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Abstract

Endemic diseases in wildlife present both intra- and inter-species management

problems with risk to conservation of endangered species and spillover of virulent

disease to other wildlife, farmed and domestic populations. Mathematical models

have been developed to aid understanding of the transmission and persistence of such

endemic disease. We review such models with an emphasis on models of tuberculosis.

The understanding gained from previous model studies is used to formulate a new

mathematical model for the wild boar reservoir of tuberculosis in central Spain

where the disease persists at high prevalence and impacts other wild and domestic

species. This model is used to investigate the efficacy of hunting and vaccination

as management techniques to control tuberculosis in wild boar. Insight from the

specific wild boar TB model generates a general result for compensatory population

growth following culling of a population harbouring endemic disease. We show

that compensatory growth due to a reduction in disease-induced mortality following

culling could be a new mechanism for producing the ‘Hydra’ effect. We extend

the wild boar TB model to reflect the situation in Asturias where wolf predation

may influence the disease dynamics leading to lower prevalence of tuberculosis

in wild boar. In conclusion we review how our findings can provide insight for

disease management and control, and consider how the model could be extended to

investigate emerging diseases for which wild boar may also be a reservoir.
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Chapter 1

Introduction

In a world of rising human population the increasing domestic demand for land is

encroaching on hitherto wildlife habitat thus provoking a greater risk of conflict

arising from these interactions. This shared use of space is often presented as

a struggle between conserving a natural environment for increasingly endangered

species and the human need to build more housing and increase food production.

At the boundary between wild habitat and human existence direct conflict arises

when natural predators prey on livestock and occasionally even humans.

However, less overt but nonetheless critical, there is another battle that occurs at

this interface: the existence of pathogens that wild animals can harbour in so-called

wildlife reservoirs of disease. These infectious diseases can pose different risks

depending on their nature. There are diseases that cause a threat to a particular wild

species but do not cross the wild-domestic boundary thereby depressing a wildlife

species that is endangered or is a specific hunting target, e.g. facial tumour disease

in Tasmanian devils [18] and chronic wasting disease (CWD) in cervids [136]. Some

diseases may pass from wild to domestic livestock, and although they don’t infect

humans they can have significant negative impact on human food production e.g.

African swine fever (ASF) in wild boar (Sus scrofa, Figure 1.1) and domestic pigs

[61]. Finally there are zoonotic diseases that intersect the wildlife-livestock-human

interface that may cause significant economic losses to agriculture and even severe

threat to life e.g. rabies, tuberculosis [74].

Globally, humans have long sought to control, or even eradicate, infectious

disease in wildlife using a range of management measures. In contrast to humans,

of whom specific individuals can be targeted for vaccination to prevent disease

occurrence or promptly administered medication to combat disease, wildlife cannot

be accessed so easily making management of their diseases more complex. Of

management techniques used in combating disease in wildlife, culling is widely used

though it can be a blunt tool. The theory behind culling is that by reducing the

density of a wild population this will reduce the number of infectious individuals

and therefore reduce the chance of disease spread both within and between species.
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Culling can be more successful if diseased individuals can be easily identified in

the population. This form of control can be very contentious depending on the

perceived ‘value’ of the species in its locale. For example, in the attempt to control

bovine tuberculosis, the culling of possums in New Zealand, a non-indigenous species

viewed as a pest, garners far more acceptance than the culling of badgers in Great

Britain, one of their few large native mammals. Vaccination has also been used when

available, with the aim of reducing the number of individuals in the population that

are susceptible to disease. However, administering vaccines to wildlife in sufficient

number to be effective is a complex task, can be expensive, and its success depends

on the feasibility of accessing sufficient numbers of uninfected animals. Finally

diseased animals may be targeted and removed from the general population and

quarantined. However, locating and identifying infectious animals is not a simple

task, for example in larger dispersed populations this may not be a feasible solution

or for diseases that do not present with visible symptoms.

To ascertain the effectiveness of a particular management technique good

concrete data are difficult to gather for wildlife populations. Such information

can be patchy and estimates tend to be made at a group level by sampling a

proportion of the population leading to a greater risk of inaccuracy. In the absence

of empirical data, mechanistic mathematical models are a key tool used to develop

understanding of complex disease dynamics in both single and multiple hosts, and

test the effectiveness of management interventions. Mathematical models therefore

can be used to predict the efficacy of interventions, and forecast future outcomes

based on proposed control methods.

The development of mathematical modelling of population growth has a long

history reaching deep into the last millennium. As Murray (2002) [103] notes,

change in population has been explored mathematically as far back as Leonardo

of Pisa in the 13th century regarding rabbit populations; by Malthus over 200 years

ago postulating the exponential growth function to describe how total populations

expand over time; and this refined by Verhulst in the 19th century who realised

that populations are limited by resources, giving rise to the logistic growth function

where populations rise to a notional carrying capacity beyond which there are not

sufficient resources to sustain the population. Over the last century there has been

an explosion in mathematical modelling of population change, in both single and

multiple species, too numerous to enumerate here. Pertinent to this thesis are:

developments in sustainable harvesting of fish and the effect of harvesting on fish

stocks, notably Ricker (1954) [121] who developed his ‘stock and recruitment’ model

showing how fish population growth compensated for mortality caused by repeated

harvesting; May (1973) [96] examined dynamics of population growth in ecosystems;

and originally published in 1976 but updated as May & McLean (2007) [95] the

population dynamics of both single and multiple-species ecological systems including
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predator prey type models.

Alongside population growth, models to investigate the effects of infectious

disease on population dynamics have also been developed to understand factors

affecting disease outbreak and die-back, disease prevalence and incidence, abundance

of population with endemic disease, and dissemination of disease. Keeling &

Rohani (2008) [84] detail models of a wide variety of infectious disease, affecting

a range of different species, including modelling disease control measures. They

note the history of disease modelling through early work by Bernoulli in the

18th century investigating immunisation against smallpox, and the development

of compartmental Susceptible Infected Recovered (SIR) models through work by

Kermack and McKendrick (1927) [85], Dietz (1967) [47] leading to Anderson and

May (1979) [9] and further developed for diseases affecting humans Anderson &

May (1991) [10]. These works form the foundation to develop mathematical tools to

investigate management strategies for wildlife populations: culling, vaccination and

targeted diseased removal, and the research for this thesis is a direct descendent

of such models. These SIR type models partition populations into different

classes dependent on their disease classification: susceptible, infected or recovered.

Susceptible individuals may become infected by a probability that transmission

occurs proportional to the total number of infected individuals in the population

using the law of mass action. Infected individuals recover at a constant rate.

Models come in various guises dependent on the species, geographical spread

and disease presentation, and can be classified further as deterministic or stochastic

type models. Deterministic models will render the same result given the same initial

conditions. They can be simpler to analyse mathematically, and also may reveal the

underlying mechanisms driving changes to populations suffering endemic disease

and management intervention. As deterministic models always achieve the same

end result from a given starting position, they may not seem as attuned to real-life

situations. Stochastic models address this by introducing real-life randomness into

a system so are more able to represent disease outbreak and die-back. This model

type may be more important when the population is small or when prevalence is

low. Analysis of these models is more complex, and has to consider the variability

between the different model outcomes. The choice of which model type to use is

dependent on the type of disease and target population distribution, and also may

be driven by the amount of data available to inform such models.

The research for this thesis has been motivated by veterinary research in central

and southern Spain where tuberculosis (TB) is endemic in wild boar populations

reaching high prevalence levels of greater than 50% [106]. It also persists, but at

a lower prevalence, in other host species such as red deer, but wild boar are seen

as the key wildlife reservoir of TB. These host species tend to gather around scant

water resources, particularly during dry seasons. Current understanding is that
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most infection occurs through contact with free-living Mycobacterium tuberculosis

complex (MTC) shed by infected wild boar that utilise the same water sources

[138]. Areas used for supplementary feeding are also implicated because of similar

congregating effects though are not implicated to the same degree as water sources

[138]. The high prevalence of TB in wildlife populations can lead to transmission

and infection of adjacent livestock. This can have significant financial implications

for the farming industry and motivates the need to develop management plans to

control TB levels in reservoir wildlife systems. In this area there is a long cultural

history of hunting wild boar and deer in both managed hunting estates and large

unmanaged areas where both wild and domestic species may mingle. Despite annual

culls returning large hunting bags, the density of wild boar has been rising and

prevalence of TB has remained high. Trials vaccinating 3-6 month old piglets have

taken place showing some success in reducing prevalence, however TB still remains

endemic in the wild boar population. To help unpick the drivers influencing these

rising wild boar densities and high TB prevalence, and understand the long-term

impact of management interventions, veterinarians working in this area envisaged

mathematical modelling as a key tool. This foresight has led to the collaboration

of mathematicians (Andy White, supervisor of this research, and the author) with

veterinarians based in Ciudad Real, Spain (led by Christian Gortázar) to help inform

future management of wild boar in this area.

Bovine tuberculosis has been a persistent problem in a number of locations

worldwide, hosted in a variety of worldwide reservoirs. Given the risk of spill-over

to the human population and the severe economic cost to agriculture to prevent and

contain cross-infection it is not surprising that a variety of mathematical models

have already been developed, specific to species and locale, in efforts to understand

the dynamics of MTC infection and effects of its management and control. Prior to

developing a new mathematical model to help understand the wild boar TB system

in Spain, it was necessary to review previous models of tuberculosis in wildlife

reservoirs, which has been separated into an introductory chapter on modelling

TB in wildlife in Chapter 2. Following this initial research we developed a model

encapsulating the key processes regulating the wild boar TB system, collaborating

with veterinarians to determine suitable characterisation of the population and

parameterisation for the model. This model is detailed in Chapter 3. We have

used this model to aid understanding of the wild boar TB system when culling and

vaccination are uses as a management control, the results of which can be found in

Chapter 4.

As research in one area can feed another, the work detailing the effect of culling

wild boar suffering endemic tuberculosis stimulated a more general result regarding

population compensation in response to culling wildlife harbouring virulent disease.

This has become a piece of work that is separate from the main wild boar model,
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though uses the wild boar TB model as a case study. It establishes a new means

to a ‘Hydra’ effect [2] and can be found in Chapter 5. This research gave new

knowledge of the underlying mechanisms that help bolster the abundance of a

wildlife population suffering endemic disease despite significant culling. Armed

with this new understanding of compensatory population regrowth, in Chapter 6

we apply the use of our wild boar TB model, specifically designed for the situation

in central and southern Spain, to a different area of Spain, Asturias, where TB

prevalence is much lower and the wild boar population density is growing. This

area is also inhabited by a growing wolf population, and we combine empirical data

gathered over a decade for wolf and wild boar populations to tailor our model to

this region and examine the possibility that wolf preying on wild boar can assist the

fight against TB infection.

In conclusion, Chapter 7, this thesis examines further directions that the wild

boar TB model can be taken for the management of tuberculosis in wild boar and

also contemplates how this model can be translated to inform about other diseases

that may be transmitted via both close contact and through free-living pathogens.

Figure 1.1: Wild boar (Sus scrofa)
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Chapter 2

Introduction to modelling

tuberculosis in wildlife

Living in the present day you could be forgiven for thinking that TB was a pernicious

disease that had dire effect in our ancestors of the 19th and early 20th centuries,

but was eradicated due to the advancement of pasteurisation and public health

programmes in the 20th century. This general impression can only have been

compounded by the cessation of the routine BCG immunisation of schoolchildren in

2005. However, contrary to this belief, the disease still affects a sizeable number of

individuals each year in the United Kingdom. Public Health England [116] report

that in 2013 there were 7,892 noted cases of tuberculosis (12.3 per 100,000), the

greatest proportion of which occurred in individuals not born in the United Kingdom

or living in the most deprived populations. Nearly all of these incidences of TB were

caused by the strain Mycobacterium tuberculosis, however 0.6% were identified as

being caused by Mycobacterium bovis.

Mycobacterium bovis (a strain of MTC) is hosted in domestic and wild animals

and can cause zoonotic TB, mainly through inhalation though also potentially

through open wounds [44]. This disease used to be endemic in the human population

in the United Kingdom but was brought under control largely through pasteurisation

of cow’s milk and strict controls on cattle livestock with yearly testing of cattle in

high risk areas, 4-year testing in lower risk areas and compulsory slaughter of affected

cattle [46]. There are also routine checks made of carcasses at slaughterhouses. This

has resulted in an extremely low risk to the general human population of contracting

zoonotic tuberculosis. However, those who by choice still consume non-pasteurised

dairy products, or those who work in the cattle industry are at greater risk from

infection, particularly given that the incidence of tuberculosis in cattle herds has

been rising [44]. Clearly government has great interest in preventing any outbreak

of zoonotic tuberculosis in the general population, therefore attention is being given

to how domestic livestock becomes infected by the bacteria.

The greatest effect of MTC infection is through the development of TB in
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domestic cattle. The compulsory slaughter of affected herds is a financial strain on

the agricultural industry and wide-scale testing procedures are required following a

TB positive test. The incidence of TB in cattle herds in the United Kingdom is rising

and therefore the United Kingdom government and agricultural industry place great

importance on preventing infection in domestic livestock. Thus attention is focused

on those wild animal populations in which TB infection is endemic and which live

in close proximity to domestic animals giving the potential for cross-infection of the

disease.

In the United Kingdom the badger has been identified as the key reservoir of TB,

being a prime suspect in the high incidence of cattle herd breakdown due to TB in

the south-west and midlands of England. Donnelly & Hone (2010) [50] show strong

evidence for badger to cattle transmission of the disease. Current estimates are that

in the areas of England where TB is endemic a third of the badger population is

infected [45]. The process of badger to cattle (and vice versa) infection is unclear

as physical contact between the two species is rare. However, they do inhabit the

same environment. Badgers roam cattle pasture in the search for earthworms [11]

and have been known to visit farm outbuildings in the search for food.

This problem is by no means confined to the United Kingdom: there are certain

wildlife populations throughout the world known to be reservoirs of MTC infection,

notably brush-tailed possums in New Zealand, white-tailed deer in North America

and wild boar in Spain. Each particular population is subject to different biological,

environmental and cultural factors that contribute to the success or failure of

controlling the disease. For example in contrast to the badger in the United Kingdom

there is far more appetite for culling non-native species like the brush-tailed possums

in New Zealand which are widely regarded as a pest rather than a special part of

the country’s fauna. A programme of culling in New Zealand reduced the number

of herds infected with TB from 1700 in the 1990s to 66 in 2011/12 [45].

It would be hard to imagine any government in the United Kingdom, where the

badger is indigenous, having the political appetite to authorise culling to the same

extent as the brush-tail possum. Indeed, in Wales there has been a positive move

towards a vaccination strategy instead [53]. In England, the Randomised Badger

Culling Trial (RBCT) was initiated in 1998 to investigate the results of various

methods of culling in three relatively small areas in south-west England. This test

cull was furiously contested and abandoned. Results from the trial have been mixed,

in particular showing that the cull has increased the levels of TB in areas surrounding

the test site [27] [49]. Widespread licensed badger culling in England restarted in

autumn 2018, with a view to significantly reduce the badger population to reduce

the chance of spill-over of TB to cattle. Results from this round of culling are still

being analysed but already there is disagreement between scientists and government

as to their validity.
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In researching models of MTC infection we will focus on the methods of Anderson

and Trewhella (1985) [11] who examined the dynamics and persistence of TB

in badger populations in England. This work outlines several key concepts in

modelling disease in ecological systems and in particular details model structures

to represent direct transmission of infection passed from one badger to another

in social contact; vertical transmission of infection where a badger cub is infected

from birth; and free-living transmission where bacteria excreted by badgers survives

in the environment and acts as source of infection without involving immediate

contact between badgers. These frameworks underpin recent, more complicated,

model set-ups that additionally include stage-structure, stochasticity and spatial

structure, and we additionally review these models in a stochastic framework as

well as separate stochastic models of TB in wild boar and in cattle.

2.1 Deterministic modelling of TB in badger

populations

In the 1985 paper by Anderson and Trewhella [11] an examination is made of the

growth rates of badger populations in disease-free conditions and also in the presence

of bovine tuberculosis (TB) infection. This paper works through a progression

of models examining different factors that need to be considered to produce an

effective model for the disease in badgers. We review the key life history and disease

parameters and their estimated values below.

The intrinsic growth rate captures the ability for a population to grow without

any limitation on resources. It is calculated using an estimate for the per capita

birth rate, γ, and the per capita natural death rate, b:

γ The birth rate for English habitats is estimated to be 0.6 per capita of

population per year, deduced from unpublished data taken from the south-west

of England. This is comparable to data from Sweden that Anderson &

Trewhella also quote [11].

b The natural death rate is determined by fitting an exponential decay curve to

the same unpublished data [11], giving an estimate of average life expectancy

of 2.5 years, thus the per capita death rate as 0.4 per capita per year.

The resultant intrinsic growth rate is then assumed to be r = 0.2.

Highest known densities in the most favourable conditions are found to be 20

adults per square kilometre. Lower densities of 5 to 8 adults per square kilometre

are perhaps more common in reasonably favourable conditions. Adults make up

roughly half the population.

Migration of badgers between social groupings is fairly uncommon. When we

consider dispersal we assume that it occurs on average once in an individuals lifetime.
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When a susceptible individual becomes infected it initially incubates the disease

but is not infectious. After the incubation period an individual becomes infectious

and can transmit the disease. Infectious individuals also incur an additional death

rate due to the disease:

α The disease-induced mortality rate is relatively low compared to other diseases.

Life expectancy for an infectious badger is estimated as 1 year from onset of

infectiousness.

σ The disease incubation period, estimated to be 3 months.

β The disease transmission rate determined from the diseased population density

and taken to be 1.54 and 0.308 km2 per capita per year respectively.

There is some disagreement on population density in the presence of disease. Values

of 1 and 5 per kilometre squared are considered.

It should be noted that though there is some basis for these parameter estimates,

Anderson & Trewhella [11] refer to the data they are based on as sparse, particularly

in relation to disease dynamics. Table 2.1 contains the standard set of parameters

used in the models discussed in this chapter. Prior to considering the impact of

Parameter Symbol Default value units

incubation rate σ 4 year−1

disease induced mortality rate α 1 year−1

endemic disease susceptible density KT 5 km−2

transmission coefficient β 0.308 km2year−1density−1

carrying capacity K 20 km−2

natural death rate b 0.4 year−1

birth rate γ 0.6 year−1

intrinsic growth rate r 0.2 year−1

density-dependence constraint c 7 dimensionless

Table 2.1: The model parameters based on Anderson & Trewhella 1985 [11], their
default values and their units. Rates are expressed per capita.

bovine tuberculosis (TB) on the UK badger system Anderson and Trewhella (1985)

[11] examined the population growth dynamics in the absence of the disease. The

first model to consider is for the natural growth of a population of badgers with

density N/km2 when no disease is present. This is modelled using logistic growth.

dN

dt
= rN

(
1− N

K

)
(2.1)

Here r represents the maximum growth rate in the absence of any density

dependence. The logistic growth model acts to reduce the growth rate as the

population density increases, decreasing to zero when N = K where K is defined as
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(a) (b)

Figure 2.1: Numerical solutions of Equation (2.1) showing the population dynamics
over time for (a) r = 0.2 and (b) r = 1.0 starting from different initial conditions.
The approach to the steady state Ns = K = 20 is more rapid for higher values of r.

the carrying capacity of the population. Steady states occur at Ns = 0 and Ns = K

(analysis can be found in Appendix 2A.1).

The solution to Equation (2.1) is

N(t) =
KN(0)

N(0) + (K −N(0))e−rt
(2.2)

where N(0) is the population density at time t = 0 then . As t ↑ ∞ then e−rt ↓ 0 so

that the population density N(t) returns towards the equilibrium density K as time

increases. The order of magnitude of this return time is 1
r

[11]. This confirms the

pictorial evidence in Figure 2.1 that a larger intrinsic growth rate leads to a faster

return to equilibrium after perturbation.

The previous model assumes a linear dependence between the net growth rate

r(1− N
K

) and the population density N . However as discussed in Fowler [57] “species

with low reproductive rates, long life-spans and populations that are more limited

by resources (large mammals in particular) indicate that most density-dependent

changes in vital rates occur at levels of the population quite close to the carrying

capacity”. Therefore Anderson & Trewhella [11] considered a modification to the

logistic model where the severity of the density-dependent effects could be adjusted.

This led to the following model.

dN

dt
= rN

(
1−

(
N

K

)c)
(2.3)

Here the terms are as defined for Equation (2.1) with the addition of the constant

c which reflects the severity of density-dependent effects. When c > 1 it implies

that density dependence is less pronounced than the linear model for all population
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densities less than K. Therefore, greater rates of change to the density occur at lower

population levels. When c = 1 the logistic growth, Equation (2.1) is recovered. The

steady states again are Ns = 0 and Ns = K (analysis can be found in Appendix

2A.2).

The solution to Equation (2.3) can be expressed as

N(t)c =
KcN(0)c

N(0)c + (Kc −N(0)c)e−crt
(2.4)

where N(0) is the population density at time t = 0. As t ↑ ∞ then e−crt ↓ 0 so

that the population density N(t) returns towards the equilibrium density K as time

increases. The order of magnitude of this return time is 1
cr

and explains why the

return to equilibrium is reduced as c increases.

Figure 2.2 shows that for larger values of c, the population growth rate remains

higher as the population increases, leading to a greater rate of change in the

population density and a faster return to the equilibrium population density.

After considering the available data for badger populations recovering from a

catastrophic population crash after severe drought, in particular the effect on badgers

in South-west England after the exceedingly dry summer of 1976, Anderson &

Trewhella [11] recommend that c is set to 7.

(a) (b) (c)

Figure 2.2: Solutions of Equation (2.3) for K = 20 and different values of
density-dependence constant c = 1, 3 and 7 showing (a) growth rate as population
density increases, (b) the rate of change of population density and (c) the time
taken for return to stable equilibrium. For greater value of c faster population
growth at lower density leads to faster return to the equilibrium density. Other
model parameters are set to default values (Table 2.1).

We now extend the models of population growth to include disease dynamics and

consider incorporating various ways that TB spreads within a badger population.
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2.1.1 Susceptible Exposed Infected model

The first model that Anderson and Trewhella(1985) [11] consider to represent

the dynamics of TB in badgers is a Susceptible-Exposed-Infectious model

(Equations (2.5)) where X represents the density of susceptible badgers, H

represents the density of badgers incubating the disease but not yet infectious

(exposed), Y represents the density of infectious badgers and the total population

N = X +H + Y .

dX

dt
= r̂(N)N − bX − βXY (2.5a)

dH

dt
= βXY − (b+ σ)H (2.5b)

dY

dt
= σH − (b+ α)Y (2.5c)

In the absence of infection the host badger population undergoes population growth

dynamics as in Equation (2.3). This requires that r̂(N) = γ − dN c where d = γ−b
Kc

and c = 7. Infection occurs at a rate proportional to the density of susceptibles

and the density of infected with transmission coefficient β. After infection the host

enters the incubating (exposed) class. The host progresses from the exposed class

to the infectious class at rate σ and when infectious the host has a disease induced

mortality rate α. Members of all classes have a natural death rate of b. Steady state

and stability analysis can be found in Appendix 2A.3.

2.1.2 SEI The Basic Reproductive Rate R0 for the Disease

The stability of the SEI model in Equations (2.5) can be represented in terms of the

basic reproductive ratio of the disease, R0, which can be defined as the number of

secondary cases generated by one infectious individual being added to a susceptible

population at equilibrium. When R0 < 1 the disease dies out, whereas when R0 > 1

the disease can spread. For Equations (2.5) adding a small amount of infection to

the disease-free equilibrium, the disease can spread if the following condition holds.

R0 =
Kσβ

(b+ α)(b+ σ)
> 1 (2.6)

When R0 < 1 the Jacobian for the disease-free steady state has three eigenvalues

with negative real part so the disease-free state is stable and the endemic steady

state unstable so the disease dies out. When R0 > 1 the endemic steady state

now becomes stable, and the disease-free steady state unstable allowing the disease
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to proliferate. Here we have defined R0 from the stability analysis (see Appendix,

Equation (2A13)), but it can also be calculated directly as the rate at which cases

occur in a population at disease-free equilibrium βK multiplied by the proportion

that become infectious σ
b+σ

multiplied by the life expectancy of an infectious 1
b+α

.

2.1.3 SEI Transmission Coefficient β

As mentioned in Chapter 2.1 an actual value for the transmission coefficient

β is hard to derive from badger population data. Instead we can estimate it

by assuming that when at endemic equilibrium each susceptible produces one

secondary infection so that σβXT

(b+α)(b+σ)
= 1. To find this value, estimates are made

of the endemic susceptible density steady state. Anderson & Trewhella [11] refer to

this as the critical threshold density and consider critical densities of 1 and 5 with

the resulting transmission coefficient, β = 1.54 and β = 0.308 respectively derived

from them. However, it should be remembered that there is contention about the

data on which these numbers are based.

2.1.4 Results for SEI model

Results for different rates of transmission are shown in Figure 2.3. This shows the

epidemiological dynamics when 1 infectious individual is added to a population at

the disease-free steady state. The numerical simulations confirm the findings of the

stability analysis that, as the parameters are set so that R0 > 1, the disease-free

steady state is unstable and the endemic steady state stable. The addition of an

infected individual suppresses the host population density, which settles at the stable

endemic steady state. This suppression of the susceptible density is due to the

virulence of the disease leading to higher rate of mortality for infectious individuals.

The greater transmission coefficient in Figure 2.3b leads to a greater suppression

of the susceptible population density since more individuals become infected. For

both transmission coefficients the population density at the endemic steady state

exhibits damped oscillations, these being of shorter period and greater amplitude for

the lower transmission rate in Figure 2.3a. Note that the disease remains endemic

but at low density.

2.1.5 Vertical transmission in SEI model

Vertical transmission is the infection of newborn offspring by its mother when still a

developing fetus or during birth. In the badger system this should really be referred

to as pseudo-vertical transmission as there is no evidence that badger cubs can be

infected with TB before or at birth, rather that they can catch the disease shortly

after birth from an infected individual in the sett (which is most likely the maternal
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(a) (b)

Figure 2.3: Results for the SEI model represented by Equations (2.5) for different
values of transmission coefficient β: (a) β = 0.308, R0 = 4 (b) β = 1.54, K = 20.
The blue line shows susceptible density, green exposed density and red the infectious
density. At time 20 years, one infected individual is inserted in to a susceptible
population at disease-free steady state K = 20. As R0 > 1, the disease-free steady
state is unstable so the diseases proliferates leading to the population density falling
to the stable endemic steady state. Both transmission coefficients lead to damped
oscillations about an endemic steady state, the lower transmission coefficient in
(a) resulting in a shorter period of oscillation with greater amplitude. The higher
transmission coefficient in (b) exhibits a greater level of suppression of susceptibles
since a greater number become infected and suffer from the increased mortality
associated with the disease. Other model parameters are set to default values (Table
2.1).

parent). The classical framework for modelling vertical transmission nevertheless is

a good approximation for this. Vertical transmission of the disease can be added to

the SEI model Equations (2.5), by splitting the birth function so that a proportion,

p of the cubs born to an infectious mother, pr̂(N)Y , enter the disease incubating

class, H, immediately with the remainder entering the susceptible class. This new

model is represented in Equations (2.7).

dX

dt
= r̂(N) [X +H + (1− p)Y ]− bX − βXY (2.7a)

dH

dt
= pr̂(N)Y + βXY − (b+ σ)H (2.7b)

dY

dt
= σH − (b+ α)Y (2.7c)

The other terms are the same as in Equations (2.5). Steady state and stability

analysis can be found in Appendix 2A.4.
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2.1.6 SEI vertical transmission R0

As with the SEI model in Section 2.1.2 the stability of the SEI with vertical

transmission model in Equations (2.7) can be represented in terms of the basic

reproductive ratio of the disease, R0. For Equations (2.7) adding a small amount of

infection to the disease-free equilibrium, the disease can spread if,

R0 =
Kβσ + pbσ

(b+ α)(b+ σ)
> 1 (2.8)

2.1.7 SEI vertical transmission results

Solutions for different values of p can be seen in Figure 2.4. These show that for all

values of p > 0 vertical transmission acts as a population suppressor and the greater

the probability of vertical transmission of the disease, the greater the suppression

of the susceptible population density.

(a) (b) (c) (d)

Figure 2.4: Solutions for SEI model with vertical transmission represented by
Equations (2.7), showing the effect on population densities given different probability
p of vertical transmission. (a) p = 0, (b) p = 1

3
(c) p = 2

3
, (d) p = 1. (a) shows

the SEI model. The greater the probability p of vertical transmission, the greater
the suppression of the endemic steady state of susceptibles, and the less damping
of oscillations about the endemic steady state. Other model parameters are set to
default values (Table 2.1).

For all values of p, the density of susceptibles exhibits damped oscillations

about the endemic steady state, the damping occurring at a slower rate for higher

probabilities of vertical transmission. Also the period of the oscillations is greater

for higher probability of vertical transmission as is the amplitude of oscillation.

When there is greater probability of vertical transmission, the oscillations about

the endemic steady state are far more exaggerated with longer period. Therefore

a population with a high probability of vertical transmission is at greater risk of

extermination due to a random reduction of susceptibles as their density falls to a

much lower density at the trough of an oscillation.

15



Chapter 2: Introduction to modelling tuberculosis in wildlife

This suppression of the susceptible density is reflected in the strength of the

disease, R0. Figure 2.5 illustrates that as p increases from 0 to 1 then R0 increases.

Therefore, comparing the model with vertical transmission (p > 0) to that without

(p = 0) indicates that the disease can persist for a wider range of parameters when

vertical transmission is included.

Figure 2.5: R0 versus probability p of vertical transmission for the model represented
by Equations (2.7). As p increases from no vertical transmission, p = 0, to all
births to infectious mothers resulting in an infected individual, p = 1, the basic
reproductive ratio R0 increases. K=20, other model parameters are set to default
values (Table 2.1).

2.1.8 SEI with free-living particles

Field studies have shown that direct physical interactions between badgers and

livestock are fairly rare [52], so indirect contact through free-living particles could

be an important source of the transmission of infection.

To add this potential source of infection in to the SEI model, a new class is

added, W, which represents the density of free-living infective particles. This new

model is represented in Equations (2.9).

dX

dt
= r̂(N)N − bX − βwXW − βXY (2.9a)

dH

dt
= βwXW + βXY − (b+ σ)H (2.9b)

dY

dt
= σH − (b+ α)Y (2.9c)

dW

dt
= λY − µW − βwNW (2.9d)

This model is the same as the SEI model Equations (2.5) but additionally

includes the possibility of transmission by consumption of free-living particles with
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transmission coefficient βw. Free-living particles are assumed to be shed from

infective individuals at rate λ and infective particles decay at rate µ.

Anderson and Trewhella [11] argue that as changes to the density of the bacteria

occur over a much shorter timescale than changes in the densities of infected and

infectious badgers, the density of the bacilli is taken as the equilibrium value W ∗

and accordingly they set dW
dt

= 0 in the model.

2.1.9 SEI model with constant density of free-living

particles

Considering the density of free-living bacteria as a constant, W ∗, leads to the

following reduced set of ODEs in Equations (2.10).

dX

dt
= r̂(N)N − bX − βwXW ∗ − βXY (2.10a)

dH

dt
= βwXW

∗ + βXY − (b+ σ)H (2.10b)

dY

dt
= σH − (b+ α)Y (2.10c)

Steady state and stability analysis can be found in Appendix 2A.5. Results for the

addition of free-living particles at different levels can be found in Figure 2.6. These

show that lower values of βwW
∗ lead to greater oscillations about the endemic steady

state, which is lower for higher values of βwW
∗. When the level of free-particles

passes the critical threshold in Figure 2.6d, the level of free-living particles induces

a level of infection in the host population that leads to population extinction.

(a) (b) (c) (d)

Figure 2.6: Different values of βwW
∗ in the SEI model with constant level of

free-living particles represented by Equations (2.10). (a) βwW
∗ = 0.001, (b)

βwW
∗ = 0.01, (c) βwW

∗ = 0.1, (d) βwW
∗ = 1. A greater value of βwW

∗ leads to a
greater suppression of the host population. In (d) the level of free-living particles is
so great that the number of infections they induce leads to population extinction.
Other model parameters are set to default values (Table 2.1).
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2.1.10 SEI model with varying density of free-living

particles

In this section we consider the model detailed in Equations (2.9) where the density

of free-living particles is dynamic in time. The eigenvalues for the disease-free

populated state are more complicated and it is difficult to determine them explicitly.

Similarly for the endemic steady state and its stability. Therefore we look to

numerical solutions of Equations (2.9) to gain understanding of the disease dynamics

with dynamic free-living particles.

Allowing the density of free-living particles to vary in time gives the problem of

trying to determine suitable parameters for the free-living component of the model

represented by Equations (2.9). To do this we use the default set of parameters in

Table 2.1 and look at the effect on stability and critical thresholds whilst varying

the free-living parameters, λ, µ and βw.

First considering µ, the death rate of the bacteria in the environment. The

survival rates for the bacteria in the environment is not well known, and has different

characteristics depending on the season. Anderson & Trewhella [11] quote statistics

that imply a maximum survival rate of 2.5 months.

(a) (b) (c) (d)

Figure 2.7: Different values of µ in the SEI model with varying density of free-living
particles represented by Equations (2.9). (a) µ = 1, (b) µ = 3, (c) µ = 4.8,
(d) µ = 6. Lower levels of µ, the decay rate of the free-living particles, leads to
greater suppression of the host population. Here λ = 5, βw = 0.1 and other model
parameters are set to default values (Table 2.1).

Figure 2.7 has solutions for different values of µ, showing that for lower values of

µ (implying free-living particles living longer in the environment), there is a greater

level of suppression of the susceptible badger population with a corresponding rise

in the density of the free-living particles.

Figure 2.8 has solutions for different values of λ, the excretion rate of bacilli

by badgers. As would be expected, greater values of λ lead to a higher density
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(a) (b) (c) (d)

Figure 2.8: Different values of λ in SEI model with varying density of free-living
particles represented by Equations (2.9). (a) λ = 1, (b) λ = 5, (c) λ = 10, (d)
λ = 20. A greater level of λ, the average excretion rate of free particles by infectious
individuals, leads to a greater level of free-particles, W , in the environment and a
greater suppression of the host population. Here µ = 4.8, βw = 0.1 and other model
parameters are set to default values (Table 2.1).

of free-living particles in the environment with a corresponding depression of the

susceptible badger population.

(a) (b) (c) (d)

Figure 2.9: Different values of βw in SEI model with varying density of free-living
particles represented by Equations (2.9). (a) βw = 0.01 (b) βw = 0.05, (c) βw = 0.1,
(d) βw = 0.5. A greater value of betaw, the transmission rate of free particles from the
environment to susceptibles, leads to a greater suppression of the host population,
and a lower level of free particles, W , in the environment. µ = 4.8, λ = 5 and other
model parameters are set to default values (Table 2.1).

Figure 2.9 has solutions for different values of βw, the rate that individuals

become infected from free-living particles in the environment. The higher the

transmission rate, the greater the suppression of the susceptible population. This

has the side-effect that the higher transmission rate also corresponds to a reduction
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in the steady state for the free-living particles themselves.

Both of our free-living models demonstrate that an increase of the pathogen in

the environment can lead to an increase in infection and a corresponding suppression

of the host population. However, for the constant level of free-living particles model

there is a limit to the amount of the pathogen that the host population can survive.

If the level of bacteria in the environment is too great, the rate of population density

loss due to the infection leads to population extinction.

2.2 Stochastic modelling of TB in Badgers

The models we have so far reviewed in this chapter have all concerned MTC infection

described by deterministic models. A common factor in all these models is that the

disease remains endemic in the population at very low densities. Therefore, there

may be a need to examine the effects of stochasticity in the models of badger TB

interaction.

Badgers live in small social groupings with their range depending on the

abundance of food supply [11]. It is therefore sensible to consider the disease

dynamics at the local level, but this therefore implies low infected densities which

could cause the disease to die out. To incorporate this possibility into the models for

badgers we modify the SEI model (Equations (2.5)) to include stochasticity. This is

a novel extension to the work of Anderson & Trewhalla (1985) [11] and the model

formulation and results are presented in Appendix 2B.1. In summary these results

show that in a grid of patches, where the SEI model runs in each patch, but where

dispersal may occur between neighbouring patches, TB infection can die-out and

re-emerge in each individual patch. However, if the system of patches is viewed as a

whole, the disease prevalence and population suppression due to disease shows the

same pattern as the deterministic model.

2.3 Stochastic modelling of TB in wild boar

Anderson et al (2013) [6] developed an individual based model to investigate the

efficacy of vaccination against TB in wild boar in south-western Spain. Wild boar in

this area are a known reservoir of MTC infection with exceedingly high prevalence

recorded in some areas [106]. Wild boar live in two main types of area: managed

hunting estates where high wild boar density is encouraged by enforced enclosure

and supplementary feeding; and areas that are not fenced where wild boar are able

to roam freely, but do not receive any extra sustenance. The wild boar population is

structured into different classes to account for age, reproductive and disease status.

(Note that this allows for vaccination of piglets at 6 months old.) Probabilities

are set for birth, death, infection and progression to excretor level, and also for
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dispersal between squares. Where possible, these model parameters are derived

from unpublished empirical data in Spain and published sources from the rest of

Europe. For unknown parameters relating to probability of disease transmission,

sensitivity was performed by randomly varying the parameter for 5,000 iterations

of the model. As this sensitivity showed that the target results (the proportion of

latent and infected wild boar after 35 years) were not significantly influenced by

changes to these disease parameters, the average parameter value over the iterations

was taken as the actual value.

The model is run on a 2-D grid of 1 km2 squares whose starting wild boar

population is set to the carrying capacity, parameterised either for the managed

situation or unmanaged with the age and disease status of the population initialised

to predetermined percentages. Individuals may become infected by contact with

a local excretor, via an excretor from a neighbouring square or by contact with

an external source. Trial runs are made over a time period split into quarter-year

intervals, with densities adjusted each season to account for the probability of birth,

death, disease and dispersal. An annual cull of 30%, skewed so that adult males

with large tusks are more likely to be taken, is applied in the Autumn.

In contrast to the results obtained for the previous models of badger populations

where changes are reported for total density, results are reported for the change in

percentage of excretors in the population after a vaccination programme, showing

that longer vaccination programmes lead to a lower percentage of excretors in the

population. Sensitivity tests show that the length of the vaccination programme

and the percentage of piglets successfully vaccinated are independently significant

predictors of the resultant proportion of excretors in the managed situation.

However, for the unmanaged situation where wild boar live more sparsely, the

interaction between these two variables was a significant predictor of the percentage

of excretors in the population. In this stochastic patch model, infection is able to

be eradicated at certain levels of vaccination.

2.4 Stochastic modelling of TB in cattle

Brooks-Pollock et al (2014) [28] developed a stochastic metapopulation SEI model

capturing the dynamics of MTC infection caused by the transfer of cattle between

herds in Great Britain and is a complex model involving both local infection and

long-range transmission of infection due to transfer of cattle to different farms. It

is a dynamic model so that previous model behaviour affects future events. Data

obtained from the Cattle Tracing System [26] provides comprehensive information

on cattle movements and thus is used to show how infection is spread by the flow

of cattle round Great Britain. The model is fitted using data gained from extensive

records of reactors and failed cattle herd tests and parameters are generated using
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a MCMC approach. The model considers both intra and inter-farm infection,

where disease transmission on a particular farm occurs by frequency dependent

transmission between individuals on the farm and free-living transmission from both

the local farm environment and the local region.

Different cattle management strategies are applied to the model: culling the

entire herd; vaccination; decreasing environmental transmission (approximating

culling of a local wildlife reservoir, most likely to be badgers); and preventing

movement of infected cattle. The model highlights the complexities of the spread

of TB in Great Britain with different sources of infection. Current vaccination only

offers partial protection and therefore the model predicts that it is not sufficient to

reduce TB infection to a large extent. Decreasing local environmental transmission

in the model showed little effect as it only affects one route to infection. The most

effective routes to controlling TB infection in the model were those that affected all

routes of infection like culling or vaccination of the whole herd or more herd testing

to prevent the movement of infected cattle. They concluded that in this system

controlling local badger populations only had a constrained effect on reducing herd

breakdown.

2.5 Summary of models

Taking inspiration from Anderson & Trewhella [11] we have investigated a number

of models that illustrate the potential transmission routes and dynamics of TB

and highlight how this chronic infection can remain endemic in a population. The

SEI deterministic model demonstrates the suppression of a host population in the

presence of disease which can then remain endemic in the population at very low

numbers. The persistence of the disease can be interpreted in terms of the basic

reproductive ratio of the disease, R0, which represents the number of secondary

infecions from the introduction of one infected individual. This expression for R0

provides a condition for when the disease can persist, and its value indicates the

strength of the infection. We also examined additions to the SEI model, reflecting

aspects of badger lifestyle and disease transmission that could affect the course of the

disease in a host population. These included the possibility of vertical transmission

where a proportion of newborn individuals are infected, and free-living transmission

where infectious individuals release live bacteria into the environment that can

subsequently infect a susceptible. These modifications enhance the ability of the

disease to persist by increasing the value of R0. All the models have as a common

theme that the disease remains endemic in the host population at very low numbers.

In the real world populations at low abundance are at risk from extinction and so it

is possible that stochastic processes may lead to disease (or population) extinction.

This led to considering a stochastic approach based on the deterministic SEI model.
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On a single small area, this stochastic model could show disease epidemics but

the disease would fade out and was not able to remain endemic in the population

(Section 2B.1.1). We therefore added a spatial component to the stochastic model

by considering a spatial array of patches allowing dispersal of individuals between

neighbouring patches. This model demonstrated a continual pattern of infection

followed by disease die-out then subsequently after a number of years re-infection on

an individual patch level. Considering the spatial array as a whole, we showed that

the disease remains endemic in the metapopulation, demonstrating that migration

of individuals promotes the spread of infection (Section 2B.2.3). This illustrates

problems experienced during trial badger culling where it has been shown that

culling increases population dispersal as remaining badgers disperse to re-form social

groups. This increase in dispersal can increase disease transmission and promote

the persistence of the disease. Indeed results from the RBCT in south-west England

indicated that disease prevalence has increased following culling [45].

It should be remembered that Anderson & Trewhella [11] produced this piece

of work in 1985, when the area of mathematical biology was in relative infancy. It

also was written before notable crises in the cattle industry in the United Kingdom,

the onset of BSE and then the foot-and-mouth outbreak, both of which caused

considerable economic damage to the cattle farming industry in the United Kingdom.

The United Kingdom government clearly wants to avoid any further damage to

livestock herds and therefore are increasingly looking to model the dynamics of

disease in both domestic and wild animals to inform about disease management. In

1985 there was concern about the level of bovine tuberculosis in cattle, particularly

in the south-west of England where environmental conditions appeared to enhance

its affect on the population, and badgers were already being cited as a contributor

to the rise in TB infection in cattle. Anderson & Trewhella [11] use the results in

their paper to recommend, among other strategies, test culling to ascertain whether

reduction in badger density resulted in a reduction in cattle herd breakdown due to

TB.

Since 1985 there has been an increase in cattle herd breakdown due to TB, and

an increased spotlight placed on badgers as a key TB reservoir. This has led to the

development of further mathematical models in order to examine the dynamics of

the disease within the badger population and of the interactions between badger

and cattle. Smith et al (2001) [129] produced a spatial stochastic model introducing

more classes of population: age and sex were introduced in separate classes as well as

the concept of a super-excretor. Their model was used to examine different control

strategies, concluding that proactive culling, before TB is detected in livestock in a

region, is more effective than reactive. Cox et al (2005) [41] produced a deterministic

model to describe TB infection between cattle and badgers to model the effect on

cattle of culling badgers. This model was used to estimate the reproductive rate of
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TB in cattle. Brooks-Pollock (2014) [28], (see Section 2.4) produced a stochastic

metapopulation model of cattle within farms, connected via cattle movements, but

not including transmission of TB via badgers. This model resulted in a number of

cattle control strategies, and concluded that the spread of TB within livestock was

the primary factor for the increase in herd breakdown in the United Kingdom. While

wildlife reservoir populations were a factor in the overall persistence of disease they

contributed only weakly to the generation of new cases. Therefore, Brooks-Pollock

reported that control of local badger populations would have a limited effect on

reducing overall TB incidence.

Further afield, Barlow (2000) [17] produced a deterministic model for TB in

brush-tail possums in New Zealand, where culling of possums has been actively

pursued to reduce cattle TB infection. The prevalence of TB in possums is lower than

in badgers and possums have a high rate of disease induced mortality. Results from

this model are used to show that dramatically reducing the host possum population

and keeping the density low is sufficient to stop TB infection. The model predictions

are borne out by results in the field where large scale culling of possums in New

Zealand has reduced the number of herds infected with TB from 1700 in the 1990s

to 66 in 2011/12 [45]. This highlights the importance of developing system specific

models in order to develop disease control strategies.

Further to investigating models of MTC infection in host reservoirs, the research

goal of this thesis is to develop a model for the spread of TB in wild boar in

Spain. The wild boar TB system has the potential for direct, vertical and free-living

transmission and the age-class at which an individual becomes infected is critical

in determining the infectious status of an individual. The model will therefore be

able to draw on the techniques of Anderson & Trewhella (1985) [11] and subsequent

modelling techniques applied to the badger and possum systems: Smith et al (2001)

[129], Brooks-Pollock (2014) [28] and Barlow (2000) [17]. The aim of this new model

is to understand the primary mechanisms of disease transmission and then suggest

management practice that can reduce disease prevalence.
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Appendices to Chapter 2

2A.1 Steady states for logistic growth model

Steady states for Equation 2.1 occur when dN
dt

= 0, giving the steady states for this

model:

Ns = 0, Ns = K (2A1)

Letting f(N) = rN
(
1− N

K

)
, local stability requires that f ′(Ns) < 0.

f ′(0) = r ⇒ Ns = 0 locally unstable (2A2)

f ′(K) = −r ⇒ Ns = K locally stable (2A3)

For 0 ≤ N < K, dN
dt

> 0 and for N > K, dN
dt

< 0, and we can find a candidate

Lyapunov function V (N) = r(1 − N
K

)2 so that the local stability extends to global

[96]. Illustrations for this growth pattern for different values of r can be seen in

Figure 2.1. Higher intrinsic growth rate leads to faster growth and hence a faster

return to the stable steady state Ns = 20. This analysis assumes that r > 0, which

in turn says that the birth rate γ should be greater than the death rate b as specified

in Section 2.1.

2A.2 Steady states for logistic growth model with

enhanced density dependent effects

The steady states for Equation 2.3 are:

Ns = 0, Ns = K (2A4)

Now letting f(N) = rN(1− (N
K

)c),

f ′(0) = r ⇒ Ns = 0 locally unstable (2A5)

f ′(K) = −rc⇒ Ns = K locally stable (2A6)

In the same manner as for Equation 2.1, Ns = K is also globally stable.
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2A.3 SEI Steady State and Stability Analysis

The steady states of Equations 2.5 can be found by setting the right hand sides of

the equations equal to zero. These are

(Xs, Hs, Ys) =


(0, 0, 0) zero population

(K, 0, 0) disease-free populated state

( (b+σ)(b+α)
σβ

, HT ,
σ
b+α

HT ) endemic state

(2A7)

where HT is the solution to the following equation:(
γ − γ − b

Kc

(
KT +

σ + b+ α

b+ α
HT

)c)(
KT +

σ + b+ α

b+ α

)
− bKT −

βKTσ

b+ α
HT = 0

(2A8)

To determine the stability of the steady states we find the eigenvalues of the

Jacobian, J , evaluated at the steady states.

J(0, 0, 0) =

γ − b γ γ

0 −(b+ σ) 0

0 σ −(b+ α)

 (2A9)

and the eigenvalues are

γ − b

−(b+ σ)

−(b+ α) (2A10)

The steady state is stable if all eigenvalues have negative real part. As we assume

that γ > b then there is always one positive eigenvalue and so the steady state is

always unstable.

J(K, 0, 0) =

−c(γ − b) −(c+ 1)(γ − b) −(c+ 1)(γ − b) + γ − βK
0 −(b+ σ) βK

0 σ −(b+ α)

 (2A11)

and the eigenvalues are

−c(γ − b)

−(2b+ α + σ)−
√

(2b+ α + σ)2 − 4((b+ σ)(b+ α)− σβK)

−(2b+ α + σ) +
√

(2b+ α + σ)2 − 4((b+ σ)(b+ α)− σβK) (2A12)
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As we assume that γ > b then all three eigenvalues have negative real parts and

hence the disease-free steady state is stable if (b + σ)(b + α) − σβK > 0 which is

equivalent to

R0 =
Kσβ

(b+ σ)(b+ α)
< 1. (2A13)

For the endemic disease equilibrium, J(XT , HT , YT ) is more complicated and it is

difficult to determine the eigenvalues explicitly. We assume that the endemic steady

state is stable when the disease-free steady state is unstable. We highlight this with

numerical simulations in Figure 2.3 which show that the susceptible, exposed and

infectious density solutions show damped oscillations about the steady state.

2A.4 SEI with vertical transmission steady state

and stability analysis

Again, the steady states of Equations 2.7 can be found by setting the right hand

sides of the equations equal to zero. These are

(Xs, Hs, Ys) =


(0, 0, 0) zero population

(K, 0, 0) disease-free populated state

(XT , HT ,
σ
b+α

HT ) endemic state

(2A14)

The zero population steady state has the same stability characteristics as without

vertical transmission in Equation. 2.5.

Adding vertical transmission into the SEI model now changes the Jacobian for

the disease-free populated steady state to,

J(K, 0, 0) =

−c(γ − b) −c(γ − b) + b −c(γ − b) + b(1− p)− βK
0 −b− σ Kβ + bp

0 σ −(b+ α)

 (2A15)

and the eigenvalues are

−c(γ − b)

−1
2

((b+ α) + (b+ σ))− 1
2

√
4Kβσ + 4bpσ + α2 − 2ασ + σ2

−1
2

((b+ α) + (b+ σ)) + 1
2

√
4Kβσ + 4bpσ + α2 − 2ασ + σ2 (2A16)

As we assume that γ > b then all three eigenvalues have negative real parts and

hence the disease-free steady state is stable if√
4Kβσ + 4bpσ + α2 − 2ασ + σ2 − ((b+ α) + (b+ σ)) < 0 (2A17)
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or, after some rearrangement the following condition holds.

R0 =
Kβσ + pbσ

(b+ α)(b+ σ)
< 1 (2A18)

For the endemic disease equilibrium both the steady state and the Jacobian are more

complicated so we do not evaluate them here. It is also difficult to determine the

eigenvalues explicitly. We assume that the endemic steady state is stable when the

disease-free steady state is unstable. We highlight this with numerical simulations in

Figure 2.4 which shows that the susceptible, exposed and infectious density solutions

show damped oscillations about the steady state for various values of p.

2A.5 SEI with free-living steady state and

stability analysis

In the same method as we used for the SEI model in Section 2A.2 we look for the

steady states of Equations 2.9. This time, as the disease is always present there is

no populated disease-free steady state. The steady states now are,

(Xs, Hs, Ys) =

(0, 0, 0) zero population

( (b+σ)(b+α)YT
σ(βwW ∗+βYT )

, b+α
σ
YT , YT ) endemic state

(2A19)

We now have to look at the zero population steady state to determine stability

characteristics. The Jacobian matrix is as follows.

J(0, 0, 0) =

γ − b− βwW
∗ γ γ

βwW
∗ −(b+ σ) 0

0 σ −(b+ α)

 (2A20)

Unfortunately the algebraic results for the eigenvalues of this matrix are too

complicated. However on inserting the default parameters from Table 2.1 we

find that the eigenvalues for J(0, 0, 0) change from having one eigenvalue with

positive real part when βwW
∗ = 0.4 to all eigenvalues having negative real part

when βwW
∗ = 0.5, indicating that the zero populated steady state is unstable for

βwW
∗ = 0.4, but stable for βwW

∗ = 0.5. Results for a series of values of βwW
∗ in

Figure 2.6 confirm this change in stability for the zero populated steady state.

Again the Jacobian for the endemic steady state is too complicated, so we

contend that when the zero populated steady state is unstable (when βwW
∗ is less

than the critical level between 0.4 and 0.5), the endemic steady state is stable. We

can deduce from Equation 2.10 that the disease will only proliferate if the equilibrium

28



Chapter 2: Introduction to modelling tuberculosis in wildlife

density of susceptibles, Xs satisfies,

Xs >
(b+ α)(b+ σ)

σ(βwW ∗ + β)
(2A21)

2B.1 Stochastic SEI model

The deterministic models examined in Chapter 2 inform about levels of suppression

of the population by disease, and give a good model for the low level of disease

endemic in a population acting as a reservoir of MTC . However, an aspect of real

life that is not captured by these models is the tendency for the disease to die out;

the disease to die out but then re-emerge a number of years later; or for a population

to be driven to extinction by disease.

To account for these possibilities it is necessary to develop a stochastic version

of the model which can capture the possibility of such random events. Anderson &

Trewhella [11] report results from stochastic simulations based on the SEI model,

Equations (2.5), however do not specify the method used.

Here we will introduce stochastic behaviour in to the SEI model, Equations (2.5),

by using a Gillespie algorithm [67] which models the system as a Poisson process,

treating each of the changes to the susceptible, infected and infectious densities in

the ODEs, Equations (2B1), as event rates. This is also described by Renshaw [120].

To implement this, the terms that represent changes to the rates of change of

susceptible, infected and infectious classes caused by birth, death and transition

between classes, numbered 1-7 in Equations (2B1), are turned into probabilistic

events.

dX

dt
= r̂(N)N︸ ︷︷ ︸

1

− bX︸︷︷︸
2

− βXY︸ ︷︷ ︸
3

(2B1a)

dH

dt
= βXY︸ ︷︷ ︸

3

− bH︸︷︷︸
4

− σH︸︷︷︸
5

(2B1b)

dY

dt
= σH︸︷︷︸

5

− bY︸︷︷︸
6

− αY︸︷︷︸
7

(2B1c)

The events are detailed in Table 2.2 which indicates how the rates are turned into

probabilities by dividing by the sum of all the rates R. The stochastic dynamics

are generated using a Gillespie algorithm. The event is chosen using a uniform

random variable, u1 ∼ U [0, 1] which specifies which event occurs. The population

levels are updated accordingly and the event probabilities are recalculated. The

time to the next event, ∆t, is an exponential random variable with mean value 1
R

(∆t ∼ Exp(R)). In practice this is implemented with inverse sampling: ∆t = −ln(u2)
R

where u2 ∼ U [0, 1]. This process is then repeated until an end condition is reached,

for example the total population has become extinct.
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Event No Event Probability XHY change

1 Birth of badger r̂(N)N
R

if r̂ (N) > 0 X → X + 1

2 Natural death of susceptible bX
R

X → X − 1

3 Infection of susceptible βXY
R

X → X − 1, H → H + 1

4 Natural death of infected bH
R

H → H − 1

5 Infected becomes infectious σH
R

H → H − 1, Y → Y + 1

6 Natural death of infectious bY
R

Y → Y − 1

7 Death due to infection αY
R

Y → Y − 1

Table 2.2: The possible events in the stochastic SEI model Equations (2B1), the
probability of these events and the change in abundance due to each event. Here R
represents the total of all event rates

2B.1.1 Stochastic SEI results

Figure 2B.1 shows four realisations of the stochastic population dynamics when an

infected individual is added to a purely susceptible population. Compared with the

deterministic case in Figure 2.3, none of the paths taken show the disease remaining

endemic in the population. As this is an aspect of TB that we would like to preserve

in our model dynamics, modelling densities that represent a 1x1km2 patch do not

seem sufficient to allow disease persistence.

(a) (b) (c) (d)

Figure 2B.1: Results for the stochastic SEI model represented by Equations (2B1)
with 1 infectious individual added at time 20 years on a patch 1x1 km2 at
disease-free steady state density. Four sample paths are shown for susceptible(X),
exposed(H) and infectious(Y ) densities showing possibility of (a) population dying
out without influence of disease, (b) disease mediated population extinction, (c) the
host population recovering from a period of suppression due to infection and (d) the
host population recovering from the disease but subsequently suffering extinction
due to other random event. Model parameters are set to default values (Table 2.1).

To increase the population size Anderson & Trewhella [11] performed stochastic

modelling over an area of 10x10km2, by altering the carrying capacity K accordingly

to 100K. Note that for the model Equations (2B1) to balance, the transmission

coefficient β must be adjusted accordingly to β
100

as it is still derived from the
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endemic steady state susceptible density.

Figure 2B.2 shows two model realisations which highlight the typical population

dynamics at the 10x10km2 scale: the disease never becoming established (Figure

2B.2a); and the disease remaining endemic in the population (Figure 2B.2b). In

comparison with the deterministic case in Figure 2.3, when the disease remains

endemic (Figure 2B.2b) the oscillations in the population are no longer damped and

are of shorter period.

(a) (b)

Figure 2B.2: Results for the stochastic SEI model represented by Equations (2B1)
with 1 infectious individual added at time 20 years on a patch 10x10km2 at
disease-free steady state density. Two sample paths are shown for susceptible(X),
exposed(H) and infectious(Y) densities showing possibility of (a) the disease never
getting a foothold in the population and (b) the disease remaining endemic in the
population. K = 20x100, β = 0.308

100
. Other model parameters are set to default

values (Table 2.1).

As a key aspect of developing a model to describe TB dynamics in the badger

population is to show the low-level endemic nature of the infection, we investigated

the probability of the disease dying out in this stochastic model. Figure 2B.3 shows

the probability of the disease dying out within 5, 10 or 30 years after 1 infected has

been added to a population of susceptibles of density at a range of carrying capacities

on an area of 10x10km2. Two different values for the transmission coefficient β were

used to compare and contrast the behaviour. For the smaller transmission coefficient,

β = 0.308
100

, for populations with a population of 1,000 or more, the disease does not

die out for over 40% of the runs. However, for a larger transmission coefficient,

β = 1.54
100

, and hence lower critical threshold density, there is a greater chance of the

disease dying out.

Our motivation for adding stochasticity to the deterministic SEI model

(Equations (2.5)) was to introduce the possibility of the disease dying out. Figures

2B.1 & 2B.2 show that although our stochastic model achieves this when considering

small numbers of badgers, the disease does not persist. When we consider our model

over a larger area, so considering a larger host population, the disease can persist.

This is because as the size of the host population increases, the size of the infectious

population increases accordingly so is less likely to get to zero. However, increasing

the the population size makes the model’s behaviour more like the deterministic

SEI model in negating the chance of disease extinction. Therefore this approach,
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(a) (b)

Figure 2B.3: Probability for disease die-out in 5, 10 or 30 years after 1 infected
is added to the equilibrium population at time=0 years on when considering a
10x10km2 region using model represented by Equations (2B1). The probability
was derived from 20 simulations over a 100 year period for each value of K. Sample
paths taken from 20 independent runs for each population level. (a) shows results
for β = 0.308

100
, (b) shows results for β = 1.54

100
. The greater transmission coefficient in

(b) shows a greater probability of disease extinction. Other model parameters are
set to default values (Table 2.1).

although capturing some of the real world behaviour that we want, may not be a

good fit.

We therefore look at other facets of badger behaviour that may influence the

course of the disease. Anderson & Trewhella [11] considered the effect on a single

10x0km2 area of a constant rate of 1 infectious badger migrating into the patch

each year showing that this reduces the probability of disease extinction. We take

the idea of potential badger migration further by considering a number of adjoining

patches in a spatial array as in White & Lurz (2014) [142]. We will explore whether

migration between such patches leads to a model that captures the possibility of

disease persistence in Appendix 2B.2.

2B.2 Spatial Stochastic SEI model

The stochastic SEI model in Appendix 2B.1 considered the population dynamics

within one bounded patch which was adjusted in area to model different sizes of

populations. It was shown that the disease could persist if we dealt with a larger

patch size, allowing a larger number of individuals to be considered per patch. A

more realistic way to consider different population sizes in stochastic systems is to

consider a collection of spatially linked patches.

To represent this system we consider a spatial array of 1x1 km2 patches,

within each of which the population and disease exhibit the same dynamics as

the stochastic SEI model, Equations (2B1), but with the extra possibility of an

individual dispersing to a neighbouring patch.
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2B.2.1 Spatial Array

The spatial set-up contains a PxP grid of linked patches as in White & Lurz (2014)

[142]. Let us consider a patch at position (i, j), referred to as pi,j in Table 2.3.

The disease dynamics for this particular patch (i, j) can be represented as follows

j

pi−1,j−1 pi−1,j pi−1,j+1

i pi,j−1 pi,j pi,j+1

pi+1,j−1 pi+1,j pi+1,j+1

Table 2.3: Spatial array of patches.

in Equations (2B2):

dXi,j

dt
= r̂(Ni,j)Ni,j︸ ︷︷ ︸

1

− bXi,j︸︷︷︸
2

− βXi,jYi,j︸ ︷︷ ︸
3

−
∑

i−1≤k≤i+1
j−1≤l≤j+1
k>0,l>0
(k,l)6=(i,j)

m(i,j),(k,l)Xi,j +
∑

i−1≤k≤i+1
j−1≤l≤j+1
k>0,l>0
(k,l)6=(i,j)

m(k,l),(i,j)Xk,l

︸ ︷︷ ︸
4

,

(2B2a)

dHi,j

dt
= βXi,jYi,j︸ ︷︷ ︸

3

− bHi,j︸︷︷︸
5

−σHi,j︸ ︷︷ ︸
6

−
∑

i−1≤k≤i+1
j−1≤l≤j+1
k>0,l>0
(k,l)6=(i,j)

m(i,j),(k,l)Hi,j +
∑

i−1≤k≤i+1
j−1≤l≤j+1
k>0,l>0
(k,l)6=(i,j)

m(k,l),(i,j)Hk,l

︸ ︷︷ ︸
7

,

(2B2b)

dYi,j
dt

= σHi,j︸ ︷︷ ︸
6

− bYi,j︸︷︷︸
8

−αYi,j︸︷︷︸
9

−
∑

i−1≤k≤i+1
j−1≤l≤j+1
k>0,l>0
(k,l)6=(i,j)

m(i,j),(k,l)Yi,j +
∑

i−1≤k≤i+1
j−1≤l≤j+1
k>0,l>0
(k,l)6=(i,j)

m(k,l),(i,j)Yk,l

︸ ︷︷ ︸
10

.

(2B2c)

Here m(i,j),(k,l) is the rate of dispersal from patch pij to its neighbouring patch pkl. As

in Chapter 2B.1 the rates in the deterministic model can be turned into probabilities

of events. These events are specified in Table 2.4.

33



Chapter 2: Introduction to modelling tuberculosis in wildlife

Event No Event Probability XHY change

1 Birth of badger
r̂(Nij)Nij

R
if r̂ > 0 Xij → Xij + 1

2 Natural death of susceptible
bXij

R
Xij → Xij − 1

3 Infection of susceptible
βXijYij

R
Xij → Xij − 1, Hij → Hij + 1

4 Migration from patch
m(ij),(kl)Xij

R
Xij → Xij − 1, Xkl → Xkl + 1

5 Natural death of incubator
bHij

R
Hij → Hij − 1

6 Infected becomes infectious
σHij

R
Hij → Hij − 1, Yij → Yij + 1

7 Migration from patch
m(ij),(kl)Hij

R
Hij → Hij − 1, Hkl → Hkl + 1

8 Natural death of infectious
bYij
R

Yij → Yij − 1

9 Death due to infection
αYij
R

Yij → Yij − 1

10 Migration from patch
m(ij),(kl)Yij

R
Yij → Yij − 1, Ykl → Ykl + 1

Table 2.4: The possible events for patch (i,j) in the spatial stochastic model
represented by Equations (2B2). Here R represents the total of all event rates
summed over all patches.

2B.2.2 Spatial parameters and boundary conditions

We have considered this model with a constant migration rate, m. It is difficult to

estimate this value and so as a baseline we assume it equals the natural death rate

leading to an assumption that dispersal to a different patch will on average occur

once in a badgers lifetime. This constant rate m means that in an internal patch

a badger will migrate to a particular neighbouring patch at rate m
8

. Consideration

has to be given to how migration proceeds from patches at the boundary. Comins,

Hassell & May [38] consider three types of boundary conditions: absorbing, reflective

and cyclical whilst modelling an insect population. Absorbing conditions lead to

the individual leaving the spatial array altogether; cyclical conditions mean that

an individual leaving the spatial array on one edge, re-enters on the corresponding

opposite edge; and with reflective conditions an individual does not leave the array

but reflects into the neighbouring edge patch (or back into the focal patch).

Of these three types of boundary conditions, reflective would be the closest to

the model you might expect for badgers, however it would not seem likely that a

badger would try to migrate out of a boundary that would just lead to it returning

to the original patch. It would seem more reasonable to consider that a migrating

badger has some notion of where it might go to, or at least have existing paths to

follow. Therefore at the boundary for a non-corner patch we take the migration rate

to each of the five neighbouring patches as m
5

, and for a corner patch the migration

rate to each of the three neighbouring patches as m
3

.
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(a) (b) (c)

Figure 2B.4: Results from the spatial stochastic model represented by
Equations (2B2) showing levels of infectious (Y ) individuals on a spatial array of
20x20 1x1km2 patches. Each patch starts at the disease-free steady state with
X = K, 1 infected added at 10 years. Column a) shows level of infected in patches
at start of infection, b) level of infected in the spatial array after 15 years, c) level
of infected in the spatial array after 30 years. Row 1 shows an infection that
never managed to proliferate, migration rate m; row 2 results from migration at
m
2

; row 3 results from migration rate m, the same as the natural death rate. Guided
by the colour bar on the bottom right, patches coloured black are disease-free,
those coloured darker red are patches with low number of infected individuals
rising through pink to white showing patches where the greatest density of infected
individuals lies. Disease can be seen to move from the centre of the infection out to
the edges. Some patches in the centre can be seen to become disease-free, however
in time disease migrates back to these patches. The lower migration rate leads to a
slower proliferation of the disease. Other model parameters are set to default values
(Table 2.1).

2B.2.3 Spatial Stochastic Results

Figure 2B.4 shows snapshots from sample runs on a 20x20 spatial array at the

introduction of disease, 15 years after first infection and then 30 years after first

infection. The spatial array is initialised to a disease-free state with susceptible

population density at 20 individuals in each patch. Patches coloured black illustrate

a disease-free patch; coloured red a small number of infectious individuals; and

coloured pink through to white show patches with a higher number of infectious

individuals. Correspondingly Figure 2B.5 illustrates the density levels of the
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susceptible population on the spatial array where bright yellow illustrates susceptible

density at 20 or more, moving down to blue showing a lower level of susceptibles

and dark navy blue no susceptibles in a patch. To initiate the disease, 1 infectious

individual is added to a patch at the centre of the spatial array. The top row shows

a sample run when the disease does not spread into other patches. In this case the

infectious individual dies before it managed to promote an epidemic. The middle and

bottom rows show sample runs when the disease manages to proliferate throughout

the spatial array. In both cases the disease spreads out in all directions spreading

the disease into hitherto healthy patches. At 15 years after infection it can be seen

that some patches at the centre of the spatial array actually become disease-free but

after 30 years disease has migrated into the patches again. In this way the spatial

stochastic model represents disease die-off and re-infection that was not captured

in the earlier models considered in this project. The course of the disease is shown

for one particular patch in Figure 2B.6. There are repeated local disease epidemics

that the host population recovers from only to become infected again due to the

migration of an infectious individual from a neighbouring patch.

It is also interesting to compare the total population dynamics over the whole

array with the dynamics of the deterministic system (Equation (2.5)). Examining

a spatial array of 20x20 patches the total susceptible population over time is shown

in Figure 2B.7 for sample runs when the disease does not proliferate and in Figure

2B.8 when disease becomes endemic in the spatial system.

When no epidemic has occurred, for the cases when the migration rate is non-zero

(Figures 2B.7b & 2B.7c) the population settles to a stable level (but note this

is below the level it would be in a deterministic system of 8,000 individuals).

Interestingly, when the migration rate is zero (Figure 2B.7a) the total population

trend appears to be very slowly diminishing over time. This is due to the small

probability of the population dying out in a patch through natural causes, and

a birthing event not occurring in time to revitalise the population. As there

is no migration of susceptibles to re-populate the patch the population slowly

declines. This result highlights that migration of individuals helps maintain the

total population in the spatial system in the absence of disease.

When the disease has managed to spread and become endemic in the population

we compare the totals for three different migration rates in Figure 2B.8. The general

pattern emerging from this is akin to results from the deterministic model (Equations

(2.5)) illustrated in Figure 2.3. The onset of the disease causes the density of

susceptibles to crash, oscillating about a lower density. Different migration rates also

have an effect on the average susceptible population: a higher migration rate leads

to a faster crash in the susceptible population; a slightly lower average susceptible

population; and a shorter oscillatory period.

In summary, if we consider a spatial stochastic model it allows us to represent
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(a) (b) (c)

Figure 2B.5: Results from the spatial stochastic model represented by
Equations (2B2) showing levels of susceptible (X) individuals on a spatial array
of 20x20 1x1km2 patches corresponding to the levels of infectious in Figure 2B.4.
Each patch starts at the disease-free steady state X = K, 1 infected added at
10 years. Column a) shows level of susceptibles at start of infection, b) levels of
susceptibles in the spatial array after 15 years, c) levels in susceptibles in the spatial
array after 30 years. Row 1 shows an infection that never managed to proliferate; row
2 results from migration at m

2
; row 3 results from migration rate m, the same as the

natural death rate. Guided by the colour bar on the bottom right, patches coloured
bright yellow are patches with the density of susceptibles at disease-free level, those
coloured light blue are patches with a lower density of susceptibles indicating a patch
where disease has proliferated dropping to dark navy blue indicating a patch with
0 susceptibles where disease and migration has led to the population being wiped
out. As disease moves from the centre out to the edges, some patches in the centre
can be seen to recover from the infection, however in time disease migrates back to
these patches. The lower migration rate leads to a slower proliferation of the disease.
Other model parameters are set to default values (Table 2.1).

the disease dynamics of the badger TB system. In particular the disease can be

maintained in populations at relatively low density. This occurs through a process

of local repeated disease epidemics followed by recovery of the population.
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Figure 2B.6: Results from the spatial stochastic model represented by Equations
(2B2) showing the population for the patch in the spatial array that incurred the
initial infection of 1 infectious at time 10 years. Susceptible density is shown in blue,
infected in green and infectious in red. Repeated disease epidemics are followed by
recovery of the population. After extinction of the disease, migration of an infectious
individual from a neighbouring patch starts another outbreak of the disease. Model
parameters are set to default values (Table 2.1).

Figure 2B.7: Results from the spatial stochastic model represented by Equations
(2B2) showing total levels of susceptible(X), exposed(H) and infectious(Y ) on a
spatial array of 20x20 1x1km2 patches. Each patch starting at the disease-free
steady state X = 20, 1 infected added at 10 years but the disease dying out after
initial infection at the centre of the spatial array. Column (a) no migration; column
(b) migration rate m; column (c) migration rate 3m

2
. As disease has died out,

total levels of susceptibles only affected by migration of non-infected individuals.
Non-zero migration rate ((b),(c)) does not affect population density levels when
compared with zero migration density ((a)). Other model parameters are set to
default values (Table 2.1).
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(a) (b) (c)

Figure 2B.8: Results from the spatial stochastic model represented by Equations
(2B2) showing total levels of susceptible(X), exposed(H) and infectious(Y ) on a
spatial array of 20x20 1x1km2 patches. Each patch starts at the disease-free steady
state X = K, 1 infected added at 10 years. Column (a) migration rate m

2
; column

(b) migration rate m; column (c) migration rate 2m. A higher level of migration
causes greater proliferation of the disease, therefore suppressing the density of the
susceptible population to a greater extent. Other model parameters are set to default
values (Table 2.1).
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Developing a wild boar TB model

Figure 3.1: Wild boar and deer at a water hole in central Spain.

In central Spain tuberculosis (TB) is endemic in wild boar populations reaching

high prevalence levels of greater than 50% [106, 137]. It also persists, but at a lower

prevalence, in other host species such as red deer, however as this prevalence follows

changes in wild boar prevalence, red deer are not seen as the prime host reservoir

[76, 56]. Wild boar affected by TB can be separated into two classes. The first

class are infected, but largely asymptomatic and shed a negligible amount of MTC

particles. The second class are wild boar that have progressed from the infected to

the generalised (super-shedder) state. These animals typically shed large quantities

of MTC and also suffer from increased mortality associated with generalised infection

[126]. While wild boar tend to congregate in separate social groups during the dry

season different groups share scarce water resources ([14]; Figure 3.1). Free-living

MTC particles can survive in mud and water for long periods [55, 126] and so the

interaction between the population and the infectious agent is well-mixed. Infection

through contact with free-living MTC particles (particularly at water holes) is seen

as the key factor that leads to the high disease prevalence of TB infection in wild

boar in central Spain [138, 14]. While infection through direct boar to boar contact

is also possible it is likely to be at a lower level than infection through contact with

free-living pathogen (and can to some extent be approximated by the free-living

40



Chapter 3: Developing a wild boar TB model

infection process). We endeavour to produce a mathematical model that reflects TB

being spread through contact with free-living particles and aim to use the model to

identify ways to reduce the level of generalised infection in the wild boar population,

and hence inform strategies to reduce overall TB prevalence. This chapter outlines

the process of the initial model development and undertakes a sensitivity of key

parameters on population and disease status.

As detailed in Chapter 2 a wide range of studies have developed models to

examine the infection dynamics of TB. These have examined specific systems,

notably badgers, possums, deer and cattle, and used a range of mechanistic

(strategic) and rule-based (tactical) modelling approaches. In general they consider

the disease transmission through direct host-host contact. Anderson et al. (2013)

[6] developed a rule-based model to assess the wild boar TB dynamics in central

Spain. Here disease transmission was through contact between susceptible and

local excretor hosts, through dispersal of an excretor and through contact with

an external source. In our study we will develop an alternative model for the

wild boar TB dynamics in central Spain. We will use a mechanistic approach in

which the underlying dynamics are represented by a system of differential equations.

An advantage of the mechanistic approach is that it allows for a more thorough

exploration of the possible population outcomes and a better characterisation of

the key processes that determine the dynamics. Our model will focus on disease

transmission through contact between susceptible hosts and free-living infective

particles that are released by infected, excretor hosts. This is based on research

showing that high TB prevalence in wild boar is associated with multiple wild

boar social groups accessing common water and supplementary food sources, thus

spreading and coming into contact with MTC pathogen via the environment

[138, 137].

In central Spain TB is more prevalent in the more intensely managed hunting

estates where wild boar tend to live at higher density [138]. Our initial modelling

will focus on an area representative of such estates. As such we consider a single

geographical area that supports a homogeneously mixed population of wild boar

with total population density N . In the presence of infection the total population

is reduced to a density below this disease-free state as a result of disease-induced

mortality. Reflecting evidence from the field [126], the progression of TB in wild

boar can be split into two phases: on initial infection the wild boar do not shed

a high concentration of infected particles and do not suffer disease virulence; and

secondly a proportion of these infected wild boar will progress to a generalised phase

where they become super-shedders and can shed a high concentration of infected

particles into the environment and also suffer from additional disease mortality. We

will model these separate phases of infection using three distinct classes of wild

boar: susceptible individuals who have never been infected by TB having density S;
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infected individuals who were susceptible but became infected via exposure to TB

in the environment have population density I; and those individuals whose infection

has progressed to the generalised state, with population density G. We construct

the model to reflect that the generalised individuals (super-shedders) are the sole

producer of the free-living pathogen which exists in the environment at density F .

The total wild boar population is therefore N = S+ I +G, and individuals from all

classes may reproduce into the susceptible class (although generalised individuals

may reproduce at a reduced rate). All of the population classes may suffer death due

to natural causes with the generalised class additionally incurring disease-induced

mortality. A schematic representation of the system is shown in Figure 3.2.

Translating this system into a deterministic mathematical model would produce

a system of four coupled non-linear ordinary differential equations. However, by

considering all ages of wild boar together we lose important specific details of the

system. As evidenced by Vicente et al. (2013) [137] and Che’Amat et al. (2015) [34]

different age classes of wild boar have different susceptibility to MTC infection with

yearlings most likely to present as super-shedders [94], and therefore we infer that

the infection rate and the progression to generalised infection in piglets and yearlings

is faster than that for adults. Also, pertinent to being able to target specific age

groups in the model we note that vaccination to prevent MTC infection is applied

to piglets only [60]; and that hunting typically targets larger more mature (trophy)

individuals [140]. These considerations are highlighted by biological and ecological

literature regarding TB in wild boar and other wild animals in the Iberian peninsula

[75]. Therefore we look to refine this simple model by splitting the susceptible and

infected classes into separate age categories.

3.1 The Piglet-Yearling-Adult (PYA) model

In a similar manner to the model of Anderson et al. (2013) [6], we split

our susceptible and infected classes into separate age classes to reflect different

transmission parameters for younger and older wild boar, and also to reflect what

age classes of wild boar are known to reproduce. Taking a longer view for the model,

we also envisage that separate age classes will be important when incorporating

management strategies, for example vaccination affecting only piglets, and hunting

being focused on adult wild boar. We divide both the susceptible and infected

populations into three age classes: piglets (aged 0-1 year) P , yearlings (aged

1-2 years) Y , and adults (aged 2 years+) A, with our susceptible classes having

population density PS, YS and AS respectively and infected classes population

density PI , YI and AI respectively. Susceptible piglets, PS, mature into susceptible

yearlings, YS, which mature into susceptible adults, AS, at rates mPS
and mYS

respectively, and similarly infected piglets, PI , mature into infected yearlings, YI ,
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Figure 3.2: SIGF system: susceptible (S) wild boar become infected (I) via contact
with free-living particles (F ). Infected wild boar (I) may progress to generalised
(G) who are super-shedders, the sole producers of free-living particles (F ). Each of
the population classes can die due to natural causes, with generalised experiencing
an added mortality rate due to the disease. Each population class may reproduce
with all new-borns entering the susceptible class.

which mature into infected adults, AI , at rates mPI
and mYI respectively. In the

generalised class we do not separate the age classes because once generalised the key

functional trait is the release of pathogen particles and additional level of mortality,

whose properties are less dependent on age-class.

Each susceptible class may become infected through contact with infectious

free-living particles at rates βP , βY and βA respectively. Infected wild boar of any

age class, PI , YI and AI , can progress to the generalised class, G, and occurs at

rates εP , εY and εA respectively.

The total population, N , can therefore be defined as N = PS+PI+YS+YI+AS+

AI +G, which is at steady state, N = PS + YS +AS = K, in the absence of disease.

All the densities are expressed in terms of population per the geographical area.

We define the total prevalence, ptot = PI+YI+AI+G
N

, as the proportion of the total

population infected with TB; the prevalence of infected but not generalised pinf =
PI+YI+AI

N
; and the prevalence of generalised pgen = G

N
; such that ptot = pinf + pgen.

Free-living infected particles exist in the environment at density F and have

a natural decay rate of µ. The density of free-living particles increases through

generalised wild boar shedding particles at rate λ.

Yearlings and adults (both susceptible and infected) and generalised, give birth

to susceptible piglets at rates bY , bA and bG respectively. The birth rate is modified to

represent density-dependent constraints through the term, q, which acts to stabilise

the total population at N = K in the absence of disease. Piglets, yearlings,

adults and generalised classes may die of natural causes at rates dP , dY , dA and

dG respectively, and generalised individuals suffer an additional mortality rate due
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to the disease of α.

dPS
dt

=(bY (YS + YI) + bA(AS + AI) + bGG)(1− qN)−mPS
PS − dPPS − βPPSF

(3.1a)

dPI
dt

=βPPSF −mPI
PI − dPPI − εPPI (3.1b)

dYS
dt

=mPS
PS −mYSYS − dY YS − βY YSF (3.1c)

dYI
dt

=βY YSF +mPI
PI −mYIYI − dY YI − εY YI (3.1d)

dAS
dt

=mYSYS − dAAS − βAASF (3.1e)

dAI
dt

=mYIYI + βAASF − dAAI − εAAI (3.1f)

dG

dt
=εPPI + εY YI + εAAI − αG− dGG (3.1g)

dF

dt
=λG− µF (3.1h)

The population dynamics are described by Equations (3.1). A schematic

representation of the model is shown in Figure 3.3.

PS PI

F G

YS YI

AS AI

βP

βY

βA

mpS mpI

mYS mYI

λ

εP

εY

εA
bG

bA bA

bY bY

Figure 3.3: A schematic representation of the wild boar TB model with piglet,
yearling and adult classes represented by Equations (3.1).
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3.1.1 PYA model: Default parameter set

There are many parameters in this model and in this section we aim to determine

best estimate parameters from empirical data. Where empirical data are not

available we investigate which parameter sets can achieve disease prevalence levels

of ptot = 50% and pgen = 25% (as these are representative of the wild boar TB

system in central Spain). We use the following default parameters,

‘target area’=3x3km2 We consider a single geographical managed estate containing

a homogeneously mixed wild boar population covering an area of 3x3km2.

bY = bA = b = log(4) The population birth rate in a disease-free population when

resources are unlimited. This constant rate means that for each reproductive

member of the population, 3 piglets will be born, averaged over the population

over a year. (This has been derived by assuming that there is a 50% sex ratio

and that each female produces an average of 6 offspring per year when resources

are not limited [105, 64].)

bG = 0 For the default parameters we assume that members of the generalised class

cannot reproduce.

K = 500 The steady state for the total population in the target area in the absence

of disease. (Note that there are no ecological data to back this value up. With

this value of K the corresponding endemic population is representative of wild

boar densities observed on hunting estates in central Spain of around 20/km2

[3]. We perform a sensitivity analysis on this parameter in Section 3.3.)

q = 1
K

(
1− dA(dP+mPS

)(dY +mYS
)

mPS(bAmYS
+bY dA)

)
This parameter limits the total population to

carrying capacity K in the populated disease-free steady state, and is derived

from steady-state analysis of the model without infection.

mPS
= mPI

= mYS = mYI = m = 1 The rate that piglets mature to yearlings and

yearlings mature to adults for both susceptible and infected classes. These

rates assume that it takes on average 1 year to enter the next age group using

standard classification for wild boar juveniles and adults [94].

dP = dY = dA = d = 1
7

The natural death rate of all classes which implies an average

life expectancy of 7 years [134].

βA = 20
K

The infection rate for adults, adjusted dependent on K. (Note this

parameter has been adjusted so that the model produces the required disease

prevalence in conjunction with the other default values. We undertake

sensitivity analysis of this parameter as part of the model evaluation.)
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βP = βY = cββA The infection rate for both piglets and yearlings. For the default

parameter set we assume that cβ = 3 and so disease transmission to piglets

and yearlings is three times that of the adult rate. We undertake a sensitivity

analysis of cβ in the results below and let it range from 1 < cβ ≤ 10, as

we assume that transmission is higher for piglets and yearlings than it is for

adults. This is inferred from data from the field where a high proportion of

piglets on hunting estates were already infected at 3-6 months old [34], and

also data that shows that yearlings show the greatest proportion of infecteds

[137].

εA = 2
3

This is the rate that infectious adults become generalised. This rate implies

that it takes on average in 1.5 years for an adult to become generalised

following infection. Alongside βA this value has been adjusted so that the

model produces the required disease prevalence in conjunction with the other

default values. We undertake a sensitivity analysis of this parameter.

εP = εY = cεεA The rate that infected piglets and yearlings become generalised. For

the default parameter set we assume cε = 3. This assumes that it takes on

average 6 months for an infected piglet or yearling to progress to the generalised

class. We undertake a sensitivity of cε in the results below and let it range

from 1 < cε ≤ 10 as we assume that progression to generalised is faster for

piglets and yearlings than for adults, inferred from data from the field showing

that juveniles suffer the greatest proportion of generalised [106].

α = 1 This is the additional disease induced death rate of the generalised class and

assumes that on average individuals spend 1 year in the generalised class before

death. Barasona et al. (2016) [12] gathered data on the causes of mortality

of 45 adult wild boar that were monitored over a period of 3 years using GPS

collars, noting that MTC infection was confirmed in 72% of the wild boar

for which postmortem data were available. In the game estates, similar to

our focal area, the mean survival time was roughly 300 days with 72% of

these deaths being from harvesting, whereas 22% were caused by tuberculosis.

However, the mean survival time for the wild boar monitored in areas with

much lower hunting pressure was over double that of the game estates, and the

proportion of deaths from TB was 45%. TB is a chronic disease in wild boar,

and from these figures we infer that wild boar can remain in the generalised

phase for a significant period of time. We perform a sensitivity analysis of this

parameter.

λ = 1 We normalise this value to 1. This is valid as we explore a range of values for

βP , βY and βA which scale with the size of λ and the density of free-particles,

F . Therefore λ, µ, βP , βY and βA depend on each other and are to some

46



Chapter 3: Developing a wild boar TB model

extent fitted to provide reasonable underlying results. There are no empirical

estimates for this parameter.

µ = 6 This is the decay rate for free-living particles, indicating that they have a

life expectancy of 2 months. Fine et al. (2011) [55] examined the survival of

Mycobacterium bovis in natural conditions in Michigan, USA over a 12-month

period. They report that Mycobacterium bovis persisted for 88 days in soil

and 58 days in water, although under hotter conditions this reduced to 11

and 48 days respectively. Ghodbane et al. (2014) [65] show under controlled

laboratory conditions MTC species can survive in soil for over 12 months,

however it is commonly understood that MTC exhibits lower survival times in

natural conditions [132]. Under natural conditions moisture is a key factor in

the survival to Mycobacterium bovis [132, 126] and in central Spain high levels

of MTC were found in the mud of waterholes with the presence of diseased

animals heightening this risk [14]. As our continuous model aims to average

the system behaviour over a year, we set the default value of survival to 2

months which is between the highest and lowest values recorded by Fine et al.

(2011) [55]. It should be noted that we explore a range of values for βP , βY

and βA which are dependent on the density of free-living particles, F , so that

the decay rate µ influences the fitted values for the transmission rates. We

perform a sensitivity analysis for this parameter.

Using parameters set to these values, we examine what happens to a disease-free

population of 500 individuals in the target area, when 1 infected yearling is added

at a time t=10 years. The effect of the disease on the population can be seen in

Figure 3.4.

When the disease is introduced the total population is suppressed with the

number of infected and generalised individuals and susceptible individuals stabilising

to a stable endemic state. At the endemic steady state we have ptot ≈ 53%,

pgen ≈ 28% and pinf ≈ 25%. The level of free-living particles follows a similar

pattern to that of the total infected population.

Model βY εY bY

1 Default model βP εP bA

2 Yearlings with piglet parameters βP εP 0

3 Yearlings with adult parameters βA εA bA

Table 3.1: Variants of the PYA model that are tested to examine the importance of
the yearling class.

As well as ensuring that our target disease prevalence, ptot = 50% and pgen = 25%

is achievable with this model, it is also a valuable exercise to check that the three
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(a) (b)

Figure 3.4: (a) The population against time for the total population N = S+ I +G
(blue), susceptibles S(= PS + YS + AS) (green) and total infected and generalised
I(= PI + YI + AI) + G (red). (b) The level of free-living, F , against time. Here 1
infected yearling is introduced to a susceptible population at its carrying capacity
at t = 10. Default parameter values.

class PYA model is not over complicated. To investigate this we use the default

parameter set in Section 3.1.1 as a starting point. These parameters assume that

yearlings have the same rates for transmission and progression to generalised as

piglets, and that yearlings (classes YS and YI) can give birth at the same rate as

adults (classes AS and AI). Evidence suggests this is a realistic combination, as

discussed in the default parameters Section 3.1.1 piglets and yearlings present higher

rates of infection and progression to generalised, also yearlings have a slightly lower

but similar birth rate to adults on hunting estates [124]. We call this model 1 in

Table 3.1 and compare this model with model 2 where the yearling class has the

same parameters as the piglet class, and with model 3 where the yearling class has

the same parameters as the adult class. If the results for model 1 are analogous to

either of these other models it would indicate that the model could be simplified by

combining the yearling class with one of the other classes.

3.1.2 Sensitivity of cβ and cε to model changes

To examine the differences between these three models we look at the sensitivity to

changes in the values of cβ and cε. We do this by examining heat charts for our target

disease prevalences ptot, pinf and pgen (Figure 3.5) as the sensitivity parameters cβ

and cε vary. The areas of the charts highlighted bright green show the combinations

of cβ and cε that achieve our target disease prevalence: ptot = 50%, pinf = 25% and

pgen = 25%. The intersection of these three green areas highlight the values of cβ

and cε that satisfy our requirements.

Comparing heat charts from Figure 3.5 we see significant differences between
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(i)

(ii)

(iii)

(a) (b) (c)

Figure 3.5: Sensitivity of transmission parameters to changes in parameters for the
Y class. Heat charts show variation in (a) ptot (b) pinf and (c) pgen given changes
in cβ and cε. (i) shows results for model 1; (ii) shows results for model 2; and (iii)
shows results for model 3 as described in Table 3.1. Other parameters set to the
default parameter values.

the models. In particular the pattern of total prevalence, ptot is markedly different

between the three models. Model 2, where yearlings have the same parameters as

piglets, shows that ptot = 50% requires a narrow range of cε whereas model 3, where

yearlings have adult parameters, requires a narrow range of cβ to achieve ptot = 50%.

The results for default model 1 are between these extremes. This provides evidence

that there is sufficient difference between the dynamics of the three models and

therefore that the default model in which yearlings have different parameters to

both adults and piglets should be used.

3.1.3 Sensitivity of total population to model changes

While we intend to focus on model 1, some useful information about the general

behaviour of the model can be gained by examining changes in the total population

over time for the different models (Figure 3.6i). The results indicate that the three
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(i)

(ii)

(a) (b) (c)

Figure 3.6: Changes in the total population over time for: (a) model 1; (b) model
2; and (c) model 3 as described in Table 3.1. 1 infected yearling is inserted into
a disease-free population at steady state at time t=10 years. (i) shows the total
population N (blue), susceptibles S = PS + YS +AS (green) and infectious I +G =
PI +YI +AI +G (black). (ii) shows changes to individual classes which are indicated
in the key to the figure but more generally the generalised class is red, infected classes
are magenta, susceptible classes green with adult classes shown by a continuous line,
yearling classes by a dot-dash line and piglet classes by a dotted line. Parameters
not specific to models 1, 2 and 3 are set to the default parameter values.

models are qualitatively similar. Model 1 shows a higher level of infecteds and

overall higher total population than model 2 which is a consequence of yearling

reproduction in model 1 (the additional reproduction provides additional piglets

that are susceptible to infection). Model 3 shows higher total population when

compared to the default model which is a consequence of the reduced likelihood of

infection as yearlings are assumed equivalent to adults in terms of susceptibility to

infection in model 3. To gain greater insight into the differences between the three

models we examine the changes to the individual classes.

3.1.4 Sensitivity of individual class populations to model

changes

To examine the population density in individual classes for models 1, 2 and 3

we plot the percentage of the total population for each class (Figure 3.6ii). The

results indicate that model 1 (default parameters) produces the greatest percentage

of generalised individuals. This arises since in model 1 yearlings have the same

susceptibility to infection and rate of progression to the generalised class as piglets
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and they can also reproduce like adults and so increase the supply of individuals

that are most susceptible to infection. In comparison, model 2 in which yearlings do

not reproduce shows a decrease in overall levels of infection. This highlights how a

sufficient supply of new susceptible individuals is required to support high infection

levels. Model 3, in which yearlings reproduce but have the same susceptibility to

infection and progression to generalised infection as adults shows a reduction in the

level of generalised individuals and an increase in infected adults (and an increase

in the proportion of adult individuals in general compared to model 1).

3.2 PYA model: discussion of age structure

In developing a model to represent the wild boar TB system we have considered a

framework where the only route to infection is through transmission from free-living

infected particles. We have considered a model that splits the population into

susceptible, infected and generalised classes and considered age structure that

represents piglets, yearlings and adults separately for susceptible and infected

classes. We have confirmed that with this model we can achieve our target

prevalences of ptot=50%, pgen=25%.

We compared the results from three models that represented different

parameterisations of the PYA model described by Equations (3.1). We show (Figures

3.5 and 3.6) that the results are sufficiently different so that it is important to

consider the three age class system (model 1), and we will proceed with this model

for the remaining analysis in this chapter.

Considering a model with three age classes does increase the complexity of

the system but we mitigate this somewhat by assuming yearlings have the same

transmission coefficients for infection (βY = βP ) and same rate of progression to

generalised infection (εY = εP ) as piglets, and that yearlings have the same rate

of reproduction as adults (bY = bA). This reduces the number of parameters and

also represents the key differences between the age classes observed in the natural

system.

3.3 PYA Model: the response of infection to

changes in population size

We examine how the population and infection dynamics of the PYA model vary

when the underlying density of the host varies. In particular we are interested in

determining a threshold level in host population at which the pathogen is supported

and the trend in infection prevalence as the host population increases. Field work

has shown that the disease prevalence has increased with increases in underlying wild
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boar densities [76] and the response to population changes will also be important

when we add management procedures to the model that affect the population size.

(a) (b)

Figure 3.7: PYA model response to change in population size. (a) shows plot of
resultant total population against change in carrying capacity (K). (b) shows plot
of prevalence against resultant population size N . Default parameter values.

To do this, we run the model using the default parameter set from Section 3.1.1

for a range of values of K between 0 and 1000, and plot the resultant values of

total population N against the input value of K, and also the disease prevalence

indicators ptot, pgen and pinf against the resultant N .

Figure 3.7a shows that for increasing values of K, the resultant total population

N saturates due to the effect of endemic infection at a level around N = 200. There

is a critical value of K where the host population is unable to support the pathogen.

This is borne out in Figure 3.7b showing the resultant disease prevalence attained

for each resultant value of the total population N . Figure 3.7b shows a critical

threshold for N ≈ 120 below which the host cannot support the pathogen. Above

this critical threshold the disease can be supported and increases as N increases.

As N increases from 120 to 200 it is observed that ptot increases from 0-60%. The

prevalence of generalised individuals, pgen, and the other infected individuals, pinf ,

increase with N but remain approximately equal (to each other) until N approaches

200.

3.4 PYA model: birth from the generalised class

Evidence from the field indicates that individuals with generalised infection may be

able to reproduce (albeit at a reduced rate). Additional reproduction may be a key

driver in enhancing the level of infection and the prevalence of generalised infection.

Since the generalised class forms a significant proportion of the population it is

important to examine how reproduction from this class may affect the infection

dynamics.
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(a) (b)

Figure 3.8: Results for the PYA model with default parameters and birth from
generalised (bG = bA) where 1 infected yearling is inserted into a disease-free
population at steady state at time t=10 years. (a) plots total population against
time for total population N (blue), susceptibles S = PS + YS + AS (green) and
infectious I = PI + YI +AI +G (black). (b) plots individual class densities against
time which are indicated in the key to the figure but more generally the generalised
class is red, infected classes are magenta, susceptible classes green with adult classes
shown by a continuous line, yearling classes by a dot-dash line and piglet classes by
a dotted line.

To provide an upper bound on the effect of birth from the generalised class we

set bG = bA (bG = 0 in the previous default results). Figure 3.8a with bG = bA can be

compared to Figure 3.6a(i) in which bG = 0. It is clear that birth from the generalised

class increases the overall population (N ≈ 270 compared to N ≈ 190). The increase

in population is driven by an increase in the number of infected and generalised

individuals, with the level of susceptibles largely unchanged. The transfer of new

susceptibles, recruited by increased reproduction, into increased levels of infected

individuals is a feature of classical epidemiological models [10, 84].

Figure 3.8b shows the percentage of total population for each of the population

classes when bG = bA (and can be compared with Figure 3.6a(ii) in which bG = 0)

where the proportion of generalised has risen to 40% (from below 30%), whereas

the proportion of adult susceptibles has dropped below 10% (from ∼ 18%) which

results from a relatively unchanged level of susceptibles but an increase in the total

host population level. Figure 3.9 highlights how birth from the generalised class

may play an important role in generating the high levels of prevalence seen in the

wild boar TB system.

We examine the sensitivity of the PYA model with birth from the generalised

class to changes in the values of cβ and cε. Figure 3.10 shows heat charts for our

target disease prevalences ptot, pinf and pgen and can be compared with Figure 3.5i.

The prevalence of the generalised class has increased dramatically and this leads to

an increase in the overall prevalence with levels above our target values for much of
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(a) (b)

Figure 3.9: PYA model response to change in population size with generalised birth
(bG = bA). (a) shows plot of resultant total population against change in carrying
capacity (K). (b) shows plot of prevalence against resultant population size N .
Default parameter values and birth from generalised (bG = bA).

the parameter space.

(a) (b) (c)

Figure 3.10: Heat charts show variation in ptot, pgen and pinf given changes in cβ and
cε for the PYA model with default parameter values and birth from the generalised
class (bG = bA).

The implication of these results is that birth from the generalised class could

have a major effect on the resultant total population as well as the disease prevalence

which could increase well beyond our initial target of ptot = 50%. However, we have

assumed that the birth rate for the generalised class is the same as that for adults

which is an upper bound as there is evidence that those with a generalised infection

reproduced at a reduced rate. To investigate this we set bG = fbA, where f ∈ [0, 1] is

the proportion of adult reproduction for the generalised class, and examine changes

in the prevalence of TB as f is varied.

Figure 3.11 shows that the prevalence of TB increases as f increases. The

greatest increase is in the prevalence of generalised individuals, pgen, and this

drives the increase in total prevalence. The rate of increase of prevalence is

greatest at higher values of K, as here the underlying birth rate is higher due

to reduced (intra-specific) density dependent pressures. Figure 3.11 illustrates that

for increasing values of K the total population density increases, and for each K as
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the fecundity f increases then so does the total population density, driven by the

increase in reproduction from the generalised class.

(i)

(ii)

(a) (b) (c)

Figure 3.11: For (a) K = 250; (b) K = 500; and (c) K=750, changes in (i) the total
population and (ii) disease prevalence, plotted against the level of fecundity of the
generalised, where f = 0 is equivalent to no birth from the generalised class, f = 1
is equivalent to birth from the generalised class at the same level as the adult class.
All other parameters from the default parameter set.

3.4.1 PYA model: pseudo-vertical transmission

A key goal of our study was to develop a wild boar TB model in which infection was

via free-living infected particles. However, due to the large quantities of infected

particles shed by generalised individuals and the close contact between mothers

and their initially susceptible piglets, we also wish to assess the importance of the

transfer of infection to piglets through close contact with a generalised parent. We

model this as pseudo-vertical transmission whereby a proportion of the births from

the generalised class are born into the infected piglet class. Figure 3.12 updates

the schematic of the model processes to include pseudo-vertical transmission where

birth from the generalised class results in infected piglets with probability pvt, and

susceptible piglets with probability (1−pvt). This change modifies the piglet classes

in Equations (3.1) with the modifications underlined in Equations (3.2).

dPS
dt

=(bY (YS + YI) + bA(AS + AI) + (1− pvt)bGG)(1− qN)−

mPS
PS − dPPS − βPPSF (3.2a)

dPI
dt

=pvtbGG(1− qN) + βPPSF −mPI
PI − dPPI − εPPI (3.2b)
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Figure 3.12: A schematic of the PYA model including pseudo-vertical transmission
from the generalised class with probability pvt.

For increasing levels of pseudo-vertical transmission there is an approximately

linear increase in ptot, with pgen showing greater increase than pinf (Figure 3.13ii).

Corresponding to the increase in infection there is a decrease in the total population

(Figure 3.13i). When the birth rate from the generalised class is relatively low

(f = 0.25) there is only a small increase in total prevalence as pvt increases from 0

to 1. For higher birth rates from the generalised class (f = 0.5 or 1) the increase in

total prevalence and the prevalence of the generalised class is more significant.

3.5 PYA model enhancement to PYAG model

Over a number of conference calls and a site visit to central Spain we had discussions

regarding the suitability of the structure and parameters for the PYA model. The

veterinarians involved with wild boar testing advised on the age-specific disease

dynamics and were able to give guidance on parameter values and target population

density and prevalence. Using the model results from Figures 3.4 to 3.13 we wanted

to understand whether the model gave a suitable representation of the wild boar TB

system. It was agreed that this initial model captured the qualitative behaviour of

the wild boar TB system but that birth from generalised should be included in the

model as there is evidence from the field that generalised wild boar are nearly as

fecund as healthy individuals [124]. The higher prevalence this can generate would
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(i)

(ii)

(a) (b) (c)

Figure 3.13: Effect of pseudo-vertical transmission from the generalised class on (i)
the total population and (ii) the disease prevalence, for different levels of generalised
fecundity: (a) f = 0.25, (b) f = 0.5, and (c) f = 1. The default parameter set is
used.

agree with reported values in some regions where total TB prevalence could reach

90% [139]. It was also agreed that as it was unclear as to the level of pseudo-vertical

transmission that may occur in reality, and as the model can render high prevalence

and high levels of generalised without this feature, the model by default should not

include an element of pseudo-vertical transmission. We therefore decompose the

generalised class into piglet, yearlings and adults and set bG = bY = bA = b, and set

pvt = 0. Note that by splitting the generalised G class up into separate age classes

will reduce the overall birth from generalised slightly as the PG class will not be

reproductive, however this is not a significant change.

We will therefore perform further sensitivity tests with the enhanced PYA model,

which we will refer to as the PYAG model described by:
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dPS
dt

=b(YS + YI + AS + AI + (1− pvt)(YG + AG))(1− qN)

−mPS − dPS − βPPSF (3.3a)

dPI
dt

=pvtb(YG + AG)(1− qN) + βPPSF −mPI − dPI − εPPI (3.3b)

dPG
dt

=εPPI −mPG − dPG − αPG (3.3c)

dYS
dt

=mPS −mYS − dYS − βY YSF (3.3d)

dYI
dt

=βY YSF +mPI −mYI − dYI − εY YI (3.3e)

dYG
dt

=εY YI +mPG −mYG − dYG − αYG (3.3f)

dAS
dt

=mYS − dAS − βAASF (3.3g)

dAI
dt

=βAASF +mYI − dAI − εAAI (3.3h)

dAG
dt

=εAAI +mYG − dAG − αAG (3.3i)

dF

dt
=λ(PG + YG + AG)− µF (3.3j)

3.6 PYAG model: varying key model parameters

Analysis of our simpler SIGF system in Figure 3.2 detailed in Appendix 3A.1 shows

that for this system

R0 =
βKελ

µ(d+ ε)(d+ α)
(3.4a)

and so changes to the parameters β, ε, λ
µ
, d, and α will affect the dynamics of the

disease. Our PYAG system (Equations (3.3)) is more complex but still has the

same underlying dependence on a similar set of parameters. We want to test how

changes to each of these parameters individually affects the disease and population

dynamics, assuming that all other parameters are fixed to their default value.

3.6.1 Varying virulence of the disease α

The parameter α models the additional cost of the TB infection to generalised wild

boar, giving an additional mortality rate α to the generalised class. By increasing

this parameter, we increase the virulence of the disease. It should be remembered

that the default parameter set value α = 1 represents generalised wild boar on

average dying in 1 year due to the effects of the disease, whereas α = 4 represents
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generalised wild boar dying on average in 3 months due to the disease. From the

SIGF value of R0, a measure of the strength of the disease, we see that as alpha grows

larger, and hence the virulence of the disease grows stronger, R0 grows smaller and

thus the impact on the total population reduces. We see that as α increases beyond

2 the generalised class die out more rapidly resulting in less population suppression

due to the disease, lower disease prevalence ptot and reduced generalised prevalence

pgen (Figure 3.14i). However, as α gets smaller it plays a significant role in the

number of generalised in the population and hence the disease prevalence ptot. In

this case, as α gets smaller, the generalised class live longer in the population and

thus can infect more susceptibles leading to much greater disease prevalence ptot and

pgen. As the additional mortality on the generalised class reduces, the cost of the

disease to the population reduces and thus the total population suppression due to

the disease reduces to 0 as α reduces to 0.

3.6.2 Varying progression to generalised εA

The parameter εA models the rate of progression to the generalised class of infected

adults. The default parameter set has εA = 2
3

which translates to infected adults

becoming generalised on average in 1.5 years. The piglet and yearling rate is set

to 3 times this value, εP = εY = 3εA, meaning that they become generalised on

average in 6 months. As the rate of progression to generalised increases, so does the

effect of the disease on the total population density, and hence the total population

density N decreases (Figure 3.14ii). As εA grows from 0 to 1 (and thus progression

to generalised increases) the proportion of generalised in the population, pgen, grows

saturating at 40% as εA increases beyond 1, although notably the actual number of

generalised individuals saturates when εA is less than 0.5. In contrast, pinf decreases

to below 20% as εA increases beyond 1. As the rate of progression to generalised

decreases, less infecteds become generalised until εA ∼ 0.5 where pgen = pinf . As εA

decreases to 0, the cost to the total population of the disease lessens to a point where

although pinf = ptot is relatively high, pgen is very low and thus there is very little

suppression of the total population density N from the disease-free steady state.

3.6.3 Varying disease transmission βA

βA is the disease transmission rate from free-living particles to the adult class. As

the R0 value for the SIGF system in Equation (3.4) has β in the numerator we

expect that as β grows, so should the strength of the disease and thus increase

the suppression of the total population density. When βA is 0 there is no disease

transmission and therefore no suppression of the population density from its disease

free steady state (Figure 3.14iii). As βA increases from 0, there is a threshold below

which the disease is not able to spread and become endemic in the population.
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(i)

(ii)

(iii)

(iv)

(v)

(a) (b)

Figure 3.14: PYAG parameter sensitivity showing response in (a) total population
and (b) disease prevalence when varying individual key model parameters: (i)
additional disease mortality rate (α), (ii) progression rate to generalised for adults
(εA), (iii) transmission rate for adults (βA), (iv) natural death rate (d), and (v)
free-living decay rate (µ). Non-varied parameters are set to the default values.

From the SIGF value of R0, this is effectively when R0 < 1. When βA is increased

above this threshold the disease is able to spread, inducing a suppression in the total
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population density, and a rise in the disease prevalence. As βA increases, the disease

prevalence increases saturating at ptot ≈ 75%. For lower values of βA, pgen and pinf

are approximately equal with pgen becoming greater than pinf when βA increases

above 0.025.

3.6.4 Varying natural death rate d

All the population classes suffer natural death at the same rate. As lifespan decreases

(d increases) the population levels and prevalence levels decrease slightly (Figure

3.14iv). However there is little suppression of the total population N as d increases,

echoing the expression for R0 for the SIGF system in Equation (3.4) which although

it has d in the denominator, is dominated by the values of α and ε which are greater.

For all values of d between 0.05 and 0.25 pgen is greater than pinf , as d increases,

the difference between them decreases.

3.6.5 Varying free-living decay rate µ

Our free-living control parameters are λ and µ, but as we set λ = 1 and scale βA

accordingly, parameter variation for the free living class focuses on the parameter µ,

the natural decay rate of free-living particles. Discounting the oscillatory behaviour

at very low values of µ which occurs for unrealistic levels, as µ increases from 2 to 12

the total population density increases as does the density of generalised and infected,

however as the density of susceptibles increases at a greater rate the prevalence ptot,

pgen and pinf all decrease as µ increases (Figure 3.14v). This is due to an increase in

µ leading to a reduction in the level of free-living particles in the system and hence

a reduction in infection. As µ increases from 12 the susceptible density continues

increasing and the disease prevalence drops until the density of the infected and

generalised class drops to 0, showing in our system that the disease dies out when

µ > 21. This echoes the R0 value for the SIGF model in Equation (3.4) where

R0 ∝ 1
µ
, showing for sufficiently large µ R0 < 1 and therefore the disease cannot

spread.

3.7 PYAG wild boar TB model discussion

We have developed the PYAG model in consultation with veterinarians in central

Spain, using their guidance over sources for parameter values and key delineation

of population classes. It could be argued that this has generated a model that has

too much complexity, however we foresee that the extra population classes will help

the implementation of management controls that are targeted at specific age groups.

Also, having performed sensitivity analysis on the PYAG model (Equations (3.3)),

with the default parameter set as the base parameter set with bG = bY = bA = b
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and pvt = 0, we understand the impact of changes in parameters and can use this

to help understand the population response to TB management. We also note that

the model results are qualitatively similar for a range of parameters around our

default values. We therefore can have confidence that our key (qualitative) findings

are not restricted to a specific set of parameters. Therefore, the PYAG model with

this parameter setup will be the wild boar TB model used to test the effect of TB

management controls in Chapters 4, 5 and 6.
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Appendices to Chapter 3

3A.1 SIGF: critical population threshold

To provide baseline information into the disease dynamics we undertake a steady

state and stability analysis of the reduced model shown in Figure 3.2 which has the

following form:

dS

dt
=(b(S + I) + bGG)(1− q(S + I +G))− dS − βSF (3A1a)

dI

dt
=βSF − dI − εI (3A1b)

dG

dt
=εI − dG− αG (3A1c)

dF

dt
=λG− µF (3A1d)

Steady states are:

(S, I,G, F ) = (0, 0, 0, 0) zero density (3A2a)

=

((
b− d
bq

)
, 0, 0, 0

)
disease-free populated steady state

(3A2b)

=

(
S∗ =

µ(d+ ε)(d+ α)

βελ
, I∗, G∗, F ∗

)
endemic disease state (3A2c)

As we want to set the disease-free total population to K we therefore set q = b−d
Kb

. We

examine the eigenvalues of the Jacobian to determine the stability of these steady

states. For the zero density steady state the Jacobian is,

J (0, 0, 0) =


b− d b bG 0

0 −d− ε 0 0

0 ε −α− d 0

0 0 λ −µ

 (3A3)

The eigenvalues are, b−d, −d−ε, −α−d and −µ, therefore making the zero density

state unstable when b > d.

For the disease-free steady state the Jacobian is,

J (K, 0, 0, 0) =


−b+ d −b+ 2d − b2−bd−bGd

b
−βK

0 −d− ε 0 βK

0 ε −α− d 0

0 0 λ −µ

 (3A4)

Finding eigenvalues for this matrix is not trivial, but given its structure we know
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that one of them is −(b − d), which by enforcing b > d, our condition for growth

from the zero density state, is always negative. Therefore we are concerned with

whether any eigenvalues of the sub-matrix−d− ε 0 βK

ε −α− d 0

0 λ −µ

 (3A5)

are positive. This time we spot that the trace of this matrix

trace(J) = −(d+ ε)− (d+ α)− µ (3A6)

is always negative and real so we know that the sum of the eigenvalues is always

negative and real, as the elements of the matrix are all real. Also, the product of

the eigenvalues, equal to the determinant of this matrix

det(J) = βKελ− µ(d+ ε)(d+ α) (3A7)

and is always real. As the trace of the Jacobian is always negative there must

be at least one eigenvalue with negative real part for all parameter combinations.

Therefore the stability of the steady state depends on the sign of the real part of

one eigenvalue changing. This occurs when the determinant of the Jacobian changes

sign. Therefore the steady state becomes unstable when det(J) becomes positive

which can be written as:

R0 =
Kβελ

µ(d+ ε)(d+ α)
> 1 (3A8)

This condition is used in Section 3.6.
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Management of tuberculosis in

wild boar

Following the work to develop a wild boar TB model, in Chapter 3, that is

representative of the situation in central Spain, we now wish to test management

strategies to see their affect on the overall population density and disease prevalence

in both the short and long-term. In this chapter we will test both vaccination and

culling strategies as these are controls that are either culturally well-embedded or

are being actively trialled in the region. We will examine their effects independently

to understand the underlying mechanisms that drive the population response to

each control separately.

4.1 Wild boar TB management: Vaccination

Vaccination acts to reduce the number of susceptible hosts in a population and

therefore lower the potential for disease transmission which lessens the overall

population level burden of disease-induced mortality [8, 10]. The work in this

section was performed in collaboration with veterinarians based in central Spain and

used to support and extend results from a trial of piglet vaccination against TB.

The field trial and associated mathematical modelling was published in Preventive

Veterinary Medicine as Dı́ez-Delgado (2018) [48] on which I am a co-author and led

the mathematical modelling and analysis that was included in the paper.

The field trial tested two orally delivered vaccines, heat-inactivated

Mycobacterium bovis (IV) and BCG, in four different sites so that each vaccine

type was trialled in both a managed and a more natural or unmanaged setting.

Each trial ran for four years. As well as the four test locations, TB was monitored

in fifteen separate unvaccinated control sites for one year immediately prior to the

trial starting. Piglets aged 2-6 months were targeted as the recipients of vaccine

baits, deployed using selective piglet feeders (Figure 4.1a) placed at key sites known

to be regularly frequented by wild boar groups with piglets (Figure 4.1b).
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(a) (b)

Figure 4.1: (a) a vaccination cage that only piglets can enter to eat the treated bait.
(b) Andy White, Eleanor Tanner and Peter Lurz at a water hole beside which a
vaccination cage was placed.

Results for the trials (Figure 4.2) showed that TB prevalence increased in

unvaccinated sites, while a significant decline occurred in the managed IV site.

Changes in TB prevalence recorded in the remaining sites were not significant leading

to the conclusion that IV could become one of the tools to control TB, dependent on

the context in which it is deployed. As these trials only ran for four years, empirical

data could only show the short-term impact of vaccination. These field observations

were complemented by mathematical modelling, representative of the field system,

to examine the long-term impact on disease prevalence and population abundance.

Figure 4.2: Reproduced from Dı́ez-Delgado (2018) [48]: Temporal trend of
tuberculosis (TB) lesion prevalence of piglets and total population by site. The
dashed line represents piglet age class and the solid line the total population.
Background information: the average trend for total population (solid line) and
piglets (dashed line) found on the control site appears in light grey in the vaccine site
figures. Error bars are bootstrap 95% confidence intervals (CI). Asterisk indicates a
significant at p < 0.01 decline in prevalence as compared to pre-vaccination levels.

The reader is referred to Dı́ez-Delgado (2018) [48] to discover in-depth biological

details about the vaccine, its administration and more in-depth analysis of the

empirical data. In this thesis we reproduce the modelling contributions from the

paper. The model is an extended version of the PYAG model, Equations (3.3), that
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includes a vaccinated class of piglets. The model results can increase understanding

of the vaccination trial results and also offer insight into the long-term potential

outcomes of the vaccination programme.

4.1.1 Piglet vaccination modelling

The model reflects a single geographical managed estate containing a homogeneously

mixed population covering an area representative of a hunting estate. The model

is deterministic and compartmental and considers the population density of wild

boar separated into different age classes to capture distinct disease and reproductive

characteristics for piglets (aged 0-1 year) P , yearlings (aged 1-2 years) Y , and adults

(aged 2 years+) A. Further, the age-classes are split into susceptible, infected and

generalised classes (subscripts S, I, G, respectively) to reflect the disease status

of the population. The population dynamics of the wild boar TB system are

represented by the following set of non-linear differential equations which is an

extension of classical disease modelling frameworks (see Anderson & May 1979 [9];

Keeling & Rohani 2008 [84]) and a schematic representation is shown in Figure 4.3:

Birth PS PI PG Birth

Pv

Transmission

F Shedding

YS YI YG

AS AI AG

βP

βY

βA

m m m

m m m

λ

εP

εY

εA

pvtbG

bA bA

bY

bY (1− pvt)bG

(1− vP )

mV

vP

Figure 4.3: A schematic representation of the wild boar TB vaccination model
represented by Equations (4.1). The model represents the density of piglets P ,
yearlings Y , and adults A with age-classes split into susceptible, infected and
generalised classes (subscripts S, I, G, respectively). The class PV represents
vaccinated piglets and F represents the density of free-living TB particles. The
parameters are detailed in Section 4.1.2.
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dPS
dt

=(1− vP )(bY (YS + YI) + bA(AS + AI) + (1− pvt)bG(YG + AG))(1− qN)

−mPS − dPPS − βPPSF (4.1a)

dPI
dt

=pvtbG(YG + AG)(1− qN) + βPPSF −mPI − dPPI − εPPI (4.1b)

dPG
dt

=εPPI −mPG − αPG − dPPG (4.1c)

dPV
dt

=vP (bY (YS + YI) + bA(AS + AI) + (1− pvt)bG(YG + AG))(1− qN)

−mV PV − dPPV (4.1d)

dYS
dt

=mPS −mYS − dY YS − βY YSF (4.1e)

dYI
dt

=βY YSF +mPI −mYI − dY YI − εY YI (4.1f)

dYG
dt

=εY YI +mPG −mYG − αYG − dY YG (4.1g)

dAS
dt

=mYS +mV PV − dAAS − βAASF (4.1h)

dAI
dt

=βAASF +mYI − dAAI − εAAI (4.1i)

dAG
dt

=εAAI +mYG − αAG − dAAG (4.1j)

dB

dt
=λ(PG + YG + AG)− µF (4.1k)

Here, N represents the total wild boar population. Susceptible and infected

yearlings and adults give birth to susceptible piglets at rates bY and bA respectively.

Generalized yearlings and adults give birth to piglets at rate bG with a proportion

pvt assumed infected (through pseudo-vertical transmission from parent to offspring)

and the remainder, (1 − pvt), assumed susceptible. In this study we assume that

bY = bA = bG. The total population is regulated through a crowding parameter,

q, that acts to stabilise the total population to a carrying capacity, N = K, in the

absence of disease. Maturity from piglets to yearlings and yearlings to adults occurs

at rate m and piglets, yearlings and adults may die of natural causes at rates dP ,

dY , dA respectively. Here we assume dP = dY = dA.

The prime driver for infection in the wild boar TB system is through

environmental contact with free-living TB particles, with density B. We assume that

free-living particles are shed from generalised wild boar at rate λ and decay at rate

µ. Susceptibles may become infected through contact with free-living TB particles

with transmission coefficients βP , βY and βA and infecteds can progress to the
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generalised class at rates εP , εY and εA for the different age classes respectively. We

assume that individuals in the generalised class suffer an additional disease induced

mortality at rate α. We assume piglets and yearlings are more susceptible to TB

infection than adults and so set βP = βY , which we assume to be three times greater

than transmission for adults, βA = 3βY . Similarly we set the rate of progression to

generalised infection for piglets and yearlings to be the same, εP = εY , and three

times the rate for adults, εA = 1
3
εY . In this way we have set the model so that the

yearling class is the same as the piglet class in terms of disease characteristics, but

the yearling class is the same as the adult class in terms of reproductive processes.

We represent vaccination in the model by assuming a proportion, vP , of

susceptible births enter the immune piglet class PV . The vaccinated piglets lose

their immunity at rate mV maturing into the susceptible adult class. This implicitly

assumes that when immunity is lost individuals have reached maturity and are

able to reproduce but also have a reduced susceptibility to infection. Note,

our vaccination coefficient combines the effects of both coverage and efficacy by

representing the proportion of successful inoculations. In the model the vaccination

process is represented as a continuous process whereas in the field vaccination

is applied to piglets aged 3-6 months. Therefore, there is a chance of infection

prior to vaccination and we approximate this with the inclusion of pseudo-vertical

transmission from generalised individuals.

4.1.2 Piglet vaccination model parameters

We set values to approximate the observed prevalence and to be representative of the

wild boar TB system in central Spain. The parameters for the model are the same

as the default parameter set in Section 3.1.1 with birth from generalised bG = bA

and the following vaccination and pseudo-vertical transmission related parameters:

vP The proportion of susceptible births successfully vaccinated. We explore the full

range of possible values of vP in this study.

mV = 1 The rate that vaccinated piglets mature into the susceptible adult class.

This assumes that when immunity is lost individuals are able to reproduce

but also have the same reduced susceptibility to infection as adults.

pvt The proportion of generalised births that result in pseudo-vertical transmission.

In this study we assume pvt = 0 or 1. When pvt = 0 piglets have a low chance

of infection prior to vaccination and when pvt = 1 a greater proportion of

piglets are infected prior to vaccine uptake.
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(i)

(ii)

(iii)

(a) (b) (c) (d)

Figure 4.4: Using default parameter values described in Section 4.1.2 with (a)
0% pseudo-vertical transmission; (b) 100% pseudo-vertical transmission; (c) 0%
pseudo-vertical transmission with disease transmission twice the default value; and
(d) 100% pseudo-vertical transmission with disease transmission twice the default
value. Row (i) shows disease prevalence against proportional vaccination success,
vp, with results determined at the stable endemic steady state when the specified
level of vaccination is included; (ii) shows changes in density against time for the
wild boar TB vaccination model for a vaccination level of 75%, (vp = 0.75); and (iii)
shows changes in disease prevalence against time for the wild boar TB vaccination
model for a vaccination level of 75%, (vp = 0.75). Here ptot(black) is the proportion
of the total population infected with TB; pinf (magenta) the prevalence of infected
but not generalised; pgen(red) the prevalence of generalised; N(blue) is the total
population density, I(magenta) the total density of infected but not generalised;
G(red) the total density of generalised; S(green) is the total density of susceptibles;
and PV (cyan) is the total density of vaccinated piglets.

4.1.3 Piglet vaccination model results

We obtain numerical results for the model as the proportion of successfully

vaccinated piglets vP is varied. We use the default parameter set detailed in Section

4.1.2 under conditions of 0 or 100% pseudo-vertical transmission, pvt = 0 or 1. We

consider results for both the default transmission coefficient, which results in a

medium disease prevalence at steady state (similar to Managed sites), and twice

the default transmission value to reflect a greater risk of TB infection associated

with increased mixing of groups of wild boar at water holes during periods of

drought or at feeding stations when extra food is made available resulting in a

higher disease prevalence at the endemic steady state (similar to Natural sites).

We run the model until it has reached a stable endemic steady state then include

vaccination for a period of 25 years to achieve a stable vaccinated steady state. We

examine how vaccination affects the disease prevalence statistics ptot, pinf and pgen
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and the epidemiological dynamics.

We examine results for the model described by Equations (4.1) in different

combinations of disease transmissions rates and pseudo-vertical transmission. Figure

4.4 shows that the impact of vaccination on reducing TB prevalence is reduced when

the transmission rate, initial prevalence and level of pseudo-vertical transmission is

increased. It also indicates that there is an initial reduction in the level of infected

and generalised individuals, which lowers disease transmission and consequently

leads to a decrease in prevalence. The impact of vaccination is largest when there is a

reduced chance of piglet infection prior to vaccination and a lower initial prevalence.

In the set-up that is most similar to Managed site IV the model predicts a 35%

decrease in TB prevalence after 4 years (Figure 4.4a(iii)). This is comparable

with the 34% decrease reported in the field study. A consequence of the vaccine

induced reduction in prevalence is a reduction in population mortality due to a

decrease in disease-induced death. This drives an increase in total population density

which in the long-term allows the density of infected and generalised individuals

to return to their pre-vaccination levels. Therefore, the long-term reduction in

disease prevalence shown in Figure 4.4iii is a consequence of an increase in total

population density rather than a decrease in the density of infected and generalised

individuals. These model results highlight how observations from the early years

of a vaccination programme may not provide a clear picture of the effectiveness

of a long-term vaccination strategy, since the benefits of vaccination on reducing

the level of infection in the early years are countered by the subsequent increase in

total population density. The model results also indicate that when the vaccination

programme is stopped there is an initial increase in disease prevalence and density of

infected and generalised wild boar before levels return to those prior to vaccination.

This is a consequence of the elevated population density resulting from vaccination

and of the temporary nature of vaccine-derived immunity.

In the four scenarios considered in this study (Figure 4.4 a-d) the proportion of

piglets at the end of the vaccination period is (a) 26%, (b) 31%, (c) 33% and (d)

34% respectively. The proportion of individuals that are piglets is substantial and

therefore vaccination of piglets against TB is an effective method of TB control.

We note that as transmission opportunities increase, the burden of disease induced

mortality reduces the adult population and therefore the proportion of individuals

that are piglets increases.

4.2 Wild boar TB management: Hunting

On managed hunting estates in central Spain harvesting takes place once a year

during the autumn over a short period of a few weeks. Young wild boar are

not targeted during these hunts as the prime hunting prize are mature individuals

71



Chapter 4: Management of tuberculosis in wild boar

with well developed tusks. We represent hunting in the model as an instantaneous

reduction in the adult and yearling (susceptible, infected and generalised) population

of a given percentage. Piglets are left unaffected. We note that alongside examining

the effect of hunting on our model we also need to verify that our model continues

to give results that are consistent with empirical data, given that data gained from

the field includes the effects of annual harvesting.

We run the model (Equations (4.1)) using the default parameter set from Section

3.1.1 with birth from generalised (bG = bA) and no vaccination (vP = 0). Figure

4.5 shows results for hunting bags of 10%, 25% and 50% of adult and yearling wild

boar, run over a period of 45 years. Initally we assume no hunting for 5 years and

so the population is stable at the endemic steady state. We then assume hunting for

30 years followed by a period of no hunting for 10 years. At the start of the culling

(i)

(ii)

(a) (b) (c)

Figure 4.5: Changes in (i) population density and (ii) disease prevalence when (a)
10%, (b) 25%, and (c) 50% of adults and yearlings are removed instantaneously
from the population by hunting every year for 30 years for the wild boar TB model
(Equations (4.1)) with default parameters bG = bA and no vaccination vP = 0.

regime there is a sharp decline in both population and disease prevalence, however

both the prevalence and population recover until for both 10% and 25% culls a new

(periodic) endemic solution is reached. For a culling level of 50% this recovery takes

longer so the system does not reach a ‘stable’ periodic level within the 30 years of the

culling regime. When the annual culls stop both population and disease prevalence

rise above the initial endemic steady state before stabilising to their initial levels.

Figure 4.6 plots the resultant population and prevalence after 30 years of annual

cull followed by population growth. In this case we show results for different levels

of pseudo-vertical transmission, pvt=0, 0.25 and 0.5 from which we can see that

this extra level of transmission does not have a significant influence on the resultant
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population and prevalence. We can immediately see that an increase in hunting bag

leads to a decrease in disease prevalence until a point when the culling decreases the

population below the threshold for which the disease can persist, such that for high

levels of hunting the disease is eradicated. However, as well as examining the disease

prevalence we must also examine the population density which shows a slightly

different pattern in response to hunting. For lower levels of hunting the population

does not decrease as quickly as the disease prevalence and remains reasonably high

for hunting levels up to 50%. When hunting levels increase above 50%, it decreases

the population below a level that can support the disease, above 75% the population

is also eradicated.

(i)

(ii)

(a) pvt=0 (b) pvt=0.25 (c) pvt=0.5

Figure 4.6: The wild boar TB model response to culling against different levels
of hunting bag (annual cull). (i) shows resultant population density and (b) shows
resultant disease prevalence ptot, pgen and pinf at the end of 30 years annual hunt and
regrowth plotted against percentage level of hunting. (a) shows results for pvt = 0;
(b) shows results for pvt = 0.25; (c) shows results for pvt=0.5. Model parameters set
to default values and bG = bA.

In summary, including hunting in our model reduces the total number of infected

and generalised wild boar but this does not cause a similar reduction in the

total population. Since culling reduces the level of generalised individuals in the

population it reduces the level of free living pathogen and therefore the potential

for disease transmission. Culling is thereby inducing a compensatory response at

a total population level whereby some of the death that occurs due to culling is

compensated by less death as a result of the infection. We examine this phenomena

in general in the next chapter.
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4.3 Discussion

In this chapter we examined the effect of vaccination and culling on the population

and disease dynamics of wild boar. A key finding is that it is important to

examine both the prevalence and population density to understand the potential

risk of spillover infection from a reservoir host. This is because results that focus

on prevalence alone may conclude that disease management has been successful

in terms of a prevalence reduction. However, this may result from an increase

in total density and relatively stable levels of infection which in wildlife disease

reservoirs would indicate an unchanged risk of spillover. In fact under several

scenario of vaccination (Figure 4.4) while prevalence did decrease the density of

infected individuals increased following vaccination in response to a large increase

in total density. Our findings also indicated that there may be differences between

short-term and long-term dynamics. Here the short-term effect is more marked

than the long-term impact of intervention. Moreover, if disease control is halted

the systems can initially exhibit enhanced levels of prevalence and infected density

before settling to pre control levels. Therefore in many systems disease control will

need to be a long-term commitment.

The model results show that vaccination can cause the wild boar population

to become healthier due to a decrease in disease prevalence. This is driven by

a rise in the total population rather than a decrease in the number of infected

individuals in the population. This echoes earlier work by Smith & Cheeseman

(2002) [128] using a model with density dependent transmission of TB in badgers

who noted that as vaccinated animals can still reproduce then the total number of

susceptibles in a population under vaccination control will be greater than without

such control, and therefore harder to eradicate the disease [8]. We provide further

insight showing that as the total number of generalised is not greatly reduced, the

level of pathogen excreted into the environment is not reduced and therefore the

force of infection is not reduced. If the force of infection remains the same this

means that a susceptible wild boar has the same risk of contracting the disease

both before and during a vaccination control programme. Also, as the level of

excreted pathogen in the environment remains at a similar high level, the risk of

cross-infection to other co-habiting susceptible species is not reduced either. It is

also notable that none of the models we used to represent the population and disease

dynamics of the wild boar TB system in central Spain showed the disease could be

eradicated. Our results showed that higher levels of vaccination success produced a

greater reduction in the prevalence of generalised in the population. Separate work

by Anderson et al. (2013) [6] using a stochastic rule-based model showed that over

a 25 year period with sufficient levels of piglet vaccination it was possible for the

disease to be eradicated. In comparison with our model, results were reported just

in terms of disease prevalence so changes to the total population were unavailable.

74



Chapter 4: Management of tuberculosis in wild boar

A major difference between our model results and those of Anderson et al. (2013)

[6] is that the latter also includes an annual cull of 30%. We have deliberately

isolated the vaccination results from culling, however this is an indicator that further

research into the effects of combined management controls may be beneficial to

further understanding.

Our results for hunting support the observations in the field that despite high

annual culling levels of 20-30% the wild boar population density in central Spain

has remained buoyant over a long period of time, and endemic TB persists. Culling

can eradicate the disease, but a high level of culling is required. Once the disease is

eradicated the population density of wild boar reduces rapidly with increased levels

of culling. In comparison to vaccination culling does not reduce disease prevalence

as dramatically since under vaccination the population density can increase. As

Anderson et al. (1981) notes, the goal of culling a population to eradicate disease is

to reduce the population below a level at which the disease will persist. However, as

culling reduces the level of infection it means that the population suffers less disease

mortality and so can support a higher than expected population. This may make

it hard to eradicate a virulent disease. We will explore this aspect in general in the

next chapter.
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Population compensatory growth

as a result of culling

Following the initial wild boar TB vaccination and hunting modelling, it became

apparent that the wild boar TB system was potentially exhibiting behaviour that

could be abstracted into a more general result and merited further investigation

beyond the wild boar TB model. The content in this chapter is the outcome of this

research. This work has been accepted for publication in The American Naturalist :

‘The critical role of infectious disease in compensatory population growth in response

to culling’ by Eleanor Tanner, Andy White, Peter Lurz, Christian Gortázar, Iratxe

Dı́ez-Delgado and Mike Boots. I played the lead role in developing the work and

writing the article and undertook the mathematical modelling and analysis. The

paper is reproduced verbatim in this chapter with the supplementary information

from the published article reproduced in Appendices 5A.1-5A.7.

5.1 Abstract

Despite the ubiquity of disease in nature, the role that disease dynamics play

in the compensatory growth response to harvesting has been ignored. We use a

mathematical approach to show that harvesting can lead to compensatory growth

due to a release from disease-induced mortality. Our findings imply that culling in

systems that harbour virulent parasites can reduce disease prevalence and increase

population density. Our models predict that this compensation occurs for a

broad range of infectious disease characteristics unless disease induces long-lasting

immunity in hosts. Our key insight is that a population can be regulated at a

similar density by disease or at reduced prevalence by a combination of culling and

disease. We illustrate our predictions with a system-specific model representing wild

boar tuberculosis infection, parameterised for central Spain, and find significant

compensation to culling. Given that few wildlife diseases are likely to induce

long-lived immunity, populations with virulent diseases may often be resilient to
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harvesting.

5.2 Introduction

It is well known that harvesting may be compensated by an increased growth rate

at lower density [1]. This phenomenon of compensatory growth in response to

culling was first modelled by Ricker (1954) [121] who showed that for moderate

harvesting levels the population can stabilise to a level that exceeds the density

in the absence of harvesting. Despite the ubiquity of infectious disease in nature,

little work has considered the impact of harvesting and culling in populations with

virulent infectious disease and the compensatory potential of changes to disease

dynamics. Since culling affects the disease dynamics there is considerable potential

to generate feedbacks on host population dynamics. Moreover, as culling is also

used as a management strategy to control emergent wildlife diseases, it is vital to

understand the interplay between culling, disease and population dynamics [16, 145].

In this study we develop mathematical models to examine the impact of culling in

systems that support endemic diseases and for the first time detail how culling can

lead to compensatory growth due to a reduction in disease-induced mortality.

It is difficult to gather field data to test theories about the population-level

implications of complex disease dynamics [1, 97]. Mathematical models are therefore

important tools for explaining the impact of culling and harvesting in systems with

endemic parasites. There is an extensive modelling literature focussed on the control

of disease through culling, for example chronic wasting disease in deer in North

America [141, 113, 130, 136]; acutely virulent classical swine fever in wild boar [35,

25, 40]; and lethal facial tumour disease in Tasmanian devils [18]. While these studies

recognise that culling in systems with endemic disease can induce compensation

through demographic processes, they have not examined how culling may lead to

compensatory effects that arise directly from changes in disease dynamics.

The limited work that has examined the effect of culling on disease dynamics

has shown that culling may increase prevalence due to a decrease in long-lasting

immunity or vaccine coverage [35, 25, 113], with Potapov et al. (2012) [113] showing

that prevalence can decrease in a system with no immunity. However, these studies

have not examined compensatory effects due to disease and have only considered a

limited range of disease characteristics. Here, we model in general the impacts of

culling and harvesting in systems that support a wide range of endemic diseases. A

novel aspect of our study is that we isolate the compensatory effects following culling

due to changes in the disease dynamics resulting from a population level release from

disease-induced mortality. This facet is vital if we are to understand the response

of harvesting in managed and natural systems that harbour virulent parasites. We

show that significant host compensation occurs in response to culling for infections
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that do not cause long-lasting immunity and therefore such host populations can

be more sustainable. However, when there is long-lasting immunity the disease can

decrease the population’s resilience to harvesting and increase its extinction risk

when culling is used to manage a disease. We develop a system-specific model of

Sus scrofa (wild boar) tuberculosis interactions that illustrates our predictions in a

specific disease context. Our work highlights the importance of understanding the

nature of immunity to infectious disease for sustainable harvesting of populations

and the management of disease through culling.

5.3 Methods

We examine a classical compartmental SIRS model of disease [9, 84] that considers

a total population (N) split into separate classes representing different disease

stages: the class of susceptibles (S), of infecteds (I) and of recovereds/immunes

(R), such that the total population density is N = S + I + R. In this model all

classes reproduce and all newborns are susceptible. The maximum per capita birth

rate b decreases with increasing density through parameter q and all population

classes incur natural death at rate d. A susceptible individual becomes infected

with transmission rate function θ(I,N) which can represent density-dependent

(DD) or frequency-dependent (FD) disease transmission (Equations (5.2a) and

(5.2b) respectively). Infected individuals incur additional disease-induced mortality

(virulence) at rate α and can recover from infection to become immune from the

disease at rate γ. Immunity can be lost causing recovereds to become susceptible

again at rate η. This model is represented with the following system of ordinary

differential equations:

dS

dt
= bN(1− qN)− dS − θ(I,N)S + ηR (5.1a)

dI

dt
= θ(I,N)S − dI − αI − γI (5.1b)

dR

dt
= γI − dR− ηR. (5.1c)

A strength of our model is that it can be adapted to represent a range of classical

infection frameworks: SI by setting γ = 0; SIR by setting γ > 0 and η = 0; and

SIRS with both γ > 0 and η > 0. The system is normalised to a common endemic

steady state N = Ne (S = Se, I = Ie, R = Re and we choose Ne = 1 without loss of

generality) when the initial prevalence prior to culling is pi

(
=

Ie
Ne

)
, see Appendix

5A.1 for further details. The endemic transmission functions are defined as follows:
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DD transmission : θ(I,N) =
(d+ α + γ)

Ne

(
1− pi

(
γ
d+η

+ 1
))I (5.2a)

FD transmission : θ(I,N) =
(d+ α + γ)(

1− pi
(

γ
d+η

+ 1
)) I

N
. (5.2b)

Under this set-up we can compare results for systems that have the same initial

density and initial level of prevalence prior to culling.

We examine the dynamics exhibited by the model (Equations (5.1)) when the

population is subject to indiscriminate culling (i.e. an equal proportion is removed

from each class in the model). We implement the culling regime as a discrete

event that removes a fixed percentage of the population with continuous population

regrowth between each cull event. Culling occurs at unit time intervals leading to
1

d
culls during the average lifetime of an individual in the absence of the disease.

We run the culling regime for 30 consecutive periods of instantaneous cull followed

by regrowth and examine the effect on the disease prevalence and the population

density both during and at the end of this culling regime. In particular, we define

the ‘resultant density’ as the population density at the end of the 30 consecutive

cull and subsequent regrowth events. Note, our results are qualitatively similar if

we assume culling occurs continuously rather than as a discrete event (see below

and Appendix 5A.2). Our results are produced numerically using MATLAB ODE

solvers.

In addition to assessing the impact of culling on the dynamics in the full model

(Equations (5.1)) we also develop a model whose dynamics can respond to culling

through demographic effects only:

dN

dt
= bN(1− qN)− dN − αpiN. (5.3)

This ‘demographic effects only model’ has the equivalent level of mortality to the full

model (Equations (5.1)) at the endemic steady state but it cannot respond to changes

in disease prevalence and therefore allows us to isolate the importance of changes

to the disease dynamics as a result of culling. The parameters b, d, q and α are the

same as in the full model (Equations (5.1)), pi is the initial prevalence in the full

model (which is constant in this model) and therefore prior to culling both models

have the same steady state density N = Ne. Importantly, the density-dependent per

capita birth rate, b(1− qN), has an identical response in both models and therefore

any changes to the density in response to culling lead to the same change in the per

capita birth rate.

We now note that the dynamics of the total density in the full model (found by
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summing Equations (5.1) can be written as:

dN

dt
= bN(1− qN)− dN − α I

N
N. (5.4)

Prior to culling the level of mortality is the same, since pi =
Ie

Ne
. Critically, however,

culling can lead to a change in the disease dynamics and therefore a change in disease

prevalence
I

N
. This can lead to a change in the rate of mortality in the full model but

not in the demographic effects model since pi does not change. A comparison of the

full model and the demographic effects only model therefore allows us to determine

the importance of changes due to the disease dynamics as a result of culling.

We also develop a ‘disease effects only’ model which has the same disease

dynamics as the full model (Equations (5.1)) but has a fixed per capita birth rate

b(1 − qNe) and therefore dynamic population density does not affect the rate of

reproduction. This model is the same as Equations (5.1) except for Equation (5.1a)

which is modified as follows:

dS

dt
= bN(1− qNe)− dS − θ(I,N)S + ηR (5.5)

For DD transmission the disease effects only model has the same endemic steady

state, Ne, as the full model and therefore we can compare results between the

disease effects only model and the full model to understand the contribution of

demographic effects on compensatory growth. However, for FD transmission, the

disease effects only model does not have a comparable non-zero endemic steady state

so this comparison is not valid. (In a similar manner a model that cannot respond

through disease or demographic effects cannot be compared to the full model, as

culling would lead to population extinction.)

Analysing the results for these models allows us to compare the compensatory

growth following culling that is due to: both demographic and disease effects

(represented by the full model, Equations (5.1)); demographic effects only

(represented by Equation (5.3)); and disease effects only (represented by Equation

(5.5)). The difference between the population densities in response to culling in these

models allows us to partition compensatory growth due to disease dynamics only,

namely a population level release from disease-induced mortality, and compensatory

growth due to demographic effects. In this study we wish to understand the

importance of compensatory growth due to a release from disease-induced mortality

in response to culling for a range of key infection representations.

We examine the behaviour of the model, Equations (5.1), with DD and FD

transmission for a SI framework (no recovery from infection) and for a SIR

framework which represents life-long immunity to infection. Later we consider a

SIRS framework in which immunity can wane over time; targeted culling on infected

individuals only; and density-dependent mortality in addition to density-dependent
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Figure 5.1: The population density and infected prevalence ( I
N

) response to culling
for Equations (5.1). (i),(ii) show results for the SI model, (iii),(iv) show results for
the SIR model. Results are shown for a 10% cull (i,iii) and a 25% cull (ii,iv). (a)
shows DD transmission and (b) FD transmission. (a) and (b) show the total density
of susceptibles (green); the total density of infected (magenta); the total density
of recovered/immune (orange); and the total populations density (blue for DD (a),
black for FD (b)). (c) shows the disease prevalence for DD (blue) and FD (black)
transmission. Results are shown for a virulent infection, α = 4, and with an initial
endemic disease prevalence of pi = 10%. Other parameters are: b = 1.6, d = 0.5;
for (i) and (ii) γ = 0; and (iii),(iv) γ = 4.

reproduction. In addition to assessing the impact of culling in systems with classical

modes of directly transmitted infection (DD and FD) we have also undertaken our

analysis for systems with environmental, free-living (FL) transmission [7]. The

results for FL transmission are qualitatively similar to those with DD transmission

and general results are detailed in Appendix 5A.3. To emphasize the breadth of

our findings the results for systems with FL transmission are highlighted in the case

study on the impact of culling on wild boar tuberculosis interactions.
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5.4 Results

5.4.1 The effects of culling in populations with virulent

infection and no recovery

Figure 5.1a(i-ii) shows that culling does not greatly decrease population density in

systems with DD transmission in the absence of recovery. Indeed, after the initial

culling events, the resultant density immediately prior to the next cull reaches

a level exceeding the initial density Ne = 1. Moreover, the density can reach

higher levels under a 25% cull than under a 10% cull. Here, culling leads to

compensatory (even over-compensatory) growth as a result of changes to the disease

dynamics. In particular, there is a reduction in the infected density and increase in

susceptible density (Figure 5.1a(i-ii)) and therefore, as the total population density

is not diminished, there is a reduction in disease prevalence (Figure 5.1c(i-ii))

which reduces the level of disease-induced mortality suffered by the population.

The reduction in prevalence is greater under the higher level of culling and so the

compensatory growth due to infection processes is greater under higher culling.

Under FD transmission the total population size increases less in response to culling

(Figure 5.1b(i-ii)) but again there is a reduction in the infected density and increase

in susceptible density that mitigates some of the mortality due to culling. The

reduction in disease prevalence due to culling is smaller under FD compared to DD

transmission (Figure 5.1c(i-ii)), which may explain the lower compensatory response.

To understand these findings more clearly we examine the results for a 25% cull in

population phase space (Figure 5.2i) and in terms of changes in the force of infection

(Figure 5.2ii). Under DD transmission the population response following the initial

culls is an increase in susceptibles but a decrease in infectives (Figure 5.2a(i)), since

culling reduces the force of infection (Figure 5.2a(ii)). Eventually, the density prior

to the next cull stabilises, with an increased density of susceptibles, a decreased level

of infecteds and a decreased force of infection. In this way the increased mortality

due to culling is compensated by population level decreases in mortality due to the

disease. Under FD transmission the population response following initial culls is an

increase in susceptible and infected density (Figure 5.2b(i)). In particular, culling

does not reduce the force of infection under FD transmission (Figure 5.2b(ii)) as

much, particularly in the initial culling events. The resultant population therefore

supports a higher level of infecteds compared to DD transmission, and therefore

while the compensatory effects due to reduced population level disease-induced

mortality are still significant they are smaller under FD transmission.

The compensatory population growth in response to culling can result from two

mechanisms: a reduction in the impact of density dependence on reproduction;

and a population level reduction in disease-induced mortality due to changes in

the disease dynamics. Both these mechanisms could occur for the population level
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Figure 5.2: The population density response to repeated culling of 25% of the
population for the SI model for (a) DD and (b) FD transmission. The figures
show a population trajectory (solid black line) over the 30 cull events, with values
immediately prior to and after the first cull highlighted with blue circles and before
and after the 30th cull with magenta circles. In (i) the population trajectory is
shown in phase space with the red lines showing the boundary between regions
where I is decreasing and increasing; and the green lines show the boundary where
S is decreasing and increasing (as indicated by the flux arrows in the figures). In (ii)
the population trajectory is superimposed over the force of infection θ(I,N) with
the colour changing from dark blue to dark red as the force of infection increases.
Results are shown for a virulent infection, α = 4, and with an initial endemic disease
prevalence of pi = 10%. Parameters are as in Figures 5.1a(ii) and 5.1b(ii) for DD
and FD transmission respectively.

response to culling for our full model (Equations (5.1)). In Figures 5.3a(i-ii) &

5.3b(i-ii) we compare the results from the full model with the demographic effects

only model (Equation (5.3)) and in Figure 5.3b(i) we compare the results from the

full model with the disease effects only model (Equation (5.5)), noting that this

latter comparison is only valid for DD transmission. The difference between the full

model and disease effects only model represents the compensation that is solely due

to demographic effects and here this compensation is minimal (Figure 5.3b(i)). The

difference between the full model and the demographic effects only model represents

the compensation due to the population level reduction in disease-induced mortality

and accounts for most of the compensatory growth (Figures 5.3b(i) & 5.3b(ii)). A

key result is that compensation due to disease effects in response to culling can be

substantial under both DD and FD transmission.
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Figure 5.3: The population density compensatory response to culling for the SI
model. (a) the population density response to repeated culling of 25% of the
population for the full model, Equations (5.1), under SI (γ = 0) dynamics for (i) DD
transmission (blue) and (ii) FD transmission (black) and for the demographic effects
only model (dotted). (b) the resultant population density at the end of sequential
cull and subsequent regrowth periods for different levels of culling for the full model
with (i) DD transmission (blue) and (ii) FD transmission (black), the demographic
effects only model (dotted) and in b(i) the disease effects only model (red). Note
this (red) line is only valid for culling levels less than 30% with higher culling levels
leading to disease and population extinction. The difference between the solid blue
and the dotted line (b(i)) and the difference between the solid black line and the
dotted line (b(ii)) represent the amount of compensation due to the disease effects
and in (b(i)) the difference between the red line and the blue line represents the
compensation due to demographic effects. (c) plot of virulence against the level of
culling required to eradicate the infection (solid line) and the population (dashed
line) as well as the level of culling to eradicate the population in the demographic
effects only model (dotted line) for (i) DD transmission and (ii) FD transmission.
Results are shown for a virulent infection, α = 4, (except in (c) where α varies) and
with an initial endemic disease prevalence of pi = 10%. Other parameters are as in
Figure 5.1.

5.4.2 The effects of culling in populations with virulent

infection and recovery to immunity

Figures 5.1a(iii-iv) & 5.1b(iii-iv) show that compensatory growth due to a population

level release from disease-induced mortality is not evident in systems with life-long

immunity following infection. Here, culling leads to a significant reduction in the

population density and an increase in infected prevalence (Figure 5.1c(iii-iv)). This

effect is most pronounced under FD transmission as here the force of infection

remains high when the population abundance is reduced. In systems with life-long

immunity the population composition in the absence of culling includes a relatively

large proportion of recovered/immune individuals. Culling removes all classes
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equally, but it takes time for individuals to move through the infection stages to reach

the recovered class and therefore culling leads to a larger relative reduction to the

recovered class density and so the proportion of the population that suffers virulence

(I/N) increases. Figures 5.4a(i) & 5.4(ii) show that culling leads to a greater

reduction in population density in the full SIR model than in the demographic

effects only model. Also, for DD transmission (Figure 5.4b(i)) culling decreases

population density less in the full SIR model than in the disease effects only

model. Therefore culled populations that support virulent infections with recovery

to life-long immunity do not benefit from reduced disease-induced mortality but, as

shown here for DD transmission, do exhibit compensation due to demographic effects

which mitigate some of the mortality due to culling. A key point is that when there

is life-long immunity there can be a significant reduction in the population density

and therefore less resilience to harvesting as the population may be reduced to such

a low density that it is more susceptible to stochastic processes that may cause

population extinction.

5.4.3 The impact of culling on population management

Culling is often used as a strategy for population eradication, for instance to

remove pest or invasive species. We can use our model to investigate how the

presence of virulent infection changes the level of culling required to eradicate a

population. Figures 5.3b(i)&(ii) show that in systems without life-long immunity

the compensatory effects due to changes in the disease dynamics mean that an

increased level of culling is required to eradicate the population. In systems that

have life-long immunity (Figures 5.4b(i) & (ii)) the presence of virulent disease

makes the population harder to eradicate under DD transmission but easier to

eradicate under FD transmission. Here, under FD transmission, culling leads to

an increase in infection prevalence and so increases the population disease-induced

mortality in addition to culling mortality. In contrast, under DD transmission, high

levels of culling reduce the proportion of recovered individuals to such an extent

that the system acts like one in which life-long immunity is absent. Our work

therefore indicates that programmes to eradicate invasive species will be hindered

if the invasive species harbours a virulent non-immunising parasite or immunising

parasite under DD transmission but facilitated for strongly immunising virulent

parasites with FD transmission. It is critical therefore to understand the nature of

transmission and immunity to the key virulent infectious diseases of a target species

prior to the use of culling for population elimination.
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Figure 5.4: The population density compensatory response to culling for the SIR
model. (a) the population density response to repeated culling of 25% of the
population for the full model, Equations (5.1), under SIR (γ = 4) dynamics for (i)
DD transmission (blue) and (ii) FD transmission (black), for the demographic effects
only model (dotted) and for the disease effects only model (red). Here the presence
of the disease leads to a lower population in response to culling. (b) the resultant
population density at the end of sequential cull and subsequent regrowth periods for
different levels of culling the full model with (i) DD transmission (blue) and (ii) FD
transmission (black), the demographic effects only model (dotted) and the disease
effects only model (red). Note this (red) line is only valid for culling levels less than
30% with higher culling levels leading to disease and population extinction. The
difference between the solid blue and the dotted line (b(i)) and the difference between
the solid black line and the dotted line (b(ii)) represent the amount of compensation
due to the disease effects and in (b(i)) the difference between the red line and the blue
line represents the compensation due to demographic effects. (c) plot of virulence
against the level of culling required to eradicate the infection (solid line) and the
population (dashed line) as well as the level of culling to eradicate the population
in the demographic effects only model (dotted line) for (i) DD transmission and (ii)
FD transmission. Results are shown for a virulent infection, α = 4, (except in (c)
where α varies) and with an initial endemic disease prevalence of pi = 10%. Other
parameters are as in Figure 5.1.

5.4.4 The impact of culling on disease management

Culling is also used as a strategy to manage or eradicate a disease. Here the goal

may be to eliminate the disease while maintaining viable or maximum levels of

host density [78, 43, 18, 23], or the impact on the host density is of less concern

[108]. Our study indicates that the level of culling required to eradicate the disease

increases as the virulence increases for DD transmission under both the SI and SIR

model frameworks (Figures 5.3c(i) & 5.4c(i)). Under FD transmission the level of

culling required to eradicate the disease increases in the absence of immunity and

decreases in the presence of life-long immunity (Figures 5.3c(ii) & 5.4c(ii)). A key

result is that the interval between the level of culling required for disease eradication
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and population extinction is narrow at high virulence in the absence of immunity

and narrow at all levels of virulence with immunity. These results highlight the

importance of understanding the infection status of a population before culling for

disease management as the level of culling required for disease eradication may put

the population at risk of extinction.

5.4.5 Generality of model findings

Our analysis has shown how culling can lead to positive compensatory growth due to

a population reduction in disease-induced mortality in systems without immunity

and can lead to larger decreases in population density in systems with life-long

immunity. It is therefore important to ascertain the threshold in the level of

immunity that partitions the positive and negative impacts on growth in response

to culling. To do this we examine how the long-term density responds to culling in

an SIRS model in which infection leads to immunity but where immunity can wane.

For both DD and FD transmission, positive compensatory growth due to infection

feedbacks in response to culling occurs except when the recovery rate is high and

the loss of immunity is low (Figure 5.5). Therefore, our results indicate that culling

can lead to a population level reduction in disease-induced mortality that mitigates

the impact of culling on population abundance, provided the infection does not lead

to long-lasting immunity.

Figure 5.5: The resultant population density after 30 sequential cull and subsequent
regrowth periods culling 25% of the population for the SIRS model (Equations (5.1))
plotted against waning immunity, η, for different levels of recovery, γ, for (a) DD and
(b) FD transmission. The dotted line represents the resultant population density
for the demographic effects only model. The difference between the solid lines and
dotted line represents the positive or negative compensatory effect due to changes
in the disease dynamics. Results are shown for an initial endemic disease prevalence
of pi = 10%. Other parameters are as in Figure 5.1. Truncated results indicate
parameter levels that do not satisfy requirements for valid solutions (Equations
(5A4) & (5A5)).
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We confirm our findings for discrete culling in a model of continuous culling (the

detailed analysis is presented in Appendices 5A.2 and 5A.4). The results for the

continuous cull model approximate the average density of those for the equivalent

discrete cull (Figures 5A.1, 5A.3 & 5A.4). As such, the model for continuous

culling exhibits the compensation due to a release from disease-induced mortality

that we are investigating, although as an average does not show the potential

increase in resultant density above the endemic steady state illustrated in Figure

5.3. However, it does allow a robust comparison of steady states for our different

model formulations. In particular, we compare the steady states for total density in

the full model for DD and FD transmission, NDD and NFD respectively, with the

demographic effects only model, Ndem, and the disease effects only model, Ndis, and

compare these values with the density prior to culling, Ne. For the SI model with

DD transmission we show that Ne > NDD > Ndis > Ndem and for FD transmission

Ne > NFD > Ndem, which confirms the findings of Figures 5.3 & 5A.2(i). In

our illustrated results (Figure 5A.2a(i)) we see that NDD − Ndem � NDD − Ndis

and therefore the release from disease-induced mortality contributes most of the

compensation in response to culling (a similar result holds for FD transmission,

Figure 5A.2b(i)). These results also hold for the SIRS model when there is a low

rate of recovery or a high rate of loss of immunity. When immunity is sufficiently

long-lived (e.g. high recovery and low loss of immunity) then for DD transmission

Ne > Ndem > NDD > Ndis and for FD transmission Ne > Ndem > NFD, which

again confirms the findings in Figures 5.4 & 5A.2(ii). These analytical results hold

for all valid parameter values and confirm our key finding that the compensation

due to disease effects exceeds those due to demographic effects in systems without

long-lived immunity.

We also examine the impact of culling that is targeted on infected individuals

and find that compensation due to changes in the disease dynamics still occurs

under the SI model, but is greater under FD than DD transmission (see Appendix

5A.4 and Figure 5A.7). The amplified compensatory growth under FD transmission

occurs as targeted culling leads to a direct decrease in the force of infection since

infected density decreases more rapidly than total density (under indiscriminate

culling infected and total density decrease at the same rate due to culling). For the

SIR model targeted culling has little effect on density and prevalence and therefore

the negative impacts of culling and disease are no longer observed, but the level of

compensation is minimal. For the SIR model targeted culling does initially reduce

the force of infection but as a consequence fewer individuals progress to the recovered

and immune class; overall these two effects balance. In general, the findings for the

model with targeted culling confirm our previous results that compensation due to

disease effects occurs in the absence of long-lasting immunity. We also compare the

steady states for total density under continuous targeted infected culling for DD
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and FD transmission, NT
DD and NT

FD respectively. We show that for a sufficient

level of targeted infected culling and low rate of recovery or high rate of loss of

immunity, then NT
FD > NT

DD > Ne, confirming the findings in Figures 5A.7 & 5A.8,

and supports our finding of the potential for targeted infected culling to induce an

over-compensatory population growth response.

The full model (Equations (5.1)) includes demographic crowding effects on birth

only. In Appendix 5A.5 we examine the impact of culling on compensatory growth

for a version of the full model that can include density-dependent birth and/or death.

The results are unchanged under DD transmission regardless of whether density

dependence is on birth, death or a combination of both. Under FD transmission the

compensatory effect due to a release from disease mortality decreases as the level

of density-dependent death increases relative to density-dependent birth. The only

scenario in which there is no compensatory effect due to changes in disease dynamics

is when there is purely density-dependent death (under FD transmission). Therefore

our key finding that culling can lead to compensatory growth due to changes in

the disease dynamics is evident for almost all scenarios of density-dependent birth

and death. An analytical explanation of these findings is presented in Appendix

5A.5. A parameter sensitivity analysis examining how the level of compensatory

growth varies with disease virulence, initial prevalence and cull period is presented

in Appendix 5A.6.

5.5 Case Study

We highlight the applicability of our findings by considering a case study of the use

of culling to manage tuberculosis in Eurasian wild boar (Sus scrofa) in central Spain.

Here, environmental drivers, such as summer drought, can lead to aggregation

with associated high prevalence of infection of Mycobacterium tuberculosis complex

(MTC) which are the causative agents of animal tuberculosis (TB) [138]. We assume

that the driver of infection in the wild boar TB system is through environmental

contact with free-living MTC pathogen which is shed from the most infectious

individuals [14]. It is appropriate to assume the population is well-mixed in terms

of transmission as on managed estates infection is likely to occur at scarce water

holes where free-living MTC can persist and which are utilised frequently by the

whole population. Therefore the free-living (FL) transmission mode is used in

this case study (see Appendix 5A.3 and recall that FL transmission produces

qualitatively similar findings to DD transmission). In central Spain wild boar

are the primary reservoir host for MTC and in some regions up to 70% of the

population can be infected with MTC of which half (35% of the total population)

may exhibit generalised infection (infected and infectious) [137, 126]. Individuals

with generalised infection suffer high levels of disease-induced mortality [14]. Since
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wild boar have an economic and cultural value for the hunting community in Spain

there has been a reluctance to use additional culling to control TB as it may result

in decreased population abundance. However, since the wild boar TB system is

characterised by high disease-induced mortality and no recovery from infection [12]

our earlier general results indicate that culling could result in compensatory growth

due to reduced disease-induced mortality offsetting the mortality associated with

culling and thus sustaining population abundance.

Figure 5.6: Results for the wild boar TB model in response to 30 cull events of 25%
for (i) indiscriminate culling of the yearling and adult population and (ii) targeted
culling of generalised yearlings and adults. The population dynamics over time
are shown in (a) for total density (blue); infected and generalised density (black);
infected density (magenta); generalised density (red) and susceptible density (green).
The initial population assumes a TB prevalence, (I+G)/N, of 64% and a generalised
prevalence, G/N, of 35%. (b) shows the resultant total population (blue) and (c)
the total prevalence (black) and generalised prevalence (red) after 30 sequential cull
and subsequent regrowth periods for different levels of hunting. The model and its
parameters are outlined in Appendix 5A.7.

We extend our model framework to represent the wild boar TB systems for a

single geographical managed estate containing a homogeneously mixed population

covering an area of 3 × 3km2. The population density of wild boar is separated

into different age classes to capture distinct disease and reproductive characteristics

for piglets (aged 0-1 year), yearlings (aged 1-2 years), and adults (aged 2 years+).

Further, the age-classes are split into susceptible, infected and generalised (infected

and infectious) classes to reflect disease status. Yearlings and adults can give birth,

and in contrast to our model formulation in Equations (5.1) the crowding parameter

q (Appendix 5A.7.1), used to limit the disease-free total population density to the

carrying capacity, is independent of the endemic disease prevalence. Infection occurs

through environmental contact with free-living MTC pathogen which is shed from

individuals with the generalised infection. The population dynamics of wild boar and
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TB are represented by a system of differential equations that are an extension of our

general framework (Equations (5.1)). Full details of the model and parameterisation

can be found in Appendix 5A.7.

When there is an indiscriminate cull on yearlings and adults the population

density shows an initial drop followed by an increase with peak density only falling

by 10% in response to a 25% annual cull (Figure 5.6a(i)). While total population

size shows only a small reduction there is a more significant reduction in infected

individuals and total prevalence drops from 64% to 43% and generalised prevalence

from 35% to 22%. More generally (Figures 5.6b(i) & 5.6c(i)) there is only a

shallow decline in population density in response to increased culling up to a

threshold at which the disease is eradicated from the system (50% cull). After

this the population level declines rapidly. When there is a targeted annual cull

of 25% of generalised yearlings and adults (Figures 5.6ii) we see an increase in

the total population but only a modest decrease in prevalence and in particular

little change in the density of infected and generalised individuals. These results

highlight that compensatory growth due to reduced disease-induced mortality may

offset increased culling and may lead to a reduction in TB prevalence in wild boar

without detrimental reductions in density. Our general predictions may therefore

be applicable in this system and highlight the importance of detailed modelling in

the context of culling in the face of disease.

5.6 Discussion

Despite the ubiquity of infectious disease in nature, there has been little work

on the impact of disease on harvested populations. Our key result is that

population reductions from culling and harvesting are compensated in a wide range

of infectious disease scenarios due to a population level release from disease-induced

mortality. The compensatory effect increases as disease virulence, the pre-culling

level of prevalence and the level of culling increase and occurs for systems with

density-dependent, frequency-dependent and environmental (free-living) modes of

transmission. The key outcome is that culling in systems that harbour virulent

parasites can lower disease prevalence without significantly reducing, or indeed can

increase, population density. The population can therefore be regulated at a similar

density by disease or at reduced prevalence by a combination of culling and disease.

Compensation due to changes in disease dynamics occurs in the absence of

long-lasting immunity. With long-lasting immunity and indiscriminate culling,

disease generally increases the impact of culling and harvesting, reducing the

population density compared to systems without the disease. Although there are

examples of life-long immunity in wildlife and livestock populations (rinderpest

vaccine produces life-long immunity in African cattle [123]) there are also many
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examples, including TB, where vaccine-derived immunity wanes [133]. This indicates

that even in those diseases with acquired immunity, this protection may often be

partial or wane leading to an SIRS model where individuals become susceptible again

after a period of immunity. It is likely therefore that many wildlife systems that

support virulent infectious disease will exhibit compensatory growth due to reduced

disease-induced mortality following culling. Of course, many populations will have

multiple diseases, but the key point is to understand the overall disease burden and

in particular whether there is widespread immunity to the key sources of virulence.

System-specific models can then determine whether the infectious disease allows

increased exploitation or makes the host population more vulnerable. For example,

our system-specific model of the wild boar TB interaction in central Spain predicted

a strong effect of compensation due to changes in disease dynamics leading to only

modest reductions in the population abundance due to hunting. This is therefore an

example in which the impact of harvesting is offset in a host that harbours a virulent

parasite and suggests hunting is likely to be a sustainable management option in

this system if the desire is to regulate the population at similar density but with

reduced prevalence.

Our results have important consequences for the use of culling to manage

infectious disease. The impact of harvesting on wildlife disease has been previously

considered in models with long-lasting immunity [35, 25] which reported an increase

in prevalence. Our results confirm these findings since in systems with long-lasting

immunity harvesting will reduce the density of immune individuals to a greater

proportional extent than other classes [25, 97]. We also support previous studies

[16, 141, 113, 130] which showed that indiscriminate culling is more effective at

reducing disease prevalence when infection results from density-dependent rather

than frequency-dependent transmission. However, we show that targeted culling is

more effective when transmission is frequency-dependent. System-specific models

have shown how localised culling could reduce the prevalence of classical swine fever

in wild pigs [40] and reduce the prevalence and spread of chronic wasting disease in

white tailed deer [130, 114], predictions that are supported by observations in the

field [30, 93].

Our results highlight the difficulty of using culling to eradicate an infectious

disease and may explain empirical findings that suggests that culling is not an

effective disease management tool. For example, bovine tuberculosis has persisted in

badger populations in Great Britain despite comprehensive culling campaigns [51];

Gortázar et al. (2015) [72] reviewed culling programmes worldwide reporting few

that achieved 100% efficacy. Theoretical models have suggested that culling could

not control white-nose syndrome in bats [78]; that very high levels of culling were

required to eradicate paratuberculosis in rabbits [43] and Tasmanian devil facial

tumour disease [18]; and that culling may increase disease transmission through
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changes in other ecologically driven factors [115]. While our findings indicate that

culling can maintain prevalence at reduced levels, they also highlight that high levels

of culling are required to eradicate an infection and that there is a narrow range of

culling levels between disease eradication and population extinction. System-specific

models are therefore required to determine the likelihood of success and the risk of

population extinction that may result from culling programmes to control disease.

Previous model studies of the wild boar TB system suggested that culling may

contribute to TB management when used in conjunction with other control measures

[6]. Our model of TB and wild boar shows how such system-specific models can be

built to understand when and how culling can be used as a management tool in

wildlife systems that harbour virulent disease. Wild boar hunting is a source of

income while in some localities spillover of TB into livestock has economic impacts.

Our results show that hunting could be a viable method for controlling TB in wild

boar because hunting leads to a significant drop in disease prevalence with the model

results supported by observations in central Spain [23, 12]. This is a ‘win-win’

situation for managed estates since in addition to decrease in disease prevalence

a large proportion of the mortality from hunting is countered by a reduction in

disease-induced mortality. The model results indicate that the largest decrease

in prevalence and density of infectious individuals is for indiscriminate culling (of

juveniles and adults). Here, there is a threshold at which culling eradicated the

disease (60% in our model study) after which population abundance decreases

rapidly leading to extinction when culling reaches 75%. It may therefore be possible

to eradicate TB in wild boar through culling, but it would be critical to determine

these thresholds at a regional level. Targeted culling of infectious wild boar resulted

in only modest reductions in prevalence and no discernible change in the density of

infecteds. This may explain the failure of targeted culling to control TB in empirical

studies [33].

Over-compensatory population regrowth in response to culling events is

well-known in systems that do not consider infectious disease; Abrams & Matsuda

(2005) [2] termed this a ‘hydra’ effect. Abrams (2009) [1] outlined three possible

mechanisms that may produce the hydra effect: (i) additional mortality altering

pre-existing population oscillations in a way that leads to an increased density, (ii)

a temporal separation of mortality and density dependence and (iii) mortality of a

consumer leading to over-compensatory changes in other aspects in the food web.

Our results for the model with discrete culling show that the resultant density can

exceed the original density. Our results with targeted infected culling, for both

discrete and continuous model set-ups, show that the resultant density may also

surpass the total population density in the absence of culling. These results arise as

culling induces population regrowth in an environment with reduced prevalence and

therefore reduced disease-induced mortality. Therefore, our novel insight is that the
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release from mortality caused by endemic disease following culling can also lead to a

hydra effect. This has similarities to the hydra effect due to the consumer-resource

mechanism (Abrams (2009) [1] mechanism (iii)) where additional mortality of the

consumer leads to a reduction in mortality for the resource. Our scenario is different

in that it occurs within a single species.

Our key finding is that mortality due to culling in systems that harbour virulent

infections may be compensated by reductions in disease-induced mortality. We have

also demonstrated that it is important to fully understand the infection processes

and to model the specific system before using culling as a disease management tool

[18].

94



Chapter 5: Population compensatory growth as a result of culling

Appendices to Chapter 5

The following appendices are the Supplementary Information to ‘The critical role

of infectious disease in compensatory population growth in response to culling’ by

Eleanor Tanner, Andy White, Peter Lurz, Christian Gortázar, Iratxe Dı́ez-Delgado

and Mike Boots.

5A.1 System steady states and restrictions

We derive expressions for the parameter q and transmission function θ(I,N) for the

full model system (main paper Equations (5.1)) by setting the endemic steady state

for the total population, N = Ne, and the endemic level of infecteds as Ie = piNe

where pi is the initial endemic prevalence of infecteds. This gives the endemic steady

states of the system as:

Ie =piNe (5A1a)

Se =(1− ζpi)Ne (5A1b)

Re =(ζ − 1)piNe. (5A1c)

where ζ =
d+ η + γ

d+ η
(5A1d)

The transmission function θ(I,N) is then derived as:

DD transmission : θ(I,N) =
(d+ α + γ)

Ne (1− ζpi)
I (5A2a)

FD transmission : θ(I,N) =
(d+ α + γ)

(1− ζpi)
I

N
. (5A2b)

We also determine an expression for q, the parameter that controls density dependent

birth, which is dependent on the constants set for Ne and pi:

q =
b− d− αpi

bNe

. (5A3)

Given that for valid solutions we must have q ≥ 0 and 0 ≤ pi ≤ 1, we therefore have

a requirement on the system parameters for valid solutions:

0 ≤ pi <
(b− d)

α
, (5A4)

noting that to achieve a non-zero populated steady state in the system we must also

have b > d. Further to these restrictions, to ensure a positive endemic steady state

for the susceptible class and a positive transmission function, the initial endemic
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prevalence pi is also governed by:

0 ≤ pi <
d+ η

d+ γ + η
. (5A5)

5A.2 Continuous culling

In the main paper we have presented results for compensatory growth as a response

to discrete culling events. We now consider the same model with continuous culling

which approximates the average behaviour of the model with discrete culling. The

model with continuous culling allows us to determine conditions for the endemic

steady state. We modify Equations (5.1) to include continuous culling controlled

by the parameters cS, cI and cR for culling susceptibles, infecteds and recovereds

respectively:

dS

dt
= Nb(N)− dS − θ(I,N)S − cSS + ηR (5A6a)

dI

dt
= θ(I,N)S − dI − αI − γI − cII (5A6b)

dR

dt
= γI − dR− cRR− ηR (5A6c)

Note we have replaced the explicit term for the birth rate with the more general

Figure 5A.1: The population density response to continuous culling at rate c =

log

(
1

1− 0.25

)
in an SI framework in Equations (5A6) (here culling is at a similar

rate to in the discrete culling model). The change in population density is shown
for the total population density (blue for DD (a), black for FD (b)); the total
density of susceptibles (green); the total density of infected (magenta) and the
demographic effects only model (Equation (5A7)) with the same level of continuous
culling (black dotted). (a) shows results for DD transmission and (b) shows results
for FD transmission. Results are shown for a virulent infection, α = 4, with no
recovery to immunity (γ = 0), and an initial endemic disease prevalence of pi = 10%.
Other parameters are as Figure 5.1aii in the main paper.

term b(N). The demographic effects only model (Equation (5.3)) is modified to
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include the same rate of continuous culling as follows:

dN

dt
= Nb(N)− dN − αpiN − cdemN (5A7)

where cdem = cS (1− ζpi) + cIpi + cR(ζ − 1)pi (5A8)

The disease effects only model (Equations (5.5), (5.1b) & (5.1c)) is modified to

include continuous culling by replacing Equation (5A6a) with the following equation

in which the birth rate remains constant:

dS

dt
= Nb(Ne)− dS − θ(I,N)S − cSS + ηR (5A9)

We restrict the birth function b(N) to be a strictly monotonically decreasing function

for 0 ≤ N ≤ K where K is the disease-free steady state for the population (pi = 0)

such that b(K) = d. Furthermore we restrict b(N) to be differentiable on 0 ≤ N ≤ K

so that
db(N)

dN
< 0 on 0 < N < K. Also, we define the endemic steady state without

culling to be Ne such that 0 ≤ Ne ≤ K. From Equation (5A7) we know that

b(Ne) = d+ αpi (5A10)

We consider steady states for these models under indiscriminate culling (cS = cI =

cR = c). We want to compare the endemic steady state Ne with the steady states

for: the demographic effects only model (Equation (5A7)) Ndem; the disease effects

only model (Equations (5A9), (5A6b) & (5A6c)) for DD transmission Ndis; and the

full model (Equations (5A6) for DD transmission NDD and FD transmission NFD.

Note that for c = 0 all these steady states are all equal to Ne. We wish to compare

the steady states in response to culling (c > 0).

5A.2.1 Steady state condition for the demographic effects

only model

From Equation (5A7) we see that for c > 0 then

b(Ndem) = d+ αpi + c > b(Ne) = d+ αpi (5A11)

Since b(N) is a strictly monotonically decreasing function then if b(Ndem) > b(Ne)

it implies that Ndem < Ne.

97



Chapter 5: Population compensatory growth as a result of culling

Figure 5A.2: Results for the model with continuous indiscriminate culling
(Equations (5A6) with b(N) = b(1 − qN)) for (i) the SI model and (ii) the SIR
model. The steady state density N is shown for DD transmission in (a): for the
full model (blue); the disease effects only model (red); and the demographic only
model (black dotted). The steady state density N is shown for FD transmission in
(c) for the full model (black) and demographic only model (black dotted). Other
parameters are as in the main paper Figures 5.1ii & 5.1iv for the SI model and the
SIR model respectively.

5A.2.2 Steady states for continuous culling with DD

transmission

Under DD transmission the steady states for the full DD model and the disease

effects only model are:

NDD = Ne [1− ζpi]
[
1 +

c

d+ α + γ

] [
α

α + ξ(d+ c)− ξb(NDD)

]
(5A12)

Ndis = Ne [1− ζpi]
[
1 +

c

d+ α + γ

] [
α

α + ξ(d+ c)− ξb(Ne)

]
(5A13)

where ξ =
d+ η + c+ γ

d+ η + c
, ζ =

d+ η + γ

d+ η
(5A14)

From Equation (5A5) we know that 1 − ζpi > 0. We assume that α + ξ(d + c) −
ξb(N) > 0 for N = Ne and N = NDD. Note that NDD is valid when c < b(NDD)−d,
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Figure 5A.3: The population density response to culling for: (a),(b) a discrete

annual cull of 25% and (c) continuous culling at rate c = log

(
1

1− 0.25

)
in an SI

framework for (i) DD transmission and (ii) FD transmission. (a) shows the total
population density during annual discrete culling, (b) shows the annual average total
population density for the discrete cull, calculated by trapezium rule for the results
obtained numerically over each regrowth period post the culling event. (c) shows the
total population density under continuous culling. Other parameters are as Figure
5.1a(ii) in the main paper.

the culling threshold where IDD becomes negative, and similarly Ndis is valid for

c < αpi the culling threshold where IDis becomes negative.

5A.2.3 NDD and Ndis decrease as γ increases

Rearranging Equation (5A12) we find that

b(NDD) = d+ αpi + c− α

ξ

[
Ne

NDD

(d+ α + γ + c)

(d+ α + γ)
(1− ζpi)− (1− ξpi)

]
(5A15)

We can differentiate Equation (5A15) with respect to γ and following some algebra

it can be shown that
dNDD

dγ
< 0 and therefore NDD decreases as γ increases for all

valid parameters.

Using a similar process on Equation (5A13) where b(N) = b(Ne), which is

constant and independent of γ, it follows that
dNdis

dγ
< 0 and so Ndis decreases

as γ increases for all valid parameters.
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5A.2.4 The relationship between NDD and Ne

First we consider the relationship between NDD and Ne. Let us assume that NDD >

Ne then from Equation (5A12)

[1− ζpi]
[
1 +

c

d+ α + γ

] [
α

α + ξ(d+ c)− ξb(NDD)

]
> 1 (5A16)

Rearranging Equation (5A16) we find:

b(NDD) > d+ αpi+

c

[
(d+ η + c)((d+ αpi)(d+ η) + γ(d+ αpi + η)) + γ(d+ α + γ)(d+ αpi + η)

(d+ η)(d+ α + γ)(d+ γ + η + c)

]
(5A17)

and using Equation (5A10), for the inequality Equation (5A17) to hold requires that

b(NDD) > b(Ne) which contradicts NDD > Ne for c > 0. Therefore NDD < Ne for

c > 0.

5A.2.5 The relationship between NDD and Ndis

From Appendix 5A.2.4 as NDD < Ne we infer that b(NDD) > b(Ne) for c > 0.

Therefore for all c > 0,[
α

α + ξ(d+ c)− ξb(NDD)

]
>

[
α

α + ξ(d+ c)− ξb(Ne)

]
(5A18)

and so from Equation (5A12) and Equation (5A13) NDD > Ndis for all c > 0.

5A.2.6 The relationship between NDD and Ndem

By definition, NDD equals Ndem when

b(NDD) = b(Ndem) = d+ αpi + c (5A19)

Using Equation (5A15) and Equation (5A19) we can show that NDD = Ndem when,

Ndem = NDD = Ne
(d+ α + γ + c)

(d+ α + γ)

(1− ζpi)
(1− ξpi)

(5A20)

As b(Ndem) > b(Ne) for c > 0 it follows that Ndem < Ne for c > 0, and therefore

(d+ α + γ + c)

(d+ α + γ)

(1− ζpi)
(1− ξpi)

< 1 (5A21)
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which is only valid for γ > γdem0 > 0 where

γdem0 =
1

2pi

[
−pi(d+ η + c+ d+ α)+√

p2i (d+ η + c+ d+ α)2 + 4pi(1− pi)(d+ η)(d+ η + c)
]

(5A22)

so that Equation (5A21) does not hold for γ = 0, and so b(NDD

∣∣
γ=0

) cannot equal

d + αpi + c for c > 0. From Appendix 5A.2.3 we know that b(NDD) increases as γ

increases, therefore b(Ndem) > b(NDD

∣∣
γ=0

) > b(Ne) and so Ndem < NDD

∣∣
γ=0

< Ne.

It follows that NDD = Ndem if γ = γdem (where γdem is the solution to Equation

(5A20)) and γdem > γdem0. From Equation (5A11) we see that Ndem is constant with

respect to changes to γ and from Appendix 5A.2.3 we know that NDD decreases as

γ increases. Therefore NDD > Ndem for γ < γdem and NDD < Ndem for γ > γdem.

5A.2.7 The relationship between Ndis and Ndem

We know from Appendix 5A.2.5 that Ndis < NDD for c > 0, and therefore from

Appendix 5A.2.6 for sufficiently large γ (γ > γdem) we know that Ndis < NDD <

Ndem. We want to show that for sufficiently small γ that Ndis > Ndem. This can be

shown as follows. We know that,

Ndis

∣∣
γ=0

= Ne [1− pi]
[
1 +

c

d+ α

] [
α

α(1− pi) + c

]
. (5A23)

In Section 5A.2.6 we show that NDD|γ=γdem0
> Ndem. We can show that Ndis|γ=0 >

NDD|γ=γdem0
for c < αpi, noting that the level of susceptibles for DD transmission

when γ = γdem0 is SDD|γ=γdem0
= Ne(1 − ξ|γ=γdem0

pi) and therefore the infected

prevalence, IDD/NDD|γ=γdem0
, must be less than pi. It follows that

Ndis|γ=0 = SDD|γ=0 + IDis
∣∣
γ=0

> SDD|γ=γdem0
+ IDD|γ=γdem0

> Ndem. (5A24)

Therefore for sufficiently low levels of recovery and valid parameter values

Ndis > Ndem.

5A.2.8 Steady states for continuous culling with FD

transmission

Under FD transmission the steady state, NFD, for the full model satisfies

b(NFD) = d+ αpi + c− α

ξ

[
(d+ α + γ + c)

(d+ α + γ)
(1− ζpi)− (1− ξpi)

]
(5A25)
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5A.2.9 The relationship between NFD and Ne

From Equation 5A25 and using Equation (5A10), when γ = 0 then

b(NFD) = d+ αpi +
c(d+ αpi)

d+ α
> b(Ne) (5A26)

Hence for γ = 0 we find that Ne > NFD. Further, Equation (5A25) shows that

b(NFD) increases as γ increases and so Ne > NFD for all γ ≥ 0.

5A.2.10 The relationship between NFD and Ndem

We know that NFD > Ndem if b(NFD) < b(Ndem) and using Equation (5A11) and

Equation (5A25) this requires that

(d+ α + γ + c)

(d+ α + γ)

(1− ζpi)
(1− ξpi)

> 1 (5A27)

so that when γ < γdem0, where γdem0 is defined in Equation 5A22, then b(NFD) <

b(Ndem).

For sufficiently large γ and low η, when γ > γdem0, the inequality in Equation

(5A27) fails and therefore Ndem > NFD.

5A.2.11 Conclusion: the relationships between Ne, NDD,

NFD, Ndem and Ndis

Gathering the results from this section, we can say that for diseases with no or

short-lived immunity (little or no recovery or high loss of immunity)

Ne > NDD > Ndis > Ndem (5A28)

Ne > NFD > Ndem (5A29)

and for diseases with long-lived immunity (sufficiently high rate of recovery and low

loss of immunity),

Ne > Ndem > NDD > Ndis (5A30)

Ne > Ndem > NFD (5A31)

5A.2.12 Indiscriminate continuous culling results for b(N) =

b(1− qN)

We present results for the continuous model using the same birth function (b(N) =

b(1− qN)) as used for the discrete culling results presented in the main paper. We

derive the continuous culling rate, c, by equating the steady state for the continuous
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demographic effects only model, Equation (5A7) with indiscriminate culling, to the

average population density between culling events of the demographic effects only

model, Equation (5.3), which has reached a steady state under an annual cull of δ%

each year:

b− d− αpi − c
bq

=
1

bq
ln

[
(1− δ) expb−d−αpi −1

1− exp−(b−d−αpi)

]
(5A32)

⇒ c = ln

[
1

1− δ

]
(5A33)

Figures 5A.1a(i) and 5A.1b(i) show the analogous results to those with discrete

culling in the main paper (Figures 5.1a(ii) and 5.1b(ii)). Also, Figure 5A.2 shows

the analogous results to those with discrete culling in main paper (Figure 5.3 and

Figure 5.4). Additionally, for SI models, in Figures 5A.3(i) and 5A.3(ii), for DD

and FD transmission respectively, we plot the average total population density

over the regrowth period following each culling event, illustrating our point that

the population density represented by the continuous cull is in close agreement

with the average density of the discrete cull. This is again illustrated in Figure

5A.4, for different levels of culling, showing the resultant total population density

after discrete culling (Figure 5A.4a), the average total population density (Figure

5A.4b), and the continuous culling steady state (Figure 5A.4c) showing again that

the resultant average population density is in close agreement with the continuous

culling steady state. In all the continuous culling results the population is harvested

at continuous rate c = log

(
1

1− 0.25

)
to achieve a similar rate of a discrete cull

of 25% of the population. For the SI model and DD transmission there is minimal

compensation due to demographic effects with the majority of compensatory growth

due to the change in disease dynamics (Figures 5A.2a(i) & 5A.2b(i)). For FD

transmission, the compensation due to the change in disease dynamics is less

than for DD transmission (Figure 5A.2c(i) & 5A.2d(i)). For the SIR model there

is qualitatively the same level of negative disease compensation as that shown

for discrete culling, and a similar level of positive compensatory growth due to

demographic effects. Note that results have been plotted here up until the point

that the disease endemic steady state becomes invalid (c = αpi), ie. where culling

has eradicated the disease. The results for the specific birth function comply with

the general results outlined in Appendix 5A.2 and indicate that for indiscriminate

culling the findings for discrete and continuous culling are qualitatively similar.

5A.3 Free living transmission

When we consider free-living infection dynamics we assume that the free-living

parasite F is excreted at a constant rate λ by infected individuals and has a decay
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Figure 5A.4: The population density response to culling for a range of culling levels
in a SI framework for: (a),(b) a discrete annual cull and (c) continuous culling where

culling rate c = log

(
1

1− δ

)
where δ is the equivalent discrete culling rate for (i) DD

transmission and (ii) FD transmission. The change in population density is shown
for the total population density (blue for DD (i), black for FD (ii)). (a) shows the
resultant total population density after discrete annual culling and (b) shows the
annual average total population density for the discrete cull, calculated by trapezium
rule for the results obtained numerically over each regrowth period post the culling
event. (c) shows the steady state total population density for the continuous culling
model. Other parameters are as Figure 5.1a(ii) in the main paper.

Figure 5A.5: The population density and infected prevalence (
I

N
) response to

culling in an SI framework with free-living transmission for Equations (5A34). (a)
shows the change in total population density (blue); the total density of susceptibles
(green); and the total density of infected(magenta). (b) shows the change in disease
prevalence over the cull events. (c) shows the resultant population density after 30
cull and subsequent regrowth events for different levels of culling for the free-living
model (blue) and the demographic effects only model (Equation (5.3)) (dotted).
Results are shown for a virulent infection, α = 4, and an initial endemic disease
prevalence of pi = 10%. Free-living particles are excreted at rate λ = 1 and decay
at rate µ = 6. Other parameters are as Figure 5.1a(ii) in the main paper.
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rate µ. Susceptibles become infected through contact with the free-living parasite

such that each susceptible is equally exposed and infection occurs with transmission

rate function θF (F ). We incorporate this new class into our SI framework (main

paper Equations (5.1) with γ = 0), and normalise to achieve the endemic steady

state Ne for a particular disease prevalence pi, such that q takes the same value

as the SI model. For this FL model we obtain the following system of ordinary

differential equations:

dS

dt
= bN(1− qN)− dS − θF (F )S (5A34a)

dI

dt
= θF (F )S − dI − αI (5A34b)

dF

dt
= λI − µF (5A34c)

θF (F ) =
µ

λ

(d+ α)

Ne (1− pi)
F. (5A34d)

Figure 5A.5 shows that culling populations suffering disease transmitted by

free-living particles (Equations (5A34)) generates a similar compensatory response

as seen for DD transmission (main paper Figure 5.1ii). In particular, Figure 5A.5c

and main paper Figure 5.3b(i) for FL and DD transmission respectively demonstrate

that this response is qualitatively similar for all levels of culling.

5A.4 The impact of targeted culling of infecteds

The results in the main paper focus on indiscriminate culling based on the

assumption that identifying infected individuals for a targeted cull is not practicable

in most settings. Here we investigate the effect on compensatory growth when only

infecteds are targeted for culling. In particular in the continuous model (Equations

(5A6)) we set cI > 0, cS = cR = 0.

5A.4.1 Continuous targeted infected culling steady states

In a similar fashion to Appendix 5A.2 we derive steady state solutions for continuous

targeted infecteds culling (Equations (5A6)) with cI > 0, cS = cR = 0) to derive

conditions when targeted culling induces over-compensation in the total population.
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5A.4.2 Steady states for continuous targeted infected

culling with DD transmission

Under DD transmission the steady state, NT
DD, for the full DD model is:

NT
DD = Ne [1− ζpi]

[
1 +

cI
d+ α + γ

] [
α + cI

α + cI + ζd− ζb (NT
DD)

]
(5A35)

where ζ =
d+ η + γ

d+ η
(5A36)

Rearranging, we find that for the condition NT
DD > Ne to hold then the following

condition on the birth function must also hold:

b
(
NT
DD

)
< d+ αpi +

cI
ζ(d+ α + γ)

[ζpi(d+ α + γ)− (α + cI)(1− ζpi)] (5A37)

By definition if NT
DD > Ne then b

(
NT
DD

)
< b(Ne), therefore for targeted infected

culling to induce a rise in population density the culling rate must satisfy the

following threshold:

cI >
ζpi(d+ α + γ)− α(1− ζpi)

1− ζpi
(5A38)

Note that this threshold may be < 0 implying that any level of targeted culling will

result in an increase in population above the endemic steady state. Also, as γ grows,

this culling threshold grows, ameliorated by the rate of loss of immunity η so that

for a sufficiently low rate of recovery or high loss of immunity, targeted culling will

result in an increase in population density.

5A.4.3 Steady states for continuous targeted infected

culling with FD transmission

Under FD transmission the steady state, NT
FD, for the full model satisfies:

b
(
NT
FD

)
= d+ αpi +

cI
ζ(d+ α + γ)

[ζpi(d+ α + γ)− (1− ζpi)(α + cI)] (5A39)

For the condition NT
FD > Ne to hold, we must have b

(
NT
FD

)
< b(Ne), and therefore

the level of targeted culling must satisfy:

cI >
ζpi(d+ α + γ)− α(1− ζpi)

1− ζpi
(5A40)

the same condition as for DD transmission (Equation (5A38)). Therefore targeted

infected culling under FD transmission will induce a rise in population density under

the same model conditions as DD transmission.
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5A.4.4 The relationship between NT
DD and NT

FD

We can further examine the relationship between NT
DD and NT

FD. Rearranging

Equation (5A35) and from Equation (5A39) we find that:

b
(
NT
DD

)
− b
(
NT
FD

)
=

[
1− Ne

NT
DD

]
(α + cI)(1− ζpi)(d+ α + γ + cI)

ζ(d+ α + γ)
(5A41)

From Equation (5A41) we see that when NT
DD > Ne (for the appropriate level of

cI specified by Equations (5A38) and (5A40)) then b
(
NT
DD

)
− b

(
NT
FD

)
> 0 and

therefore for sufficiently large targeted infected culling (which is more likely when

there is low recovery to immunity or high loss of immunity), NT
FD > NT

DD. When

NT
DD < Ne (when cI does not satisfy the threshold specified by Equations (5A38)

and (5A40)) then b
(
NT
DD

)
− b

(
NT
FD

)
< 0 and therefore when targeted culling is

sufficiently low, or there is sufficiently high recovery to immunity and sufficiently

low loss of immunity, NT
FD < NT

DD.

5A.4.5 Conclusion, the relationships between NT
DD, NT

FD and

Ne

In summary, for diseases with no or short-lived immunity and a sufficient level of

targeted infected culling

NT
FD > NT

DD > Ne (5A42)

and so continuous culling can lead to an increase in population density.

5A.4.6 Targeted infected continuous culling results for

b(N) = b(1− qN)

For illustration, we present results for the discrete and continuous model using

the same birth function (b(N) = b(1 − qN)) as used for the discrete culling

results presented in the main paper. Figures 5A.6 and 5A.7 show the population

response for discrete targeted culling for both SI and SIR models with DD and

FD transmission. Note the same culling rate is used in indiscriminate culling

and targeted culling, so that the culling effort is the same however there are a

greater number of individuals culled during indiscriminate culling. Also, for discrete

targeted culling, we also modify the rate of culling in the demographic effects

only model to be multiplied by pi to remove the equivalent number of infecteds

at the endemic steady state. For the SI model targeting infecteds only for DD

transmission leads to compensatory growth (Figure 5A.6a(i) & Figure 5A.7a(i)),

but the compensatory effect is lower than with indiscriminate culling. For FD

transmission (Figure 5A.6b(i) & Figure 5A.7b(i)), culling infecteds causes a greater
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Figure 5A.6: The population density and infected prevalence ( I
N

) response to
targeted culling of 25% of infecteds only for Equations (5.1)). (i) shows results for
the SI model, (ii) shows results for SIR model and (a) for DD transmission and (b) for
FD transmission. Results show the total population density (blue for DD (a), black
for FD (b)); the total density of susceptibles (green); the total density of infected
(magenta); and the total density of recovered/immune (orange). (c) shows the
disease prevalence for DD transmission (blue) and FD transmission (black), noting
the prevalence response to culling is near identical for DD and FD transmission.
Parameters are as in the main paper Figures 5.1ii & 5.1iv for the SI model and the
SIR model respectively.

release from disease-induced mortality as this causes a greater reduction in the force

of infection. This leads to increased compensatory growth and a greater reduction

in disease prevalence than for indiscriminate culling (Figure 5A.6c(i) black line).

For the SIR model, targeting infecteds brings no resultant compensatory growth

for discrete culling (Figures 5A.7a(ii) & 5A.7b(ii)), but also does not cause large

population depletion (Figures 5A.6a(ii) & 5A.6b(ii)) as with indiscriminate culling.

This is the same for both DD transmission and FD transmission. This is because

targeted culling does not deplete the level of recovered and immune individuals in

the population.

In the continuous model with targeted culling (cI > 0, cS = cR = 0) the steady
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Figure 5A.7: The resultant population density after 30 sequential discrete cull and
subsequent regrowth periods for (i) the SI model and (ii) the SIR model for targeted
culling 25% of infecteds only and an equivalent cull of 0.25× pi in the demographic
effects only model (Equation (5.3)). (a) shows results for DD transmission (blue)
and the demographic effects only model (black dotted) and (b) shows results for
FD transmission (black) and the demographic effects only model (black dotted).
Parameters are as in the main paper Figures 5.1ii & 5.1iv for the SI model and the
SIR model respectively.

states can be determined analytically. For DD transmission these are

STDD =
d+ α + γ + cI

β
where β =

d+ α + γ

Ne

(
1− pi

d+ γ

d

) (5A43)

NT
DD =

d

2bq(γ + d)

[
b
d+ γ

d
− d− α− γ − cI+ (5A44)√(

b
d+ γ

d
− d− α− γ − cI

)2

+ 4bqSTDD
γ + d

d
(α + cI)

]
(5A45)

The total population steady state for the demographic effects only model is:

NT
dem =

b− d− αpi − picI
bq

(5A46)
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The steady state for the disease effects only model is:

STdis =
d+ α + γ + cI

β
where β =

d+ α + γ

Ne

(
1− pi

d+ γ

d

) (5A47)

NT
dis = STdis

d(α + cI)

d(d+ α + γ + cI)− (γ + d)b(1− qNe)
. (5A48)

For FD transmission and targeted culling the steady state is:

STFD =
(d+ α + γ + cI)

2

bqβ2

[
bβ

d+ α + γ + cI
+

d

d+ γ
(α + cI − β)

]
(5A49)

NT
FD =

β

(d+ α + γ + cI)
STFD where β =

d+ α + γ(
1− pi

d+ γ

d

) (5A50)

Figure 5A.8 shows the same set of results for the total population steady states

as Figure 5A.2 with targeted culling of infecteds. For the SI model as the culling

rate of infecteds increases, compensation due to the change in disease dynamics also

increases under DD transmission (Figures 5A.8a(i) & 5A.8b(i)) and to a greater

extent under FD transmission (Figures 5A.8c(i) & 5A.8d(i)). For DD transmission

we again note that disease effects drive the majority of the compensation in response

to culling. For the SIR model for DD transmission (Figures 5A.8a(ii) & 5A.8b(ii))

both the full model and the demographic effects only model show no change in steady

state density as the targeted culling of infecteds grows, however the disease effects

only steady population density reduces as targeted culling of infecteds grows. For

FD transmission (Figures 5A.8c(ii) & 5A.8d(ii)) there is no compensatory growth

due to disease dynamics. We note that in our illustrative results we set parameters

α = 4, d = 0.5, pi = 0.1, cI = 0.25, η = 0 and γ = 0 or γ = 4 for SI or SIR

models respectively. The threshold specified in Equation (5A38) is therefore cI > 0

for SI models and cI > 72.5 for SIR models and therefore predict that there will

be over-compensation for the SI results and not for the SIR results as shown in the

figures. The results for continuous targeted culling confirm the results for targeted

culling in the discrete model (Figure 5A.7).

5A.5 Density dependent mortality

Our system formulation (main paper Equations (5.1)) models the population growth

function with density dependent birth. To examine whether density dependent death

impacts the compensatory growth effect that we present in the main paper we also

consider results for a similarly formulated system that includes density dependent

death. We modify Equations (5.1) to include non-negative parameters qb and qd

which control the levels of density dependent birth and death (notably a positive qd
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Figure 5A.8: Results for the model with targeted infected cull level cI for the
continuous disease model (Equations 5A6) with b(N) = b(1−qN) for (i) the SI model
and (ii) the SIR model. The steady state density N is shown for DD transmission
in (a): for the full model (blue); the disease effects only model (red); and the
demographic only model (black dotted). The steady state density N is shown for
FD transmission in (b) for the full model (black) and demographic only model (black
dotted). Parameters are as in the main paper Figures 5.1ii & 5.1iv for the SI model
and the SIR model respectively.

indicating a level of density dependent death):

dS

dt
= b(1− qbN)N − d(1 + qdN)S − θD(I,N)S (5A51a)

dI

dt
= θD(I,N)S − d(1 + qdN)I − αI − γI (5A51b)

dR

dt
= γI − d(1 + qdN)R (5A51c)

Considering the system without recovery (an SI framework), but maintaining the

same disease-free steady state and endemic steady state N = Ne where Ie = piNe

and Se = (1− pi)Ne, the transmission function θD(I,N) is defined for DD and FD
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transmission as:

DD transmission : θD(I,N) =
(d (1 + qdNe) + α)

Ne (1− pi)
I (5A52a)

=
(b (1− qbNe) + (1− pi)α)

Ne (1− pi)
I (5A52b)

FD transmission : θD(I,N) =
(d (1 + qdNe) + α)

(1− pi)
I

N
(5A52c)

=
(b (1− qbNe) + (1− pi)α)

(1− pi)
I

N
. (5A52d)

where, to achieve the required steady states, qb and qd must satisfy:

qd =
b− d− αpi − bqbNe

dNe

(5A53a)

0 ≤ qb ≤
b− d− αpi

bNe

. (5A53b)

qb and qd are therefore constrained by each others value in this model such that

when qb takes values between 0 to
b− d− αpi

bNe

, correspondingly qd takes values from

b− d− αpi
dNe

to 0. Thus, when qb = 0 we have a system with only density dependent

death, when 0 < qb <
b− d− αpi

bNe

we have a system with both density dependent

birth and density dependent death and when qb =
b− d− αpi

bNe

then qd = 0 and we

recover our original model formulation with only density dependent birth.

Varying values of qb from 0 to
b− d− αpi

bNe

(i.e. from having zero density

dependence on birth and density dependent death only to zero density dependence

on death and density dependent birth only) we examine the effect of the difference

between the model that includes epidemiological dynamics (Equations (5A51)) and

a corresponding demographic effects only model containing the equivalent density

dependent birth and death formulations as follows:

dN

dt
= bN(1− qbN)− d(1 + qdN)N − αpiN. (5A54)

Figure 5A.9 shows that culling generates compensatory growth due to disease

dynamics regardless of the level of density dependent birth relative to density

dependent death except in the singular case where there is density dependent death

only under FD transmission. Figure 5A.9a shows that varying qb has no effect on

the resultant population density following culling for DD transmission. The results

reported in the main text therefore hold under DD transmission. Our results also

hold under FD transmission except in the singular case when qb = 0, indicating that

there is density dependent death only.
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Figure 5A.9: The resultant population density and infected prevalence ( I
N

) after
30 sequential cull and subsequent regrowth periods showing the response to 25%
culling in an SI framework when varying qb in Equations (5A51). qb runs from

qb = 0 representing density dependent death only to qb =
b− d− αpi

bNe

representing

density dependent birth only which is equivalent to the original model (SI framework
Equations (5.1)). (a) shows the resultant population density and (b) shows the
change in infected prevalence as qb varies for DD transmission (blue) FD transmission
(black) and the demographic effects only model (Equation (5A54)) (black dotted).
Results are shown for a virulent infection, α = 4, and an initial endemic disease
prevalence of pi = 10%. Other parameters are as Figure 5.1a(ii) in the main paper.

5A.5.1 Why the demographic effects only model remains

invariant to changes in qb

Figure 5A.9a shows that for the demographic effects only model (Equation (5A54)),

the resultant population density following the culling regime does not vary as qb

varies. To explain this we substitute Equation (5A53a) into the demographic effects

only model (Equation (5A54)) as follows:

dN

dt
= bN(1− qbN)− d(1 + qdN)N − αpiN (5A55a)

= bN −N2

(
bqb +

b− d− αpi − bqbNe

Ne

)
− dN − αpiN (5A55b)

= bN − b− d− αpi
Ne

N2 − dN − αpiN (5A55c)

= bN

(
1− b− d− αpi

bNe

N

)
− dN − αpiN (5A55d)

and thus we recover the original demographic effects only model from the main paper

(Equation(5.3)). This shows that the change in population for this new formulation

of the demographic effects model (Equation (5A54)) does not vary as qb varies and

therefore does not exhibit any change in behaviour from the original demographic

effects only model (Equation (5.3)) in response to culling.
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5A.5.2 Density dependent mortality with FD transmission

To understand why the model with FD transmission and no density dependent birth

(qb = 0) does not show any additional compensatory growth above the demographic

effects only model (Equation (5A54)) we examine the rate of change of the disease

prevalence for Equations (5A51).

d

dt

(
I

N

)
=
N dI

dt
− I dN

dt

N2
(5A56a)

=
1

N2

[
N (θDS − d(1 + qdN)I − αI) (5A56b)

− I (b(1− qbN)N − d(1 + qdN)− αI)
]

(5A56c)

=
1

N2
[θDSN − αI(N − I)− bNI(1− qbN)] (5A56d)

=
I

(1− pi)N2

[
−b(I − piN)− bqb(NeS −N2(1− pi))

]
(5A56e)

We see that when qb = 0, an initial condition that satisfies I = piN will give

a solution that does not vary from this initial prevalence. Therefore, as our

culling regime starts with an initial prevalence pi, the prevalence of the disease

throughout the culling regime does not change and therefore culling does not yield

any compensatory growth due to reduction in disease mortality. Therefore the full

model matches the demographic effects only model. When qb > 0, we note that

after an initial cull when the disease prevalence is still pi (so that I = piN), the

first term in Equation (5A56e) is zero and the second term is negative indicating

that after the initial cull the prevalence will start to decrease leading to a reduction

in disease-induced mortality in the population, supporting our results in the main

paper.

5A.5.3 Density dependent mortality with DD transmission

Our result in Figure 5A.9 for DD transmission shows varying qb does not affect the

compensatory growth response to culling. We explain this by examining the rate of

change of the population density N :

dN

dt
= b(1− qbN)N − d(1 + qdN)N − αI (5A57a)

= bN − bqbN2 −N
[
b− (b− d) +

N

Ne

(b− d− αpi − bqbNe)

]
− αI (5A57b)

= N

[
(b− d)− N

Ne

(b− d− αpi)
]
− αI (5A57c)

which shows that the growth in population density is independent of the density

dependent birth and death parameters, qb and qd. Therefore varying qb has no effect

on the population rate of regrowth following a cull. Also note that qb has little
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influence in affecting the resultant value of I as S/(1 − pi) − N ' 0 . To compare

with FD transmission we also examine the rate of change of the disease prevalence:

d

dt

(
I

N

)
=

1

N2

[
N (θDS − d(1 + qdN)I − αI) (5A58a)

− I (b(1− qbN)N − d(1 + qdN)− αI)
]

(5A58b)

=
1

N2
[θDSN − αI(N − I)− bNI(1− qbN)] (5A58c)

=
I

N2

[
(b− bqbNe + α(1− pi))

(1− pi)Ne

SN − α(N − I)− bN + bqbN
2

]
(5A58d)

=
I

N2(1− pi)Ne

[
−bN((1− pi)Ne − S) (5A58e)

− bqbNeN(S − (1− pi)N)− α(1− pi)S(Ne −N)
]

(5A58f)

noting in Equation (5A58f), given the maximum value of qb, that the first term is

negative whilst S remains below the endemic susceptible density, the second term

is negative whilst the infected prevalence is lower than the endemic prevalence and

the third term is negative when N is below the total population endemic steady

state. From this we can determine that a cull taking the population below the

endemic steady state, and the susceptibles below the endemic susceptible density

must lead to a reduction in disease prevalence, which therefore leads to a reduction

in the proportion of the population suffering disease-induced mortality, supporting

our results in the main paper.

5A.6 Parameter sensitivity

In Figure 5A.10 we undertake a parameter sensitivity analysis to assess the

magnitude of the compensatory effect for a range of model parameters in the SI and

SIR model framework: the level of disease-induced mortality α; the initial endemic

prevalence pi; and the cull period (the length of time between each sequential cull

event). As intuitively expected for the SI model framework the compensatory effect

(the difference between the dotted lines and solid line in Figure 5A.10) increases

as virulence increases (Figure 5A.10a(i)) and as the initial disease prevalence, pi,

increases (Figure 5A.10b(i)) and as the culling period decreases (the frequency of

culling increases) (Figure 5A.10c(i)). For the SIR model with FD transmission

the disease induced negative impact of culling increases as the virulence and initial

infected prevalence increases whereas there is less change in the impact under DD

transmission (Figure 5A.10a(ii) & 5A.10b(ii)). The compensatory effect shows only

low sensitivity to changes in the cull period for DD and FD transmission in the SIR

model (Figure 5A.10c(ii)).
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Figure 5A.10: Parameter sensitivity for main paper Equations (5.1). The resultant
population density after 30 sequential cull (of 25% of the population) and subsequent
regrowth periods for (i) the SI and (ii) the SIR model plotted against (a) virulence α,
(b) initial endemic prevalence, pi and (c) cull period (the time between sequential cull
events) for DD transmission (blue), FD transmission (black) and the demographic
effects only model (Equation (5.3)) (dotted line). The difference between the solid
lines and dotted line represents the positive or negative compensatory effect due to
changes in the disease dynamics. When not varied in the figures the parameters
are α = 4, pi = 10% and cull period = 1. Other parameters are as in the
main paper Figures 5.1ii & 5.1iv for the SI model and the SIR model respectively.
Truncated results (bii) indicate parameter levels that do not obey requirements for
valid solutions (Equations (5A4) & (5A5)).

5A.7 Wild boar TB model

We introduce a mathematical model that can represent the key processes influencing

TB infection in wild boar in Spain. Our model reflects a single geographical

managed estate containing a homogeneously mixed population covering an area

representative of a hunting estate. The population density of wild boar is separated

into different age classes to capture distinct disease and reproductive characteristics

for piglets (aged 0-1 year) P , yearlings (aged 1-2 years) Y , and adults (aged 2 years+)

A. Further, the age-classes are split into susceptible, infected and generalised

(super-shedder) classes (subscripts S, I, G, respectively) to reflect the disease

status of the population. The population dynamics of the wild boar TB system

are represented by the following set of non-linear differential equations (which is an

extension of classical disease modelling frameworks (see Anderson & May 1981 [7];

Keeling & Rohani 2008 [84])):
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dPS
dt

=(bY (YS + YI) + bA(AS + AI) + bG(YG + AG))(1− qN) (5A59a)

−mPS − dPPS − βPPSF (5A59b)

dPI
dt

=βPPSF −mPI − dPPI − εPPI (5A59c)

dPG
dt

=εPPI −mPG − dPPG − αPG (5A59d)

dYS
dt

=mPS −mYS − dY YS − βY YSF (5A59e)

dYI
dt

=βY YSF +mPI −mYI − dY YI − εY YI (5A59f)

dYG
dt

=εY YI +mPG −mYG − dY YG − αYG (5A59g)

dAS
dt

=mYS − dAAS − βAASF (5A59h)

dAI
dt

=βAASF +mYI − dAAI − εAAI (5A59i)

dAG
dt

=εAAI +mYG − dAAG − αAG (5A59j)

dF

dt
=λ(PG + YG + AG)− µF (5A59k)

Here, N represents the total wild boar population. Susceptible and infected

yearlings and adults give birth to susceptible piglets at rates bY and bA respectively.

Generalised yearlings and adults give birth to piglets at rate bG. The total population

is regulated through a crowding parameter, q, that acts to stabilise the total

population to a carrying capacity, N = K, in the absence of disease. Maturity from

piglets to yearlings and yearlings to adults occurs at rate m and piglets, yearlings

and adults may die of natural causes at rates dP , dY , dA respectively. Here we

assume dP = dY = dA.

The prime driver for infection in the wild boar TB system is through

environmental contact with free-living MTC particles, with density F . We assume

that free-living particles are shed from generalised wild boar at rate λ and decay

at rate µ. Susceptibles may become infected through contact with free-living

MTC particles with transmission coefficients βP , βY and βA and infecteds can

progress to the generalised class at rates εP , εY and εA for the different age classes

respectively. We assume that individuals in the generalised class suffer an additional

disease-induced mortality at rate α. We assume piglets and yearlings are more

susceptible to MTC infection than adults and so set βP = βY , which we assume

to be three times greater than transmission for adults, βA = 3βY . Similarly we set
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the rate of progression to generalised infection for piglets and yearlings to be the

same, εP = εY , and three times the rate for adults, εA = 1
3
εY . In this way we have

set the model so that the yearling class is the same as the piglet class in terms of

disease characteristics, but the yearling class is the same as the adult class in terms

of reproductive processes.

5A.7.1 Wild boar TB model parameters

We set the model parameters to be representative of the wild boar TB system in

Central Spain [48]. The parameters are as follows:

bY = bA = bG = log(4) The population birth rate in a disease-free population when

resources are unlimited. This constant rate means that for each reproductive

member of the population, 3 piglets will be born, averaged over the population

over a year. (This has been derived by assuming that there is a 50% sex ratio

and that each female produces an average of 6 offspring per year when resources

are not limited.) Units: year−1.

K = 500 The carrying capacity for the total population in the target area in the

absence of disease. Units: population× area−1.

q = 1
K

(
1− dA(dP+m)(dY +m)

m(bAm+bY dA)

)
This parameter limits the total population to the

carrying capacity K in the populated disease-free steady state, and is derived

from steady-state analysis of the model without infection. Units: density−1.

m = 1 The rate that piglets mature to yearlings and yearlings mature to adults.

These rates assume that it takes on average 1 year to enter the next age class.

Units: year−1.

dP = dY = dA = 1
7

The natural death rate of all classes which implies an average

life expectancy of 7 years. Units: year−1.

βP = βY = cββA = 20
K

The infection rates are fitted to give prevalence levels

observed in the wild boar TB system in central Spain. We assume that cβ = 3

and so disease transmission to piglets and yearlings is three times that of the

adult rate under the assumption that transmission is higher for piglets and

yearlings than it is for adults. Units: density−1 × year−1.

εP = εY = 2 The rate that infected piglets and yearlings become generalised. This

assumes that it takes on average 6 months for an infected piglet or yearling to

progress to the generalised class. Units: year−1.

εA = 2/3 This is the rate that infectious adults become generalised. This assumes

that it takes on average 18 months for an infected adult to progress to the

generalised class. Units: year−1.
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α = 1 This is the additional disease induced death rate of the generalised class and

assumes that on average individuals spend 1 year in the generalised class before

death. Units: year−1.

λ = 1 The rate of shedding of infectious particles by generalised classes. We

normalise this value to 1. This is valid as we have explored a range of values for

βP , βY and βA which scale with the size of λ and the density of free-particles,

F . Units: year−1.

µ = 6 This is the decay rate for free-living particles, indicating that they have an

average life expectancy of 2 months. Units: year−1.
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Chapter 6

Wild boar model with predation

Figure 6.1: Wolf (Canis lupus).

The wild boar TB model introduced in Chapter 3 is tuned specifically to central

Spain and the environmental issues that affect disease transmission for this region.

In Asturias, in the north-west of Spain, wild boar densities are increasing whilst

TB infection is endemic but at low prevalence. Within this area there are also a

number of well-established wolf packs (Canis lupus, Figure 6.1) which are known

to prey on wild boar. In this chapter we investigate the relationship between wolf

predation and the control of TB infection in Asturias, and use this understanding

to hypothesize the effect of the introduction of a predator on wild boar populations

suffering endemic TB in areas of high prevalence such as central Spain. This work has

been accepted for publication by Scientific Reports, to be titled ‘Wolves contribute

to disease control in a multi-host system’ by Eleanor Tanner, Andy White, Pelayo

Acevedo, Ana Balseiro, Jaime Marcos and Christian Gortázar. I played the lead

role in developing this work and writing the article and undertook the mathematical

modelling and analysis. The paper is reproduced here verbatim, with contents as

120



Chapter 6: Wild boar model with predation

in the original submission to Scientific Reports. The supplementary information to

the paper is contained in Appendices 6A.1-6A.2.

6.1 Abstract

We combine model results with field data for the case study system of wolves (Canis

lupus) that prey on wild boar (Sus scrofa), a wildlife reservoir of tuberculosis, to

examine how predation may contribute to disease control in multi-host systems.

Results show that predation can lead to a marked reduction in the prevalence of

infection without leading to a reduction in host population density since mortality

due to predation can be compensated by a reduction in disease induced mortality.

A key finding therefore is that a population that harbours a virulent infection can

be regulated at a similar density by disease at high prevalence or predation at low

prevalence. Predators can therefore provide a key ecosystem service which should

be recognised when considering human-carnivore conflicts and the conservation and

re-establishment of carnivore populations.

6.2 Introduction

Infectious agents that can be transmitted to more than one host species form

the majority of pathogens that infect wildlife, domestic and human systems

[80]. Wildlife species play a key role in maintaining reservoirs of infection [42]

and therefore disease management requires strategies to reduce transmission of

pathogens from wildlife reservoirs to target hosts [80]. It has been shown that

predation may contribute to disease control in multi-host systems leading to reduced

spillover to livestock and human populations [111, 110]. Therefore predators can

provide a key ecosystem service that is often underappreciated by society [122, 91].

Mathematical models have played a key role in uncovering the potential of

predators to control zoonotic disease. Here, theory has shown that predators may act

to alter the epidemiological dynamics to decrease infected and increase susceptible

host density and thereby reduce prevalence [110, 4, 62]. Furthermore, selective

predation on infected individuals can reduce the force of infection and in extreme

scenarios prevent pathogen establishment [77, 143]. However, model analysis has

also outlined scenarios in which predation may lead to an increase in disease

prevalence – notably when the disease induces a long-lasting immune response [81].

This highlights the importance of understanding the case-specific infection dynamics

of pathogens in reservoir populations that are subject to predation. Empirical

evidence to underpin the theory on the interplay between predation and host

infection is however limited. Hudson et al. (1998)[82] suggested that macroparasite

incidence in grouse (Lagopus lagopus scotica) populations decreased when predator
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levels increased and Levi et al. (2012)[92] showed that increases in the incidence of

Lyme disease correlated with a decline in small mammal predators. More recently,

observational and experimental studies have indicated that parasites can increase

host susceptibility to predation ([62, 5]; see [109] for a recent review). Therefore

combining theory and empirical data at the system specific level has the potential

to further clarify the role of predation in the control of infectious disease reservoirs

in wildlife [91]. We investigate this by combining model results with field data for

the case study system of wolves (Canis lupus), that prey on wild boar (Sus scrofa),

a reservoir of tuberculosis, in Asturias in northern Spain.

Animal tuberculosis (TB), caused by infection with Mycobacterium bovis and

closely related members of the M. tuberculosis complex (MTC), is a widespread

multi-host infection with a profile of moderately increasing prevalence among cattle

herds in infected regions of western Europe (from 1.05% in 2010 to 1.49% herd

prevalence in 2015; [100]). TB causes severe economic losses to the livestock industry

due to movement restrictions and compulsory test and slaughter schemes [127, 70].

TB also causes host mortality [12] and creates conservation concerns [75, 76]. The

role of wildlife reservoirs in maintaining TB is now well recognised with reservoir

species including cervids in North America, European badgers (Meles meles) in the

British Isles, brushtail possums (Trichosurus vulpecula) in New Zealand and buffalo

(Syncerus caffir) in South Africa, among others [70, 56]. In Europe, and in particular

on the Iberian Peninsula, infection is maintained in a complex network of domestic

and wild hosts, including abundant wild ungulates such as the Eurasian wild boar

which acts as the primary reservoir of infection [70, 106, 71].

In multi-host settings, TB control at the wildlife-livestock interface often targets

aspects such as direct and indirect contacts between host species [15, 88, 146] and

TB control in reservoir hosts [48]. It has been shown that culling of wild boar can

reduce TB prevalence in wild boar and sympatric host species [23, 59]. However,

the role of ecosystem functioning in regulating infection transmission has not been

assessed in detail. The wolf is the most widely distributed top predator of the

northern hemisphere [32] where wild boar and deer are its main prey [101, 37] and

wolf presence has been linked with lower ungulate prey densities [122]. It has also

been found that when wolf populations decrease, wild boar populations tend to

increase ([125, 63]; but see [98]). Mathematical modelling studies have suggested

that wolves may contribute to disease control in their prey in the case of Chronic

Wasting Disease in North American deer (Odocoileus sp) [143]. Moreover, empirical

evidence suggested that anthrax infection in bison (Bison bison) might increase wolf

predation risk ([21]). It has also been suggested that pathogens targeting the lung

may predispose ungulate prey to wolf predation [99, 83]. Hence, maintaining viable

wolf populations might contribute to disease control in wildlife and thereby reduce

transmission from wildlife reservoirs.

122



Chapter 6: Wild boar model with predation

Asturias, in north-western Spain, is a region with an established wolf population

that occupies two-thirds of the region [69]. TB is present in Asturias although the

current overall prevalence in wild boar (2-13%) and the level of generalised cases

(17% from tests on 6 infected individuals) are lower than in TB-endemic regions of

southern Spain where TB prevalence can be >50% (with 80% prevalence reported

in some regions; [137]) and where a greater proportion (58%) of infected individuals

are generalised [102]. Asturias is also a cattle-breeding region, with 360,735 heads in

16,312 herds in 2014 and TB is one of the main concerns of cattle farmers [39, 36].

However, the potential role of wolf predation as a natural regulator of disease in

wild ungulates is not widely recognised by farmers [131]. Asturias can therefore be

used as a case study region in which to test the impact of wolf predation on TB

prevalence in a wildlife reservoir species (wild boar) and on TB control in the target

species (cattle).

Figure 6.2: Wolf (Canis lupus) distribution maps where the distribution in the
Iberian Peninsula is shown in light grey [112, 19] expanded to show the municipalities
in Asturias, northern Spain, where wolves are present (dark grey) or absent (white).

In this study we combine field observations from Asturias with mathematical

modelling to test the hypothesis that wolf presence may contribute to TB control.

The results provide important insights into the role predators can play in disease

control and therefore inform on the debate related to human-carnivore conflicts and

the conservation and re-establishment of carnivore populations [122, 91, 135, 104].
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6.3 Methods

6.3.1 Ethics statement

All animal sampling took place post-mortem. The wildlife samples were obtained

from hunter-harvested individuals that were shot in the legal hunting seasons and

independently and prior to our research. According to EU and National legislation

(2010/63/UE Directive and Spanish Royal Decree 53/2013) and to the University

of Castilla-La Mancha guidelines, no permission or consent is required to conduct

the research reported herein.

6.3.2 Study area and target species

Asturias, a province of 10,604 km2, is located in northwestern Spain (Figure

6.2). Wolf population data were obtained from the Asturias Government. Wolf

presence is established in two-thirds of Asturias. In the remaining third, containing

the majority of coastal regions and the urban and industrial corridors in the

centre-north-east of the region (Figure 6.2; [112, 19]), wolves are absent or only

sporadically recorded. Wolf monitoring is conducted during the breeding period

and allows for an estimate of wolf population size. We combine the estimate of wolf

abundance for 2003-2004[68] with data on wolf attack rate on livestock to give a

profile of wolf abundance from 2000 to 2014. The regional government also records

the number of wild boar harvested on hunting sites annually [117]. Hunting is

predominantly non-commercial and traditional among rural inhabitants taking place

in 17 game reserves and 60 municipal hunting estates, covering 91% of the province

[117]. After standardisation by hunting effort, hunting bag statistics can be used

as reliable indices of wild boar relative abundance [24]. We use data describing the

temporal variation in the number of wild boar annually hunted (Figure 6.3) and

in particular generate estimates of wild boar population abundance in 2000-01 and

2013-14.

6.3.3 TB prevalence

We used serum antibodies against the MTC as an indicator of TB prevalence

in wild boar. Serum samples were tested by means of an indirect ELISA

using bovine-purified protein derivative (bPPD) following the protocol previously

described in Boadella et al. (2011)[22]. Sample results were expressed as an ELISA

percentage (E%) that was calculated using the formula [Sample E% = (sample

OD/2 x mean negative control OD) x 100]. Serum samples with E% values greater

than 100 were considered positive. Wild boar TB prevalence was available at the

municipality level from 2000 to 2014. All cattle herds are tested annually for TB

by individual skin testing. This testing is performed and recorded by the Asturias
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Figure 6.3: The mean annual wild boar hunting harvest/km2 in Asturias, for the
period 2000-2014. The dotted line represents areas where wolves are absent and the
solid line those where wolves are present. Bars represent 95% confidence intervals.

Government. Individual and herd-level data on cattle TB was available from 2005

to 2014, at the municipality scale.

6.3.4 Asturias: estimating wolf population

We derive an estimate of wolf population abundance for the period 2000-2014 as

follows. We use data on wolf population abundance for the period 2003-2004 [68]

to obtain an estimate of 252 wolves in Asturias in 2004. We fit a least squares

regression on wolf attack rate data for the period 2000-2014 (Figure S1) to give a

rate of increase of wolf abundance. Combining this rate of increase with our wolf

abundance estimate for 2004 we estimate that wolf numbers increase linearly from

196 in 2000 to 392 in 2014.

6.3.5 Mathematical Modelling

We develop a mathematical model that represents the interaction between wild boar,

MTC infection and predation. In the model we set disease transmission rates and

the wild boar intraspecific competition parameter so the model matches observations

for the prevalence of infection and for wild boar density in 2000 and 2014 for the

regions of Asturias with wolves. The model findings are extended to consider the

areas of Asturias in which wolves are absent, to assess the role of future wolf density

in TB control and the potential impact of wolf predation on TB in regions where

TB is endemic and prevalence is high.

We separate the population density of wild boar into different age classes to

capture distinct disease and reproductive characteristics for piglets (aged 0-1 year)

P , yearlings (aged 1-2 years) Y , and adults (aged 2 years+) A. Further, the

age-classes are split into susceptible, infected and generalised classes (subscripts
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S, I, G, respectively) to reflect the disease status of the population. Generalised

individuals can also release free-living pathogen with density F into the environment.

This model framework has been used successfully to understand the impact of

vaccination on TB prevalence in the wild boar TB system [48]. The model also

includes predation by wolves, W , and we assume a range of scenarios of wolf

density change. The population dynamics of the wild boar, TB and wolf system

are represented by the following set of non-linear differential equations (which is an

extension of classical disease modelling frameworks [7, 84]).

dPS
dt

=bA(Y + A)(1− qN)−mPS − dPPS − βDPPS
G

N
− ωβFPPSF − aPPSW

(6.1a)

dPI
dt

=βDPPS
G

N
+ ωβFPPSF −mPI − dPPI − εPPI − aPPIW (6.1b)

dPG
dt

=εPPI −mPG − αPG − dPPG − aPGPGW (6.1c)

dYS
dt

=mPS −mYS − dY YS − βDY YS
G

N
− ωβFY YSF − cYS − aY AYSW (6.1d)

dYI
dt

=βDY YS
G

N
+ ωβFY YSF +mPI −mYI − dY YI − εY YI − cYI − aY AYIW

(6.1e)

dYG
dt

=εY YI +mPG −mYG − αYG − dY YG − cYG − aGYGW (6.1f)

dAS
dt

=mYS − dAAS − βDAAS
G

N
− ωβFAASF − cAS − aY AASW (6.1g)

dAI
dt

=βDAAS
G

N
+ ωβFAASF +mYI − dAAI − εAAI − cAI − aY AAIW (6.1h)

dAG
dt

=εAAI +mYG − αAG − dAAG − cAG − aGAGW (6.1i)

W =W (t) (6.1j)

Here, N = P + Y + A represents the total wild boar population where P = PS +

PI + PG, Y = YS + YI + YG, A = AS + AI + AG and G is the total number of

generalised, G = PG + YG + AG. Susceptible and infected yearlings and adults give

birth to susceptible piglets at rates bY and bA respectively. Generalised yearlings

and adults give birth to piglets at rate bG. Here we assume that bA = bY = bG.

The total population is regulated through a crowding parameter, q, that acts on the

birth rate. Maturity from piglets to yearlings and yearlings to adults occurs at rate

m and piglets, yearlings and adults may die of natural causes at rates dP , dY , dA

respectively. Here we assume dP = dY = dA.
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We assume infection can occur through direct frequency-dependent interactions

between susceptible and generalised individuals with transmission coefficients βDP ,

βDY and βDA or through environmental contact with free-living MTC, with

transmission coefficients βFP , βFY and βFA for the different age classes respectively.

We assume piglets and yearlings are three times more susceptible to direct and

environmental infection than adults. In this way we have set the model so that the

yearling class is the same as the piglet class in terms of disease characteristics, but

the yearling class is the same as the adult class in terms of reproductive processes.

Infected individuals are not infectious but can progress to the generalised (infectious)

class at rates εP , εY and εA. In Asturias where resources are not limited we assume

εP = εY = εA. Later we consider regions where resources (particularly water) are

scarce and overall health is impaired (similar to conditions in central and southern

Spain). Then we assume that piglets and yearlings progress from the infected to

the generalised class at three times the rate of adults (εP=εY = 3εA). We assume

that free-living MTC is shed from generalised wild boar at rate λ and decays at

rate µ. The level of environmental transmission is scaled through the parameter ω

which increases when environmental conditions become more severe to reflect, for

example, aggregation at limited water holes (ω = 0.1 in Asturias and ω = 1 in

resource limited regions).

We assume that wild boar suffer mortality, in addition to natural death, from

three causes: individuals in the generalised class suffer an additional disease induced

mortality at rate α; all adult and yearling classes are culled due to hunting at

constant rate c; and predation by wolves successfully attack susceptible and infected

piglets at rate aP , generalised piglets at rate aPG, generalised yearlings and adults

at rate aG and susceptible and infected yearlings and adults at rate aY A. Our

baseline assumption is that aY A = 0 and aP = aPG = aG implying that wolves prey

on piglets and generalised individuals only (although we do consider alternative

predation assumptions). Further parameter description and the parameter values

used in this study are shown in Appendix 6A.1.

6.4 Results

6.4.1 Wolf population

The annual number of reported wolf attacks on livestock increased from 1481 in

2000 to 3024 in 2014 (100% increase; Figure 6.4). Reports of wolf predation on

livestock were unrelated to livestock numbers. Instead they correlated positively to

the number of wolf packs and to wolves culled during the previous season [54].

Therefore we extrapolate wolf numbers from this wolf attack data using linear

regression to ascertain the linear growth rate of the wolf population over this period

(Figure S1). Using the data on wolf numbers for 2003-2004 as 252 [68], we estimate
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the number of wolves in 2000 as 196 growing linearly to 392 in 2014.

Figure 6.4: Asturias: the rate of increase in wolf attacks. Rate of increase in Asturias
wolf attacks for 2000-2014 derived from least-squares linear regression on wolf attack
data, Asturias government data. Blue spots show the annual wolf attack data count.
The red line is the least-squares linear regression of the wolf attack data.

6.4.2 Wild boar population

Areas with and without wolves, had similar wild boar harvest rates in year 2000

(0.52 and 0.40 wild boar/km2, respectively). By 2014 harvest rates had increased

to 0.85 in areas with wolves but had a greater increase to 1.32 in areas without

wolves. Between 2008 and 2014, the wild boar hunting harvest grew steadily in

areas without wolves but remained stable in areas with wolves. Assuming the annual

hunting harvest as a proxy for wild boar density, in 2014 this density was 50% higher

in areas without wolves than areas with wolves (Figure 6.3). Therefore in the areas

with wolves we estimate wild boar density as 1.65/km2 in 2000 rising to 2.55/km2

in 2014. In the areas without wolves we estimate wild boar density as 1.2/km2 in

2000 rising to 3.6/km2 in 2014.

6.4.3 TB prevalence

A total of 1051 wild boar sera were tested for antibodies against MTC, yielding a

mean seroprevalence of 5.42% (95%CI 4.21-6.98) for the whole study period. The

reduction in seroprevalence between periods was significant in sites with wolves

(the southern more mountainous regions) where prevalence declined by 77% from
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16.67% ± 7.47% in 2000-2007 to 3.87% ± 1.76% in 2008-2014 (Fisher’s p<0.0001).

In sites without wolves prevalence was initially lower and no significant change in

prevalence was recorded: 6.89%± 10% in 2000-2007 and 3.08%± 3.5% in 2008-2014

(Figure 6.5). The mean annual cattle herd TB prevalence from 2005 to 2007 was

0.19%. Herd prevalence grew slightly in 2008-2014, reaching a mean of 0.22%. In

areas with wolves, cattle TB herd prevalence remained almost stable during the

study period (0.22% in 2005-2007; 0.19% in 2008-2014; Yates Chi2=0.45, 1 d.f.,

p=0.5 supporting the hypothesis that infection prevalence has remained stable). By

contrast, in areas without wolves herd prevalence increased by 56% in the same

period: 0.16% in 2005-2007; 0.25% in 2008-2014; Yates Chi2=7.18, 1 d.f., p=0.0074

indicating rejection of the hypothesis (Figure 6.5.

Figure 6.5: Asturias: mean TB prevalence for wild boar and cattle. Mean individual
TB prevalence for wild boar (serum antibodies; white columns) and cattle (×100;
skin test reactors; grey columns) in Asturias. The upper panel (a) represents areas
where wolves are present and the lower one (b) those where wolves are absent. Cattle
data were only available for the period between 2005 and 2014. Bars represent 95%
confidence intervals and asterisks indicate significant differences at p<0.01.

6.4.4 The model comparison to data for regions with wolves

The model results for the wild boar population density, TB prevalence and the

percentage change in the level of pathogen in the environment in response to a

linear increase in wolf density are shown in Figure 6.6 for the period 2000-2014. As

wolf density increases there is a decrease in TB prevalence from 17% in 2000 to 3.8%

in 2014. The level of generalised infection remains relatively constant at 29% of the

total infected population throughout the study period. The reduction in prevalence
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leads to more than 50% reduction in the level of pathogen in the environment by

2014. Wild boar density increases and then starts to saturate from 2008 such that

by 2014 there has been an increase in wild boar density from 1.65/km2 to 2.55/km2

as per the observational data, and highlight that predation by wolves could be a key

factor in reducing TB prevalence in wild boar.

A key finding is that although wolf numbers increase, which will increase overall

predation, there is also an increase in wild boar density. This increase in wild

boar density can be attributed to an assumption that wild boar were below their

carrying capacity in 2000 and so positive growth would be expected, but also because

predation decreases TB prevalence and therefore decreases the population level

mortality due to TB. Hence, the increased mortality due to predation is compensated

by a reduced TB induced mortality. An implication of the approximately two-fold

increase in wild boar population density and four-fold decrease in prevalence is

that the level of pathogen in the environment decreases by more than 50% over

the 14-year period. This is significant since a reduction in the free-living particles

reduces the risk of infection in other animals, in particular livestock, which share

the same environment as the wild boar.

The pronounced reduction in TB prevalence (from 17% in 2000 to 3.8% in

2014) assumes selective predation by wolves on wild boar piglets and generalised

individuals. In comparison (Supplementary Information and Figure 6A.1), if wolves

prey indiscriminately on all wild boar classes the prevalence reduction is 17% to

8.3% but the wild boar density only grows to 2.10/km2 in 2007 before declining to

1.93/km2 in 2014. If wolves prey on piglets only prevalence shows a reduction from

17 to 9.5% over the 2000 to 2014 period (Figure 6A.2). The model results therefore

suggest that predation on generalised individuals is key to the significant reduction

of prevalence since the removal of generalised individuals reduces infection from both

direct contact and environmental contamination.

6.4.5 The impact of wolves on TB prevalence in the

long-term

We examine the long-term impact of predation by wolves on TB prevalence in

wild boar for different trends of wolf density (Figure 6.6). In Figure 6.6a we

assume wolf numbers remain constant after 2014 (reflecting that wild boar are a

key component of wolf diet). There is a small increase in wild boar density due to

reduced disease-induced mortality as a consequence of the further reduction in TB

prevalence, but in general, predation by wolves is sufficient to stabilise wild boar

numbers. TB prevalence and the level of environmental pathogen decrease to low

levels. This emphasises how predation can control virulent infection in a prey species

and also reduce the risk of infection to other host species. In Figure 6.6b we assume

wolf density will decrease and reach zero in 2042. This represents a scenario where
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Figure 6.6: Model results for the sub-region of Asturias inhabited by wolves. (a)
wolf numbers rise from 196 (2000) to 392 (2014) and then remain constant until
2050. (b) wolf numbers rise from 196 (2000) to 392 (2014) and then decrease at
the rate at which they increased until they die out. Initial conditions set wild boar
and wolf densities to their 2000 values taken from the field data, and the initial
prevalence in 2000 is 17% (of which 29% are generalised). (A): changes in wild boar
population density - total population (blue); total susceptible (green); total infected
and generalised (black); infected (magenta); generalised (red); wolves (grey). (B):
changes in prevalence – total prevalence (black), infected prevalence (magenta)
generalised prevalence (red). (C): % change in the density of environmental
pathogen. For parameters see Supplementary Information.

wolves are intentionally removed. Here, as wolf numbers initially decrease there is a

rise in wild boar density with TB prevalence in wild boar remaining low. However,

as wolf numbers decrease further TB prevalence increases leading to a downturn in

wild boar density in response to increased disease induced mortality. It is notable

that the final stable wild boar numbers in the absence of wolves (Figure 6.6b) are

similar to the level in the presence of wolves (Figure 6.6a). However, a key difference

is that TB prevalence is low (0.1%) in the presence of wolves and high (26%) in their

absence. This has significant consequences for potential environmental transmission

of MTC from wild boar to other species. The underlying mechanism responsible for

this difference is that wild boar density is largely regulated by the disease in the

absence of wolves whereas it is regulated by predation in their presence. This is a

key insight from the mathematical model. It highlights how restrictions to predator

growth may have only minor impacts on prey density but a major detrimental impact
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on the prevalence of infection in prey species.

6.4.6 Model comparison to data in areas of Asturias without

wolves

The results for the model that reflect the region of Asturias in which wolves are

absent are shown in Figure 6.7. Here, there is a rapid increase in wild boar density,

with close to a 3-fold increase in density between 2000 and 2014 (which reflects

the increase in density observed in the field data). TB prevalence initially remains

constant (at around 3%) but from 2007 onwards shows an increasing trend reaching

a prevalence of 7.8% by 2014. This relatively low increase in prevalence coupled

with a large increase in population density leads to a large increase (over 500%)

in the level of environmental pathogen and therefore a potentially increased risk of

infection spillover to co-habiting domestic and wild animals.

6.4.7 The potential impact of predation in regions of high

TB prevalence in wild boar

To represent areas of high TB prevalence we modify the baseline parameters for

Asturias to reflect increased prevalence and generalised infection. In such regions

wild boar density is typically high (due to management and artificial feeding) even

though environmental conditions are harsh and in particular severely diminished

water availability necessitates the sharing of water holes and leads to overall poor

body condition [14]. This increases the level of environmental transmission and

leads to a more rapid transition from the infected to the generalised class for piglets

and yearlings ([48]; see also Supplementary Information). We assume here that

wild boar live at endemic density 8/km2, and adjust K and q to reflect this (see

Supplementary Information). Other parameters remain as in the set-up in Asturias

and in particular note that to maintain the comparison with Asturias we do not

change the background culling rate. In the absence of wolves the model results

indicate a prevalence of 57% of which around 54% are individuals with generalised

infection (this is in good agreement with Muñoz-Mendoza et al. 2013[102]). In

Figure 6A.3 we introduce wolves at constant density of 0.08/km2 which represents

an initial wolf to wild boar ratio of 1:100. Initial predation by wolves reduces wild

boar density, but primarily affects infected and generalised individuals. This causes

a reduction in TB prevalence and therefore reduced population level disease-induced

mortality. This drives an increase in susceptible individuals and an increase in wild

boar population density which promotes a resurgence in disease prevalence. Infection

and population recovery oscillates until after 50 years the population has increased

wild boar numbers (10.1/km2), reduced TB prevalence to 26.5% and reduced levels

of environmental pathogen by 54%.
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Figure 6.7: Model results for the
sub-region of Asturias not inhabited
by wolves. Initial conditions set
wild boar and wolf densities to
their 2000 values, and the initial
prevalence in 2000 is 3% (of which
30% are generalised). (a): changes
in wild boar population density
- total population (blue); total
susceptible (green); total infected
and generalised (black); infected
(magenta); generalised (red); wolves
(grey). (b): changes in prevalence
– total prevalence (black), infected
prevalence (magenta) generalised
prevalence (red). (c): % change
in the density of environmental
pathogen. For parameters see
Supplementary Information.

Figure 6.8: Model results for
areas with high TB prevalence
showing the long-term outcome
after different constant densities
of wolves are added to a wild
boar population at steady endemic
state. (a): changes in wild boar
population density - total population
(blue); total susceptible(green);
infected (magenta); and generalised
(red). (b): changes in prevalence
total prevalence (black), infected
prevalence (magenta) generalised
prevalence (red). (c): % change
in the density of environmental
pathogen. For parameters see
Supplementary Information.

Figure 6.8 shows the impact of wolf density on the steady state level of wild

boar density, disease prevalence and environmental contamination. In the absence

of wolves the model results indicate a prevalence of 57% of which around 54% are
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individuals with generalised infection (this is in good agreement with [102] for wild

boar TB prevalence in Mediterranean Spain). As wolf numbers increase the level

of disease prevalence and risk of environmental contamination decrease. However,

the density of wild boar increases as wolf density (and predation) increases. This

increase in wild boar density is a direct result of the decrease in TB prevalence as the

mortality from predation is lower than disease induced mortality due to TB that was

experienced in the absence of wolves. There is a threshold in wolf density that leads

to disease eradication and for wolf densities above this threshold there is a decrease in

wild boar density (since mortality from predation is no longer compensated following

eradication of the disease).

6.5 Discussion

Our modelling results show good agreement with the field data for our case study

system. However there are specific aspects where the model and field study

disagree. The model differs from field data in that it predicts a prevalence of

generalised individuals of 25-30% whereas existing data for Asturias suggests 16.7%

[102]. However, this lower prevalence was derived from a small data set (1 out

of 6 being reported as generalised) and recent unpublished results from Asturias

would now indicate a higher prevalence of generalised in closer agreement with

model findings. Also, in areas with wolves the empirical results indicated that

cattle TB stayed constant rather than declining. The model results indicated that

there would be an increase in wild boar density, a reduction in TB prevalence

in wild boar and a reduction in generalised infected wild boar and MTC in the

environment, therefore reducing the risk of transmission of MTC to livestock. This

can be explained by: firstly, the wildlife reservoir in the Atlantic regions of Spain is

composed of two main hosts, wild boar and badger [102], and wolves are not likely

to significantly interfere with badger population dynamics; secondly, the wildlife

reservoir contributes to MTC maintenance, but is not the only driver. In Spain,

the relative contribution of wildlife to cattle TB breakdowns varies between regions

depending on the epidemiological circumstances [89, 73]. Cattle movements, for

instance, are likely to contribute to TB maintenance [66].

In the absence of wolves (Figure 6.7), wild boar numbers increase significantly.

Model results indicate that there is a lag between the increase in wild boar growth

and the increase in TB prevalence since the increase in infected individuals has

a similar increasing trend to that of the overall population. This could explain

the observation that TB prevalence in wild boar in the absence of wolves has

remained relatively fixed. Note, however, that while TB prevalence in wild boar

has remained constant the model predicts that the density of generalised wild boar

and the presence of MTC in the environment increases throughout the study period.
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It is notable that the empirical findings for areas of Asturias in which wolves are

absent show that there is a near five-fold increase in TB detected in cattle between

2000-2014. Our model provides an explanation for how a small percentage increase

in prevalence coupled with a large increase in population density in a reservoir

population may lead to a large increase in environmental contamination. This could

explain the observed increase in cattle TB in these regions.

The model system was adapted to examine the potential impact of predation on

disease control beyond the Asturias case study system (Figure 6.8). In areas with

high TB prevalence such as central and southern Spain, the observed prevalence of

TB is 50% and an increased proportion of those infected exhibit generalised infection

(58%). Since predators may select the most severely infected individuals, it offers

the potential for predation to have a greater impact on disease control in such

settings. More specifically, as there is a higher prevalence of generalised individuals,

there will proportionately be more predation on these super-shedders and therefore

the potential to have an exaggerated effect on removing the wild boar that are

responsible for shedding the pathogen in the environment, thus having greater

potential to reduce spillover to other wild and domestic hosts. In this scenario our

model results show that predation by wolves does lead to an exaggerated reduction

in disease prevalence while leading to an increase in overall population density and

reduction in the level of environmental pathogen. This increase in wild boar density

is a direct result of the decrease in TB prevalence as the mortality from predation is

lower than disease-induced mortality due to TB that was experienced in the absence

of wolves. This emphasises the generality of our findings and further highlights the

potential role of predators in disease control.

Previous theory has shown how predation on prey that harbour virulent

pathogens can reduce disease prevalence [111, 110] although empirical support for

these results is limited. Here we combine field data and theory for a case study

system to show that wolf predation may contribute to TB control in wild boar,

reducing TB prevalence and the release of MTC into the environment. These factors

are likely to contribute to reduced levels of indirect transmission from the wild

boar infection reservoir to other hosts. The results can be generalised and show

how predation can play a key role in the control of infectious disease in multi-host

systems.

It has been postulated that MTC transmission between wild and domestic hosts

is mostly indirect, mediated by contaminated vegetation, water, mud, feed or other

substrates [70, 14]. Wild boar are the primary reservoir host for MTC in Spain with

infection to other host species likely to be through indirect transmission in regions

where multiple hosts overlap [13]. Wild boar are relatively long-lived [86] and older

age classes can mount a formidable defence against predation. Therefore wolves

are likely to select severely infected/generalised individuals (which are the class
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responsible for shedding pathogen to the environment; [14]) or piglets (which is an

age group more likely to suffer generalised infection [94]). Such selective predation

has been suggested as a key mechanism which can decrease infection prevalence in

prey [111] and was shown to lead to reduced prevalence of prion disease in cervids

without a dramatic decrease in their density [143]. Our field observations and model

study show that there is a reduction in wild boar disease prevalence without a

consequent reduction in wild boar density in regions where wolves might selectively

target piglets and generalised wild boar. Our results indicate that the decrease in

prevalence would be less pronounced if predation targets all classes indiscriminately

or if it targeted only piglets. Therefore we confirm previous findings [111, 143]

that suggest the ability of predators to preferentially select the most infected prey

may be key to their role in disease control. Moreover, our findings suggest that

wolves could play a key role in TB control in wildlife reservoirs in Spain. In

Asturias, the annual cost of compensation paid to farmers due to wolf attacks

on their livestock (AC1,016,860) is a quarter of the annual expenses of the cattle

TB eradication scheme (AC4,163,348; Regional Government 2014). The ecosystem

service provided by predators in terms of disease control should form part of the

debate when discussing the impact of predators since here wolves may be allies of

farmers, rather than enemies.

Previous theoretical studies that have shown that, in disease regulated

populations, predation can reduce the force of infection and thereby decrease the

density of infected hosts, increase the density of susceptible hosts and lead to

an increase in overall population density [111, 143]. We confirm this finding in

our model study and show that increased mortality from predation that leads to

reduced disease-induced mortality are roughly in balance. A key result is therefore

that the prey population can be regulated by the disease, with consequent high

prevalence in the prey species or at a similar density by a predator but with low

disease prevalence. This finding highlights how restrictions to predator growth may

have only minor impacts on prey density but a major detrimental impact on the

prevalence of infection in prey species. The compensatory balance between predation

and disease induced mortality relies on the infection being virulent with no recovery

to long-lasting immunity. Then predation (and culling in general) can reduce TB

prevalence and the potential spillover of infection to sympatric hosts [23, 59]. In

systems where infected individuals can recover to immunity predation and culling

can lead to reduced population density and increased prevalence [81]. This highlights

the necessity to understand the system specific host infection dynamics that are

subject to predation or culling [20, 79].

Our results agree with earlier findings that the removal of a predator from a

system that is regulated by both predator-prey interactions and virulent infection,

may increase disease prevalence and suppress prey abundance [111, 82, 92].
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Furthermore, Lennox et al. (2018)[91] reviewed the impact of predator removal

in a wide range of ecological scenarios concluding that the majority of enforced

removal ended in failure. Our model results suggest that in the initial years of wolf

removal wild boar density can increase and disease prevalence stays low. This may

indicate that predator removal can be beneficial, however this is only a transitory

state. When the wolf reaches sufficiently low numbers the disease is able to re-infect

the increased abundance of susceptibles so that over time the population becomes

regulated by disease rather than predation. This is accompanied by an increase

in environmental contamination and risk of spillover to other wild and domestic

hosts. This further highlights the complexity and potential negative consequences

of predator removal in the need to consider disease status in predator management

programmes.

Our study has highlighted the potential of predation by wolves to reduce TB

prevalence in wild boar and thereby reduce the risk of transmission from a key

wildlife reservoir of infection. The model framework developed in this study was

tailored to the wild boar TB wolf system but the underlying processes that represent

the population and epidemiological dynamics are general and therefore we expect

the results to apply more broadly. In particular, when predation can regulate a

prey species that was previously regulated by virulent pathogens it is likely that

infection levels will be reduced. Of course, care must be taken when considering the

impact of generalist predators on disease control as they may also prey on alternative

species that do not harbour virulent pathogens and therefore where mortality due

to predation will not be compensated. Nevertheless, the potential of predators

to control infection should be recognised more widely and be contrasted with the

detrimental impact of predatory losses to domestic species. The beneficial role of

predators should be given more prominence particularly given the need to manage

conservation conflicts associated with predator re-establishment [119].

6.6 Data availability

A reporting summary for this article is available in the Supplementary Information.

The supporting MATLAB code to reproduce Figures 6.6-6.8 and 6A.1-6A.3 will be

deposited in an external repository on acceptance.
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Appendices to Chapter 6

The following appendices are the Supplementary Information to ‘The wolf as an

ally of the farmer: predation reduces disease transmission in multi-host systems’by

Eleanor Tanner, Andy White, Pelayo Acevedo, Ana Balseiro, Jaime Marcos and

Christian Gortázar.

6A.1 Wild boar TB model parameters

The parameters for wolf wild boar TB model [48] are as follows. Note that where

there are two values indicated, the first value represents the parameter value for

Asturias, whereas the second value represents the parameter value for areas of high

TB prevalence, for example southern Spain.

bA = log(4) The population birth rate in a disease-free population when resources

are unlimited. This constant rate means that for each reproductive member

of the population, 3 piglets will be born, averaged over the population over a

year. (This has been derived by assuming that there is a 50% sex ratio and

that each female produces an average of 6 offspring per year when resources

are not limited.) Units: year−1.

K = 4.59 (Asturias); 72.78 (high prevalence region) The carrying capacity for the

total population density in the absence of disease: in Asturias, set to 4.59; in

a high prevalence region where wild boar live at higher density and disease is

more prevalent this is set to 72.78. Units: population density.

q = 1
K

(
1− dA(dP+m)(dY +m)

m(bAm+bY dA)

)
This parameter limits the total population to the

carrying capacity K in the populated disease-free steady state, and is derived

from steady-state analysis of the model without infection. Units: density−1.

m = 1 The rate that piglets mature to yearlings and yearlings mature to adults.

These rates assume that it takes on average 1 year to enter the next age class.

Units: year−1.

dP = dY = dA = 1
7

The natural death rate of all classes which implies an average

life expectancy of 7 years. Units: year−1.

c = 0.3 The continuous culling rate effective on all yearlings and adults, set to

achieve a total hunting bag of approximately 20% of the wild boar population

in Asturias. Units: year−1.

βDA = 1.06 The rate that adults are infected by direct contact frequency dependent

transmission fitted to give prevalence levels observed in the wild boar TB

system in Asturias. Units: year−1.
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βDP = βDY = cββDA The direct contact frequency dependent infection rate for

piglets and yearlings. We assume that cβ = 3 and so disease transmission

to piglets and yearlings is three times that of the adult rate. Units: year−1.

βFA = 20
K

The rate that adults are infected by contact through environmental

infection fitted to give prevalence levels observed in the wild boar TB system

in Asturias. Units: density−1 × year−1

βFP = βFY = cββFA The environmental infection rate for piglets and yearlings. We

assume that cβ = 3 and so disease transmission to piglets and yearlings is

three times that of the adult rate. Units: density−1 × year−1.

ω = 0.1 (Asturias); 1 (high prevalence regions) This parameter scales the level of

environmental transmission. Environmental transmission typically occurs at

shared water holes and it therefore high when water resources are scarce. In

Asturias ω = 0.1 to reflect plentiful resources. In high prevalence regions (such

as central and southern Spain) resources are scarce and ω = 1. Units: scalar.

εA = 2
3

This is the rate that infectious adults become generalised. This assumes

that it takes on average 18 months for an infected adult to progress to the

generalised class. Units: year−1.

εP = εY = cεεA The rate that infected piglets and yearlings become generalised. In

the Asturias model these are set to the same value as that for adults (cε = 1).

For high prevalence regions cε = 3 assuming that it takes on average 6 months

for an infected piglet or yearling to progress to the generalised class. This

value is 3 times that of adults, and recognises the fact that in high prevalence

regions that typically have scarce resources the body condition of wild boar

is generally poor and co-infections are common. It is acknowledged that the

stress of co-infections can shorten the length of time to progress to generalised

[90]. Units: year−1.

α = 1 This is the additional disease induced death rate of the generalised class and

assumes that on average individuals spend 1 year in the generalised class before

death. Units: year−1.

λ = 1 The rate of shedding of infectious particles by generalised classes. We

normalise this value to 1. This is valid as we have explored a range of values for

βP , βY and βA which scale with the size of λ and the density of free-particles,

F . Units: year−1.

µ = 6 This is the decay rate for free-living particles, indicating that they have an

average life expectancy of 2 months. Units: year−1.

140



Chapter 6: Wild boar model with predation

aP = aPG = aY G = aAG = 0.00099 The successful predation rates for wolves on

susceptible and infected piglets, generalised piglets, generalised yearlings and

generalised adults respectively following Nores et al. (2008) [107]. Units:

(wolf density)−1 × year−1.

6A.2 Asturias: prey selection

Figures 6A.1 and 6A.2 represent the same scenario as in Figure 6.6 for the period

2000-2014 except for changes to the classes of wild boar that wolves prey on. In

both these cases wolf predation, measured as the number of wild boar taken per

year per wolf, is adjusted to be similar over the first 10 years to that of Figure 6.6.

This results in using the same predation rate when only piglet predation occurs, and

a halved predation rate for indiscriminate predation.

Figure 6A.1 shows that when wolves prey indiscriminately, infected prevalence is

reduced but not as quickly as in Figure 6.6 for the period 2000-2014. However, as now

there is also predation on adult and yearling wild boar, there is less reproduction and

therefore a reduction in the overall population density and the number of susceptibles

available for infection. This results in a 40% decrease in the level of the pathogen

in the environment, and also reduced wild boar density.

Figure 6A.2 shows that when wolves only prey on piglets, infection is not reduced

as quickly as for predation on piglets and generalised individuals (Figure 6.6) such

that the number of generalised wild boar in the population and hence the level of

free living pathogen is not significantly reduced. The wild boar density rises, but

the disease prevalence is not reduced significantly.
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Figure 6A.1: Asturias:
affect of wolves preying
on all classes of wild
boar. The effect on
(a) wild boar density,
(b) TB prevalence, (c)
free-living density when
predation by wolves on
all classes of wild boar.
For parameter values see
Appendix 6A.1.

Figure 6A.2: Asturias:
affect of wolves preying
on wild boar piglets
only. The effect on
(a) wild boar density,
(b) TB prevalence, (c)
free-living density when
predation by wolves in
on wild boar piglets only.
For parameter values see
Appendix 6A.1.

Figure 6A.3: High TB
prevalence area: affect
of wolves preying on
wild boar. The effect on
(a) wild boar density,
(b) TB prevalence, (c)
free-living density after
a constant density of
wolves (0.08/km2) is
added to the wild boar
population at steady
endemic state, preying
on wild boar at the same
rate as in Asturias. For
parameter values see
Appendix 6A.1.
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Discussion

In this thesis we have introduced and developed a new mathematical model to

represent the dynamics of the wild boar tuberculosis system in Spain. Chapters 4, 5

and 6 consider the impact of vaccination, culling and predation on TB epidemiology.

These chapters are based on work that has been published (or that is in review) and

each contains a detailed discussion and review of the findings in terms of the wider

literature. Therefore in this discussion we will highlight only the key findings. We

will also discuss how our work could be extended to assess further questions on TB

management, and developed to represent other host disease systems.

When ecological systems exhibit behaviour that doesn’t match expectation or

is hard to explain, mathematical models are an important tool to tease out the

key factors that influence such complex interactions. The mathematical modelling

used in the research for this thesis was motivated by the need to understand the

mechanisms contributing to the maintenance of high density and high prevalence TB

in wild boar populations in central Spain [106, 138]. In this area the predominant

management controls used against TB in wild boar are vaccination and culling.

Our goal was to develop mathematical models in collaboration with field experts

to provide insight into the impact of long-term management control on wild boar

population dynamics and TB prevalence.

In setting up this model (Chapter 3) we deliberately employed a mechanistic

approach that would help uncover the dynamics driving the wild boar TB system.

This model is a system of ODEs, a classical compartmental model of disease inspired

by Anderson & May (1979) [9] and Keeling & Rohani (2008) [84], organised in

different age classes and disease states, designed to reflect both the wild boar lifecycle

and the progression of TB in wild boar from initial infection through to the most

severe, generalised, form. The relative simplicity of the model framework allowed us

to perform some mathematical analysis on the system as well as generate numerical

solutions to illustrate behaviour and compare the model with data from the field.

A key aspect of our wild boar TB model is that it includes disease transmission

from free-living infectious particles, inspired by badger modelling work of Anderson
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& Trewhella (1985) [11]. Infection from free-living particles represents transmission

from pathogen excreted into the environment by generalised wild boar. It assumes

the population is well-mixed, which is appropriate as most of the population will

utilise scarce water holes where the free-living pathogen can persist. We also

represent the possibility of disease transmission via social contact for piglets by

implementing pseudo-vertical transmission as a route to early infection. In itself

environmental transmission is not novel in mathematical modelling, however up

until recently this has been an under-used form of transmission in models of wildlife

disease reservoirs, and veterinarians in the field working with wildlife disease see

transmission from free-living sources as an important component for future models.

Our work with free-living transmission has highlighted the need to record both

density and prevalence as environmental infection is related to the actual number

of diseased individuals rather than their proportion of the total population.

Our model findings that investigate the impact of vaccination on TB control

(Chapter 4) show that in the short-term vaccinating wild boar piglets both reduces

prevalence and the actual number of generalised individuals in the population, and

increases the number of susceptibles and total population. This growth in population

is a compensatory response to a release from disease-induced mortality that these

piglets could have incurred but now bypass, and significantly this occurs at the time

of life when they are most at risk of TB infection and progression to generalised. The

subsequent increase in the number of susceptibles leads to a total population size that

is significantly greater than the pre-vaccination level. This increased population size

can support an increased density of infected and generalised individuals. So while

long-term prevalence is reduced this is due to a rise in total population rather than a

reduction in infection.Therefore the level of pathogen shed in the environment may

not decrease, in fact it may increase, and the risk of spillover to other hosts may not

be reduced. It should also be noted that when the vaccination regime is curtailed,

there is a spike in prevalence and the number of generalised due to the increase in

susceptible piglets that are no longer being vaccinated before the population reduces

back to the endemic pre-vaccination levels.

Our results highlight the complex dynamics that arise when vaccinating wildlife

populations against acute infections. Vaccination trials to protect against TB have

been conducted in a number of wildlife reservoirs worldwide with various degrees

of success. This is dependent on the appropriate delivery of the vaccine to the

target age group of the population, control of the amount of vaccine consumed

by each individual, and the length of protection gained [29]. Buddle (2013) [29]

reports that vaccination trials in possums, white-tailed deer and badgers have shown

significant protection against TB, trials in wild boar did not offer great protection

and trials in buffalo showed no protection. Carter (2012) [31] reports a reduction in

the incidence of TB in badger populations after a vaccination trial. However, there
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are no reports that vaccination by itself has eradicated TB in wildlife reservoirs.

Indeed, using vaccination to eradicate disease has had mixed results. There has

been success in eradicating rabies in the western European fox population but only

through a sustained campaign over many years [58]. In contrast, in order to eliminate

rinderpest from cattle vaccination programmes had to be curtailed [123].

The model results for a regime of indiscriminate culling of wild boar (Chapter 4)

show that initially culling reduces the the number of generalised in the population

and the total population. However, this drop in the number of generalised allows the

number of susceptibles to increase and hence allows compensatory growth of the total

population due to the reduction in disease-induced mortality. In the long-term, as

the disease has not been eradicated these susceptibles can become infected allowing

the disease to persist and the number of generalised to stabilise. Thus the disease

remains endemic but at a reduced prevalence. Contrary to what may be expected

from a culling programme, the total wild boar population remains close to its original

pre-culling level as the disease-induced mortality is replaced by the mortality from

culling. This resonates with the results from the field, that prompted this research,

where despite long-standing annual harvesting of wild boar the disease has remained

endemic at high levels and the total population has remained buoyant. When the

culling regime stops there is a spike in prevalence and the number of generalised

before the population settles back to the endemic pre-culling levels.

Our results may explain why culling as a management tool to eradicate disease

has not always been a success. Gortázar et al. (2015) [72] reviewed culling

as a technique to control disease in wildlife, with few regimes achieving disease

eradication without extreme population reduction. For example, TB in water

buffalo, a non-native species in northern Australia, was eradicated through culling

the buffalo to near extinction [118]. However, for badger populations in the UK

where such extreme culling would be highly contested, TB has remained persistent

despite a number of culling campaigns [49]. There is some evidence that selective

culling may result in a significant reduction in disease without affecting host

abundance [72, 144], however this may not be feasible on a large scale [144].

For the wild boar TB model including the wolf as a predator (Chapter 6) we

showed that wolves preying on wild boar piglets and generalised individuals could

be a factor in keeping the TB prevalence low in this region whilst the wild boar

population increases. Our model shows the wolf acting in the same manner as a

selective culling regime, keeping prevalence low by targeting both piglets, which

are at greatest risk of infection and progression to generalised, and generalised wild

boar, the individuals responsible for shedding the pathogen. When wolves are able

to prey on wild boar over a number of years this leads to a wild boar population that

has increased in number, has much reduced prevalence and where disease-induced

mortality has been replaced by mortality due to predation by wolves.
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Empirical evidence confirming the potential for a predator to limit the spread of

disease is sparse, however Levi et al. (2012) [92] report that abundance of coyote

and dearth of fox can act as predictors of the spread of Lyme disease. We should

note, however, that when considering predation we could actually view this as a

type of selective culling where the predator makes different choices of age and body

condition when harvesting its prey compared to a human hunter. In this way a

predator may be a more successful environmental cleanser, with some evidence from

the field that predators select prey based on disease status [87].

Our results investigating the impact of wild boar control on the epidemiology

of TB uncovered a new general result describing population compensatory growth

arising from culling populations harbouring disease (Chapter 5). We have shown

that culling a population suffering endemic disease can lead to compensatory growth

due to a release from disease-induced mortality. This compensation occurs unless

the disease leads to a long-lasting period of immunity. This new result will have

important implications for culling wildlife reservoirs and highlights key points that

wildlife managers must understand before they embark on wildlife management

strategies combating endemic disease in general.

We have tested the effect of specific management strategies (culling, vaccination)

on controlling TB in wild boar. Future work could also consider targeted culling;

isolating infected or generalised wild boar; and combining management techniques.

The model could also be extended to include livestock and thereby highlight the

increase or decrease in the risk of spillover arising from TB disease management

in wild boar. Also, using the preparatory work for a spatial model for badgers

with dispersal between patches (Section 2B.2), it will be useful to test the effect of

different levels of management control in neighbouring wild boar areas. Some of this

work has been performed with an initial appraisal of targeted culling (discussed for

wild boar in Section 5.5, and more generally in Section 5A.4), and one could argue

that the wolf is performing targeted culling (Chapter 6) though a human would

struggle to replicate selection of piglets and generalised as hunting targets. These

results show that if it is possible to target culling at the individuals responsible for

spreading the disease then culling is more effective at reducing both the number of

generalised and the prevalence of disease in the population. Essentially, the greater

the number of generalised removed, then the greater the release from disease-induced

mortality in the population.

Identifying and isolating generalised wild boar may not be achievable and

therefore, combining management controls may be a more fruitful step to take.

Here we briefly show initial results when vaccination and culling are combined as

management strategies. Considering the effect of culling a recovered class in the

SIR model in Figure 5.1, there may be some concern that culling may remove

vaccinated individuals that have bypassed the life-stage with the most chance of
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infection and thus remove a greater proportion of healthy adults in the population.

However, hunting of the wild boar population in central Spain does not include

piglets, therefore an annual cull of yearlings and adults in the wild boar TB model

behaves more like the SIRS-type model in Figure 5.5 whereby the immune class (in

the wild boar TB model vaccinated piglets) lose their immunity as they become

adult. Initial results for this combination in the wild boar TB model are shown

in Figure 7.1. Here, both controls induce a release from disease-induced mortality

and combine to keep the total population high and the number of generalised low:

the vaccination effort prevents a large proportion of the piglets becoming infected

and therefore generalised and potentially suffering mortality from the disease, so

the total population grows significantly allowing the number of generalised to be

maintained; the culling effort removes a proportion of yearlings and adults, including

generalised, allowing a release from disease-induced mortality and compensatory

population growth. Comparing Figure 7.1c with the results for culling by itself

in Figure 5.6bi&ci, when vaccination and culling are combined the culling level to

eradicate the disease is lower than when just culling is used. More sensitivity needs

to be performed for these results to fully understand their significance, and may

prove informative on a seemingly additive type of compensatory growth.

The wild boar TB model is among few mathematical models to use free-living

transmission as the sole conduit for transmission. We have furthered this novelty

by combining both free-living and frequency dependent transmission in our wild

boar TB model including predation (Equations (6.1)). It would be very useful

if the lessons taken from the modelling work in this thesis could be translated

to other infections. In particular wild boar populations are increasing in density

worldwide and there is concern that they may act as a reservoir for a range of

infectious diseases. One such disease is African Swine Fever (ASF), a viral infection,

currently affecting both wild and domestic pigs in Eastern Europe causing concern

in Germany and France where there is a high level of pig farming. In infected

populations the prevalence is low, with potential peaks during the summer season

when disease outbreaks can lead to severe population reduction, but not disease

extinction as it persists at low population levels. Individuals which have progressed

to acute infection suffer a very high rate of disease-induced mortality and once

infected there is no recovery. Disease transmission is currently understood to be

via environmental contamination, through close contact and potentially through a

vector. A starting point for modelling this disease could be to use the wild boar

TB model with both free-living transmission and frequency dependent transmission,

and fitting the parameters to the field data. The parameter sensitivity testing shown

in Figure 3.14 gives some indication as to the effect on prevalence and density of

changes to virulence, free-living decay, transmission and progression rates, and can

give some assistance at setting initial values for this new model. Although the
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(i)

(ii)

(a) (b) (c)

Figure 7.1: Results for the wild boar TB model (PYAG) in response to 30 cull
events of indiscriminate culling of the yearling and adult population when 75% of
the piglet population is successfully vaccinated. The population dynamics over time
are shown in (i) for total population (blue); infected and generalised (black); infected
(magenta); generalised (red), susceptible (green) and vaccinated piglets (cyan). (ii)
shows the total prevalence (black); infected prevalence (magenta); and generalised
prevalence (red). The initial population assumes a TB prevalence, (I+G)/N, of 64%
and a generalised prevalence, G/N, of 35%. The change in population and prevalence
over 30 sequential cull and subsequent regrowth periods shows when (a) 10% and
(b) 25% of the yearling and adult population are hunted. Results are shown for (i)
population density and (ii) disease prevalence when (a) 10%, (b) 25% of adults and
yearlings are removed instantaneously from the population by hunting every year
for 30 years; and (c) the resultant population and prevalence at the end of the 30
year cull and regrowth period.

wild boar TB model does not feature seasonal birth or transmission, this could

be included. Transmission of ASF via a vector could be added as an extra route

to infection in this model, however without firm details this could be approximated

with environmental infection. The model can be used to test whether environmental

or social contact is the driving force behind the disease, and how it persists at such

low prevalence. Culling is currently used to manage outbreaks of ASF, with timing

of these culls crucial. The new model can then be used to test management control

regimes to determine optimum interventions.

In this thesis we have developed a model to understand how wild boar

management can control TB infection. The specific model results have been shown to

be driven by a very general property that we have highlighted - compensatory growth

due to the release from disease-induced mortality. Such compensatory growth is

likely to be widespread and must be considered if management methods are to

control disease in wildlife reservoirs.
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