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Abstract 30 

In this study, the effects of particle sphericity and initial fabric on the shearing behavior of soil-31 

structural interface (SSI) were analyzed by discrete element method (DEM). Three types of 32 

clustered particles were designed to represent irregular particles featuring various sphericities. The 33 

extreme porosities of granular materials composed of various clustered particles were affected by 34 

particle sphericity. Moreover, five specimens consisting of differently oriented particles were 35 

prepared to study the effect of initial fabric. A series of interface shear tests (ISTs) featuring varying 36 

interface roughnesses were carried out using three-dimensional (3D) DEM simulations. The macro-37 

response showed that the shear strength of the interface increased as particle sphericity decreased, 38 

while stress softening and dilatancy were easily observed during the shearing. From the particle-39 

scale analysis, it was found that the thickness of the localized band was affected by the interface 40 

roughness, the normal stress and the initial fabric while independent of the particle sphericity. The 41 

thickness generally ranged between 4 and 6 times that of the median particle equivalent diameter. A 42 

thicker localized band was formed in the case of rougher interface and in soil composed of inclined 43 

placed and randomly placed particles. The coordination number measured in the interface zone and 44 

upper zone suggested that the dilation mostly occurs inside the interface zone. Anisotropy was 45 

induced by the interface shearing of the initial isotropic specimens. The direction of shear-induced 46 

anisotropy correlates with the shearing direction. The evolutions of anisotropies for the anisotropic 47 

specimens depend on the initial fabric.  48 

Key words: Discrete element method; soil-structural interface; particle sphericity effect; initial 49 

fabric; interface roughness 50 

1. Introduction: 51 

The soil-structural interface (SSI) is involved in many aspects of geotechnical engineering. The 52 

conventional research studies that characterize the mechanical behavior of SSI commonly rely on 53 
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laboratory-based and on-site experiments. Certain valuable phenomena have been observed and 54 

have provided a fundamental understanding of the SSI issue (Jiang and Yin 2012; Su, Yin, and 55 

Zhou 2010; Zhao, Zhou, and Yuen 2017; Zhou and Yin 2008; Zhou, Yin, and Hong 2011; Zhou, 56 

Yuen, and Tan 2013). Efforts have been made to investigate the influencing factors in the 57 

mechanical behavior of SSI. The laboratory experiments found that the interface roughness affects 58 

the shear resistance and volumetric change of soil shearing at interface (Dejong, White, and 59 

Randolph 2006; Hu and Pu 2005; Paikowsky, Player, and Connors 1995; Su et al. 2018; Uesugi and 60 

Kishida 1986a). In addition, the numerical simulations reveal that the interface roughness is 61 

involved in the stress-strain evolution pattern as well as the strain localization inside soil shearing at 62 

an interface (Frost, Dejong, and Recalde 2002; Jensen et al. 1999; Wang, Gutierrez, and Dove 63 

2007). Furthermore, both the shear resistance and volumetric change of the SSI depend on the soil 64 

properties (Hossain and Yin 2014; Ochiai et al. 1996; J. H. Yin and Zhou 2009). For example, the 65 

initial relative density determines whether the soil dilates or contracts (Dejong, White, and 66 

Randolph 2006; Zhu, Zhou, and Yin 2017), and the shear strength of bulk soil governs the shear 67 

resistance ability at the interface (Hu and Pu 2005; Wang and Jiang 2011).  68 

A rich body of investigations has proved that the grain shape emerges as an essential soil property 69 

that affects the various mechanical behaviors of bulk soil. The relationship between the 70 

compactness of the soil and the shape parameter has been exploited in terms of the maximum and 71 

minimum void ratio (Miura et al. 1998; Nakata et al. 2001). The motions of the particles, including 72 

movement and rotation, result in the macroscopic deformation of a granular system. The rotation of 73 

a particle with an irregular shape is restricted and accordingly increases the interlocking inside the 74 

soil, leading to a higher shear strength and a larger dilation (Santamarina and Cho 2004). Moreover, 75 

the shear-induced anisotropy of a granular material composed of non-spherical particles is 76 

emphasized due to the particle eccentricity (Oda, Nemat-Nasser, and Konishi 1985; Rothenburg and 77 

Bathurst 1992). In this context, the particle shape emerges as an essential soil property that needs to 78 
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be properly considered in the SSI issue. The particle shape is generally characterized using three 79 

scales: roundness, sphericity, and smoothness (Krumbein and Sloss 1951). The sphericity 𝑆 is 80 

correlated to the rotation of the particle and the arrangement of the granular material, which are 81 

crucial to the macroscopic behaviors of the granular material. Thus, this study will focus on the 82 

effects of particle sphericity. Furthermore, the orientations of irregular particles will lead to an 83 

initial anisotropy of the specimen (Yin et al. 2010; Chang & Yin 2009). Thus, the effect of initial 84 

fabric on SSI shearing behavior should be discussed as well.  85 

The discrete element method (DEM) as a numerical tool has been widely used in the geotechnical 86 

field due to the fact that soil is discontinuous in nature. Two-dimensional (2D) and three-87 

dimensional (3D) DEM simulations have been successfully applied in the soil-structure interface 88 

issue (Jensen et al. 1999; Frost et al. 2002; Wang & Jiang 2011; Jing et al. 2017b). The particle used 89 

in the early DEM models was a disc in the 2D case and a spherical particle in the 3D case. Certain 90 

methods have been proposed to mimic the behavior of a non-spherical particle in DEM simulation. 91 

For example, the rolling resistant contact law between spherical particles has been proposed to 92 

manually prevent the rotation of particles by introducing a rolling friction coefficient (Ai et al. 93 

2011; Iwashita and Oda 1998; Wensrich and Katterfeld 2012). However, real soil particles are 94 

generally with various shapes, different from idealized granular system with discs and spherical 95 

particles, which significantly affects the mechanical behavior of soils. For this reason, non-spherical 96 

elements have been successfully applied in DEM simulation, such as clustered particles, polygons, 97 

and ellipsoids (Bono and Mcdowell 2015; Lin and Ng 1997; Lu and Mcdowell 2007; Ni et al. 2000; 98 

Salot, Gotteland, and Villard 2009). Jensen et al. (1999) employed a clustered element in 2D 99 

simulation of IST. However, how the shear resistance, material fabric, and particle motions are 100 

affected by the particle sphericity and initial fabric during interface shearing has not been fully 101 

studied. Furthermore, the thickness of localized band should be measured under various loading and 102 

modeling conditions. 103 



 

5 

 

In this study, the effect of particle shape was thoroughly investigated by 3D DEM. Different types 104 

of clustered particles were used to represent the irregular particles with various sphericities. 105 

Specimens were randomly generated and sheared on interfaces with different roughnesses. Based 106 

on the DEM interface shear test results, the following 4 aspects were explored: (1) the effect of 107 

particle sphericity on extreme porosities of granular material, (2) the effect of particle sphericity on 108 

both macro- and micro- shearing behaviors of SSI, (3) the effect of interface roughness on the 109 

behaviors of SSI and (4) the effect of initial fabric on the shearing behaviors of SSI.  110 

2. The DEM simulation 111 

2.1 Input parameters  112 

PFC 3D 5.0 software based on the discrete element method proposed by (Cundall and Strack 1979) 113 

was employed in this study. The Hertz-Mindlin contact law was used to describe the non-linear 114 

force-displacement relationship between two contacting particles (Mindlin and Deresiewicz 1953). 115 

The shear modulus 𝐺 and Poisson’s ratio 𝜈 were used to describe the deformability of the granular 116 

material. The values of the input parameters used in this study refer to the 3D simulation performed 117 

by Lin and Ng (1997) using arrays of ellipsoids, in which the shear modulus 𝐺 was 28.957 GPa, the 118 

Poisson’s ratio 𝜈  was 0.15 and the inter-particle friction coefficient 𝜇%  was 0.5. A damping 119 

coefficient with a value of 0.7 was applied to dissipate the energy together with the sliding and 120 

guarantee a quasistatic analysis.  121 

2.2 Geometries of the clumps 122 

A clustered particle, named clump, can be formed by adding certain particles together with or 123 

without overlapping. Efforts were made to bring the geometry of the clump close to that of real sand 124 

grain by composing more particles with the help of a 3D scanning technique or specific algorithms. 125 

Those sophisticated approaches validated the significance of the particle shape in the DEM 126 
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simulation but created another problem. It was time-consuming, because of the remarkably 127 

increased particle numbers, to form a clustered element that would be closer to the real one. It has 128 

been asserted that a clump having asymmetry geometry is sufficiently close to the mechanical 129 

behavior of real soil material. Thus, clumps composed of two or three single particles were enough 130 

for the simulation, which took into account the effect of particle shape (Coetzee 2016; Salot, 131 

Gotteland, and Villard 2009).  132 

The sphericity 𝑆 is characterized as shown in Fig. 1a (Krumbein and Sloss 1951). The 𝑟'()	 _,- is 133 

the radius of the maximum inscribed sphere, and the 𝑟',-	 _.,/  is the radius of the minimum 134 

circumscribed sphere of the irregular particle. The clumps, composed of different numbers of 135 

spherical particles representing various sphericity S used in the model, are named C1, C2, C3, and 136 

C4, respectively (Fig. 1b).  137 

 138 

Fig. 1. (a) Definition of the sphericity 𝑆 (Krumbein and Sloss 1951); (b) clumps used in this study 139 

2.3 Specimen generation process 140 

The specimen preparation method refers to the procedure proposed by Muir and Kenichi (2007) to 141 

obtain a granular material with varied porosity 𝑛 (Fig. 2). The specimen followed a given particle-142 

size distribution, and a specific initial porosity 𝑛1 was randomly generated inside a container with 143 

six frictionless walls. To obtain the densest granular material, the initial friction coefficient between 144 
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particles 𝜇%1 was set to zero and the initial porosity 𝑛1 of the specimen was set to 0.2. Overlapping 145 

particles immediately spread out or separated to achieve an equilibrium state. Then the walls of the 146 

container were controlled by a servo system until the mean stress on the walls reached a given value 147 

𝜎1 by moving slowly inward or outward. The friction coefficient of particle 𝜇%1 changed to the 148 

eventual value 𝜇% and was maintained as a constant in the shearing stage. Then the final porosity of 149 

the specimen regained the equilibrium state, which was defined as the minimum porosity 𝑛',-. In 150 

contrast, to obtain a “loosest” specimen, the initial friction coefficient of particle 𝜇%1 was set to 1.0 151 

to generate a specimen with a high 𝑛1 equals 0.4. Then the same procedure was performed to obtain 152 

the loosest sample. The eventual porosity 𝑛 of the granular material can be altered by inputting a 153 

different value of 𝜇%1 and 𝑛1.  154 

 155 

Fig. 2. Specimen generation procedure after Muir and Kenichi (2007) 156 

2.4 The simulation of soil-rough interface shearing 157 

The numerical model of soil-rough interface shear test is illustrated in Fig. 3. The dimension of the 158 

shear box is described using length (L), width (W), and height (H). A regular saw-tooth wall is used 159 

in the model with an inclined angle 𝜃 equals 45° and a depth of each valley h. The normalized 160 

roughness 𝑅- of this continuum interface is defined as ℎ/𝑑;1 referring to the definition proposed by 161 
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Uesugi and Kishida (1986b), where 𝑑;1 is the mean particle diameter. The value of 𝑅- is 0.5 in the 162 

following simulations. Four specimens consisting of clumps C1, C2, C3, and C4, respectively, have 163 

been generated with a desired porosity n. Equivalent diameter 𝑑<=  is denoted for the clumps with a 164 

non-spherical shape, which is defined as the diameter of a spherical ball with the same volume as 165 

the clump. All specimens follow a same linear grain size distribution. The value of 𝑑<=  ranges 166 

between 1.8 mm and 3.6 mm, and the 𝑑;1(<=) equals 2.7 mm.  167 

Once the granular material reached an equilibrium state, a constant normal stress 𝜎- was applied on 168 

the top wall. The bottom rough interface wall began to move horizontally in x-direction at a low 169 

speed once the granular system was stabilized. The four lateral walls were fixed, and the top wall 170 

was vertically moveable during the shearing loading process. The top wall was controlled by a 171 

servo system to maintain a constant normal stress.  172 

 173 

Fig. 3. Schematic diagram of interface shear test in the DEM simulation 174 

The macroscopic mechanical behaviors were measured according to the displacements and forces of 175 

the walls. The shear stress 𝜏 was the shear force measured on the interface wall divided by the area 176 

of horizontal section of the shear box. The shear displacement 𝑑A was the displacement of the 177 

bottom wall in the direction of shearing. The normal stress 𝜎- was measured on the top wall. The 178 
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vertical displacement 𝑑B of the top wall was recorded to reflect the volumetric change of the 179 

specimen.  180 

3. The compactness of the specimen 181 

In this study, the maximum porosity 𝑛'() and minimal porosity 𝑛',- of a specimen composed of 182 

different clumps were obtained using the procedure introduced in section 2.3. The values of 𝑛'() 183 

and 𝑛',- of various specimens are illustrated in Fig. 4, which shows that the specimen composed of 184 

spherical particles (𝑆 = 1.0) tends to form a loose configuration. Non-spherical particles allow a 185 

better filling of the void space compared to spherical particles, and as a result, a dense packing is 186 

achieved for the specimen with a smaller value of 𝑆. On the other hand, rolling easily occurs with 187 

spherical particles (𝑆 =1.0) and leads to a similar configuration of the granular assembly at the 188 

loosest and densest configurations. Accordingly, the difference between the 𝑛'() and 𝑛',- for the 189 

specimen with spherical particles (𝑆 =1.0) is smaller than the others with irregular particles. It 190 

should be noted that the most elongated clump (𝑆 =0.5) can form a structure with more void space 191 

and correspondingly results in a higher value of 𝑛'(). As mentioned by Salot et al. (2009), the 192 

extreme porosities obtained in the numerical simulation cannot compare directly with those 193 

obtained in the experimental tests because of the difference in preparation procedure. However, it is 194 

necessary to control the relative density of the granular material when taking into account the 195 

particle shape effect in the DEM tests.  196 
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 197 

Fig. 4. The extreme porosities 𝑛'() and 𝑛',- of the specimen featuring various sphericity 𝑆 198 

4. Effect of particle shape and interface roughness 199 

The relative density 𝐷/  of the granular material is calculated by 𝐷𝑟= (-EFGH-)(IH-EJK)
(-EFGH-EJK)(IH-)

                                                     200 
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(-EFGH-)(IH-EJK)
(-EFGH-EJK)(IH-)

                                                     (1) 250 

Four specimens consisting of spheres and three types of clumps were generated, named S1, S2, S3, 251 

and S4, respectively. Each specimen comprised around 30,000 spheres or clumps. The dense 252 

configuration was guaranteed by controlling the 𝐷/ = 90 % for all specimens. The desired initial 253 

porosities 𝑛1  of each specimen were derived according to 𝐷𝑟= (-EFGH-)(IH-EJK)
(-EFGH-EJK)(IH-)

                                                     254 

(1 as listed in Table 1. To demonstrate the effect of particle sphericity on the macroscopic 255 

mechanical behavior of the SSI, sixty ISTs of specimen S1/2/3/4 shear on a rough interface 256 

featuring 𝑅- = 0.1/0.25/0.5/0.75/1.0 under a normal stress 𝜎- equals 25 MPa/50 MPa/100 MPa 257 

respectively were modeled. The generation procedure is presented in section 2.3.  258 
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Table 1. Summary of the numerical tests with various elements 259 

Specimen Sphericity  Normalized roughness 

of interface: 𝑅-  

Initial porosity: 

 𝑛1 

S1 𝑆 =1.0 

0.1 0.359 

0.25 0.353 

0.5 0.355 

0.75 0.352 

1.0 0.357 

S2 𝑆 =0.9 

0.1 0.325 

0.25 0.329 

0.5 0.326 

0.75 0.322 

1.0 0.321 

S3 𝑆 =0.7 

0.1 0.306 

0.25 0.309 

0.5 0.301 

0.75 0.297 

1.0 0.297 

S4 𝑆 =0.5 

0.1 0.323 

0.25 0.326 

0.5 0.323 

0.75 0.325 

1.0 0.325 

4.1 Macroscopic response 260 

The macroscopic mechanical behaviors of the ISTs comprising particles of various 𝑆 are illustrated 261 

in Fig. 5 in terms of the stress ratio 𝜏/𝜎- and the vertical displacement 𝑑B as a function of shear 262 

displacement 𝑑A. As shown in Fig. 5a, the evolutions of 𝜏/𝜎- of the four tests display a similar 263 

tendency. Stress softening occurs once the 𝜏/𝜎- peaks. Note that the peak shear stress at the 264 

interface is affected by particle sphericity 𝑆. The specimens composed of non-spherical particles 265 

show a higher peak shear stress than one composed of spherical balls (𝑆 =1.0). The difference in 266 
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shear resistance is attributed to the interlocking phenomenon between the particles. Unlike the way 267 

a spherical particle easily rotates when making contact with another one, an irregular particle tends 268 

to interlock with other particles or the rough interface. The evolution of vertical displacement of the 269 

top wall 𝑑B reflects the volumetric change in the specimen, showing that all specimens contract at 270 

the beginning of shearing and then gradually dilate. The growing rate of dilation slows down at 271 

shear displacement 𝑑A  where shear stress softening appears. This suggests that the volumetric 272 

change in the specimen is also affected by the particle sphericity. A larger dilatancy can be 273 

observed in the specimen with non-spherical particles. From the perspective of micro-mechanics, 274 

the volumetric change of a granular material is the result of the micro-physics of individual 275 

particles, i.e., movement and rotation. To help explain the macroscopic responses we obtained in 276 

the simulations, the micro-physics of the particles will be analyzed in the following sections. 277 

 278 

(a)                                                                              (b) 279 

Fig. 5. Macroscopic responses of the ISTs comprising particles of various 𝑆 (𝐷/ = 90 %, 𝑅- = 0.5, 280 

𝜎- = 50 MPa): (a) stress ratio 𝜏/𝜎- versus shear displacement 𝑑A; (b) vertical displacement 𝑑B 281 

versus shear displacement 𝑑A 282 

The macroscopic mechanical behaviors of the ISTs (𝑆 = 0.5) featuring varying 𝑅- under 𝜎- = 50 283 

MPa are illustrated in Fig. 6. As shown in the figure, the peak shear stress ratio and volumetric 284 

change are affected by the 𝑅-. A higher peak shear stress and larger dilation are observed when the 285 
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specimen shearing on a rougher interface. This result is consistent with the existing experimental 286 

findings (Hu & Pu, 2005; Paikowsky et al., 1995), the shear strength of interface generally increases 287 

as the increasing of 𝑅-. Note that periodic oscillation is observed in the curve of 𝜏/𝜎- when 𝑅- = 288 

0.25. In this case, the clumps in the bottom layer cannot fit into such small volumes between 289 

sawteeth. Thus, the bottom layer of clumps moves alternately between the tops of the teeth and the 290 

areas between teeth, which results in periodic oscillation in the total contact number between the 291 

bottom clumps and interface. This induces this kind of evolution of 𝜏/𝜎-.  292 

  293 

(a)                                                                              (b) 294 

Fig. 6. Macroscopic responses of the ISTs (𝑆 = 0.5, 𝜎- = 50 MPa) featuring varying normalized 295 

roughness 𝑅- : (a) stress ratio 𝜏/𝜎-  versus shear displacement 𝑑A ; (b) vertical displacement 𝑑B 296 

versus shear displacement 𝑑A 297 

4.2 Interface friction angle analysis 298 

The peak shear stress 𝜏% and steady shear stress 𝜏A (at 𝑑A = 13.5 mm) were obtained for the ISTs 299 

under various normal stress 25 MPa/50 MPa/100 MPa. According to the Mohr-Column criterion, 300 

the peak friction angle 𝜙% and steady friction angle 𝜙A can be obtained by linearly fitting the 𝜏% and 301 

𝜏A under various normal stress conditions (Fig. 7a/7b). The cohesive force was assumed to be zero 302 

since a non-cohesive soil was considered in this study.  303 
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 304 

(a)                                                                              (b) 305 

Fig. 7. (a) Fitting the peak shear stress 𝜏% as a function of normal stress 𝜎-; (b) fitting the steady 306 

shear stress 𝜏A as a function of normal stress 𝜎- (𝑅- = 0.5) 307 

The friction angles of all ISTs are obtained by this criterion to discuss the effects of 𝑆 and 𝑅- on the 308 

shear resistance of SSI. As a reference, the direct shear tests (DSTs) with the same input parameters 309 

under 𝜎- equals 25 MPa/50 MPa/100 MPa are modeled. The height of the interface shear box is 310 

twice of the specimen in IST. The peak friction angles of ISTs (𝜙%) and DSTs (𝜙%M) are summarized 311 

in Table 2.  312 

Table 2. Summary of the peak friction angles of ISTs and DSTs 313 

Sphericity 
Peak friction angle (°) 

𝑅- = 0.1 𝑅- = 0.25 𝑅- = 0.5  𝑅- = 0.75 𝑅- = 1.0 DST 

𝑆 = 1.0 11.89 21.70 35.51 36.07 34.85 35.74 

𝑆 = 0.9 12.54 26.10 41.10 40.89 38.02 43.84 

𝑆 = 0.7 13.14 30.15 43.53 45.05 41.48 49.42 

𝑆 = 0.5 13.18 34.53 44.05 45.06 43.19 47.30 

 314 
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4.2.1 Effect of sphericity 315 

The peak friction angles 𝜙% and steady friction angles 𝜙A measured in all ISTs are plotted in Fig. 8. 316 

Existing research studies reveal that the interface shear strength is profoundly correlated with the 317 

shear strength of pure soil. The friction angle measured on a rough IST is close to the friction angle 318 

of pure soil (Chen et al. 2015; Frost, Dejong, and Recalde 2002; Jing et al. 2017; Rao, Allam, and 319 

Robinson 1998; Uesugi, Kishida, and Tsubakihara 1988). For this reason, the steady friction angles 320 

𝜙A obtained in the numerical ISTs are compared to the critical friction angles 𝜙. of pure soil 321 

obtained in the laboratory experiments in Fig. 8b. The experimental databases are derived from the 322 

study of Cho, Dodds, and Santamarina (2006). The tested soils include crushed sands and natural 323 

sands from various places, and some other materials such as glass beads and granite powder.  324 

Fig. 8a shows that the value of 𝜙% increases with the decreasing of the sphericity 𝑆 when 𝑅- ≥ 325 

0.25. It implies that the shear strength of SSI is enhanced by the interlocking between interface and 326 

particles. This augment due to the particle irregularity is not evident when the specimen shearing on 327 

a relative smooth interface (𝑅- = 0.25). Because in this case, the shear strength at SSI primarily 328 

originates from the friction between soil particles and interface. Note that the 𝜙A shows a similar 329 

trend for 𝜙% except when 𝑆 equals 0.7 in the case 𝑅- = 0.5, in which the 𝜙A is lower than the one 330 

where 𝑆 equals 0.7. This might be explained by the way the shear stress is not perfectly constant but 331 

varies slightly at the steady shear stress state. Moreover, the interaction between two elongated 332 

particles (𝑆 = 0.5/0.7) and the saw-tooth surface is similar, inducing approximate friction angles for 333 

the two cases. The evolution trend of 𝜙A at various 𝑆 is similar to that of the 𝜙. obtained in the 334 

laboratory experiment. This result verifies the accuracy of the numerical simulation to a certain 335 

degree. It suggests a correlation between the particle sphericity and the friction angle of SSI in the 336 

case of relative rough interface.  337 
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  338 

(a)                                                                              (b) 339 

Fig. 8. (a) Peak friction angle 𝜙% obtained in the DEM ISTs; (b) comparison of the steady friction 340 

angle 𝜙A obtained in the DEM ISTs to the critical friction angle 𝜙. of pure soil obtained in the 341 

laboratory experiments (Cho, Dodds, and Santamarina 2006) at varying sphericity 𝑆 342 

4.2.2 Effect of interface roughness 𝑹𝒏 343 

The peak friction angle 𝜙% measured on SSI is affected by 𝑅- as well as 𝑆 as illustrated in Fig. 9. In 344 

general, the value of 𝜙% increases as the increasing of 𝑅-. This tendency is valid for the specimens 345 

featuring varying sphericity 𝑆. To compare the numerical results to the laboratory experiment 346 

results, the friction angles 𝜙% measured in IST is normalized by the 𝜙%M obtained in DST. The ratios 347 

of 𝜙%/𝜙%M at varying 𝑅- are plotted in Fig. 10. The experimental data are derived from the ISTs 348 

between natural soil and steel plate (Su et al. 2018; Wu and Yang 2016). Fig. 10 illustrates that the 349 

value of 𝜙%/𝜙%M increases significantly in the range of 𝑅- between 0 and 0.5. The growing rates of 350 

these tests are different, which depend on the properties of soil material, e.g. friction, grading, water 351 

content, particle size, particle shape and etc. When the value of 𝑅- is greater than 0.5, the ratios of 352 

𝜙%/𝜙%M achieve to a plateau value. It implies that the interaction between particles and interface 353 

similar to the interaction among pure particles when 𝜙%/𝜙%M is close to 1.0. Note that the 𝜙%/𝜙%M of 354 

the IST of 𝑅- = 1.0 are slightly less than those of 𝑅- = 0.5 and 0.75 in the numerical tests. In this 355 

case, the bottom particles of approximately uniform distributed sample (𝐶- ≈ 1.45) will be trapped 356 
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in the valley between sawteeth of interface, which weakens the interlocking between particles and 357 

interface. In contrast, for the well graded soil sample (𝐶- = 19.2) used by Wu and Yang (2016), the 358 

soil particles can properly fit in the space of rough interface, leading to a stronger interlocking.  359 

 360 

Fig. 9. The peak friction angle 𝜙% at varying normalized roughness of interface 𝑅- and sphericity 𝑆  361 

 362 
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Fig. 10. Comparison of the friction angle ratio 𝜙%/𝜙%M obtained in the DEM to those measured in 363 

the laboratory experiments  (Su et al. 2018; Wu and Yang 2016) at varying normalized roughness 364 

𝑅- of interface 365 

4.3 Localized band analysis 366 

Shearing deformation is largely localized in a narrow zone during the shearing process, named the 367 

localized band. The localized band can be analyzed by tracing the movements of each particle at a 368 

specific stress state. To average the kinematic field, we set certain measuring windows at different 369 

heights for the specimen with a dimension of 100 mm × 100 mm × 5 mm (Fig. 11). The average 370 

shear displacement in x-direction 𝑑)TTT of the elements in each measuring window is calculated.  371 

 372 

Fig. 11. Set-up of measuring window at different heights Z of the specimen 373 

The values of 𝑑)TTT as a function of Z at different shear stress states (𝑅- = 0.5, 𝜎- = 50 MPa) are 374 

plotted in Fig. 12. Each dot in the figure represents one measurement at a specific height Z. As the 375 

shear stress increases, 𝑑)TTT(𝑍)  shows a non-linearity, and an inflection point appears. The 376 

phenomenon of stratification becomes more evident at the steady stress state. The shear 377 

displacement induced by the interface shearing largely concentrates in the bottom layer of particles 378 

adjacent to the interface, named the localized band, rather than in the upper zone separate from the 379 

interface. It is consistent with the numerical result regarding the formation of the localized band in 380 
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2D/3D DEM simulations (Wang et al. 2007; Jing et al. 2017a) as well as the laboratory experiments 381 

using image analysis (Hu and Pu 2005).  382 

 383 

Fig. 12. Average shear displacement in x-direction 𝑑)TTT of four ISTs (𝑅- = 0.5, 𝜎- = 50 MPa) at 384 

different shear states: (a) 𝑑A = 1.0 mm; (b) 𝑑A = 2.0 mm; (c) 𝑑A = 4.0 mm; and (d) 𝑑A = 13.5 mm 385 

The inflection point of the curve of 𝑑)TTT(𝑍) at the steady stress state (when 𝑑A/𝑑;1 = 3.5) is used to 386 

define the thickness of the localized band 𝛿W. Spline interpolation is applied to get a smooth 𝑑)TTT - Z 387 

curve	𝑓(𝑍). The first derivative 𝑓Y(𝑍) and second derivative 𝑓YY(𝑍) are calculated using the finite 388 

difference method. The curvature 𝜅 of 𝑓(𝑍) is defined by Eq. 2, 389 

                                                         𝜅 = [\]](^)[
(I_	\](^)`)a/`

                                                                          (2) 390 

The 𝑑)TTT changes approximately linearly with the height Z toward the higher position of the specimen 391 

where the value of 𝜅 approaches zero. As Z decreases, the 𝜅 sharply increases at a certain value of Z 392 

because of the localization of shear deformation. Thus, the inflection point of the 𝜅 is considered as 393 

a sign of the top boundary of the localized band. Jing et al. (2017a) suggest that the inflection point 394 

is where the 𝜅 equals 0.02.  395 
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According to this criterion, the thicknesses of the localized band 𝛿W is rarely affected by the particle 396 

sphericity 𝑆 (Fig. 12). However, Fig. 13 shows that 𝛿W  is affected by 𝑅-  and 𝜎-  and it ranges 397 

between 0 and 5 times of 𝑑;1(<=). The localized band is structuralized inside the material when it 398 

shearing on a relative rough interface. A thicker localized band is observed in the IST featuring a 399 

rougher interface, which suggests that the failure shifts from the interface into the soil layer. The 400 

specimen subjected to a lower normal stress condition (𝜎- = 25 MPa) tends to form a thicker 401 

localized band because the material dilates more under a lower confining stress.  402 

 403 

Fig. 13. Normalized thicknesses of localized band 𝛿W/𝑑;1(<=) of ISTs (𝑆 = 0.5) at different normal 404 

stress 𝜎- and interface roughness 𝑅- 405 

4.4 Local porosity and coordination number 406 

To help visualize the local porosity distribution inside the specimen, a grid is constructed to 407 

compute the contour of local porosity. Certain measuring balls are set inside the shear box. All the 408 

centers of measuring balls are located in the central cross-section of shear box, which represent the 409 

nodes of the grid. The porosity obtained in each measuring ball represents the local porosity at the 410 

position of the center of ball, in another word, the node of grid. Accordingly, the contour of local 411 

porosity can be obtained. The contours of local porosity for the IST (𝑆 = 0.7) at different strain 412 

states are plotted in Fig. 14, showing that the initial distribution of porosity is almost homogenous. 413 
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As shearing progresses, the particles gradually accumulate on the right side and accordingly lead to 414 

the dilation on the bottom left corner of the specimen. The dilation region enlarges from the bottom 415 

left corner to the bottom part of the entire specimen. The difference in the local porosity inside the 416 

specimen reaffirms that the granular material is structuralized into two regions when shearing on an 417 

interface (section 4.3). The top line of the localized region is not strictly horizontally straight 418 

because of the fixed lateral walls that prevent the movement trend of particles.  419 

 420 

Fig. 14. Local porosity inside the central section of the specimen (𝑅- = 0.5, 𝑆 = 0.7) at different 421 

strain states: (a) 𝑑A = 0.0 mm; (b) 𝑑A = 2.0 mm; (c) 𝑑A = 4.0 mm; and (d) 𝑑A = 13.5 mm 422 

The coordination number 𝐶-  is used to describe the local contact at particle scale, which is 423 

profoundly correlated to the porosity of the granular assembly. It is defined as the average contact 424 

number per particle (Eq. 3), 425 

𝐶- = (∑ 𝑛.
%)cd /𝑁%                                                              (3) 426 

where 𝑁% is the total number of particles in the measured region, and 𝑛.
% is the contact number of 427 

particles p in the measured region. As discussed in section 4.3, the specimen structuralizes into two 428 

regions after shearing, the interface zone and upper zone (Fig. 12d). The evolutions of the 429 

coordination number inside the interface zone 𝐶-,  and the upper zone 𝐶-f for the ISTs with various 𝑆 430 

are illustrated in Fig. 15a. The initial coordination number of the specimen composed of irregular 431 
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clumps is much higher than the one consisting of spherical balls, which suggests that more contacts 432 

exist between the irregular particles. It explains why interlocking tends to occur inside such 433 

granular material. A sharp decrease for 𝐶-,  is observed in all cases; in contrast, the change in 𝐶-f is 434 

minor. The dilation primarily occurs in the interface zone as the contour of local porosity illustrates. 435 

The micro-structure of particles in the upper zone is almost preserved. Fig. 15b shows the 436 

difference between the values measured in the interface zone and upper zone 𝐶-f − 𝐶-, . The values 437 

of 𝐶-f − 𝐶-,  increase gradually and approach a steady value. Note that the value in the case of 438 

spherical balls is much smaller than the others, in which the total volumetric change is the smallest.  439 

 440 

Fig. 15. (a) Coordination number inside the interface zone 𝐶-,  and upper zone 𝐶-f of the ISTs (𝑅- = 441 

0.5, σ- = 50 MPa) with varying sphericity	𝑆; (b) the difference between the value measured in 442 

interface zone and upper zone 𝐶-f − 𝐶-,  443 

4.5 Material fabric analysis 444 

The macroscopic mechanical behavior of the granular material originates in the distribution and 445 

evolution of the material fabric. The distribution of the contact orientation is frequently used to 446 

describe the material fabric. A second-order tensor 𝐹,j introduced by Satake (1982) is used to 447 

quantitatively characterize the distribution in normal contact orientation: 448 

𝐹,j =
I
ck
∑ 𝑛,l𝑛jl				(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧)ck
l                                                 (4) 449 
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where 𝑁. is the total contact number, and 𝑛, is the contact normal vector at contact 𝛼. The principal 450 

values of 𝐹,j, ordered by decreasing magnitude, are 𝐹I, 𝐹t, and 𝐹u. To measure the anisotropy of the 451 

material fabric, a deviator fabric 𝛿v  of 𝐹,j  is calculated as follows (Barreto, O’Sullivan, and 452 

Zdravkovic 2009): 453 

𝛿v =
I
√t
[(𝐹I − 𝐹t)t + (𝐹t − 𝐹u)t + (𝐹I − 𝐹u)t]1.;                                 (5) 454 

The evolution of 𝛿v measured in the interface zone for the ISTs under 𝜎- = 50 MPa is plotted in 455 

Fig. 16. The initial values of 𝛿v are slightly higher than zero because anisotropy is induced by the 456 

one-dimensional normal pressure before shearing. The 𝛿v increases with the increasing of shear 457 

displacement 𝑑A and decreases once the stress softening appears. The peak value of 𝛿v depends on 458 

particle sphericity. The clumps with smaller sphericity 𝑆 induce higher anisotropy during the 459 

interface sharing, in which a higher interface shear strength is measured. This implies that a 460 

correlation exists between 𝛿v and interface shear strength.  461 

 462 



 

24 

 

Fig. 16. The evolution of deviator fabric 𝛿v  in the interface zone of the ISTs with various 463 

sphericities	𝑆 =1.0/0.9/0.7/0.5 (𝜎- = 50 MPa, 𝑅- = 0.5) 464 

The probability density distribution 𝑃(𝑛}⃗ )	of a unit vector of contact normal 𝑛}⃗  is characterized to 465 

better visualize the contact distribution inside a granular material. The unit vector 𝑛}⃗ (𝜃, 𝜑) of contact 466 

normal between two contacting clumps is obtained based on the spherical coordinate system. The 467 

𝑃(𝑛}⃗ )	can be obtained according to Eq. 6 below  468 

𝑃(𝑛}⃗ ) = ck(M�)
ck

                                                               (6) 469 

where 𝑁. is the total contact number and 𝑁.(𝑑Ω) is the contact number of contact normal vectors 470 

pointing in the direction of a range of angle 𝑑�.  471 

The 𝑃(𝑛}⃗ ) measured in the interface zone of the four ISTs at initial state, peak shear stress state, and 472 

steady shear stress state are shown in Fig. 17. The shape of 𝑃(𝑛}⃗ ) is close to a spherical ball at the 473 

initial state because the specimen is approximately isotropic. As shearing stress increases, the 474 

contact orientation gradually accumulates in a certain direction. The concentration of contact 475 

orientation is a rearrangement process of particles, increasing the material’s anisotropy. The 476 

anisotropy at the peak shear stress state is affected by the particle shape, and correspondingly, the 477 

shape of 𝑃(𝑛}⃗ ) is different. The anisotropy direction for all the tests featuring various 𝑆 at peak shear 478 

stress state ranges between 40° and 60°. When the shear stress softening occurs and approaches a 479 

steady state, the decrease of anisotropy results in the reshaping of 𝑃(𝑛}⃗ ). 480 
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Fig. 17. The contact normal distribution in the interface zone of the four ISTs (𝜎- = 50 MPa, 𝑅- = 482 

0.5) at initial state, peak shear stress state, and steady shear stress state 483 

5. Effect of initial fabric  484 

In the previous section, the particles were generated randomly inside the shear box, and 485 

approximately isotropic specimens were produced. However, the initial material fabric depends 486 

upon the initial orientation of the irregular particles, which has an impact on the shearing behavior 487 

of SSI. As shown in Fig. 18, 𝜃% is defined as the included angle between the long axis of the clump 488 

and the shear direction (positive x-direction). A specimen consisting of 29,058 clumps featuring 489 

𝑆 = 0.7 with a randomly generated orientation was prepared. In addition, another four specimens 490 

were prepared with a given orientation (𝜃% = 0°/45°/90°/135°) for each particle. An approximate 491 

initial porosity 𝑛1 was controlled for all specimens as listed in Table 3. These specimens sheared on 492 

a rough interface featuring 𝑅- equals 0.5 under a normal stress 𝜎- equals 25/50/100 MPa.  493 

Table 3. Summary of the numerical tests with various initial fabrics 494 

Test  Clump orientation  Initial porosity: 𝑛1 

IST-a 𝜃% = 0° 0.337 

IST-b 𝜃% = 45° 0.335 

IST-c 𝜃% = 90° 0.339 

IST-d 𝜃% = 135° 0.336 

IST-e Random 0.338 
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 495 

Fig. 18. Five specimens consisting of clumps (S =0.7) with given orientations 496 

5.1 Macroscopic response 497 

The evolutions of stress ratio 𝜏/𝜎- and vertical displacement 𝑑B are illustrated in Fig. 19. The peak 498 

shear stress 𝜏%  is affected by the initial orientation of clumps. The specimen consisting of 499 

horizontally placed clumps (𝜃% = 0°) shows the lowest shearing resistance. As the 𝜃% increases, the 500 

shearing resistance increases. The peak shear stress for the case with randomly distributed clumps is 501 

between the extreme cases (𝜃% = 0° and 𝜃% = 135°). Stress softening is observed among all cases. 502 

Moreover, the values of 𝑑A at which the peak shear stress ratio 𝜏%/𝜎- is achieved are different for 503 

the five tests. This implies that a different value of 𝑑A is required to fully trigger the interlocking 504 

inside the granular materials. Fig. 19b illustrates a similar evolutionary trend of volumetric change 505 

for various specimens. Before the peak shear stress is achieved, the specimen with an included 506 

angle 𝜃% = 135° shows the largest dilation; in contrast, the one with horizontally placed clumps 507 

dilates less than the others. These results suggest that the vertical movement tends to be easily 508 

triggered when the clumps are randomly placed and 𝜃% = 135°. In contrast, horizontally placing the 509 

clumps restricts the interaction between the bottom layer clumps and the rough interface. 510 

Accordingly, both the shear strength and dilatation for that case are the smallest.  511 
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 512 

(a)                                                                              (b) 513 

Fig. 19. Macro-responses of the ISTs featuring various included angle 𝜃% (𝜎- = 50 MPa, 𝑅- = 0.5): 514 

(a) stress ratio 𝜏/𝜎-  versus shear displacement 𝑑A ; (b) vertical displacement 𝑑B  versus shear 515 

displacement 𝑑A 516 

5.2 Localized band analysis 517 

The curves of 𝑑)TTT-Z for the IST-a/b/c/d/e at different shear stress states are plotted in Fig. 20. The 518 

evolution pattern of 𝑑)TTT(𝑍) curves is similar to those of ISTs with varying S. According to the 519 

analysis of curvature 𝜅, the thickness of the localized band can be obtained. Fig. 21 illustrates the 520 

normalized thickness 𝛿W/𝑑;1(<=)	 under varying normal stress σ�, where 𝑑;1(<=) is the equivalent 521 

mean particle diameter. Generally, the 𝛿W/𝑑;1(<=) is larger when the specimen subjected to a 522 

smaller 𝜎-, because the material dilates more under a lower confining stress. Besides, it shows that 523 

the 𝛿W/𝑑;1(<=) depends on the particle orientation rather than the particle sphericity at the steady 524 

stress state. A thicker localized band is formed in the specimen with inclined clumps (i.e. 𝜃% =525 

45°	and	135°) and randomly distributed clumps. It is noted that the value of 𝛿W/𝑑;1(<=) varies 526 

between 4 and 6, which is slightly higher than that (𝛿W/𝑑;1(<=) = 4) measured from the previous 527 

tests presented in section 4. This is because the 𝑛1 for these tests are relatively higher than the 528 

previous ones. The loose specimen tends to form a thicker localized band. 529 
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  530 

Fig. 20. Average shear displacement in x-direction 𝑑)TTT of five ISTs (random distribution, 𝜃% =531 

0°/45°/90°/135°) at different strain states: (a) 𝑑A = 1.0 mm; (b) 𝑑A = 2.0 mm; (c) 𝑑A = 4.0 mm; 532 

and (d) 𝑑A = 13.5 mm 533 

 534 
Fig. 21. The normalized thickness of localized band 𝛿W/𝑑;1(<=) of the specimen comprising of 535 

different orientated particles under varying normal stress 𝜎- 536 

5.3 Local coordination number 537 

The evolutions of coordination number inside the interface zone 𝐶-,  and the upper zone 𝐶-f for the 538 

five ISTs are illustrated in Fig. 22a. The dilation primarily occurs in the interface zone, which is 539 

consistent with the tests with varying 𝑆 (Fig. 15). On the other hand, the 𝐶-f also decreases during 540 
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the shearing test; especially in the case 𝜃% = 90°, it almost decreased the same as the 𝐶-, . Fig. 22b 541 

shows the difference between the values measured in the interface zone and upper zone 𝐶-f − 𝐶-, . 542 

The values of 𝐶-f − 𝐶-,  increase gradually and approach a steady value. It can be noted that the 543 

value for case 𝜃% = 90° is quite different from the others because the vertically placed clumps are 544 

easily disturbed by the shearing even in the upper zone.  545 

 546 

Fig. 22. (a) Coordination number inside the interface zone 𝐶-,  and upper zone 𝐶-f of the ISTs (σ- = 547 

50 MPa) with differently orientated clumps; (b) the difference between the values measured in the 548 

interface zone and upper zone 𝐶-f − 𝐶-,  549 

5.4 Material fabric analysis 550 

 551 
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Fig. 23. The evolution of deviator fabric 𝛿v in the interface zone of five ISTs (random, 𝜃% =552 

0°/45°/90°/135°) under 𝜎- = 50 MPa and 𝑅- = 0.5 553 

The evolutions of 𝛿v measured in the interface zone for the ISTs under 𝜎- = 50 MPa are plotted in 554 

Fig. 23, and the 𝑃(𝑛}⃗ ) at various states are shown in Fig. 24. The specimen consisted of randomly 555 

generated clumps, almost isotropic before shearing. Over the progress of shearing, the contacts 556 

accumulate in a specific direction, correlated with the shear direction. This anisotropy is purely 557 

induced by the shearing, which increases gradually and approaches a peak value at the peak shear 558 

stress state. The shear-induced “anisotropy direction” is shown in the figure of 𝑃(𝑛}⃗ ). On the other 559 

hand, the initial fabric of specimens consisting of variously oriented particles is anisotropic since 560 

the contacts initially concentrated in various directions. The initial anisotropic 𝛿v  for those 561 

specimens are about 0.17. As the shear displacement 𝑑A  increases, the 𝛿v  increases and then 562 

decreases once the stress softening occurs for the cases with 𝜃% = 0°/90°/135°, as well as the case 563 

with a randomly generated specimen. Especially when 𝜃% = 135°, the contact normal has already 564 

been concentrated in the direction of pure shear-induced anisotropy. Thus, the highest level of 565 

anisotropy is observed, and accordingly, the largest shearing stress is measured. By contrast, the 566 

initial contacts (𝜃% = 45°) gather in a direction perpendicular to the pure shear-induced anisotropy 567 

direction, preventing the development of the shear-induced anisotropy. For this reason, the 𝛿v 568 

decreases continuously, and a minimum peak shear stress is measured. These results demonstrate 569 

that the evolution of 𝑃(𝑛}⃗ ) of an anisotropic specimen is profoundly correlated with the “shear-570 

induced anisotropy direction” in the isotropy specimen. 571 
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Fig. 24. The contact normal distribution in the interface zone of the five ISTs (random, 𝜃% =573 

0°/45°/90°/135°) under 𝜎- = 50 MPa and 𝑅- = 0.5 at initial state, peak shear stress state, and 574 

steady shear stress state 575 

6. Conclusions  576 

The macro- and micro- shearing behaviors of a soil-structural interface have been studied using 3D 577 

DEM simulations of ISTs that feature varying sphericity 𝑆 and initial fabric. The effects of 𝑆 and σ- 578 

on shear strength, volumetric changes, thickness of the localized band, local porosity, contact 579 

normal distribution, and material fabric anisotropy have been analyzed. The following conclusions 580 

are drawn.  581 

(1) Particle sphericity 𝑆 plays a significant role in the mechanical properties of the SSI. The shear 582 

strength of the interface (i.e. 𝜏%/𝜎- , 𝜙% and 𝜙A) increases as 𝑆 decreases. The volumetric change in 583 

the specimen also depends on 𝑆. A larger dilation is observed for the specimen composed of non-584 

spherical particles. Anisotropy in the interface zone is increased and a higher deviator fabric 𝛿v is 585 

induced by shearing when 𝑆 is smaller.  586 

(2) The interface roughness 𝑅- affects the shearing behavior of interface. The interface friction 587 

angle 𝜙%  ascends with the increasing 𝑅-  and reaches to a plateau value. The growing rate is 588 

associated with the particle sphericity S. A thicker localized band is observed in the IST featuring a 589 

rougher interface.  590 

(3) The shear strength of the interface is affected by the initial fabric (particle orientation) of the 591 

specimen. The peak shear stress increases as the particle orientation increases. The initial fabric is 592 

associated with the interaction between the particles and rough interface, i.e., restricts or triggers the 593 

particle motions. The specimen with an inclined angle 𝜃% = 135° shows the largest dilation; in 594 

contrast, the one with horizontally placed clumps dilates less than the others. The thickness of the 595 
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localized band 𝛿W depends on the initial fabric. A thicker localized band is formed in a specimen 596 

with inclined clumps (𝜃% = 45/135°) and randomly distributed clumps.  597 

It is noted that this study has only examined the effect of sphericity 𝑆 of irregular particles. Particle 598 

shape in nature is more random and complicated. To extend the study, other shape parameters 599 

should be considered in the future. Nevertheless, this study clearly indicates the significant effect of 600 

𝑆 and its correlation with interface shear strength. The analysis of the micro-quantities, including 601 

the contact normal distribution, the motion of the particle, and the local porosity distribution, 602 

improves our understanding of the micro-mechanisms associated with soil-interface shearing. 603 
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