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Abstract

The results contained in this thesis can be split into two categories, namely those involv-

ing the analysis of J-anti-invariant forms and those in the realm of spectral geometry.

We primarily study the relation of J-anti-invariant 2-forms with pseudoholomorphic

curves in the first half of the thesis. We show that the zero set of a closed J-anti-

invariant 2-form on an almost complex 4-manifold supports a J-holomorphic subvariety

in the canonical class. This confirms a conjecture of Draghici-Li-Zhang. A higher

dimensional analogue is also established. Furthermore, the local model built for the

bundle of J-anti-invariant forms can be used to prove that, on an almost complex 4-

manifold, the dimension of the cohomology group associated to closed J-anti-invariant

2-forms is a birational invariant in the sense that it is invariant under degree one

pseudoholomorphic maps.

In the latter half we study the eigenvalues of the Laplacian of an almost Kähler

metric. In particular we find that the bounds established by Kokarev [33] in the case

of a Kähler metric with respect to an integrable almost complex structure also hold in

the almost Kähler setting. That is, we show that if a compact almost Kähler manifold

admits a pseudoholomorphic map into a projective space then the k-th eigenvalue of

the Laplacian, with respect to a given Kähler metric, can be bounded above by a

constant depending only on dimension, the map into projective space and the Kähler

class. We provide examples of strictly almost Kähler manifolds which admit a non-

trivial pseudoholomorphic map into a projective space. Similarly to Kokarev [33] we

establish a version of the estimate for pseudoholomorphic subvariety. Finally we prove

that the estimate holds for almost Kähler manifolds admitting a pseudoholomorphic

map into projective space in a class of non-smooth maps. In particular we obtain that

the estimate holds for Kähler manifolds which admit a rational map into projective

space.

vi



Chapter 1

Introduction

The groundbreaking work of Gromov [24] in the 1980’s set the ball rolling on the study

of pseudoholomorphic curves in symplectic manifolds. A pseudoholomorphic curve is a

smooth map from a Riemann surface into an almost complex manifold and since any

symplectic manifold admits an almost complex structure they are natural objects to

study. Indeed, their study has allowed the field of symplectic topology to reach new

heights, of particular note is the deep theory of symplectic 4-manifolds. Their influence

can also be seen further afield, for example in algebraic geometry and string theory to

name a few.

A cornerstone in the theory of pseudoholomorphic curves is the positivity of inter-

sections phenomena. This property is, of course, one shared with holomorphic curves

in complex manifolds and more generally with all complex subvarieties. To study com-

plex submanifolds it is often convenient to view them as zero loci of analytic functions.

This approach is colloquially known as the “mapping out viewpoint” and has proven

extremely powerful in the complex setting where it is essentially the intersection theory

of complex subvarieties. In contrast, Gromov’s groundbreaking work on pseudoholo-

morphic curves has made the “mapping into” point of view the most common approach

in the study of pseudoholomorphic curves and higher dimensional almost complex sub-

manifolds. Nevertheless Taubes uses the “mapping out” approach in his seminal work

on the equivalence of SW and Gr to give a criteria for a set to support a pseudoholo-

morphic curve. Building on these techniques Zhang [60] has initiated a programme to

develop the “mapping out” point of view for arbitrary almost complex structures. It

is the purpose of this thesis to continue this work, exploring its applications to under-

standing the canonical bundle of an almost complex manifold, the birational invariants

of an almost complex manifold and the spectrum of the Laplacian of an almost Kähler

manifold.

1
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1.1 Outline and main results

The main results of this thesis, whilst all lying under the broad guise of almost complex

geometry, can be split into two distinct areas. Firstly there are results concerning the

zero locus of sections of the canonical bundle. This work will make up Chapter 3.

Secondly we present estimates on the eigenvalues of the Laplace-Beltrami operator on

a closed, almost Kähler manifold, this is the content of Chapter 4.

Chapter 2 is a catch-all background chapter, in that it may have no clear through-

line, but it shall provide all of the necessary background to make sense of the subsequent

chapters. A brief review of almost complex structures, pseudoholomorphic curve theory

and spectral theory will be included. In particular, whilst looking at spectral theory,

we recall some fundamental results pertaining to the eigenvalues of the Laplacian on a

Riemann surface. These results motivate the estimate of Bourguignon, Li and Yau [7]

which is the starting point of Chapter 4.

We now provide an overview of the main results of this thesis. First we turn our

attention to a well known folklore theorem (see [29, 35]) which dates back to the 1980’s

and says that for a generic Riemannian metric on a 4-manifold with positive self-dual

second Betti number, the zero set of a self-dual harmonic 2-form is a finite number of

embedded circles. It is the starting point of Taubes’ attempts, e.g. [51], to generalise

the identification of Seiberg-Witten invariants and Gromov invariants for symplectic

4-manifolds to general compact oriented 4-manifolds.

Recently Zhang [60] proposed the subsequent philosophy,

1.1.1. A statement for smooth maps between smooth manifolds in terms of R.Thom’s

transversality should also have its counterpart in pseudoholomorphic setting without

requiring the transversality or genericity, but using the notion of pseudoholomorphic

subvarieties.

Following this philosophy the above genericity statement for the zero set of a self-

dual harmonic 2-form in the smooth category should find its counterpart in the almost

complex setting without the genericity assumption. It is stated as Question 1.6 in [60]

which first appeared in [16]. Let us now make the statement precise.

Let (M2n, J) be an almost complex manifold. The almost complex structure acts

on the bundle of real 2-forms Λ2 as the following involution, α(·, ·) → α(J ·, J ·). This

involution induces the splitting

Λ2 = Λ+
J ⊕ Λ−J , (1.1)

corresponding to the eigenspaces of eigenvalues ±1 respectively. The sections of these

bundles are called J-invariant and J-anti-invariant 2-forms respectively. The bundle Λ−J
inherits an almost complex structure, still denoted by J , from Jα(X,Y ) = −α(JX, Y ).

On the other hand, for any Riemannian metric g on a 4-manifold, we have the
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well-known self-dual, anti-self-dual splitting of the bundle of 2-forms,

Λ2 = Λ+
g ⊕ Λ−g . (1.2)

When g is compatible with J , i.e. g(Ju, Jv) = g(u, v), we have Λ−J ⊂ Λ+
g . In particular,

it follows that a closed J-anti-invariant 2-form is a g-self-dual harmonic form. Hence,

a closed J-anti-invariant 2-form is the natural almost complex refinement of a self-

dual harmonic form on an almost complex 4-manifold. Following philosophy (1.1.1)

our expectation is that the almost complex counterpart of the aforementioned folklore

theorem should be that the zero set of a J-anti-invariant 2-form is a J-holomorphic

curve.

Since the complex line bundle Λ−J can be viewed as a natural generalisation of the

canonical bundle of a complex manifold it is instructive to take a brief digression and

consider what is known in the complex setting. On a complex surface, if α is a closed

J-anti-invariant 2-form, then Jα is also closed and α+iJα is a holomorphic (2, 0) form.

Hence the zero set α−1(0) is a canonical divisor of (M,J), e.g. by the Poincaré-Lelong

theorem. This meets our expectations in the case of an integrable almost complex

structure.

We are able to confirm our above speculation for any closed, almost complex 4-

manifold.

Theorem 1.1.1. Suppose (M,J) is a closed, connected, almost complex 4-manifold

and α is a non-trivial, closed, J-anti-invariant 2-form. Then the zero set, Z, of α

supports a J-holomorphic 1-subvariety, Θα, in the canonical class KJ .

Theorem 3.1.1 could be extended to the sections of bundle Λn,0R of real parts of

(n, 0) forms, which has a natural complex line bundle structure induced by the almost

complex structure on M . The space of its sections is denoted Ωn,0
R . We have Theorem

3.4.1, which says that the zero set of a non-trivial closed form in Ωn,0
R supports a

pseudoholomorphic subvariety of real codimension 2 up to Question 3.9 of [60].

We also study the relation of J-anti-invariant forms with the birational geometry

of almost complex 4-manifolds, in particular we look for birational invariants. To this

end recall that we can define cohomology groups, e.g. [39],

H±J (M) = {a ∈ H2(M ;R)|∃ α ∈ Z±J such that [α] = a}

generalising the real Hodge cohomology groups, where Z±J are the spaces of closed 2-

forms in Ω±J . It is proven in [14] that H+
J (M)⊕H−J (M) = H2(M ;R) when dimRM = 4.

The dimensions of the vector spaces H±J (M) are denoted as h±J (M).

In [60] it is shown that the natural candidate for generalising birational morphisms

to the almost complex category are degree one pseudoholomorphic maps. We can use

the local model built for Theorem 1.1.1 to study the extension properties of closed J-

anti-invariant forms. This is the content of Proposition 3.5.1, which should be compared
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with the Hartogs extension for pseudoholomorphic bundles over almost complex 4-

manifolds established in [11].

With this Hartogs type extension for closed J-anti-invariant 2-forms in hand, we

are able to show the dimension of J-anti-invariant cohomology is a birational invariant.

Theorem 1.1.2. Let ψ : (M1, J1) → (M2, J2) be a degree 1 pseudoholomorphic map

between closed, connected, almost complex 4-manifolds. Then h−J1
(M1) = h−J2

(M2).

Together with the almost complex birational invariants defined in [11], including

plurigenera, Kodaira dimension, and irregularity, we have a rich source of invariants to

study the birational geometry of almost complex manifolds.

The second part of this thesis is dedicated to obtaining upper bounds for the eigen-

values of the Laplacian on almost Kähler manifolds.

The jumping off point for us will be a bound of Bourguignon, Li and Yau [7]. They

provided an upper bound for the first non-zero eigenvalue for a given Kähler metric on

a projective manifold M which depended only on dimension, volume and a holomorphic

immersion φ : Mn → Pm. Notice in particular that this bound depends only on the

Kähler class [ω].

Theorem 1.1.3 (Main Theorem of [7]). Let Mn be an n-dimensional complex manifold

admitting a holomorphic immersion φ : M → PN . Suppose that Φ is full in the sense

that φ(M) is not contained in any hyperplane of PN . Then, for any Kähler metric ω

on M , the first non-zero eigenvalue λ1(M,ω) satisfies

λ1(M,ω) ≤ 4n
N + 1

N
d([φ], [ω]),

where

d([φ], [ω]) :=

∫
M φ∗ωFS ∧ ωn−1∫

M ωn
.

Recently Kokarev [33] has extended their result by giving bounds on the k-th eigen-

value, which depend linearly on k, for a more general class of Kähler manifolds.

Theorem 1.1.4 (Theorem 1.2 of [33]). Let (Mn, J) be a closed n-dimensional Kähler

manifold and φ : Mn → Pm a non-trivial holomorphic map. Then, for any Kähler

metric g on Mn, the eigenvalues of the Laplace-Beltrami operator ∆g satisfy,

λk(M
n, g) ≤ C(n,m)d([φ], [ωg])k, for any k ≥ 1, (1.3)

where C(n,m) > 0 is a constant depending only on n and m and d([φ], [ωg]) is defined

by,

d([φ], [ωg]) :=

∫
M φ∗ωFS ∧ ωn−1

g∫
M ωng

. (1.4)

We are able to establish that this result in fact holds if the the almost complex

structure is not integrable, that is, it holds for almost Kähler manifolds.
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Theorem 1.1.5. Let (Mn, J) be a closed n-dimensional almost Kähler manifold and φ :

Mn → Pm a non-trivial pseudoholomorphic map, where Pm is taken with its standard

complex structure. Then, for any almost Kähler metric g on Mn, the eigenvalues of

the Laplace-Beltrami operator ∆g satisfy,

λk(M
n, g) ≤ C(n,m)d([φ], [ωg])k, for any k ≥ 1, (1.5)

where C(n,m) > 0 is a constant depending only on n and m and d([φ], [ωg]) is defined

by,

d([φ], [ωg]) :=

∫
M φ∗ωFS ∧ ωn−1

g∫
M ωng

. (1.6)

Notice that alternatively we can write

d([φ], [ωg]) :=
(φ∗[ωFS] ^ [ωg]

n−1, [M ])

([ωg]n, [M ])
, (1.7)

where (·, ·) denotes the pairing of de-Rham cohomology and singular homology. It is

clear that d([φ], [ωg]) depends only on the de-Rham class [ωg] ∈ H2(M ;R) and the

induced map on 2-cohomology φ∗ : H2(Pm;Q)→ H2(M ;Q).

Corollary 1.1.1. Let E → M be a complex vector bundle over a compact almost

complex manifold (M,J). Suppose further that the total space is endowed with an

almost complex structure J and the bundle is globally generated by pseudoholomorphic

sections with respect to J . Then for any almost Kähler metric g on M the eigenvalues

of the Laplace-Beltrami operator satisfy,

λk(M, g) ≤ C (c1(E) ^ [ωg]
n−1, [Σn])

([ωg]n, [Σn])
k, for any k ≥ 1, (1.8)

where C > 0 is a constant depending only on dim(M), rank(E) and dim(H0
J (E)).

As in [33] we can also obtain a version of Theorem 1.1.5 for pseudoholomorphic

subvarieties of almost Kähler manifolds. Let (Mn+`, J) be a closed almost Kähler

manifold and Σn an irreducible pseudoholomorphic subvariety whose regular part Σn
∗

has complex dimension n. Here we say that Σn ⊂ Mn+` is an irreducible pseudo-

holomorphic subvariety if it is the image of a somewhere immersed pseudoholomorphic

map Φ : X → M where X is a smooth, closed, connected almost complex manifold.

Given an almost Kähler metric g on M its restriction to the regular part of Σ yields

an incomplete almost Kähler metric on Σ∗. We are interested in the eigenvalues of the

Laplacian corresponding to gΣ.

Theorem 1.1.6. Let (Mn+`, J) be a closed almost Kähler manifold and φ : Mn+` →
Pm a non-trivial pseudoholomorphic map. Furthermore let Σn ⊂Mn+` be an irreducible

pseudoholomorphic subvariety such that the restriction of φ to Σ is non-trivial. Then,

for any almost Kähler metric g on M , the eigenvalues of the Laplacian associated to



CHAPTER 1. INTRODUCTION 6

gΣ satisfy,

λk(Σ, gΣ) ≤ C(n,m)

∫
Σ φ
∗ωFS ∧ ωn−1

g∫
Σ ω

n
g

k, for any k ≥ 1, (1.9)

where C(n,m) > 0 is a constant depending only on n and m and ωg is the Kähler form

of g on M .

Finally we are able to show that the pseudoholomorphic map φ : M → Pm in

Theorem 1.1.5 need not be smooth. The precise statement of the weakened regularity

conditions can be found in §4.9.1 wherein we state and prove Theorem 4.9.1 which is

the low regularity counterpart of Theorem 1.1.5. This is new even in the holomorphic

setting. It turns out that rational maps satisfy the regularity conditions in question

and hence we obtain the following interesting consequence of Theorem 4.9.1.

Theorem 1.1.7. Let Mn be a closed Kähler manifold and L→M a holomorphic line

bundle with base locus V ⊂M . If V is a subvariety of codimension at least 2 then, for

any Kähler metric ω on M , the eigenvalues of the Laplace-Beltrami operator satisfy,

λk(M,ω) ≤ C (c1(L) ^ [ω]n−1, [M ])

Vol(M, [ω])
k, for any k ≥ 1, (1.10)

where C > 0 is a constant depending only n and m.



Chapter 2

Background

2.1 Almost Complex Structures

An almost complex manifold is a pair, (M,J), where M is a smooth manifold and

J ∈ End(TM) is an automorphism of the tangent bundle such that J2 = −I. We call

the automorphism J an almost complex structure.

A nondegenerate 2-form ω ∈ Ω2(M) is said to be tamed by an almost complex

structure J if

ω(X, JX) > 0, ∀X ∈ Γ(TM) \ {0},

and compatible with J if

ω(JX, JY ) = ω(X,Y ) ∀X,Y ∈ Γ(TM).

With these definitions, for a nondegenerate 2-form ω and an almost complex structure

J , the bilinear form defined by

〈X,Y 〉 = ω(X, JY ), ∀X,Y ∈ Γ(TM),

defines a Riemannian metric on M if and only if ω is tamed by and compatible with J .

When an almost complex manifold (M,J) is equipped with a Riemannian metric g

satisfying

g(JX, JY ) = g(X,Y ), ∀X,Y ∈ Γ(TM),

then we call the triple (M,J, g) an almost Hermitian manifold. Notice that the metric

defined by a tamed and compatible nondegenerate 2-form is thus almost Hermitian

(with respect to the given almost complex structure). On the other hand given a Her-

mitian manifold (M,J, g) there is a naturally associated nondegenerate 2-form defined

by

ω(X,Y ) = g(JX, Y ), ∀X,Y ∈ Γ(TM),

which is often called the Hermitian form or fundamental form.

7
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One might initially hope that every oriented, even dimensional manifold admits an

almost complex structure. But this is not the case, even if one requires closedness in

addition. Indeed Borel and Serre [6] prove that the only spheres which admit an almost

complex structure are S2 and S6. The next proposition tells us, amongst other things,

that manifolds admitting almost complex structures are in one-to-one correspondence

with those admitting nondegenerate 2-forms.

Proposition 2.1.1 ([40]). Let M be a smooth manfold of dimension 2n, then

(i) for each almost complex structure J there exists a nondegenerate 2-form compat-

ible with J , moreover the space of such forms is contractible;

(ii) for each nondegenerate 2-form ω there exists an almost complex structure J with

which ω is compatible, moreover the space of such almost complex structures is

contractible.

Corollary 2.1.1. Every orientable 2-dimensional manifold admits an almost complex

strutcure.

Example 2.1.1. The most fundamental example of an almost complex structure is

the standard almost complex structure J0 on R2n which arises from the identification

with Cn via zj = xj + iyj . That is, J0 acts via multiplication by i on each fibre of TCn,

this can be represented in matrix form as

J0 =

n⊕(
0 1

−1 0

)
.

Notice that here we have taken the convention that J0
∂
∂xj

= − ∂
∂yj

, which is the con-

vention we will use throughout this thesis.

The nondegenerate 2-form given by,

ω0 =

n∑
j=1

dxj ∧ dyj ,

is tamed by and compatible with J0. Thus (Cn, J0, ω0) is an almost Hermitian manifold,

in fact it is a Kähler manifold the definition of which shall be given in the next section.

Example 2.1.2. We now give an example, first investigated by Kodaira in the 1950’s

[32], of an almost complex manifold which we shall return to multiple times throughout

this thesis. The Kodaira-Thurston surface is given by X = S1× (Nil3/Γ) where Nil3 is

the Heisenberg group,

Nil3 =

A ∈ GL(3,R)

∣∣∣∣∣∣∣A =

1 x z

0 1 y

0 0 1

 , x, y, z ∈ R

 ,
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and Γ is the subgroup of Nil3 with integral entries, acting by left multiplication. Letting

t denote a coordinate on S1 an invariant frame of TX is given by

∂

∂t
,

∂

∂x
,

∂

∂y
+ x

∂

∂z
,

∂

∂z
,

with its coframe being

dt, dx, dy, dz − xdy.

We can define an almost complex structure J on T ∗X on X by J(dx) = dt, J(dy) =

dz − xdy, by taking the duals we have defined an almost complex structure on X.

Furthermore there is a tamed and compatible 2-form given by

ω = dx ∧ dt+ dy ∧ (dz − xdy),

thus making (X, J, ω) an almost Hermitian manifold.

To round out this brief section we will discuss the conditions under which an almost

complex structure is a complex structure. For this first recall that a complex manifold is

a manifold with a holomorphic atlas, i.e. transition maps are holomorphic. A complex

manifold has a naturally associated almost complex structure which is given locally by

Example 2.1.1 and patched together by the holomorphic transition data.

An almost complex structure is said to be integrable if it is associated to a holo-

morphic atlas, in this case we often to refer to it simply as a complex structure. One

might hope that in fact every almost complex structure is integrable but, alas, this is

not the case. The J in Example 2.1.2 is non-integrable whereas J0 in Example 2.1.1 is

integrable.

One can characterise integrability in a number of ways. For now we focus on the

so-called Nijenhuis tensor:

NJ(X,Y ) :=
1

4
([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]) , X, Y ∈ TM. (2.1)

A straightforward calculation shows that if J is integrable then NJ ≡ 0. It turns out

that the converse is also true and this is the content of the famed Newlander-Nirenberg

theorem.

Theorem 2.1.1. Let M be a smooth manifold and J a smooth almost complex structure

on M. Then there exists a holomorphic atlas associated to J if and only if NJ ≡ 0.

Example 2.1.3. The almost complex structure J0 on Cn in Example 2.1.1 was defined

using the global holomorphic coordinates zj and is hence integrable. On the other hand

it is easy to calculate that NJ0 ≡ 0.

Example 2.1.4. Consider now the Kodaira-Thurston surface X with the almost com-

plex structure J given in Example 2.1.2, we claim that this is not integrable.
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Indeed, we have that

J

(
∂

∂x

)
= − ∂

∂t
and J

(
∂

∂z

)
= − ∂

∂y
− x ∂

∂z
,

hence we can calculate,

NJ(
∂

∂x
,
∂

∂z
) = −J

([
∂

∂x
,− ∂

∂y
− x ∂

∂z

])
= − ∂

∂y
− x ∂

∂z
6= 0.

Thus this almost complex structure J is not integrable.

On the other hand we can also take the original viewpoint of Kodaira [32] using the

fact that C2 = Nil3 × R is a nilpotent group to write X = C2/Γ̃, where Γ̃ is a discrete

subgroup which acts holomorphically and preserves the standard symplectic form on

C2. With this in mind X is an elliptic surface, in particular X admits an integrable

almost complex structure.

Fundamental to the study of complex geometry are the type decompositions of

complex differential forms. The decompositions continue to hold for almost complex

manifolds but in the non-integrable setting these decompositions do not play nicely

when taking derivatives.

Given an almost complex structure J , extending the almost complex structure to

the complexified tangent bundle TCM = TM ⊗ C induces a splitting

TCM = T 1,0M ⊕ T 0,1M,

into the eigenspaces of J with eigenvalues i and −i respectively. The complexified

cotangent bundle thus admits an analogous type decomposition which in turn induces

a decomposition of the bundle of complex k-forms

Ωk
C =

⊕
p+q=k

Ωp,q.

Remark 2.1.1. The sections of T 1,0X are precisely the vector fields of the form Z−iZ
where Z is a real vector field.

With these splittings we can give another characterisation of integrability of J .

Indeed there is a natural (2, 0)-form with values in T 1,0M given by:

τ : Γ(T 1,0M)× Γ(T 1,0M) −→ Γ(T 0,1M), τ(ξ1, ξ2) = [ξ1, ξ2]0,1. (2.2)

To verify that this is indeed a (2, 0)-form it is enough to recall the following identity:

[ξ1, fξ2] = f [ξ1, ξ2] + ξ1(f) ξ2, ∀f ∈ C∞(M).

Note that unless otherwise specified scalar functions are to be considered as mapping
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into C. With this identity it is clear that τ(ξ1, fξ2) = fτ(ξ1, ξ2). We call τ the torsion

of J .

Suppose that we have a local holomorphic coordinate system zi, then, since [ ∂
∂zi
, ∂
∂zj

] =

0, we must have τ ≡ 0. It turns out that τ vanishing is equivalent to the vanishing of

the Nijenhuis tensor.

Proposition 2.1.2. Γ(T 1,0M) is closed under the Lie bracket, i.e. τ ≡ 0, if and only

if NJ ≡ 0.

Proof. The (1, 0) vector fields on (M,J) are precisely those of the form Y − iJY where

Y ∈ Γ(TM). Thus it suffices to check when the following quantity is of this form:

[X − iJX, Y − iJY ] = [X,Y ]− [JX, JY ]− i([JX, Y ] + [X, JY ]).

So we have closure if and only if

J([X,Y ]− [JX, JY ]) = [JX, Y ] + [X,JY ].

This is in turn equivalent to NJ(X,Y ) = 0.

A fundamental difference between complex and almost complex geometry is the

interaction of the exterior derivative with the natural type decompositions coming from

J . Let d : Ωk
C → Ωk+1

C be the complex linear extension of the exterior derivative on

real forms and define operators

∂ := πp+1,q ◦ d : Ωp,q −→ Ωp+1,q, ∂ := πp,q+1 ◦ d : Ωp,q −→ Ωp,q+1,

where πp,q : Ωk
C → Ωp,q is the projection map.

The torsion, τ , of J yields operators:

τ ′ : Ωp,q −→ Ωp+2,q−1, and τ ′′ : Ωp,q −→ Ωp−1,q+2.

Indeed, if ξ1, ..., ξm a local frame of T 1,0X over U ⊂ X then τ is given by

τ =
∑
i

τi ⊗ ξi, τi ∈ Ω2,0(U).

Now if u ∈ Ωp,q then:

τ ′u =
∑
i

τi ∧ (ξi yu), τ ′′u =
∑
i

τ i ∧ (ξi yu).

It is straightforward to verify that τ ′, τ ′′ are both derivations, more precisely that:

τ ′(u ∧ v) = (τ ′u) ∧ v + (−1)degu u ∧ (τ ′v),
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and similarly for τ ′′. It turns out that τ ′ + τ ′′ is precisely the quantity that describes

how far the exterior derivative is from respecting type decompositions.

Lemma 2.1.1. d = ∂ + ∂ + τ ′ + τ ′′.

Proof. Since all of the operators involved are derivations it suffices to check the formula

for 0-forms and 1-forms. But by convention the contraction of a function by a vector

field is zero, so for 0-forms τ ′u = τ ′′u = 0. Since du can have only (1, 0) and (0, 1)

parts we have the formula for 0-forms.

Now let u ∈ Ω1 and ξ, η ∈ Γ(TCM), then

du(ξ, η) = ξ(u(η))− η(u(ξ))− u([ξ, η]).

So if u is of type (0, 1) and ξ, η of type (1, 0), it is easy to see that

(du)2,0(ξ, η) = −u([ξ, η]0,1) = −u(τ(ξ, η)) = (−τ ′u)(ξ, η).

By definition we have (du)1,1 = ∂u, (du)0,2 = ∂u and τ ′′u = 0. Thus the desired

formula holds. By conjugation we have the formula for (1, 0)-forms also.

Remark 2.1.2. It will be useful in later chapters to note that when acting on complex

valued functions we get the splitting d = ∂ + ∂̄ even in the non-integrable case.

Since integrability of J is equivalent to the vanishing of τ the Newlander-Nirenberg

theorem hence gives the following characterisation of integrability.

Theorem 2.1.2. An almost complex structure J is integrable if and only if d = ∂ + ∂.

2.1.1 Almost Kähler Manifolds

In this brief section we shall review some of the remarkable properties that arise when

we assume that the fundamental form of a (almost) Hermitian manifold is closed, that

is, when the manifold is also symplectic with compatible almost complex structure.

An almost Hermitian manifold is called almost Kähler if the fundamental form is

closed, i.e. dω = 0, and Kähler if the almost complex structure is also integrable.

Remark that any symplectic manifold is almost Kähler by Proposition 2.1.1.

Example 2.1.5. The form ω0 =
∑n

j=1 dxj ∧dyj on (Cn, J0) is clearly closed and hence

(Cn, J0, ω0) is a Kähler manifold.

Let us now give an example of a strictly almost Kähler manifold, i.e. a symplectic

manifold which does not admit an integrable almost Kähler structure. To do this we

discuss a basic topological restriction on Kähler manifolds, namely the Hodge diamond.
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Theorem 2.1.3 (Hodge Decomposition and Symmetries). A Kähler manifold admits

the following decomposition of its cohomology with complex coefficients,

Hk(M ;C) ∼=
⊕
i+j=k

H i,j(M),

where H i,j(M) are the Dolbeaut cohomology groups. Moreover the cohomology groups

H i,j(M) satisfy the following symmetries,

H i,j(M) ∼= Hj,i(M), and H i,j(M) ∼= Hn−i,n−j(M),

where n = dim(M). In particular, for hi,j(M) = dimH i,j(M), we have

hi,j(M) = hj,i(M) and hi,j(M) = hn−i,n−j(M).

Remark 2.1.3. These symmetries of hi,j are commonly conveyed by arranging the

numbers in a diamond, known as the Hodge diamond.

Notice that, from the symmetryH i,j(M) ∼= Hj,i(M), it follows that dim(H1,0(M)) =

dim(H0,1(M)) and thus from the Hodge theorem we see that the first Betti number of

a Kähler manifold is necessarily even,

b1 = 2 dimH1,0(M).

Example 2.1.6. Thurston was the first to observe that the Kodaira-Thurston surface

admits a symplectic form but no Kähler structure [53]. The form ω = dx ∧ dt + dy ∧
(dz − xdy) on the Kodaira-Thurston surface (X, J) is closed thus making (X, J, ω) a

strictly almost Kähler manifold.

In fact X cannot admit a Kähler structure despite the fact that it admits both

almost Kähler structures and integrable almost complex structures. Indeed, one can

explicitly compute the first fundamental group and its commutator subgroup which

leads one to conclude that b1 = 3. In particular b1 is odd and hence X cannot admit a

Kähler structure.

Now consider the setting of an almost Hermitian manifold (M,J, g) of dimension

2n. We say that an affine connection ∇ is an almost Hermitian connection if

∇J = ∇g = 0.

Such connections always exist on an almost Hermitian manifold.

At this point it is interesting to remark that an almost Hermitian manifold is Kähler

if and only if the Levi-Civita connection of associated the Riemannian metric is almost

Hermitian.

Proposition 2.1.3 (Lemma 4.15 of [41]). Let (M,J, g) be an almost Hermitian man-
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ifold, ω the fundamental form and ∇LC the Levi-Civita connection of g. Then the

following are equivalent,

(1) ∇LCJ = 0,

(2) dω = 0 and J is integrable.

It is interesting to put this characterisation in the context of other natural connec-

tions available on almost Hermitian manifolds.

Let ei be a local unitary frame, θi its dual coframe and θji the connection 1-forms

associated to a given almost Hermitian connection ∇. The torsion Θ = (Θ1, ...,Θn) of

a connection ∇, which is a matrix of 2-forms, can be defined by Cartan’s first structure

equation

dθi = −θij ∧ θj + Θi.

The so-called Chern connection (also sometimes referred to as the second canonical

connection) is the unique almost Hermitian connection for which the (1, 1) part of the

torsion vanishes, that is, each (Θi)(1,1) = 0. It is well-known that such a connection

always exists, for example consult [20].

Lemma 2.1.2. Let (M,J, g) be an almost Hermitian manifold, then there exists a

unique almost Hermitian connection ∇ such that Θ(1,1) ≡ 0.

On the other hand there is an equivalent description of the torsion which has become

more common in Riemannian geometry textbooks. Namely the torsion T of an affine

connection ∇ is defined by,

T (X,Y ) = ∇XY −∇YX − [X,Y ], X, Y ∈ Γ(TM).

In terms of a local frame Ei of TM we have that

T (X,Y ) = Θi(X,Y )Ei, ∀X,Y ∈ Γ(TM).

Thus returning to the local unitary frame ei we have that,

T = 2(Θiei + Θjej)

holds on TCM .

Let us define functions T ijk and N i
j̄k̄

as the coefficients of the torsion of the Chern

connection with respect to the local unitary frame θi, that is,

(Θi)(2,0) = T ijk θ
j ∧ θk, (Θi)(0,2) = N i

j̄k̄ θ̄
j ∧ θ̄k.

In [54] it is remarked that the (0, 2) part of the torsion is independent of the Her-

mitian metric and can in fact be regarded as a Nijenhuis tensor for J which maps

T 0,1M × T 0,1M → T 1,0M (c.f. with the torsion of J defined by (2.2)). Furthermore
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it is remarked that these functions give a useful characterisation of the almost Kähler

condition dω = 0 and the quasi-Kähler condition (dω)(1,2) = 0.

Lemma 2.1.3 (Lemma 2.4 of [54]). An almost Hermitian manifold (M,J, g) is almost

Kähler if and only if

T ijk = 0, and N i
j̄k̄ +N j

k̄ī
+Nk

īj̄ = 0,

and quasi-Kähler if and only if

T ijk = 0.

Given an almost Hermitian manifold (M,J, g) endowed with its canonical connec-

tion ∇C one thus has two, quite natural, choices of how to define the Laplacian acting

on functions. On one hand we can use the Laplace-Beltrami operator which arises

purely from the metric g (see §2.2 for a definition). On the other we can use the canon-

ical connection and define the Laplacian as the trace of the Hessian, which in terms of

a local unitary frame ei is given by

∆Cf =
∑
i

(∇Cdf)(ei, ēi) + (∇Cdf)(ēi, ei),

for some f ∈ C∞(M).

In general these notions of Laplacian do not agree, but if the almost Hermitian

manifold is quasi-Kähler then they do. Indeed, the Laplacian of the Levi-Civita con-

nection acting on a function is given as the trace of the map F : TM → TM defined

by

F (X) = ∇CX(grad f) + T∇C (grad f,X),

where ∇LC is the Levi-Civita connection, ∇C is the canonical connection and T∇C is

the torsion of ∇C . For details see [31]. Now if g is quasi-Kähler then T∇C is simply

the Nijenhuis tensor by Lemma 2.1.3 and hence maps T 0,1M ×T 0,1M → T 1,0M . Thus

it is straightforward to deduce that the trace of the torsion term must be zero in this

case and hence we have the following lemma.

Lemma 2.1.4 (Lemma 2.6 of [54]). Let (M,J, g) be an almost Hermitian manifold and

g be quasi-Kähler then the canonical Laplacian is equal to the usual Laplacian of the

Levi-Civita connection of g.

2.1.2 Cauchy-Riemann Type Equations and Pseudoholomorphic Curves

Let us now briefly discuss Cauchy-Riemann type equations and some of their applica-

tions on almost complex manifolds with a view to developing some basic pseudoholo-

morphic curve theory.

In the following we shall assume that (M,J) is a smooth almost complex manifold

with J a smooth almost complex structure tamed by some ω and (Σ, j) a compact
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Riemann surface. A smooth map u : Σ → M is said to be a (parameterised) J-

holomorphic curve if

du ◦ j = J ◦ du. (2.3)

We shall also refer to such curves as pseudoholomorphic curves. Notice that the re-

quirement that u satisfy (2.3) is equivalent to it solving the Cauchy Riemann equation

∂̄Ju :=
1

2
(du+ J ◦ du ◦ j) = 0. (2.4)

Remark 2.1.4. Throughout the later chapters of this thesis we shall refer to pseudo-

holomorphic disks in some given almost complex manifold. Henceforth, by pseudoholo-

morphic disk we shall be referring to a disk Dρ ⊂ C equipped with the standard almost

complex structure, j0, and a smooth J-holomorphic map u : (Dρ, j0)→ (M,J).

Take a holomorphic coordinate atlas Uα of Σ and write uα for the restriction of u to

Uα. Then, if z = s+ it is a holomorphic coordinate on Uα, the above Cauchy-Riemann

equation reduces to the following first order non-linear PDE,

∂suα + J(uα)∂tuα = 0.

Remark 2.1.5. If u = f + ig maps into Cn equipped with its standard almost com-

plex structure then the above equation is in fact the usual system of Cauchy-Riemann

equations

∂sf = ∂tg ∂sg = −∂tf.

Local Properties

Throughout this section we will consider a smooth almost complex manifold (M,J),

i.e. M is a smooth manifold equipped with a smooth almost complex structure J , and

smooth J-holomorphic curves. Although all of the statements below hold with varying

degrees of lower regularity.

We first establish a unique continuation property following the exposition in [40]

since this gives us an excuse to discuss the Carleman Similarity Principle.

Theorem 2.1.4 (Unique Continuation). Let (M,J) be a smooth almost complex man-

ifold and Ω ⊂ C an open neighbourhood of the origin. If u, v : Ω → M are two

J-holomorphic curves which agree to infinite order at the origin, that is∫
|z|≤r

|u− v| = O(rk), ∀k ∈ N,

then u ≡ v on Ω.

We should briefly remark that a J-holomorphic curve satisfies (2.4) and hence is a
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solution to the following second order quasi-linear equation

∆u = (∂tJ(u))∂su− (∂sJ(u))∂tu.

Thus the unique continuation property can seen to follow from Aronszajn’s unique

continuation theorem.

Theorem 2.1.5 (Theorem 2.3.4 of [40]). Let Ω ⊂ C be a connected open set. Suppose

that w ∈W 2,2
loc (Ω;Rm) satisfies,

|∆w(z)| ≤ C(|w|+ |∂sw|+ |∂tw|)(z), (2.5)

for almost every z = s + it ∈ Ω and that w vanishes to infinite order at some z0 ∈ Ω.

Then w ≡ 0.

It will be useful for the work undertaken in later chapters to present a proof which

does not rely on Aronszajn’s unique continuation theorem. To that end consider now

the Carleman Similarity Principle which says, in essence, that one can locally transform

a J-holomorphic curve to a holomorphic curve. We shall see in the following that this

in fact leads J-holomorphic curves to share many local properties with holomorphic

curves.

Theorem 2.1.6 (c.f. Theorem 2.3.5 of [40]). Let p > 2 and Bε ⊂ C for some ε > 0.

Suppose that C ∈ L∞(Bε,EndR(C)) and v ∈W 1,p(Bε,C) is a solution to

∂̄v(z) + C(z)v(z) = 0. (2.6)

Then, for a sufficiently small δ > 0, there exist maps Φ ∈ C0(Bδ,EndR(C)) and σ ∈
C∞(Bδ,C) such that Φ(z) is invertible and on Bδ,

v(z) = Φ(z)σ(z), ∂̄σ = 0, Φ−1(z)J(z)Φ(z) = J0.

Now Theorem 2.1.4 follows by a simple argument, the full details of which can

be found in [40]. Indeed, consider the set up of Theorem 2.1.4 and remark that it

suffices to prove the theorem for u, v : Ω → Cn. Define a function w : Ω → Cn by

w(z) = u(z) − v(z) and remark that this satisfies a Cauchy-Riemann type equation

of the form (2.6). Hence Theorem 2.1.6 yields a holomorphic function σ on some

small ball, Bδ, centred at the origin such that σ = Φ−1w for some invertible function

Φ ∈ C0(Bδ,EndR(C)). Since w vanishes to infinite order at z = 0 and Φ(0) is invertible

it follows that σ vanishes to infinite order. But σ is holomorphic and hence σ ≡ 0 on

Bδ. So w ≡ 0 on Bδ, from which it is straightforward to conclude Theorem 2.1.4.

For holomorphic curves it is well known that critical points are isolated. Thus, given

a J-holomorphic curve u : Ω → Cn, Theorem 2.1.6 immediately implies that u−1(x)

is a finite set for every x ∈ M . Furthermore, one can show that v := ∂su : Ω → Cn
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also satisfies an equation of the form (2.6) and hence Theorem 2.1.6 can be applied to

deduce that its zeroes are isolated. These properties are encapsulated in the following

proposition.

Proposition 2.1.4 (Lemma 2.4.1 of [40]). Let Σ be a compact Riemann surface with-

out boundary, (M,J) a smooth almost complex manifold and u : Σ → M a smooth,

nonconstant pseudoholomorphic curve. Then the set

X := u−1({u(z)|z ∈ Σ, du(z) = 0}),

of preimages of critical values is finite. Moreover, u−1(x) is a finite set for every x ∈M .

In fact by a similar argument (with a sprinkling of point set toplogy) one can obtain

the following characterisation of the intersection of pseudoholomorphic curves.

Proposition 2.1.5 (Proposition 2.4.4 of [40]). Let (M,J) be a smooth almost complex

4-manifold and for i = 1, 2 let ui : Σi → J be J-holomorphic curves where Σi are

closed Riemann surfaces. Furthermore assume that u1 : Σ1 → M is nonconstant and

u1(Σ1) 6= u2(Σ2). Then the set u−1
1 (u2(Σ2)) is at most countable and accumulates only

at the critical points of u1.

This proposition suggests that the intersection index of pseudoholomorphic curves

may be worth exploring. To this end let us take a brief digression to recall the notion

of a local intersection index for smooth oriented submanifolds.

Suppose that M is a smooth oriented manifold of dimension n and ui : Xi ↪→M are

smooth, oriented submanifolds of dimension ni for i = 1, 2. We say that X1 intersects

X2 transversally at a point x ∈ X1 ∩X2 if

TxX1 ⊕ TxX2 = TxM.

We say that X1 intersects X2 transversally, abbreviated X1 t X2, if they intersect

transversally for all x ∈ X1 ∩X2.

Now suppose that there is no excess dimension, i.e. n = n1 + n2. In this case

notice that if X1 t X2 then the intersection submanifold X1 ∩X2 is 0-dimensional, i.e.

consists only of isolated points. We define the local intersection index, δ(u1, u2;x) as

follows. If X1 t X2 then we set δ(u1, u2;x) = ±1, with the sign positive if and only if

the natural orientations on either side of the following splitting match

TxM = Im du1(x)⊕ Im du2(x).

More precisely, if e1, ..., en1 is an oriented basis of TxX1 and en1+1, ..., en1+n2 is an

oriented basis of TxX2 then the intersection index at x is +1 if e1, ..., en is an oriented

basis of TxM and −1 otherwise. In the case that the intersection is not transverse we

need to appeal to the Transversality Theorem.
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Indeed, if X1 and X2 do not intersect transversally then by the Transversality

Theorem one can (smoothly) deform X1 by an arbitrarily small amount to, say, u ε1 :

X ε
1 ↪→M such that X ε

1 t X2. Then we define δ(u1, u2;x) = δ(u ε1 , u2;x). Of course one

must check that this is well defined, that is, that δ(u1, u2;x) is a homotopy invariant,

see for example [25, 43].

With another application of the Carleman Similarity Principle we can obtain the

following proposition (this also appears as Exercise 2.6.1 in [40]) which is the easiest

case of Gromov’s phenomena of positivity of intersections. For the proof we follow

Wendl [58].

Proposition 2.1.6 (Theorem 2.88 [58]). Let (M,J) be an almost complex manifold

and Q a compact codimension 2 J-holomorphic submanifold. Suppose that u : D →M

is a pseudoholomorphic disk such that u(0) ∈ Q.

(1) Then either u−1(Q) consists of isolated points, or, u(D) ⊂ Q.

(2) Suppose that the intersection points are isolated and, after possibly shrinking D,

that u(0) is the unique such point. Define an intersection number u · Q to be

the number of points of intersection (counted with multiplicities) with a generic

smooth perturbation of u which fixes the boundary ∂D. Then u · Q ≥ 1 with

equality if and only if u is transverse to Q at zero. That is,

δ(Q, u1(D);u(0)) ≥ 1,

with equality if and only if u intersects Q transversally at zero.

Sketch Proof. First remark that the result is local and so it is enough to assume that

M = Cn equipped with some almost complex structure J . Moreover we can choose

complex coordinates such that Q = Cn−1 × {0}, u(0) = 0 ∈ Cn and J = J̃ ⊕ i along

Q, where J̃ is some almost complex structure on Cn−1 and i is the standard complex

structure on C.

In this setting the map u has the form u(ζ) = (ũ(ζ), f(ζ)) for some smooth functions

ũ : D → Cn−1 and f : D → C. Thus the intersection u(D) ∩ Q is described by the

zeroes of f . It turns out that f satisfies a Cauchy-Riemann type equation and hence

the hypothesis of the Carleman Similarity Principle. To prove this we employ a neat

interpolation trick used by [40] and [58].

For τ ∈ [0, 1] define a smooth homotopy between u0(ζ) = (ũ(ζ), 0) and u1 = u

by uτ (ζ) = (ũ(ζ), τf(ζ)). Writing s + it for coordinates on D our map u satisfies

∂su+ J(u)∂tu = 0. Hence,

∂su+ J(u0)∂tu = ∂su+ J(u)∂tu+ [J(u0)− J(u)]∂tu

= −
(∫ 1

0

d

dτ
J(u, τf)dτ

)
∂tu

=: −Af.
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Since J(u0) = J(ũ, 0) = i the projection Cn−1 × C → C factors through the above

equation and so we can define a smooth function C : D → EndR(C) to be the projection

of A onto the second factor and obtain the following Cauchy-Riemann type equation

for f

∂sf + i∂tf + Cf = 0.

Applying the Carleman Similarity Principle we obtain that, either the zeroes of f

are isolated, or, f vanishes identically on a neighbourhood. This proves the first part

of the lemma. For the second part suppose that u(D) and Q intersect uniquely at

0 ∈ Cn−1 × C. By the Carleman Similarity Principle this zero of f is isolated and of

positive order. Thus we can perturb f by an arbitrarily small amount to a smooth

function with only simple zeroes and whose signed count is positive. Since this count

is precisely that of the transverse intersections of the resulting perturbation of u with

Q we obtain the desired inequality. If we in fact have δ(Q, u1(D);u(0)) = 1 then the

corresponding zero of f is already simple and hence the intersection of u and Q must

already be transverse.

Writing δ(u1, u2) for the number of all intersection points we can state the more

general case of positivity of intersections in 4-manifolds as follows. Unfortunately the

proof of this is beyond the scope of this elementary background chapter, rather nice

accounts are given in [40, 58].

Theorem 2.1.7 (Positivity of Intersections). Let (M,J) be a smooth almost complex 4-

manifold and A1, A2 ∈ H2(M ;Z) homology classes represented by simple J-holomorphic

curves u1 : Σ1 → M and u2 : Σ2 → M respectively. Suppose that u1(U1) 6= u2(U2) for

any nonempty open subsets U1 ⊂ Σ1, U2 ⊂ Σ2, then

δ(u1, u2) ≤ A1 ·A2,

with equality if and only if all intersections are transverse.

2.1.3 Local Coordinates

Local holomorphic coordinates provide an extremely powerful tool in complex geometry.

An example of this, which is particularly relevant to the work carried out in subsequent

chapters, is addressing whether a set has the structure of a complex subspace. More

precisely we are referring principally to the work of King [30] in which it is established

that the intersection of complex cycles yields another complex cycle. Due in part to

the lack of local holomorphic coordinates in the non-integrable case such a result is not

yet available in this setting.

In [50] Taubes suggested an alternative to holomorphic coordinates for symplectic

4-manifolds which he used to prove, amongst other things, a useful criterion for de-

termining whether or not a set is an almost complex subvariety. In this setting one
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can find a coordinate neighbourhood of a given point which is foliated by embedded J-

holomorphic disks in any given direction. As one would expect this can be generalised

to higher dimensions and one can always find a coordinate neighbourhood which can

be foliated by J-holomorphic disks in any given direction. The following statement is

Lemma 3.10 in [60] and the proof there is based on a combination of the proofs in [50]

and [55].

Let (M,J) be an almost complex manifold of complex dimension n. For any point

x ∈M we can find a neighbourhood U of x and a non-degenerate 2-form Ω on U such

that J is compatible with Ω in U . This pair (Ω, J) induces an almost Hermitian metric

on U .

Remark 2.1.6. We say that an almost complex manifold (M,J) is locally symplectic

if for any point x ∈M there exists an open neighbourhood U of x on which there is a

symplectic form compatible with J , i.e. a closed, non-degenerate 2-form Ω on U such

that J is compatible with Ω. Not all almost complex manifolds are locally symplectic,

for example [8] implies that S6 equipped with the standard almost complex structure

does not have the locally symplectic property. On the other hand it was shown in

[46] (although a mistake was noticed and corrected in [36]) that every almost complex

4-manifold is locally symplectic.

Now we can identify a geodesic ball centred at x with a ball in R2n centred at the

origin. We identify R2n ∼= Cn so that

Ωx = ω0 = dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n

=
i

2

(
dz0 ∧ dz̄0 + · · ·+ dzn−1 ∧ dz̄n−1

)
.

Here we write complex coordinates (z0, · · · , zn−1) = (x1, x2, · · · , x2n−1, x2n). Further

we may assume that J is an almost complex structure on Cn which agrees with the

standard complex structure J0 at the origin.

Lemma 2.1.5. Let J be an almost complex structure on Cn which agrees with the

standard complex structure J0 at the origin. Further, let g be a Hermitian metric

compatible with J . Then there exists a constant ρ0 > 0 with the following property.

Let 0 < ρ < ρ0 and D ⊂ C the disk of radius ρ. There exists a diffeomorphism

Q : D ×Dn−1 → Cn, and constants L,Lm depending only on g and J , such that

• For all w ∈ Dn−1, Q(Dw) is a J-holomorphic curve containing (0, w);

• For all w ∈ Dn−1, |(ζ, w)−Q(ζ, w)| ≤ L · ρ · |ζ|;

• For all w ∈ Dn−1, the derivatives of order m of Q are bounded by Lm · ρ;

• For each κ ∈ CPn−1 we can choose Q such that the disk Q(D0) is tangent at the

origin to the line determined by κ.
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We use Dw to denote the disk of radius ρ at the point w ∈ Dn−1 in the space D×Dn−1.

Proof. Since J agrees with J0 at the origin our strategy is to look for J-holomorphic

disks which are perturbations of J0-holomorphic disks.

The space of complex directions at the origin in Cn is parameterised by CPn−1 so

for a given direction κ = [1 : κ1 : .. : κn−1] ∈ CPn−1 consider the J0-holomorphic disk

(ζ, w1 + κ1ζ, ..., wn−1 + κn−1ζ) through the point w = (w1, ..., wn−1) ∈ Dn−1, where

ζ ∈ D. We search for J-holomorphic perturbations of the form

qw,κ(ζ) = (ζ, w1 + κ1ζ + τ1(w, κ, ζ), ..., wn−1 + κn−1ζ + τn−1(w, κ, ζ)),

for some smooth functions τi : D → R2. The system of J-holomorphic equations for

qw,κ are of the form

∂τi
∂ζ̄

= Qi(w, κ, τ1(w, κ, ζ), ..., τn−1(w, κ, ζ)), i = 1, ..., n− 1,

and satisfy, after possibly shrinking the disk D, the following estimates for some con-

stants Ck > 0,

‖Qi‖Ck ≤ Ck ‖J − J0‖Ck , i = 1, ..., n− 1. (2.7)

A schematic expression of Qi can be found in [50] where it is remarked that Qi can

be seen to come from pull-backs of tensors on C2 which are constructed from the

coefficients of J − J0.

It will be convenient to consider the equation over a slightly larger disk than D

hence we introduce a smooth cutoff function χρ : C → [0, 1] which is identically 1 on

D and vanishes for |z| > 3
2ρ. We now look for solutions to the following system of

equations

∂τi
∂ζ̄

= χρQi(w, κ, τ1(w, κ, ζ), ..., τn−1(w, κ, ζ)), i = 1, ..., n− 1,

which have the form

τi(ζ) =
1

π

∫
χρQi(w, κ, τ1(w, κ, η), ..., τn−1(w, κ, η))

ζ − η
d2η, i = 1, ..., n− 1.

The search will be over the class of (n − 1)-tuples of C2, 1
2 which restrict to the circle

of radius 4ρ in the span {e−iθ, e−2iθ, ...}. This class of functions can be viewed as a

Banach space when equipped with the norm

‖τ‖ =
n−1∑
i=1

|τi|+ ρ|dτi|+ ρ2|∇dτi|+ ρ
5
2 sup
t,s∈C

(
|∇d(τi)t −∇d(τi)s]|

|t− s|
1
2

)
.

By making ρ > 0 small we can make the right hand side of (2.7) arbitrarily small.

Thus we can apply contraction mapping theorem on the Banach space described above
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to obtain a unique smooth solution τ = (τ1, ..., τn−1) which also varies smoothly in w,

κ and satisfies the bounds (c.f. Lemma 5.5 of [50])∣∣∣∣ ∂τ∂wi
∣∣∣∣ < Cρ,

∣∣∣∣ ∂τ∂κi
∣∣∣∣ < Cρ2,

‖τ‖C0 < C(ρ2 + ρ(|w|+ |κ|)), ‖τ‖C1 < C(ρ+ (|w|+ |κ|)).

With existence of a J-holomorphic perturbation under our belts the lemma will

follow by applying the implicit function theorem with κ held constant. Indeed, without

loss of generality, assume that κ = [1 : 0 : ... : 0]. Then there exists an ε > 0 such that

for each |w| < ε there exists a unique smooth solution τw. That is, the perturbed disks

qw,κ are J-holomorphic. As the pair (ζ, w) vary the map σ(ζ, w) = qw,κ(ζ) defines a

map from a neighbourhood of the origin in Cn to Cn. Now by taking ρ > 0 small we

can ensure that ∣∣∣∣∂τw∂w
∣∣∣∣ < 1, at (ζ, w) = (0, 0).

That is, for ρ > 0 small the derivative of σ is invertible at the (0, 0) ∈ Cn and hence σ

is a diffeomorphism on some neighbourhood of the origin.

Throughout we refer to a coordinate system arising from this lemma as a J-fibre

diffeomorphism. Note that these coordinates are far from unique, it is particularly

important to remark that for any given complex direction there is a foliation whose

central disk is tangent to this direction at the origin of this coordinate system.

The coordinates given by Lemma 2.1.5 can in fact be improved further to give a

convenient coordinate expression for the almost complex structure. First we remark

that we can choose coordinates for which the almost complex structure agrees with

the standard almost complex structure J0 along a given embedded pseudoholomorphic

disk.

Lemma 2.1.6 (Lemma 2.4.2 of [40]). Let (M,J) be a smooth almost complex manifold

and u : D → M an embedded pseudoholomorphic disk. Then there exists a smooth

coordinate chart ψ : U → Cn on an neighbourhood of u(0) such that for z ∈ Ω∩u−1(U)

ψ ◦ u(z) = (z, 0, ..., 0), dψ(u(z)J(u(z)) = J0dψ(u(z)).

Proof. Writting z = s + it for complex coordinates on D, choose a complex frame

bundle
∂u

∂s
=: Z1, Z2, ..., Zn

of the pull-back bundle u∗TM and consider the exponential map φ : Ω× Cn−1 →M

φ(z, w1, ..., zn−1) = expu(z)

 n∑
j=2

xjZj(z) +

n∑
j=2

yjJ(u(z))Zj(z)

 ,
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where wj = xj + iyj . There exist neighbourhoods U ⊂ M and V ⊂ Cn such that

φ : V → U is a diffeomorphism. Now, since φ(z, 0, ..., 0) = u(z) and along the disk

D × {(0, ..., 0)} ⊂ Cn, it holds that

∂φ

∂xj
+ J(φ)

∂φ

∂yj
= 0, j = 1, ..., n,

we have that the inverse φ−1 : U → V gives the desired coordinate chart.

Let us return now to the foliation, say Q, of a neighbourhood in M by embedded

J-holomorphic disks given by Lemma 2.1.5. Henceforth it will be constructive to view

Q as a map Q : D×D×Dn−2 → Cn and write (ξ, ζ, w) for the associated coordinates,

where ξ, ζ ∈ D and w = (w1, · · · , wn−2) ∈ Dn−2.

Since the disks of constant (ζ, w) are J-holomorphic the almost complex structure J

must decompose, with respect to the splitting T (D×D×Dn−2) = TD⊕TD⊕TDn−2 =

R2 ⊕ R2 ⊕ R2n−4, as follows:

J =

 a b1 c1

0 a′ c2

0 b2 c3

 .

Here a, a′, b1 ∈ R2×2, b2 ∈ R(2n−4)×2, c1, c2 ∈ R2×(2n−4) and c3 ∈ R(2n−4)×(2n−4) are

matrix valued functions on Dn such that the condition J2 = −I is satisfied.

We can further choose coordinates (ξ1, ζ1, w1) such that the disk {ξ1 = 0, w1 = 0} is

J-holomorphic. To see this first remark that from the proof of Lemma 2.1.5 we can find

smooth functions τ0, · · · , τn−2 : D → R2 such that τi(0) = 0 and the embedding ζ 7→
(τ0(ζ), ζ, τ1(ζ), · · · , τn−2(ζ)) is J-holomorphic. By making the change of coordinates

(ξ1, ζ1, w1) := (ξ − τ0(ζ), ζ, w1 − τ1(ζ), · · · , wn−2 − τn−2(ζ)),

we thus have a foliation such that disks of constant (ζ, w) are J-holomorphic as is the

disk {ξ1 = 0, w1 = 0}. Finally we can make a further change of coordinates (similarly

to Lemma 2.1.6) to (ξ2, ζ2, w2) so that

a ≡

(
0 1

−1 0

)
and a′|u(D) =

(
0 1

−1 0

)
.

Applying this process to the complex directions determined by the n−2 components

of w1, that is, choosing J-holomorphic disk foliations along the directions of w1 at

x = Q(0, 0, 0), we are able to standardize the coordinate along the central disk {ξ2 =

0, w2 = 0} such that J |{ξ2=0,w2=0} is a 2n×2n block matrix with n of the 2×2 matrices(
0 1

−1 0

)
.
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We use the coordinates defined in this section and slight refinements in Chapter 3.

2.2 Spectral Theory

Since the second half of this thesis concentrates on spectral properties of almost Kähler

manifolds we include here some basic definitions and results which will expedite the

discussions in Chapter 4.

2.2.1 The Rayleigh Quotient and the Min-Max Theorem

In this section we largely follow the treatment of [9] and [10] wherein a more thorough

account can be found.

Let (M, g) be a compact, oriented Riemannian manifold without boundary. First

recall that the divergence operator on (M, g) is defined to be the map

div : Γ(TM)→ C∞(M), satisfying (div(X))dVg = d(ιX(dVg)),

where ιX : Ωn(M) → Ωn−1(M) denotes contraction by X and dVg the volume form.

The Laplace-Beltrami operator acting on smooth functions is given by,

∆ : C∞(M)→ C∞(M), ∆f = div(∇f),

where ∇f denotes the gradient of f . In local coordinates xi the Laplace-Beltrami

operator associated to g has the form,

∆ =
1√
|g|

∂

∂xi

(√
|g|gij ∂

∂xj

)
,

with |g| = det g and gij are the components of the inverse to the matrix with entries

gij = g( ∂
∂xi
, ∂
∂xj

).

Remark 2.2.1. We choose to work with oriented Riemannian manifolds above as all

manifolds appearing in later chapters will be. Nonetheless the Laplacian can be defined

on any Riemannian manifold. Indeed, choosing a local volume form we can define the

divergence locally. On the other hand since changing the sign of dVg does not alter

div(X) the definition extends to the whole manifold and hence one can define the

Laplacian as above.

Through a suitable choice of differential form, Stoke’s Theorem can be used to

obtain the Divergence theorem on a Riemannian manifold.

Theorem 2.2.1 (Divergence Theorem without boundary). Let (M, g) be a compact

Riemannian manifold without boundary, then∫
M

divXdVg = 0, ∀X ∈ Γ(TM).
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For functions u, v ∈ C∞(M), by simply taking the vector field X = v∇u in the

divergence theorem and using the following identity,

div(v∇u) = v∆u+ 〈∇v,∇u〉,

we deduce that Green’s formulas also hold.

Corollary 2.2.1 (Green’s Identities). Let (M, g) be a compact Riemannian manifold

without boundary and u, v ∈ C∞(M) then∫
M
v∆u dVg = −

∫
M
〈∇v,∇u〉 dVg,

and ∫
M
v∆u dVg =

∫
M
v∆u dVg.

Notice that for u, v ∈ C∞(M) the first Green’s Identity yields that

〈u,−∆u〉L2(M) =

∫
M
|∇u|2dVg = ‖∇u‖2L2(M) ≥ 0, (2.8)

and the second that

〈v,−∆u〉L2(M) = 〈u,−∆v〉L2(M). (2.9)

We will return to the meaning of these identities shortly.

We let L2(M) denote the space of measurable functions u : M → R which satisfy,

‖u‖2L2(M) =

∫
M
|u|2dVg <∞.

As usual this norm is induced by the following inner product which makes L2(M) a

Hilbert space,

〈u, v〉L2(M) =

∫
M
uv dVg, u, v ∈ L2(M).

We denote by Hk(M) the closure of C∞(M) with respect to the Sobolev norms

‖u‖2Hk = ‖u‖2L2(M) +
∑
`≤k

∥∥∥∇`u∥∥∥2

L2(M)
,

where ∥∥∥∇`u∥∥∥2

L2(M)
=

∫
M
|∇`u|2dVg.

If the reader is familiar with the more general Sobolev spaces W k,p(M) then one can

remark that Hk(M) is an abbreviation for the space of approximable W k,2 functions.

Remark 2.2.2. Beware that the Sobolev spaces Hk(M) should not be confused with

the cohomology groups of M ; the intended meaning of Hk(M) should be clear from

context.



CHAPTER 2. BACKGROUND 27

Remark 2.2.3. One must pay attention to the definitions of Sobolev spaces between

Riemannian manifolds. Indeed, for compact Riemannian manifolds M,N of dimensions

m and n respectively we can give two inequivalent definitions of W k,p(M,N). Firstly

we can define it similarly to Hk(M) above, that is, to be the closure of C∞(M,N) with

respect to the W k,p-norm. On the other hand we can take an isometric embedding

N ↪−→ Rk and define a Sobolev space for maps by,

W 1,2(M,N) := {u ∈W 1,2(M,Rk)|u(x) ∈ N a.e. x ∈M}.

For p > m these spaces agree, which essentially follows from the Sobolev embedding

theorem. Furthermore in the borderline case, p = m, Schoen and Uhlenbeck [47, 48]

proved that these spaces still agree. But for p < m this is not the case. Consider,

for example, the radial projection from the unit ball in R3 to its boundary S2. For

2 ≤ p < 3 this is in W 1,p(B3, S2) but does not lie in the closure of C∞(B3, S2) with

respect to the W 1,p-norm. An enlightening discussion of these spaces is given in [4].

In Chapter 4, to avoid confusion, we shall refer to functions in the closure of

C∞(M,N) with respect to the W k,p-norm as approximable W k,p functions.

Let us briefly recall some definitions from functional analysis. First that the spec-

trum of a linear operator T : D(T ) ⊂ H → H defined on a dense subset D(T ) of a

Hilbert space H is the set of λ ∈ C such that T − λI is not invertible, where I is

the identity operator. Moreover an element λ in the spectrum of T is an eigenvalue if

T − λI = 0H , where 0H denotes the zero operator.

The resolvent of an operator T is Rλ = (T − λI)−1 for λ ∈ C not in the spectrum

of T . If there exists a λ such that (T − λI)−1 is a compact, bounded, linear operator

and is defined on a dense subset of the range of T then we say that T has a compact

resolvent. Recall that an operator is compact if it maps the unit ball to a precompact

set. Using the Spectral Theorem for Compact Operators [44] one can show that if an

operator T has a compact resolvent then the spectrum of T is discrete and that any

non-zero elements of the spectrum are eigenvalues.

Theorem 2.2.2 ([18, 21]). Let (M, g) be a compact Riemannian manifold without

boundary and ∆ the associated Laplace-Beltrami operator defined above, then there

exists a unique self-adjoint extension of the Laplacian to a positive, linear operator

−∆ : H2(M)→ L2(M)

satisfying,

〈−∆u, v〉L2(M) = 〈∇u,∇v〉L2(M), ∀u ∈ H2(M), v ∈ H1(M).

Moreover −∆ has a compact resolvent and in particular it follows that the spectrum

is discrete and has the following properties:
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(i) all eigenvalues are real and have finite multiplicity;

(ii) ordering eigenvalues as follows, 0 < λ1 ≤ λ2 ≤ ... we have that λk → ∞ as

k →∞;

(iii) there exists an orthonormal basis {uk} ⊂ L2(M) where each uk is an eigenfunction

corresponding to eigenvalue λk.

Some remarks about the proof of this theorem are in order. Firstly, since C∞(M)

is dense in L2(M) the identity (2.9) says precisely that −∆ is formally self adjoint, one

can use this fact to further prove that the extension is self-adjoint. Similarly positivity

can be seen to arise from the identity (2.8). As mentioned above Theorem 2.2.2 the

discreteness of the spectrum follows from the compactness of the resolvent operator. To

deduce the compactness of the resolvent we use the energy estimate (see for example

[18]) ∥∥(−∆)−1g
∥∥
H1(M)

≤ C ‖g‖L2(M) , for g ∈ L2(M)

and since H1(M) embeds compactly into L2(M), by the Rellich-Kondrachov Compact-

ness Theorem, we deduce that the resolvent is indeed compact. Notice here that the

compactness of M is vital for Rellich-Kondrachov to apply, if the manifold is non-

compact then parts of the spectrum may be continuous.

Let ui, uj be eigenfunctions associated to distinct eigenvalues λi and λj respectively.

By the second Green’s Identity we have,

0 =

∫
M

(ui∆uj − uj∆ui) dVolg = (λi − λj)
∫
M
uiuj dVolg .

Thus we see that distinct eigenspaces are orthogonal with respect to the L2 inner prod-

uct. Therefore, we may choose an L2-orthonormal sequence u0 = (Vol(M))−
1
2 , u1, u2, ...

of eigenfunctions corresponding to the eigenvalues 0, λ1, λ2, ... . Then {ui} is a com-

plete orthonormal sequence in L2(M) and, in particular, we have the so-called Parseval

identities.

u =
∞∑
i=0

〈u, ui〉L2ui, ‖u‖2L2 =
∞∑
i=0

〈u, ui〉2L2 , ∀u ∈ L2(M).

From these considerations it is straightforward to prove Rayleigh’s Theorem, for

example see [10]. We include a useful variational characterisation in the statement

which can also be found in [10].

Theorem 2.2.3 (Rayleigh’s Theorem). Let (M, g) be a compact Riemannian manifold

without boundary and ∆ the extension of the Laplace-Beltrami operator given by Theo-

rem 2.2.2. Write 0 < λ1 ≤ λ2 ≤ ... for the eigenvalues and u1, u2, ... for the correspond-

ing L2-normalised eigenfunctions. For k ∈ N and Ek := {u0, u1, ..., uk−1}⊥ ⊂ L2(M)

it holds that,

λk = inf
{

Rg(u)|u ∈ H1(M) ∩ Ek
}
, (2.10)
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where Rg(u) is the Rayleigh quotient defined by

Rg(u) =
‖∇u‖2L2(M)

‖u‖2L2(M)

=

∫
M |∇u|

2dVolg∫
M u2dVolg

. (2.11)

Moreover the infimum is achieved if and only if the function in question is an eigen-

function of λk.

Moreover, if for k ∈ N we let Vk be the collection of all k+ 1-dimensional subspaces

of C∞(M), then

λk(g) = inf
V ∈Vk

sup
u∈V

Rg(u). (2.12)

A useful consequence of this characterisation is that to prove a bound on λk it

suffices to produce k + 1 linearly independent test functions whose Rayleigh quotient

satisfies the same bound. Since we will only be considering compact manifolds one can

take a constant as one of these test functions reducing the problem to finding k linearly

independent test functions. This is the approach used by Kokarev in [33] and the one

we take in Chapter 4.

2.2.2 Estimates for Kähler Manifolds

In general, for a given Riemannian manifold (M, g), one cannot expect to compute

eigenvalues explicitly except in very special cases. For example, the eigenvalues of the

Laplacian on the sphere with respect to its standard metric can be computed [10] as can

those of the Laplacian on Pm. Despite this one can give estimates on the eigenvalues

in terms of geometric quantities associated to (M, g). For the purpose of this thesis we

look only at bounds for Kähler manifolds and this story inevitably starts with Riemann

surfaces.

The spectrum of the Laplacian of a Riemann surface is an important invariant and

there is a rich history of results. The geometric estimates we are interested in arguably

started with the work of Szegö estimating the first eigenvalue of the Laplacian for

simply connected domains in R2.

Theorem 2.2.4 ([49]). Let Ω ⊂ R2 be a simply connected domain with finite area A.

The first non-constant Neumann eigenvalue of the Laplacian on Ω satisfies the following

bound

λ1(Ω) ≤ C ·A−1,

where C > 0 is a computable universal constant.

This work was later generalised by Hersch [28] to give a bound on λ1 for an arbitrary

metric on the 2-sphere which depends only on the area.

Theorem 2.2.5 ([28]). Let g be a smooth Riemannian metric on S2. Then the first
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eigenvalue of the Laplacian associated to g satisfies the following bound

λ(S2, g) ≤ 8π ·A−1,

where A is the area of S2 with respect to g. Moreover, equality is achieved if and only

if g is the round metric on S2.

Berger verified that this estimate also holds for flat metrics on the torus and sug-

gested that it holds for any metric on the torus. This was proven and generalised to

any oriented Riemann surface by Yang and Yau [59]. The statement of this result that

we give below is chosen to emphasise its similarity to results later in this section and

thesis.

Theorem 2.2.6 (Yang-Yau [59], [17]). Let (M, g) be an orientable Riemann surface

of genus γ and area A. Then, there exists a conformal map φ : M → P1 of degree at

most
[
γ+3

2

]
and it holds that

λ1(M, g) ≤ 8π · deg(φ) ·A−1 ≤ 8π

[
γ + 3

2

]
A−1.

It was pointed out by Berger [3] that such a bound, i.e. an upper bound in terms

of volume, fails for higher dimensional spheres. On the other hand the non-orientable

surface case was considered by Li and Yau [38] where the importance of the conformal

class was pointed out, in particular an upper bound for λ1 in terms of the so-called con-

formal area is given. These methods lead to what is, as far as the author is aware, the

earliest geometric bound on the first eigenvalue of a compact Kähler Manifold (exclud-

ing results which apply only to Riemann Surfaces or compact Riemannian manifolds

in general).

Theorem 2.2.7 (Li-Yau [38]). Let M be a compact Kähler Manifold with Kähler form

Ω and which admits a meromorphic map into P1. Then

λ1(M) ≤ 2VΩ(M) Vol(M,Ω)−1,

where VΩ(M) = inff{
∫
M Ωm−1∧f∗ωFS | f : M → P1 is meromorphic} and ωFS denotes

the Fubini-Study metric defined below.

The Fubini-Study metric on PN is the natural metric induced on the quotient PN =

SN+1/S1, in local holomorphic coordinates zi it has the components

(ωFS)ij̄ =
1

(1 +
∑N

i=1 |zi|2)2

((
1 +

N∑
i=1

|zi|2
)
δij̄ − z̄izj

)
. (2.13)

Thus Bourguignon, Li and Yau were lead to consider the compact complex manifolds

arising from holomorphic maps into projective space, that is algebraic submanifolds.
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In a sense one can now see the Kähler class as playing the role of the conformal class

for these estimates.

Theorem 2.2.8 (Bourguignon-Li-Yau [7]). Let Mn be an n-dimensional complex man-

ifold admitting a holomorphic immersion Φ : M → PN . Suppose that Φ is full in the

sense that Φ(M) is not contained in any hyperplane of PN . Then, for any Kähler metric

ω on M , the first non-zero eigenvalue λ1(M,ω) satisfies

λ1(M,ω) ≤ 4n
N + 1

N
d([Φ], [ω]),

where

d([φ], [ω]) :=

∫
M φ∗ωFS ∧ ωn−1∫

M ωn
.

A number of years later Arezzo-Ghigi-Loi [1] generalised this result to compact

Kähler manifolds admitting globally generated holomorphic line bundles with a stablilty

condition. The main theorem in [1] is the following.

Theorem 2.2.9 (Arezzo-Ghigi-Loi [1]). Let E → M be a holomorphic vector bundle

of rank r over a compact Kähler manifold M of complex dimension n. Assume further

that E is globally generated and the Gieseker point TE is stable. Then, for any Kähler

metric ω on M the first non-zero eigenvalue λ1(M,ω) satisfies

λ1(M,ω) ≤ 4πh0(E)

r(h0(E)− r)
· (c1(E) ^ [ω]n−1, [M ])

(n− 1)! Vol(M, [ω])
.

Remark 2.2.4. Notice that if ω ∈ 2πc1(L) for some line bundle L→M , then

λ1(M,ω) ≤ 2nh0(E) deg(E)

r(h0(E)− r)c1(L)n
,

where deg(E) = c1(E) · c1(L)n−1.

Remark 2.2.5. Rather than understand Gieseker stability fully in the complex al-

gebraic sense it is enough for us to remark that, roughly speaking, a holomorphic,

globally generated vector bundle is Giesker stable if and only if the associated map

into the Grassmannian can be moved into a “balanced” condition. A basis of H0(E)

is said to be ω-balanced if and only if (up to multiplication by a constant) the basis

is orthonormal with respect to the L2 inner product induced by the pull-back of the

standard metric on the universal subbundle of the Grassmannian and the volume form
ωn

n! . Now a theorem of Wang [57] implies that if E is Gieseker stable then H0(E) admits

an ω-balanced basis.

It is well known from the Kodaira embedding theorem that closed Kähler mani-

folds which admit a globally generated holomorphic vector bundles can be embedded

holomorphically into a complex Grassmannian and hence, via the Plücker embedding,



CHAPTER 2. BACKGROUND 32

into some projective space. Arezzo, Ghigi and Loi were able to show that globally

generated vector bundles on a Kähler manifold are stable thus arriving at the following

generalisation of the Bourguignon-Li-Yau estimate.

Corollary 2.2.2 (Arezzo-Ghigi-Loi [1]). Let E →M be a globally generated holomor-

phic vector bundle over a compact Kähler manifold M of dimension n. Suppose that

N = h0(E) = dimH0(E) and let φt : M → PN−1 be the holomorphic embedding arising

from Kodaira’s embedding theorem. Then, for any Kähler metric g on M , the first

eigenvalue of the associated Laplace-Beltrami operator satisfies,

λ1(M, g) ≤ 4nN

N − 1

(φ∗t [ωFS] ^ [ωg]
n−1, [M ])

([ωg]n, [M ])
.

Finally we are brought to the most recent results building upon the estimate of

Bourguignon, Li and Yau which are due to Kokarev [33]. He uses the min-max char-

actrisation of the eigenvalues of the Laplacian to give an upper bound on the k-th

eigenvalue which is linear in k. To obtain this more general result one needs to use

cut-off functions to construct linearly independent test functions and hence the explicit

constant ends up being sacrificed to obtain this estimate for higher eigenvalues.

Theorem 2.2.10 (Kokarev [33]). Let (Mn, J) be a closed n-dimensional Kähler man-

ifold and φ : Mn → Pm a non-trivial holomorphic map. Then, for any Kähler metric

g on Mn, the eigenvalues of the Laplace-Beltrami operator ∆g satisfy,

λk(M
n, g) ≤ C(n,m)d([φ], [ωg])k, for any k ≥ 1, (2.14)

where C(n,m) > 0 is a constant depending only on n and m and d([φ], [ωg]) is defined

by,

d([φ], [ωg]) :=

∫
M φ∗ωFS ∧ ωn−1

g∫
M ωng

. (2.15)

In the case of n = 1, i.e. M is a Riemann surface, and m = 1 this result in fact

recovers the bound of Korevaar [34]. This states that for any Hermitian metric g on a

Riemann surface M the Laplace eigenvalues satisfy

λk(M, g) Vol(M, g) ≤ C deg(φ)k,

where φ : M → P1 is an arbitrary non-trivial holomorphic map and C is a universal

constant. Indeed, for a non-trivial holomorphic map φ : M → P1 it holds that

d([φ], [ωg]) = deg(φ)
Vol(P1)

Vol(M, g)
,

from which the estimate of Korevaar follows. Thus Theorem 2.2.10 can be viewed as a

generalisation of Korevaar’s estimate to higher dimensional Kähler manifolds.
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When φ : Mn → P1, Theorem 2.2.10 can also be seen to be a generalisation of

Li and Yau’s estimate recalled in Theorem 2.2.7 above. In this case one can again

express d([φ], [ωg]) in terms of the ratio deg(φ)/Volg(M) where deg(φ) is taken to be

the volume of the generic P1 fibre.

Finally we close out this section by recalling that for an n-dimensional Riemannian

manifold, (M, g), the Weyl asymptotic law states that

λk(M, g) Vol(M, g)
1
n ∼ C(n)k

1
n , as k → +∞,

where C(n) is a constant depending only on n. For n = 1 we see that this asymptotic

is compatible with (2.14) in the sense that the power of k matches. Of course this is no

longer the case for n > 1. In fact, as pointed out in [33], estimate (2.14) cannot hold if

k is replaced by k
1
n . Indeed, if this were the case, then in the limit k → +∞ one finds

that an estimate of the form Vol(M, g)
1
n
−1 ≤ C(n) · d holds with d the numerator of

(2.15). Taking any compact Kähler manifold Σ consider the fibration φ : Σ× P1 → P1

which forgets the first factor. Working with the product metric gΣ⊕ gFS the degree, d,

of φ is independent of gΣ from which we see that the Vol(M, g) estimate above cannot

hold. Despite this one can still ask whether an estimate compatible with the Weyl law

exists over a given Kähler class.



Chapter 3

J-holomorphic curves from

J-anti-invariant forms

Since the 1980s there has been a well known folklore theorem (see [29, 35]) which says

that for a generic Riemannian metric on a 4-manifold with positive self-dual second

Betti number, the zero set of a self-dual harmonic 2-form is a finite number of em-

bedded circles. It is the starting point of Taubes’ attempts, e.g. [51], to generalise

the identification of Seiberg-Witten invariants and Gromov invariants for symplectic

4-manifolds to general compact oriented 4-manifolds.

Following the philosophy of [60], which is stated as (1.1.1) in §1.1, the above gener-

icity statement for the zero set of a self-dual harmonic 2-form in the smooth category

should find its counterpart in the almost complex setting without assuming genericity.

It is stated as Question 1.6 in [60] which first appeared in [16]. In this chapter we make

this speculation precise and in the process build a local model which allows us to give a

higher dimensional version as well. We are also able to apply this local model to study

birational invariants of almost complex 4-manifolds.

This chapter is based on [5] which is joint work with Weiyi Zhang.

3.1 Introductory Remarks and an Overview

Let (M2n, J) be an almost complex manifold. The almost complex structure acts on

the bundle of real 2-forms Λ2 as the following involution, α(·, ·) → α(J ·, J ·). This

involution induces the splitting,

Λ2 = Λ+
J ⊕ Λ−J , (3.1)

corresponding to the eigenspaces of eigenvalues ±1 respectively. The sections of these

bundles are called J-invariant and J-anti-invariant 2-forms respectively and the spaces

of these sections are denoted by Ω±J . The bundle Λ−J inherits an almost complex

structure, still denoted by J , from Jα(X,Y ) = −α(JX, Y ).

34
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On the other hand, for any Riemannian metric g on a 4-manifold, we have the

well-known self-dual, anti-self-dual splitting of the bundle of 2-forms,

Λ2 = Λ+
g ⊕ Λ−g . (3.2)

When g is compatible with J , i.e. g(Ju, Jv) = g(u, v), we have Λ−J ⊂ Λ+
g . In particular,

it follows that a closed J-anti-invariant 2-form is a g-self-dual harmonic form. Hence,

a closed J-anti-invariant 2-form is the natural almost complex refinement of a self-

dual harmonic form on an almost complex 4-manifold. Following philosophy (1.1.1)

our expectation is that the almost complex counterpart of the aforementioned folklore

theorem should be that the zero set of a J-anti-invariant 2-form is a J-holomorphic

curve.

Since the complex line bundle Λ−J can be viewed as a natural generalisation of the

canonical bundle of a complex manifold it is instructive to take a brief digression and

consider what is known in the complex setting. First recall that the canonical bundle

of a complex manifold of complex dimension n is the n-th exterior power
∧n Ω of the

holomorphic cotangent bundle Ω, notice that
∧n Ω is a line bundle. Under the divisor

to line bundle correspondence the canonical bundle can be associated to a Weil divisor

(up to linear equivialnce), say K, the divisor class of K is known as the canonical class

and any divisor in this class is known as a canoncial divisor. On a complex surface, if α

is a closed J-anti-invariant 2-form, then Jα is also closed and α+ iJα is a holomorphic

(2, 0) form. Hence the zero set α−1(0) is a canonical divisor of (M,J), e.g. by the

Poincaré-Lelong theorem. This meets our expectations in the case when the almost

complex structure is integrable.

In this chapter, we are able to confirm our above speculation for any compact almost

complex 4-manifold.

Theorem 3.1.1. Suppose (M,J) is a closed, connected, almost complex 4-manifold

and α is a non-trivial, closed, J-anti-invariant 2-form. Then the zero set, Z, of α

supports a J-holomorphic 1-subvariety, Θα, in the canonical class KJ .

We will call the J-holomorphic 1-subvariety Θα stated in theorem the zero divisor

of α.

Here, a closed set C ⊂ M with finite, nonzero 2-dimensional Hausdorff measure is

said to be an irreducible J-holomorphic 1-subvariety [52] if it has no isolated points

and if the complement of a finite set of points in C, called the singular points, is a

connected smooth submanifold with J-invariant tangent space. A J-holomorphic 1-

subvariety is a finite set of pairs {(Ci,mi), 1 ≤ i ≤ m < ∞}, where each Ci is an

irreducible J-holomorphic 1-subvariety and each mi is a positive integer.

The general scheme to prove Theorem 3.1.1 is similar to what is used in [60] where

it is proven that the intersection of a compact 4-dimensional pseudoholomorphic subva-

riety and a compact almost complex submanifold of codimension 2 in a (not necessarily
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compact) almost complex manifold is a pseudoholomorphic 1-subvariety. This basic

strategy traces back to [30] at least, where it works in complex analytic setting. In the

pseudoholomorphic situation, this strategy was worked out by Taubes [50].

More concretely, the plan is to first show that Z has finite 2-dimensional Hausdorff

measure, this is done in section 2. The idea is to foliate neighbourhoods of points in

Z by J-holomorphic disks. Applying a dimension reduction argument with the help

of a unique continuation result, Proposition 3.2.2, we are able to reduce our study to

the intersection of Z with J-holomorphic disks. We establish the positivity of such

intersections in Lemma 3.2.1 by exhibiting a holomorphic trivialisation of Λ−J over a

given J-holomorphic disk. This lemma is the counterpart of Gromov’s positivity of

intersections of J-holomorphic curves with complex submanifolds of real codimension

two, c.f. Proposition 2.1.6 and [24].

If, in addition, we can find a “positive cohomology assignment” for Z in the sense

of Taubes, which plays the role of intersection number of the set Z with each local disk,

we are able to show that Z is a J-holomorphic 1-subvariety by Proposition 6.1 of [50]

(stated as Proposition 3.3.1).

Our strategy to associate a positive cohomology assignment to Z is to view J-anti-

invariant 2-forms as sections of the bundle Λ−J . Now a J-anti-invariant form α defines

a 4-dimensional submanifold Γα in the total space of Λ−J whose intersection with M ,

as submanifolds of Λ−J , describe the zero set of the form. Given a disk in M , whose

boundary does not intersect Γα, we can compose with a section and perturb to obtain

a disk σ′ : D → Λ−J which intersects M transversely. Then the oriented intersection

number of σ′ defines a positive cohomology assignment. A finer study of positive

cohomology assignment also gives rise the desired information for the homology class

of the zero divisor.

Theorem 3.1.1 could be extended to the sections of bundle Λn,0R of real parts of

(n, 0) forms, which has a natural complex line bundle structure induced by the almost

complex structure on M . The space of its sections is denoted Ωn,0
R . We have Theorem

3.4.1, which says that the zero set of a non-trivial closed form in Ωn,0
R supports a

pseudoholomorphic subvariety of real codimension 2 up to Question 3.9 of [60]. The

key to establish this result is again a version of Lemma 3.2.1 for the bundle Λn,0R . This

is our Lemma 3.4.1.

In Section 3.5 we study the relation of J-anti-invariant forms with birational geom-

etry of almost complex manifolds. Recall we have the cohomology groups [39]

H±J (M) = {a ∈ H2(M ;R)|∃ α ∈ Z±J such that [α] = a}

generalising the real Hodge cohomology groups, where Z±J are the spaces of closed 2-

forms in Ω±J . It is proven in [14] that H+
J (M)⊕H−J (M) = H2(M ;R) when dimRM = 4.

The dimensions of the vector spaces H±J (M) are denoted as h±J (M).

In [60] it is shown that the natural candidate for generalising birational morphisms
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to the almost complex category are degree one pseudoholomorphic maps. Using the

local model given by Lemma 3.2.1 together with the foliation-by-disks technique as

used to establish Theorem 3.1.1, one can study the extension properties of closed J-

holomorphic disks. This gives us Proposition 3.5.1, which should be compared with

Hartogs extension for pseudoholomorphic bundles over almost complex 4-manifolds

established in [11].

With this Hartogs type extension for closed J-anti-invariant 2-forms in hand, we

are able to show the dimension of J-anti-invariant cohomology is a birational invariant.

Theorem 3.1.2. Let ψ : (M1, J1) → (M2, J2) be a degree 1 pseudoholomorphic map

between closed, connected almost complex 4-manifolds. Then h−J1
(M1) = h−J2

(M2).

Together with the almost complex birational invariants defined in [11], including

plurigenera, Kodaira dimension, and irregularity, we have a rich source of invariants to

study the birational geometry of almost complex manifolds.

3.2 Finite 2-dimensional Hausdorff measure

In this section, we assume M is a 4-dimensional closed manifold. The peculiarity of

dimension 4 is that the Hodge operator ∗g of a Riemannian metric g on M also acts as

a involution on Λ2. Thus we have the self-dual, anti-self-dual splitting of the bundle of

2-forms

Λ2 = Λ+
g ⊕ Λ−g .

On the other hand given an almost complex structure J on M , we also get a splitting

of the bundle of 2-forms into J-invariant and J-anti-invariant forms

Λ2 = Λ+
J ⊕ Λ−J .

Moreover, we can always choose a compatible g in the sense that g is J-invariant,

i.e. g(Ju, Jv) = g(u, v). The pair (g, J) induces a J-invariant (in general non-closed)

2-form ω by

ω(u, v) = g(Ju, v).

The triple (J, g, ω) defines an almost Hermitian structure. It is straightforward to

deduce the decompositions

Λ+
g = R(ω)⊕ Λ−J , (3.3)

Λ+
J = R(ω)⊕ Λ−g . (3.4)

In particular, Λ−J ⊂ Λ+
g and it follows that every closed J-anti-invariant form is a

harmonic g-self-dual form, e.g. Lemma 2.6 of [14].

Also recall that Λ−J inherits an almost complex structure, still denoted by J , from

Jβ(X,Y ) = −β(JX, Y ). In particular Λ−J is a complex line bundle over M .
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In this section, we will show that the 2-dimensional Hausdorff measure of the zero

locus, Z, of any closed J-anti-invariant 2-form is finite.

To this end let us briefly recall some basic definitions concerning the Hausdorff

measure and dimension on compact Riemannian manifolds. For (M, g) a compact

Riemannian manifold let dg be the associated distance function and for any subset

A ⊂M we denote by diam(A) the diameter of U ,

diam(A) := sup{ dg(p, q) | p, q ∈ A}, diam(∅) := 0.

For any A ⊂M and δ > 0 we define,

Hkδ (A) := inf

{ ∞∑
i=1

(diam(Ui))
k

∣∣∣∣∣ A ⊂
∞⋃
i=1

Ui, ,diam(Ui) < δ ∀i

}
, k ∈ [0,∞),

with the infimum being taken over all countable open covers, Ui, of A satisfying

diam(Ui) < δ. The Hkδ (A) are monotone and decreasing in δ and thus the limit as

δ → 0 exists (although it may be infinite). We can thus define an outer measure by,

Hk(A) := lim
δ→0
Hkδ (A),

we call this the k-dimensional Hausdorff measure. Notice that if Hk(A) < ∞ then

H`(A) = 0 for all ` > k and that if Hk(A) > 0 then H`(A) = ∞ for all ` < k. From

this we can also define the Hausdorff dimension of a subset A ⊂M as,

dimH(A) := inf{k ≥ 0 |Hk(A) = 0},

or dimH(A) =∞ if Hk(A) = 0 for all k ≥ 0.

Proposition 3.2.1. Let (M,J) be a closed, connected, almost complex 4-manifold and

suppose that α is a non-trivial, closed, J-anti-invariant 2-form. Then the zero set Z of

α is compact, with Hausdorff dimension 2 and finite 2-dimensional Hausdorff measure.

Remark 3.2.1. Since every closed J-anti-invariant form is a harmonic g-self-dual form

for a compatible g, it follows from [2] that the zero locus Z = α−1(0) is a countably

2-rectifiable set. Recall that a subset of an n-dimensional Riemannian manifold M is

called countably k-rectifiable if it can be written as a countable union of sets of the

form φ(X), where X ⊂ Rk is bounded and φ : X →M is a Lipschitz map. However, it

is not clear whether such a set would have finite 2-dimensional Hausdorff measure by

[2]. Furthermore it is important for this and future work to have a proof which uses

only pseudoholomorphic properties.

Considering α as a smooth section of the bundle Λ−J the compactness of Z follows

immediately from the continuity of α since a closed subset of a compact space is com-

pact. Hence we can cover Z by finitely many balls. We need to show that Cε−2 many
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ε-balls will be enough to cover Z. We show this in each ball. These balls may be taken

small enough such that they are foliated by J-holomorphic disks as we recalled in the

background chapter. Let us cement notation by explicitly recalling the coordinates set

up in §2.1.3.

Fix x ∈M , we can find a neighbourhood U of x and a non-degenerate 2-form Ω on

U such that J is compatible with Ω in U . This pair (Ω, J) induce an almost Hermitian

metric on U . Now we can identify a geodesic ball centred at x with a ball in R4 centred

at the origin. Identifying R4 = C2 such that

Ωx = ω0 = dx1 ∧ dx2 + dx3 ∧ dx4 =
i

2

(
dw0 ∧ dw̄0 + dw1 ∧ dw̄1

)
.

Here we write complex coordinates (w0, w1) = (x1, x2, x3, x4). We may assume that J

is an almost complex structure on C2 which agrees with the standard complex structure

J0 at the origin.

Let Dw := {(ξ, w)||ξ| < ρ}, where w ∈ D. Now Lemma 2.1.5 yields a diffeomor-

phism Q : D ×D → C2, where D ⊂ C2 is the disk of radius ρ, such that

• ∀w ∈ D, Q(Dw) is a J-holomorphic submanifold containing (0, w),

• ∀w ∈ D, there exists z depending only on Ω and J such that

|(ξ, w)−Q(ξ, w)| ≤ z · ρ · |ξ|,

• ∀w ∈ D, the derivatives of order m of Q are bounded by zm ·ρ, where zm depends

only on Ω and J .

Such diffeomorphisms shall be called J-fibre-diffeomorphisms. It is important to re-

mark that we can change the direction of these disks by rotating the original Gaussian

coordinate chart chosen. More precisely given κ ∈ CP 1 we can choose Q such that

Q(D0) is tangent at the origin to the line determined by κ.

Let u : D →M be an embedded J-holomorphic disk with x = u(0). We can further

choose the coordinate system such that the almost complex structure J behaves partic-

ularly well along the image u(D). This is essentially a reformulation of the construction

on page 903 of [50] and will be used in Lemma 3.2.1.

Let (ξ, w) be the coordinates associated with the above Q. Since the disks of

constant w are J-holomorphic the almost complex structure J must decompose, with

respect to the splitting T (D ×D) = TD ⊕ TD = R2 ⊕ R2, as follows:

J =

(
a b

0 a′

)
.

Here a, a′, b are 2×2 matrix valued functions on D×D such that the condition J2 = −I
is satisfied.
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We can further choose coordinates (ξ1, w1) such that u(D) is just ξ1 = 0, at least

locally near x. Indeed as remarked previously we can choose the direction the foliation

such that Q(D0) intersects u(D) transversally at u(0). The transversality condition

facilitates the application of implicit function theorem to find, after shrinking D if

necessary, a smooth map τ : D → R2 such that τ(0) = 0 and u(w) = Q(τ(w), w). We let

(ξ1, w1) = (ξ−τ(w), w). Thus, in the (ξ1, w1) coordinates, the matrix b obeys b(0, ·) = 0.

We can make a further change to coordinates (ξ2, w2) := (g1(ξ1, w1) · ξ1, g2(w1)), for

suitable smooth matrix value functions g1 and g2 such that, in addition to the general

requirement J2 = −I, we have

a ≡

(
0 1

−1 0

)
and a′(0, ·) ≡

(
0 1

−1 0

)
.

To summarise, the discussion above allows us to take coordinates in a neighbourhood

of u(0) such that J = J0 along u(D). Later, we will denote such coordinates, (w2, ξ2),

by (x1, x2, x3, x4) so that u(D) is described by x3 =x4 =0 near u(0).

We continue assuming u : D → M is an embedded J-holomorphic disk and U is a

neighbourhood of u(0) with the coordinates described above. On u(D) ∩ U define

φ0|u(D)∩U := dx1 ∧ dx3 − dx2 ∧ dx4. (3.5)

This is J-anti-invariant. We notice that

−Jφ0|u(D)∩U = dx1 ∧ dx4 + dx2 ∧ dx3, (3.6)

where the J refers to the almost complex structure on Λ−J .

We can extend φ0 to a section of Λ−J on U . Indeed, by shrinking U if necessary,

we may assume that Λ−J is trivialised over U . So we can take a local basis of Λ−J , say

ψ, Jψ. On u(D) there are functions h1, h2 such that

φ0|u(D)∩U = h1ψ|u(D)∩U + h2Jψ|u(D)∩U .

Now to extend φ0 we choose any non-zero smooth extensions of h1 and h2 to U .

The foliations described above reduce the study of Z to its intersection with em-

bedded J-holomorphic disks. To study such intersections we need to produce an ap-

propriate local trivialisation of Λ−J .

Using the almost complex structure on Λ−J we can locally choose an orthogonal

basis, say, φ, Jφ. We write the J-anti-invariant form α locally in terms of this basis,

α = fφ+ gJφ, where f and g are smooth functions.

Lemma 3.2.1 below establishes a trivialisation for Λ−J in which α is holomorphic

over an embedded J-holomorphic disk in terms of the chosen basis. This allows us

to establish that if a given embedded J-holomorphic disk intersects the zero set non-

trivially then the intersection is a finite number of isolated points. Furthermore these
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intersections are positive.

Lemma 3.2.1. Let (M,J) be an almost complex 4-manifold and u : D →M a smooth,

embedded J-holomorphic disk. Then for any closed, J-anti-invariant 2-form α, there

exists a neighbourhood U ⊂ M of u(0) and a nowhere vanishing φ ∈ Ω−J (U) such that

for α expressed in terms of the basis {φ, Jφ},

α = fφ+ gJφ, (3.7)

on U , the function (f ◦ u) + i(g ◦ u) is holomorphic on u−1(u(D) ∩ U).

We will first write α with respect to the local basis φ0 and show that the coef-

ficients satisfy a Cauchy-Riemann type equation. From this point an application of

the Carleman Similarity Principle allows us to find a local basis whose coefficients are

holomorphic. We only state a weak version of the Carleman Similarity Principle which

is enough for our application.

Theorem 3.2.1. Let p > 2 and Bε ⊂ C for some ε > 0. Suppose that C1, C2 ∈
L∞(Bε,C) and v ∈W 1,p(Bε,C) is a solution to

∂̄v(z) + C1(z)v(z) + C2(z)v̄(z) = 0. (3.8)

Then, for a sufficiently small δ > 0, there exist functions Φ ∈ C0(Bδ,C) and σ ∈
C∞(Bδ,C) such that Φ(z) is nowhere zero and on Bδ,

v(z) = Φ(z)σ(z), ∂̄σ = 0.

Remark 3.2.1. If C2 = 0 then the transformation Φ can be found to depend only

on C1. But in the general case, Φ will depend on v. This is essentially the hidden

reason that our argument would not lead to a divisor-to-section correspondence for

J-anti-invariant forms and their divisors even for tamed J .

Proof of Lemma 3.2.1. Take φ0 to be the extension of (3.5) described above and write

α = f0φ0 + g0Jφ0. Since α is closed, we must have

0 = dα = df0 ∧ φ0 + f0 dφ0 + dg0 ∧ Jφ0 + g0 d(Jφ0). (3.9)

First remark that the subsequent equalities follow from the definition of φ0,

u∗(∂3 yφ0) = −ds = u∗(∂4 y (−Jφ0)),

u∗(∂4 yφ0) = dt = u∗(∂3 y (Jφ0)),

where z = s+ it are holomorphic coordinates on (D,J0) centred at the origin such that

J0ds = dt.
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By contracting (3.9) with ∂3 and pulling back along u we obtain the first of the

following expressions of 2-forms on u−1(U). The second is obtained by contracting with

∂4 instead. Using tilde’s to denote quantities which have been pulled back to D we

obtain

df̃0 ∧ ds+ f̃0β̃ − dg̃0 ∧ dt− g̃0γ̃ = −u∗
[
∂f0

∂x3
φ0 −

∂g0

∂x3
Jφ0

]
= 0,

−df̃0 ∧ dt+ f̃0β̃
′ − dg̃0 ∧ ds− g̃0γ̃

′ = −u∗
[
∂f0

∂x4
φ0 −

∂g0

∂x4
Jφ0

]
= 0,

where β := ∂3 y dφ0, γ := ∂3 y dJφ0, β′ := ∂4 y dφ0 and γ′ := ∂4 y dJφ0. The second

equality on each line follows from u∗φ0 = u∗Jφ0 = 0.

For 1-forms η, λ on D we have the identity η∧J0λ = −J0η∧λ. Thus we can rewrite

the equations above as, (
df̃0 + J0dg̃0

)
∧ ds = −f̃0β̃ + g̃0γ̃,(

df̃0 + J0dg̃0

)
∧ dt = f̃0β̃

′ − g̃0γ̃
′.

Or equivalently in terms of components with respect to the coordinates z = s + it on

D,

∂f̃0

∂t
+
∂g̃0

∂s
= −f̃0β̃12 + g̃0γ̃12

∂f̃0

∂s
− ∂g̃0

∂t
= f̃0β̃

′
12 − g̃0γ̃

′
12.

This is a Cauchy-Riemann type equation for f̃0 + ig̃0.

By Theorem 3.2.1 there exists a δ > 0, a nowhere zero function Φ : Bδ → C and a

holomorphic function F : Bδ → C such that

F0 = ΦF, (3.10)

where F0 = f̃0 + i g̃0. Henceforth we write F = f̃ + i g̃ and Φ = Φ1 + iΦ2.

Define

φ|u(Bδ) := (Φ1 ◦ u−1) · φ0 + (Φ2 ◦ u−1) · Jφ0

and thus

Jφ|u(Bδ) = −(Φ2 ◦ u−1) · φ0 + (Φ1 ◦ u−1) · Jφ0.

These are nowhere vanishing J-anti-invariant forms on u(Bδ). Extending them to a

neighbourhood of u(0) in M we can thus write

α = fφ+ gJφ,

for some smooth functions f, g : M → R. By restricting to u(Bδ) and applying (3.10),
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we have f ◦ u+ i g ◦ u = F . The conclusion follows since F is holomorphic.

Remark 3.2.2. Above we applied Theorem 3.2.1 to a Cauchy-Riemann equation whose

zeroth order term is not a multiple of f̃0 + ig̃0. Thus the basis {φ, Jφ} found in the

lemma will depend on α by Remark 3.2.1.

The next lemma establishes a unique continuation result for Z = α−1(0). The

result is well known for self-dual harmonic forms [2], alternately it can be regarded as

a corollary to Lemma 3.2.1 (c.f. proof of Lemma 3.4.2).

Lemma 3.2.2. Suppose that α is a closed, J-anti-invariant 2-form, then if α ≡ 0 on

some open set in M , it must vanish identically on the whole of M .

Proof. For any Riemannian metric g compatible with J , we have Λ−J ⊂ Λ+
g . In par-

ticular, any closed J-anti-invariant 2-form is a self-dual harmonic form. Hence any

nontrivial, closed, J-anti-invariant 2-form cannot vanish on an open subset of M . In

fact, from [2] it is known that such zero set has Hausdorff dimension ≤ 2.

Remark 3.2.3. It is useful to have a proof of the above fact which relies only on

pseudoholomorphic properties, for this see the proof of Lemma 3.4.2.

We now have all of the necessary ingredients to locally estimate the Hausdorff

measure of the zero set Z in Proposition 3.2.1. In particular, Lemma 3.2.1 serves the

role of Lemma 2.2 of [60], i.e. Gromov’s positivity of intersections of a J-holomorphic

disk and a codimension two almost complex submanifold, in the following proof.

Proof of Proposition 3.2.1. This proof follows closely the structure of the proof of

Proposition 2.4 in [60].

First we should remark that since M is compact the finiteness of the Hausdorff

measure will be independent of the metric we use. Now for any x ∈ Z we can find a J-

fibre-diffeomorphism Qx of a neighbourhood of x in M . By compactness we can choose

finitely many of these diffeomorphisms, say Qxi , covering Z and such that the disks

are all of the same radius. We show that each Z ∩Qxi(D×D) has finite 2-dimensional

Hausdorff measure.

Pick x ∈ Z and write Q for Qx. For each w ∈ D we know that Q(Dw) intersects Z

in finitely many points if it is not totally contained in Z, this is by Lemma 3.2.1. We

claim that there are only finitely many w ∈ D̄ such that Q(Dw) ⊂ Z.

Suppose that this is not the case. Then we may assume without loss of generality

that 0 is an accumulation point of w. We now foliate a neighbourhood of x by J-

holomorphic disks transverse to Q(D0), whereby producing an open neighbourhood M

which is contained in Z. Since this contradicts Lemma 3.2.2 we will then have the

claim.

As before take Gaussian coordinates centred at x but now so that (0, w′) is identified

with Q(D0). We choose a J-fibre-diffeomorphism Q′ : D′×D′ → C2, where D′ denotes

the disk in C of radius ρ′ < ρ, such that
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• ∀w′ ∈ D′, Q′(D′w′) is a J-holomorphic submanifold containing (0, w′),

• ∀w′ ∈ D′, there exists z depending only on Ω and J such that

|(ξ′, w′)−Q′(ξ′, w′)| ≤ z · ρ′ · |ξ′|,

• ∀w′ ∈ D′, the derivatives of order m of Q′ are bounded by zm · ρ′, where zm

depends only on Ω and J .

So all of the disks Q′(D′w′) are transverse to Q(D0). As being transverse is an open

condition we have that Q′(D′w′) are transverse to Q(Dw) for all |w| < ε. Thus the

intersection points ofQ′(D′w′) and Z are not isolated and so, by Lemma 3.2.1, Q′(D′w′) ⊂
Z. So Q′(D′ ×D′) ⊂ Z and since Q′(D′ ×D′) covers an open neighbourhood of x we

have the desired contradiction.

Now we claim that Q may be chosen so that none of the J-holomorphic disks are

contained in Z. In fact we show that there are only finitely many complex directions of

TxM such that there are J-holomorphic disks tangent to it and contained in Z. With

this the claim follows by rotating the Gaussian coordinate system we chose initially.

Suppose that there are infinitely many such directions. Since the directions in TxM

are parametrised by CP 1 there is at least one accumulative direction v. Choose the

Gaussian coordinate system so that Q(D0) is transverse to v, and hence Q(Dw) are

transverse to v for small |w| < ε. This is a contradiction with Lemma 3.2.1 and Lemma

3.2.2 since the intersection numbers of Q(Dw) ∩ Z are infinite for |w| < ε.

Hence if we fix x then we can choose a complex direction such that there is no

J-holomorphic curve in Z tangent to it. By the perturbative nature of J-fibre diffeo-

morphisms we can choose Gaussian coordinates and a J-fibre diffeomorphism so that

no Q(Dw) is contained in Z for w sufficiently close to 0.

Finally we are able to estimate the Hausdorff measure of the compact set Z ∩
Q(D̄ × D̄). First remark that, by shrinking D if necessary, we may assume without

loss of generality that the distortion of Q on the domain 2D× 2D is bounded by some

constant C > 0. Also note that, by our choice of Q, for each w ∈ D̄ the set Z ∩Q(D̄w)

is a finite set of points.

Define,

g : D̄ → N ∪ {0}, w 7→ #(Z ∩Q(D̄w)).

Clearly this is an upper semi-continuous function and hence achieves a maximal value,

say N , at some point w ∈ D̄. Since each intersection point contributes positively by

Lemma 3.2.1, we know Z ∩ Q(D̄w) contains at most N points for all w ∈ D̄. By the

Vitali covering lemma we can take a finite cover of the compact set Z ∩Q(D̄ × D̄) by

balls of radius ε such that L of these balls are disjoint and the union of L concentric

balls with radius dilated by a factor of 3 cover. By our distortion assumption each ε

ball intersects Q(2D̄w) in an open set of area bounded above by πC2ε2. The coarea
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formula then yields,

NπC2ε2 · πC2(2ρ)2 >
1

2
Lπ2ε4.

Hence there is a constant C ′ > 0 such that there can be no more than C ′ε−2 balls of

radius 3ε covering Z ∩Q(D̄ × D̄). This finishes the proof.

3.3 Positive cohomology assignment

In this section, we will finish the proof of Theorem 3.1.1.

To establish that the zero set of a closed J-anti-invariant 2-form supports a J-

holomorphic curve we use a criteria due to Taubes [50], this is Proposition 3.3.1 below.

The strategy underpinning the proof Taubes gives dates back to the work of King [30]

at least. The right classical analogy is the following question:

3.3.1. Let C ⊂ C2 be a codimension 2 submanifold with positive local intersection index

with all complex lines. Then, is C is complex analytic?

The answer is affirmative and follows by representing C near a point as a graph

over its tangent space. If the tangent space is not complex then one can find a complex

line which has negative intersection index with C at the point. We wish to apply this

style of argument to sets which are not, a priori, oriented submanifolds and hence we

cannot directly use the local intersection index.

To this end let us recall the notion of positive cohomology assignment, introduced

in [50]. We assume (X, J) is an almost complex manifold, and C ⊂ X is a set. Let

D ⊂ C be the standard unit disk. A map σ : D → X is called admissible if C intersects

the closure of σ(D) inside σ(D). Next we define the notion of a positive cohomology

assignment to C, which is extracted from section 6.1(a) of [50].

Definition 3.3.1. A positive cohomology assignment to the set C is an assignment of

an integer, I(σ), to each admissible map σ : D → X meeting the following criteria:

1. If σ : D → X \ C, then I(σ) = 0.

2. If σ0, σ1 : D → X are admissible and homotopic via an admissible homotopy (a

homotopy h : [0, 1] × D → X where C intersects the closure of Image(h) inside

Image(h)), then I(σ0) = I(σ1).

3. Let σ : D → X be admissible and let θ : D → D be a proper, degree k map. Then

I(σ ◦ θ) = k · I(σ).

4. Suppose that σ : D → X is admissible and that σ−1(C) is contained in a disjoint

union ∪iDi ⊂ D where each Di = θi(D) with θi : D → D being an orientation

preserving embedding. Then I(σ) =
∑

i I(σ ◦ θi).

5. If σ : D → X is admissible and a J-holomorphic embedding with σ−1(C) 6= ∅,
then I(σ) > 0.
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It is constructive to compare this definition with the local intersection index for

oriented submanifolds given in §2.1.2. Indeed, in the situation where the set in question,

C, is the zero set of of a closed J-anti-invariant 2-form our expectation is that it supports

a J-holomorphic curve. If this is the case then an open dense subset of C, say C̃, is a

real, oriented, 2-dimensional submanifold of X. Now admissible disks are those which

intersect C̃ transversally and the local intersection index defines a positive cohomology

assignment.

The following is Proposition 6.1 of [50], which will be used to prove Theorem 3.1.1.

Proposition 3.3.1. Let (X,J) be a 4-dimensional almost complex manifold and let

C ⊂ X be a closed set with finite 2-dimensional Hausdorff measure and a positive

cohomology assignment. Then C supports a compact J-holomorphic 1-subvariety.

Recall from [46] that a real 2p-current C in M is an almost complex integral cycle

if it satisfies:

(i) Rectifiability : There exists an at most countable union of of disjoint oriented C1

2p-submanifolds, say C =
⋃
iNi, and an integer multiplicity θ ∈ L1

loc(C) such that

for any compactly supported 2p-form ψ on M one has,

C(ψ) =
∑
i

∫
Ni

θψ.

(ii) Closedness: ∂C = 0.

(iii) Almost Complex : For H2p-a.e. point x ∈ C, the approximate tangent plane Tx to

the rectifiable set C is invariant under the almost complex structure J .

The proof of Proposition 3.3.1 is divided into two parts. Firstly, Taubes proves that an

open dense subset of the set C is a Lipschitz submanifold of X. From this it follows,

in particular, that C is an almost complex integral 2-cycle. The second step is to

prove that any almost complex integral 2-cycle is in fact a J-holomorphic subvariety.

This in fact follows from Almgrens big regularity paper but Taubes [50] provides a

proof without recourse to this result. In fact this second step was generalised to higher

dimensions by Tian-Riviére [46], namely it is proven that any almost complex integral

2-cycle in a 2m-dimensional almost complex manifold satisfying the locally symplectic

property may be viewed as a J-holomorphic subvariety.

Now we shall assign an appropriate positive cohomology assignment to the set

Z = α−1(0) for admissible maps. To do this it is convenient to understand J-anti-

invariant 2-forms as a smooth sections of the complex line bundle Λ−J over M . We shall

denote such a section associated to α by Γα : M → Λ−J .

Let σ : D →M be an admissible map and α a J-anti-invariant 2-form. We assign an

integer Iα(σ) as follows. Since σ is admissible with respect to the zero set Z = α−1(0),

the closure of the image of the composition Γα ◦ σ(D) intersects the compact manifold
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M , viewed as a submanifold of the total space of the bundle Λ−J , inside Γα ◦ σ(D). In

other words, Γα ◦ σ : D → Λ−J is admissible with respect to M ⊂ Λ−J . There exists an

arbitrarily small perturbation of Γα ◦ σ which produces a map σ′, homotopic to Γα ◦ σ
through admissible maps, such that σ′ is transverse to M . The set T of intersection

points of σ′(D) with M is a finite set of signed points. We define Iα(σ) to be the sum

of these signs.

We now check Iα is a positive cohomology assignment when α is a closed J-anti-

invariant 2-form. In particular, the independence of the perturbations we have chosen

follows from the assertion (2) of Definition 3.3.1.

Proposition 3.3.2. Suppose α is a non-trivial closed J-anti-invariant 2-form. The

assignment Iα(σ) to an admissible map σ : D → M defines a positive cohomology

assignment to Z = α−1(0).

Proof. We will check the assertions (1)-(5) of Definition 3.3.1 in the following.

If σ(D) ∩ α−1(0) = ∅, then Γα ◦ σ(D) ∩M = ∅, which implies Iα(σ) = 0. This is

assertion (1).

Showing assertion (2) is equivalent to showing the following. Let σ′t : D → Λ−J ,

t ∈ [0, 1], be admissible maps with respect toM . Let σ′0 and σ′1 intersectM transversely.

Then the intersection numbers (i.e. the corresponding sums of the signed intersection

points T ) σ′0 ·M = σ′1 ·M .

To show this, we look at the admissible homotopy σ′ : D×I → Λ−J , where σ′(x, t) =

σ′t(x). Its boundary map ∂σ′ : S2 → Λ−J is homotopic to zero. Hence ∂σ′ ·M = 0. Since

σ′t are admissible, M intersects ∂σ′ only at σ′0(D) and σ′1(D). Moreover, ∂σ′ induces

the reverse orientation at σ′1(D). Hence, σ′0 ·M − σ′1 ·M = ∂σ′ ·M = 0. This implies

Definition 3.3.1(2), i.e. Iα(σ0) = Iα(σ1) if σ0 and σ1 are connected via an admissible

homotopy.

To show assertion (3), we first choose an admissible map σ′ : D → Λ−J (with respect

to M) transverse to M which is perturbed from Γα ◦ σ. We can also find a small

perturbation θ′ of the degree k map θ : D → D such that there is no critical value

of θ′ mapping to M by σ′. Hence the sum of the signs of the intersection points of

σ′ ◦ θ′ : D → Λ−J is k times that of σ′ : D → Λ−J . Since the number Iα is independent

of the choice of perturbations by assertion (2), we thus have Iα(σ ◦ θ) = k · Iα(σ).

For assertion (4), we choose a perturbation σ′ : D → Λ−J of Γα ◦ σ such that

σ′|D−∪iDi = Γα ◦ σ|D−∪iDi . Hence Iα(σ) =
∑

i Iα(σ ◦ θi).
For the last assertion, let σ : D → M be an admissible embedded J-holomorphic

disk. For each intersection point p ∈ σ−1(σ(D) ∩ Z), we can choose a small neigh-

bourhood Dp ⊂ D such that, for a certain trivialisation of the complex line bundle Λ−J
over an open neighbourhood Up ⊂ M containing σ(Dp), the composition Γα ◦ σ is a

holomorphic function over Dp by Lemma 3.2.1. Hence, if we perturb this holomorphic

function to a nearby one, we will get a holomorphic function with single zeros. Thus,

without loss, we can assume p is such a single zero. At Γα ◦σ(p), the tangent space has
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the following splitting regarding the orientation

TΓα◦σ(p)Λ
−
J = Λ−J |σ(p) ⊕ Tσ(p)(Up) = Λ−J |σ(p) ⊕ σ∗(TpDp)⊕ Tσ(p)(Up)/σ∗(TpDp).

Here, the fibre of the bundle Λ−J is oriented by a local basis {φ, Jφ} as in Section

3.2. Since Dp is a J-holomorphic disk in Up, the vector space Tσ(p)(Up)/σ∗(TpDp) is a

natural complex plane. Hence, the sign associated to the intersection point σ(p) is +1.

This confirms assertion (5).

The assignment Iα satisfies the assertions Definition 3.3.1 (1)-(4) for any J-anti-

invariant 2-forms. The assumption that α is a closed J-anti-invariant 2-form is only

used to show assertion (5).

Before we complete the proof of Theorem 3.1.1, we recall that given a J-holomorphic

subvariety Θ = {(Ci,mi)}, there is a natural positive cohomology assignment for its

support |Θ| = ∪Ci. Let Ci = φi(Σi) where each Σi is a compact connected complex

curve and φi : Σi → M is a J-holomorphic map embedding off a finite set. When

σ : D → M is admissible, there is an arbitrarily small perturbation, σ′, of σ which is

homotopic to σ through admissible maps and is transverse to φi. Each fibre product

Ti := {(x, y) ∈ D × Σi|σ′(x) = φi(y)} is a finite set of signed points of D × Σ. We

associate weight mi to each signed point in Ti. The weighted sum of these signs in ∪Ti
is a positive cohomology assignment ISΘ.

Conversely, once a positive cohomology assignment I is given as in Proposition 3.3.1

and C = ∪Ci. Then we can associate the positive weight mi to Ci as I(σ) where σ is a

J-holomorphic disk intersecting transversally to Ci at a smooth point. The cohomology

assignment ISΘ for the subvariety Θ = {(Ci,mi)} obtained in this way is equal to the

original I.

We will now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. The zero set Z = α−1(0) is a closed set with finite 2-dimensional

Hausdorff measure. By Proposition 3.3.2, Z could be endowed with a positive coho-

mology assignment, Iα(σ), for each admissible map σ : D →M . Hence, by Proposition

3.3.1, the zero set Z = α−1(0) supports a J-holomorphic 1-subvariety. Let Θα be the J-

holomorphic 1-subvariety determined in the manner described above by the cohomology

assignment Iα.

The assignment Iα(σ) for an admissible map σ : D → M could be understood in

the following equivalent way. We look at the disk σ(D) ⊂ M ⊂ Λ−J and the section

Γα(M) inside the total space of the bundle Λ−J . Then we perturb the section Γα to

another one Γα′ where α′ is a J-anti-invariant 2-form, such that Γα′ is transverse to

σ(D). Moreover, we require Γα′ is homotopic to Γα through sections αt such that

α−1
t (0) ∩ ∂σ = ∅, ∀t ∈ [0, 1]. The set T ′ of intersection points of σ(D) and Γα′(M) is a

finite set of signed points. Suppose σ is of degree k onto its image. Then our Iα(σ) is

k times the sum of these signs in T ′.
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When we choose α′ such that Γα′(M) t M inside the total space of Λ−J , we know

Γα′(M) ∩M is a smooth submanifold of M representing the Euler class of the bundle

Λ−J . By Proposition 4.3 of [60], it is the canonical class KJ of the almost complex

manifold (M,J). The sign of each point in T ′ is equal to the one calculated from the

intersection of σ(D) with Γα′(M)∩M inside M if we orient the fibre of the bundle Λ−J
by a local basis {φ, Jφ} as in Section 3.2.

Any homology class ξ ∈ H2(M,Z) is representable by an embedded submanifold,

the above claim just implies ξ · [Θα] = ι∗(ξ) · [M ] as integers. Here ι∗(ξ) denotes the

induced class in the second Borel-Moore homology of the total space of Λ−J and the

latter product is understood as the intersection paring in Borel-Moore homology. The

homology class [Θα] is determined by the intersection pairing with all the classes in

H2(M,Z). As explained in the last paragraph, ξ·[Θα] = ξ·[Θα′ ] = ξ·KJ , ∀ξ ∈ H2(M,Z).

Hence Θα is a J-holomorphic 1-subvariety in the canonical class KJ .

The J-holomorphic 1-subvariety Θα determined by the positive cohomology assign-

ment Iα corresponding to the closed J-anti-invariant form α is called the zero divisor

of α.

Finally, we remark that the zero locus Z = α−1(0) is exactly where α is degenerate.

In particular, it implies α is almost Kähler on M \ Z if α is a closed J-anti-invariant

2-form. It is direct to see from the local expression that the zero locus is exactly the

points where α is degenerate. Indeed, for any point p ∈ (M,J), the tangent space is

identified with a 4-dimensional real vector space along with a complex structure Jp. Let

x1, x2, y1, y2 be coordinates centered at p such that Jpdx1 = −dy1 and Jpdx2 = −dy2.

Now (Λ−J )p is spanned by two non-degenerate 2-forms

β = dx1 ∧ dx2 − dy1 ∧ dy2, Jpβ = dx1 ∧ dy2 + dy1 ∧ dx2.

If αp = aβ + bJpβ is degenerate, then there exists an X ∈ TpM such that β(aX +

bJpX, ·) = 0. Since β is non-degenerate, we must have a = b = 0.

Since the first Chern class c1(M \ Z, J) = 0, we know M \ Z is an open symplectic

Calabi-Yau 4-manifold when α is a closed J-anti-invariant 2-form. If the almost complex

structure J is compatible with (or tamed by) a symplectic form on M , we would like

to know whether M \ Z is a complex symplectic manifold.

3.4 Higher dimensions

Our argument can be applied to sections of the canonical bundle in higher dimen-

sions. Let (M,J) be a closed connected almost complex 2n-manifold. As in the four

dimensional case there is a natural generalisation of the canonical bundle.

Indeed, first we remark that for an almost complex 4-manifold the canonical bundle

Λ−J can be viewed as either the bundle of J-anti-invariant 2-forms or as the bundle of

the real parts of (2, 0)-forms, i.e. Λ−J = (Λ2,0⊕Λ0,2)∩Λ2. Thus one is lead to consider



CHAPTER 3. J-ANTI-INVARIANT FORMS 50

the line bundle of real parts of (n, 0) forms on an almost complex 2n-manifold to be

the canonical bundle. We will denote this bundle by Λn,0R . The space of its sections is

denoted by Ωn,0
R .

The almost complex structure J on M induces a complex line bundle structure on

Λn,0R , we still denote the almost complex structure on Λn,0R by J . Indeed, J on Λn,0R can

be described concretely by its action on a section β as follows,

Jβ(X1, X2, · · · , Xn) := −β(JX1, X2, · · · , Xn).

Using the argument given over the previous two sections we are able to prove the

following.

Theorem 3.4.1. Let (M,J) be a closed, connected almost complex 2n-manifold and

α a non-trivial, closed form in Ωn,0
R . Then the zero set Z := α−1(0) is a set of finite

(2n− 2)-dimensional Hausdorff measure admitting a positive cohomology assignment.

This naturally asks for a generalisation of Proposition 3.3.1 which we phrase as the

following question (Question 3.9 in [60]).

Question 3.4.1. Let (M,J) be a closed, connected almost complex 2n-manifold and

C ⊂M a closed set with finite (2n−2)-dimensional Hausdorff measure and admitting a

positive cohomology assignment. Does C support a compact J-holomorphic subvariety

of complex dimension n− 1?

If the answer to this question is affirmative then Theorem 3.4.1 would imply that

the zero set of a closed form α in Ωn,0
R supports a J-holomorphic (n − 1)-subvariety

in the canonical class. Recall a J-holomorphic k-subvariety is a finite set of pairs

{(Vi,mi), 1 ≤ i ≤ m}, where each Vi is an irreducible J-holomorphic k-subvariety and

each mi is a positive integer. Here an irreducible J-holomorphic k-subvariety is the

image of a somewhere immersed pseudoholomorphic map φ : X →M from a compact

connected smooth almost complex 2k-manifold X.

The key to the proof of Theorem 3.4.1 is to establish foliations by J-holomorphic

disks in higher dimensions, this is the content of §2.1.3. Indeed, given any point x ∈M
we can find a local Gaussian coordinate chart and hence Lemma 2.1.5 gives a foliation

by J-holomorphic disks in a neighbourhood of x.

Fix x ∈M , we can find a neighbourhood U of x and a non-degenerate 2-form Ω on

U such that J is compatible with Ω in U . This pair (Ω, J) induce an almost Hermitian

metric on U . Now we can identify a geodesic ball centred at x with a ball in R2n centred

at the origin. Identifying R2n = Cn such that

Ωx = ω0 = dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n

=
i

2

(
dz0 ∧ dz̄0 + · · ·+ dzn−1 ∧ dz̄n−1

)
.
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Here we write complex coordinates (z0, · · · , zn−1) = (x1, x2, · · · , x2n−1, x2n). We may

as well assume that J is an almost complex structure on Cn which agrees with the

standard complex structure J0 at the origin.

Lemma 2.1.5 gives a J-fibre diffeomorphism Q and let (ξ, ζ, w) be the associated

coordinates, where ξ, ζ ∈ D and w = (w1, · · · , wn−2) ∈ Dn−2. Since the disks of

constant (ζ, w) are J-holomorphic the almost complex structure J must decompose,

with respect to the splitting T (D×D×Dn−2) = TD⊕TD⊕TDn−2 = R2⊕R2⊕R2n−4,

as follows:

J =

 a b1 c1

0 a′ c2

0 b2 c3

 .

Here a, a′, b1 ∈ R2×2, b2 ∈ R(2n−4)×2, c1, c2 ∈ R2×(2n−4) and c3 ∈ R(2n−4)×(2n−4) are

matrix valued functions on Dn such that the condition J2 = −I is satisfied.

We can further choose coordinates (ξ1, ζ1, w1) such that u(D) is the disk {ξ1 =

0, w1 = 0}, at least locally near x = u(0). To see this first remark that by the final part

of Lemma 2.1.5 the J-fibre diffeomorphism may be chosen so that Q(D0) intersects

u(D) transversally at u(0). The transversality condition facilitates the application of

implicit function theorem to find, after shrinking D if necessary, smooth functions

τ0, · · · , τn−2 : D → R2 such that τi(0) = 0 and u(ζ) = (τ0(ζ), ζ, τ1(ζ), · · · , τn−2(ζ)). By

making the change of coordinates

(ξ1, ζ1, w1) := (ξ − τ0(ζ), ζ, w1 − τ1(ζ), · · · , wn−2 − τn−2(ζ)),

we ensure that u(D) is described by {ξ1 = 0, w1 = 0} in a neighbourhood of x. Thus

in the (ξ1, ζ1, w1) coordinates we must have b1 = 0 and b2 = 0 along the disk u(D).

Finally we can make a further change of coordinates to (ξ2, ζ2, w2) so that

a ≡

(
0 1

−1 0

)
and a′|u(D) =

(
0 1

−1 0

)
.

Applying this process to the complex directions determined by the n−2 components

of w1, that is, choosing J-holomorphic disk foliations along the directions of w1 at

x = u(0) and choosing u(D) to be in the center as above, we are able to standardise

the coordinate at u(D) such that J |u(D) is a 2n×2n block matrix with n 2×2 matrices(
0 1

−1 0

)
.

Henceforth we let (z1, · · · , zn) = (x1, x2, · · · , x2n−1, x2n) denote the coordinates (ζ2, ξ2, w2)

so that u(D) is defined by z2 = · · · = zn = 0.

We continue assuming u : D → M is an embedded J-holomorphic disk and U is a
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neighbourhood of u(0) with the coordinates described above. On u(D) ∩ U define

φ0|u(D)∩U := <
[
dz1 ∧ · · · ∧ dzn

]
= <

[
(dx1 + idx2) ∧ · · · ∧ (dx2n−1 + idx2n)

]
.

We can extend φ0 to a form in Λn,0R (U). Indeed, by shrinking U if necessary, we

may assume that Λn,0R is trivialised over U . So we can take an orthogonal local basis

of Λn,0R , say ψ, Jψ. On u(D) there are smooth functions h1, h2 such that

φ0|u(D)∩U = h1ψ|u(D)∩U + h2Jψ|u(D)∩U .

Now to extend φ0 we choose any non-zero smooth extensions of h1 and h2 to U .

A straightforward calculation shows that

Jφ0|u(D)∩U = <
[
idz1 ∧ ... ∧ dzn

]
= <

[
(−dx2 + idx1) ∧ ... ∧ (dx2n−1 + idx2n)

]
.

We can establish positivity of intersections of the zero set with embedded J-holomorphic

disks. With the coordinates described above one may derive some generalised Cauchy-

Riemann equations for the coefficients of α as in Lemma 3.2.1. Applying Carleman

Similarity Principle we obtain the following lemma.

Lemma 3.4.1. Let (M,J) be an almost complex 2n-manifold and u : D → M a

smooth, embedded J-holomorphic disk. Then for any closed form α in Ωn,0
R there exists

a neighbourhood U ⊂M of u(0) and a nowhere vanishing form φ in Ωn,0
R (U) such that

for α expressed in terms of the basis {φ, Jφ}

α = fφ+ gJφ, (3.11)

on U , the function (f ◦ u) + i(g ◦ u) is holomorphic on u−1(u(D) ∩ U).

Proof. Let α = f0φ0 + g0Jφ0 in terms of the basis {φ0, Jφ0}. Then closedness implies,

0 = dα = df0 ∧ φ0 + f0dφ0 + dg0 ∧ Jφ0 + g0d(Jφ0). (3.12)

Following the similarity principle argument used in Lemma 3.2.1 it is enough to verify

that f0 + ig0 satisfies a Cauchy-Riemann type equation.

First remark that

<
[
∂z2 y ... y ∂zn y (dz1 ∧ ... ∧ dzn)

]
= −<

[
i∂z2 y ... y ∂zn y (idz1 ∧ ... ∧ dzn)

]
= (−1)

n(n−1)
2 dx1,

<
[
∂z2 y ... y ∂zn y (idz1 ∧ ... ∧ dzn)

]
= <

[
i∂z2 y ... y ∂zn y (dz1 ∧ ... ∧ dzn)

]
= −(−1)

n(n−1)
2 dx2.
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This allows us to choose a series of contractions that when applied to (3.12) yields the

following pair of equations on D.

df̃0 ∧ ds+ f̃0β̃ − dg̃0 ∧ dt+ g̃0γ̃ = u∗Ψ1 = 0,

−df̃0 ∧ ds+ f̃0β̃
′ − dg̃0 ∧ dt+ g̃0γ̃

′ = u∗Ψ2 = 0,

where tilde’s are used to denote a quantity having been pulled back along u, the forms

β, β′ are contractions of dφ0, the forms γ, γ′ are contractions of d(Jφ0) and Ψi are error

terms which contain no dx1 ∧ dx2 terms and hence pull back to 0.

Arguing identically as in the proof of Lemma 3.2.1 shows the above pair of equations

is a Cauchy-Riemann type system for f̃0 + ig̃0 and that the Similarity Principle gives

the desired conclusion.

This lemma allows us to deduce a unique continuation result for closed sections of

the canonical bundle.

Lemma 3.4.2. Suppose that α is a closed form in Ωn,0
R , then if α ≡ 0 on some open

set in M , it must vanish identically on the whole of M .

Proof. Suppose that α vanishes on an open subset U ⊂ M . We may further assume

that U is the largest open subset where α vanishes. By continuity α vanishes on its

closure Ū . If Ū 6= M , choose a point x ∈ ∂U := Ū \ U . Take a neighbourhood Nx
of x such that there is a J-fibre-diffeomorphism Q : D ×Dn−1 → Nx. We can take ρ

small enough such that each disk Q(Dw) intersects U . In particular, for each w ∈ Dn−1,

Q(Dw)∩U is an open subset in Q(Dw). However, by Lemma 3.4.1, we know α vanishes

either at isolated points or totally on Q(Dw). This implies α|Q(Dw) = 0 for all w ∈ Dn−1

and thus α|Nx = 0. Hence U ∪ Nx ) U , which contradicts the choice of U . Thus α

vanishes on whole M .

Now Theorem 3.4.1 follows the same argument as Theorem 3.1.1. To show that

the (2n − 2)-dimensional Hausdorff measure of Z is finite we follow the argument of

Proposition 3.2.1 replacing the appropriate lemma’s with higher dimensional versions

(c.f. Proposition 4.5.2).

Proof of Theorem 3.4.1. Viewing α as a smooth section of the canonical bundle, con-

tinuity implies that the zero set is compact.

By compactness we can cover Z by finitely many neighbourhoods which admit J-

fibre-diffeomorphisms as in Lemma 2.1.5. So it is enough to show that the intersection

of Z with each of these neighbourhoods is of finite (2n − 2)-dimensional Hausdorff

measure.

Following the arguments of Proposition 3.2.1 we can choose the J-fibre-diffeomorphisms

as follows. Given x ∈ Z there is a J-fibre-diffeomorphism Q : D × Dn−1 → M such

that Q(0, 0) = x and no J-holomorphic disk Q(Dw) is contained in Z. With such a
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choice Lemma 3.4.1 implies that, for each w ∈ Dn−1, the intersection Q(Dw) ∩ Z is a

finite set of points.

Further, by shrinking D if necessary, we may assume without loss of generality that

the distortion of Q on the domain 2D × (2D)n−1 is bounded by some constant C > 0.

Define,

g : D̄ → N ∪ {0}, ξ 7→ #(Z ∩Q(D̄w)).

Clearly this is an upper semi-continuous function and hence achieves a maximal value,

say N , at some point ξ ∈ D̄. Thus by Lemma 3.4.1, we know Z ∩ Q(D̄w) contains at

most N points for all ξ ∈ D̄. By the Vitali covering lemma we can take a finite cover

of the compact set Z ∩ Q(D̄ × D̄n−1) by balls of radius ε such that L of these balls

are disjoint and the union of L concentric balls with radius dilated by a factor of 3

cover. By the distortion assumption each ε ball intersects Q(2D̄w) in an open set of

area bounded above by πC2ε2. The coarea formula then yields,

NπC2ε2 · πC2n−2(2ρ)2n−2 > Lω2nε
2n,

where ω2n is the volume of the unit 2n-ball. Hence there is a constant C ′ > 0 such that

C ′ε−(2n−2) balls of radius 3ε are enough to cover Z ∩Q(D̄ × D̄n−1). This finishes the

proof that H2n−2(Z) <∞.

Finally identical to the argument of Proposition 3.3.2, we can verify that the as-

signment Iα of Section 3.3 defines a positive cohomology assignment for Z in the sense

of Definition 3.3.1.

Since the first Chern class of the complex line bundle Λn,0R is KJ (e.g. by the

same argument as Proposition 4.3 in [60]), if Question 3.4.1 is answered affirmatively,

the Poincaré dual of the homology class of the pseudoholomorphic (n − 1)-subvariety

supported on Z is KJ .

3.5 A birational invariant of almost complex 4-manifolds

A famous question of Donaldson regarding compact almost complex 4-manifolds asks

whether an almost complex structure tamed by a symplectic form necessarily admits a

compatible symplectic form. Recall that a symplectic form ω is said to be tamed by an

almost complex structure J if ω(J ·, ·) is positive definite and that it is compatible with

J if ω(J ·, J ·) = ω(·, ·). The study of this question lead Li and Zhang [39] to define the

cohomology groups H±J (X) ⊂ H2(X,R). These generalise the real Hodge cohomology

groups,and can be represented by J-invariant and J-anti-invariant 2-forms respectively.

We denote by Ω2 the space of 2-forms on M (C∞-sections of the bundle Λ2), Ω+
J the

space of J-invariant 2-forms, etc. Let also Z2 denote the space of closed 2-forms on M
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and let Z±J = Z2 ∩ Ω±J . Then we define the cohomology groups,

H±J (M) = {a ∈ H2(M ;R)|∃ α ∈ Z±J such that [α] = a}.

It is proven in [14] that H+
J (M) ⊕ H−J (M) = H2(M ;R) when dimRM = 4. The

dimensions of the vector spaces H±J (M) are denoted as h±J (M).

These groups are analogous to the Dolbeault cohomology and relate naturally to

them when J is integrable [14], in particular it holds that

H−J (X) = (H2,0

∂̄
(X)⊕H0,2

∂̄
(X)) ∩H2(X;R). (3.13)

Through a series of papers [14, 15, 16] Draghici, Li and Zhang give partial answers to

Donaldson’s question using these groups, furthermore it is found that as well as the

groups themselves the dimensions h±J are of great significance. In this section we prove

that h−J is a birational invariant of compact almost complex 4-manifolds.

The results of [60] suggest that the right notion of birational morphism between

almost complex four manifolds are degree 1 pseudoholomorphic maps. Indeed for such

maps Zariski’s main theorem holds and one can obtain a detailed description of the

singular set, this is summarised by the following theorem.

Theorem 3.5.1 (Theorem 1.5 [60]). Let u : (X, J)→ (M,JM ) be a degree one pseudo-

holomorphic map between connected almost complex 4-manifolds such that J is almost

Kähler. Then there exists a subset M1 ⊂ M consisting of finitely many points such

that,

(1) the restriction u|X\u−1(M1) is a diffeomorphism;

(2) at each point of M1 the preimage is an exceptional curve of the first kind;

(3) X ∼= M#kCP 2 diffeomorphically, where k is the number of irreducible compo-

nents of the J-holomorphic subvariety u−1(M1).

For our purposes it suffices to say that a pseudoholomorphic curve is an exceptional

curve of the first kind if its configuration is equivalent to the empty set through topo-

logical blowdowns, see Definition 5.11 of [60] and references therein for details. Also

we should remark that Zhang believes that the almost Kähler assumption on (X,J) to

be removable.

Thus we say that two closed almost complex four manifolds M1 and M2 are bira-

tional if there exist closed almost complex manfiolds X1, ..., Xn+1, Y1, ..., Yn such that

M1 = X1, M2 = Xn+1 and there are degree one pseudoholomorphic maps φi : Yi → Xi

and ψi : Yi → Xi+1 for all i = 1, ..., n.

In this section we prove that h−J is a birational invariant of almost complex four

manifolds.
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Theorem 3.5.2. Let ψ : (M1, J1) → (M2, J2) be a degree 1 pseudoholomorphic map

between closed, connected, almost complex 4-manifolds. Then h−J1
(M1) = h−J2

(M2).

The basic strategy is similar to the proof of Theorem 5.3 in [11]. However, we need

a version of Hartog’s extension theorem for closed J-anti-invariant forms. This relies

on the trivialisation of Λ−J over embedded J-holomorphic disks provided by Lemma

3.2.1.

Again it is convenient to to view J-anti-invariant 2-forms as a smooth sections of

the complex line bundle Λ−J over M . We shall denote such a section associated to a

J-anti-invariant 2-form α by Γα : M → Λ−J . By Lemma 3.2.1 there is a trivialisation

of Λ−J over a given embedded J-holomorphic disk u : D →M such that Γα ◦ u may be

viewed as a holomorphic function Γα ◦ u : D → C when α is closed. Notice that once a

trivialisation has been chosen we abuse notation and ignore the holomorphic projection

of Λ−J
∼= D × C onto its second factor. We identify the basis {φ, Jφ} in Lemma 3.2.1

with 1 and i in C under the trivialisation.

Before proceeding it is convenient to make some remarks about Lemma 3.2.1. First

consider U ⊂M an open, connected subset, α a closed J-anti-invariant 2-form defined

on U\{p} for some p ∈ U and u : D →M an embedded J-holomorphic disk with u(0) =

p. It follows from the arguments of Lemma 3.2.1 that, after possibly shrinking u(D),

there is a holomorphic structure on Λ−J over u(D)\{p} such that Γα ◦ u : D\{0} → Λ−J
is holomorphic.

Indeed, by Lemma 3.2.1, we can cover D\{0} by subdisks Di such that Λ−J |u(Di)

is trivialised with Γα ◦ u : Di → Λ−J a holomorphic section. Furthermore, we assume

the zero locus α−1(0) ∩ u(∂Di) = ∅. We look at the transition function β + iγ of the

line bundle Λ−J |u(Di) for D1 ∩D2 say. The form α could be represented in terms of two

basis’

α = f1φ1 + g1Jφ1 = f2φ2 + g2Jφ2.

By computation, (f1 + ig1) = (f2 + ig2)(β + iγ). In other words, writing hi = (Γα ◦
u)|Di we can write transition functions as τij = hi

hj
on Dij = Di ∩ Dj . Since the

hi are holomorphic, and the transition functions are nowhere zero, we know τij are

holomorphic.

This transition data thus defines a holomorphic line bundle structure on Λ−J over

u(D)\{p} such that Γα ◦ u : D\{0} → Λ−J is holomorphic. Furthermore D\{0} is Stein

and hence, by Oka’s principle, the bundle is isomorphic to D\{0}×C. This allows one

to view Γα ◦ u : D\{0} → C as a holomorphic complex valued function. In summary

we have found a trivialisation of Λ−J over u(D)\{p} such that Γα ◦ u : D\{0} → C is a

holomorphic function.

Secondly, for ε ∈ (0, 1), let uε : D → M be a smooth family of embedded J-

holomorphic disks. For each ε ∈ (0, 1) the arguments of §2 provide coordinates xiε

such that J = J0 along uε(D). Moreover the xiε vary smoothly in ε. Defining φ0,ε

by (3.5) and following the arguments of Lemma 3.2.1 we obtain a family of functions
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v0,ε = f0,ε+ig0,ε satisfying a Cauchy-Riemann type equation ∂̄v0,ε+C
ε
1v0,ε+C

ε
2 v̄0,ε = 0,

where v0,ε and Cε1 , C
ε
2 vary smoothly in ε. Hence the resulting family of holomorphic

functions fε + igε and forms φε vary smoothly in ε. That is, the trivialisations over

each uε(D) vary smoothly.

Proposition 3.5.1. Let (M,J) be an almost complex 4-manifold, U ⊂ M open and

p ∈ U . Suppose that α is a closed J-anti-invariant 2-form defined on U \{p}. Then α

extends smoothly to U .

Proof. First, by shrinking U if necessary, we may assume that there is a J-fibre diffeo-

morphism Q : D ×D → U centred at p such that Q({0} ×D) and each Q(Dw) is an

embedded J-holomorphic disk.

We trivialise Λ−J with respect to α, first along Q({0}×D)\{p} then along each Q(Dw)

and Q(D0)\{p}. By the remarks preceding the proposition Γα may be considered a

smooth map Γα : (D ×D)\{(0, 0)} → C such that

(i) Γα(·, w) : D → C is holomorphic for each w 6= 0,

(ii) Γα(·, 0) : D\{0} → C is holomorphic,

(iii) Γα(0, ·) : D\{0} → C is holomorphic.

For each j ∈ Z define,

aj(w) :=

∫
|ξ|=ρ

Γα(ξ, w)

ξj+1
dξ.

Clearly this is a smooth function aj : D → C for all j ∈ Z. Moreover, by (i), we have

a0(w) = Γα(0, w), w 6= 0, and hence a0 : D\{0} → C is holomorphic.

For each w 6= 0 the Cauchy Integral formula gives the following Laurent series

Γα(ξ, w) =
∞∑

j=−∞
aj(w)ξj =

∞∑
j=0

aj(w)ξj ,

where the second equality follows from (i). In particular aj(w) = 0 for all j < 0 and

w 6= 0. By smoothness of α on U \{p} and the trivialisations along the disks, it follows

that aj(0) = 0 for all j < 0. Applying Cauchy Integral formula again yields,

Γα(ξ, 0) =
∞∑

j=−∞
aj(0)ξj =

∞∑
j=0

aj(0)ξj ,

proving that Γα(ξ, 0) is holomorphic on D with Γα(0, 0) = a0(0).

Let us now verify that Γα(0, w) can be extended to a holomorphic function on D

with value aj(0) at the origin. To this end notice that, by smoothness,

∂

∂w̄
Γα(0, w) =

∫
|ξ|=ρ

∂
∂w̄Γα(ξ, w)

ξ
dξ = 0, ∀w∈D.
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So Γα(0, w) extends as a holomorphic function to D and Γα(0, 0) = a0(0).

As remarked in Section 3.2 the J-fibre diffeomorphism may be chosen such that

Q({0} ×D) is a given J-holomorphic disk and Q(D0) is tangent at p to a given com-

plex direction κ ∈ CP 1 transverse to Q({0} × D). Varying κ we produce a family of

embedded J-holomorphic disks whose complex tangent directions cover a neighbour-

hood of κ. Moreover, each of these disks is the D0 fibre of a J-fibre diffeomorphism.

We can choose finitely many such families whose union covers a neighborhood of p,

and their tangent directions cover CP 1. Since Q({0}×D) is fixed the argument above

provides a holomorphic extension in each complex direction κ with the same extended

value at p. For the disks not transverse to the given J-holomorphic disk, we choose

any other disk in the family to complete the proof.

With this Hartogs type extension in hand, we are able to prove Theorem 3.5.2.

Proof of Theorem 3.5.2. Since ψ is pseudoholomorphic the pullback of 2-forms along

ψ induces a map

ψ∗ : Z−J2
(M2)→ Z−J1

(M1).

We claim that this induced map is an isomorphism. If this is the case then this induces

an isomorphism between H−J1
(M1) and H−J2

(M2) since Z−J is isomorphic to H−J (see e.g.

[14]).

By Proposition 5.9 of [60] there exits a finite set Y ⊂ M2 such that u|M1\ψ−1(Y ) is

a diffeomorphism and ψ−1(y) is a pseudoholomorphic subvariety for all y ∈ Y . Thus,

given α ∈ Z−J2
(M2), it follows that if ψ∗(α) = 0 then α|M2\Y = 0 and hence smoothness

implies that α ≡ 0.

It is left to show that ψ∗ : Z−J2
(M2)→ Z−J1

(M1) is surjective. Since ψ|M1\ψ−1(Y ) is a

diffeomorphism we can pull back a given α̃ ∈ Z−J1
(M1) to give a J2-anti-invariant form

α := (ψ−1)∗(α̃) ∈ Z−J2
(M2 \Y ). As Y is a finite set Proposition 3.5.1 gives an extension

to a form α ∈ Z−J2
(M2) which concludes the proof.

3.6 Further discussions

In this section we provide a definition of multiplicity of zeros for a continuous function

u : D2 → R2 which generalises the multiplicity of zeros of a holomorphic function.

3.6.1 Multiplicity of zeros for a continuous function u : D2 → R2

An amusing application is to define the multiplicity of isolated zeros of a continuous

function u : D2 → R2 from the open unit disk D2, as a generalisation of the multiplicity

of zeros of a holomorphic function. This subsection could also be viewed as some explicit

calculations of the intersection number used throughout the chapter.

Consider a trivial bundle O over D2 of real rank two. A continuous function u :

D2 → R2, u(x, y) = (f(x, y), g(x, y)), is called admissible if u−1(0) ∩ ∂D2 = ∅. By
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taking complex coordinate z = x + iy on D and using the standard identification of

R2 = C we can write u(z) = f(z, z̄) + ig(z, z̄), where f and g are real valued functions.

It is clear that this definition of admissibility also works for an admissible function

u : Bn → Rn.

Example 3.6.1. The function u(z) = x is not admissible. All non-trivial holomorphic

functions are admissible. The function u(z) = |z|2 is admissible.

For an admissible function u : D2 → R2, we define the sum of multiplicities of zeros

inside D2 by perturbation. We perturb u to a smooth function ũ : D2 → R2 such

that the Jacobian of each zero of ũ is non-degenerate. It is equivalent to viewing the

function u as a map to the total space of the trivial bundle O, and requiring that the

perturbed ũ has transverse intersection with the zero section. Then the multiplicity

I(u) is the sum of the signs of the Jacobian of each zero of ũ. The multiplicity I(u) is

independent of the choice of the perturbation ũ.

Example 3.6.2. When u is a holomorphic function, I(u) is just the sum of the mul-

tiplicities of all the zeros of u inside the unit disk. Each zero contributes positively to

the sum.

One may choose a holomorphic perturbation u′ such that u′ has more zeros than u

over R2 and each zero will contribute positively to the index. A generic holomorphic

perturbation would have I(u) many zeros inside the unit disk.

On the other hand, if u is an anti-holomorphic function, then each zero contributes

negatively.

The following provides an explicit example of the multiplicity being independent of

the perturbation as long as the Jacobian is non-degenerate at any zero point.

Example 3.6.3. Let u(z) = |z|2. Then I(u) = 0. There are many ways of admissible

perturbations. For example, if ũ(z) = |z|2 +εz, then it has two zeros z = 0 and z = − ε.
The Jacobian matrix has determinants | ε |2 and −| ε |2 at 0 and − ε respectively. This

implies I(u) = 0.

We can also calculate it using other perturbations. A natural one is ˜̃u(z) = u(z)+c.

When c > 0, there will be no zeros in D, which again implies I(u) = 0 immediately.

When c < 0, it is not a good perturbation to calculate the multiplicity since the

Jacobian is degenerate at the zero set.

In fact, our multiplicity is uniquely defined in a natural sense.

Proposition 3.6.1. The multiplicity I(u) is the unique functional satisfying the fol-

lowing five properties:

• I(u) = 0 if u(a) 6= 0,∀a ∈ D;

• If u0, u1 : D → R2 are admissible and homotopic via an admissible family ut,

then I(u0) = I(u1);
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• If θ : D → D is a proper degree k map, then I(u ◦ θ) = k · I(u);

• If all the zeros are included in disjoint union ∪iDi ⊂ D where each Di = θi(D)

with embedding θi : D → D, then I(u) =
∑
I(u ◦ θi);

• If u is holomorphic, I(u) is the usual multiplicity of zeros for holomorphic func-

tions.

Proof. By Proposition 3.3 in [60] (or Proposition 3.3.2 in this paper), I(u) satisfies the

five properties. To show the uniqueness, we first perturb u to ũ such that all the zeros

are non-degenerate. We write the Taylor expansion in terms of z, z̄ at each zero of ũ.

By virtue of the fourth item we can, on a small disk around each zero, use a local linear

homotopy from ũ to the linear term of its Taylor expansion. By choosing the disk to

be small, no more zeros would be brought in through this homotopy. The linear term

at each zero (without loss, we assume the zero is the original point) can be written as

(
a+ d

2
)z + (

a− d
2

)z̄ + (
c− b

2
)iz + (

c+ b

2
)iz̄,

where the Jacobian matrix

(
a b

c d

)
is non-degenerate. If the determinant is positive,

a linear homotopy

(
a+ d

2
)z + t(

a− d
2

)z̄ + (
c− b

2
)iz + t(

c+ b

2
)iz̄

would lead to a holomorphic function with I = 1. Notice, when t ∈ [0, 1], the Jacobians

are all non-degenerate. Similarly, when the determinant is negative, it is homotopic to

an anti-holomorphic function. By the third item, an anti-holomorphic has the multi-

plicity opposite to its holomorphic conjugation. Hence, our multiplicity I(u) is uniquely

determined by the classical multiplicity of a holomorphic function and the other four

properties.



Chapter 4

Eigenvalues of the Laplacian on

almost Kähler manifolds

4.1 Introduction

Bourguignon, Li and Yau [7] proved an upper bound for the first non-zero eigenvalue for

a given Kähler metric on a projective manifold M which depended only on dimension,

volume and a holomorphic immersion φ : Mn → Pm. Recently Kokarev [33] has

improved their result giving bounds, for a more general class of Kähler manifolds, on

the k-th eigenvalue which depend linearly on k. The class in question are those Kähler

manifolds that admit a non-trivial holomorphic map into a projective space Pm.

The purpose of this chapter is to show that the same bound in fact holds in the

almost Kähler setting. More precisely we prove the following theorem.

Theorem 4.1.1. Let (Mn, J) be a closed 2n-dimensional almost Kähler manifold and

φ : Mn → Pm a non-trivial pseudoholomorphic map, where Pm is taken with its stan-

dard complex structure. Then for any almost Kähler metric g on Mn, the eigenvalues

of the Laplace-Beltrami operator ∆g satisfy,

λk(M
n, g) ≤ C(n,m)d([φ], [ωg])k, for any k ≥ 1, (4.1)

where C(n,m) > 0 is a constant depending only on n and m and d([φ], [ωg]) is defined

by,

d([φ], [ωg]) :=

∫
M φ∗ωFS ∧ ωn−1

g∫
M ωng

. (4.2)

Alternatively we can write

d([φ], [ωg]) :=
(φ∗[ωFS] ^ [ωg]

n−1, [M ])

([ωg]n, [M ])
, (4.3)

where (·, ·) denotes the pairing of de-Rham cohomology and singular homology. From

this expression it is clear that d([φ], [ωg]) depends only on the de-Rham class [ωg] ∈

61
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H2(M ;R) and the induced map on 2-cohomology φ∗ : H2(Pm;Q)→ H2(M ;Q).

Let (M,J) be an almost complex manifold and E → M a complex vector bundle

of complex rank r over M . Suppose further that the total space E is endowed with

an almost complex structure J such that the projection map is pseudoholomorphic

and that E is globally generated by pseudoholomorphic sections. Here we say that a

section s : M → E is pseudoholomorphic with respect to J if ds ◦ J = J ◦ ds. We

can define the Kodaira map κE : M → Gr(r,CN ) in the usual way, where Gr(r,CN )

denotes the grassmannian and N = dim(H0
J (E)) is the dimension of the vector space

of global pseudoholomorphic sections of E with respect to J . We provide details of the

construction in §3. Composing with the Plücker embedding yields a pseudoholomorphic

map φ : M → Pm and hence Theorem 4.1.1 may be applied to obtain the following

corollary.

Corollary 4.1.1. Let E → M be a complex vector bundle over a compact almost

complex manifold (M,J). Suppose further that the total space is endowed with an

almost complex structure J and the bundle is globally generated by pseudoholomorphic

sections with respect to J . Then, for any almost Kähler metric g on M , the eigenvalues

of the Laplace-Beltrami operator satisfy,

λk(M, g) ≤ C (c1(E) ^ [ωg]
n−1, [M ])

([ωg]n, [M ])
k, for any k ≥ 1, (4.4)

where C > 0 is a constant depending only on dim(M), rank(E) and dim(H0
J (E)).

Notice that for the map φ defined as the composition of the Kodaira map and the

Plücker embedding we have φ∗[ωFS] = a · c1(E) for some constant a > 0, where [ωFS]

denotes the de-Rham class. Indeed writing U → Gr(r,CN ) for the tautological bundle

we have that c1(E) = κ∗Ec1(detU). On the other hand one can explicitly calculate that

the pull back of the Fubini-Study metric under the Plücker embedding is, up to scaling,

the curvature of the Hermitian metric on detU induced by the constant metric on the

fibres of the trivial bundle Gr(r,CN ) × CN . So, by Chern-Weil theory, one finds that

φ∗[ωFS] = ac1(E) for some constant a > 0.

Section 4 is dedicated to providing examples of strictly almost Kähler manifolds to

which Theorem 4.1.1 applies. More precisely, we provide examples of strictly almost

Kähler manifolds which admit a globally generated pseudoholomorphic vector bundle.

These are built from the examples given by Chen-Zhang [11].

Let us briefly discuss the outline of the proof of Theorem 4.1.1. To establish the

desired bound (4.1) it suffices to produce k + 1 linearly independent test functions for

which the bound (4.1) holds. These test functions are constructed on Pm and hence

are identical to those used in [33]. Intuitively they are components of the moment map

of the action of the group of isometries of Pm restricted to carefully chosen annuli. The

main technical difficulty arises in trying to control the measure of these annuli with

respect to the push-forward of the volume measure Volg. Control can be established



CHAPTER 4. EIGENVALUES ON ALMOST KÄHLER MANIFOLDS 63

using the work of Grigoryan, Netrusov and Yau [23] if the measure µ := φ∗(Volg) is non-

atomic. In the situation of an integrable complex structure the level sets of a non-trivial

holomorphic map are subvarieties of positive codimension which implies that µ must

be non-atomic. On the other hand if the almost complex structure is not integrable

determining the structure of level sets is an open question. Whilst we cannot establish

that level sets are pseudoholomorphic subvarieties we can prove an estimate on their

Hausdorff dimension from which it follows that µ is non-atomic. From this point it is

routine to verify that the arguments of [33] continue to hold and hence finish the proof

of Theorem 4.1.1.

We can also obtain a version of Theorem 4.25 for pseudoholomorphic subvarieties of

almost Kähler manifolds. Let (Mn+`, J) be a closed almost Kähler manifold and Σn an

irreducible pseudoholomorphic subvariety whose regular part Σn
∗ has complex dimension

n. Here we say that Σn ⊂Mn+` is an irreducible pseudoholomorphic subvariety if it is

the image of a somewhere immersed pseudoholomorphic map Φ : X →M where X is a

smooth, closed, connected almost complex manifold. Given an almost Kähler metric g

on M its restriction to the regular part of Σ yields an incomplete almost Kähler metric,

gΣ, on Σ∗. We are interested in the eigenvalues of the Laplacian corresponding to gΣ.

It is shown that for an appropriate function space ∆ = ∆gΣ is essentially self-adjoint

and has discrete spectrum.

Theorem 4.1.2. Let (Mn+`, J) be a closed almost Kähler manifold and φ : Mn+` →
Pm a non-trivial pseudoholomorphic map. Furthermore let Σn ⊂Mn+` be an irreducible

pseudoholomorphic subvariety such that the restriction of φ to Σ is non-trivial. Then,

for any almost Kähler metric g on M , the eigenvalues of the Laplacian associated to

gΣ satisfy,

λk(Σ, gΣ) ≤ C(n,m)

∫
Σ φ
∗ωFS ∧ ωn−1

g∫
Σ ω

n
g

k, for any k ≥ 1, (4.5)

where C(n,m) > 0 is a constant depending only on n and m and ωg is the Kähler form

of g on M .

The chapter is structured as follows; in sections 2 and 3 we establish the necessary

preliminaries from Riemannian and almost complex geometry followed by some exam-

ples of strictly almost Kähler manifolds to which Theorem 4.1.1 applies in §4. Next §5 is

dedicated to establishing an estimate on the level sets of pseudoholomorphic maps and

hence that the push-forward measure φ∗(Volg) is non-atomic. Sections 6 and 7 define

the test functions and prove Theorem 4.1.1. Then in §8 we give a brief discussion of

pseudoholomorphic subvarieties of a almost Kähler manifolds and prove Theorem 4.1.2.

Finally we give some possible further directions of study in §9, in particular we prove

that the regularity of the map φ in Theorem 4.1.1 can be reduced and as a consequence

the theorem can be applied when φ is only a rational map.
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4.2 Preliminaries

4.2.1 Eigenvalues of the Laplacian on an almost Kähler Manifold

Let (M, g) be a compact Riemannian manifold without boundary. In local coordinates

xi the Laplace-Beltrami operator associated to g has the form,

∆ =
1√
|g|

∂

∂xi

(√
|g|gij ∂

∂xj

)
,

with |g| = det g. The eigenvalues of the Laplacian are real numbers 0 < λ1(g) ≤ ...,≤
λk(g) ≤ ... such that

−∆u = λk(g)u

has a non-trivial solution.

Recall that we can characterise the k-th eigenvalue by

λk(g) = inf
V

sup
u∈V

Rg(u), (4.6)

with the infimum taken over all (k+ 1)-dimensional subspaces of Lip(M) and Rg(u) is

the Rayleigh quotient defined by,

Rg(u) =

∫
M |∇u|

2dVolg∫
M u2dVolg

. (4.7)

Thus to prove a bound on λk it suffices to produce k+1 linearly independent test whose

Rayleigh quotient satisfies the same bound. By compactness one can take a constant

as one of these test functions reducing the problem to finding k linearly independent

test functions.

In general, on a Hermitian manifold, the Laplacian of the Levi-Civita connection

and the Laplacian of the Chern connection agree only up to a first order term. But as

we saw in §2 if we have an almost Kähler manifold (in fact a quasi Kähler manifold is

sufficient) then they agree. In light of this, given an almost Kähler manifold, we shall

henceforth only refer to the Laplace-Beltrami operator.

4.2.2 Almost Kähler Geometry and Complex Projective Space

Throughout this chapter Pm will denote the complex projective space of dimension m

endowed with the Fubini-Study metric, see (2.13), scaled to have diameter π
2 .

Since the standard action of SU(m + 1) on Pm preserves ωFS it has an associated

moment map τ : Pm → su∗m+1. By the Killing scalar product 〈X,Y 〉 = trX∗Y =

−trXY we can identify su∗m+1 and sum+1 so that in local homogeneous coordinates

[Z] = [z0 : ... : zm] we can express the components of τ by

τk`([Z]) = i
zkz̄`
|z|2

. (4.8)
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The moment map also satisfies the identity,

ωFS = − i
2

∑
k`

dτk` ∧ dτ`k,

see [1] for details.

Lemma 4.2.1. Let (Mn, J, g) be an almost Kähler manifold and φ : M → Pm a

pseudoholomorphic map. Then the gradient of the matrix valued map τ ◦ φ : M →
C(m+1)2

satisfies,

|∇(τ ◦ φ)|2ωng = nφ∗(ωFS) ∧ ωn−1
g , (4.9)

where τ : Pm → sum+1 is the moment map associated to SU(m+ 1) acting on Pm

Proof. We claim that for a smooth function ϕ : M → C the following formula holds,

|∇ϕ|2ωng = in(∂ϕ ∧ ∂̄ϕ̄+ ∂ϕ̄ ∧ ∂̄ϕ) ∧ ωn−1
g . (4.10)

Write TCM = T 1,0M ⊕ T 0,1M for the natural splitting of the complexified tangent

space induced by J and let e1, ..., en be a local unitary frame for T 1,0M with respect

to g. Writing θ1, ..., θn for the dual coframe we have

ωg = i θk ∧ θ̄k.

Furthermore, for a smooth function ϕ : M → C we can write the decomposition of dϕ

into (1, 0) and (0, 1) parts as

dϕ = ∂ϕ+ ∂̄ϕ = ϕkθ
k + ϕk̄θ̄

k.

In this notation we have,

|∇ϕ|2ωng =(|∂ϕ|2 + |∂̄ϕ|2)ωng = inn!
∑
k

(ϕkϕ̄k + ϕ̄k̄ϕk̄) θ
1 ∧ θ̄1 ∧ ... ∧ θn ∧ θ̄n.

On the other hand,

in (∂ϕ ∧ ∂̄ϕ̄+ ∂ϕ̄ ∧ ∂̄ϕ) ∧ ωn−1
g = in

(∑
k,`

(ϕkϕ̄` + ϕ̄k̄ϕ¯̀) θk ∧ θ̄`
)
∧ ωn−1

g

= inn!
∑
k

(ϕkϕ̄k + ϕ̄k̄ϕk̄) θ
1 ∧ θ̄1 ∧ ... ∧ θn ∧ θ̄n,

which gives the desired claim.

To proceed let ϕij = τij ◦ φ : M → C be the components of the composition
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τ ◦ φ : M → C(2m+2)2
. Now,

∂ϕij = dϕij − i dϕij ◦ J

= dτij ◦ dφ− i dτij ◦ dφ ◦ J

= (dτij − i dτij ◦ JPm) ◦ dφ = φ∗(dτij − i dτij ◦ JP2m) = φ∗∂τij ,

where in the second equality we used chain rule and in the third that φ is pseudoholo-

morphic. Similarly we compute that,

∂̄ϕij = φ∗∂̄τij , ∂ϕ̄ij = φ∗∂τ̄ij , ∂̄τ̄ij = φ∗∂̄τ̄ij .

By (4.10) we have,

|∇ϕij |2ωng = in(∂ϕij ∧ ∂̄ϕ̄ij + ∂ϕ̄ij ∧ ∂̄ϕij) ∧ ωn−1
g

= inφ∗(∂τij ∧ ∂̄τ̄ij + ∂τ̄ij ∧ ∂̄τij) ∧ ωn−1
g .

Finally we remark that, as τ is the moment map, we have the expression

ωFS = − i
2

∑
i,j

dτij ∧ dτji = i
∑
i,j

(∂τij ∧ ∂̄τ̄ij + ∂τ̄ij ∧ ∂̄τij).

Thus,

|∇ϕ|2ωng =
∑
i,j

|∇ϕij |2ωng = nφ∗(ωFS) ∧ ωn−1
g .

Remark 4.2.1. The calculation of ωFS in terms of τij only requires the almost complex

structure on Pm to be compatible (but not necessarily tamed) with ωFS. So the lemma

would hold for any pseudoholomorphic map φ : (M,J)→ (Pm, J̃) where J̃ is compatible

with ωFS.

4.3 Pseudoholomorphic Vector Bundles

Let (M,J) be an almost complex manifold and E → M a complex vector bundle of

complex rank r over M . Suppose further that the total space E is endowed with an

almost complex structure J such that,

(1) the projection map is pseudoholomorphic;

(2) the almost complex structure induced on each fibre is multiplication by i;

(3) fibrewise multiplication and addition are pseudoholomorphic.

Such a structure J is called a bundle almost complex structure and was first introduced

by Bartolomeis-Tian [13].
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On the other hand one can endow a complex vector bundle with a Cauchy-Riemann

type operator which we call a pseudoholomorphic structure.

Definition 4.3.1. Let (M,J) be an almost complex manifold and E → M a complex

vector bundle of complex rank r over M . A pseudoholomorphic structure on E is

a differential operator ∂̄E : Γ(M,E) → Γ(M, (T ∗M)0,1 ⊗ E) satisfying the following

Leibniz rule,

∂̄E(fs) = f ∂̄Es+ ∂̄Jf ⊗ s,

where f ∈ C∞(M) and s ∈ Γ(M,E).

In [13] it is shown that bundle almost complex structures are in one-to-one corre-

spondence with pseudoholomorphic structures.

Proposition 4.3.1 (de Bartolomeis-Tian). There is a bijection between bundle almost

complex structures and the pseudoholomorphic structures on E.

We shall write ∂̄J for the pseudoholomorphic structure on E induced by a bundle

almost complex structure J . Henceforth we shall call a complex vector bundle E

equipped with a bundle almost complex structure J a pseudoholomorphic vector bundle

and write ∂̄E := ∂̄J .

A smooth section s ∈ Γ(M,E) of a pseudoholomorphic bundle E is said to be

pseudoholomorphic if ∂̄E s = 0. Note that by following the proof of the aforemen-

tioned correspondence established by Bartolomeis-Tian this definition is equivalent to

s : M → E being a (J,J )-holomorphic map. We write H0
J (E) for the space of global

pseudoholomorphic sections of E with respect to J .

Recall that, if (E, h) is a Hermitian bundle over an almost complex manifold (M,J),

then a connection ∇ : Γ(M,E) → Γ(M,T ∗M ⊗ E) is said to be Hermitian if it is

compatible with h, i.e. if

d(h(s1, s2)) = h(∇s1, s2) + h(s1,∇s2), ∀s1, s2 ∈ Γ(M,E). (4.11)

The following is the analogue of Lemma 2.1.2 for general pseudoholomorphic bundles.

Proposition 4.3.2. Let (E, h) be a Hermitian bundle equipped with a pseudoholo-

morphic structure ∂̄E, then there exists a unique Hermitian connection ∇ such that

∇(0,1) = ∂̄E.

Consider the dual bundle E∗ → M of a pseudoholomorphic bundle E → M . One

can define a pseudoholomorphic structure on E∗ by,

(∂̄E∗σ)(s) = ∂̄(σ(s))− σ(∂̄Es), (4.12)

for any σ ∈ Γ(M,E∗) and s ∈ Γ(M,E). This in turn induces a bundle almost com-

plex structure on E∗ giving a natural sense in which to consider the dual bundle a
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pseudoholomorphic bundle. Henceforth whenever we are dealing with the dual of a

pseudoholomorphic bundle we shall, unless otherwise stated, assume that the dual

bundle is equipped with this bundle almost complex structure.

It is also natural to look at the conjugate bundle Ē. In the following suppose that

(E, h) is a Hermitian bundle, ∂̄E a pseudoholomorphic structure and ∇ the unique

Hermitian connection such that ∇(0,1) = ∂̄E . The conjugate connection ∇(0,1) : Ē →
(T ∗M)0,1 ⊗ Ē defines a pseudoholomorphic structure on Ē. On the other hand we can

identify E∗ and Ē using the Hermitian metric h and thus we have an induced pairing

of Ē and E. Differentiating this pairing using (4.11) and taking the (0, 1) part we have

∂̄(σ(s)) = σ(∇(0,1)s) + (∇(0,1)σ))(s).

Comparing with (4.12) we see that ∂̄E∗ = ∇(0,1), i.e. ∂̄E∗ defines a pseudoholomorphic

structure on Ē.

We are now in the position to follow the usual route and define a L2 formal adjoint

∂̄∗E . For this we equip (M,J) with a J-compatible Riemannian metric and write ωg for

the associated Hermitian form. We claim that the operator ∂̄∗E := − ∗ ∇(0,1)∗ defines

the formal dual, where ∗ is the following extension of the Hodge star to E valued

differential forms

∗ : Λp,q ⊗ E → Λn−p,n−q ⊗ E, ∗(α⊗ s) := (∗α)⊗ s.

To see this we calculate, using Stokes theorem, that∫
M
h(∂̄E(α⊗ s), β ⊗ σ)ωng =

∫
M
∂̄E(α⊗ s) ∧ ∗(β ⊗ σ)

=

∫
M

(−1)p+q(α⊗ s) ∧ ∂̄Ē(∗(β ⊗ σ))

=

∫
M

(α⊗ s) ∧
[
∗ ∗ ∇(0,1) ∗ (β ⊗ σ)

]
,

where α⊗ s ∈ Λp,q−1 ⊗E and β ⊗ σ ∈ Λp,q ⊗E. Note that the factor (−1)p+q appears

since ∗(β ⊗ σ) ∈ Λn−p,n−q⊗ Ē and hence ∂̄Ē appearing in the second line is the natural

extension of ∂̄Ē to (n−p, n− q)-forms with values in E. Furthermore the final equality

follows from the identity ∗∗ = (−1)p+q on Λp,q.

We define a Laplacian operator

∆∂̄E
= ∂̄E ∂̄

∗
E + ∂̄∗E ∂̄E .

Since local holomorphic coordinates are not available on the base manifold (M,J) one

has to work a little harder to prove that ∆∂̄E
is an elliptic operator in the non-integrable

setting, but nonetheless this is indeed the case [11]. In particular the operator has finite
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dimensional kernel, that is, the space

Hp,q
∂̄E

(M,E) := {s ∈ Γ(M,Λp,q ⊗ E)|∆∂̄E
s = 0}

is finite dimensional for all 0 ≤ p, q ≤ n. Since ∂̄∗E = 0 when acting on sections of E it

is straightforward to deduce that

H0
J (E) = H0,0

∂̄E
(M,E)

since ∆∂̄E
s = 0 if and only if ∂̄Es = 0 and ∂̄∗Es = 0. We thus have the following lemma.

Lemma 4.3.1. Let (M,J) be a closed almost complex four manifold and E → M a

pseudoholomorphic vector bundle, then H0
J (E) is a finite dimensional vector space.

4.3.1 Globally Generated Bundles

Suppose that E is a rank r pseudoholomorphic vector bundle which is globally generated

by pseudoholomorphic sections s1, ..., sN ∈ H0
J (E). For each point p ∈ M let Vp be

the subspace of H0
J (E) spanned by sections vanishing at p. As in the complex setting

we can define the Kodaira map κE by p 7→ Ann(Vp), where Ann(Vp) is the annihilator

subspace of Vp, that is the space of linear functionals vanishing on Vp. We can write

this map as follows,

κE : M → Gr(r,H0
J (E)∗), p 7→ {s ∈ H0

J (E) | s(p) = 0}.

Identifying Gr(r,H0
J (E)∗) with Gr(r,N) = Gr(r,CN ) via the basis s1, ..., sN we claim

that the resulting map κE : M → Gr(r,N) is pseudoholomorphic.

Lemma 4.3.2. Let (M,J) be a closed almost complex four manifold and E → M a

globally generated pseudoholomorphic vector bundle. If N = dimH0
J (E) and Jstd is the

standard complex structure on Gr(r,CN ), then the Kodaira map κE : M → Gr(r,N)

defined above is (J, Jstd)-holomorphic.

Let us first verify the claim in the relatively straightforward case of a line bundle,

i.e. r = 1. Here the map κE : M → PN is given by p 7→ [s1(p) : ... : sN (p)] and

it suffices to check that the transition maps si
sj

are pseudoholomorphic sections of the

trivial bundle over M \ {s−1
j (0)}. It follows from the identity

sj
sj

= 1, using (4.12), that
1
sj

is a pseudoholomorphic section of E∗ over M \{s−1
j (0)}. Hence it is straightforward

to observe, again using (4.12), that si
sj

are pseudoholomorphic sections of the trivial

bundle over M \ {s−1
j (0)}.

The general case follows similarly but requires a brief digression to recall a holo-

morphic coordinate system on Gr(r,N). Given a point x ∈ Gr(r,N), if a1, ..., ar are

vectors spanning the subspace Ux associated to the point x, then denote by A(x) the

N × r matrix whose columns are a1, ..., ar. We call A(x) a homogeneous coordinate
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of x ∈ Gr(r,N). Notice that A(x) is of maximal rank and that if Ã(x) is another

homogeneous coordinate of x, i.e. another basis of Ux is chosen, then there exists some

g ∈ GL(r,C) such that Ã(x) = A(x)g. So homogeneous coordinates are only defined

up to right multiplication by some element of GL(r,C).

Now let e1, .., eN denote the standard basis of CN and assume that we take ho-

mogeneous coordinates with respect to this basis, that is for x ∈ Gr(r,N) we take a

homogeneous coordinate A(x) whose columns (with respect to the basis ei) form a basis

of Ux. Given a multi-index I = (i1, ..., ir) of length r such that 1 ≤ ir < ... < ir ≤ n

we take a coordinate chart UI on Gr(r,N) to be the set of matrices A such that the

r × r submatrix AI is invertible. Here AI denotes the submatrix formed by the i1-th

to ir-th rows of A.

Let x ∈ UI and A(x) be a homogeneous coordinate for x, then the matrix A(x) can

be decomposed as

A =

[
A1

A2

]
,

where A1 ∈ GL(r,C) and A2 is some (N − r)× r matrix. Notice that for simplicity of

notation we have assumed that I = (1, 2, ..., r) here. Now holomorphic coordinates on

UI are given by the matrix A−1
1 A2.

Returning to the set-up of Lemma 4.3.2, recall that the global generating set

s1, ..., sN of E identifies Gr(r,H0
J (E)∗) with Gr(r,N) = Gr(r,CN ) and hence we have

that κE can be viewed as a mapping

κE : M → Gr(r,N).

Indeed, first notice that we can cover M by open sets UI such that si1 , ..., sir form a

local frame for E over UI .

Remark 4.3.1. In general it is not possible to find local pseudoholomorphic frames

but here our bundle is assumed to be globally generated.

Consider now p ∈ UI and s ∈ H0
J (E). It suffices to consider the case I = (1, 2, ..., r).

Notice that if we write aiα for the complex valued smooth functions such that

si =
r∑

α=1

aiαsα, (4.13)

then

s =
r∑

α=1

(
N∑
i=1

aiαs
i, s

)
sα,

where si ∈ H0
J (E)∗ are dual to si and (·, ·) denotes the natural pairing of H0

J (E) and
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H0
J (E)∗. From the definition of κE : M → Gr(r,H0

J (E)∗) we see from the above that

κE(p) =

[
span

{
N∑
i=1

aiαs
i

∣∣∣∣∣α ∈ {1, ..., r}
}]

.

It is straightforward to verify that in fact the right hand side is independent of the local

frame initially chosen. That is, the matrix A = (aiα)iα is a local expression of κE |UI in

homogeneous coordinates.

To see that κE is pseudoholomorphic it suffices to check that the transition maps,

when changing pseudoholomorphic frames, are themselves pseudoholomorphic sections

of the bundle GL(r,C) → M . Indeed suppose that UI ∩ UJ 6= φ and write sα, sβ for

the local frames with α ∈ I and β ∈ J . In this case the transition data on UI ∩ UJ
is described by p 7→ (aαβ(p))αβ ∈ GL(r,C). By applying ∂̄J to (4.13) we deduce that

aαβ are pseudoholomorphic yielding the desired conclusion.

4.4 Examples

In [11] examples are given of compact, strictly almost complex manifolds which have

globally generated pseudoholomorphic line bundles, i.e. the pseudoholomorphic sec-

tions are base point free. This section is devoted to the discussion of these examples

and showing that they in fact generalise to provide examples of globally generated

pseudoholomorphic vector bundles over compact, strictly almost Kähler manifolds.

Let us briefly review the almost complex structures and the pseudoholomorphic

sections (or lack thereof) of the corresponding canonical bundles found on the Kodaira-

Thurston surface [11].

Recall from Chapter 2 the Kodaira-Thurston surface is given by X = S1× (Nil3/Γ)

where Nil3 is the Heisenberg group,

Nil3 =

A ∈ GL(3,R)

∣∣∣∣∣∣∣A =

1 x z

0 1 y

0 0 1

 , x, y, z ∈ R

 ,

and Γ is the subgroup of Nil3 with integral entries, acting by left multiplication. Letting

t denote a coordinate on S1 an invariant frame of TX is given by

∂

∂t
,

∂

∂x
,

∂

∂y
+ x

∂

∂z
,

∂

∂z
,

with its coframe being

dt, dx, dy, dz − xdy.

For any a ∈ R \ {0} we can define an almost complex structure Ja on X with respect
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to the above frame of TX by,

Ja =


0 1 0 0

−1 0 0 0

0 0 0 1
a

0 0 −a 0

 .

It is straightforward to compute that the Newlander-Nirenberg tensor is nonzero for all

a 6= 0 and hence that Ja is not integrable.

Furthermore the symplectic form

ωa = dx ∧ dt+
1

a
dy ∧ (dz − xdy)

makes (X, Ja, ωa) an almost Kähler manifold.

Proposition 4.4.1 (c.f. Proposition 6.1 of [11]). For any a ∈ 4πZ there exists a

non-integrable almost complex structure Ja on the Kodaira-Thurston Surface X = S1×
(Nil3 /Γ) such that

dim
(
H0(X,KJa)

)
= 1.

In particular, there exists a pseudoholomorphic map φa : X → P1.

We now take a brief digression to discuss products of pseudoholomorphic vector

bundles over products of almost complex manifolds. This is necessary to produce

examples in dimensions greater than 4.

Let πi : (Ei,Ji) → (Mi, Ji) be pseudoholomorphic vector bundles of rank ri over

closed almost complex manifolds (Mi, Ji) for i = 1, 2. We can equip the product

manifold M1×M2 with the product almost complex structure J1× J2 which is defined

to be J1(p)⊕J2(q) on T(p,q)(M1×M2) ∼= TpM1⊕TqM2. Writing pi : M1×M2 →Mi for

the projection maps we consider the product bundle p∗1E1⊗ p∗2E2 which we will denote

by E1⊗E2 for simplicity. Now consider the product almost complex structure J1⊗J2

induced on the product bundle E1⊗E2 →M1×M2. It is straightforward to verify that

this is indeed a bundle almost complex structure with respect to the almost complex

structure J1 × J2 on the base. We now prove a Künneth formula holds for sections of

E1 ⊗ E2.

Proposition 4.4.2. Let (Ei,Ji) → (Mi, Ji) be pseudoholomorphic vector bundles of

rank ri over closed almost complex manifolds (Mi, Ji) for i = 1, 2. Letting J denote

the bundle almost complex structure induced on the tensor product bundle E1 ⊗ E2 →
M1×M2, where M1×M2 is equipped with the product almost complex structure J1×J2,

it holds that

H0
J (E1 ⊗ E2) = H0

J1
(E1)⊗H0

J2
(E2).

Proof. To proceed we equip Ei with a Hermitian metric hi and E1 ⊗ E2 with the

product metric h1⊗h2. Now consider the space of sections L2(M1×M2, E1⊗E2), it is
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straightforward to see the the set of L2 sections of the form s1⊗ s2 for si ∈ L2(Mi, Ei)

is dense.

Let ∆∂̄Ji
be the Laplacian operator associated to ∂̄Ji acting on L2 sections of Ei.

The Laplacian operator induced on the product bundle is

∆∂̄J
= ∆∂̄J1

⊗ IE2 + IE1 ⊗∆∂̄J2
.

This is a semi-positive, self-adjoint operator.

Let {ϕi} and {ψi} be the sets of eigensections of ∆∂̄J1
and ∆∂̄J2

respectively, with

corresponding eigenvalues {λi} and {µi}. Remark that {ϕi} and {ψi} form a Hilbert

basis of L2(M,E1) and L2(M,E2) respectively. By positivity of the Laplacian operator

we have λi, µi ≥ 0 and hence from the above formula for the Laplacian on the product

bundle we have,

∆∂̄J
(ϕi ⊗ ψj) = (λi + µj)ϕi ⊗ ψj = 0⇐⇒ λi = µj = 0.

To conclude we simply remark that by denseness of sections of the form s1⊗ s2 the

set {ϕi ⊗ ψj} is a Hilbert basis of L2(M1 ×M2, E1 ⊗ E2) and hence that ker(∆∂̄J
) =

Span(ϕi ⊗ ψj). That is to say, we have

H0
J (E1 ⊗ E2) = H0

J1
(E1)⊗H0

J2
(E2),

by the Hodge theory in the paragraph preceding Lemma 4.3.1.

Proposition 4.4.3. For any positive integers n, k ≥ 2 there are examples of compact

2n-dimensional strictly almost Kähler manifolds admitting globally generated pseudo-

holomorphic vector bundles of rank k.

Proof. Consider a closed Riemann surface S with a rank k−1 holomorphic vector bun-

dle. By taking products of the Kodaira-Thurston surface X (equipped with Ja and ωa

for a ∈ 4πZ) with S and applying Proposition 4.4.2 we obtain compact, strictly almost

Kähler manifolds admitting globally generated pseudoholomorphic vector bundles of

rank k.

Corollary 4.4.1. For any positive integer n ≥ 2 there are examples of compact 2n-

dimensional strictly almost Kähler manifolds admitting a non-trivial pseudoholomor-

phic map into some projective space PN of dimension N .

For an explicit example one only needs to give an explicit holomorphic vector bundle

on a Riemann surface. Given any closed Riemann surface S there exists a holomorphic

embedding S ↪−→ PN for some N ≥ 3 (in fact one can take N = 3 by projecting).

The normal bundle associated to this embedding is a non-trivial, globally generated

holomorphic vector bundle of rank N − 1 on S.
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4.5 Regularity of the Level Sets

The aim of this section is to prove the following proposition which facilitates the con-

struction of the desired test functions.

Proposition 4.5.1. Let (Mn, J, g) be an almost Kähler manifold and φ : M → Pm a

non-trivial pseudoholomorphic map. Then the push forward of volume measure µ :=

φ∗(Volg) is non-atomic.

Recall that if (X, d, ν) is a metric measure space then ν is non-atomic if and only

if ν({x}) = 0 for any point x ∈ X.

A key property of pseudoholomorphic maps is that they have a unique continuation

property. This is well known to experts but we include a proof here for completeness.

Lemma 4.5.1. For i = 1, 2 let (Mi, Ji) be almost complex manifolds of dimension 2n

and 2m respectively and φ : M1 → M2 be a non-trivial pseudoholomorphic map. If

there exists an open set U ⊂M1 such that φ(U) = y for some y ∈M2, then φ ≡ y.

Since the unique continuation property is well known for pseudoholomorphic curves

we provide a proof of the lemma using this fact.

Proof. Suppose that φ is constant on some open set U , without loss of generality we

may assume that U 6= M is a maximal such open set. By continuity φ is also constant

on Ū .

Notice that given a smooth, embedded J1-holomorphic disk u : D → M1 we have

that φ ◦ u : D → M2 is a smooth, not necessarily embedded, J2-holomorphic disk.

Unique continuation for pseudoholomorphic curves is well known.

To conclude suppose that x ∈ ∂U and consider a foliation of J1-holomorphic disks

transverse to ∂U . Details about such foliations may be found in Lemma 2.1.5. By

shrinking the disk radius parameter of the foliation we may assume that U intersects

each disk in the fibration in some relatively open set.

Now on the restriction to each disk in the foliation φ is a pseudoholomorphic disk

in (M2, J2). By assumption φ is constant on an open set in each fibre and hence,

by unique continuation, φ is constant on each fibre. Thus φ is constant on an open

neighbourhood of x ∈ ∂U contradicting the maximalilty of U .

In the remainder of this section we prove an estimate on the Hausdorff dimension of

level sets of pseudoholomorphic maps from which Proposition 4.5.1 follows but which

is also of independent interest.

Proposition 4.5.2. For i = 1, 2 let (Mi, Ji) be almost complex manifolds of dimen-

sion 2n and 2m respectively with M1 compact. If φ : M1 → M2 is a non-trivial C1

pseudoholomorphic map, then for any y ∈M2 we have that H2n−2(φ−1(y)) <∞.
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Since local holomorphic coordinates are not available in the almost complex case

we use the local model proposed by Taubes, that is, we foliate neighbourhoods by

embedded J-holomorphic disks. It is well known that the preimage of any point on a

non-trivial J-holomorphic disk consists of a finite number of points. This leads to the

following simple description of the intersection of φ−1(y) and J-holomorphic disks.

Lemma 4.5.2. For i = 1, 2 let (Mi, Ji) be almost complex manifolds of dimension

2n and 2m respectively and φ : M1 → M2 be a pseudoholomorphic map. Further let

u : D → M1 be a smooth embedded J1-holomorphic disk. Then for any y ∈ M2 either

u(D) ⊂ φ−1(y), or, the set u(D) ∩ φ−1(y) either consists of a finite number of isolated

points.

Proof. Remark that φ ◦ u : D →M2 is a J2-holomorphic disk and so it suffices to show

that for a J-holomorphic disk the preimage of any point is a finite set. But this is a

well known fact about pseudoholomorphic curves, see Proposition 2.1.4.

With these two lemma’s and the foliations of holomorphic disks of §2.1.3 we are

ready to estimate the Hausdorff measure.

Proof of Proposition 4.5.2. As with the proof of Proposition 3.2.1 this proof follows

closely the structure of the proof of Proposition 2.4 in [60].

Fix y ∈ M2 and write Z = φ−1(y). We show that H2n−2(Z) < ∞. First note that

since M1 is compact the Hausdorff measure will be independent of the metric we use.

Now for any x ∈ Z we can find a J-fibre-diffeomorphism Qx of a neighbourhood of

x in M1. By compactness we can choose finitely many of these diffeomorphisms, say

Qxi , covering Z and such that the disks are all of the same radius. We show that each

Z ∩Qxi(D ×B) has finite (2n− 2)-dimensional Hausdorff measure.

Pick x ∈ Z and write Q for Qx. For each w we know that Q(Dw) intersects Z in

finitely many points if it is not totally contained in Z by Lemma 4.5.2. We claim that

there are only finitely many w ∈ D̄ such that Q(Dw) ⊂ Z.

Suppose that this is not the case. Then we may assume, without loss of generality,

that 0 is an accumulation point of w. We now foliate a neighbourhood of x by J-

holomorphic disks transverse to Q(D0), whereby producing an open neighbourhood M

which is contained in Z. Since this contradicts Lemma 4.5.1 we will then have the

claim.

As before take Gaussian coordinates centred at x but now so that (0, w′) is identified

with Q(D0). We choose a J-fibre-diffeomorphism Q′ : D′×B → Cn, where D′ denotes

the disk in C of radius ρ′ < ρ, such that,

• ∀w′ ∈ D′, Q′(D′w′) is a J-holomorphic submanifold containing (0, w′);

• ∀w′ ∈ D′, there exists z depending only on Ω and J such that

|(ξ′, w′)−Q′(ξ′, w′)| ≤ z · ρ′ · |ξ′|;
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• ∀w′ ∈ D′, the derivatives of order m of Q′ are bounded by zm · ρ′, where zm

depends only on Ω and J .

So all the disks Q′(D′w′) are transverse to Q(D0). As being transverse is an open

condition we have that Q′(D′w′) are transverse to Q(Dw) for all |w| < ε. Thus the

intersection points ofQ′(D′w′) and Z are not isolated and so, by Lemma 4.5.2, Q′(D′w′) ⊂
Z. So Q′(D′ × B) ⊂ Z and since Q′(D′ × B) covers an open neighbourhood of x we

have the desired contradiction.

Now we claim that Q may be chosen so that none of the J-holomorphic disks are

contained in Z. In fact we show that there are only finitely many complex directions of

TxM such that there are J-holomorphic disks tangent to it and contained in Z. With

this the claim follows by rotating the Gaussian coordinate system we choose initially.

Suppose that there are infinitely many such directions. Since the directions in TxM

are parametrised by Pn−1 there is at least one accumulative direction v. Choose the

Gaussian coordinate system so that Q(D0) is transverse to v, and hence Q(Dw) are

transverse to v for small |w| < ε. This is a contradiction with Lemma 4.5.2 and Lemma

4.5.1 since the intersection numbers of Q(Dw) ∩ Z are infinite for |w| < ε.

Hence if we fix x then we can choose a complex direction such that there is no

J-holomorphic curve in Z tangent to it. By the perturbative nature of J-fibre diffeo-

morphisms we can choose Gaussian coordinates and a J-fibre diffeomorphism so that

no Q(Dw) is contained in Z for w sufficiently close to 0.

Finally we are able to estimate the Hausdorff measure of the compact set Z∩Q(D̄×
B̄). First remark that, by shrinking D and B if necessary, we may assume without loss

of generality that the distortion of Q on the domain 2D × 2B is bounded by some

constant C > 0. Also note that, by our choice of Q, for each w ∈ D̄ the set Z ∩Q(D̄w)

is a finite set of points.

Define,

g : D̄ → N ∪ {0}, w 7→ #(Z ∩Q(D̄w)).

Clearly this is an upper semi-continuous function and hence achieves a maximal value,

say N , at some point w ∈ D̄. Thus by Lemma 4.5.2, we know Z ∩ Q(D̄w) contains

at most N points for all w ∈ D̄. By the Vitali covering lemma we can take a finite

cover of the compact set Z ∩Q(D̄ × B̄) by balls of radius ε such that L of these balls

are disjoint and the union of L concentric balls with radius dilated by a factor of 3

cover. By our distortion assumption each ε ball intersects Q(2D̄w) in an open set of

area bounded above by πC2ε2. The coarea formula then yields,

NπC2ε2 · πC2(2ρ)2 > Lω2nε
2n,

where ω2n is the volume of the unit 2n-ball. Hence there is a constant C ′ > 0 such

that C ′ε−(2n−2) balls of radius 3ε are enough to cover Z ∩Q(D̄× B̄). This finishes the

proof.
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4.6 Test Functions

The functions defined in this section are identical to those of §3.2 of [33]. We include

an outline of their definitions and properties for completeness.

Given [W ] ∈ Pm and a number t > 0 consider the C-linear operator Θt,[W ] : Cm+1 →
Cm+1 defined by,

Θt,[W ]Z =

Z if Z ∈ [W ],

tZ if 〈Z,W 〉 = 0,

where 〈·, ·〉 denotes the standard Hermitian inner product on Cm+1. This induces a

biholomorphism θt,[W ] : Pm → Pm via θt,[W ][Z] := [Θt,[W ]Z]. Clearly the point [W ]

and the points [Z] associated to 1-dimensional orthogonal subspaces to [W ] are fixed

points of θt,[W ] for any t > 0.

Now recall that ϕ[W ]− 1
m+1 is a first eigenfunction of (Pm, ωFS), where ϕ[W ] : Pm →

R is defined by

ϕ[W ]([Z]) :=
|〈Z,W 〉|2

|Z|2|W |2
. (4.14)

The metric balls in (Pm, ωFS) can be written,

B[W ](r) = {[Z] ∈ Pm |ϕ[W ]([Z]) < cos2 r},

where r ∈ (0, π2 ). By stereographic projection it is straightforward to verify that the

Fubini-Study metric satisfies,

cos(distωFS([Z], [W ])) =
|〈Z,W 〉|
|Z||W |

.

Hence we can write

ϕ[W ]([Z]) = cos2(distωFS([Z], [W ])). (4.15)

Clearly the function ϕ[W ] − 1
2 is positive on B[W ](

π
4 ) and vanishes on the boundary.

Given R ∈ (0, π4 ) there exits a unique value t > 0, depending only on R, such that

θt,[W ](B[W ](2R)) = B[W ](
π
4 ). With this choice of t we define,

ΨR,[W ]([Z]) =

ϕ[W ](θt,[W ]([Z]))− 1
2 , if [Z] ∈ B[W ](2R),

0, if [Z] /∈ B[W ](2R).
(4.16)

Here we collect some necessary facts concerning Ψ.

Lemma 4.6.1. For any [W ] ∈ Pm and any R ∈ (0, π4 ) the function ΨR,[W ] defined by

(4.16) has the following properties,

• ΨR,[W ] is a non-negative Lipschitz function,

• Supp ΨR,[W ] ⊂ B[W ](2R),
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• ΨR,[W ] ≤ 1
2 on Pm,

• ΨR,[W ] ≥ 3
10 on B[W ](R).

We shall see that it is necessary for our test functions to be supported on annuli

and so we introduce a second function, distinguished by a bar, which is supported on

the compliment a metric ball. Again, given r ∈ (0, π2 ) there exists a unique value t > 0

depending only on r such that θt,[W ](B[W ](
r
2)) = B[W ](

π
4 ). We then define,

Ψ̄R,[W ]([Z]) =

0, if [Z] ∈ B[W ](
r
2),

ϕ[W ](θt,[W ]([Z]) + 1)−1 − 2
3 , if [Z] /∈ B[W ](

r
2).

(4.17)

Lemma 4.6.2. For any [W ] ∈ Pm and any r ∈ (0, π2 ) the function Ψ̄r,[W ] defined by

(4.17) has the following properties,

• Ψ̄R,[W ] is a non-negative Lipschitz function,

• Supp Ψ̄R,[W ] ⊂ Pm \B[W ](
r
2),

• Ψ̄R,[W ] ≤ 1
3 on Pm,

• Ψ̄R,[W ] ≥ 1
6 on B[W ](r).

Finally consider the nested annuli A ⊂ 2A defined by

A := B[W ](R) \B[W ](r), and 2A := B[W ](2R) \B[W ](
r

2
),

where 0 ≤ r < R < pi
4 and [W ] ∈ Pm. Now define a function uA on Pm by uA :=

ΨR,[W ]Ψ̄r,[W ]. Finally the following lemma lists the properties of uA that shall be

needed in the next section.

Lemma 4.6.3. For any [W ] ∈ Pm and any 0 ≤ r < R < π
4 the function uA :=

ΨR,[W ]Ψ̄r,[W ] has the following properties,

• uA is a non-negative Lipschitz function,

• SuppuA ⊂ 2A,

• uA ≤ 1
6 on Pm,

• uA ≥ 1
20 on A.

4.7 Proof of Theorem 4.1.1

By the characterisation (4.6) it is enough to produce k+ 1 Lipschitz functions ui which

satisfy,

Rg(ui) ≤ C(n,m)d([φ], [ωg])k. (4.18)
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In fact is enough to produce k test functions since we can take the (k + 1)-th function

to be constant.

Recall the following definition for (X, d) a separable metric space.

Definition 4.7.1. For an integer N > 1 the metric space (X, d) is said to have the

N -covering property if each metric ball Bp(2r) can be covered with N balls of radius r.

The next proposition facilitates the construction of the desired k test functions on

(Pm, dωFS). The statement we use appears as Proposition 3.1 in [33] and is a refor-

mulation of Corollary 3.2 in the work of Grigoryan, Netrusov, and Yau [23]. In more

detail it provides a collection of k disjoint sets of controlled measure which will form

the supports of the test functions. These sets cannot, in general, be taken to be metric

balls but can be taken as annuli for which we use the following notation,

A = {x ∈ X | r ≤ d(x, p) < R}, 2A = {x ∈ X | r
2
≤ d(x, p) < 2R}.

Proposition 4.7.1. Let (X, d) be a separable metric space with the property that all

metric balls Bp(r) are precompact. Suppose further that it satisfies the N -covering

property for some N > 1. Then for any finite, non-atomic measure µ on (X, d) and

any positive integer k there exists a collection of k disjoint annuli 2Ai such that

µ(Ai) ≥
cµ(X)

k
, for any 1 ≤ i ≤ k, (4.19)

where c = c(N) > 0 is some constant depending only on N .

Now consider the metric space (Pm, dωFS), by volume comparison one can compute

that it satisfies the N -covering property with N = 92m. Further we endow (Pm, dωFS)

with the measure µ := φ∗Volg which is finite and non-atomic by Proposition 4.5.1.

Thus, for a given integer k ≥ 1, there is a collection of k annuli Ai ⊂ Pm such that the

annuli 2Ai are disjoint and

µ(Ai) ≥
cµ(Pm)

k
, (4.20)

with c > 0 depending only on m.

Finally we can define our test functions to be ui = uAi ◦ φ where uAi are as in

Lemma 4.6.3 and Ai are the annuli of the previous paragraph. Since the annuli are

disjoint these k functions are linearly independent as each ui is supported on φ−1(2Ai).

For each ui we have the following estimate,∫
M
u2
i

ωng
n!
≥ Volg(φ

−1(Ai))

400
=
µ(Ai)

400
≥ cµ(Pm)

400k
≥ c

400n!

1

k

∫
M
ωng , (4.21)

where the first inequality follows from Lemma 4.6.3, the second inequality from (4.20)

and the third from the definition of µ. We are thus left to estimate the gradient.

The gradient estimate is identical to [33] so we provide only a brief sketch. Using

the definition of the functions uAi from the previous section the key is to estimate the
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following quantity, ∫
M
|∇(Ψi ◦ φ)|2ωng ≤

∫
M
|∇(τ ◦ θti,[Wi] ◦ φ)|2ωng .

Here τ denotes the moment map of the action of the group of isometries on (Pm, ωFS).

The appearance of τ follows from the fact that, after a rotation and scaling, the func-

tions ϕ[Wi] defined by (4.14) can be viewed as components τk` of τ (see (4.8)). Now

Lemma 4.2.1 implies,∫
M
|∇(τ ◦ θti,[Wi] ◦ φ)|2

ωng
n!
≤ 1

(n− 1)!

∫
M
φ∗ωFS ∧ ωn−1

g .

Similarly one estimates,∫
M
|∇(Ψ̄i ◦ φ)|2

ωng
n!
≤ 1

(n− 1)!

∫
M
φ∗ωFS ∧ ωn−1

g .

Overall this yields, ∫
M
|∇ui|2

ωng
n!
≤ 4

(n− 1)!

∫
M
φ∗ωFS ∧ ωn−1

g . (4.22)

Combining with estimate (4.21) we have an estimate of the form (4.18).

4.8 Eigenvalues of Pseudoholomorphic Subvarieties

4.8.1 Analysis on Pseudoholomorphic Subvarieties

For the purposes of this section we use the following definition of an irreducible pseu-

doholomorphic subvariety.

Definition 4.8.1. Let (Mn+`, J) be an almost complex manifold of dimension n+` then

we say that a closed set Σn ⊂Mn+` is a n-dimensional irreducible pseudoholomorphic

subvariety if it is the image of a somewhere immersed smooth pseudoholomorphic map

Φ : Xn → Mn+`, where Xn is a n-dimensional smooth, closed, connected almost

complex manifold.

We call the image of the set of points p ∈ X where the differential dpΦ is not of

full rank the singular set of Σ and denote it by Σsing. The regular locus, Σ∗ is the

complement Σ \ Σsing.

Recall the definition of a real 2n-current C in M being an almost complex integral

cycle given in §3.3. It follows immediately from Definition 4.8.1 that a pseudoholomor-

phic subvariety defines an almost complex integral cycle.

Let (Mn+`, J, g) be an almost Kähler manifold and Σn ⊂ Mn+` a n-dimensional

irreducible pseudoholomorphic subvariety. Furthermore, write ωg for the Kähler form

which is a closed, non-degenerate 2-form. For any x ∈ M and any n-dimensional
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complex subspace W ⊂ TxM we can identify W ∼= Cn on which ωg|x is a non-degenerate

2-form. Hence the Wirtinger inequality, see [12] for example, implies

1

n!
|ωng | ≤ 1.

On the other hand, recall that, for 1 ≤ p ≤ n, a p-form α is called a calibration on an

Riemannian manifold if it is closed and at any point x and any p-dimensional oriented

subspace W of the tangent space at x it holds that

|α|W | ≤ 1.

Moreover we say that a submanifold of N is a calibrated submanifold with respect to

α if we have equality above for all points on the submanifold. Hence we see that the

2n-form 1
n!ω

n
g is a calibration on M and furthermore, since

1

n!

∫
Σ
ωng = Volg(Σ),

Σ is a calibrated 1
n!ω

n
g -current. Thus by the fundamental work of Harvey-Lawson [26]

Σ is a minimal current in (M, g).

Lemma 4.8.1. Let (Mn+`, J, g) be an almost Kähler manifold and Σn ⊂ Mn+` a n-

dimensional irreducible pseudoholomorphic subvariety. Then Σ is a minimal current in

M . Moreover there exists a positive integer N and a map F : Σ→ RN such that F (Σ)

is a current of bounded mean curvature.

Since almost complex integral cycles in almost Kähler manifolds are area minimis-

ers Almgren’s big regularity theorem applies and the singular set has finite (2n − 2)-

Hausdorff dimension. For the case of pseudoholomorphic subvarieties in the sense of

definition 4.8.1 we can have the stronger property that the (2n− 2)-Hausdorff measure

is finite. It is in fact a corollary of the following theorem of Zhang [60].

Theorem 4.8.1 (Theorem 3.8 of [60]). Suppose (M2n, J) is an almost complex 2n-

dimensional manifold, and Z2 is a codimension 2, compact, connected, almost complex

submanifold. Let (M1, J1) be a compact, connected, almost complex manifold of dimen-

sion 2k < 2n and u : M1 →M a pseudoholomorphic map such that u(M1) * Z2. Then

u−1(Z2) ⊂ M1 is a closed set with finite (2k − 2)-dimensional Hausdorff measure and

a positive cohomology assignment.

Indeed we can use the framework of 1-jets of pseudoholomorphic maps [19] to view

the singular set as the preimage of an almost complex submanifold under a pseudo-

holomorphic map. This is the approach taken by Zhang in the proof of Theorem 5.5 of

[60] and of Proposition 6.1 of [11].

Lemma 4.8.2. Let (Mn+`, J) be an almost complex manifold of dimension n + `
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and Σn ⊂ Mn+` a n-dimensional irreducible pseudoholomorphic subvariety. Then

H2n−2(Σsing) <∞ and in particular H2n−1(Σsing) = 0.

Proof. Since M and X are compact the finiteness of the Hausdorff measure on each

space will be independent of the choice of Riemannian metric. Moreover since the

defining map Φ is a smooth map between smooth, compact manifolds it is Lipschitz.

Thus it suffices to prove that H2n−2(Φ−1(Σsing)) <∞.

Let z1, .., zn+` be complex coordinates on some open set U ⊂ M and write V =

Φ−1(U). We will study the intersection of the singular set with all possible projections

of U onto n of its coordinates.

Consider first the case of projection onto the first n coordinates z1, ..., zn, writing

U1 = projz1,...,zn(U). As explained in [60] the manifold of 1-jets of pseudoholomorphic

maps from V to U1, say J1(V,U1), may be identified with the total space, E1, of the

complex vector bundle over V × U1 whose fibre at each point (x, y) is the complex

vector space of C-linear homomorphisms TxV → TyU1. As shown in [19] there is a

canonical almost complex structure J such that the lift of each pseudoholomorphic

map Ψ : V → U1, i.e. ΨE1(x) = (x,Ψ(x), dΨ|TxM ), is a pseudoholomorphic map

V → J1(V,U1). Taking the fibrewise determinant of E1 we get a complex line bundle

L1 = detE1 over V ×U1 whose total space inherits a natural almost complex structure

from J1(V,U1). A pseudoholomorphic map Ψ : V → U1 induces a pseudoholomorphic

map ΨL1(x) = (x,Ψ(x), det dΨ|TxM ). For Φ, a defining map associated to Σ, we write

Φ1(x) = projz1,...,zn(Φ(x)) which is a pseudoholomorphic map V → U . Hence there is

an induced pseudoholomorphic section of L1 which we call Φ1,L1 .

Repeating the above procedure for all possible projections onto n coordinates one

obtains a finite family of line bundles Li and pseudoholomorphic maps Φi,Li . Recalling

that Φ−1(Σsing) is the set of points x ∈ X such that dxΦ is not of full rank it follows

that Φ−1(Σsing) ∩ V =
⋂
i Φ−1

i,Li
(V × Ui × {0}).

If Φ−1
i,Li

(V × Ui × {0}) is not the whole of V then we can apply Theorem 4.8.1 to

deduce that it has finite (2n − 2)-dimensional Hausdorff measure. On the other hand

if every Φ−1
i,Li

(V × Ui × {0}) were the whole of V then this would contradict Φ being

a somewhere immersed pseudoholomorphic map. In particular there exists an i such

that H2n−2(Φ−1
i,Li

(V × Ui × {0})) <∞ and hence H2n−2(Φ−1(Σsing) ∩ V ) <∞.

As an application of this fact we can deduce a Sobolev inequality on Σ using the

work of Michael and Simon [42].

Lemma 4.8.3. Let (Mn+`, J, g) be a closed almost Kähler manifold and Σn ⊂ Mn+`

be an irreducible pseudoholomorphic subvariety. Then the inclusion W 1,2(Σ) ⊂ L2(Σ)

is compact.

Proof. First recall from the definition of pseudoholomorphic subvarieties that Σ is com-

pact. The argument is standard once we establish an appropriate Sobolev inequality,

for example see §5 of [37]. By Lemma 4.8.1 we can view Σ as a compact current
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of bounded mean curvature in some Euclidean space RN . Thus the Michael-Simon

Sobolev inequality [42] applies and we can conclude compactness in the usual way, see

for example the arguments in §5 of [37].

Let (Mn+`, J, g) be an almost Kähler manifold and Σn ⊂ Mn+` a n-dimensional

irreducible pseudoholomorphic subvariety. The metric g restricts to a (possibly incom-

plete) Kähler metric gΣ on the regular locus Σ∗. We consider the exterior derivative as

an operator on the domain

D(d) := {u ∈ C1(Σ∗)|u, du ∈ L2(Σ)}.

Further, if δ denotes the co-differential with respect to gΣ, then we consider δ as an

operator on

D(δ) := {α ∈ C1(Σ∗;T
∗Σ∗)|α, δα ∈ L2(Σ)}.

We denote by ∆Σ = −δd the Laplace-Beltrami operator of gΣ on the following function

space

D(∆Σ) = {u ∈ C2(Σ∗)|u ∈ D(d), du ∈ D(δ)}

= {u ∈ C2(Σ∗)|u,∇u,∆Σ ∈ L2(Σ)} ⊂ L2(Σ).

Since the singular set is of real codimension at least 2 we can follow the arguments

of Li and Tian [37] leading us to the following lemma.

Lemma 4.8.4. Let (Mn+`, J, g) be a closed almost complex manifold of dimension n+`

and Σn ⊂ Mn+` a n-dimensional irreducible pseudoholomorphic subvariety equipped

with gΣ. Then the closure of the Laplacian ∆ = ∆gΣ is self-adjoint.

We thus have all of the ingredients to prove that ∆Σ is essentially self-adjoint and

has discrete spectrum. We refer the reader to Proposition 4.1 of [33] for the proof.

Proposition 4.8.1. Let (Mn+`, J, g) be a closed almost complex manifold of dimen-

sion n + ` and Σn ⊂ Mn+` a n-dimensional irreducible pseudoholomorphic subvariety

equipped with gΣ. The Laplace-Beltrami operator associated to the induced metric gΣ

is essentially self-adjoint and has discrete spectrum.

Proof of Theorem 4.1.2

From the previous section we can make sense of the eigenvalues of the Laplacian.

Moreover, as remarked in [33], a standard argument shows that the variational principle

continues to hold for these eigenvalues. Thus the proof reduces to finding k linearly

independent functions ui ∈W 1,2(Σ) such that

R(ui) ≤ C(n,m)

∫
Σ φ
∗ωFS ∧ ωn−1

g∫
Σ ω

n
g

k.
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For the test functions we again use ui = uAi ◦ φ where uAi is the function constructed

on Pm in §4. Since Volg(Σ
∗) is finite and uAi is Lipschitz it follows that ui ∈W 1,2(Σ).

It is now straightforward to verify that the argument of the proof of Theorem 4.1.1 can

be followed to the desired conclusion.

4.9 Further Directions

There are several potential extensions of Theorem 4.1.1 one could explore. We have

already remarked that Lemma 4.2.1 holds for φ a pseudoholomorphic map with respect

to any almost complex structure on Pm compatible with the Fubini-Study form ωFS.

With this fact it is easy to deduce that in fact the Theorem 4.1.1 holds for any almost

Kähler manifold admitting such a map. At present no examples of strictly almost

Kähler manifolds admitting a pseudoholomorphic map to Pm with a non-standard

almost complex structure compatible with the Fubini-Study form are known.

4.9.1 Locally Approximable Pseudoholomorphic Maps

In another direction we could weaken the regularity assumptions of the map φ and

consider the class of locally approximable pseudoholomorphic maps.

Let (M2n, JM , hM ) and (N2m, JN , hN ) be a compact almost Hermitian manifold

and consider an isometric embedding N ↪−→ Rk. We can define a Sobolev space for

maps u : M → N by,

W 1,2(M,N) := {u ∈W 1,2(M,Rk) |u(x) ∈ N a.e. x ∈M},

where W 1,2(M,Rk) is defined as in Chapter 2. Similarly we define,

W 1,2
loc (M,N) := {u ∈W 1,2

loc (M,Rk) |u(x) ∈ N a.e. x ∈M}.

Following the lead of Riviére and Tian [46] we say that a map u ∈ W 1,2
loc (M,N) is

locally approximable if for any ball B̄ ⊂ M there exists a sequence ui ∈ C∞(M,N)

such that

ui → u strongly in W 1,2(B,N).

It is proven in [4] that u ∈W 1,2
loc (M,N) is locally approximable if and only if∫

M
u∗ω ∧ dα = 0, ∀α ∈ Ω2n−3(B) and ∀ω ∈ Z2(N),

for any ball B̄ ⊂M . That is, if and only if

d(u∗ω) = 0, ∀ω ∈ Z2(N),

holds in the sense of currents.
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Thus, given a locally approximable u ∈ W 1,2
loc (M,Pm), we see that u∗α defines a

closed 2-current on M for any closed 2-form α ∈ Ω2(Pm). By a theorem of de Rham

any closed 2-current is cohomologous to a smooth, closed 2-form and thus u induces a

well-defined map u∗ : H2(Pm)→ H2(M).

We say that a map φ ∈W 1,2
loc (M,Pm) is pseudoholomorphic if

JPm ◦ dφ(x) = dφ(x) ◦ J, a.e. x ∈M. (4.23)

Lemma 4.9.1. Let (M2n, J, h) be a compact almost Hermitian manifold and φ ∈
W 1,2(M,Pm) a pseudoholomorphic map, then

nωn−1 ∧ φ∗ωFS = |∇φ|2ωn,

holds almost everywhere on M . In particular for any φ ∈W 1,2(M,Pm),∫
M
φ∗ωFS ∧ ωn−1 <∞.

Proof. First remark that for any closed 2-form Ω the following formula holds,

(trg hΩ)ωn = 2nωn−1 ∧ Ω,

where hΩ(X,Y ) := 1
2 (Ω(X,JY ) + Ω(Y, JX)). This follows by direct calculation, for

example see [54].

Let x ∈ M be such that dφ(x) 6= 0 and (4.23) is satisfied at x. Consider now the

above formula at the point x with Ωx = φ∗ωFS|x. To prove the lemma it suffices to

notice that |∇φ|2(x) = 1
2(trg hΩ)(x).

Remark 4.9.1. If φ ∈W 1,p(M,N) and α ∈ Zk(N) then φ∗α is in L1 for all k ≤ p.

In general one expects such maps to have singularities, even in the holomorphic case.

For example, consider the map (z1, z2) 7→ [z1, z2] from C2 into P1 which is holomorphic

on C2 \ {0}, cannot be extended over (0, 0) ∈ C2 and is locally approximable. In the

holomorphic case these singlarities are relatively well studied [27, 30] but rely heavily

on local holomorphic coordinates. The almost complex case was first considered by

Riviére and Tian [46] wherein it was proven that a locally approximable map from

a compact almost complex 4-manifold into a projective variety has at most isolated

point singularities. They further conjecture that maps from higher dimensional almost

complex manifolds into a projective space should have a singular set with zero (2n−4)-

dimensional Hausdorff measure. This was verified and generalised by Wang [56] who

proved that this is the case for any stationary, locally approximable map between

compact almost complex manifolds. Henceforth, we shall restrict our study to locally

approximable pseudoholomorphic maps φ ∈W 1,2(M,Pm).

Lemma 4.9.2. Let M be a compact almost complex manifold and φ ∈ W 1,2(M,Pm)
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a locally approximable pseudoholomorphic map. Then the pushforward of the volume

measure, µ = φ∗Volg, is non-atomic.

Proof. Since φ is a W 1,2 pseudoholomorphic map between almost Kähler manifolds

Therorem C of [56] applies and hence φ is smooth away from a singular set Σ which

satisfies H2m−2(Σ) = 0. By the argument given in §4.5 Volg(φ
−1(x)) = 0 for all

x ∈ φ(M) \ φ(Σ).

On the other hand suppose that x ∈ φ(Σ) and consider the level set φ−1(x) which

we write as a union of A = φ−1(x) ∩ Σ ⊂ Σ and B = φ−1(x) \ (φ−1(x) ∩ Σ) ⊂ M \ Σ.

Clearly Volg(A) = 0. Moreover since φ is regular on B one can apply the argument of

Proposition 3.2.1 to deduce that Volg(B) = 0 and hence that Volg(φ
−1(x)) = 0.

Theorem 4.9.1. Let (Mn, J) be a closed, n-dimensional, almost Kähler manifold and

φ ∈ W 1,2
loc (M,Pm) a non-trivial, locally approximable pseudoholomorphic map, where

Pm is taken with its standard complex structure. Then, for any almost Kähler metric

g on Mn, the eigenvalues of the Laplace-Beltrami operator ∆g satisfy,

λk(M
n, g) ≤ C(n,m)

∫
M φ∗ωFS ∧ ωn−1

g∫
M ωng

k, for any k ≥ 1, (4.24)

where C(n,m) > 0 is a constant depending only on n and m.

Proof. As in the previous cases the proof reduces to finding k+ 1 linearly independent

functions ui ∈W 1,2(M) such that

R(ui) ≤ C(n,m)

∫
M φ∗ωFS ∧ ωn−1

g∫
M ωng

k.

Firstly remark that since the pushforward measure µ = φ∗Volg is non-atomic we

can define functions ui = uAi◦φ as constructed in the discussion proceeding Proposition

4.7.1 in §4.7. Since uAi is a compactly supported Lipschitz function on Pm and φ is W 1,2

it follows that the composition ui ∈W 1,2(M). Remarking the min-max characterisation

of the eigenvalues can be done over W 1,2 we are left to verify the estimates (4.21) and

(4.22) continue to hold. This is straightforward and hence will be omitted.

In the case of M being a Riemann surface, since W 1,2 holomorphic maps are nec-

essarily smooth, this theorem contains no new information on top of that provided by

Theorem 4.1.1. For n ≥ 2 one can construct examples of maps satisfying the hypothe-

ses of Theorem 4.9.1 which are not smooth and hence to which Theorem 4.1.1 do not

apply. Let us briefly look at a class of examples of particular geometric interest, namely

rational maps. Since this is new even in the case of an integrable complex structure we

focus on this simpler case.

Recall, e.g. [22, p. 490], that a rational map from a compact, complex manifold into

projective space, say φ : M 99K Pm, is given by a holomorphic map φ : M \ V → Pm
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away from a subvariety, V ⊂ M , of complex codimension at least 2. Considering an

isometric embedding Pm ↪−→ Rk and using that Pm is compact and V ⊂ M is of real

codimension 4 a standard cut-off argument (c.f. the argument in the next paragraph)

can be employed to deduce that a rational map φ : M 99K Pm lies in W 1,2(M,Pm).

Remark 4.9.2. One could define a rational map in the pseudoholomorphic category as

in the holomorphic setting, i.e. to be a pseudoholomorphic map away from a subvariety

of codimension at least 2. In this case Corollary 4.9.1 could also be stated in the

pseudoholomorphic category. However at present it is not clear if this is the right

notion for dimension n ≥ 3.

Moreover these maps are locally approximable, indeed it is enough to verify that

d(φ∗ωFS) = 0 holds in the sense of currents. Without loss of generality we may assume

that the indeterminacy locus, V, is connected, otherwise one can apply the following

argument to each connected component. First take a tubular neighbourhood of the

indeterminacy locus, say V ε ⊃ V , and a smooth cut-off function η ε such that η ε ≡ 0

on V ε and η ε ≡ 1 on M \ V2 ε. Furthermore we may arrange that |∇η ε| ≤ 1
ε . Consider

the smooth 2-form ω ε = η ε φ
∗ωFS ∈ Ω2(M), we calculate that

dω ε = dη ε ∧ φ∗ωFS + η εd(φ∗ωFS).

Now remark that ∫
M
|dη ε ∧ φ∗ωFS|2 ωn ≤ C

Vol(V2 ε \ V ε)
ε2

ε→0−−−→ 0,

where C = supM\V |φ∗ωFS|2 < +∞ and we have used that V is of real codimension

at least 4 in the limit. It is thus straightforward to conclude that d(φ∗ωFS) = 0 holds

in the sense of currents. Thus rational maps φ : M 99K Pm are examples of locally

approximable W 1,2(M,Pm) maps.

Recall, e.g. [22], that rational maps from a compact complex manifold into a

projective space are in one-to-one correspondence with holomorphic line bundles whose

base locus is of codimension at least 2. Suppose that L → M is a holomorphic line

bundle with base locus, V , of codimension at least 2 associated to a given rational

map φ : M 99K Pm. By construction, it holds that φ∗H = L on M \ V , where H

denotes the hyperplane bundle on Pm. Since φ is holomorphic on M \ V we have that

c1(L|M\V ) = c1(φ∗H) = φ∗[ωFS]. On the other hand recall that φ∗[ωFS] defines a class

in H2(M). We claim that c1(L) = φ∗[ωFS] in H2(M).

Let s : M \ V → L be a holomorphic section, by the Poincaré-Lelong formula

the zero divisor, Z, of s is cohomologous to c1(L|M\V ). Since V is of codimension at

least 2 we can extend s over V by Hartog’s extension theorem. Writing s̃ : M → L

for the extension and Z̃ = {s̃ = 0} the Poincaré-Lelong formula again implies that

c1(L) = [Z̃]. To prove the claim we need only verify that the currents of integration
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satisfy the equality [Z] = [Z̃]. But V ∩ Z̃ is of codimension at least 1 in Z̃ from which

the equality follows. Thus we obtain the following consequence of Theorem 4.9.1.

Corollary 4.9.1. Let Mn be a closed Kähler manifold and L→M a holomorphic line

bundle with base locus V ⊂M . If V is a subvariety of codimension at least 2 then, for

any Kähler metric ω on M , the eigenvalues of the Laplace-Beltrami operator satisfy,

λk(M,ω) ≤ C (c1(L) ^ [ω]n−1, [M ])

Vol(M, [ω])
k, for any k ≥ 1, (4.25)

where C > 0 is a constant depending only n and m.

Of course there are many examples of compact complex manifolds which do not

admit rational map into any projective space. For example the generic Hopf surfaces,

which are quotients of C2 \ {0} by an infinite cyclic group Γ ⊂ GL(2,C), do not admit

any global, non-constant meromorphic functions. Nonetheless Corollary 4.9.1 does

provide many new examples of Kähler manifolds on which eigenvalues can be bounded

over a given Kähler class.

Example 4.9.1. Let M be a rational surface, that is, a surface which is birationally

isomorphic to P2. By the arguments above Theorem 4.9.1 applies and for any Kähler

metric g with associated Kähler form ω there exists a universal constant C > 0 such

that

λk(M,ω) ≤ C (φ∗[ωFS] ^ [ω], [M ])

Vol(M, [ω])
k,

where φ : M 99K P2 is a birational map. In other words, for any class α ∈ K ⊂ H2(M,R)

in the Kähler cone of M there exists a constant Cα > 0, depending only on α and c1(L),

such that,

sup
ω∈α

λk(M,ω) Vol(M,α) ≤ Cαk,

where L→M is a holomorphic line bundle associated to φ.

4.9.2 Variations of the Almost Complex Structure

It is also natural to consider the question of whether one can obtain uniform eigenvalue

bounds when the symplectic form is fixed and the almost complex structure is permitted

to vary. This question has been considered by Polterovich in [45] where the following

theorem is proven,

Theorem 4.9.2 (Theorem 1.2.A. [45]). Let (M,Ω) be a closed symplectic manifold and

T 4 = R4/Z4 the 4-torus endowed with the standard symplectic form σ. Then

Λ1(T 4 ×M,σ ⊕ Ω) := supλ1(T 4 ×M, g) = +∞,

where the supremum runs over all compatible metrics, that is, Riemannian metrics of

the form g(X,Y ) = σ ⊕ Ω(X,JY ) for some almost complex structure J .



CHAPTER 4. EIGENVALUES ON ALMOST KÄHLER MANIFOLDS 89

Notice that here that the symplectic form is fixed and the almost complex structure

is allowed to vary. This is in contrast to Theorem 4.1.1 where the almost complex

structure is fixed and the symplectic form is allowed to vary within a given cohomology

class.

In the same paper it is also proven that if one shrinks the class of metrics considered

to Riemannian metrics which are compatible with the symplectic form via an integrable

almost complex structure then a uniform bound can be found for the first eigenvalue.

For the purposes of stating the next theorem we shall call such metrics compatible

Kähler metrics.

Theorem 4.9.3 (Theorem 1.2.B. [45]). Let (M,Ω) be a symplectic manifold of real

dimension 2n such that [Ω] ∈ H2(M,Q). Then for any compatible Kähler metric g on

(M,Ω) it holds that

λ1(M, g) ≤ c(n)

(
n+ 2− (c1(TM) ∪ [Ω]n−1, [M ]

([Ω]n,M)

)
,

where c(n) is some constant depending only on n.

By applying the bounds of Kokarev [33] in the argument of Polterovich [45], Theo-

rem 4.9.3 can be generalised to the k-th eigenvalue.
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[49] G. Szegö. Inequalities for certain eigenvalues of a membrane of given area. Journal
of Rational Mechanics and Analysis, 3:343–356, 1954.

[50] C. H. Taubes. Sw⇐gr: From the seiberg-witten equations to pseudo-holomorphic
curves. Journal of the American Mathematical Society, 9(3):845–918, 1996.

[51] C. H. Taubes. Seiberg–witten invariants and pseudo-holomorphic subvarieties for
self-dual, harmonic 2–forms. Geometry & Topology, 3(1):167–210, 1999.

[52] C. H. Taubes. Tamed to compatible: symplectic forms via moduli space integra-
tion. Journal of Symplectic Geometry, 9(2):161–250, 2011.

[53] W. Thurston. Shorter notes: Some simple examples of symplectic manifolds. Pro-
ceedings of the American Mathematical Society, 55(2):467–468, 1976.

[54] V. Tosatti, B. Weinkove, and S.-T. Yau. Taming symplectic forms and the calabi–
yau equation. Proceedings of the London Mathematical Society, 97(2):401–424,
2008.



BIBLIOGRAPHY 93

[55] M. Usher. Standard surfaces and nodal curves in symplectic 4-manifolds. Journal
of Differential Geometry, 77(2):237–290, 2007.

[56] C. Wang. Regularity and blow-up analysis for j-holomorphic maps. Communica-
tions in Contemporary Mathematics, 5(04):671–704, 2003.

[57] X. Wang. Balance point and stability of vector bundles over a projective manifold.
Mathematical Research Letters, 9(3):393–411, 2002.

[58] C. Wendl. Lectures on holomorphic curves in symplectic and contact geometry.
arXiv preprint arXiv:1011.1690, 2010.

[59] P. C. Yang and S.-T. Yau. Eigenvalues of the laplacian of compact riemann surfaces
and minimal submanifolds. Annali della Scuola Normale Superiore di Pisa-Classe
di Scienze, 7(1):55–63, 1980.

[60] W. Zhang. Intersection of almost complex submanifolds. Cambridge Journal of
Mathematics, 6(4):451–496, 2018.


	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/149525


