Automatic and Online Pollen Monitoring

Gudrun Pusch?
Rouven Mollerd Stefani Roseler®
Carsten Schmidt-Weber?®

Jose Oteros®

Jeroen T.M. Buters®f

Ingrid Weichenmeier?
Claudia Traidl-Hoffmann® & f

Ulrich Heimann®

aZAUM, Center of Allergy & Environment, Helmholtz Zentrum Miinchen, °UNIKA-T, Klinikum rechts der Isar,
Technische Universitdat Miinchen, Munich, “Department of Dermatology, Universitatsklinikum Aachen, Aachen,
dHelmut Hund GmbH, Wetzlar, and ®Outpatient Clinic for Environmental Medicine, Klinikum Augsburg, Augsburg,
Germany; fCK-CARE, Christine Kiihne Center for Allergy Research and Education, Davos, Switzerland

Key Words
Aerobiology - Air quality - Automation - Environmental
monitoring - Pollen

Abstract

Background: Pollen are monitored in Europe by a network
of about 400 pollen traps, all operated manually. To date,
automated pollen monitoring has only been feasible in areas
with limited variability in pollen species. There is a need for
rapid reporting of airborne pollen as well as for alleviating
the workload of manual operation. We report our experience
with a fully automated, image recognition-based pollen
monitoring system, BAA500. Methods: The BAA500 sampled
ambient air intermittently with a 3-stage virtual impactor at
60 m3/h in Munich, Germany. Pollen is deposited on a sticky
surface that was regularly moved to a microscope equipped
with a CCD camera. Images of the pollen were constructed
and compared with a library of known samples. A Hirst-type
pollen trap was operated simultaneously. Results: Over
480,000 particles sampled with the BAA500 were both man-
ually and automatically identified, of which about 46,000
were pollen. Of the automatically reported pollen, 93.3%
were correctly recognized. However, compared with manual

identification, 27.8% of the captured pollen were missing in
the automatic report, with most reported as unknown pol-
len. Salix pollen grains were not identified satisfactorily. The
daily pollen concentrations reported by a Hirst-type pollen
trap and the BAA500 were highly correlated (r = 0.98). Con-
clusions: The BAA500 is a functional automated pollen
counter. Its software can be upgraded, and so we expected
its performance to improve upon training. Automated pol-
len counting has great potential for workload reduction and
rapid online pollen reporting.

Introduction

Aerobiology studies microorganisms and biological
particulate matter passively transported through the air
[1]. Aerobiology has multiple types of applications, such
asallergy prevention [2, 3]; crop forecasting and pest con-
trol in agronomy [4, 5]; climate change impacts [6, 7];
gene flow by airborne pollen [8], and cultural heritage
conservation [9].

Developing new technologies for atmospheric sam-
pling has been one of the main focuses of aerobiological

Correspondence to: Dr. Jeroen T.M. Buters

ZAUM, Center of Allergy and Environment
Technische Universitat Miinchen

Biedersteiner Strasse 29, DE-80802 Munich (Germany)
E-Mail buters @tum.de



research. In case of airborne pollen, the Hirst-type volu-
metric spore trap [10] is the most widely used sampler in
the world [11] and is recommended by the European
Aeroallergen Network and European Aeroallergen Soci-
ety [12]. The Hirst-type volumetric trap determines pol-
len concentrations continuously, whereas other samplers
like the Durham, Cour or Rotorod are either not volumet-
ric or not continuous [13-16].

Airborne pollen are monitored in Europe by a network
of about 400 Hirst-type pollen traps [17]. However, there
is a need for more rapid, preferably instantaneous, online
reporting of airborne pollen concentrations in addition
to alleviating the workload of manual operation.

Automated pollen monitoring in real time could be a
solution. Some alternatives to manual quantification
have been developed. Most methods are based on image
recognition [18-22], whereas others used biomolecular
analysis, i.e. DNA [23] or chemical identification [24].
The performance of these methods is high, but they lack
the ability to quickly report the information because all of
them need previous manual treatment of samples.

Only a limited number of automatic systems are ca-
pable of providing pollen information in real time; these
are mostly based on an air flow cytometer. To date, satis-
factory real-time information has not been reported, ex-
cept in areas with limited variability in pollen species [25,
26]. For the reported methods, different pollen grains
were too similar in shape and individual species were not
correctly identified [27, 28].

Here, we report the results of a fully automated pollen
monitoring system that is able to recognize at least 11 pol-
len taxa: the BAA500. This system uses an image recogni-
tion algorithm on batch-collected pollen. The system au-
tomatically prepares slides suitable for visual identifica-
tion of airborne particles. A camera coupled with image
recognition software subsequently obtains data on air-
borne pollen in real time with an average delay of 3-6 h.
Here, we report the performance of the system compared
to manual identification of the same data as the gold stan-
dard, and also in comparison to Hirst-type pollen con-
centrations.

Materials and Methods

Airborne pollen data were collected in 2012, 2013 and 2014 in
Munich, Germany. Two samplers, the BAA500 and Hirst [10],
were located within 5 m of each other, about 2 m above ground
level. The sampling location was 510 m a.s.l, with an annual
mean temperature of 10°C and an accumulated annual rainfall
0f 950 mm [29].

Automated Pollen Monitoring

The BAA500 samples at 60 m*/h of which the central flow, i.e.
6 m¥/h, is used in the virtual cascade impactor. A virtual impactor
is a device that separates particles by size into two air streams [30].
The virtual impactor is housed in an air-conditioned compartment.
The fraction containing the pollen was impacted onto a sticky sur-
face made from gelatine and glycerine (fig. 1). The impactor is run
intermittently, in our case 1 min on, 5 min off, freely adjustable.
Samples are collected during 3 hourly periods (3 m* during each
sampling period), 24 m? of air every day. Additional technical in-
formation about the device can be obtained from the official web-
site www.hund.de/en/instruments/pollen-monitor. After one sam-
pling period, the sample was moved by a robotic rotating disk to
the next station that heated the sample to 90°C. The sticky surface
was thus melted in order to align all pollen grains to facilitate the
focusing of the CCD camera at the next station. The sample is ana-
lyzed at 120 random positions (sub-samples), covering 30% of the
sampled surface. Then 210 images with different optical focuses
were taken per sub-sample. The information of all the images was
then stacked into one image that was analyzed and stored. This im-
age was then compared to a library of known images.

Fifty-eight criteria (e.g. length, broadness, diameter, number of
apertures and external texture) were used for automatic classifica-
tion. Results of each identified particle, including its image, were
stored enabling visual inspection and manual corrections. This
part of the analysis is only visible to the operator of the BAA500
and was used to compare automatically generated pollen iden-
tification with manual identification (called labeling, i.e. the cor-
rect naming of each pollen grain). The automatic identification
was reported online (http://www.hund.de/de/instrumente/
pollenmonitore/pollenfluginformation.html). The BAA500 re-
ported data on airborne pollen concentrations every 3 h (8 reports
per day; the time interval is adjustable).

The manual identification by an expert aerobiologist was con-
sidered the gold standard, i.e. true counts. The automatic identifi-
cations were classified as true positives, false positives and false
negatives. A dataset of airborne pollen concentrations made by
automatic identification and another dataset of airborne pollen
concentrations made by human identification were generated.

Conventional Pollen Monitoring

Hirst-type volumetric traps [10] were operated following the
minimum recommendations of the European Aeroallergen Soci-
ety [12]. The Hirst-type trap sampled at a continuous volume of
10 1/min (14.4 m® of air every day). Slides were analyzed by count-
ing pollen along 4 horizontal transects with a width of 0.249 mm,
in 12-hour intervals, according to a standardized method of the
German Pollen Information Service Foundation (PID) [31]. Hirst
data were expressed as daily concentrations (grains/m?).

Analysis

To test the performance of the BAAS500, three levels were de-
fined:

1 BAAS500 Reliability. Availability of online data using the au-
tomatic system was calculated as the percentage of time that the
instrument reported data during three consecutive pollen seasons
(2012-2014).

2 BAAS500 Classification Performance. The consistency of the
BAAS500 within itself, i.e. comparing the manual identification
(gold standard/true counts) with the counts generated by image
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Fig. 1. Principle of operation of the BAA500. Particles from air including pollen are sampled with a virtual im-
pactor on a slide with a ‘sticky” surface that is moved with a robotic rotating table to a high-resolution camera.
Scanned images are analyzed for pollen by intelligent analyzing software.

recognition (automatic count), was tested during 2012. Individual
counts produced by the BAA500 were manually classified as true
positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN), following the standard methods used to measure
performance in binary classification tests [32]. The performance
of the system identifying each pollen grain was measured by the
percentage of different quality parameters and by the calculation
of two other statistical summary parameters: sensitivity, given by
formula (1), and positive predictive value (PPV), given by formu-
la (2). Sensitivity refers to the proportion of actual pollen grains
that are correctly identified as such (e.g. of the 5,908 birch pollen
that the BAA500 should have recognized, 4,724 true identifica-
tions were reported) and positive predictive value refers to the pro-
portion of BAA500 identifications that are true (e.g. of the 5,137
automatic identifications as birch, 4,724 were indeed birch pollen
grains).

TP
Sensitivity:m—FN (1)

PPV = —-—
TP + FP
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3 Comparison of BAA500 versus Hirst-Type Concentrations
during 2012. For the BAA500, both automatic identifications and
data produced following manual correction (to compare instru-
ment capture efficacy) were used. Pearson’s correlations for total
and specific pollen types were calculated.

Results

BAAS500 Reliability

One BAAS500 has been running in Munich, Germany,
since 2012. Initially, the system showed a malfunction by
skipping single samples, resulting in a high percentage of
time without monitoring. Reliability is shown in figure 2.
The time of monitoring online was 64% in 2012. This in-
creased to 88 and 82% in 2013 and 2014, respectively.
Sampling was sometimes interrupted by a single >7-day
failure of the device. If we exclude these events (i.e. in
2013), then one or more 3-hour samples was missing in
16% of the time, which resulted in an average reported
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Fig. 2. BAA500 reliability during the pollen season 2012-2014. In
2013, for instance, all data points were available for 85% of the days
(max. eight 3-hour data points, 100% availability). In 2013, for 8%
of the days all data points were missing (0% availability). Open bars
show missing data due to a single failure (>7 days; instrument
breakdown).

pollen count that was based on less than 8 daily samples
(84% of days fully covered). Complete days were missing
in 6% of the cases. The percentage of days with complete
coverage increased during the study period. Concomi-
tantly, the percentage of whole days and days with some
samples missing was reduced. Most of the time in which
the system was not monitoring in 2014 was due to one
event (>7-day failure). These errors might be reduced
with technological improvement.

BAA500 Classification Performance

In order to test the performance of the BAA500, we
analyzed its success rate in pollen identification. During
the experiment, the BAA500 recognized 480,000 particles
of which about 46,000 were known pollen from different
species. All of the pollen grains reported by the BAA500
were concomitantly labeled automatically and manually
(corrected labeling; table 1). A total of 72.2% of the man-
ually labeled pollen grains were correctly classified by the
system (true positives). Of the particles recognized as
known pollen, 93.3% of cases were correctly classified and
only 6.7% were identified as being false positives. Salix
pollen grains were not identified satisfactorily (76 of 534).
Rare pollen (<100 pollen grains/season) probably ob-
tained a low performance because the instrument needs
reference examples in order to label pollen correctly.

Figure 3 summarizes the performance of the system at
identifying each taxon of pollen, excluding rare pollen.
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Fig. 3. BAA500 ability to recognize different pollen. Sensitivity is
the proportion of manually identified particles that were automat-
ically identified (including false-positive and false-negative re-
sults). The positive predictive value is the proportion of automatic
identifications that were correct. For instance, only 80% of the
available Taxus pollen were automatically identified. Of those au-
tomatically identified, 100% were correct.

The x-axis shows the proportion of actual particles that
were correctly identified, and the y-axis the proportion of
automatic identifications that were true. As can be seen,
most pollen taxa are located in the upper right corner of
the graph, representing optimal system performance. Of
these, the best performance was seen with Betula, which
is the pollen grain nearest to the top right corner. The
BAA500 reported more than 80% of manually identified
Betula pollen grains correctly and when the BAA500 re-
ported automatic identification, it was correct in more
than 90% of cases. On the other hand, Salix pollen grains
were not identified correctly.

Figure 4 shows the errors of the BAA500 in reporting
each pollen species. The BAA500 sometimes confused
pollen types. For instance, Betula pollen grains were in-
correctly reported as Alnus pollen in 6% of cases, Fraxi-
nus pollen was sometimes reported as Populus, and Plan-
tago pollen was wrongly reported as Rumex or Poaceae
pollen.
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Table 1. Recognition and error rates for the different pollen species by the BAA500

Pollen type Manual ~ Automatic Difference ~ DF% TP TP% FP FP% EN FN%
Taxus 17,732 13,606 4,126 76.7 13,519 99.4 87 0.6 4,213 23.8
Fraxinus 5,916 4,141 1,775 70.0 3,939 95.1 202 4.9 1,977 334
Betula 5,908 5,137 771 86.9 4,724 92.0 413 8.0 1,184 20.0
Carpinus 4,955 3,699 1,256 74.7 3,586 96.9 113 3.1 1,369 27.6
Populus 2,913 2,087 826 71.6 1,839 88.1 248 11.9 1,074 36.9
Urticaceae 2,345 2195 150 93.6 1,918 87.4 277 12.6 427 18.2
Alnus 1,814 1,502 312 82.8 1,155 76.9 347 23.1 659 36.3
Poaceae 1,250 763 487 61.0 678 88.9 85 11.1 572 45.8
Plantago 1,144 928 216 81.1 841 90.6 87 9.4 303 26.5
Corylus 1,117 1,066 51 95.4 830 77.9 236 22.1 287 25.7
Salix 534 76 458 14.2 9 11.8 67 88.2 525 98.3
Quercus 386 347 39 89.9 244 70.3 103 29.7 142 36.8
Platanus 91 93 -2 102.2 41 44.1 52 55.9 50 54.9
Rumex 46 100 -54 217.4 30 30.0 70 70.0 16 34.8
Secale 40 14 26 35.0 14 100.0 0 0.0 26 65.0
Fagus 28 4 24 14.3 1 25.0 3 75.0 27 96.4
Artemisia 14 23 -9 164.3 9 39.1 14 60.9 5 35.7
Total 46,233 35,781 10,452 774 33,377 93.3 2,404 6.7 12,856 27.8

Manual = Total counts manually labelled; automatic = total counts by automatic identifications; DF% = percentage of automatic
counts with respect to manual counts; TP = true-positive counts; TP% = percentage of true-positive counts with respect to automatic
counts; FP = false-positive counts; FP% = percentage of false-positive counts with respect to automatic counts; FN = false-negative
counts; FN% = percentage of false-negative counts with respect to manual counts.

162



Fig. 5. Relationship between daily total pollen concentrations pro-
vided by the BAA500 (using the manually corrected dataset to be
able to compare instrument capture efficacy) and a Hirst-type pol-
len trap. a Time line of pollen counts. b Scatterplot of BAA500 and
Hirst daily concentrations. Days (cases) without data were omitted
from analysis. For specific pollen types see online supplementary
figure S1. The same curves without manual correction are given in
online supplementary figure S2.

However, the largest error in all pollen species was not
being able to determine which pollen it was at all (un-
known pollen). Thus most of the wrong identifications
were automatically classified as ‘unknown’ pollen rather
than ‘other’ pollen types (fig. 4). Nearly 100% of airborne
particles that were not pollen (no pollen) were not con-
fused with pollen. The system is, therefore, able to iden-
tify pollen but reports too many of these pollen grains as
unknown.

Training the instrument using local examples of pollen
can reduce the fraction of unknown pollen. In Munich,
using the standard reference library, 65% of the pollen
grains were automatically classified as the correct pollen

Table 2. Summation of Hirst and BAA500 daily manually correct-
1000 ed concentrations: Pearson’s r value and Wilcoxon’s signed-rank
—Hirst test
2500
Pollen Hirst BAA500  Differ- % r Wil-
7 2000 ——EAS00 ence coxon
T
£ 1500 Taxus 6,804 7,884  -1,080  -16  0.959**  0.473
g Urticaceae 1,744 867 877 -50 0.927** 0.000
£ 1000 Fraxinus 1,572 1,706 -134 -9 0.966%*  0.605
Poaceae 840 443 397 47 0.910%* 0.034
500 Betula 847 758 89 10 0.761** 0.115
Populus 671 1,148 -477 =71 0.994** 0.010
0 Carpinus 675 1,311 -636 -94 0.969** 0.015
1 11 21 31 41 51 61 71 Alnus 483 673 -190 -39 0.905** 0.000
a came: Plantago 484 473 11 209227 0970
2409 Corylus 279 408 -129  -46  0.975**  0.005
. LTSS Salix 247 204 43 17 0.787** 0.250
R:=0.97 it Quercus 65 54 11 17 0.486** 0.052
3 Rumex 33 13 20 61 0.436** 0.179
£ Secale 13 9 4 30 0.945%  1.000
2 Artemisia 11 6 5 42 0.545%* 0.763
31 Platanus 9 4 5 52 0243 0408
g 000 Fagus 1 10 -9 -908  -0.025 0.071
2
- '. i Total 14,778 15,973 -1,195 -8 0.984** 0.263
500 ‘-.
- *p <0.05* p<0.01.
0 "‘:' P ’
o 500 1000 1500 2000 2500 3000
b Hirst (pollen grains/m?)

species (manual counts: 100%). After local training, auto-
matic recognition increased to 72%. False positives were
reduced by training from 13 to 7%. False negatives were
reduced from 35 to 28%.

BAA500 and Hirst Comparison

We compared airborne pollen concentrations ob-
tained by the BAA500 with data collected by a Hirst-type
pollen trap. Manually corrected data were used to com-
pare instrument capture efficacy. Total daily pollen con-
centrations captured by the Hirst and BAA500 samplers,
when available, showed a significant positive correlation
coefficient of 0.98 (p < 0.01; fig. 5).

All pollen types correlated significantly in daily con-
centrations, excluding Fagus (only 1 pollen grain/m?; ta-
ble 2). These results indicate that both air samplers have
the same ability to capture particles (see the overall Pear-
son correlation, r = 0.98). In Munich in 2012, there were
eleven pollen taxa with a pollen index above 100 in both
traps (the pollen index is the summation of daily pollen
concentrations). Of these, the Hirst trap monitored, on
average, a total of 202 pollen grains/m? per day during the
study period, in contrast to 219 grains/m? by the BAA500
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(table 2). Although there were no significant differences
in the total quantity of pollen trapped by both samplers,
some specific pollen types were collected differently by
each trap, as shown by the Wilcoxon rank test. Statisti-
cally significant differences in capture capacity were de-
tected for Poaceae and Urticaceae (more trapped by
Hirst), and Carpinus and Populus (more trapped by
BAAS500; see online suppl. fig. S1, S2: for all online suppl.
material, see www.karger.com/doi/10.1159/000436968)
between daily concentrations collected by the Hirst and
automatically classified by the BAA500.

Discussion

Automated online pollen monitoring of complex pol-
len mixtures is currently not available, except for the
BAAS500. Here, we report the performance of the BAA500.
The system uses a high-volume virtual impactor; pollen
are deposited on a sticky surface of which digitalized im-
ages are made. An image recognition algorithm is used to
compare the image to a library of known pollen. We test-
ed the performance of the BAA500 at three levels: (1) the
reliability of the instrument, (2) the performance of the
image recognition software against manually determined
pollen counts of the same images and (3) the performance
in capture efficacy against the commonly used Hirst trap
methodology.

Regarding the reliability of the instrument, in 2013,
the instrument was online about 90% of the time, exclud-
ing breakdowns. The reliability of the BAA500 increased
with time. The Hirst volumetric spore trap showed a reli-
ability of nearly 100% of the time monitored. However,
the workload necessary to perform effective monitoring
using the Hirst-type method is high, forcing many moni-
toring stations to work only during the main flowering
season (https://ean.polleninfo.eu/).

Regarding the performance of the BAA500, except for
Salix, most of the pollen species were recognized in >70%
cases. The BAA500 seldom reported pollen wrongly (i.e.
few false positives). However, the main mistake was the
inability of the BAA500 to recognize some pollen, i.e.
manually identified pollen was reported by the BAA500
as unknown. This error can be reduced by improving the
recognition algorithm or by improving the software with
more examples of pollen, as every location has pollen with
morphological characteristics unknown to the standard
library. The software could be modified in the future by
adding the possibility of using more than one image to
improve the success rate in identification. The airborne
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pollen levels recorded by the Hirst-type trap were similar
to those reported by the BAA500. Although airborne pol-
len is not necessarily representative of exposure to aeroal-
lergens [24, 33, 34], the knowledge about the level of air-
borne pollen is a useful tool for managing pollinosis. In
this sense, the advantage of automated pollen detection is
the online reporting of airborne pollen concentrations
2-10 days before the classical method. Besides this, Hirst-
type pollen traps also have errors of about 25% [24, 34].
To date, it is unknown which pollen trap reports the ‘true’
airborne concentrations. The human error involved in
identifying pollen grains by light microscopy from sam-
ples collected by the Hirst-type sampler depends on the
concentrations of airborne particles [35-38]. In aerobiol-
ogy, the most commonly accepted error threshold for hu-
mans is a 20% difference between the actual and the re-
ported identification, or even 30%, depending on aver-
aged concentrations of airborne pollen [12, 36, 37]. In
comparison, excluding Salix, the average error in identi-
fying common pollen taxa by the BAA500 was lower than
20%, and only Poaceae showed an error higher than 30%.

To date, similar success rates have been obtained by
different automatic identification methods also based on
image analysis, most of them exceeding 80% [39-41].
However, these automatic identification methods need
the presence of digital images and have not been fully au-
tomated to date. The BAAS500 is the first system with au-
tomation of all the processes before image recognition.
Other systems for automated pollen monitoring are based
on an airflow cytometer, which was implemented in Ja-
pan, where most pollinosis is caused by only one species,
i.e. Japanese cedar (Cryptomeria japonica) [25], but it was
not successfully implanted in other areas with more bio-
diversity in airborne pollen [27]. For another new system
(the PLAIR system) for automated aerobiological moni-
toring results have not been published to date [B. Clot,
pers. commun.].

Highly significant correlations were obtained for at-
mospheric concentrations of all pollen types collected by
the BAA500 and Hirst samplers, and the total quantity of
pollen grains trapped by both samplers was about the
same. This indicates a similar capacity to capture parti-
cles. Although all pollen types showed a significant cor-
relation (most of them collected in the same quantity),
some of them were trapped in different quantities. Three
of them had differences higher than 50% (Urticaceae,
Populus and Carpinus), which may have different rea-
sons, for example human error in pollen recognition due
to differences in the quality of images sampled by the
Hirst and BAAS500 systems. The use of different adhesives



may be another source of variation. Other possible rea-
sons of variability are that the virtual impactor and Hirst
collector may have differences in their ability to collect
particles depending on their aerodynamic features. The
BAA500 is not constantly adjusted towards wind direc-
tion as it samples at high volume from all sides, whereas
Hirst-type traps are low-volume samplers, and the orifice
is always pointed in the direction of prevailing winds us-
ing a wind vane, which means that sampling efficiency
can be influenced by wind speed [42]. As a result, there
are some inherent differences in the data collected by the
BAA500 and Hirst samplers, which should be kept in
mind when comparing results. It is extremely unlikely,
however, that these differences would have an effect on
the phenological information produced by the two sam-
plers, e.g. the main characteristics of the airborne pollen
seasons such as start dates, end dates, duration and mag-
nitude would be the same in most cases. Some differenc-
es were expected because several authors have reported
similar variations between Hirst-type traps, even when
placed together and at the same height (a difference from
20 to 40% in concentrations of specific pollen types) [24,
43, 44].

Automatic identification systems are currently be-
coming a serious option for routine monitoring. One ad-
vantage that we did not test is that all automatic identifi-
cation systems use the same counting method (i.e. have a
constant error), whereas Hirst-type traps show a labora-
tory-to-laboratory uncertainty, which is also due to hu-
man variability [12, 35-38]. In addition, errors of about
25% between Hirst-type pollen traps are common due to
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