performance to 67.3%
and thus matching the performance of the openl3 net-
work pre-trained on environmental sounds. Finally, fusing
the DEEP SPECTRUM systems with the audio pre-trained
models and the CRNN trained directly on the target data
leads to the best results, at over 70.0% accuracy—a strong
increase over the individual systems. These results further
indicate the suitability of adding ImageNet pre-training to
audio classification, but additionally shows that randomly
initialised CNNs should be considered as well. Finally, the
results of the audio pre-trained models on their own are

Fig. 2 The confusion matrix (CM) of the best prediction on the test set of the DCASE 2018, task 5 dataset
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also the worst among the three tasks, indicating that for
DCASE 2017, pre-training is not as efficient as for the
other databases, regardless of source domain. A confu-
sion matrix for the best fusion configuration can be found
in Fig. 3.

4.3 ESC-50
For ESC-50, the CRNN trained only on target data
achieves a test set accuracy of 68.8% which is worse than
the dataset’s official baseline at 72.4%. However, it has
to be noted here that the dataset uses a 5-fold cross-
validation setup whereas in this paper, we transformed
this to 4-fold (fold 1 to 4) cross-validation and a held-
out test set (the 5th fold) in order to apply the late fusion
scheme like in the rest of the experiments. This circum-
stance leads to each CRNN model being trained on 20.0%
less data. The systems utilising CNNs as feature extractors
perform better on this database with the results being rel-
atively in line with those onDCASE18 task 5. Despite their
unrelated ImageNet pre-training, DEEP SPECTRUM fea-
tures are effective for environmental sound classification,
especially when extracted fromDenseNet121 or a 50-layer

ResNet, the former reaching 75.0% accuracy on the test
set. Both VGG networks, on the other hand, perform sub-
stantially worse, only reaching an accuracy of 64.8% on
the test set. For all DEEP SPECTRUM systems however,
ImageNet pre-training outperforms random weight ini-
tialisation by a wide margin—non pre-trained nets only
reach around 45.0% accuracy. For this task, the best DEEP
SPECTRUM features are also better than openl3 which
reaches 70.8% accuracy. PANN features, on the other
hand, are substantially better than both openl3 and DEEP
SPECTRUM at 89.3% accuracy. This result matches the
findings that the author’s presented in [30] where a fine-
tuned PANN stands as the current state-of-the-art on
ESC-50. Unlike for the DCASE tasks, fusing the DEEP
SPECTRUM systems amongst themselves does not lead
to better accuracy over using just the best performing
DenseNet121 pre-trained on ImageNet. By combining
DEEP SPECTRUM with the CRNN—which alone has quite
low performance—results are improved by about 3 per-
centage points to 78.8%. Audio pre-trained models and
DEEP SPECTRUM also seem to be complimentary here,
with their fusion reaching 92.3%. Adding the CRNN into

Fig. 3 The confusion matrix (CM) of the best prediction on the test set of the DCASE 2017, task 1 database. Confusion is high for the acoustic scene
“residential area” which is often mistaken for “city” or “forest_path”
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Fig. 4 The confusion matrix (CM) of the best prediction on the fifth fold of the ESC-50 database. The highest confusion can be observed for the
classes “frog” and “crow”

this mix, however, has a performance degrading effect.
The best result on ESC-50 is also visualised via a confusion
matrix in Fig. 4.

5 Conclusions and future work
We have proposed a deep learning framework com-
posed of an image-to-audio transfer learning system,
audio pre-trained CNNs and a CRNN. Furthermore,
we performed various decision-level fusion strategies
between the applied neural networks. We have tested
our methodologies for audio-based classification of 15
acoustic scenes (DCASE 2017, task 1 [31]), 50 envi-
ronmental sounds (ESC-50 [32]) and 9 domestic activ-
ities (DCASE 2018, task 5 [8]). We have demonstrated
the suitability of our approaches for all of the men-
tioned tasks. In particular, we have shown that even
though the domain gap between audio and images is
considerably larger than what is usually found in the
field of transfer learning, ImageNet pre-trained CNNs
are powerful feature extractors when applied directly
to spectrograms, oftentimes matching or outperforming
specialised audio feature extraction networks. We fur-
ther evaluated the ImageNet pre-training against random

weight initialisation and found it to be more effective
in general. Moreover, various late fusion configurations
indicated a complementarity between DEEP SPECTRUM
features and more domain-specific knowledge, either
in the form of our proposed CRNN or audio pre-
trained networks. Whilst our systems did not outperform
the current state-of-the-art on the included databases,
the findings presented herein motivate further explo-
ration of cross-modal pre-training for audio classification
tasks.
In future work, we want to evaluate the impact of Ima-

geNet pre-training against AudioSet pre-training as well
as training from scratch in low-data settings. Further-
more, we want to investigate traditional fine-tuning and
more involved domain transfer methods, such as domain
adversarial neural networks (DANNs) [45] with our DEEP
SPECTRUM system.
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