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Abstract: To investigate the bearing mechanism of piles in inclined slope, this paper 

proposed an analytical method through geometric transformation to calculate the 

ultimate bearing capacity at the tip of a pile in inclined rocks based on the 

characteristic line method. It was found that there were five failure modes for piles in 

inclined rocks depending on the embedment ratios, slope angles, average overburden 

load and tensile strength parameter of the rock mass. When the pile failure mode was 

under the modes of deep pile with minor overburden (DL) and deep pile with major 

overburden (DH), the ultimate bearing capacity had no change as the slope angle and 

the pile embedment ratio changed. When the pile was under the failure modes of 

semi-deep pile with minor overburden (SL), semi-deep pile with major overburden 

(SH) or shallow pile (SS), the ultimate bearing capacity decreased with an increasing 

rate as the slope angles increased; and to get the same ultimate bearing capacity at the 

pile tip, the pile embedment ratio should increase. The proposed analytical method 

can be served as an efficient method to estimate the bearing capacity of piles in 

inclined slope with small slope angle (typically less than 40o). 

Key words: Pile on inclined rock; bearing capacity; slope angles; embedment ratio 

1. Introduction 

With the rapid development of transportation facilities and electric power girds 

in China, more and more pile foundations are built in high and steep slopes in 

mountain area. The topography, landforms and geological conditions in these areas 

are very complicated and the steep slopes are usually covered with thin or no soil 

layers, thus many of the piles on the slope are rock-socketed piles. 

For shallow foundations in flat soils or rocks, bearing capacity of foundations 

was a classic problem and had been investigated mainly through the limit equilibrium 
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method, the slip method and the limit analysis method. Terzaghi [1] presented a 

theoretical solution for calculating the ultimate bearing capacity of shallow 

foundations at different depths and site conditions. Hansen [2] considered the 

compressibility of soil and suggested a comparison between the stiffness index and 

the critical stiffness index of the soil, to discriminate the mode of soil failure. 

Meyerhof [3] proposed the ultimate bearing capacity formula considering the 

influence of shear strength on the soil. Based on the limit equilibrium theory of loose 

media, Sokolovskii [4] employed the characteristic line numerical solution to obtain 

the ultimate bearing capacity of foundation under the certain boundary conditions. 

Later, Serrano and Olalla [5-9] considered the ultimate bearing capacity of 

foundations on rock masses based on the Hoek-Brown failure criterion and modified 

Hoek-Brown failure criterion. Yang [10,11] had focused on the ultimate bearing 

capacity of a strip footing with the modified failure criterion using the technique, an 

MC linear failure criterion, was proposed to calculate the rate of external work and 

internal energy dissipation.  

For shallow foundations near the inclined slope of soils or rocks, Serrano and 

Olalla [12,13] analyzed the strip load on a homogeneous, isotropic and continuous 

mass with a modified Mohr-Coulomb failure criterion using the method of 

characteristics lines. Cheng [14,15] firstly demonstrated the equivalence between the 

classical lateral earth pressure and bearing capacity problem by the slip line method. 

Based on these results, it was concluded that the three classical problems were 

equivalent in the basic principles, and each problem can be viewed as the inverse of 

the other problems. 

On the basis of plasticity, Meyerhof [3] had developed the bearing capacity 

theory by extending the previous surface foundation bearing capacity formula to 

shallow foundations and deep foundations. For piles in flat rock, Serrano and Olalla 

[16,17] proposed a method for calculating the ultimate bearing capacity at the tip of a 

pile embedded in flat rock, expanding and applying Meyerhof’s theory. However, 

these studies focused on the solution of the ultimate bearing capacity at the tip of piles 

in flat ground. In the engineering practice, piles were constructed in the inclined rocks 

under many occasions. The bearing mechanism of the pile in the inclined rocks 

remains unclear, thus it is necessary to investigate the bearing capacity of piles in 

inclined rocks to know the bearing mechanism deeply and supply design guidelines 

for the piles. 
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Based on the characteristic line method, this paper proposed an analytical 

method to calculate the ultimate bearing capacity at the tip of a pile in inclined rocks 

with different slope angles. Different failure modes for piles were identified under 

different embedment ratios and slope angles. The effects of slope angles and 

embedment ratios on the pile bearing capacity was specially investigated under 

different failure modes. 

2. Basic hypotheses and failure criterion 

Fig.1 shows the sketch of assumed failure surface of the pile. The rock mass is 

assumed to be a homogeneous, isotropic and continuous mass medium. The ultimate 

bearing capacity at the tip of piles in inclined rocks was calculated based on 

Hoek-Brown strength criterion [18]. The rock medium fails mainly when the failure 

zone is obtained using the characteristic lines method.. The rock mass is weightless 

and it is assumed that the material is coaxial and has associated dilatancy [16,17]. 

The Hoek-Brown criterion [16,17] is given as follows:  

                                           (2.1) 

where  is the major failure stress and  is the minor failure stress,  is the 

unconfined compressive strength, m and s are Hoek-Brown constants. 

The slope angle  and the virtual angle  are known (Fig.1). The 

embedment ratio  is defined as: 

                                                     (2.2) 
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(b)  

Fig.1. Sketch of assumed failure 

Fig.2 mainly shows the ultimate bearing capacity  and a load  for 

Boundary 1. 

—ultimate bearing capacity under two-dimensionality hypothesis (kN/m2). 

— vertical load exerted on Boundary 1. 
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(b)  

Fig.2. Force diagram and stress ellipses. 

When , the normal components ( ) and shear components ( ) are as 

follows: 

                          (2.3) 

When , the normal ( ) and shear ( ) components are as follows: 

                          (2.4) 

— average overburden load in ground. 

Taking into account formula (2.3) and (2.4), the angle for virtual boundary 1 is 

expressed as: 

                                 (2.5) 
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3. The solution procedure 

When , the embedment ratio n is (Fig.1): 

                                (3.1) 

                             (3.2) 

When , the embedment ratio n is (Fig.1): 

                                (3.3) 

                                      (3.4) 

According to Serrano and Olalla [7]:  

                                        (3.5) 

                                  (3.6) 

                                                      (3.7) 

After some manipulations, the following equation holds: 

         (3.8) 
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                                    (3.9) 

When major overburden circle , the limiting embedment condition 

 occurs which can be expressed as following: 

 (3.10) 

Fig.3 shows the embedment ratio  against the overburden pressure  for 

different values of parameter . When , the embedment ratio has no 

change because it is separated by the limiting embedment . When , 

the embedment ratio has the turning point and abruptly decreases. When , 

the embedment ratio decreases with the increasing parameter . The limiting 
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(d)  

Fig.3. The relation between the embedment ratio  and the overburden pressure  

for different . 
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Fig.4. Failures modes of pile under the different slope angles  ( ). 

Fig.5 shows the variation of the limiting embedment ratio with the change of . 

When , the limiting embedment condition  is expressed as:  

                                          (3.11) 
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(a). The relation between the limiting embedment ratio  and different slope 

angles . 

 

(b). The relation between the limiting embedment ratio  and different slope 

angles . 

Fig.5. The variation of the limiting embedment ratio with the change of slope angles 
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pressures . The embedment ratio has no turning point of overburden pressure load 

and the embedment ratio decreases with increasing slope angles. 

 

Fig.6. Failures modes of pile under the different slope angles  ( ). 

Based on the analysis above, the five failure modes of the piles in inclined rock 

under different conditions are summarized in Table.1. 
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4. Ultimate bearing capacity of a pile tip 

The ultimate bearing capacity at the tip of a pile ( ) is 

                                          (4.1) 
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0.05), the load factor increases dramatically then tends to reach a constant value after 

 reaches or exceeds the limit embedment ratios , and the pile failure mode 

transits from SL to DL. When  ( =0.5 and 1.0), the load factor 

increases dramatically then end abruptly when intersected by the limit embedment 

ratios  and the pile is under the failure mode of SH and will transit to DH failure 

mode, as the embedment ratios increases further. Comparison between Figs.7 (a)-(d) 

reveals that the limit depth  and  increases with increasing slope angles. 
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(b)  
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(d)  

Fig.7. The relation between  and  for different . 

Fig.8 shows the load factor  against the embedment ratio  for different 
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(a)  ( ) 
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Fig.8. Variation in the load factor  with embedment ratio  for different . 

Fig.9 shows the relation between the load factor  and the slope angles  
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slope angles, but the overburden pressures have effects on the load factors. Fig.9 (b) 

shows that under the failure mode of SL, the load factors decrease with increasing 

slope angles for different overburden pressures . When approximately , 

the load factors decrease moderately. When , the load factors decrease 

dramatically. For example, if =0.25, the load factors decrease about 2.5% 

( ) and the load factors decrease about 35% ( ). Fig.9 (d) reveals 

that the load factors also decrease with increasing slope angles, but , the load 

factors begin to decrease dramatically because of the effects of the overburden 

pressures. Fig.9 (e) shows that under the failure model of SS, the load factor has no 

demarcation point of overburden pressure load and the load factor decreases with 

increasing slope angles. 
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(b) Failure modes two (SL) 

 

(c) Failure modes three (DH) 
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(d) Failure modes fore (SH) 

 
(e) Failure modes fore (SS) 

Fig.9 (a-e) Variation in the load factor  with different values of . 

Fig.10 shows that the variation of the embedment ratio with the change of slope 

angles to get the same load factors . Fig.10 (a) and Fig.10 (c) reveal that the 

embedment ratios have no effects with increasing slope angles but the overburden 

pressures have effects on the embedment ratios. Fig.10 (b), Fig.10 (d) and Fig.10 (e) 

show that under the failure mode of SL, SH and SS, the load factors decrease with 
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increasing slope angles for different overburden pressures . When approximately 

, the embedment ratios increase moderately. When , the embedment 

ratios increase dramatically. For example, if the pile is under the mode of SL and 

=0.01, the embedment ratios increase about 15% ( ) and the embedment 

ratios increase about 25% ( ). 

 

(a) Failure modes one (DL) 

 

(b) Failure modes two (SL) 

mh

o40h £ o40h >

mh
o o=0 ~40h

o o=40 ~60h

0 10 20 30 40 50 60
0

5

10

15

20

25

30

 hm=0.01
 hm=0.05
 hm=0.1
 hm=0.25

a>h, NbP=25

 

 

Em
be

dm
en

t r
at

io
 (n

)

Slope angle (h;o)

B

 h

(DL)

 
2
S
Ln n>

0 10 20 30 40 50 60
0

5

10

15

20

25

30

 hm=0.01
 hm=0.05
 hm=0.1
 hm=0.25

a>h, NbP=15

 
 

Em
be

dm
en

t r
at

io
 (n

)

Slope angle (h;o)

B

 h

 (SL)

 a

 
2
S
Ln n<



 

23 
 

 

(c) Failure modes three (DH) 

 

(d) Failure modes four (SH) 
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(e) Failure modes four (SS) 

Fig.10. (a-e) Variation in the embedment ratio  with different values of , for 

different overburden pressures  ( =0.01). 

The main limitation that emerges from the article is the non-consideration of the 

weight of rock mass, which limit the applicability of the study. All the theory of 

characteristic lines applied to foundations considers the analytical solution for a 

nearby slope of moderate inclination. This is because if the slope is strong, it becomes 

a problem of slope stability or global stability where the weight of the ground has a 

great relevance in the final solution. This aspect is crucial and must be clarified in 

which real configurations the study is valid because it is limited to some very specific 

cases and not as general as it is exposed in the article. 

A comparison between the ultimate bearing capacity calculated by the finite 

element method and the value through the analytical solution was presented following. 

The ultimate bearing capacity at the tip of a pile is calculated using the following data: 

a=0.5; ; Mpa; =30KN/m3; B=5m; =25m; =18KN/m3; 

=6m. Table.2 shows parameters of rocks for different slope angles. 
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Table. 2 Parameter 

Slope 
Angles  

Strength 
Modulus  

Tensile 
Strength  

Virtual 
angles  

Instantaneous 

angles  

Shape 

Coefficient  

Load 

Factor  

 1.932 Mpa 0.01 83.79o 11.36o 1.33 21.9 

 1.932 Mpa 0.01 89.78o 11.69o 1.31 20.75 

 1.932 Mpa 0.01 47.32o 16.37 1.41 11.76 

 

Through the analytical method, for , the ultimate bearing capacity is 

1.932*21.9=42.3Mpa; for , the ultimate bearing capacity is 

1.932*20.75=40.089Mpa; for , the ultimate bearing capacity is 

1.932*11.76=22.72Mpa. 

Fig.11 shows the finite element model to calculate ultimate bearing capacity at 

the tip of a pile for different slope angles. This model is established with the finite 

element software Plaxis 3D AE. The analysis method adopts the Hoek-Brown failure 

criterion. 

When , the ultimate bearing capacity is 39.8Mpa. When , the 

ultimate bearing capacity is 35.3Mpa. When , the ultimate bearing capacity is 

11.4Mpa. 
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(b)  

                               

(c)  

Fig.11. (a-c) Finite element method to calculate ultimate bearing capacity at the tip of 

a pile for different slope angles. 

 

The weight of rock mass was not considered in the analytical method, which may 

exert an impact on the ultimate bearing capacity at the tip of a pile. For a certain range 

of slope angles, the impact is relatively small. In this case (see Fig.12),  is 

approximately the turning point. When , the difference of the bearing 

capacity between the analytical method and the finite element method is small, thus 

the analytical method is applicable at this range of slope angles. When , the 

gap between the analytical results and numerical results is enlarged and the errors 

o=40h

o=60h

o=40h
o40h <

o40h >



 

27 
 

caused by the neglect of weight of rock mass in the analytical method becomes 

unacceptable. 

 

Fig.12. The relation between the ultimate bearing capacity and different slope angles. 

 

5. Summary and conclusions 

An analytical method for calculating the ultimate bearing capacity of inclined 

rock piles with different slope angles is proposed based on the characteristic line 

method. Different failure modes of piles were determined under different embedment 

ratios and slope angles. The influence of slope angle and the pile embedment ratio on 

the pile bearing capacity was analyzed. The main conclusions can be drawn as 

following:  

1. For the case of the virtual angle  is larger than the slope angle , four different 

failure modes exist for piles in the inclined rock. When , the failure mode 

of the pile were divided by the limiting embedment ratio  into DL ( ) and 

SL ( ), and the limiting embedment ratio  increases with increasing slope 

angles. When , the failure mode of the pile were divided by the limiting 

embedment ratio  into DH ( ) and SH ( ), and the limiting 

embedment ratio  increases with increasing slope angles , especially when 
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.  

2. For the case of the virtual angle  is smaller than the slope angle , one pile 

failure mode, shallow foundation piles (SS), can occur. 

3. Under the pile failure mode of DL and the mode of DH, the ultimate bearing 

capacity at the tip of a pile has no change with the variation of slope angles. In 

addition under the failure mode of DH, the ultimate bearing capacity increases with 

the overburden pressures. 

4. Under the modes of SL, SH and SS, the ultimate bearing capacity at the tip of a pile 

decreases with increasing rate as the slope angle increases. To get the same ultimate 

bearing capacity at the pile tip, the pile embedment ratio should increase. The 

proposed analytical method can be served as an efficient method to estimate the 

bearing capacity of piles in inclined slope with small slope angle (typically less than 

40o). 
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Fig.1. Sketch of assumed failure          

Fig.2. Force diagram and stress ellipses.                 

Fig.3. The relation between the embedment ratio  and the overburden pressure  

for different . 

Fig.4. Failures modes of pile under the different slope angles  ( ). 

Fig.5. The variation of the limiting embedment ratio with the change of slope angles. 

Fig.6. Failures modes of pile under the different slope angles  ( ). 

Fig.7. The relation between  and  for different . 

Fig.8. Variation in the load factor  with embedment ratio  for different . 

Fig.9 (a-e) Variation in the load factor  with different values of . 

Fig.10. (a-e) Variation in the embedment ratio  with different values of , for 

different overburden pressures  ( =0.01). 

Fig.11. (a-c) Finite element method to calculate ultimate bearing capacity at the tip of 

a pile for different slope angles. 

Fig.12. The relation between the ultimate bearing capacity and different slope angles. 
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