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Abstract

For many decades, the classical Finite Element Method (FEM) was successfully used

to solve a wide range of problems that are governed by the scalar transient diffu-

sion equation. It produced robust solutions with remarkable accuracy for a variety of

problems with complex geometries and boundary conditions. However, the numeri-

cal solution still poses a serious challenge when it diffuses with steep gradients. This

situation arises in many engineering problems, such as in glass cooling, where the

temperature difference between the cooling object and the ambient environment is so

large that it leads to severe thermal stresses. To properly model this behaviour, the

conventional FEM uses highly refined mesh grids to accommodate the sharp change

in the temperature field. Given that the problem is time dependent, computing the

solution over refined meshes for thousands of time steps leads to prohibitively expen-

sive solutions. To address this limitation, this thesis aims to assess a novel approach

based on time-independent field enrichment for efficiently solving time-dependent heat

diffusion problems over coarse mesh grids.

The approach consists to incorporate a-priori knowledge in the finite element approx-

imation space through carefully selected functions that exhibit similar behaviour as

of the true solution. In this work, Gaussian functions with various rates of decay

are employed in combination with linear Lagrange polynomial-based finite elements,

such that inter-element continuity is automatically satisfied. This technique provides

a remarkable reduction of the computational cost, in comparison to the widely used

classical low order polynomial-based FEM.

To test the accuracy and reliability of this approach, computable a-posteriori residual



error estimates that are mathematically rigorous; are developed and implemented for

both two and three-dimensional problems. The proposed estimates are straightforward

to implement and are shown to provide reliable and practical upper bounds for the

numerical errors, independent of the heuristically chosen enrichment functions. The

estimates accurately capture the decrease of the error as the number of enrichment

functions is increased or the time step is reduced. However, ill-conditioning is shown

to be an inherent feature of the field enrichment. Therefore, the proposed error esti-

mates are used to adaptively enrich the element field in subdomains with relatively

higher errors. Both the global error, in the whole space–time domain, and local error

indicators in the individual elements of the mesh are investigated, for the adaptive

selection of the enrichment functions. An adaptive algorithm is proposed to identify

the elements with higher errors so that further enrichments are added locally; leading

to significant savings in comparison to the case with uniform enrichments.
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Chapter 1

Introduction

1.1 Background

The scalar time-dependent diffusion equation describes the evolution of heat transfer

in many physical, chemical and biological phenomena. From daily life to industrial

applications, there are numerous examples involving heat transfer processes. Such

examples include heating food and cooling down drinks. They also include metal

forming and glass manufacturing, among many other applications. For the latter case,

for example, the hot molten material is cooled down to the ambient temperature to

obtain the sought glass. For good quality product, this cooling process must be care-

fully controlled to avoid excessive thermal gradients, which may lead to cracking of the

material and hence affecting its quality [188, 192]. The time-dependent heat diffusion

equation can be used to model such problems to predict the temperature variation

during this cooling process. It is also used to solve problems in thermal radiation [66]

and in biomedical engineering to model the process of optical tomography [99]. Further

applications can be found in the references [126, 129, 130].
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1.2 Motivation

1.2 Motivation

For decades, the standard finite element method has been successfully used for the

accurate and robust solution of 2D steady-state and transient heat diffusion equations.

Although the computer architecture and design have become much more advanced in

recent times, the solution of most practical 3D problems using classical finite element

methods is still a complex and computationally extensive task. For an acceptable

accuracy, an unreasonably large number of DOFs are required for 3D problems [139],

which makes the efficient simulation very difficult and challenging. This difficulty is

further augmented with the transient nature of the problems. The solution of ex-

cessively large number of equations at every time step makes the solution very time

consuming. The very fine mesh grids required for FEM solution also require very

refined time step values, which further complicates the simulation [140]. Another diffi-

culty arises when diffusion equations need to be solved in combination with problems

governed by hyperbolic PDEs [165]. The presence of steep fronts and boundary layers

in these coupled parabolic-hyperbolic problems pose severe numerical complications

[98, 164, 165]. The standard finite element with piecewise continuous polynomial in-

terpolation functions cannot resolve these steep fronts unless a substantially refined

mesh grid, or higher order polynomial basis functions are used [187].

In the past two decades, domain based methods with field enrichment have been

developed to overcome such difficulties. The main idea of the field enrichment con-

sists to incorporate a-priori knowledge about the problem to be solved by introducing

specifically designed functions into the approximation space. Such techniques include

the Partition of Unity Finite Element Method (PUFEM), the Ultra-Weak Variational

Formulation (UWVF), the Discontinuous Enrichment Method (DEM), the Generalised

Finite Element Method (GFEM), the Variational theory of Complex Rays (VTCR)

and many other techniques which will be discussed in the literature review. This cur-

rent work is motivated by the use of GFEM for transient heat diffusion problems in

2D and 3D domains.
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1.3 Aim and objectives

Field enrichment methods were mainly explored and tested for short wave modelling

problems and crack propagation problems, while their use for the simulation of tran-

sient heat transfer problems is relatively recent and still developing. The main aim of

this work is to further develop the two-dimensional finite element model with time-

independent Gaussian functions enrichment and extend the concept to three dimen-

sions, for the solution of transient heat diffusion problems. The main objectives to

achieve this aim are as follows:

• Carry out a literature review on the development of domain based methods

with field enrichment for the solution of challenging engineering problems and

demonstrate the need for an efficient technique for the solution of transient heat

diffusion problems with sharp gradients.

• Revisit the two-dimensional time-independent Gaussian function enriched finite

elements and develop computable a-posteriori residual error estimates to provide

reliable and practical upper bounds of the associated numerical errors.

• Extend the time-independent Gaussian function enriched finite elements to three

dimensions and present the related a-posteriori residual error estimates.

• Develop an adaptive approach with variable enrichment whereby subdomains

with relatively higher errors are further enriched.

• Carry out numerical investigations to assess the effectiveness of the developed

enriched elements, the associated a-posteriori residual error estimates as well

as the proposed adaptive approach to effectively solve transient heat diffusion

problems.
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1.4 Thesis outline

This work is presented in eight chapters with the first chapter giving the background

for the research and stating the aim and objectives to achieve. In Chapter 2, a review

of the most widely used numerical technique, FEM, for various engineering problems

is discussed along with its merits and limitations. To address the shortcomings of the

conventional FEM, various enriched finite element approaches are discussed including

their applications.

The formulation of the Gaussian function enriched FEM, names here the Generalised

FEM (GFEM), for transient heat diffusion problems is discussed in Chapter 3. The

boundary value problem and its weak formulation are presented stating the approx-

imate solutions for both classical FEM and GFEM. The integration of the element

matrices and the solution of the resulting global system for both models are discussed.

Some numerical results showing the advantages of GEFM over low-order FEM to deal

with heat diffusion problems exhibiting sharp gradients are presented.

Chapter 4 deals with the developed three-dimensional version of GFEM and its as-

sessment against FEM. Three problems are considered to assess the approach, with

one problem exhibiting a known analytical solution to allow the computation of the

modelling errors. In the two other problems, the GFEM solution progress in time is

compared to a reference FEM solution on a well refined mesh.

In Chapter 5, the need for error estimation for approximate numerical methods is

emphasized and the contributions to address the issues of reliability and accuracy of

these approximate methods are also highlighted. An a-posteriori error estimate is

then developed to test the robustness of GFEM. A Detailed mathematical derivation

of the proposed error estimate is presented for two-dimensional problems, followed by

numerical experiments to show its validity.

The previously developed error estimate is used to formulate, in Chapter 6, an adaptive

algorithm to allow variable local enrichment. A detailed iterative procedure to spot

elements in the computational domain with high errors is presented. Extra enrichment
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1.4 Thesis outline

functions are then added locally to improve the quality of the results and reduce the

overall error. This further reduces the required Degrees of Freedoms (DOFs), in com-

parison to uniform enrichment, for the same accuracy.

In Chapter 7, the use of the error estimate presented in Chapter 5 is extended to the

three-dimensional case with test examples confirming the conclusions drawn for the

two-dimensional case.

Chapter 8 summarises the main concluding remarks and gives some recommendations

for potential future work.
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Chapter 2

Enriched finite element

methods – An introduction and

review of past work

2.1 Introduction

Many of the real world phenomena arising in physical, chemical, biological and mathe-

matical sciences are governed by partial differential equations (PDEs). These equations

arise in the mathematical modelling of diverse subject areas like material sciences, fluid

dynamics, heat transfer, electromagnetism, financial modelling as well as economy. In

the majority of the situations today, it is found necessary to obtain approximate nu-

merical solutions to these problems rather than the exact solutions. The reason being

that the equations are so complex that to find their solution by exact analytical meth-

ods is either impractical or impossible and one has to seek approximate numerical

solutions to the problems under consideration. The advancement in digital computa-

tions made it possible to solve these complex problems approximately, and it became

a common tool for engineers and scientists to analyze practical problems arising in

different fields of engineering and sciences. To solve these complex problems approx-

imately, the two commonly used techniques are the finite difference method (FDM)
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and FEM. In both of these methods, the complex differential equations are replaced

by a set of linear or non-linear algebraic equations. In FDM the governing differential

equations are converted to finite difference equations by using Taylor’s expansion. It

is one of the oldest technique and can provide quick approximate numerical solutions

to certain types of PDEs [9]. The usage of FDM is limited, however, to simple ge-

ometries only as it cannot handle large problems with complicated geometries. As a

consequence, its usage is restricted to simple academic problems [44]. FEM, on the

other hand, is a well established numerical technique for a wide variety of problems

and can handle complex geometries easily. Due to this capability, FEM is the most

widely used numerical technique for engineering and scientific computations.

This Chapter will focus mainly on FEM approaches starting with the polynomial

based approach and then extend the review to enriched approaches. It is worth men-

tioning that the Boundary Element Method (BEM) has also seen similar developments

to FEM in the sense that enriched approaches were also developed for various prob-

lems but will not be included in this literature review. As one of the main objectives

of this current thesis is to investigate the accuracy of enriched FEM using a-posteriori

error estimate, a concise discussion on different error estimation procedures for finite

element methods in general and enriched FEM in particular is also presented in this

chapter.

2.2 Finite Element Method

The finite element method is a numerical technique that can be used to accurately

solve complex problems in engineering and sciences. This method originated in the

1950s for the solution of structural mechanics problems. The main motivation was

to solve complex problem arising in the aerospace industry [109]. Later its poten-

tial was recognized for different complex problems in engineering and other areas of

applied sciences. In FEM, a continuous problem is discretized into finite number of

small regions called elements. The overall governing equation for the problem is ob-
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2.2 Finite Element Method

tained by combining the stiffness matrices and force vectors of the individual elements.

This discrete representation is then solved to calculate an approximate solution of the

continuous problem.

In recent years, the finite element method has become one of the well established

and most widely used numerical technique. Due to its capability to handle various

complexities, this method became an active research area in applied mathematics.

One of the main reasons for the popularity of this method in different fields of science

is its general purpose programming. A general computer program once written can

be used for a wide variety of applications by simply changing the input information

[159]. Many of the commercially available platforms to calculate the approximate nu-

merical solutions of many real-world problems are based on the FEM formulation. In

engineering, this method became popular due to its capability to handle complex ge-

ometries easily, and thanks to the development of high computing power, the solution

of complex engineering problems is nowadays more convenient than before.

The finite element method is used effectively for solving complex problems in en-

gineering and sciences that are governed by steady-state partial differential equations.

FEM provided very robust and accurate solutions to many potential steady state prob-

lems, but there are many engineering applications which are governed by time depen-

dent PDEs. These problems may involve complex geometries and need discretization

both in spatial and time variables [126]. The solution of these problems with classical

FEM is still a considerable task and computationally very intensive. Problems in ther-

mal radiation [66, 129, 166], optical tomography [99], the cooling down of molten glass

[188, 192] and transient wave propagation problems [79] are some other applications

requiring high computational effort and resources. There are also problems in fracture

mechanics requiring very fine meshes to solve the problems of crack propagation and

capture the involved singularities.

Various meshless and generalized finite element methods have been formulated to

overcome these difficulties. A survey of meshless methods can be found in [12, 32], and

their mathematical theory in [114, 115]. PUFEM, GFEM and XFEM are examples of
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the methods that have emerged in the literature to ease the need of very fine meshes

and high computation costs. The main idea of these techniques is to use a-priori

knowledge about the problem in hand and enrich the finite element approximation

space with special functions. The basis of the partition of unity concept was developed

by Melenk and Babuška [123]. A brief introduction to the history and the basic

concept of these methods is given in the coming sections followed by a detailed list

of contributions by different researchers who used these methods to solve complex

problems in a variety of applications.

2.3 Partition of Unity Finite Element Method

The roots of PUFEM lie in the idea to use a-priori knowledge about the differen-

tial equation to be solved with FEM. In classical FEM the approximation is made

with polynomial trial functions, but in PUFEM the formulation of the trial functions

incorporates known information about the solution of the problem under considera-

tion. The core idea of PUFEM was originally proposed by Babuška et al. [14, 15].

Later Melenk [122] worked on the details of the method in his Ph.D thesis titled “On

Generalized Finite Element Methods”. In their work, Melenk and Babuška [123] pre-

sented the complete mathematical basis of PUFEM. They detailed how to construct

efficient and robust methods by including a-priori knowledge about the solution of

the differential equation under consideration. They showed that the partition of unity

property of the classical interpolation functions allows to include suitable enrichment

functions in FEM approximation space for a more effective and efficient solution. The

motivation behind this method was to develop a technique which can solve those

problems efficiently, where the classical FEM technique is prohibitively expensive. A

similar approach to model the electromagnetic scattering phenomena was also used

by de La Bourdonnaye [45]. Mayer and Mandel [121] reported similar approach with

the name Finite Ray Element Method. They solved the Helmholtz equation with this

method using plane waves as basis functions.
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PUFEM emerged as a powerful technique capable of solving complex engineering

problems governed by steady-state and time-dependent partial differential equations.

The method has shown a significant reduction in computation time and memory re-

quirements for complex engineering problems.

The main features of PUFEM are:

1. It allows to include a-priori information about the differential equation of the

problem in the ansatz spaces.

2. It permits the construction of ansatz spaces of any required regularity; this allows

the construction of trial spaces for the variational formulation of higher order

differential equations.

The above two features characterise the core theme of PUFEM. The first point is

associated with the local approximation properties of the trial spaces, and the second

point is closely associated with the conformity of the constructed spaces.

2.4 Generalized Finite Element Method

The main idea of the Generalized Finite Element Method was originally introduced

under different names; Babuška et al. [15] called it ‘special finite element methods

on one occasion and the ‘partition of unity method’ [17] on another, and later on it

was called as ‘generalized finite element’ [122]. At the same time, Duarte and Oden

independently introduced this method under the name ‘hp clouds’ [54, 58, 59], while

Liszka et al. [113] termed it as ‘hp meshless cloud method’. In a later work, it was

called as ‘cloud-based hp finite element method’ by Oden et al. [136]. The fundamental

idea of h − p cloud spaces is based on the partition of unity. The Partition of Unity

method (PUM) developed by Melenk and Babuška [123] allows using any Partition of

Unity with the local enrichment functions. GFEM, in fact, is a particular instance of

the PUM where the conventional "hat-functions" of FEM serves as the PU [27, 92].
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The partition of unity in a domain Ω is a set of functions ϕI(x) such that

∑
∀I

ϕI(x) = 1, ∀x ∈ Ω

For GFEM, the function ϕI(x) is the piecewise linear polynomial shape function used

in the standard Galerkin method. The partition of unity property allows the field en-

richments to be reproduced exactly. If G(x) is a function used to enrich a finite element

solution space; then in case of GFEM, the multiplication of standard "hat-functions"

with G(x) will reproduce G(x) exactly [32]. With the introduction of parameters Aj,

the ansatz functions to approximate the numerical solution is written as

un(x) =
∑
∀I

ϕI(x) Aj G(x)

where un(x) is the approximate numerical solution at any time instant n and Aj are

the new nodal unknowns. The parameters Aj adjust the amplitudes of the enrichment

functions G(x) such that they best approximate the solution of the problem at hand. In

GFEM, the finite element shape functions Nj(x) constitutes the partition of unity, i.e.,

M∑
j=1

Nj(x) = 1, ∀x ∈ Ω

Strouboulis et al. [174, 176] introduced GFEM as a combination of standard finite

elements and the enriched partition of unity finite element method. They multiplied

the special functions of the partition of unity method with the standard vertex shape-

functions which were then used in combination with the existing finite element basis to

make an augmented conforming finite element space. They described following three

major advantages of GFEM

1. As in standard FEM, the necessary boundary conditions are imposed exactly,

which is a major issue in other partition of unity based finite element methods.

2. The accuracy of the constructed approximation space is not affected by errors
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in the integration of the applied special functions.

3. The problem of linear dependencies in the system of equations are eliminated

with an easy adjustment in the direct solver

Also in their later work [177], GFEM is described as an extension of the finite

element method. The authors argue that complex engineering problems which are

practically impossible to be solved by standard FEM can be accurately solved by

GFEM. They used GFEM for the 2D Laplacian in domains containing hundreds of

cracks and voids. They argue that to solve such kind of problems would be practi-

cally impossible with standard FEM. Duarte et al. [55] also described the GFEM

formulation and the main idea behind it. They solved 3D elasticity problems and

demonstrated the advantages of GFEM over the standard FEM through numerical

examples. Babuška et al. [13] represented an overview of the core theme of GFEM.

They presented some basic results and future prospects of this method. Duarte and

Simone [53] also presented an introduction of PUFEM and GFEM.

GFEM has not only shown its effectiveness for steady–state elliptic equations [123],

but it has also been proposed to overcome similar difficulties for transient problems

[52, 79, 126, 129, 130, 132, 144]. As it is based on a variational formulation of the

underlying PDE, GFEM inherits the stability and accuracy of finite elements, but

allows to adapt the trial and test functions to reflect a-priori information about the

physical properties of the considered problem. Similar to the time–independent case,

the method shows a reduction in computation time and memory requirements for

complex engineering problems, given reasonable enriched approximation spaces.

2.5 eXtended Finite Element Method

The eXtended finite element method [31, 49] was introduced by Belytschko and Black

in 1999. They used the information from the analytical solution of a problem and

introduced this information in the FE approximation space using the concept of the

partition of unity. Their work launched a large body of information in the field of
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computational mechanics. In a recent review, Belytschko et al. [32] presented the

development and application of XFEM for solving different engineering problems. The

modelling of crack propagation is the most established application of XFEM with

multiscale modelling as the recent interests. Rannou et al. [158] presented a multi-

grid XFEM for the modelling of 3D crack growth. They also included the multi-level

adaptive refinement procedure around the surface of the crack. XFEM has also been

incorporated in some of the commercial codes, e.g., ABAQUS and LS-DYNA [1, 118]

2.6 Selection of the enrichment functions for en-

riched finite element methods

Enriched finite elements incorporate special functions into the finite element method

approximation to solve the problem. These special functions called enrichment func-

tions are chosen based on an approximate analytical solution of the problem. Suitably

chosen enrichment functions provide better approximation than the standard poly-

nomial shape functions used in the classical finite element method. In fact, the ef-

fectiveness of the enriched FEM depends on the proper selection of the enrichment

functions [11]. Babuška and Banerjee [10] also mentioned that the accuracy of GFEM

solution depends on the choice of the enrichment function. Some examples of suit-

able enrichment functions for specific application can be found in [13]. Munts et al.

[132] used polynomial and exponential enrichment functions to solve 1-D convection-

diffusion problems. For the considered problem, it was concluded that exponential

enrichment functions are more efficient than the polynomial enrichments.

In an ideal scenario, the enrichment functions should comprise the asymptotic

solution space or represent the solution of the PDE at hand. Instances of taking

enrichment functions that are known to be complete for the PDE are found in solving

wave propagation problems. In order to solve Helmholtz and elastic wave problems,

the wave potentials are expressed as linear combinations of plane waves which are

known to be the solution of the underlying problem. This idea has been adapted to
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solve these potential problems using the PUFEM [61, 106, 107], ultraweak formulations

[40, 83, 84], boundary element methods [108, 152], and discontinuous Galerkin methods

[186, 187, 196]. It has also been presented in the context of the GFEM [56, 175, 179].

A prominent example in a different direction, fracture mechanics, is given by

XFEM [31, 181]. Here the enrichment functions are taken from the asymptotic solu-

tion space and reproduce the singular displacements or stresses locally around a crack

tip [49]. Similar enrichment functions have been used for modelling crack propagation

using meshless [133] and boundary element methods [168, 169]. An overview of XFEM

and its applications can be found in the work of Fries and Belytschko [68]. Hansbo

and Hansbo [80] presented a technique similar to XFEM to deal with strong discon-

tinuities within FEM framework. Aquino et al. [8] generated enrichment functions for

the GFEM using experimental and simulated data. They used the proper orthogo-

nal decomposition (POD) technique. POD produces low-order subspaces containing

general information regarding the solution of the problem in hand.

Other enrichments may include functions that do not represent the actual solution

but somehow approximate the solution of the problem in hand. An intuitive knowledge

can be used to form enrichment functions that are not necessarily solutions of the

PDE of the problem. This is particularly helpful for problems where no exact solution

space is available. Mohamed et al. [126] showed that such approximate enrichment

functions allow for improved accuracy for a prescribed number of degrees of freedom. In

their work, they used Gaussian functions to construct the enrichment functions to

capture the time varying temperature fields. They argue that these functions are easy

to formulate and implement, with their implementation in existing codes not requiring

major changes. Similar enrichments for solving transient heat transfer problems are

also proposed in [129, 130]. A comprehensive discussion on the selection of enrichment

functions is also detailed there.
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2.7 Applications of the enriched finite element meth-

ods

The enriched finite element methods are effectively used to solve engineering problems

both in solid and fluid mechanics. In solid mechanics, they were effective in the solution

of problems involving discontinuities, voids, cracks and complex geometries. In fluid-

dynamic applications it would be effective to capture strong continuous variations in

the domain using coarse meshes, for instance, it would be beneficial in viscous flow

regions associated with wall-bounded flows. Munts et al. [132] considered the perfor-

mance of enriched FEM on a model problem for such phenomena. In their work, they

presented the solution of linear diffusion equation for ‘Stokes’ second problem. The

solution of steady state and transient heat problems are among the other phenomena

where enriched FEM can be used effectively. Various application of the extended fi-

nite elements can be found in [2, 32, 68] and the citations therein. The remaining of

this chapter details the most relevant areas where these methods are used and have

shown their effectiveness. The literature reveals that enriched finite element methods

are mainly explored for the analysis of crack propagation and short wave modelling

problems. For the completeness of review, besides the heat transfer problems, the

usefulness of enriched finite element methods for short wave modelling and fracture

mechanics problems is also discussed here.

2.7.1 Applications to wave propagation problems

Enriched FEM has been thoroughly investigated for time–harmonic wave problems

in acoustics and elasticity. For wave problems it appears in different forms; there

is the nodal plane wave basis [61, 104, 128, 146], the least square method [131], the

ultraweak variational formulation (UWVF) [85] and the variational theory of complex

rays (VTCR) [101, 102]. There are also other more powerful methods for efficiently

solving wave problems with coarse mesh grids, namely the generalized finite element
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method [174, 176], the discontinuous enrichment method (DEM) [65, 187, 196], Plane

wave discontinuous Galerkin (PWDG) [69] and a more recent stable discontinuous

Galerkin method [6].

Laghrouche and Bettess and co-authors [103–105] used the PUFEM approach for

solving short wave diffraction problems. They used plane waves at different angles as

the basis functions to capture the solution. For an acceptable accuracy, the usually

used many nodes per wavelength was avoided by using the PUFEM approach. The

overall size of the whole system was greatly reduced as each element spanned many

wavelengths. In [106], the authors used the PUFEM approach to solve the Helmholtz

problems where the wave speed is not constant and presents jumps in the various

regions of the solution domain. To ensure the continuity between different regions, they

used Lagrange multipliers. For engineering accuracy, around 10 nodes are required per

wavelength for the classical linear polynomial based FEM which limits the accuracy of

this method. To address this limitation, the authors used a-priori knowledge about the

waves and formulation. Desmet and Vandepitte [47] reported that, in high frequency

acoustic and vibro-acoustic problems, the conventional element based methods are

computationally expensive. The main limitation of these methods is that the necessary

number of degrees of freedom becomes very large for high frequency problems in large

domains. A similar behaviour was previously reported by Chadwick et al. [41] for

the diffraction of short waves. Another example is the work of Bettess [34] where the

author considered the waves emitted by a radar and intercepted by an aircraft.

Perrey-Debain et al. [151] solved the 3D Helmholtz equation using plane wave

based finite elements and boundary elements. The approach largely reduced the re-

quired degrees of freedom and complexity of the problem to get an accurate solution.

They considered plane waves in different directions which were evenly distributed

around a sphere. They reported that accurate solution can be obtained for much

higher frequencies than the conventional polynomial based FEM and BEM. Gamallo

and Astley [72] used the PUFEM technique to solve non-uniform 2D flows. They

enriched the finite element space with plane waves by keeping the wave number as
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a function of Mach number. A range of the Mach numbers was considered, and the

solution was investigated for accuracy and condition number for a series of frequencies.

Strouboulis et al. also used enriched GFEM to solve Helmholtz problems. In the

first part of their work [175], they investigated the convergence of the method. They

used different numerical examples to show the effectiveness of the method. In the

second part [179], they discussed how the solution is affected by using different ap-

proximating functions. They discussed the effect of boundary conditions on the overall

error of the solution. Strouboulis and Hidajat [178] also discussed the effect of different

approximation functions in the context of PUFEM. They used plane waves and Bessel

functions to enrich the solution. They argue that the plane waves, which involve only

trigonometric functions, are a better choice as compared to Bessel functions.

El Kacimi and Laghrouche [61, 63] modelled the 2D time harmonic elastic wave

problems accurately with PUFEM. They used a low number of elements that contain

many wavelengths per nodal spacing without the need of mesh refinement at each

frequency. Enrichment based on the plane waves and the standard piecewise linear

shape functions provided much better results with less DOFs as compared to standard

FEM. The results show very good accuracy in approximating the displacement field.

They used 4-noded and 9-noded elements, and discussed the results based on the con-

ditioning and accuracy of the solution. They reported better accuracy for 9-noded

elements as compared to 4-noded elements but with poorer conditioning. They ex-

tended their work [62] by proposing an improved numerical scheme by using an exact

integration scheme to evaluate the oscillatory integrals for time harmonic elastic wave

equations. The scheme was also based on the PUFEM approach and pressure (p) and

shear (s) plane waves were superimposed locally to improve the results. They used

very coarse meshes to solve 2D elastic wave problems. More recently, Banerjee and

Sukumar [25] also used the exact integration scheme to evaluate the integrals. They

solved two dimensional Helmholtz problems using plane-wave based enriched partition

of unity method. The computation of highly oscillatory integrals using the exact inte-

gration scheme produced much better results for any wave number. They considered
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structured and unstructured triangular meshes to show the accuracy of the method.

Laghrouche and Mohamed [107] used the PUFEM approach for solving the Helmholtz

problems at high wave numbers. They used oscillatory shape functions to capture the

solution. The oscillatory functions were obtained as a result of the multiplication of

piecewise linear shape functions and plane waves or Bessel functions. To test the

method they considered the problem of an incident plane wave diffracted by a rigid

circular cylinder. At the same time Mohamed et al. [128], discussed numerical aspects

of the PUFEM by solving Helmholtz problems in two dimensions. They considered

the numerical aspects that affect the efficiency of PUFEM namely plane-wave enrich-

ment, the geometry discretization, h-refinement and the conjugated or unconjugated

formulation. More recently Mahmood et al. [119] extended this work to 3D problems.

Ham and Bathe [79] proposed to use a general pattern of multiple waves to capture

the solution of high wave numbers. The authors argue that many researchers incor-

porated specific enrichments for wave propagation problems in the solution space, but

the a-priori knowledge about many practical problems in wave propagation is not

known in general. In reality, the solution is often a combination of unknown waves

and different propagations and in cases may involve wave conversions. Therefore they

considered enrichment with general multiple wave patterns, a better way to capture

the solution.

The work of Ihlenburg and Babuška [86] is a good example where they reported

the deterioration of results for high wave number k. They used the h-version of the

standard FEM to capture the solution of the Helmholtz equation. They mentioned

that the quality of FEM solution significantly depends on the wave number k. The

mesh size h should be adjusted to the wave number k for good quality result with

the usually followed "rule of the thumb" of kh = constant. With a low k, this rule

produces significantly better results, but at a high value of k, it leads to deterioration

of the results. In their later work [87], they used the hp version of FEM to solve

the same problem. Bayliss et al. [30] also show that for kh = constant, the error

grows with higher values of k. They solve the Helmholtz equation in two dimensions
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using the piecewise linear FEM. Ortiz and Sanchez [146] also mentioned that the

standard FEM produces reliable results for low and medium frequencies with a mod-

erate number of degrees of freedom. They mentioned that with the increase of the

wave number, the results of the numerical solution deteriorate even if the usual rule

of thumb of 10 nodes per wavelength is followed. They used the PUFEM approach

to get better results to solve wave diffraction problems. The boundary conditions

proposed by Higdon [81] were investigated. To avoid the problem of conditioning

they used conjugate-gradient type solvers [110]. In later work, Ortiz [145] solved the

scattering of surface water-waves using plane waves as basis. They investigated the

combined phenomena of diffraction, radiation, refraction and absorption. The integra-

tion scheme which was originally formulated for wave diffraction in [146] was extended

for the combined phenomena. This greatly reduced the number of required operations

to get a given accuracy as compared to the standard numerical integration scheme.

Torii et al. [189] used the GFEM for the modal analysis of 2D wave equation.

They used sine and cosine functions to enrich the approximation space. They used

GFEM approach and the high order polynomial FEM to solve the problem. The

relative benefits of GFEM were discussed in comparison with the high order polynomial

FEM. Drolia et al. [52] used the enriched FEM for the solution of electromagnetic

wave equation in the time domain. They formed enrichments by a combination of

plane waves with a fixed frequency propagating in different directions. The proposed

method is shown to produce accurate results with less degrees of freedom as compared

to standard low order polynomial FEM.

2.7.2 Applications to fracture mechanics problems

The enriched FEM has also been applied to enrich approximations locally around some

feature; a notable example of this is the eXtended Finite Element Method [31, 49].

Here the enrichment functions are taken from the leading order term in the asymp-

totic expansions for displacement components immediately surrounding a crack tip.

This idea has permeated into enriched meshless methods [133], and boundary element
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methods [168, 169] with some considerable benefits found. Fries and Belytschko [68]

presented an overview of the XFEM/GFEM with applications to different problems

involving non smooth solutions in the domain.

Shao et al. [167] used XFEM to study the effect of fluid flow and heat trans-

fer on the growth of a crack in multilayered porous materials. They discretized the

fluid flow using nonconforming Crouzeix–Raviart (CR) finite elements and the advec-

tion–diffusion heat transfer was solved by a combination of Discontinuous Galerkin

Method and Multi-Point Flux Approximation. To handle the singularities better,

XFEM was then used to solve the conduction in the solid phase.

O’Hara et al. [142] solved the static fracture and fatigue crack propagation us-

ing a two scale GFEM/XFEM. They defined boundary value problems locally in the

area of the cracks and generated the enrichment functions on-thy-fly which were then

used for the solution of the global problem. This approach produced accurate results

even in the area of multiple cracks interactions. The approach called global-local en-

richment function GFEMgl, eliminated the need for having a-priori knowledge about

the problem in hand. A similar approach is used by Kim and Duarte [97] to solve

propagating cohesive fractures in three dimensions. Malekan et al. [120] also used

GFEMgl approach and constructed enrichment functions numerically from the solu-

tion of a locally defined problem. The local problem was defined within the domain

where high stress gradients were present. They used a very fine mesh in this area. The

results of this locally defined problem were used to enrich the global problem. This

approach largely reduced the numerical burden and produced improved results of the

overall solution. Evangelista et al. [64] utilized GFEM framework to evaluate the

propagation of cracks in concrete slabs. They used the two scale GFEMgl approach to

cracks of different geometries placed at different locations. Duarte and Kim [56] used

PUFEM for accurately modelling a crack using enrichment functions from the asymp-

totic expansion of the elasticity in the neighbourhood of the crack. In their work,

they presented a procedure to build enrichment functions for PUFEM. They analysed

a two-level approach to build enrichment functions for PUFEM and, in particular,
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for the generalized FEM. The procedure combines classical global-local finite element

method concepts with the partition of unity method. It involved the solution of local

boundary value problems using boundary conditions from a global problem defined

on a coarse discretization. The local solutions are in turn used to enrich the global

space using the partition of unity framework. They investigated the effectiveness of

the approach in terms of convergence rates and computational cost. They used three-

dimensional fracture mechanics problems to illustrate the main ideas of the procedure.

However, the authors argue that the approach is not limited to this particular appli-

cation. This significantly improves the computational efficiency which was the main

focus of their work. In another work Duarte et al. [57], used this approach for the

solution of three dimensional crack propagation problems. The global-local approach

was used to develop enrichments to improve the efficiency and accuracy of the overall

problem. A similar two-scale approach for the solution of propagating 3D fracture

mechanics problems is presented by Pereira et al. [150]. Kim et al. [96] also used the

two-scale approach for the solution of 3D problems in fracture mechanics using coarse

mesh GFEM. They solved the local problems using hp-GFEM which were then used

to enrich the global problem using PUFEM. They studied the accuracy of the method

with Dirichlet, Neumann and Cauchy type boundary conditions. Also in [94], the

authors used this approach for the solution of problems involving interacting cracks.

Gupta et al. [77] represented an extension of the two scale GFEMgl approach for

the solution of problems involving plastic deformations locally. They defined a local

boundary value problem using very fine mesh around the region experiencing plastic

deformation. Through the partition of unity framework, the result of this fine scale

solution was then used to enrich the remaining coarse-mesh domain. This greatly

reduces the computation cost as compared to the standard FEM solution. The au-

thors argue that this approach is much better for many practical problems where only

a small confined area undergoes plastic deformations and the rest of the domain re-

mains largely elastic. Kim et al. [95] also applied a similar approach to solve confined

plasticity problems. A detailed procedure for the generation of suitable enrichments
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from the fine-scale local solution is outlined. Different problems in 3D domains with

gradual plastic deformation are solved to show the effectiveness of the proposed tech-

nique. Results of the numerical examples show that the two-scale GFEMgl approach

produces comparable or even better results as compared to hp-GFEM approach. In a

recent work, Plews and Duarte [154] used the two-scale approach to a class of prob-

lems involving localized transient thermo-elasto-plastic behaviour. Kim et al. [95] and

Gupta et al. [77] considered the plastic behaviour which was localized around a fixed

small region of the domain, produced by uniform and continuous loading. The work

of Plews and Duarte is a step forward to include the effect of thermal loading that

varies both in time and space. The same authors also used GFEMgl approach as a tool

for bridging micro-macro scale interactions [153]. Gupta et al. [78] in another work

discussed the effect of incorrect boundary conditions applied to the domain of local

problems. They represented a strategy to improve the a-priori error estimate result-

ing from these incorrect boundary conditions. Numerical examples from 3D fracture

mechanics were used to show the effectiveness of their strategy to control the overall

error of GFEMgl solution.

Komijani and Gracie [100] used enriched FEM to solve the wave propagation prob-

lem in fractured media. They used GFEM to globally enrich the solution space with

harmonic functions and Phantom Node Method (PNM) [80, 173], a variant of XFEM,

to model cracks locally independent of the mesh. They mentioned that GFEM smooths

out the spurious variations that are normally observed in the transient analysis of wave

propagation using the classical FEM. Combined PNM-GFEM was reported to model

the wave propagation problem in fractured media more accurately as compared to

standard FEM and PNM. Crack discontinuities are also modelled by discontinuous

enrichment method [50, 51].

2.7.3 Applications to heat transfer problems

Munts et al. [132] are among the early researchers who used the enriched FEM for

heat transfer problems. They used PUFEM to solve convection–diffusion problems in
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one space dimension using two different enrichment functions; exponential enrichment

functions based on approximate analytical solution and polynomial enrichment func-

tions as in [185]. It is shown that the choice of the enrichment has an effect on the

solution. They showed that for a given number of DOFs, PUFEM with an exponential

enrichment function leads to better results than the standard finite element method.

They also used polynomial enrichment functions but concluded that although a higher

level of accuracy can be achieved with polynomial enrichments as compared to the

standard FEM, but they were generally less efficient than the exponential enrichment

functions.

O’Hara et al. [143] investigated the application of the generalized finite element

method with global-local enrichments GFEMgl for steady state heat transfer problems

with solutions that exhibit highly localized sharp thermal gradients. They consid-

ered three-dimensional problems and used the classical FEM and GFEM approaches

to solve the problem. They defined a local problem on a fine-mesh to formulate en-

richments which were then used to enrich the coarse mesh of the global problem.

This methodology prevented the need of a-priori information about the problem in

hand. Previously O’Hara [139] used the standard FEM version for such problems. The

authors extended their work to time dependent problems exhibiting sharp localized

thermal gradients [141]. Again the global-local enrichments were used to formulate

the problem. The authors used coarse FEM meshes with specially tailored shape

functions to yield a high level of accuracy. Based on the solution of local boundary

value problems, they numerically built appropriate functions to enrich the solution.

The proposed method enabled the use of uniform, coarse, global meshes for transient

heat transfer problems with localized features. This eliminated the need to refine

global meshes, which is usually complex and computationally expensive. Also with

the proper discretization order, GFEMgl produced results that were in very good

agreement with the reference curves generated using hp-GFEM and significantly more

degrees of freedom. The authors concluded that the size of the enriched global prob-

lem does not depend on the size or discretization used in the local problems. They
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also comment that GFEMgl uses a large amount of information (solution, their deriva-

tives etc) which can be calculated once and reused at each subsequent time step. In

another work [140], the authors investigated the effect of localized thermal loading on

the response of structures. The main motivation of their work was to study the effect

of localized thermal loads on the outer skin of hypersonic aircrafts. They solved the

transient heat equation using the linear FEM and GFEM and studied the effect of

time step size on the solution of both methods. A sufficiently small time-step was first

used to generate a stable linear FEM solution. The coarse meshed GFEM was then

used and for a stable solution, the time step size was investigated. High order elements

were also used to compare the solution with linear FEM. It was concluded that with

a given mesh size the high order elements generate better results but do not allow the

use of large time steps. With GFEM using special functions, better accuracy can be

achieved with coarse meshes, and the large size of elements allow the use of large time

steps. Also in [144], GFEM is presented as an efficient way for obtaining solutions

to time dependent heat transfer problems with localized thermal gradients. Again,

the enrichments were calculated on-the-fly from the local problems and then used to

enrich the coarse meshed global problem avoiding the need of a-priori information of

the exact solution.

Van der Meer et al. [190] analysed transient geothermal problems using the en-

riched FEM. Their algorithm considered the use of enrichment functions that were

updated at each time step and the solution at each time step was calculated using

these updated enrichment functions. Time-dependent variables were used to make the

shape functions adapted to the transient process. This eliminated the need to make

the mesh adaptive to the transient thermal gradients, and no extra degrees of freedom

were added to the system. They presented two different approaches to optimise the

approximation functions. In their first approach ,they used exponential functions to

approximate the solution, and to make them optimized at each time step; these func-

tions were updated iteratively during the solution process. In their second approach,

they proposed to incorporate the analytical solution of a simplified problem in the
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shape functions which were again updated at each time step. The basic formulation

of finite elements was made time-dependent for the implementation of these approxi-

mation functions. The proposed method was tested for different numerical examples

where it is shown to capture high thermal gradients using very coarse mesh grids as

compared to the standard FEM. Cosimo et al. [43] also used time-dependent enrich-

ment functions for the solution of solidification process. The varying interface between

solid and liquid regions was captured with time-dependent enrichment functions. Sim-

ilar enrichment functions were previously proposed by Coppola-Owen and Codina [42]

for two-phase flow problems.

A notable development using PUFEM for transient heat transfer problem is the

work done by Mohamed et al. [126]. They solved time-dependent heat diffusion equa-

tion using multiple enrichments. To enrich the FEM solution space they used Gaussian

functions of different standard deviations in combination with linear polynomial shape

functions. An interesting aspect of their work is that time variation of the solution was

taken into account in the enrichment functions, and the same enrichments are used at

every time step. This eliminated the need for updating enrichment functions at every

time step. The computation time is reduced remarkably by this approach as the sys-

tem matrix was assembled at the first time step only and retained for the subsequent

time steps. The presented numerical results showed that for a comparable accuracy the

reduction in the required DOFs was up to 90% as compared to the standard FEM. In

their further work, they used the same approach for other conduction and radiation

heat transfer problems [129, 130]. In [130], the authors modelled the radiative cooling

process in the glass industry. Hyperbolic enrichment functions are used to efficiently

capture the solution. The glass cooling process in two different enclosures, one in a

plate enclosure and the other in a disk enclosure was studied using the standard FEM

and the proposed PUFEM. It was concluded that PUFEM provides better and more

stable results as compared to standard FEM with a huge reduction in computational

cost. To solve problems of transient heat transfer that involve both conduction and

radiation, the authors used a combination of Gaussian and hyperbolic enrichment
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functions [129]. They used the Gaussian functions to solve the diffusion heat transfer

inside the domain while the hyperbolic enrichments were used to capture the temper-

ature variations across the boundary layer. Diwan et al. [48] used mixed enrichments

for the FEM solution of problems involving heterogeneous materials. They studied the

application of PUFEM to heat transfer and wave scattering problems. A mix of plane

waves and exponential functions were used to enrich the solution space. A significant

reduction in the required DOFs was noted as compared to the standard FEM. Hetero-

geneous materials for steady and unsteady temperature fields are also simulated by Yu

and Gong [195] using XFEM approach. Kalashnikova et al. [90] used the discontinuous

Galerkin FEM to solve the high Pe’clet advection–diffusion problems. The problems

with strong boundary layers associated with high Pe’clet number were solved by em-

ploying enrichment functions on element level. Advection–diffusion problems are also

solved by Borker et al. [38] using the discontinuous Galerkin FEM. The authors used

polynomial Lagrange multipliers to force the continuity across the element boundaries.

Interface-enriched generalized FEM is also used to solve heat transfer problems with

discontinuous gradient fields [170–172].

2.8 Error estimation procedures for approximate

numerical methods

Different numerical methods evolved over the years to reduce the computation cost

and memory requirements for large complex problems. One of the features of all these

numerical methods is that they are subject to various sources of numerical errors [29,

183] which can question the reliability of the results. In their book, Babuška and

Strouboulis [22] emphasized on the reliability of the FEM computations and mentioned

that unreliable finite element results can lead to very serious consequences. Over

the years, different researchers devised methods for the error estimation of h, p and

hp−versions of FEM [24, 70, 91, 125, 135, 160]. The basic mathematical theory of

FEM and its error estimation can be found in the book of Babuška et al. [23]. A
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comprehensive explanation of the error estimation procedures and their theory is also

presented by Ainsworth and Oden [5]. They also presented their work in [4], addressing

the use of a-posteriori estimates for FEM solutions of structural mechanics problems.

The computation of numerical errors in approximate numerical methods remains

the main source of concern for research communities. The practitioners and researchers

in computational methods have always been concerned with questions like;

1. What are the approximation errors in numerical computations?

2. How can these errors be quantified?

3. How these errors can be controlled and minimized?

To address these questions, several types of estimates have been developed since

late 1970s, aimed to evaluate the discretization errors of the numerical methods [75].

In a broad sense, these estimates are categorized into two types; a-priori error esti-

mates and a-posteriori error estimates. The a-priori error estimates are designed to

provide information about the asymptotic behaviour of the discretization errors. They

show convergence and convergence rate, but do not give information about the actual

errors for a given discretization. They can be used to provide information about the

stability and convergence of different methods. The a-posteriori estimates on the other

hand are based on the actual finite element solution of the problem. These estimates

provide a basis for adaptive refinement schemes of these methods. The a-posteriori

error estimators are subdivided into two broad categories; the residual based error

estimates [3, 20] and the recovery based error estimates [60, 197].

The residual based error estimates are aimed to calculate the errors in every ele-

ment of the discretization by satisfying the governing equations of the problem. The

errors in the whole domain are then evaluated as a summation of the errors in each

element. If u is the exact solution of a problem and uh represents the approximate

numerical solution, then the residual in any norm is given by ∥e∥ = ∥u−uh∥. Babuška

and Rheinboldt [19] were among the pioneers to develop a-posteriori error estimation

for FEM solution of elliptic boundary value problems. They extended their work by
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suggesting a strategy to calculate a-posteriori error estimation in terms of quanti-

ties which are localized to a discretization [20]. This provided an adaptive algorithm

for the mesh refinement of FEM computations. They also developed a theory for a-

posteriori error estimation under different norms ranging from L2 norm to L∞ norm

for 1D problems [21]. Babuška and Miller [18] also presented theory and some practical

aspects of error estimation for the solution of linear elasticity problems using the finite

element method. FEM has also been investigated for the accuracy and reliability of

results for the Helmholtz equation by Babuška et al. [16]. Bouillard and Ihlenburg

[39] investigated the accuracy and adaptivity of the FEM for the solution of sound

propagation problems.

The recovery-based error estimators [138, 197] are motivated by the fact that in

general, the gradient of a piecewise linear FEM solution is discontinuous at the inter-

element boundaries. In recovery based error estimators, the gradient of the solution

is post-processed and is then compared to the non post-processed solution gradient

to estimate the true error of the solution. To visualize these errors across the element

boundaries a simple way could be to display these results using iso-bands where no

averaging of the results is done across the element boundaries. Sussman and Bathe

[182] presented a visual method called "stress band plots" to display the stress solution

of a finite element mesh. In contrast to the conventional stress plots which present

average stress values in an element, the "stress band plots" display results which are

un-averaged and are calculated directly from the solution variables. These kind of

contours are helpful in finding out the accuracy of the FEM solution across the element

boundaries. Recent modifications in the recovery based error estimation lead to the

development of superconvergent patch recovery method [198, 199].

Most of the early developed a-posteriori error estimates focus on calculating global

errors in the energy norm. A recent extension of these procedures is to find errors in a

particular quantity of interest (QoI). These new procedures are commonly named as

goal-oriented error estimation procedures [33, 76, 93, 137, 156, 157]. In heat transfer

problems, a representative example of QoI could be the maximum temperature at a
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2.8 Error estimation procedures for approximate numerical methods

particular point in the domain, and in fracture mechanics problems it could be the

stress intensity factor (SIF) of a crack tip.

2.8.1 Error estimation for the enriched finite element meth-

ods

Similar to the standard FEM, error estimates are also studied for the enriched FEM. In

fact, the error estimation procedures started at the very beginning of the development

of these methods [124], with later works carried out by Strouboulis, Babuška and

co-authors [175, 179, 180].

Melenk and Babuška [124], while introducing PUFEM, provided a basic procedure

to calculate a-posteriori error estimates for their newly developed method. They

outlined patches and defined local problems on these patches. The a-posteriori error

estimates were based on the solution of these patches. Upper and lower bounds for the

method were defined by considering a model problem. Strouboulis et al. [180] addressed

the reliability of a posteriori error estimates for GFEM based on the partition of unity

method. They defined both lower and upper bounds for the error. They represented

the error bounded by two-sided estimates as

E L ≤ ∥e∥ ≤ E U

where ∥e∥ = ∥u − uh∥ denotes the error in the solution and E L and E U represent

the lower and upper bounds, respectively. They underlined the difference between the

theoretical upper estimator, the computed version of the estimator and the computable

estimator.

More recently a variety of a-posteriori error estimates for the extended finite ele-

ment method has been explored, i.e. for enrichments localized in a small part of the

mesh, with a particular emphasis on crack problems. Bordas et al. [37] proposed error

estimators for XFEM by calculating the enhanced strain fields and the XFEM strains.

Their proposed error estimator is then the L2 norm error calculated by considering
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2.8 Error estimation procedures for approximate numerical methods

the difference of the enhanced strains and XFEM strains. The enhanced strains were

computed as intrinsically enriched eXtended Moving Least Squares (XMLS) approxi-

mations of the raw XFEM strains. They used the derivative recovery technique based

on the ideas of Tabbara et al. [184]. The concept was proven in a 1D problem with a

singular solution and a 2D fracture mechanics problem. A generalization of the MLS

derivative recovery concept of Tabbara et al. [184] is also presented by the same au-

thors [36]. They tailored the construction of XMLS to the nature of the problem. The

method was tested on 2D and 3D problems in linear elastic fracture mechanics and it

is shown that the enhanced strain fields are very smooth. For the problem considered,

they mention that the proposed estimator is better than the superconvergent patch

recovery technique proposed by Zienkiewicz and Zhu [198].

Duflot and Bordas [60] used the extended global recovery techniques for the a-

posteriori error estimation of XFEM. They calculated the L2 norm error based on the

difference of the raw strains and the recovered strains. The authors mentioned their

methodology as the extension of the idea of Hinton and Campbell [82] and Oden and

Brauchli [134]. They tested their methodology on 2D and 3D linear elastic fracture

mechanics problems. The authors added that due to the simplicity of the proposed

methodology it is ideal for industrial applications. With their proposed estimators,

they also evaluated the optimum enrichment radius for the enrichment functions at

crack tip. More recently Jin et al. [89] used the technique of Duflot and Bordas to

calculate the interpolation error for linear elastic fracture mechanics problems using

XFEM. They solved the crack propagation problem in a 3D domain and presented an

approach for error estimation along with mesh adaptivity for these problems. They

aimed to provide an approach that is robust and simple as well as provide a mesh

adaptation on-the-fly during the crack propagation. Prange et al. [155] addressed the

problem of discretization error of XFEM for crack propagation problems. They used

the recovery based error estimation technique to assess the errors of XFEM. Their

method is based on the error estimator of Zienkiewicz and Zhu [197]. To avoid the

spurious discontinuities in the results, the corrected XFEM [67, 116] was used which
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2.8 Error estimation procedures for approximate numerical methods

produced improved results near the crack tip without artificial discontinuities in the

temperature fields. The idea of corrected XFEM is also used by Loehnert et al. [117]

to predict the interaction between micro and macro cracks.

Pannachet et al. [149] proposed error estimation and adaptivity technique for mod-

elling discontinuous failure. The partition of unity approach is used to simulate the

crack using the cohesive zone concept [193]. In cohesive zone the failure due to crack

is modelled as the separation of crack surfaces across an extended crack tip, a cohesive

zone, where the resistance is provided by the cohesive tractions. Later Pannachet

et al. [148] proposed error estimation and mesh adaptivity for structure failure prob-

lems. They choose to use the gradient enhanced damage model. A residual based

error estimator introduced in [149] was used in their work. Barros et al. [27] used the

Equilibrated Element Residual Method to address the issue of reliability of GFEM.

They presented the p-adaptivity for the GFEM solution. They used an iterative pro-

cedure to solve the problem and the nodes in the domain having highest values of

local error were selected for p-refinement to improve the accuracy of the solution in

the next iteration. The Element Residual Method introduced in [26, 46] was used to

approximate the energy norm of the local error at each element. A global error mea-

sure was also introduced. In another work, Barros et al. [28], proposed error estimates

for GFEM considering the solution of elasticity problems in 2D domains exhibiting

stress singularities.

Ródenas, Estrada and co-authors [161–163] use the recovery-based error estimators

for XFEM. In [163], Ródenas et al. proposed to estimate the discretization error by

splitting the enhanced strain fields into smooth and non-smooth parts. They anal-

ysed the linear elastic fracture mechanic problems with XFEM. They referred to their

method as a variation of the superconvergent patch recovery (SPR) technique and was

called SPRXF EM . They tested their method on a problems with an exact solution

and a problem without a known solution. The numerical experiments show good ac-

curacy of the proposed method for both local and global errors in the energy norm. In

their further work [162], they presented an alternative technique to the superconver-
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gent patch recovery (SPR) method. They proposed estimates in the energy norm for

the FEM and XFEM methods based on the nearly equilibrated moving least squares

(MLS) recovery technique. Numerical results of the method are shown to have very

good accuracy. In another work [161], they addressed the role of statically admissible

recovery method for error estimation of XFEM. Similar approaches are also used in

[73] and [194]. More recently Lins et al. [112] studied the recovery-based a-posteriori

error estimation for the 2D fracture mechnics porblems using the framework of the

stable generalized finite element method (SGFEM).

There are applications in which the error in particular observables may sometimes

be of more interest than the error of the whole solution. The goal oriented error

estimates (GOEE) which find the error in a particular quantity of interest has been

studied by many authors. González-Estrada et al. [74], developed a goal oriented error

estimate for XFEM using the equilibrated recovery technique. They considered the

stress intensity factor as quantity of interest as the SIF was envisaged to be one of the

characteristic parameters to give a more realistic description of the behaviour around

the crack tip. They used the locally equilibrated superconvergent patch recovery to

obtain enhanced stress fields. They mention that to properly describe the behaviour at

the crack tip in Linear Elastic Fracture Mechanics (LEFM), it is essential to precisely

calculate SIF. Goal oriented error estimates have also been investigated for linear

elastic fracture mechanics problems in [71, 111, 147]. Goal-oriented adaptivity for

Generalized Multiscale Finite Element Method (GMsFEM) are also studied by Ancey

et al. [7].

2.9 Overview

This chapter started with a brief introduction of the approximate numerical solu-

tions of different problems arising in engineering and various fields of science. This

is relevant in the context because the rest of the followed discussion is based on the

approximate numerical solution of different engineering problems in general and heat

32



2.9 Overview

transfer problems in particular. The most relevant and widely used approximate nu-

merical method, FEM, is then discussed along with some of its merits and limitations.

To address the limitations of FEM, various meshless and enriched finite element meth-

ods are developed by the research community. A brief overview of the most relevant

enriched methods is outlined. Examples of applications of the enriched finite element

methods in different fields of engineering and scientific computation are also presented.
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Chapter 3

GFEM for two-dimensional

transient heat diffusion problems

3.1 Introduction

In this Chapter, the transient heat diffusion problem is first defined with initial and

boundary conditions, for which the variational form is then developed. The latter form

is obtained by considering the weighted residual scheme in space and then adopting

an implicit Euler method in time. The polynomial based FEM and the enriched field

approximations are then presented with the former based on linear shape functions.

The enriched approach is based on the use of Gaussian functions with the linear

shape functions and will be called GFEM throughout the whole thesis. Computational

aspects, such as enrichment functions selection, numerical integration and solution

method are also indicated.

3.2 Boundary value problem and weak form

Given an open bounded domain Ω ⊂ Rn where n = 2, 3; with polygonal boundary Γ

and a given time interval ]0, T ], we are interested to solve the following transient heat
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3.2 Boundary value problem and weak form

diffusion equation
∂u

∂t
− λ∆u = f, in ]0, T ] × Ω , (3.1)

where λ > 0 is the diffusion coefficient and the right hand side f represents the effects

of internal sources/sinks. An initial condition

u(t = 0, x) = U0(x), x ∈ Ω , (3.2)

and a Robin–type boundary condition

∂u

∂n
+ hu = g, in ]0, T ] × Γ , (3.3)

are imposed. Here n denotes the outward unit normal to the boundary Γ, and h ≥ 0

is the heat convection coefficient on Γ, and g represents boundary sources.

We will numerically solve a weak formulation of the initial–boundary problem (3.1)

- (3.3). Multiplying by a smooth test function W , then integrating over Ω we obtain

∫
Ω

W
∂u

∂t
dΩ −

∫
Ω

Wλ∆u dΩ =
∫

Ω
Wf dΩ . (3.4)

or ∫
Ω

(
W

∂u

∂t
− λW∆u

)
dΩ =

∫
Ω

Wf dΩ . (3.5)

In order to get rid of the second derivative term in above equation, we use the diver-

gence theorem. Suppose we have a function S, such that

S = W∇u =


W ∂u

∂x

W ∂u
∂y

W ∂u
∂z


(3.6)

We find the divergence of the function S,

∇ · S = ∇W · ∇u + W∆u (3.7)
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The divergence theorem states that

∫
Ω

∇ · SdΩ =
∫

Γ
S · ndΓ (3.8)

substituting (3.6) and (3.7) into (3.8)

∫
Ω

∇W · ∇u + W∆u dΩ =
∫

Γ
W∇u · ndΓ (3.9)

then rearranging gives

∫
Ω

W∆u dΩ =
∫

Γ
W∇u · ndΓ −

∫
Ω

∇W · ∇u dΩ (3.10)

Finally, substituting (3.10) into (3.5) results

∫
Ω

(
W

∂u

∂t
+ λ∇W∇u

)
dΩ −

∫
Γ

λW∇u · n dΓ =
∫

Ω
Wf dΩ , (3.11)

and with the boundary condition (3.3) we conclude the weak formulation of the heat

diffusion problem: Find a solution u on [0, T ] × Ω such that u(0, x) = U0(x) and for

all test functions W on Ω and all t ∈]0, T ] such that

∫
Ω

(
W

∂u

∂t
+ λ∇W∇u

)
dΩ +

∫
Γ

λWhu dΓ =
∫

Ω
Wf dΩ +

∫
Γ

λWg dΓ . (3.12)

Our concern is to find approximate numerical solution of (3.12). As time–discretization,

we choose an implicit Euler method: The time interval is divided into Nt + 1 subin-

tervals [tn, tn+1] of size δt = tn+1 − tn for n = 0, 1, ...Nt and approximate the time

derivative in (3.12) by a difference quotient. Expression (3.12) is then written as

∫
Ω

(
W

un+1 − un

δt
+ λ∇W∇un+1

)
dΩ+

∫
Γ

λWhun+1dΓ =
∫

Ω
Wfn+1dΩ+

∫
Γ

λWgn+1dΓ .

(3.13)

Rearranging the terms we conclude the time–discretized variant of the weak formula-

tion (3.12): Find a solution un+1 on Ω such that u0 = u0 and for all test functions W
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on Ω and all n ∈ N such that

∫
Ω
(∇W ·∇un+1+Wkun+1)dΩ+

∫
Γ

Whun+1dΓ =
∫

Ω
WF n+1dΩ+

∫
Γ

Wgn+1 dΓ , (3.14)

where u0 is a discretization of U0, and F n+1 and k are defined as

F n+1 = k
(

δtf(tn+1, x) + un
)

, k = 1
λδt

.

Our aim is to find an approximate solution un+1 of the weak form (3.14) using the

finite element method and GFEM.

3.3 Approximation of the weak form with FEM

and GFEM

To solve the weak form (3.14) with finite elements, the domain Ω is discretized into

finite number of elements. We assume that Ω is a polygon and generate a quasi-uniform

mesh Ω = ∪K. The edges of the elements K are denoted by E. The solution in each

element is then approximated by sum of the combination of nodal values and piecewise

linear shape functions, i.e., we look for un+1 of the form

un+1(x) =
M∑

j=1
Nj(x)un+1

j (x) (3.15)

where un+1
j are the unknown nodal solution values, Nj are the piecewise linear shape

functions, and M is the number of nodes in the element. The FEM is used to find

out the unknown nodal values. In GFEM the solution space is enriched with basis

functions that incorporates a priori knowledge about the problem in hand thus provide

better approximation as compared to conventional piecewise linear basis functions.

For GFEM solution we modify (3.15) and take nodal values un+1
j as combination of
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3.3 Approximation of the weak form with FEM and GFEM

enrichment functions, i.e.

un+1(x) =
M∑

j=1

Q∑
q=1

Aq
jNj(x)Gq(x) (3.16)

with

un+1
j =

Q∑
q=1

Aq
jGq(x) (3.17)

where Gq(x) are the enrichment functions and Aq
j are their amplitude at nodal points

of the domain. Q denotes the number of enrichment functions. In (3.16) the finite

element shape functions Nj(x), j = 1, ...M , constitutes the partition of unity, i.e.,∑M
j=1 Nj(x) = 1 for all x in Ω covered by the FE mesh. To solve (3.15), the FEM is used

to calculate the nodal solution values un+1
j , but now in (3.16) the system is solved for

new unknowns Aq
j instead of un+1

j . The literature reveals instances where enrichments

are applied locally [139–141, 143, 144], but for our proposed GFEM formulation, we

use multiple global functions of varying standard deviations. Unless otherwise stated,

for the majority of the computations in this thesis, the following global enrichment

functions as proposed in [126] are used.

Gq(x) = e
−
(

R0
C

)q

− e
−
(

Rc
C

)q

1 − e
−
(

Rc
C

)q , q = 1, 2, . . . , Q . (3.18)

Here R0 = |x − xc| is the distance from a fixed point xc to the point x. Rc and C are

constants which control the shape of the enrichment function Gq(x). Figure 3.1 depicts

the shape of Gq(x) with different values of q for 2D spatial domain. The global na-

ture of the enrichment functions ensures efficient solution in the whole computational

domain with very course mesh grids. A unique feature of these enrichment functions

is that the same functions are used to enrich the approximation space throughout the

solution time. The time variation of temperature fields is embedded in the definition

of the enrichment functions. This eliminates the need for updating enrichment func-

tions and the same enrichments are used at every time step. The more rapidly varying
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Fig. 3.1 Illustration of enrichment function Gq(x) for different values of q. This figure
is adapted from [126].

enrichment functions capture the solution at early time steps when the temperature

gradients are high, while flatter enrichment functions behave well in the far field as

well as when the solution approaches towards the steady state condition.

For simplicity, the multiplication of Gq(x) with the polynomial shape function Nj

is considered to be the new shape function P(j−1)Q+q

P(j−1)Q+q = Nj(x) Gq(x) (3.19)

or

P(j−1)Q+q = Nj
e

−
(

R0
C

)q

− e
−
(

Rc
C

)q

1 − e
−
(

Rc
C

)q (3.20)
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The derivatives of the new shape function are given as

∂P(j−1)Q+q

∂x

∂P(j−1)Q+q

∂y

∂P(j−1)Q+q

∂z


=
(

e
−
(

R0
C

)q

− e
−
(

Rc
C

)q)


∂Nj

∂x

∂Nj

∂y

∂Nj

∂z



− q

Cq
e

−
(

R0
C

)q

R
(q−2)
0 Nj


(x − xc)

(y − yc)

(z − zc)


1

1 − e
−
(

Rc
C

)q

(3.21)

Second derivatives of the new shape function are



∂2P(j−1)Q+q

∂x2

∂2P(j−1)Q+q

∂y2

∂2P(j−1)Q+q

∂z2


= Gq



∂2Nj

∂x2

∂2Nj

∂y2

∂2Nj

∂z2


− 2



∂Nj

∂x

∂Nj

∂y

∂Nj

∂z


q

Cq

e
−
(

R0
C

)q

1 − e
−
(

Rc
C

)q R(q−2)
o


(x − xc)

(y − yc)

(z − zc)



+ Nj
q

Cq

e
−
(

R0
C

)q

1 − e
−
(

Rc
C

)q

1 − q

Cq

R
(q−2)
0


(x − xc)2

(y − yc)2

(z − zc)2


+ q − 2

R2
o


(x − xc)2

(y − yc)2

(z − zc)2



 (3.22)

Second derivatives of the polynomial shape function Nj are zero so we have



∂2P(j−1)Q+q

∂x2

∂2P(j−1)Q+q

∂y2

∂2P(j−1)Q+q

∂z2


= −2



∂Nj

∂x

∂Nj

∂y

∂Nj

∂z


q

Cq

e
−
(

R0
C

)q

1 − e
−
(

Rc
C

)q R(q−2)
o


(x − xc)

(y − yc)

(z − zc)



+ Nj
q

Cq

e
−
(

R0
C

)q

1 − e
−
(

Rc
C

)q

1 − q

Cq

R
(q−2)
0


(x − xc)2

(y − yc)2

(z − zc)2


+ q − 2

R2
o


(x − xc)2

(y − yc)2

(z − zc)2



 (3.23)

The above derivatives are written for three dimensional case; for two dimensional

problems, the derivative with respect to the third variable z is simply eliminated. With
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3.4 Galerkin finite element and the global system of equations

W = Pr, the resulting GFEM discretization of the weak formulation (3.14) then reads:

Find un+1 of the form (3.16) such that u0 = u0 and for all r = 1, . . . , MQ

∫
Ω
(∇Pr ·∇un+1 +Prkun+1)dΩ+

∫
Γ

Prhun+1dΓ =
∫

Ω
PrF

n+1dΩ+
∫

Γ
Prg

n+1 dΓ . (3.24)

The functions Pr are written in terms of global coordinates but modulated locally as

they also include the local shape functions Nj. On the other hand, the global nature

of the enrichment functions makes the functions Pr highly efficient in modelling the

behaviour of the solution in time as well as in space. The choice of enrichment functions

is mainly motivated by the physical behaviour of the solution. However, their choice

can be optimized by accurately assessing the error of the numerical solution. The next

section gives a brief discussion on the selection of enrichment functions for specific

application.

3.4 Galerkin finite element and the global system

of equations

To solve the boundary value problem numerically, the standard Galerkin finite element

is used. Therefore the weight functions W in the weak form (3.14) are taken to be the

same as the shape functions; i.e.

W = Ni (3.25)

With the definition of approximate solution in each element (3.15), the weak form

(3.14) for FEM solution can be written as

∫
Ω

∇Ni · ∇(
M∑

j=1
Nju

n+1
j ) + Nik(

M∑
j=1

Nju
n+1
j )

 dΩ +
∫

Γ
Nih(

M∑
j=1

Nju
n+1
j )dΓ

=
∫

Ω
NiF

n+1dΩ +
∫

Γ
Nig

n+1 dΓ ,

(3.26)
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3.4 Galerkin finite element and the global system of equations

Taking the summation sign out

M∑
j=1

(∫
Ω
(∇Ni · ∇Nj + kNiNj)dΩ + h

∫
Γ

NiNj dΓ
)

un+1
j =

∫
Ω

NiF
n+1dΩ+

∫
Γ

Nig
n+1 dΓ ,

(3.27)

This equation can be written in the following compact matrix notation

([A] + k[B] + h[C]){u} = {F} + {G} (3.28)

or in a more compact form

[S]{u} = {F} + {G} (3.29)

Equation (3.29) is known as global equation system where {u} is the vector of unknown

nodal values with M entries, [S] = ([A] + k[B] + h[C]) is the global stiffness matrix

having M × M entries, given below

Sij =
(∫

Ω
(∇Ni · ∇Nj + kNiNj)dΩ + h

∫
Γ

NiNj dΓ
)

(3.30)

{F} is the force vector and {G} the boundary integral vector of size M × 1. The inte-

grals [S] and {F} are evaluated on the whole problem domain whereas the boundary

integral {G} is evaluated only on the boundaries of the domain. The entries of {F}

and {G} are given as

Fi =
∫

Ω
Ni F dΩ (3.31)

Gi =
∫

Γ
Ni g dΓ (3.32)

In case of GFEM, the global stiffness matrix [S] has MQ×MQ entries, and the vectors

{u}, {F} and {G} have MQ × 1 entries.
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3.5 Element matrices and numerical integration

As in most FEM computer codes, the global integrals are evaluated as a sum of the

integrals of individual elements, as

[S] =
K∑

e=1
[Se] (3.33)

{F} =
K∑

e=1
{F e} (3.34)

{G} =
Kb∑
e=1

{Ge} (3.35)

where [Se] is the element stiffness matrix and {F e} the element force vector with K

as the total number of elements in the domain. {Ge} is the element boundary integral

vector with Kb as the total number of elements on the boundaries. The vector {G} is

evaluated only on the boundaries of the domain. For two dimensional problems, the

boundaries of the domain will be line segments and the boundary integrals will be line

integrals. For three dimensional problems, they are area integrals. The entries of [Se],

{F e} and {Ge} are given as

Se
ij =

(∫
Ωe

(∇Ni · ∇Nj + kNiNj)dΩ + h
∫

Γe

NiNj dΓ
)

(3.36)

F e
i =

∫
Ωe

Ni F dΩ (3.37)

Ge
i =

∫
Γe

Ni g dΓ (3.38)

with Ωe and Γe as the domain and boundary of the element. The assembly of ele-

mental matrices leads to the global system of equations (3.29). The system is solved

by using the LDLT decomposition, where L is the lower triangular matrix with LT
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3.6 Calculation of FEM and GFEM results

Fig. 3.2 Flowchart for basic FEM/GFEM calculations.

as its transpose and D is a real diagonal matrix [35]. All the integrals are evaluated

numerically using Gauss-Legendre quadrature using 2 integration points in each direc-

tion for FEM solution whereas for GFEM solution 20 integration points are used in

each spatial direction. The higher integration points in the case of GFEM are used to

minimize the error from spatial discretization and to accurately capture the variation

of the exponential enrichment functions. A direct solver is used to solve the resulting

system of equations.

3.6 Calculation of FEM and GFEM results

The GFEM is considered as a sub-class of meshless methods where it not only keeps all

the advantages of a standard FEM but also allows to use any approximation functions

that best describe the physics of the problem at hand. The approximation spaces

in GFEM are built using the concept of partition of unity and known information
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SUBROUTINE SF3H8GAUSS (SF,ISF, K_W, NANGL, BETA, IBETA, X, Y, Z, 

  1              NUMSRCS, X0, Y0, Z0, SFN) 
 
  !SHAPE FUNCTION SUBROUTINE GAUSS  
   
  !‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  ! PURPOSE 
  !         Calculates the Gauss functions to enrich the  
  !     solution space. Multiple enrichment functions  
       !         are used in combination at each node. 
  ! 
  ! HISTORY 
  !      Written May 2014 
  ! 
  ! ARGUMENTS IN 
  !      SF     Shape function array 
  !      SFDL   Array of shape function derivatives 
  !             with respect to local co‐ordinates 
  !      ISF    First dimension of shape function array 
  !      ISFDL  First dimension of shape function derivative array 
  !      JSFDL  Second derivative of shape function derivative array 
  !      NANGL  Number of directions per node 
  !      BETA   Array of directions 
  !      IBETA  First dimension of BETA 
  !      X & Y  Global coordinates 
  ! 
  ! ARGUMENTS OUT 
  !      SFN    New shape functions 
  !********************************************************************* 
 
  DOUBLE PRECISION SFN 
  DOUBLE PRECISION X, Y, Z, X0(4), Y0(4),Z0(4), K_W, BETA 
  DOUBLE PRECISION  SF, EXP1, EXP2, EXP3, EXP,R0, Rc, C 
  INTEGER  ISF, I, NANGL, IBETA, K, J, NUMSRCS, DOFN, q 
  DIMENSION  SF(ISF), SFN(ISF), BETA(IBETA) 
     
      C=sqrt (1.0D0/1.195D0)         ! Constant used in the Gq(x) 
      Rc= sqrt (14.0D0/1.195D0)      ! Constant used in the Gq(x) 
 
      !Find the nodal degrees of freedom 
 
      DOFN = NANGL 
 
      ! Centre of the enrichment functions Gq(x) 
      X0(1)=1.0D0   
      Y0(1)=1.0D0 
      Z0(1)=1.0D0 
       
      !Form the element "NEW" shape functions 
  DO  I = 1,8 
    DO q = 1,DOFN        ! DOFN is the no of enrichment functions 
      DO  J = 1,NUMSRCS       ! NUMSRCS is the no of heat sources 
                   
                R0 = sqrt ((X‐X0(J))**2+(Y‐Y0(J))**2+(Z‐Z0(J))**2) 
                EXP1=  DEXP(‐1.0D0*R0**q*(1/C)**q) 
                EXP2 = DEXP(‐1.0D0*Rc**q*(1/C)**q) 
                EXP3 = 1.0D0 ‐ DEXP(‐1.0D0*Rc**q*(1/C)**q) 
                EXP = (EXP1 ‐ EXP2)/EXP3 
                                                  
      SFN(DOFN*(I‐1)+NUMSRCS*(q‐1)+J) = SF(I)*EXP 
                                   
      ENDDO 
    ENDDO 
      ENDDO 
      RETURN 
      END 
 
   !********************************************************************* 

 

Fig. 3.3 Subroutine for calculation of new shape functions for GFEM.
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    SUBROUTINE DSF3H8GAUSS (SF, ISF, SFDG, ISFDG, JSFDG, K_W, 
     1    NANGL, BETA, IBETA, X, Y,Z, NUMSRCS, X0, Y0,Z0, SFDGN,SFDGN2) 
 
   !DERIVATIVES OF new SHAPE FUNCTIONS 
   !‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
   ! PURPOSE 
   !        Calculates the derivatives of the Gauss functions  
   ! ARGUMENTS IN 
   !      SF     Shape function array 
   !      SFDG   Array of shape function derivatives 
   !             with respect to global co‐ordinates 
   !      ISFDG  First dimension of SFDG 
   !      JSFDG  Second dimension of SFDG 
   !      NANGL  Number of directions per node 
   !      BETA   Array of directions 
   !      IBETA  First dimension of BETA 
   !      X & Y  Global coordinates 
   ! ARGUMENTS OUT 
   !      SFDGN  Global derivatives of new shape functions 
   !********************************************************************* 
 
     DOUBLE PRECISION SFDGN, SFDGN2, C, Rc, R0, SF, SFDG, EXP1, EXP2, EXP3, EXP4, EXP5 
     DOUBLE PRECISION X, Y, X0(4), Y0(4),Z0(4), Z, K_W, BETA 
     DOUBLE PRECISION EXP4x1, EXP4x2, EXP4y1, EXP4y2, EXP4z1, EXP4z2 
     INTEGER          ISF, ISFDG, JSFDG, I, NANGL, IBETA, J, K, NUMSRCS, DOFN, q         
     DIMENSION  SF(ISF), SFDG(ISFDG,JSFDG), SFDGN(ISFDG,JSFDG), BETA(IBETA), SFDGN2(ISFDG,JSFDG) 
             
      C=sqrt (1.0D0/1.195D0) 
      Rc= sqrt (14.0D0/1.195D0) 
      X0(1)=1.0D0 
      Y0(1)=1.0D0 
      Z0(1)=1.0D0 
      !Find the nodal degrees of freedom 
      DOFN = NANGL 
       DO 20 I = 1,8 
    DO 30 q = 1,DOFN 
      DO 40 J = 1,NUMSRCS 
                R0 =   sqrt ((X‐X0(J))**2+(Y‐Y0(J))**2+(Z‐Z0(J))**2) 
                EXP1=  DEXP(‐1.0D0*R0**q*(1/C)**q) 
                EXP2 = DEXP(‐1.0D0*Rc**q*(1/C)**q) 
                EXP3 = 1.0D0 ‐ EXP2 
                EXP4 = (EXP1 ‐ EXP2)/EXP3 
                EXP5=  (‐1.0D0)*(EXP1/EXP3)*q*(1/C)**q 
                !                 
                EXP4x1= EXP5 *(R0)**(q‐2)*(X‐X0(J)) 
                EXP4y1= EXP5 *(R0)**(q‐2)*(Y‐Y0(J)) 
                EXP4z1= EXP5 *(R0)**(q‐2)*(Z‐Z0(J)) 
                !                             
                EXP4x2=EXP5* R0**(q‐2)+ (q‐2)*R0**(q‐4)* (X‐X0(J))**2 
                EXP4y2=EXP5* R0**(q‐2)+ (q‐2)*R0**(q‐4)* (Y‐Y0(J))**2 
                EXP4z2=EXP5* R0**(q‐2)+ (q‐2)*R0**(q‐4)* (Z‐Z0(J))**2 
        
      !************* 1st derivatives of new shape functions ********       
      SFDGN(1,DOFN*(I‐1)+NUMSRCS*(q‐1)+J)=SFDG(1,I)*EXP4 + SF(I)*EXP4x1   
      SFDGN(2,DOFN*(I‐1)+NUMSRCS*(q‐1)+J)=SFDG(2,I)*EXP4 + SF(I)*EXP4y1 
      SFDGN(3,DOFN*(I‐1)+NUMSRCS*(q‐1)+J)=SFDG(3,I)*EXP4 + SF(I)*EXP4z1 
       
      !************* Second derivatives of new shape functions ********       
      SFDGN2(1,DOFN*(I‐1)+NUMSRCS*(q‐1)+J) = 2.0D0*SFDG(1,I)*EXP4x1+SF(I)*EXP4x2                 
      SFDGN2(2,DOFN*(I‐1)+NUMSRCS*(q‐1)+J) = 2.0D0*SFDG(2,I)*EXP4y1+SF(I)*EXP4y2  
      SFDGN2(3,DOFN*(I‐1)+NUMSRCS*(q‐1)+J) = 2.0D0*SFDG(3,I)*EXP4z1+SF(I)*EXP4z2 
 
40    CONTINUE 
30    CONTINUE 
20    CONTINUE 
      RETURN 
      END 

 

Fig. 3.4 Subroutine for calculation of derivatives of new shape functions for GFEM.
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about the solution of the problem to be solved. One can say that GFEM generalizes

or extends the possibilities of standard FEM. Strouboulis et al. [177] also described

GFEM as an extension of the finite element method. The new shape function P(j−1)Q+q

defined by (3.19), is the critical ingredient of this method. In FEM,the solution space

is approximated with standard polynomial shape functions Nj(x) , while in GFEM

new approximation functions defined by (3.19) are used. A basic methodology used for

of any FEM calculations is illustrated in Figure 3.2. In this current work a self-written

FORTRAN code is used that can execute both FEM and GFEM calculations where the

main difference is the calculation of the approximate ansatz functions. The shaded

box in Figure 3.2 is the main area where new enrichment functions for GFEM are

calculated. The subroutines for calculating new shape functions and their derivatives

are given respectively, in the Figure 3.3 and Figure 3.4.

3.7 Recap of 2D results

To show the performance of the proposed GFEM and to compare its efficiency with

the standard FEM, we recapitulate some numerical results for problems in 2D do-

mains. Two different numerical examples are considered to highlight the benefits of

the proposed GFEM in comparison with FEM. As a first example we take a transient

heat diffusion problem defined by equations (3.1) – (3.3) with a known analytical so-

lution. The second example considers a heat transfer problem in an L-shape domain

with multiple heat sources. We use the standard FEM and GFEM approaches to

solve the weak formulation (3.14). To compute the solution numerically, we used a

3 noded triangular mesh with piecewise bilinear shape functions. In case of GFEM,

the approximate solution space is enriched with various Gaussian functions defined

by (3.18). All the computations are performed on Intel® Core™ i5-6200 CPU @ 2.30

GHz processor speed with 12 GB installed RAM. The codes are not parallel, that is,

the computations are performed sequentially.
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3.7.1 Solution of a problem with a known analytical solution

To assess the accuracy of GFEM, we take a heat diffusion problem considered in [126]

as our first test example. The problem is considered in a square domain Ω = [0, 2]2

with a known analytical solution. We solve the transient heat diffusion problem with

source term f(t, x), the boundary function g(t, x) and the initial condition u0(x) such

that the exact solution of (3.1)–(3.3) is given by

U(x, t) = x20(2 − x)20y20(2 − y)20(1 − e−λt) (3.39)

where x = (x, y)T are the spatial coordinates, t is the time variable and λ is the heat

diffusion coefficient. The errors in both FEM and GFEM solutions are quantified by

calculating the relative L2 error (ε) defined as

ε = ||U − u||L2(Ω)

||U ||L2(Ω)
× 100 (3.40)

where u and U are the numerical and exact solutions, respectively. For all the compu-

tations, the time step value is taken to be ∆t = 0.1 with a total computation time of

t = 10. The convection heat transfer coefficient is set at h=1 and the heat diffusion

coefficient λ is selected to be 0.1.

Th purpose of this example problem is to compare the accuracy of the GFEM

with the standard FEM. To calculate the GFEM solution, the approximation space is

enriched by different number of enrichment functions Q = 5, 6, ..8. The terminology

GFEM5Enr will be used in the following discussion to refer to the GFEM solution with

Q = 5. Similarly GFEM6Enr, GFEM7Enr and GFEM8Enr are the GFEM solutions

with Q = 6, 7 and 8, respectively. To demonstrate the convergence of the FEM and

GFEM solutions, the h−refinement strategy is used. Figure 3.5 shows the convergence

of GFEM solutions with different number of enrichment functions Q, at three different

simulation times, t = 2, 5, 10. At t = 10, all the solutions converge to a relative error

of ε = 0.09%.
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t = 2 t = 5 t = 10

Fig. 3.5 Convergence history of relative error ε for GFEM solutions

t = 2 t = 5 t = 10

Fig. 3.6 Comparison of relative error ε for FEM and GFEM solutions with
h−refinement.

Figure 3.6 compares the convergence of the FEM solution with GFEM6Enr. It is

clear from this figure that GFEM converges more rapidly than the FEM solution. To

reach a converged solution, GFEM uses fewer DOFs as compared to FEM. Figure 3.7

shows the finite element meshes for converged solutions. To achieve a relative error

of ε = 0.09%, the FEM solution needed 58081 DOFs, while the same was achieved

with only 486 DOFs in case of GFEM. The FEM solution took 87.16s to build the

linear system at the first time step, and another 9.04s to solve the resulting system of

equations. For GFEM, the corresponding times are only 0.78s and 0.016s, respectively.

Figure 3.8 shows the temperature distributions at the three specified simulation

times for exact, FEM and GFEM solutions. Both FEM and GFEM solutions show

temperature profiles very similar to the exact solution, but the DOFs used in case
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FEM (115200 elements, 58081 DOFs ) GFEM (128 elements, 486 DOFs)

Fig. 3.7 Finite element meshes with converged solutions.

of GFEM are only a small fraction of those used for the FEM solution. A similar

problem in 3D domain is considered in the next chapter with detailed discussion on

different numerical aspects of GFEM solution. The next example shows the working

of the GFEM for a problem with multiple heat sources.

3.7.2 Solution of a problem with an L-shape domain having

multiple heat sources

The second problem considers the heat diffusion problem governed by (3.1) – (3.3) in

an L-shape domain having multiple heat sources at different locations of the domain.

Figure 3.9 illustrates the domain configuration with three embedded heat sources

defined as;

f =



2000 if (x, y) ∈ [0.4, 0.4] × [0.6, 0.6]

1800 if (x, y) ∈ [1.4, 0.4] × [1.6, 0.6]

1600 if (x, y) ∈ [0.4, 1.4] × [0.6, 1.6]

0 elsewhere


(3.41)
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Fig. 3.8 Temperature distribution in the domain for exact (left), FEM (middle) and
GFEM solutions (right). From top to bottom, the simulation times are t = 2, 5, and
10.

All the quantities are measured in SI units. Initial temperature of the domain and

the boundary source are set at u0 = 300 and g = 300. The heat diffusion coefficient

and convection heat transfer coefficient for the problem are selected to be λ = 0.1

and h = 1, respectively. The time step value is fixed at ∆t = 0.1 with total solution

time, t = 10. The numerical results are presented at different simulation times, t =

1, 5, 10, 20.

The purpose of this example problem is to compare the accuracy of the proposed

GFEM with the standard FEM for non-symmetric heat sources. Due to the non-
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3.7 Recap of 2D results

Fig. 3.9 Configuration of the L-shape domain with multiple heat sources, heat source
1 (�), heat source 2 (�), heat source 3 (�).

symmetric nature of heat sources, the symmetry of the temperature field is not pre-

served, and pose a relatively difficult numerical problem to be handled. Besides, the

transient nature of the problem make it more challenging and a good numerical accu-

racy is required to capture the steep temperature gradients.

To compare the numerical results of the GFEM and standard FEM, we first com-

pute a reference FEM solution (FEMR) with a fine mesh. The FEMR solution is used

as a benchmark against which the solutions obtained with GFEM and the standard

FEM are compared. Figure 3.10 shows the mesh grids used for the FEMR, FEM and

GFEM solutions. FEMR solution is obtained with a fine mesh having 18855 elements

and 9564 nodes. The mesh grids for FEM and GFEM are selected such that both

have comparable DOFs. With the selected meshes, FEM solution is calculated using

856 DOFs, whereas GFEM solution is computed with 828 DOFs using six enrichment

functions. To capture the temperature gradients at three different heat sources, each
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FEMR (9564 nodes, 18855 elements)

FEM (856 nodes, 1630 elements) GFEM (138 nodes, 251 elements)

Fig. 3.10 Finite element meshes for the L-shape domain with multiple heat sources.
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enrichment is taken as the combination of three functions, each centred at a different

heat source.

Figure 3.11 shows the temperature distributions obtained using FEMR, FEM and

GFEM solutions at four different computation times. The displayed plots show that

for the considered thermal conditions, very smooth temperature profiles are obtained

with GFEM similar to those obtained with FEMR. The FEM on the other hand shows

comparatively coarse profiles. This ascertains that GFEM with a very coarse mesh

was able to capture the same solution dynamics as those obtained on a very fine mesh

FEMR solution. To capture the sharp thermal gradients, GFEM uses only 828 DOFs

whereas the FEMR solution is obtained with 9564 TOTDOF. The FEM solution,

although using comparable number of DOFs, was not able to capture the solution

as accurately as GFEM. The figures show that the temperature of the medium is

increasing continuously as all the three heat sources are dissipating heat for whole

of the simulation time. The temperature of the domain is maximum at the centre

of heat source 1, followed by heat source 2 and heat source 3 respectively. The heat

moves towards the boundaries where the temperature is minimum. Being the highest

of all the three sources, maximum heat is dissipated by heat source 1 and maximum

boundary temperature is observed at the boundaries near this heat source, followed

by boundaries which are near heat source 2, and minimum at boundaries near heat

source 3. Figure 3.12 shows the temperature profiles at different simulation times as

3D surfaces. All the plots are drawn on the same contour level for easy visualization

of the time evolution of the temperatures.

To quantify the accuracy of GFEM, we compare in Figure 3.13 the absolute dif-

ferences in temperatures along a horizontal centre line between the FEMR and FEM

solutions (top four figures) and between FEMR and GFEM solutions (bottom four fig-

ures) at the selected simulation times. The horizontal line starts from [0,0.5], passes

through the centres of heat sources 1 and 2 and ends at [2,0.5]. It is clear from the

plots that the differences in temperatures are much higher in case FEM as compared

to GFEM. The peaks are observed around the centres of the heat sources with the
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3.7 Recap of 2D results

(a) (b)

Fig. 3.15 Time evolution of (a) maximum temperatures and (b) difference in maximum
temperatures between FEMR and FEM, and FEMR and GFEM.

maximum value observed around centre of heat source 1. In case of FEM solution, the

maximum difference reaches to a value as high as 60 which in the case of GFEM stays

around 6. An important observation made from this figure is that as the time passes,

the difference in temperatures in case of FEM solution increases, which in the case of

GFEM almost stays at the same level. This suggests that in case of FEM solution,

the difference in temperatures will increase further with extended simulation times.

For lengthy simulation times, this offers another advantage of GFEM over FEM. A

similar set of results with same observations is plotted in Figure 3.14 along the vertical

centre line. The vertical line starts from [0.5,0], passes through heat sources 1 and 3

and ends at [0.5,2].

To further quantify the results of this example problem, in Figure 3.15(a) we plot

the time evolution of maximum temperatures obtained with FEMR, FEM and GFEM

solutions. Figure 3.15(b) plots the absolute differences in the maximum temperatures

between FEMR and FEM, and FEMR and GFEM. The results shown in these figures

further strengthens the claim made previously and the behaviour described earlier be-

comes more evident. Figure 3.15(a) depicts that the maximum domain temperatures

obtained with GFEM are almost identical with FEMR. Both the curves are almost

overlapping. Temperatures obtained with FEM shows comparably higher differences

and the gap between FEM and FEMR curves increases as time marches. These dif-
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ferences can be clearly seen in Figure 3.15(b). The absolute difference in maximum

temperatures between FEMR and FEM starts from a value of around 15 at t = 0.2

and reaches to around 34 at t = 20 which in case of GFEM stays between 3.5 and 4.0

for whole of the simulation time. As the curves suggest, the differences in the case

of FEM solution are expected to grow higher with extended simulation times whereas

negligible variations are expected in the case of GFEM.

3.8 Overview

In this Chapter, the initial boundary value problem is presented with its variational

formulation form to be solved. Both FEM and GFEM approximate solutions are dis-

cussed with related computational aspects including numerical integration and solution

procedure. The choice of the enrichment functions was also discussed emphasizing on

the fact that they are time-independent and hence will lead to huge savings in the

computational effort. To show the working of the GFEM, some numerical results for

problems in 2D domains are presented and the benefits of GFEM are highlighted. It is

shown that for a comparable accuracy, GFEM requires fewer DOFs than the standard

FEM.

In the next Chapter, GFEM will be extended to solve transient heat transfer problems

in three dimensions.
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Chapter 4

GFEM for three-dimensional

transient heat diffusion problems

4.1 Introduction

Real world problems are three dimensional. Although in some cases the problem may

be simplified with suitable assumptions to treat it as a 2D or even 1D, but in general

this simplification is not possible, and hence the 3D approach is necessary to treat the

problem. This may be due to the complexity of geometry that cannot be simplified

enough to take advantage of the symmetry or may be due to the non-symmetric loading

effect or boundary conditions.

In recent years, the simulation of complex 3D problems is becoming more and more

common in practice. Although the computer architecture and design have become

much more sophisticated, and more advanced computing facilities are available in

recent times, the solution of most 3D practical problems using classical finite element

methods is still complex and computationally intensive.

This chapter is dedicated to extend GFEM to three-dimensional transient heat

diffusion problems. The GFEM has been proved to provide efficient solution for 2D

transient heat diffusion problems [126]. In this work, we exploit its efficiency for the

solution of 3D transient heat diffusion problems with steep gradient. As in the 2D
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4.2 Weak formulation of the 3D boundary value problem

case, multiple enrichment functions are used to capture the sharp variation of the

temperature. As explicated in the previous chapter, the enrichment functions are time

independent, therefore the system matrix is assembled only at the first time step and

retained for subsequent time steps. Only the right hand side of the linear system of

equations is updated for every time step, which is expected to significantly reduce the

computational cost in 3D.

Since the theory is practically similar to the 2D case, it is not repeated in this

Chapter. However, key computational aspects related to the 3D geometry will be

discussed. To assess the performance of the GFEM approach, three different test

problems are considered.

4.2 Weak formulation of the 3D boundary value

problem

Given an open bounded domain Ω ⊂ R3, we are interested to numerically solve the

transient heat diffusion problem defined by expressions (3.1)−(3.3). The weak formu-

lation (3.14) is rewritten as

∫
Ω
(∇W ·∇un+1 +Wkun+1)dΩ+

∫
Γ

Whun+1dΓ =
∫

Ω
WF n+1dΩ+

∫
Γ

Wgn+1 dΓ , (4.1)

where Ω is a 3D domain and Γ represents a surface on the boundary. F n+1 and k in

the above equation are defined as

F n+1 = k
(

δtf(tn+1, x) + un
)

, k = 1
λδt

.

here x = (x, y, z)T are the spatial coordinates, t is the time variable, λ is the heat

diffusion coefficient, and f(t, x) represents the effects of internal sources/sinks. The

weak formulation (4.1) is solved for the unknown nodal temperatures un+1 using the

standard FEM and GFEM.
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4.3 Numerical experiments

This section investigates the performance of the proposed GFEM for three dimensional

transient heat diffusion problem defined by (3.1) - (3.3). We use the classical FEM and

GFEM approaches to solve the weak formulation (4.1). Three different test problems

are considered to assess the performance of the proposed GFEM algorithm and to

compare its efficiency with the standard FEM approach. To compute the solution nu-

merically, we used an 8 noded hexahedral mesh with piecewise linear shape functions.

All integrals over Ω are evaluated numerically using a Gauss quadrature with 2 inte-

gration points in each direction for FEM solution whereas for GFEM 20 integration

points are used in each spatial direction. A direct solver is used to solve the resulting

system of equations. All the computations are performed on Intel® Xeon® ES-1620

CPU @ 3.50 GHz processor speed with 32 GB installed RAM. The codes are not

parallel and only consider the default optimization of the computer.

4.3.1 Approximation of a problem with a known exact solu-

tion

To asses the accuracy of the method, we take a problem with a known exact solution

as our first example problem. We consider a diffusion problem in 3D domain defined

by Ω = [0, 2]3. For the proposed problem, the reaction term f(t, x), the boundary

function g(t, x) and the initial condition u0(x) are chosen such that the exact solution

is given by

U(x, t) = x20(2 − x)20y20(2 − y)20z20(2 − z)20(1 − e−λt) (4.2)

where t is the time variable, x = (x, y, z)T are the spatial coordinates, and λ is the

heat diffusion coefficient. As the exact solution is known, we can quantify the error in
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both FEM and GFEM by calculating the relative L2 error (ε) defined as

ε = ||U − u||L2(Ω)

||U ||L2(Ω)
× 100 (4.3)

where u and U are the numerical and exact solutions, respectively.

To calculate the GFEM solution, the approximation space is enriched by Gaussian

functions of varying standard deviations as defined by (3.18). Both for FEM and

GFEM computations, we use the parameter h = 1 and the time step value ∆t = 0.001

with a total solution time of t = 0.1. The heat diffusion coefficient λ is selected to be

0.01 for a first set of results. Another set of results is presented with λ = 0.1.

In order to get a converged solution, we used an h−refinement procedure for the

FEM, while for GFEM both h and q−refinements are considered. To solve the problem

with FEM, we start with a mesh grid of 1000 elements with a total of 1331 degrees

of freedom (DOFs), which yields an L2 error of 8.04% at t = 0.1. To improve the

results, the mesh is refined gradually. Figure 4.1 shows the meshes used for the FEM

solutions.

Table 4.1 Variation of L2 error with h−refinement for FEM solutions at t = 0.1.

Elements DOFs ε%

λ = 0.01 λ = 0.1

1000 1331 8.04 9.76
8000 9261 1.10 2.13
15625 17576 0.56 1.31
27000 29791 0.33 0.89
64000 68921 0.15 0.49
125000 132651 0.08 0.31
216000 226981 0.05 0.21

Table 4.1 shows the L2 error for each mesh along with the total number of DOFs.

The first refinement to 8000 elements decreases the L2 error to 1.10%. The total

DOFs (TOTDOF) are increased to 9261. Subsequent mesh refinements improve the
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1000 elements,
1331 nodes

8000 elements,
9261 nodes

15625 elements,
17576 nodes

27000 elements,
29791 nodes

64000 elements,
68921 nodes

125000 elements,
132651 nodes
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216000 elements,
226981 nodes

Fig. 4.1 3D meshes used for FEM solutions.

results further until we get an L2 error of 0.08% with 125000 elements and 132651

TOTDOF. A final refinement of 216000 elements reduces the error to 0.05% with

226981 TOTDOF. A similar set of results is presented for λ = 0.1 in the last column

of Table 4.1. For λ = 0.1, the L2 error starts from 9.76% for 1000 elements and reduces

to 0.22% with the very fine mesh of 216000 elements. The reason for the higher L2

error for λ = 0.1 is that the rate of diffusion increases by increasing the value of λ, and

the heat travels to more distant areas of the domain for the same computation time.

For GFEM solution, we start with a very coarse mesh of 64 elements in the 3D

cube and enrich the solution space with different numbers of enrichment functions Q

= 2,3...6. We then refine the mesh to a total of 216 elements in the whole domain,

with 6 elements in each direction. Again we consider the same enrichment functions

Q = 2,3...6. A third refinement of 512 elements with Q = 2,3...5 is also considered
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64 elements,
125 nodes

216 elements,
343 nodes

512 elements,
729 nodes

Fig. 4.2 3D meshes used for the GFEM solutions.

to improve the results further. In the coming discussion an analysis with 64 elements

will be referred as GFEM1, and with 216 and 512 elements as GFEM2 and GFEM3,

respectively. As for the FEM solution, the results are presented for λ = 0.01 and 0.1.

Figure 4.2 shows the meshes used for GFEM solutions.

Table 4.2 shows the variation of L2 error for each of these computations when the

number of enrichment functions are increased using λ = 0.01. For GFEM1, we get an

L2 error of 9.38% with 2 enrichment functions which reduces to 1.06% with Q = 6. To

improve the results, the mesh is refined to 216 elements. With Q = 2, the L2 error is

5.33% which reduces to 0.43% with 6 enrichment functions. With 512 elements, the L2

error decreases further to 0.17% with Q = 5. Comparison of the results of GFEM1,

GFEM2 and GFEM3 show that using a higher number of enrichment functions we
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Table 4.2 Variation of L2 error with different mesh grids and q−refinement for the
GFEM solutions at t = 0.1 using λ=0.01.

GFEM1 GFEM2 GFEM3

Q DOFs ε% DOFs ε% DOFs ε%

2 250 9.38 686 5.33 1458 2.09
3 375 5.52 1029 2.40 2187 0.97
4 500 2.28 1372 1.39 2916 0.43
5 625 1.47 1715 0.65 3645 0.17
6 750 1.06 2058 0.43 - -

can achieve relatively lower error with less DOFs. For example, GFEM2 with Q = 4

gives an L2 error of 1.39% with 1372 TOTDOF. With GFEM1 we get a better error of

1.06% using 6 enrichment functions and 750 TOTDOF, giving a saving of 622 DOFs.

Similarly, with Q = 4 and 2916 TOTDOF in GFEM3, the L2 error is 0.43%, and

in case of GFEM2, the same error is achieved with 2058 TOTDOF using Q = 6,

resulting in a saving of 858 DOFs. This suggests to use a higher number of enrichment

functions in GFEM rather than refined meshes. One problem that limits the number

of enrichment functions is the conditioning of the system matrix. The conditioning

of the system matrix deteriorates very quickly when higher numbers of enrichment

functions are used. In their work, Mohamed et al. [126] also reported this problem.

The same was observed in [88] as well.

In Table 4.3 are given the errors for GFEM computations using λ = 0.1. In contrast

to the observation made in case of FEM, the diffusion of heat to the larger area of the

domain does not affect the L2 error considerably for the GFEM solution. The global

nature of enrichments ensure to efficiently capture the solution in the whole domain. A

very small change in the solution accuracy is observed by changing the value of λ from

0.01 to 0.1. The minimum L2 error for GFEM3 using Q = 5 increases from 0.17% to

0.19% only. Similarly for GFEM2 using Q = 6, the error slightly increases from 0.43%

to 0.47%. For GFEM1 with 6 enrichment functions, the error increases from 1.06% to

1.45%.
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Table 4.3 Variation of L2 error with different mesh grids and q−refinement for the
GFEM solutions at t = 0.1 using λ=0.1.

GFEM1 GFEM2 GFEM3

Q DOFs ε% DOFs ε% DOFs ε%

2 250 9.74 686 5.59 1458 2.26
3 375 5.88 1029 2.56 2187 1.04
4 500 2.60 1372 1.53 2916 0.47
5 625 1.80 1715 0.71 3645 0.19
6 750 1.45 2058 0.47 - -

Comparison of the GFEM results with FEM shows that with FEM we get a max-

imum accuracy of 0.05% with 226981 DOFs for λ = 0.01. With GFEM we get a

minimum L2 error of 0.17% with only 3645 DOFs. With FEM a comparable accuracy

of 0.15% is achieved with 68921 DOFs. For FEM, this accuracy is achieved with a

very fine mesh of 64000 elements, while in case of GFEM we use a very coarse mesh

of only 512 elements with Q = 5. For λ = 0.1, the comparison of GFEM and FEM

results confirms the above observation. With FEM, the maximum achievable accu-

racy is 0.21% with a very fine mesh of 216000 elements and 226981 TOTDOF. In

comparison, GFEM gives an accuracy of 0.19% with only 3645 TOTDOF resulting in

a huge reduction in the total DOFs. The TOTDOF in the case of GFEM is less than

2% of FEM, resulting in a saving of more than 98% in the total DOFs. To process

216000 elements and build the linear system at the first time step, FEM simulation

took 228589s (63 hours, 29 min and 49 seconds), and another 5818s (1 hour, 36 min

and 58 seconds) to solve the resulting system of equations. The corresponding times

for GFEM to process 512 elements with 5 enrichment functions are 883.5s (14 min and

43.5 seconds) and 1.21s to solve the system of equations. Also, to update the right

hand side of the system of equations and to recalculate the solution at subsequent time

steps, FEM took on average 340s at every step. For GFEM the corresponding time

is only 42s. As iterated previously, the enrichment functions are time independent,

therefore the system matrix is assembled only at the first time step and retained at
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t =0.01 t =0.05 t =0.1

Fig. 4.3 L2 error for FEM and GFEM solutions with h−refinement for FEM and
q−refinement for GFEM using λ = 0.01.

t =0.01 t =0.05 t =0.1

Fig. 4.4 L2 error for FEM and GFEM solutions with h−refinement for FEM and
q−refinement for GFEM using λ = 0.1.

the subsequent time steps. As a result the time saving at the subsequent time steps

is also obvious in case of GFEM. The is to be emphasized that despite the fact that

GFEM uses high number of integration points, yet the small number of elements with

GFEM makes the time needed to assemble the system matrix much smaller than that

with the FEM. Because the system matrix in case of GFEM is much smaller than the

FEM, the CPU time for the solution of GFEM system is only a small fraction of the

FEM.

Figure 4.3 compares the L2 error both for FEM and GFEM at different time

intervals using λ = 0.01, with h−refinement for FEM and q−refinement for GFEM.
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t =0.01 t =0.05 t =0.1

Fig. 4.5 L2 error for FEM and GFEM solutions with h−refinement using λ = 0.01.

t =0.01 t =0.05 t =0.1

Fig. 4.6 L2 error for FEM and GFEM solutions with h−refinement using λ = 0.1.

In the figure, the DOFs are plotted on the abscissa while on the ordinate the L2 error

is plotted on a logarithmic scale. It is clear from the graphs that the GFEM solution

converges much faster than that of FEM and gives a better L2 error with less DOFs. A

similar comparison is presented in Figure 4.4 for λ = 0.1.

Another comparison using h−refinement for both FEM and GFEM results is given

in Figure 4.5 and Figure 4.6 using λ = 0.01 and 0.1, respectively. GFEM2Enr repre-

sents the GFEM results using 2 enrichment functions and with three different mesh

densities of 64, 216 and 512 elements. Similarly, GFEM3Enr, GFEM4Enr, GFEM5Enr

and GFEM6Enr are the GFEM computations with 3, 4, 5 and 6 enrichment functions,

respectively. The FEM results in Figure 4.5, and Figure 4.6 are the same as in Fig-

ure 4.3, and Figure 4.4, but GFEM results are now presented with h−refinement which
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previously were presented with q−refinement.

Figure 4.7 and Figure 4.8 show the temperature distribution at different simulation

times for the exact, FEM and GFEM solutions using λ = 0.01 and 0.1, respectively. For

GFEM simulations, the presented plots are obtained with 216 elements using 4 enrich-

ment functions. For FEM the results are presented using 216000 elements. Both FEM

and GFEM results show the same temperature trends as that of the exact solution but

in the case of GFEM, the total DOFs used to get the solution is only a small fraction

of that used to obtain the FEM solution.

4.3.2 Approximation of a problem with a cubic domain

The second example considers a transient heat diffusion problem in a 3D domain Ω =

[0, 1]3 with a heat source in the central part. A cross section through the middle of

the domain is shown in Figure 4.9. For the central part, x ∈ [0.4, 0.6]3, the source

dissipates heat at a constant rate of f = 2000K/s and is zero in the rest of the

domain. The total simulation time is taken to be t = 0.4s with a time step value of

∆t = 0.001s. The source dissipates heat for half of the simulation time, i.e., from

t = 0 to t = 0.2s, and then is switched off and the medium is allowed to cool down

for the remaining half of the simulation. The initial temperature uo of the domain and

the boundary source g, of expressions (3.2) and (3.3), are set to be 300K and 300K/s,

respectively. The convection heat transfer coefficient on the boundaries is taken to be

h= 1kg/Ks2, and the diffusion heat transfer coefficient for the medium is assumed to

be λ = 0.01kgm/Ks2. Another more challenging case with λ = 0.001kgm/Ks2 is also

considered to show the usefulness of the proposed GFEM approach.

Example problem 2 considers a problem with sharp local gradients as the heat

source is located only in a concentrated area that becomes zero immediately in the

adjoining elements and the rest of the domain. Also the source dissipates heat for

half of the computation time and turns off suddenly after t = 0.2s. For the considered

problem, results are compared for GFEM and the standard FEM. For GFEM we use a

coarse mesh of 125 elements with 5 enrichment functions, whereas the standard FEM
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Fig. 4.7 Temperature distribution in the middle of the domain for exact (left column),
FEM (centre column) and GFEM solutions (right column) at t = 0.01 (top row),
t = 0.05 (middle row) and t = 0.1 (bottom row). The simulations are obtained
using λ = 0.01.

solution is obtained with 1000 elements. Figure 4.10 shows the mesh grids used for

FEM and GFEM solutions. The mesh grids are chosen such that both GFEM and

FEM have comparable DOFs. For GFEM the TOTDOF is 1080, whereas in case of

FEM the solution is obtained with 1331 TOTDOF. In order to calculate the errors of

the GFEM and FEM solutions, a reference FEM solution (FEMR) on a very fine mesh
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Fig. 4.8 Temperature distribution in the middle of the domain for exact (left column),
FEM (centre column) and GFEM solutions (right column) at t = 0.01 (top row),
t = 0.05 (middle row) and t = 0.1 (bottom row). The simulations are obtained
using λ = 0.1.

is used. Having FEMR as a reference solution, the accuracy of GFEM is compared

against the FEM solution.

To obtain a converged reference solution, we consider h−refinements. To start with,

the domain is meshed with 1000 elements, having 10 elements in each spatial direction.

The meshed is then refined to 20 elements in each direction, with 8000 total elements
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Fig. 4.9 x-section of the 3D domain for Example problem 2 with a heat source in the
centre.

(a) FEM mesh (b) GFEM mesh

Fig. 4.10 3D meshes used for the computation of Example problem 2
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in the domain. Further refinements of 30, 40, 50 and 60 elements in each direction are

considered with a total of 27000, 64000, 125000 and 216000 elements, respectively. To

determine that the solution has converged, the maximum temperature in the centre of

the domain is calculated with each mesh refinement. Figure 4.11 shows these results at

three different simulation times, i.e., at t = 0.05s, 0.1s and 0.2s. Results are presented

for both values of the diffusion coefficient, i.e., λ = 0.01 and 0.001kgm/Ks2. The

results show that with each refinement, the temperature in the centre of the domain

varies and we get almost converged solution with 216000 elements. At t = 0.2s the

maximum temperature using λ = 0.01kgm/Ks2 is approximately 791K with 1000

elements which converges to an approximate value of 661K with 216000 elements. At

the same simulation time, for λ = 0.001kgm/Ks2, we get a maximum temperature of

1065K with the coarse mesh of 1000 elements, which converges to 700K with mesh

refinement. At all simulation times, the results vary more smoothly with the mesh

refinement for λ = 0.01 as compared to λ = 0.001kgm/Ks2.

As another indicator that the solution has converged, a cross section in the middle

of the domain is considered, and the solution along the centre line of the cross section

is calculated. Figure 4.12 shows the temperature distribution along the centre line for

different mesh refinements using λ = 0.01kgm/Ks2. In the figure, FEM1000 represents

the FEM solution with a total of 1000 elements while FEM8000 represents a solution

with a total of 8000 elements in the whole domain. Similarly are the results with 27000,

64000, 125000 and 216000 elements. From the figure, it is evident that the temperature

profile changes with every refinement until we get almost similar profiles for 125000

and 216000 elements suggesting that the solution has converged. Figure 4.12 shows

the results of all these refinements for two different simulation times, i.e., t = 0.05s

and 0.1s. At both of the simulation times, the results of all the refinements are

presented on one graph. Figure 4.13 presents these profiles on separate graphs to show

the smoothness of each profile individually with every mesh refinement. The results

are shown for only one simulation time t = 0.05s in this figure. Another set of similar

results for λ = 0.001kgm/Ks2 is presented in Figure 4.14 and Figure 4.15. Again the
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(a) λ=0.01 (b) λ=0.001

Fig. 4.11 Maximum temperature in the middle of the domain with h−refinement.

heat dissipates more smoothly for λ = 0.01kgm/Ks2 as compared to results obtained

using λ = 0.001kgm/Ks2. In the latter case, the rate of heat diffusion is decreased

by a factor of 10. This lower value of λ makes the propagation of heat slower to

other areas of the domain resulting in the built-up of temperature in and around the

heat source and results in relatively higher thermal gradients. For the very fine mesh
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t = 0.05s t = 0.1s

Fig. 4.12 Temperature distribution along a centre line for different FEM meshes using
λ = 0.01.

of 216000 elements, comparison of the results from Figure 4.13(f) and Figure 4.15(f)

shows that the temperature profile for λ = 0.01kgm/Ks2 is comparatively smoother

than for λ = 0.001kgm/Ks2. In the latter case, there is a sharp gradient of temperature

across the boundaries of the source.

Figure 4.16 shows the temperature distribution for the reference solution FEMR

as well as for FEM and GFEM solutions. Results are presented at three different

simulation times; t = 0.1, 0.2 and 0.4s, that is half of the time the source is on, when

the source is switched off, and another 0.2s after the source is switched off. The results

captured with GFEM show the same temperature profiles as obtained by the fine mesh

reference solution FEMR, whereas the FEM solution shows very coarse profiles. This

shows that GFEM with a very coarse mesh was able to capture the same solution

dynamics as those obtained on a very fine mesh solution FEMR. GFEM uses only

1081 DOFs to capture the sharp thermal gradients whereas the FEMR solution is

obtained with 226981 TOTDOF. This significant reduction in the TOTDOF clearly

shows the advantage of GFEM on the standard FEM. The FEM solution was not

able to capture the solution accurately despite using higher number of DOFs. The

figures show that the temperature of the medium increases for half of the simulation
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(a) FEM1000 (b) FEM8000 (c) FEM27000

(d) FEM64000 (e) FEM125000 (f) FEM216000

Fig. 4.13 h−convergence analysis for reference FEM solution using λ = 0.01. Temper-
ature distribution is shown along a centre line for different meshes.

time when the source is dissipating heat. The medium starts to cool down when

the heat source is switched off. The temperature is maximum in the centre of the

domain because of the heat source, and it moves towards the boundaries where the

temperature is minimum.

To quantify the accuracy of the GFEM method, we calculate the relative L2 error

of GFEM and FEM solutions against the reference solution FEMR. Figure 4.17 shows

the solution along a cross section located in the middle of the domain. Results are

obtained using λ = 0.01kgm/Ks2 and are presented at different simulation times. For

the FEM solution, the maximum error is observed at the centre of the domain. For

half of the simulation time when the source is dissipating heat, the maximum L2 norm

error in the centre of the domain is more than 20%. For GFEM, the error in the
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t = 0.05s t = 0.1s

Fig. 4.14 Temperature distribution along a centre line for different FEM meshes using
λ = 0.001.

(a) FEM1000 (b) FEM8000 (c) FEM27000

(d) FEM64000 (e) FEM125000 (f) FEM216000

Fig. 4.15 h−convergence analysis for reference FEM solution using λ = 0.001. Tem-
perature distribution is shown along a centre line for different meshes.
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Fig. 4.16 Temperature distribution in the middle of domain for FEMR (left column),
FEM (centre column) and GFEM solution (right column) at t = 0.1s (top row), 0.2s
(middle row) and 0.4s (bottom row). The simulations are obtained using λ = 0.01.

centre of the domain is less than 1%. In the case of GFEM, the maximum error of

around 7% is observed only along the boundaries of the heat source. This error can

be minimized by tailoring the enrichment functions according to the shape of the heat

source. In the case of FEM, the error around the boundaries of the heat source is

more than 15%. For later simulation times, when the heat source is turned off and the

medium is cooling down, the error decreases significantly both for FEM and GFEM
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solutions. At t = 0.3s, the maximum L2 error for FEM reduces to around 8% and for

GFEM it reduces to less than 2%. At the end of the simulation, the error reduces to

around 4% for FEM and less than 1% for GFEM. A similar set of results is presented

in Figure 4.18 using λ = 0.001kgm/Ks2. The local errors for this case are higher both

for FEM and GFEM solutions. In the previous case, the maximum error in the middle

of the domain for FEM solution at t = 0.2s was around 20% which rises to as high as

50%. For GFEM, we observe an increase from 1% to 10%. Higher errors are observed

in the central part even at later simulation times, but far from the heat source the

error still remains very low, even lower than the previous case. For the previous case,

at t = 0.4s the error in the central part dropped to 5% for the FEM solution which

in the present case is still around 40%. For GFEM this value was around 1% in the

previous case, but in the present case, the maximum error is around 10%. The reason

for higher local errors is the build up of heat due to the lower value of λ. The value

of heat diffusion co-efficient λ is reduced by a factor 10 as compared to the previous

case. The slower rate of heat diffusion makes the rate of heat propagation slower to

the other areas of the domain and results in the built up of heat around the source.

Also, the heat does not reach to the far areas of the domain, as a result lower errors

are observed near the boundaries, as compared to the previous case.

Another representation of the results is depicted in Figure 4.19. Again the results

are presented along a centre line of a cross section located in the middle of the do-

main, but in this case the differences of temperatures between the FEMR solution

and both FEM and GFEM solutions are presented rather than the L2 norm error for

the whole domain. This representation is especially important for problems where

the local differences at a specific point of the domain are more important than the

L2 norm error. In certain cases, it is often important to know the maximum temper-

ature accurately, as too high temperatures may lead to damage of the material or

product. Figure 4.19 compares the reference FEMR and FEM solutions (top row),

respectively, the FEMR and GFEM solutions (bottom row) at three different simula-

tion times for λ = 0.01kgm/Ks2. For the FEM solution, the maximum temperature
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t = 0.05s t = 0.1s t = 0.15s

t = 0.2s t = 0.3s t = 0.4s

Fig. 4.17 L2 error for FEM and GFEM solutions calculated along a centre line at
different simulation times using λ = 0.01.

difference occurs in the middle of the heat source. The temperature difference of 125K

is observed at half of the simulation time, t = 0.2s. In case of GFEM solution, the

difference is around 15K only. For GFEM, the maximum difference of around 25K

is observed near the boundaries of the heat source while for the FEM solution it is

around 65K. At t = 0.4s, the difference reduces to around 15K for FEM while for

GFEM it is around 2K. This clearly shows the advantage of the proposed GFEM over

the standard FEM where both have comparable DOFs. Figure 4.20 shows a simi-

lar comparison between the FEM and GFEM solutions using λ = 0.001kgm/Ks2. As

observed previously, the local errors are higher compared to the λ = 0.01kgm/Ks2

case.
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t = 0.05 t = 0.1 t = 0.15

t = 0.2 t = 0.3 t = 0.4

Fig. 4.18 L2 error for FEM and GFEM solutions calculated along a centre line at
different simulation times using λ = 0.001.

To further analyse the results of Example problem 2, in Figure 4.21 we plot the

time evolution of the maximum temperatures and the differences in the maximum

temperatures. From the start to the end of the simulation, the variation of maximum

temperature is plotted in Figure 4.21(a) for FEMR, FEM and GFEM solutions. Fig-

ure 4.21(b) shows the differences of maximum temperatures between the reference

FEMR and FEM solutions, and FEMR and GFEM solutions. Figure 4.21(a) shows

clearly that the time evolution of maximum temperature for the coarse meshed GFEM

solution is almost identical to the fine mesh FEMR solution. Both FEMR and GFEM

solutions have very close resemblance for the whole duration of the simulation. On

the other hand, the FEM results are far away from the reference FEMR solution for
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FEM vs FEMR FEM vs FEMR FEM vs FEMR

GFEM vs FEMR GFEM vs FEMR GFEM vs FEMR

Fig. 4.19 Temperature differences between the reference FEMR solution and (i) FEM
solution (top row), (ii) GFEM solution (bottom row), along a centre line using λ =
0.01.

most of the simulation time. Only at later times, when the medium is cooling down

and the solution tends towards the steady state condition, the FEM results become

closer to the FEMR solution. Figure 4.21(b) also shows that there is a significant dif-

ference in the temperatures between the FEM and FEMR solutions while for GFEM

the difference in maximum temperatures is very small for the whole simulation time.

In the case of FEM, the maximum difference is about 130K, while in the case of

GFEM it stays well below 10K. For FEM, the accuracy deteriorates further when

using λ = 0.001kgm/Ks2 as shown in Figure 4.22. As observed in Figure 4.21(a), the

FEM results tend to become closer to the FEMR solution in the cooling stage and

almost identical at the end of the simulation but in Figure 4.22(a), FEM results are

relatively far from the FEMR results even during the cooling stage. The same trend is
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FEM vs FEMR FEM vs FEMR FEM vs FEMR

GFEM vs FEMR GFEM vs FEMR GFEM vs FEMR

Fig. 4.20 Temperature difference between the reference FEMR solution and (i) FEM
solution (top row), (ii) GFEM solution (bottom row) along a centre line using λ =
0.001.

(a) (b)

Fig. 4.21 Time evolution of (a) maximum temperature (b) difference in max temper-
ature. Results are obtained using λ = 0.01.
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(a) (b)

Fig. 4.22 Time evolution of (a) maximum temperature (b) difference in max temper-
ature. Results are obtained using λ = 0.001.

observed in Figure 4.22(b) where the maximum difference in temperature at t = 0.2s

reaches a high value of 400K and stays around 300K even at the end of the simulation.

In the case of GFEM, the temperatures are nearly identical to the fine mesh FEMR

results which shows the advantage of GFEM.

4.3.3 Approximation of a problem with an annular domain

The third example simulates the transient heat transfer in a 3D annular domain with

inner diameter di = 1.0m and outer diameter do = 1.5m, as shown in Figure 4.23. The

depth of the domain in the z−direction is taken to be 0.3m. This example presents

one of the representative problems where the domain has curved edges, and the errors

from the discretization of the geometry will have a contribution to the overall error of

the solution. Mohamed [127] suggested to use elements that describe the exact shape

of the curved domain. It is shown that this approach reduces the overall error of the

solution. In this current study, the same approach is used and elements are defined

such that the geometry is exactly described. The element having curved boundaries

are defined by the polar coordinates. For the selected geometry, the problem can be

considered as axi-symmetric and may be solved as a 2D problem, but as our purpose

here is to show the working of the GFEM for 3D problems, therefore the full 360◦

geometry is considered for analysis.
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Fig. 4.23 Annular domain for Example problem 3.

Although for the selected geometry, the problem can be selected as an axi-symmetric

body where only the problem may be considered as a 2D problem, or

For this example problem, a boundary source at the inner surface of the body

is selected which dissipates heat with g = 2000K/s. The initial temperature of the

domain is set at uo = 300K and the heat source within the domain is set to zero.

The time step value is fixed at ∆t = 0.0001s, and the diffusion heat coefficient for the

medium is taken as λ = 0.01kgm/Ks2. The convection heat transfer coefficient at the

outer surface is set to be h= 1kg/Ks2. The same value of h is used for top and bottom

surfaces of the domain.

To capture the high thermal gradients at the boundaries of the domain, hyper-

bolic tangent basis functions are used to enrich the solution space. These enrichment

functions are selected due to the type of temperature behaviour of the selected prob-

lem. Mohamed et al. [129, 130] used hyperbolic enrichment functions to capture high

thermal gradients in 2D domains which were localized in an otherwise uniform do-

main. They illustrated two different variations of the hyperbolic tangent functions.

For a polygonal domain with an edge e at a position x = xe, the enrichment function
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is defined as

G tanh
q = C1 + C2 tanh

(x − xe

hq

)
, q = 1, 2, . . . , Q . (4.4)

where C1 and C2 are the control parameters defining the amplitude of the function

G tanh
q while hq controls its slope. The other variation of this enrichment functions is

defined for a circular edge with r = re using the polar coordinates (r, θ)

G tanh
q = C1 + C2 tanh

(r − re

hq

)
, q = 1, 2, . . . , Q . (4.5)

This expression of the enrichment function is used in our present study. The global

derivatives of the considered enrichment function are given as

∂G tanh
q

∂x
= C2

x

rhq

(
1 − tanh2

(r − re

hq

))
(4.6)

∂G tanh
q

∂y
= C2

y

rhq

(
1 − tanh2

(r − re

hq

))
(4.7)

∂G tanh
q

∂z
= C2

z

rhq

(
1 − tanh2

(r − re

hq

))
(4.8)

For the considered problem, re = ri is the inner radius of the domain, while

r =
√

x2 + y2 is the radius at a particular point in the domain. The enrichments

are taken to vary only in the x and y directions and are constant in the z−direction.

This is because in the selected problem the temperature varies only in the radial

direction and is constant along the thickness of the domain. The steepness of the

enrichment function Gtanh
q depends on the value of the parameter hq. Figure 4.24

illustrates the variation of the enrichment function along the radial direction of the

domain for different values of hq. It is evident that the use of smaller values of hq

leads to functions with high gradients while higher values of hq produce smoothly

varying enrichment functions. The functions with high gradients can recover solutions
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Fig. 4.24 Variation of enrichment function Gtanh
q along the radial direction with differ-

ent values of hq.

at early time ste ps in the vicinity of a thermal shock while enrichment functions that

vary slowly can be useful at later time steps when the temperatures become more

uniform. Figure 4.25 shows the distribution of these enrichment functions over the

computational domain for different values of hq.

To compare the accuracy of GFEM with the conventional FEM, two different

FEM meshes and one GFEM mesh are considered for the solutions. A coarse FEM

mesh termed as FEMc is selected such that it has comparable DOFs to the enriched

GFEM model and a fine mesh FEMf which has about ten times more DOFs. Since

the exact analytical solution is not known for the considered problem, a reference

FEM solution (FEMr) is obtained using a very fine mesh of 30000 elements with

33150 DOFs. Figure 4.26 shows the meshes used for the computations. To compare

the results obtained with FEM and GFEM solutions, in Figure 4.27 is plotted the

temperature variation along the radial direction of the domain. The temperatures

obtained with FEM and GFEM are compared with the reference FEMr solution. For

all shown simulation times, GFEM produced very similar results to FEMr; in fact

both results are almost identical. FEMc, which has similar DOFs to GFEM, produces

very large errors as compared to GFEM. The FEMf although having ten times more

DOFs, still leads to considerable differences in the results at the earlier time steps due

to the higher temperature gradients. The diffusion nature of the problem makes the

90



4.3 Numerical experiments

hq = 0.02 hq=0.05 hq = 0.1

hq = 0.2 hq = 0.3 hq = 0.4

Fig. 4.25 Illustration of the hyperbolic tangent functions for different values of hq as
applied to the considered domain.

solution smoother at later time steps, and the difference between FEMr and FEMf

solutions start to decrease. Also it is evident from the graph that the differences in

the temperature are more prominent in the inner side of the domain because of the

localized large temperature gradient. The temperate field is more uniform in the outer

region of the domain, and smaller errors were expected by all methods. Figure 4.28

quantifies the absolute differences between the reference FEMr and FEMc solutions,

FEMr and FEMf solutions and FEMr and GFEM solutions at difference simulation

times. It is clear from the figure that the difference in temperatures between the

reference FEMr and GFEM solutions are very minimal at all the simulation times.

FEMc having comparable DOFs shows visible variation in temperature values with the

FEMr solution. Even FEMf shows considerable differences in temperatures specially

at the inner side of the domain.

The results are further assessed in Figure 4.29 by plotting the maximum domain

temperature and the difference in the maximum temperatures between the reference

FEMr solution and FEMc, FEMf and GFEM solutions. Figure 4.29(a) shows the vari-
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FEMr (30000 elements,
33150 nodes)

FEMf (264 elements, 360
nodes)

FEMc (18 elements, 36
nodes)

GFEM (2 elements, 8
nodes)

Fig. 4.26 Meshes used for the computations of Example problem 3.

ation of the maximum domain temperature for the whole simulation time while in

Figure 4.29(b) is shown the absolute difference in maximum temperature between

the FEMr and FEMc, FEMr and FEMf, and FEMr and GFEM solutions. From Fig-

ure 4.29(a) it is clear that the temperatures produced by the coarse mesh GFEM

solution are almost identical to the fine mesh FEMr solution. The FEMc solution

with similar DOFs to the GFEM, produces results that differ significantly from the

FEMr results. Even the FEMf results have lower accuracy although they are produced

using a mesh grid with ten times more DOFs than the GFEM. This clearly indicates

the superiority of the GFEM approach over the standard FEM approach. Also, Fig-

ure 4.29(b) shows a close similarity in the results of the GFEM and FEMr solutions.
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t = 0.001s t = 0.005s t = 0.01s

t = 0.02s t = 0.05s t = 0.1s

Fig. 4.27 Temperature variation along the radial direction of the domain at different
time intervals For FEMr, FEMf, FEMc and GFEM solutions.

The absolute differences in the maximum temperatures are very minimal between the

GFEM and FEMr results. The FEMf results, on the other hand, show noticeable vari-

ation as compared to FEMr, with the FEMc results further deviated from the FEMr

solution.

4.4 Overview

The GFEM approach is used to solve time-dependent heat diffusion problems in 3D do-

mains and is assessed against the FEM solution on refined mesh grids. For GFEM, the

solution space is enriched with 3D Gaussian or hyperbolic tangent functions describ-

ing the heat diffusion decay with various rates. To show the advantage of the GFEM
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t = 0.01s t = 0.02s

t = 0.05s t = 0.1s

Fig. 4.28 Absolute differences in temperatures along the radial direction between FEMr
and FEMc, FEMf and GFEM solutions.

approach over the standard FEM, three different example problems are considered.

To quantify the errors in both approaches, a problem with a known analytical solu-

tion is considered as a first example. It is concluded that for a comparable accuracy,

GFEM requires less DOFs than the conventional FEM. Numerical results show that

with GFEM, the total DOFs are less than 5% of that used for the standard FEM. The

coarse meshes used with GFEM made the computational time only a small fraction

of that for the FEM solution. Also the time-independent nature of the enrichment

functions resulted in remarkable reduction in the total computation time for large

number of steps. To investigate the performance of GFEM further, two more example
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4.4 Overview

(a) (b)

Fig. 4.29 Time evolution of (a) maximum temperatures (b) difference in maximum
temperatures.

problems are considered for which the analytical solutions are not known. Example

problem 2 considered a cubic domain while Example problem 3 assessed the method

on an annular computational domain. Exponential Gaussian functions are used for

example problem 1 and 2 while hyperbolic tangent functions are used for the third

example due to the different nature of the problem. Both enrichment approaches are

shown to be successful in significantly reducing the computational effort and leading

to better quality results compared to the standard FEM.

Regarding the last statement, it is important to mention that the enriched ap-

proach, GFEM, is a high order method while FEM with linear shape functions is a

low order method and hence the comparison is not really fair. However, this compari-

son is for indication as low order polynomial based FEM are the most used in practice

and multiplying the low order shape functions, linear in this case, by enrichment func-

tions to obtain GFEM leads to an efficient tool to not only capture the sharp gradients

but also to relax the mesh grids and reduce the overall computational cost.
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Chapter 5

A-posteriori error estimate for

GFEM for transient heat diffusion

problems

5.1 Introduction

This chapter is dedicated to the development of an error estimate to assess the ro-

bustness of GFEM for a given coarse mesh grid and enrichment functions. A De-

tailed mathematical derivation of the proposed error estimate is presented for a two-

dimensional case. It is then followed by numerical experiments to show its validity.

5.2 a-posteriori error estimation for transient heat

diffusion problems

The current work explores rigorous computable a-posteriori error estimates for the ap-

proximate solutions provided by the time–dependent GFEM. In particular, we address

enrichments in the whole spatial domain and for time-dependent problems. While suit-

able enrichment functions are easily proposed, such estimates provide rigorous insight
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into the accuracy of the resulting numerical scheme and the relative benefits of differ-

ent numbers and kinds of enrichment functions, as well as possible mesh refinements.

Here we explore the relevance of a residual a-posteriori estimate for time–dependent

simulations of heat transfer problems using multiple enrichment functions. While for

standard h-method finite elements such residual error estimates have a long tradition

and are known to give sharp upper bounds for the error as h → 0 [191], for GFEM

one is particularly interested in a fixed coarse mesh. Also, unlike for piecewise polyno-

mial ansatz functions or the plane–wave enrichment for wave problems, little is known

about the approximation provided by the heuristically chosen enrichment functions.

Nevertheless, our simple error estimates are rigorously shown to provide reliable and

practically useful upper bounds for the numerical error. Numerical experiments indi-

cate that they efficiently capture the decrease of the error as the number of enrichment

functions is increased or the time discretization is refined. Both the global error in the

whole space–time domain and local error indicators in the individual time steps and

elements of the mesh are studied, with a view towards the adaptive selection and

refinements of the enrichment functions.

5.2.1 Boundary value problem and weak formulation

For an open bounded domain Ω ⊂ R2 with polygonal boundary Γ and a given time in-

terval ]0, T ], we consider the time dependent heat diffusion problem defined by expres-

sions (3.1)−(3.3). The weak formulation of the considered problem is given by (3.14),

and rewritten here

∫
Ω
(∇Pr · ∇un+1 + Prkun+1)dΩ +

∫
Γ

Prhun+1dΓ =
∫

Ω
PrF

n+1dΩ +
∫

Γ
Prg

n+1 dΓ . (5.1)

Our aim is to find the GFEM solution of the form (3.16) for the above weak for-

mulation. The global enrichment functions defined by (3.18) are used to find the

approximate GFEM solution.
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5.2.2 A residual a-posteriori error estimate

From the numerical solution un+1 at time tn+1 we define, by piecewise constant, re-

spectively piecewise linear interpolation, the numerical solutions for all positive t:

u(t, x) = t − tn

tn+1 − tn

un+1(x) + tn+1 − t

tn+1 − tn

un(x) ,

û(t, x) = u(tn+1, x), f̂(t, x) = f(tn+1, x), ĝ(t, x) = g(tn+1, x) for t ∈]tn, tn+1] .

Note from (3.13) that the GFEM discretization (5.1) is equivalent to finding un+1

of the form (3.16) such that u0 = u0 and for all r = 1, . . . , MQ

∫
Ω

(Pr∂tu + λ∇Pr∇û) dΩ +
∫

Γ
λPrhû dΓ =

∫
Ω

Prf̂ dΩ +
∫

Γ
λPrĝ dΓ . (5.2)

In this notation, we obtain a classical a-posteriori estimate of residual type for the

error of the GFEM solution, similar to extensively used estimates for adaptive h- and

hp-finite element methods. It is given by computable error indicators η1, . . . , η6, and

the following theorem shows that it is reliable, in the sense that η1, . . . , η6 rigorously

bound the error.

As a main point, the estimate does not depend on the choice of the enrichment

functions and little can be said about their approximation properties, in general. This

will allow to choose the enrichment adaptively. Also, for GFEM we are concerned with

a fixed, coarse mesh grids.

Theorem 1 Let U be the solution of the exact weak formulation (3.12) and u the

solution of the GFEM discretization (3.24). Then there exists a constant c > 0 such

that:

∫
Ω

|U(T, x) − u(T, x)|2dΩ + λ
∫ T

0

∫
Ω

|∇(U − û)|2dΩ dt

≤ c{η2
1 + η2

2 + η2
3 + η2

4 + η2
5 + η2

6}, (5.3)
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where

η2
1 = ∥U0 − u0∥2

L2(Ω) (5.4)

η2
2 =

∑
K

∫ T

0

∥∥∥f̂ − ∂tu + λ∆û
∥∥∥2

H−1(K)
dt (5.5)

η2
3 =

∫ T

0

∥∥∥f − f̂
∥∥∥2

H−1(Ω)
dt + λ

∫ T

0
∥ĝ − g∥2

H−1/2(Γ) dt (5.6)

η2
4 = λ

∫ T

0
∥∇(u − û)∥2

L2(Ω) dt (5.7)

η2
5 =

∑
E∩Γ=∅

∫ T

0

∥∥∥∥∥
[

∂û

∂n

]∥∥∥∥∥
2

L2(E)
dt (5.8)

η2
6 = λ

∫ T

0

∥∥∥∥∥ĝ − ∂û

∂n
− hû

∥∥∥∥∥
2

H−1/2(Γ)
dt (5.9)

The left hand side of expression (5.3) measures the (typically unknown) size of the

actual error between the GFEM and exact solutions. The error indicators on the right

hand side, η2
1 to η2

6, however can be computed. The theorem proves that the error is

at most c{η2
1 + · · · + η2

6}, in particular the ηj never underestimate the error.

For the h-method one can often show that a residual error estimate is efficient, in

the sense that it does not overestimate the error by more than a fixed multiplicative

constant [191]. Proving such a result would require a detailed analysis of the particular

enrichment functions; it is less relevant for key applications such as adaptive refine-

ments, where Theorem 1 is crucial. The numerical experiments in Section 5.2.4 will

investigate the relation between the error indicators and the actual error numerically.

The error indicators η2
1 to η2

6 in Theorem 1 have clear physical meanings: η1 and η3

describe the error in the approximation of the initial condition ad the source term re-

spectively. We will usually consider situations in which the exact initial condition and

the source term are used in the computation, so that η1 and η3 vanish. The violation

of the original PDE (3.1) is measured by η2 and the violation of the boundary condi-

tion (3.3) is measured by η6. Finally, η5 measures that the numerical heat flux is not

conserved across element edges, while η4 involves the error in the time discretization.

Proof 1 (Proof of Theorem 1) Let ê = U − u, π some stable projection onto the
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space of basis functions and êI = πê. We start by applying the Fundamental Theorem

of Calculus to the first term in expression (5.3):

∫
Ω

|U(T, x) − u(T, x)|2dΩ =
∫

Ω
|U(0, x) − u(0, x)|2dΩ

+ 2
∫ T

0

∫
Ω
(∂tU(t, x) − ∂tu(t, x))(U(t, x) − u(t, x)) dΩ dt

= η2
1 + 2

∫ T

0

∫
Ω
(∂tU(t, x) − ∂tu(t, x))ê(t, x) dΩ dt .

Now adding and subtracting the same quantities

∫ T

0

∫
Ω
(∂tU − ∂tu)ê dΩ dt + λ

∫ T

0

∫
Ω

|∇(U − û)|2 dΩ dt

=
∫ T

0

∫
Ω
(∂tU − ∂tu)(ê − êI) dΩ dt +

∫ T

0

∫
Ω
(∂tU − ∂tu)êI dΩ dt

+ λ
∫ T

0

∫
Ω

∇(U − û)∇(ê − êI) dΩ dt + λ
∫ T

0

∫
Ω

∇(U − û)∇êI dΩ dt

+ λ
∫ T

0

∫
Ω

∇(U − û)∇(u − û) dΩ dt .

Using the exact weak formulation (3.12), this equals

−
∫ T

0

∫
Ω

∂tu(ê − êI) dΩ dt −
∫ T

0

∫
Ω

∂tu êI dΩ dt

− λ
∫ T

0

∫
Ω

∇û∇(ê − êI) dΩ dt − λ
∫ T

0

∫
Ω

∇û∇êI dΩ dt

+ λ
∫ T

0

∫
Ω

∇(U − û)∇(u − û) dΩ dt

+
∫ T

0

∫
Ω

f(ê − êI) dΩ dt +
∫ T

0

∫
Γ

λg(ê − êI) dΓ dt −
∫ T

0

∫
Γ

λhU(ê − êI) dΓ dt

+
∫ T

0

∫
Ω

f êI dΩ dt +
∫ T

0

∫
Γ

λgêI dΓ dt −
∫ T

0

∫
Γ

λhUêI dΓ dt .

Further, using the GFEM equation (5.2), the sum of the second and fourth terms

becomes ∫ T

0

∫
Γ

λhûêI dΓ dt −
∫ T

0

∫
Ω

f̂ êI dΩ dt −
∫ T

0

∫
Γ

λĝêI dΓ dt .
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On each of the elements K of the mesh we integrate by parts in the third term,

−λ
∫ T

0

∫
Ω

∇û∇(ê − êI) dΩ dt = λ
∑
K

∫ T

0

∫
K

∆û (ê − êI) dΩ dt

− λ
∑
K

∫ T

0

∫
∂K

∂û

∂n
(ê − êI) d(∂K) dt .

The second sum over K can be written as a sum over interior and boundary edges,

− λ
∑
K

∫ T

0

∫
∂K

∂û

∂n
(ê − êI) d(∂K) dt

= −λ
∑

E∩Γ=∅

∫ T

0

∫
E

[
∂û

∂n

]
(ê − êI) dE dt − λ

∫ T

0

∫
Γ

∂û

∂n
(ê − êI) dΓ dt .

We conclude

∫ T

0

∫
Ω
(∂tU − ∂tu)ê dΩ dt + λ

∫ T

0

∫
Ω

|∇(U − û)|2 dΩ dt

=
∑
K

∫ T

0

∫
K

(f̂ − ∂tu + λ∆û) (ê − êI) dΩ dt

− λ
∑

E∩Γ=∅

∫ T

0

∫
E

[
∂û

∂n

]
(ê − êI) dE dt + λ

∫ T

0

∫
Ω

∇(U − û)∇(u − û) dΩ dt

+
∫ T

0

∫
Γ

λ

(
ĝ − ∂û

∂n
− hû

)
(ê − êI) dΓ dt −

∫ T

0

∫
Γ

λh(U − û)(ê − êI) dΓ dt

+
∫ T

0

∫
Ω
(f − f̂)ê dΩ dt +

∫ T

0

∫
Γ

λ(g − ĝ)ê dΓ dt −
∫ T

0

∫
Γ

λh(U − û)êI dΓ dt .

(5.10)

Note that

−
∫ T

0

∫
Γ

λh(U − û)(ê − êI) dΓ dt −
∫ T

0

∫
Γ

λh(U − û)êI dΓ dt

=
∫ T

0

∫
Γ

λh(−ê + û − u)ê dΓ dt .

As we do not have further information about the approximation properties of the basis

functions, we do not lose much by choosing eI = 0. With the Cauchy–Schwarz inequal-

ity ab ≤ εa2

2 + b2

2ε
for any a, b ∈ R, ε > 0, the third term on the right hand side of
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(5.10) is smaller than ελ
2
∫ T

0
∫

Ω |∇(U − û)|2dΩ dt + 1
2ε

η2
4, and for small ε > 0 we may

move the first of these summands to the left hand side.

The continuity of the bilinear pairing between H1 and H1
0 and the Sobolev inequal-

ity similarly result in η2
2 and η2

3 from the first term and the term involving f − f̂ ,

respectively. Finally, the trace theorem ∥V ∥H1/2(Γ) ≤ c∥V ∥H1(Ω) in the same manner

leads to η2
5 from the second term on the right hand side, to η2

6 from the fourth term,

and η2
3 from the penultimate term involving g − ĝ.

For the remaining terms, the trace theorem and the Sobolev inequality allow to

estimate them by η2
4.

5.2.3 Algorithmic considerations

This section discusses the detailed implementation of the error indicator of Theorem

1. We compute η2
2 as η2

2 = ∑Nt
n=0

∑
K η2

2(n, K), with

η2
2(n, K) =

∫ tn+1

tn

∥∥∥f̂ − ∂tu + λ∆û
∥∥∥2

H−1(K)

≤
∫ tn+1

tn

dt
∫

K

(
f̂ − ∂tu + λ∆û

)2
dΩ

= δt
∫

K

(
fn+1 − un+1 − un

δt
+ λ

(
∂2un+1

∂x2 + ∂2un+1

∂y2

))2

dΩ .

Here, the final line is efficiently computable and is only a slight overestimate of η2.

The values of f and un are calculated at each integration point and then accumulated

over the whole domain. They are updated at every time step. Values from the present

and previous time steps are used in the calculation of η2
2(n, K).

The indicator η2
4 = ∑Nt

n=0
∑

K η2
4(n, K) evaluates the change in the derivative of u

in every time step. We calculate the derivative of the temperature as above at times
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tn and tn+1 at every integration point and then accumulate over the whole domain:

η2
4(n, K) = λ

∫ tn+1

tn

∥∇(u − û)∥2
L2(K)

= λ
∫ tn+1

tn

(
tn+1 − t

tn+1 − tn

)2

dt
∫

K

(∂un+1

∂x
− ∂un

∂x

)2

+
(

∂un+1

∂y
− ∂un

∂y

)2
 dΩ

= λδT

3

(∫
K

(
∂un+1

∂x
− ∂un

∂x

)2

dΩ +
∫

K

(
∂un+1

∂y
− ∂un

∂y

)2

dΩ
)

.

Here we use, by definition,

u(t, x) − û(t, x) = − tn+1 − t

tn+1 − tn

(
un+1(x) − un(x)

)
.

For η2
5 = ∑Nt

n=0
∑

E η2
5(n, E) error indicator, it calculates the jump of ∂û

∂n
across the

interior edges E of the mesh. At each integration point these values are calculated for

adjacent edges of the elements. The difference between these values at the adjacent

elements is then calculated and integrated over the whole domain. This means

η2
5(n, E) =

∫ tn+1

tn

∥∥∥∥∥
[

∂û

∂n

]∥∥∥∥∥
2

L2(E)
dt

=
∫ tn+1

tn

∥∥∥[∇un+1 · n
]∥∥∥2

L2(E)
dt

=
∫ tn+1

tn

∫
E

(
∇un+1

E1 n1 + ∇un+1
E2 n2

)2
dE dt

=
∫ tn+1

tn

∫
E

(
∇un+1

E1 n1 − ∇un+1
E2 n1

)2
dE dt

= δt
∫

E

((
∂un+1

∂x
n1x + ∂un+1

∂y
n1y

)
E1

−
(

∂un+1

∂x
n1x + ∂un+1

∂y
n1y

)
E2

)2

dE ,

where E1 refers to the boundary value of the function on the edge taken from the first

element and E2 refers to the boundary value of the function on the same edge, but

taken from the second element. We denote by n1 = (n1x , n1y) and n2 = (n2x , n2y) the

unit normals for elements 1 and 2, respectively.
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5.2.4 Numerical experiments

This section investigates the relevance and sharpness of the a-posteriori error estimate

in Theorem 1 through numerical experiments. We compute the numerical solution

of the heat transfer problem (3.1) - (3.3) by computing the solution of the GFEM

discretization (3.16).

For the experiments, we choose a quadrilateral mesh with piecewise bilinear shape

functions. The parameters in the GFEM basis functions Gq are taken to be Rc =
√

2800
239

and C =
√

200
239 , and R0 = |x − xc| is the distance from the point xc = (1, 1). All

integrals over Ω are evaluated numerically, using a high Gauss–Legendre quadrature.

For example, 22 integration points are used in each direction, i.e., 484 points per

element. In the numerical examples, we consider the error estimators η1 and η3, which

arise from the approximation of the initial condition and the source terms, are either

identically 0 or negligible. The same holds for the the violation of the boundary

condition, η6. Both the numerical and exact solutions themselves are either 0 or very

close to 0 at the boundary.

To compare the results for different model problems, we focus on the relative error

between the exact solution U and its GFEM approximation u, defined as

(∫
Ω |U − u|2dΩ + λ

∫ T
0
∫

Ω |∇(U − û)|2dΩ dt∫
Ω |U |2dΩ + λ

∫ T
0
∫

Ω |∇U |2dΩ dt

)1/2

(5.11)

The corresponding relative error indicator is given as

(
η2

2 + η2
4 + η2

5∫
Ω |U |2dΩ + λ

∫ T
0
∫

Ω |∇U |2dΩ dt

)1/2

(5.12)

If the exact solution U is not known, we consider a reference solution obtained by a

polynomial based FEM on a fine mesh grid.
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Fig. 5.1 Comparison of relative error (�) and relative error indicator (N) for ∆t =
0.01s (top row), ∆t = 0.001s (middle row) and ∆t = 0.0001s (bottom row) at times
t = 0.05, 0.1 and 1.0s from left to right.
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Fig. 5.2 Comparison of relative error (�) and relative error indicator (N) for ∆t =
0.05, 0.5 and 1.0s at t = 5s (a), t = 10s (b) and t = 100s (c).
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5.2.4.1 Example problem 1

In this example we test the error indicator by comparing it to the computed error

for a problem with a given exact solution that is proposed in [129]. We consider a

square domain Ω = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 2} with a heat diffusion coefficient

λ = 0.1kgm/◦Cs2 and convection heat transfer coefficient h = 1kg/◦Cs2. The data f ,

g and U0 are chosen such that

U(t, x) = x20y20(2 − x)20(2 − y)20(1 − e−λt) (5.13)

is the exact solution to the problem defined by expressions (3.1) - (3.3).

For a fixed coarse spatial mesh of 25 elements we vary the number of enrichment

functions Q = 2, . . . , 6. We compute both the actual error of the GFEM solution and

the error indicators, and compare these values as in Theorem 1. In Figure 5.1, we

show the relative error (5.11) of the GFEM solution and the relative error indicator

(5.12), for different numbers Q of enrichment functions at times t = 0.05, 0.1 and 1s.

In each of the cases we do so for different time steps ∆t = 0.01, 0.001 and 0.0001s.

In all cases, the actual error of the GFEM solution and the error indicator show a

similar decrease as we increase the number of enrichment functions. The ratio of the

estimator and the error is close to 10, consistently in all cases. This corresponds to a

constant c ∼ 10−1 in Theorem 1. In this sense, the error indicator efficiently captures

the behaviour of the real error.

Figure 5.2 investigates the influence of the time step ∆t when the spatial discretiza-

tion error is small. We use a uniform of with 100 elements with Q = 6, and compare

the relative error and the error indicator for ∆t = 0.05, 0.5 and 1.0s. The results are

plotted at t = 5, 10 and 100s. At t = 5s the error decreases significantly for smaller

time steps. As time progresses the error becomes insensitive to the time step which can

be seen at 100s. This is due to the large temperature differences between the central

part and the rest of the domain. As time passes, heat propagates from the central part

to the rest of the domain, hence the temperature gradient reduces. Figure 5.2 shows
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remarkable consistency between the behaviour of the error indicator and the actual

error. The behaviour described above is accurately captured by the error indicator.

For a residual a-posteriori estimate, the multiplicative constant between the indicator

and the actual error is essentially the constant c.

5.2.4.2 Example problem 2

The second example considers a square domain with a square heat source as shown in

Figure 5.3. The source is switched on from t = 0 to t = 0.02s, and then it is switched

off. The source diffuses heat at two rates. For x, y ∈ [0.8, 1.2], the central part of the

source f is constant and given by f = 200◦C/s. Outside this part, f decreases linearly

to f = 0 on the external boundaries of the source, where either x or y is equal to 0.4

or 1.6. In this example the thermal conductivity is taken as λ = 0.1kgm/◦Cs2 and

the convective heat transfer coefficient as h = 1kg/◦Cs2. The initial temperature U0

and the boundary sources g are both chosen to be 0. This example assesses the error

estimates for a more realistic heat transfer problem and makes a first step towards an

adaptive selection of enrichment functions.

(2,2)(0,2)

(0,0) (2,0)

(0.4,0.4) (1.6,0.4)

(0.8,0.8) (1
.2

,0
.8

)(0
.8

,1
.2

) (1.2,1.2)

(0.4,1.6) (1.6,1.6)

Fig. 5.3 Domain configuration for Example problem 2 with a heat source in the centre.

Here, we only compute the error indicator because the exact solution is not known.

The magnitude of the error indicator is considered relative to a reference value defined

by Equation (5.11), where the exact solution U is replaced with a reference FEM
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(a) FEM mesh (b) GFEM mesh

Fig. 5.4 Meshes used in the computations.

Table 5.1 Conditioning number for different Q and ∆t (s).

Q
∆t

0.001 0.0001 0.00001
2 1.461E+05 1.509E+05 1.514E+05
3 2.534E+07 2.727E+07 2.748E+07
4 4.302E+09 4.805E+09 4.862E+09
5 5.118E+11 6.270E+11 6.416E+11
6 1.637E+13 1.992E+13 2.037E+13

solution on a fine uniform mesh of 12800 triangular elements with piecewise linear

basis functions. Both FEM and GFEM meshes are shown in Figure 5.4.

For the GFEM solution, we fix a coarse mesh of 25 elements and vary the number of

enrichment functions Q = 2, . . . 6. Figure 5.5 shows the temperature distribution of the

FEM solution and the GFEM solution. Figure 5.6 shows the relative error indicators as

a function of the number Q of enrichment functions at times t = 0.01, 0.05, 0.1, 0.15

and 0.2s. In each of the cases, the considered time steps are: ∆t = 0.001, 0.0001

and 0.00001s. The results show a decrease in the error indicator as we increase the

number of enrichment functions. For all the values of ∆t and at early times the results

show similar trends (as in Figure 5.6(a)). However, at later times and for the smallest

considered time step ∆t = 0.00001s the error indicator with higher Q starts to increase

rapidly. This can be seen clearly for Q = 5 and 6 in Figure 5.6(d) and Figure 5.6(e).
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Fig. 5.5 Temperature distribution for the reference solution (FEM) (left column),
GFEM solution with Q = 4 (middle column) and GFEM solution with Q = 6 (right
column) at t = 0.05s (top row), t = 0.1s (middle row) and t = 0.2s (bottom row). The
distribution is obtained with ∆t = 0.00001s.
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Fig. 5.6 Relative error indicator for ∆t = 0.01s, ∆t = 0.001s and ∆t = 0.0001s at
t = 0.01s (a), t = 0.05s (b), t = 0.1s (c), t = 0.15s (d) and t = 0.2s (e).

For example in the case with Q = 6 the error indicator increases from less than 0.3 in

Figure 5.6(c) to more than 0.6 in Figure 5.6(e).

The rapid increase can be attributed to two facts. First, at higher number of

enrichment functions, the system matrix from Equation (3.24) becomes ill conditioned

as can be seen in Table 5.1. The size of the condition number is mostly determined

by Q, with negligible dependence on ∆t. For example the condition number increases

from about 1.5E+5 with Q = 2 and ∆t = 0.001s to about 2.0E+13 with Q = 6 and

∆t = 0.00001s. The increase in the condition number affects the solution and leads

to an increase in the error. This behaviour seems to be reflected accurately by the

error indicator as can be seen in Figure 5.6. Second, smaller values of ∆t require more

time steps to cover the same time span. This accumulates the computational errors,

in particular floating point errors which increase with higher condition numbers. To

verify this, in Figure 5.5 we compare the temperature distribution obtained with the
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Table 5.2 Details of the q-bands.

Case Band Case Band
1 q = 1, 2, 3 11 q = 2, 3, 6
2 q = 2 ,3, 4 12 q = 2, 3, 5
3 q = 3, 4, 5 13 q = 3, 5, 6
4 q = 4, 5, 6 14 q = 3, 4, 6
5 q = 1, 2, 4 15 q = 1, 3, 4
6 q = 1, 2, 5 16 q = 1, 3, 5
7 q = 1, 2, 6 17 q = 1, 3, 6
8 q = 2, 5, 6 18 q = 1, 4, 5
9 q = 2, 4, 6 19 q = 1, 4, 6
10 q = 2, 4, 5

reference solution to the GFEM solution with 4 and 6 enrichment functions, with

∆t = 0.00001s. The solution at the early time steps shown in the figure, namely

t = 0.05s and 0.01s, seems very similar in all three cases. However, at later times

(t = 0.2s), the distribution is still similar for FEM and GFEM with 4 enrichment

functions, but it deteriorates with 6 enrichment functions.

Two final experiments investigate the possible use of a-posteriori error estimates

as in Theorem 1 for adaptive selection of the enrichment functions or refinement pro-

cedures. Indeed little is known about the approximation properties of the enrichment

functions.

Figure 5.7 calculates the relative time–integrated error indicator over the whole

domain Ω for different choices of enrichment functions and different time intervals

t = 0.01, 0.05, 0.1, 0.15 and 0.2s, with a fixed time step ∆t = 0.001s. For the

enrichments stated in Table 5.2, we observe that the three enrichment functions q =

1, 2, 3 (Case 1) consistently give rise to the lowest error indicator. Especially for long

times, enrichment with steep functions such as q = 4, 5, 6 (Case 4) is seen to yield

worse numerical approximations. More generally, in each instance the enrichment

function with q = 1 leads to a substantial improvement of the error indicator.

In order to decide about locally adaptive enrichment, the spatial distribution of

the error indicators proves useful. In Figure 5.8, we depict the time–integrated error

indicators for each element of the mesh for the optimal choice of enrichment functions
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Fig. 5.7 Relative error indicator for different q-bands with ∆t = 0.001s at t = 0.01s
(a), t = 0.05s (b), t = 0.1s (c), t = 0.15s (d) and t = 0.2s (e).

q = 1, 2, 3 (Case 1) from Figure 5.7. Short (t = 0.05s), intermediate (t = 0.1s) and

longer (t = 0.2s) time intervals are considered, with ∆t = 0.001s. The contribution

from the interior edges, η5, is assigned in equal parts to the adjacent elements. It

should be noted that the enrichment functions have a radial symmetry, which is not

present in the exact solution for short times. Correspondingly, for short times the error

indicator exhibits large contributions along both diagonals of the square domain. It

also concentrates in the hot central element of the mesh, while the sharp gradient seems

to be captured by the enrichment functions for short and intermediate times. For larger

times, t = 0.2s, both the solution and the error indicators include contributions near

the boundary, but we also observe increasing contributions from the large gradients.
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Fig. 5.8 Spatial distribution of the relative error indicator for Case 1 at t = 0.05s (a),
t = 0.1s (b) and t = 0.2s (c).

5.2.5 Conclusions

An a-posteriori error estimate for time–dependent generalized finite element simula-

tions of heat transfer problems is proposed. It does not depend on the choice of the

enrichment functions and it is shown to efficiently and reliably reflect the behaviour

of the numerical error of the GFEM approach. It reflects the contribution of various

errors incurred in the poorly conditioned systems typically encountered in enriched

finite element methods, in particular GFEM.

The error estimate is shown to capture the decrease in the error as the number of

enrichment functions is increased or the time discretization is refined. The estimate is

also used to predict the behaviour of the error for problems with for which the exact

solution is not available. The investigation of local error indicators, on sub-domains or

elements of the mesh grid, in individual time steps creates a basis towards the adap-

tive selection and refinement of the enrichment functions. this facilitates the adaptive

local choices of the number and type of enrichment functions, in general.

113



Chapter 6

Local adaptive q–enrichment

6.1 Introduction

This chapter explores the use of a-posteriori error estimates for the adaptive selection

of enrichment functions in the approximate solutions of time–dependent heat diffusion

problems using GFEM. The components of the error estimate proposed in the previous

chapter are shown to efficiently assess the quality of the solution with increasing num-

ber of enrichment functions. Up to this stage, the enrichment approach is uniformly

applied to all sub-domains of the computational domain.

Here, we explore the relevance of the proposed error estimate to adaptively enrich

the elements in the domain with relatively higher errors. Both the global error in the

whole space–time domain and local error indicators in the individual elements of the

mesh, are studied with a view towards the adaptive selection of the enrichment func-

tions. An adaptive algorithm is proposed to identify the elements with higher errors

and further enrichment functions are added only in those elements. The approach of

the proposed algorithm is tested on different example problems.

The next section details the weak formulation of the considered problems followed

by the proposed algorithm applied to the chosen test examples.
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6.2 Problem description

We consider the transient heat diffusion problem defined by expressions (3.1)−(3.3).

The weak formulation for the problem is given by (3.14). We aim to find an ap-

proximate solution un+1 of the weak form (3.14) using the generalized finite element

method. To do so, we look for un+1 of the form

un+1(x) =
M∑

j=1

Qj∑
q=1

An+1
j,q Nj(x) Gq

j(x) . (6.1)

Here An+1
j,q ∈ R and Nj is a piecewise polynomial shape function for the j-th element

�j. We choose the local enrichment functions Gq to be of the form

Gq
j(x) = 1, e

−
(

x−xc
C

)q

, e
−
(

y−yc
C

)q

or e
−
(

x−xc
C

)q

−
(

y−yc
C

)q

. (6.2)

Here (xc, yc) is a given point, and we always use all four of these functions in a given

mesh element. The functions Nj are piecewise polynomials of degree 3 separately in x

and in y, such that ∑j Nj(x) = 1 and Nj(y) = 1, whenever x|y ∈ �j and the distance

of x|y to the boundary of �j is at least 25% of the width of �j. The functions Nj(x)

and Nj(y) are defined as

Nj(x) = (xj − 0.25 × WT − x)2 × (xj + 2 × 0.25 × WT − x)
4 × (0.25 × WT )3 (6.3)

Nj(y) = (yj − 0.25 × HT − y)2 × (yj + 2 × 0.25 × HT − y)
4 × (0.25 × HT )3 (6.4)

where WT, HT are the width and height of an element. For a 2D square domain Ω =

[0, 2]2 with a 5 × 5 uniform mesh, the functions Nj(x) and Nj(y) for element-1 can be

written as

N1(x) = (x1 − 0.25 × WT − x)2 × (x1 + 2 × 0.25 × WT − x)
4 × (0.25 × WT )3 (6.5)
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Fig. 6.1 Mesh grid with partitioned elements.

N1(y) = (y1 − 0.25 × HT − y)2 × (y1 + 2 × 0.25 × HT − y)
4 × (0.25 × HT )3 (6.6)

Figure 6.1 shows the mesh grids with elements partitioned in the x and y directions.

Fig. 6.2 Detail of element numbering.
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The original elements are shown by black outline. The red lines in the horizontal and

vertical directions divide the elements near the interfaces at 25%WT in the x−direction

and 25%HT in the y−direction. N1(x) in the patch between element-1 and element-

2 shown by yellow colour is defined by equation (6.5), whereas N1(y) in the patch

between element-1 and element-6 shown by green colour is defined by equation (6.6).

The patch between elements 1, 2, 6 and 7 shown by blue colour is influenced by both

N1(x) and N1(y), so both are used in this patch. Figure 6.2 shows the arrangement

of element numbers in the mesh.

With W = Nj Gq
j , the resulting GFEM discretization of the weak formulation

(3.14) then reads:

Find un+1 of the form (6.1) such that u0 = u0 and for all q and j

∫
Ω
(∇(Nj Gq

j)·∇un+1+kNj Gq
j un+1)dΩ =

∫
Ω

Nj Gq
j F n+1dΩ +

∫
Γ

Nj Gq
j gn+1 dΓ . (6.7)

From the numerical solution un+1 at time tn+1 we define, by piecewise constant,

resp. piecewise linear interpolation, the numerical solutions for all positive t:

u(t, x) = t − tn

tn+1 − tn

un+1(x) + tn+1 − t

tn+1 − tn

un(x) ,

û(t, x) = u(tn+1, x), f̂(t, x) = f(tn+1, x) for t ∈]tn, tn+1] .

In this notation, from Chapter 5 we obtain the following a-posteriori estimate for

the error of the GFEM solution. Even though here we use a modified GFEM, the

proof of the estimate follows verbatim.

Theorem 2 Let U be the solution of the exact weak formulation (3.12) and u the

solution of the GFEM discretization (6.7). Then there exists a constant c > 0, such

that

∫
Ω

|U(T, x) − u(T, x)|2dΩ + λ
∫ T

0

∫
Ω

|∇(U − û)|2dΩ dt ≤ c{ η2
1 + η2

2 + η2
3 + η2

4 + η2
5 + η2

6 } ,

(6.8)
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where η2
1, ... + η2

6 are defined by (5.4)–(5.9).

The left hand side of expression (6.8) measures the size of the actual error between

the GFEM and exact solutions. In Chapter 5, it is shown that the error indicators on

the right hand side, η2
1 to η2

6, provide a reliable estimate for the unknown error, and

we use them here to steer an adaptive algorithm.

Error indicators such as from the a-posteriori error estimate Theorem 2 lead to an

adaptive algorithm, based on the following four steps

SOLVE −→ ESTIMATE −→ MARK −→ REFINE .

SOLVE The problem is solved at the beginning of the algorithm and at the start of

every new iteration.

ESTIMATE Based on the solution obtained in the first step, the error indicator η is

estimated in each element and then accumulated for the whole domain.

MARK The elements with highest values of η are marked for refinement.

REFINE Elements marked in the previous step are refined with further enrichment

functions.

We implement this strategy here in the context of q–refinements for adaptivity in

space. Neglecting the error from the approximation of initial and boundary conditions

and data, we use the error indicator η2(�) = η2
2(�) + η2

4(�), where

η2
2(�) =

∫ T

0

∥∥∥f̂ − ∂tu + λ∆û
∥∥∥2

L2(�)
dt ,

η2
4(�) = λ

∫ T

0
∥∇(u − û)∥2

L2(�) dt .

Note that η2
5, which measures the numerical heat flux across the element edges is very

small and neglected in the computations.

Adaptive Algorithm for q–refinements:

Input: Spatial mesh T with M as the total number of elements (�) and L ≤ M as the

enriched elements, enrichments Q = {q = 1 in every � ∈ T }, refinement parameter
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θ ∈ (0, 1), tolerance ϵ > 0, maximum condition number K , data f .

1. Solve GFEM equation (3.14) on T with enrichment Q.

2. Compute the error indicators η(�) for every � ∈ T .

3. Stop if ∑M
i=1 η2(�i) < ϵ2 or condition number κ ≥ K .

4. Order �j such that η(�j) ≤ η(�i) if i ≤ j.

5. Mark �1, . . . ,�L ∈ T until ∑L
j=1 η2(�j) ≥ θ2 ×∑M

j=1 η2(�j).

6. Add the enrichment functions Gq
j in �1, . . . ,�L to obtain a new, local enrichment

Q.

7. Go to 1.

Output: Approximation of u.

The new shape functions Nj are a crucial ingredient in this method: One main

advantage of generalized finite element methods is their use of very coarse meshes.

Shape functions like Nj which are associated to a particular mesh element � allow

localised modification of the enrichment in a small neighbourhood of �. Standard hat

functions would spread this enrichment over all � which contain the associated node.

As in Chapter 5, we implement the error indicators approximately: η̃2
2(�) =∑Nt

n=0 η̃2
2(n,�), where

η̃2
2(n,�) ≃ δt

∫
�

(
fn+1 − un+1 − un

δt
+ λ

(
∂2un+1

∂x2 + ∂2un+1

∂y2

))2

dΩ .

The integral is evaluated using a 2-dimensional composite high order Simpson’s rule.

Typically, 21 × 21 integration points are used.

Similarly η2
4(�) = ∑

n η2
4(n,�), with

η2
4(n,�) = λδT

3

(∫
�

(
∂un+1

i

∂x
− ∂un

i

∂x

)2

dΩ +
∫
�

(
∂un+1

i

∂y
− ∂un

i

∂y

)2

dΩ
)

.
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6.3 Numerical experiments

6.3 Numerical experiments

This section investigates the relevance and sharpness of the a-posteriori error estimate

in Theorem 2 through numerical experiments. We find numerical approximations to

the heat transfer problem defined by expressions (3.1) - (3.3) by computing the solution

to the GFEM discretization (6.1).

For the experiments, we choose a square mesh with piecewise linear shape functions.

All integrals over Ω are evaluated numerically, using a high order Gauss–Legendre

quadrature, and we typically used 22 integration points in each direction. We neglect

the error estimators η1 and η3, which arise from the approximation of the initial

condition and the source terms. Initial condition is taken as zero and the source term

is applied exactly. In the examples below, also the contribution of η6, the violation

of the boundary condition, will be negligible. This is because both the numerical and

exact solutions themselves are already very small at the boundary. Also η5, the jump

of solution across element boundaries is very small.

To compare the results of uniform enrichments and adaptive q−enrichments for

different model problems, we calculate the error indicator η in each element as well as

in the whole domain.

The error indicator for an individual element is calculated as

η(�i) =
√

(η2
2 + η2

4)�i
, i = 1, 2, ...K (6.9)

and for the whole domain, it is calculated as

η(T ) =
√∑

(η2
2 + η2

4)�i
, i = 1, 2, ...K (6.10)

Here K represents the total elements in the spatial mesh. Note that in the previous

chapter we calculated the relative values of the error indicators but here we calculate

their absolute values. In expression (5.12) the value of η was divided by the exact
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solution and its derivatives. For problems with no known exact solution, the same

was divided by values of a very fine meshed FEM solution. For a problem with known

exact solution, the term in the denominator of (5.12) can be easily calculated during

the solution process. But for other general problems, calculating the denominator

with fine mesh FEM solution will reduce the actual benefit of the adaptivity. To

gain maximum benefit from the proposed adaptivity algorithm, the need for fine mesh

FEM solution is eliminated in the current computations. It is worthwhile to mention

that calculating the relative or absolute values of (6.9) and (6.10) lead to the same

refinements. To show the working of the proposed adaptive algorithm, the considered

model problems are first solved with uniform enrichments in the whole domain. The

adaptive algorithm is then used to selectively add enrichment functions in elements

with relatively higher values of η.

6.3.1 Example problem 1

The first experiment compares the error in the solution and the corresponding error

indicator for a problem with a given exact solution. The Example problem 1 considered

in the previous chapter is studied again here for adaptive refinement. The problem

is considered on a square domain Ω = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 2} with the exact

solution given by (5.13). The parameters λ, h, and the data f , g are also taken to be

the same.

6.3.1.1 Uniform q–enrichments

The considered problem is first solved with uniform number of enrichment functions

in every element. For a fixed coarse spatial mesh of 25 elements, we start with zero

enrichment in the whole domain and then increase the number of enrichment functions

Q = 1, . . . 5. With zero enrichment function we get the standard FEM solution.

We then introduce enrichments in the finite element space and assess how the errors

and the condition number κ change with the introduction of enrichment functions.

With every added enrichment function, we calculate the error indicator in individual
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Table 6.1 Variation of L2 error and η(T ) along with condition number for uniform
numbers of Q with ∆t = 0.01s and at t = 1.0s for Example problem 1.

Q DOFs ε% η(T ) κ(T )

0 25 31.06 1.79E-01 1.63E+03
1 100 10.09 8.76E-02 1.38E+06
2 175 1.51 3.19E-02 1.82E+09
3 250 0.68 1.67E-02 3.39E+12
4 325 0.64 1.57E-02 4.24E+15
5 400 0.59 1.89E-02 6.57E+15

Table 6.2 Variation of L2 error and η(T ) along with condition number for uniform
numbers of Q with ∆t = 0.001s and at t = 1.0s for Example problem 1.

Q DoFs ε% η(T ) κ(T )

0 25 30.85 1.79E-01 1.63E+03
1 100 10.00 8.75E-02 1.38E+06
2 175 1.47 3.18E-02 1.82E+09
3 250 0.62 1.65E-02 3.39E+12
4 325 0.57 1.57E-02 4.24E+15
5 400 11.33 4.42E-01 7.40E+15

Table 6.3 Variation of L2 error and η(T ) along with condition number for uniform
number of Q with ∆t = 0.0001s and at t = 1.0s for Example problem 1.

Q DoFs ε% η(T ) κ(T )

0 25 30.83 1.79E-01 1.63E+03
1 100 9.99 8.75E-02 1.38E+06
2 175 1.48 3.18E-02 1.82E+09
3 250 0.62 1.65E-02 3.39E+12
4 325 0.59 1.58E-02 4.24E+15
5 400 - - -

elements and their cumulative value in the whole domain, denoted by η(�) and η(T )

respectively. Similarly κ(�) and κ(T ) are calculated. With the exact solution given

by (5.13), we also calculate the L2 errors and show how these vary with increasing
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Q =0 Q =1 Q =2

Q =3 Q =4 Q =5

Fig. 6.3 Distribution of η(�) in each element for uniform enrichments with ∆t = 0.01s
and at t = 1.0s for Example problem 1.

numbers of enrichment functions. To test the quality of our error estimates in Theorem

2, we use three different values of time step sizes ∆t = 0.01, 0.001 and 0.0001s. Table

6.1 shows the L2 error and the error indicator η(T ) along with the condition number

κ(T ) for increasing numbers of enrichment functions using ∆t = 0.01s.

Table 6.1 shows that with the introduction of first enrichment function, the η(T )

reduces from 1.79E − 01 to 8.76E − 02 and the L2 error decreases from 31.06% to

10.09%. The additional enrichment functions improves these results further. With 4

enrichment functions (Q = 4), the η(T ) and the L2 error reduce to 1.57E − 02 and

0.64%, respectively. With Q = 5, the L2 error further reduces to 0.59%, but the η(T )

starts increasing. This is due to the very high condition number (6.57E + 15). With

Q = 6 (results not presented) the condition number becomes too high (2.31E + 17),

and we do not obtain any reliable results. Table 6.2 and Table 6.3 present similar sets

of results for ∆t = 0.001s and ∆t = 0.0001s, respectively. In Figure 6.3 is shown the
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variation of the η(�) in each element with increasing number of Q. The maximum

value of η(�) is observed in the central element.

6.3.1.2 Adaptive q–enrichments

The proposed adaptive algorithm is used to add enrichment functions adaptively rather

than using uniform enrichments. As mentioned in the adaptive algorithm, we calculate

η(�) and add more enrichment functions only in elements where η(�) is high. The

adaptive procedure is explained below in detail for the first iteration. The subsequent

iterations are carried out in the same manner.

1. As a first iteration, we start with the standard FEM solution, i.e., zero enrich-

ment in each element.

2. We estimate the η(�) in each element and mark the elements that have relatively

higher values. Figure 6.2 shows how the elements are numbered. Table 6.4 shows

the values of η(�) in each element for the first iteration.

3. The third step is skipped for the first iteration. In the subsequent steps the

solution will be checked for ∑M
i=1 η2(�i) < ϵ2 or κ ≥ K .

4. In step 4, the elements ar ordered in the descending order of magnitude of η(�).

Table 6.4 also serves this purpose. The first column shows the elements in their

natural sorting order. The estimated η(�) for each element is mentioned in the

second column. From maximum to minimum, the η(�) are organized in the

third column. The corresponding elements are ordered in column 4. The last

column shows the progressive sum of η(�) values.

5. After sorting, the elements with larger η(�) values are marked for further re-

finement. From the third column of Table 6.4, it is clear that element 13 has

the highest η(�) value of 1.20E − 01, and elements 8, 12, 14 and 18 having the

second highest values of 5.79E − 02 each. It is noted that these five elements

constitute more than 60% of the total value of η(T ). Adding the next four
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Table 6.4 Details of η(�) in each element along with their progressive sums for
iteration-1

Elem No. η(�) η(�)
(Desc order)

Elem No.
(Desc order)

Progressive sum of
η

1 7.08E-04 1.20E-01 13 1.20E-01
2 2.88E-03 5.79E-02 8 1.78E-01
3 5.56E-03 5.79E-02 12 2.36E-01
4 2.88E-03 5.79E-02 14 2.94E-01
5 7.08E-04 5.79E-02 18 3.52E-01
6 2.88E-03 3.18E-02 7 3.84E-01
7 3.18E-02 3.18E-02 9 4.15E-01
8 5.79E-02 3.18E-02 17 4.47E-01
9 3.18E-02 3.18E-02 19 4.79E-01
10 2.88E-03 5.56E-03 3 4.85E-01
11 5.56E-03 5.56E-03 11 4.90E-01
12 5.79E-02 5.56E-03 15 4.96E-01
13 1.20E-01 5.56E-03 23 5.01E-01
14 5.79E-02 2.88E-03 2 5.04E-01
15 5.56E-03 2.88E-03 4 5.07E-01
16 2.88E-03 2.88E-03 6 5.10E-01
17 3.18E-02 2.88E-03 10 5.13E-01
18 5.79E-02 2.88E-03 16 5.16E-01
19 3.18E-02 2.88E-03 20 5.18E-01
20 2.88E-03 2.88E-03 22 5.21E-01
21 7.08E-04 2.88E-03 24 5.24E-01
22 2.88E-03 7.08E-04 1 5.25E-01
23 5.56E-03 7.08E-04 5 5.26E-01
24 2.88E-03 7.08E-04 21 5.26E-01
25 7.08E-04 7.08E-04 25 5.27E-01

elements, 7, 9, 17, 19, which have the third highest values, the cumulative η(�)

value for these 9 elements sums up to more than 90% of the total value for the

whole domain. This corresponds to θ2 = 0.9 in the adaptive algorithm, i.e.

∑
η(�i) > 0.9 × η(T ) , i = 7, 8, 9, 12, 13, 14, 17, 18, 19

Now rather than adding enrichments everywhere we target these nine elements

only. The selection of θ2 value depends on the required level of accuracy. It
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Table 6.5 Variation of L2 error and η(T ) along with condition number for adaptive
q−enrichments with ∆t = 0.01s and at t = 1.0s for Example problem 1.

Iteration No DOFs ε% η(T ) κ(T )

1 25 31.06 1.79E-01 1.63E+03
2 52 9.96 8.82E-02 1.35E+06
3 79 2.13 3.55E-02 1.80E+09
4 106 0.70 1.72E-02 3.35E+12
5 133 0.92 3.39E-02 4.47E+15

iteration 1 iteration 2 iteration 3

iteration 4 iteration 5

Fig. 6.4 Distribution of η in each element with adaptive q–enrichments for Example
problem 1.

is worthwhile to mention that the cumulative value of η reduces with every

iteration; depending on the requirements, the θ2 value may also be reduced for

the subsequent iterations. Again the selection of θ2 will depend on the required

accuracy.
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iteration 1 iteration 2 iteration 3

iteration 4 iteration 5

Fig. 6.5 Details of enrichment functions used in each element for adaptive q–
enrichments for Example problem 1.

6. In step 6, one enrichment is added in the selected nine elements.

7. The process is repeated for next iteration.

For the second iteration, the values of η(�) and L2 error are calculated again

after the addition of one enrichment function in the selected nine elements. Also, the

effect on condition number is assessed with every enrichment. Again the elements

are organized in the descending order of magnitude of η(�) and elements with higher

values are marked for further refinement as in the previous iteration. This process

is repeated until we get the required accuracy. Table 6.5 shows the results of these

iterations. Figure 6.4 shows the variation of η(�) for each iteration. The maximum

η(�) is seen to be in the centre element followed by four neighbouring elements. The

values being maximum in the first iteration and decrease subsequently when more
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ε% η(T )

Fig. 6.6 Comparison of L2 error and η(T ) for uniform enrichments (�) and adaptive
q–enrichments (N) for Example problem 1.

enrichments are added. The results decrease upto iteration 4, and with the addition

of another enrichment function in iteration 5, the η starts increasing. This violates

the criteria of ϵ > 0, so we stop the iterations. The best results being obtained from

iteration 4. Figure 6.5 gives details of the number of enrichment functions used in

every element for each iteration.

To compare the results of adaptive q–enrichments with those obtained with uniform

enrichments, in Figure 6.6 is shown the L2 error and η(T ) for both the cases against

total DOFs. It is clear from these figures that in case of adaptive refinement, we get

comparable results with less DOFs. A reduction of 60% in DOFs is observed which

proves the usefulness of the proposed adaptive algorithm.

6.3.1.3 Effect of the Condition Number (κ)

The condition number is one of the important parameters and should be monitored

closely as it has adverse effect on the accuracy of the solution. The results discussed in

the previous sections show that the addition of enrichment functions decreases the L2

error and the error indicator η. But the results improve only up to a certain limit, after

which they start to deteriorate because of the ill-conditioning of the system matrix.
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Q=1 Q=2 Q=3

Q=4 Q=5

Fig. 6.7 Condition number in each element with uniform enrichments for Example
problem 1.

For the uniform enrichment case, we see from Table 6.1 that the results improve up

to Q = 4. With the addition of fifth enrichment function, the L2 error still decreases by

a small amount but the η starts increasing due to very high condition number. With

Q = 6 (results not presented), the condition number becomes too high to get any

reliable results. Figure 6.7 shows the variation of condition number in each element

with increasing number of enrichment functions.

Figure 6.8 shows the variation of the condition number for the adaptive refinements.

The maximum condition number is observed in the centre element followed by the

adjoining four elements. Table 6.5 shows that from iteration 1 to 4 the results improve

very quickly. For iteration 4 the total condition number becomes 3.35E + 12. In

iteration 5, the condition number increases to 4.47E + 15 and the L2 error and the

error indicator η start to deteriorate.
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iteration 2 iteration 3

iteration 4 iteration 5

Fig. 6.8 Condition number in each element with adaptive q–enrichments for Example
problem .1

6.3.2 Example problem 2(a)

The first example considered a problem with a known exact solution. In the second

example, a general problem with no known solution is considered. For this model

problem, we consider a square domain Ω = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 3.6} with the

same mesh density as in Example problem 1.

In this example problem, we consider a heat source in the centre of the domain

with a constant heat source f = 200◦C/s in the central part i.e., x, y ∈ [1.6, 2.0].

The source decreases linearly to f = 0 when either x or y equal to 1.2 or 2.4. The

convection heat transfer coefficient h is taken as zero on the boundaries while the heat

diffusion coefficient in the domain is taken as λ = 0.01kgm/◦Cs2.
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Fig. 6.9 Mesh used for Example problem 2(a).

We take the initial temperature u0 to be zero, like the heat source at the boundary

g. With ∆t = 0.001s, the total solution time is t = 0.1s. The heat source f is kept

on for the first half i.e., from t = 0 to t = 0.05s and then turned off for rest of the

computation time. The error indicator in each element η(�) is calculated as defined

by (6.9) and the cumulative value η(T ) for the whole domain as given by (6.10). The

problem is solved on a fix coarse mesh of 81 elements, shown in Figure 6.9.

6.3.2.1 Uniform q–enrichments

To start with, the problem is solved with zero enrichment function. We then introduce

enrichments in the FEM solution space and evaluate the results by varying the number

of enrichment functions Q = 1, 2, ..5. The values of η(�) and the cumulative value

for the domain η(T ) are calculated with every refinement. Figure 6.10 shows the

variation of η(T ) with Q. The figure depicts that η(T ) decreases as Q is increased.

The decrease is observed up to 3 enrichment functions, and with further enrichments,

the η(T ) starts increasing. With Q = 4 it increases by a small amount and grows

further with Q = 5. Also in Figure 6.11 is shown the spread of η(�) in the domain

with every refinement. The maximum value is observed in the central element which

decreases to minimum at the boundaries. The values blow up with Q = 5 as depicted

in Figure 6.11(f). This behaviour is attributed to the rise of condition number as Q is
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Fig. 6.10 Variation of η(T ) with uniform Q for Example problem 2(a).

increased.

(a) Q =0 (b) Q =1 (c) Q =2

(d) Q =3 (e) Q =4 (f) Q =5

Fig. 6.11 Distribution of η(�) in each element with uniform enrichments for Example
problem 2(a).
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Fig. 6.12 Variation of κ(T ) with uniform Q for Example problem 2(a).

6.3.2.2 Adaptive q–enrichments

For adaptive q–enrichments, we start with the standard FEM solution. Following the

adaptive algorithm, enrichment functions are added only in elements with higher values

of the error indicator. For each iteration, the error indicator in each element,η(�), and

the cumulative value for the domain η(T ) is calculated. Also, the condition number

in each element κ(�) and the overall value for the domain κ(T ) is calculated. Figure

6.13 shows the variation of η(T ) and the condition number κ(T ) with each iteration.

The error indicator η(T ) decreases with each refinement. A rapid decrease is observed

with the second and third refinements. The fourth and fifth iterations also decrease

the error indicator but only by a small amount. The distribution of error indicator in

each element, η(�), is shown in Figure 6.14. A visible decrease in error indicator in

each element is also depicted in Figure 6.14 for iteration 2 and 3. For iterations 4 and

5, there is only a slight improvement in the values of η(�). The condition number for

the fifth iteration rises to the order of E + 15 as shown in Figure 6.13(b).

To compare the results of uniform enrichments and adaptive q–enrichments, in

Figure 6.15 is shown the comparison of η(T ) against total DOFs for both cases. It is

clear from the figure that with the proposed adaptive algorithm, we get almost similar

results with less DOFs. For a comparable accuracy, a reduction of more than 70% in
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(a) η(T ) (b) κ(T )

Fig. 6.13 Variation of η(T ) and κ(T ) for each iteration with adaptive q−enrichments
for Example problem 2(a).

DOFs is noted with the adaptive q−refinement as compared to the uniform refinement.

The enrichment functions used in each iteration for the adaptive refinement is shown

in Figure 6.16. For iteration 2, one enrichment is added in the 13 central elements.

The cumulative value of η(�) for these 13 elements is more than 70% of the total value

for the whole domain. This corresponds to θ2 = 0.7 in the adaptive algorithm.

6.3.3 Example problem 2(b)

The proposed adaptive procedure is more beneficial for the cases where we deal with

large domains and concentrated heat sources. If we consider the same heat source, but

with a larger domain, the reduction in the total DOFs will be even better. To show

this, In the current example, we consider the same heat source as in Example problem

2 but with a larger domain Ω = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 4.4} with 11 elements in each

direction. Again the mesh density is kept same as in the previous example. Figure

6.17 shows the mesh used for computations.

The heat source is defined as f = 200◦C/s which is constant in the central part

i.e., x, y ∈ [2.0, 2.4] and decreases linearly to f = 0 on the external boundaries of

the source, where either x or y is one of ∈ {1.6, 2.8}. The convection heat transfer
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iteration 1 iteration 2 iteration 3

iteration 4 iteration 5

Fig. 6.14 Distribution of η(�) with adaptive q–enrichments for Example problem 2(a).

Fig. 6.15 Comparison of η(T ) for uniform enrichments (�) and adaptive q–enrichments
(N) for Example problem 2(a).
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iteration 2 iteration 3

iteration 4 iteration 5

Fig. 6.16 Enrichment functions used in each element with adaptive q–enrichments for
Example problem 2(a).

coefficient h, the thermal conductivity λ, the initial temperature u0 and the heat

source g at the boundary are the same as in the previous example. The total solution

time is also kept the same i.e. t = 0.1s, with the heat source f kept on only for the

first half of the computation time.

6.3.3.1 Uniform q–enrichments

Starting with the standard FEM solution, the error indicator η and the condition

number κ are calculated with zero enrichment function. The solution space is then

enriched with multiple enrichment functions, and with each refinement, the values

of η and κ are calculated. Figure 6.18 shows the variation of η(T ) and κ(T ) with
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Fig. 6.17 Mesh used for Example problem 2(b).

increasing Q. Figure 6.18(a) shows that the η(T ) decreases up to Q = 3. With

further addition of enrichment functions, the results deteriorate, and we do not get

any reliable values. The condition number with three enrichment functions remains

in the order of E + 16 which shoots up to the order of E + 29 with fourth enrichment

functions as depicted in Figure 6.18(b). Figure 6.19 shows the distribution of η(�) in

each element with uniform enrichments in the whole domain.

6.3.3.2 Adaptive q–enrichments

The standard FEM solution with zero enrichment functions as our iteration-1, we es-

timate the error indicator and the condition number in each element as well as their

cumulative values for the whole domain. Following the adaptive algorithm, elements

with higher values of error indicator are enriched adaptively. The error indicators in

each element η(�) and their cumulative value η(T ), reduces with each refinement.

The decrease of η(T ) with every refinement is shown in Figure 6.20(a). The corre-

sponding condition number κ(T ) for each iteration is shown in Figure 6.20(b). As

depicted in Figure 6.20(a), the η(T ) is maximum for the first iteration and minimum

for iteration 6.

As observed in the previous examples, the results deteriorate with very high con-

dition number. The results improve up to a certain limit, and with further addition
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(a) η(T ) (b) κ(T )

Fig. 6.18 Variation of η(T ) and κ(T ) with uniform enrichments for Example problem
2(b).

of enrichment functions, the condition number becomes too high and the results start

to deteriorate. The proposed adaptive algorithm gives us the liberty to put a limit

on the κ(�) in any element as well as on the cumulative value κ(T ). It can be seen

from Figure 6.20(b) that for iteration 5, the condition number is of the order E + 15.

The maximum condition number being in the central element as shown in Figure 6.21.

The condition number in the central element in iteration 5, is 2.8E + 15. In iteration

5, 4 enrichment functions are used in each of the nine central elements as shown in

Figure 6.22(d). To reduce the condition number in the central element, one enrich-

ment function is decreased from the central element. Iteration 6 is performed with 3

enrichment functions in the central element, and 4 in each of the surrounding eight

elements as shown in Figure 6.22(e). The condition number for the whole domain

decreases from 4.5E + 15 to 6.1E + 12 as shown in Figure 6.22(b). Although the total

DOFs are decreased in iteration 6, the results still improve by a small amount due to

the drop in the condition number. Figure 6.23 shows the distribution of η(�) in each

element. The decrease for the first two refinements is evident. For further refinements,

the results still improve by a small amount.

Figure 6.24 compares the results of uniform enrichments and adaptive q–enrichments.
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Q =0 Q =1

Q =2 Q =3

Fig. 6.19 Distribution of η(�) in each element with uniform enrichments for Example
problem 2(b).

The η(T ) is plotted against total DOFs for both cases. The figure clearly shows that

proposed adaptive algorithm gives similar results with less DOFs. For a comparable

accuracy, a reduction of 70% in total DOFs was observed for the Example problem

2(a). In the current example, a reduction of more than 80% is noted with the adaptive

algorithm. In case of uniform refinement, we get minimum value of η(T ) = 6.38 with

total 1210 DOFs. In comparison, with the adaptive algorithm we get a comparable

value of η(T ) = 6.39 with only 238 DOFs, giving a total reduction of 972 DOFs.
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(a) η(T ) (b) κ(T )

Fig. 6.20 Variation of η(T ) and κ(T ) with adaptive q−refinements for Example prob-
lem 2(b).

iteration 2 iteration 3 iteration 4

iteration 5 iteration 6

Fig. 6.21 Distribution of κ(�) in each element with adaptive q−refinement for Example
problem 2(b).
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(a) iteration 2 (b) iteration 3 (c) iteration 4

(d) iteration 5 (e) iteration 6

Fig. 6.22 Enrichment functions used in each element with adaptive q−enrichments for
Example problem 2(b).

6.4 Conclusions

An adaptive algorithm is proposed to selectively add enrichment functions in elements

with relatively higher error indicators. The algorithm is tested on different example

problems. Results are obtained for both cases of uniform enrichment and adaptive

enrichment. It is concluded that for a comparable accuracy, the proposed adaptive

algorithm offers a reduction of up to 80% in the total number of degrees of freedom.

The effect of the condition number on the quality of the results is also investigated.

It is concluded that the addition of enrichment functions improve the results only

up to a certain limit. Adding further enrichment functions makes the system matrix

ill-conditioned, which in turn affects the quality of the results. With the proposed
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iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6

Fig. 6.23 Distribution of η(�) in each element with adaptive q−enrichments for Ex-
ample problem 2(b).

Fig. 6.24 Comparison of η(T ) for uniform enrichments (�) and adaptive q–enrichments
(N) for Example problem 2(b).
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algorithm, the condition number may be capped by a given limit. Elements with higher

condition numbers are marked and the number of enrichment functions is reduced in

the selected elements. This is shown to decrease the overall condition number of the

system matrix while improving the quality of the results and achieving computational

cost savings.

143



Chapter 7

Error estimation for

three-dimensional problems

7.1 Introduction

The current chapter extends the concept of the error estimates to the three-dimensional

case of transient heat diffusion problems. In Chapter 4 the GFEM approach is tested

for three-dimensional problems. Having shown the benefits of GFEM for 3D prob-

lems, it is proposed to reconsider the error estimates developed in Chapter 5 for

three-dimensional problems as well. For the two-dimensional case, it is shown that

the implemented residual estimates quantify reliably an upper bound of the numerical

errors of GFEM on coarse mesh grids.

The next sections outline the transient heat diffusion problem along with the defini-

tion of error estimates for 3D problems. The expressions of the error estimate (relative

η) components are pretty similar to the 2D case, however, the integration scheme is

applied on three-dimensional domains. Numerical experiments on two test problems

are presented to show the effectiveness of the error estimate in 3D.
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7.2 GFEM discretization and error estimates

7.2 GFEM discretization and error estimates

Considering the transient heat diffusion problem defined by (3.1) - (3.3), the weak

formulation of the problem in a 3D domain Ω ⊂ R3 is given by (4.1). The GFEM dis-

cretization (3.16) is used to find the approximate numerical solution of the considered

problem. If U and u are the exact and GFEM solution of this problem, we rewrite

Theorem 1 defined in Chapter 5 as;

∫
Ω

|U(T, x) − u(T, x)|2dΩ + λ
∫ T

0

∫
Ω

|∇(U − û)|2dΩ dt

≤ c{η2
1 + η2

2 + η2
3 + η2

4 + η2
5 + η2

6}, (7.1)

with the definitions of η2
1 - η2

6 given by (5.4) - (5.9), but now in a three-dimensional

domain. The left hand side (LHS) of expression (7.1) measures the actual errors be-

tween the approximate GFEM solution and the exact solution, while the right hand

side (RHS) represents the computable error indicators, η2
1 to η2

6. For an acceptable

solution, LHS should always be less than RHS. Theorem 1 proves that the error indi-

cators η2
1 to η2

6 never underestimate the actual error. As before we will compute η2
2, η2

4

and η2
5 only. For three-dimensional problems these are defined as

η2
2(n, K) =

∫ tn+1

tn

∥∥∥f̂ − ∂tu + λ∆û
∥∥∥2

H−1(K)

≤
∫ tn+1

tn

dt
∫

K

(
f̂ − ∂tu + λ∆û

)2
dΩ

= δt
∫

K

(
fn+1 − un+1 − un

δt
+ λ

(
∂2un+1

∂x2 + ∂2un+1

∂y2 + ∂2un+1

∂z2

))2

dΩ .

η2
4(n, K) = λ

∫ tn+1

tn

∥∇(u − û)∥2
L2(K)

= λ
∫ tn+1

tn

(
tn+1 − t

tn+1 − tn

)2

dt
∫

K

(∂un+1

∂x
− ∂un

∂x

)2

+
(

∂un+1

∂y
− ∂un

∂y

)2
 dΩ

= λδT

3

(∫
K

(
∂un+1

∂x
− ∂un

∂x

)2

dΩ +
∫

K

(
∂un+1

∂y
− ∂un

∂y

)2

dΩ +
∫

K

(
∂un+1

∂z
− ∂un

∂z

)2

dΩ
)

.
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η2
5(n, E) =

∫ tn+1

tn

∥∥∥∥∥
[

∂û

∂n

]∥∥∥∥∥
2

L2(E)
dt

=
∫ tn+1

tn

∥∥∥[∇un+1 · n
]∥∥∥2

L2(E)
dt

=
∫ tn+1

tn

∫
E

(
∇un+1

E1 n1 + ∇un+1
E2 n2

)2
dE dt

=
∫ tn+1

tn

∫
E

(
∇un+1

E1 n1 − ∇un+1
E2 n1

)2
dE dt

= δt
∫

E

(∂un+1

∂x
n1x + ∂un+1

∂y
n1y + ∂un+1

∂z
n1z

)
E1

−

∂un+1

∂x
n1x + ∂un+1

∂y
n1y + ∂un+1

∂z
n1z


E2

2

dE .

7.3 Numerical experiments

This section investigates the a-posteriori error estimates proposed in Theorem 1 for

three-dimensional transient heat diffusion problems. To show the effectiveness of The-

orem 1 we consider two different numerical examples. The first example considers a

problem where the exact solution is known. The exact solution can be used to find

the relative L2 error of the approximate GFEM solution. It is also used to compute

the right hand side of the expression (7.1). The second example considers the problem

of transient heat transfer with a single heat source in the centre of the domain. This

example is considered to show the usefulness of the proposed error estimates for a

general case where the exact solution is not known.

As in Chapter 4, the numerical solution for both the experiments is computed

using hexahedral elements with 8 nodes and piecewise linear shape functions. The

parameters Rc and C in the GFEM basis functions Gq are constants which control the

shape of the enrichment functions, and R0 = |x − xc| is the distance of any point x

from the centre of the domain xc = (1, 1, 1). A thorough study with different values

of Rc and C is presented for the optimal selection of the enrichment functions. All

integrals over Ω are evaluated numerically, using a Gauss–Legendre quadrature with

20 integration points in each spatial direction.
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To compare the results for different model problems, we focus on the relative error

between the exact solution U and its GFEM approximation u, defined as

(∫
Ω |U − u|2dΩ + λ

∫ T
0
∫

Ω |∇(U − û)|2dΩ dt∫
Ω |U |2dΩ + λ

∫ T
0
∫

Ω |∇U |2dΩ dt

)1/2

(7.2)

The corresponding rel η is given as

(
η2

2 + η2
4 + η2

5∫
Ω |U |2dΩ + λ

∫ T
0
∫

Ω |∇U |2dΩ dt

)1/2

(7.3)

For Example problem 1, both quantities (7.2) and (7.3) are computed, and their

values are compared. For the second example where no exact solution is known, only

(7.3) is calculated and the exact solution U is replaced by a reference FEM solution

on a fine mesh.

7.3.1 Example problem 1

To show the relevance of Theorem 1, we calculate the actual errors in the GFEM

solution as defined by LHS of expression (7.1) and then compare it to RHS by cal-

culating the error indicators. A problem with known exact solution in a 3D domain

Ω is considered for this purpose which is similar to Example Problem 1 of Chapter 4

and for which the exact solution is given by (4.2). The relative L2 norm error given

by (7.3) is also calculated. For consistency with the problems considered in Chapter

5 for error estimation of 2D problems, the parameters h,and λ are taken to be the

same, i.e., h = 1kg/◦Cs2 and λ = 0.1kgm/◦Cs2. The time step value is taken to be

∆t = 0.01s with a total solution time of t = 1.0s. Four different numerical studies

are performed to show the working of the proposed error estimates under different

conditions.
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(a) (b) (c)

(d) (e) (f)

Fig. 7.1 Variation of relative error (�), rel η (N) and ε% (H) for ∆t = 0.01s (top row)
and ∆t = 0.001s (bottom row) at times t = 0.1, 0.5 and 1.0s from left to right.

7.3.1.1 Study 1: Effect of q−refinement

The first study evaluates the effect of number of enrichment functions on the variation

of error estimates and the actual errors in the numerical solution. For computations,

a fixed coarse mesh of 125 elements is selected with different number of enrichment

functions Q = 2, . . . , 6. The the mesh density is taken to be the same as in 2D

problems i.e., 5 elements in each spatial direction of the cube. For 2D problems, a

mesh with 5 elements in each spatial direction of the square was considered. Both

the actual errors and the error indicators are computed and their values are compared

using varying number of enrichment functions. The L2 norm error is also calculated

to show that the proposed error estimates give similar trends as produced by the L2

norm error.

Figure 7.1 compares the relative error of the GFEM solution defined by (7.2) and
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Fig. 7.2 Temperature distribution for the exact solution (top row) and GFEM solution
with Q = 6 (bottom row) at times t = 0.1, 0.5 and 1.0s from left to right. The
distributions are obtained with ∆t = 0.01s.

the rel η defined by (7.3) for increasing number of enrichment functions Q. The results

are presented for three different simulation times, t = 0.1, 0.5 and 1.0s with two

different values of time steps, i.e., ∆t = 0.01s and ∆t = 0.001s . In the graph, the

number of enrichment functions Q is presented on the abscissa while the relative error

(�), rel η (N) and relative L2 norm error (H) are shown on the ordinate.

The results show that in all the cases the relative error of GFEM solution is less

than the rel η. The actual error decreases as the number of enrichment functions is

increased. A similar decrease is observed in the error estimate which effectively bounds

the actual error. The ratio of the error estimator and the actual error is close to 10 in

all the cases. This is to be emphasized that the proposed estimates show similar trends

as those captured by the relative L2 norm error. For problems with no known exact

solutions, where the the relative L2 norm error cannot be calculated, the proposed

error estimate can serve the purpose of evaluating the solution accuracy.

In the computations of the indicators η2
2, η2

4 and η2
5, it is observed that the overall
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Fig. 7.3 First derivatives of the solution in x-direction for the exact solution (top row)
and GFEM solution with Q = 6 (bottom row) at times t = 0.1, 0.5 and 1.0s from left
to right. The distributions are obtained with ∆t = 0.01s.

value of the error estimate is dominated by η2
2. This is attributed to the presence of

large second derivative of the solution. The values of the solution as well as its first

derivatives are very low as compared to the second derivatives. Figure 7.2 shows the

solution captured by GFEM and exact solutions at different simulation times. Both

solutions present very similar temperature profiles. The same is observed in the first

derivatives of the solution in the x-direction as shown in Figure 7.3. GFEM closely

approximates the first derivatives of the exact solution. Due to the symmetry of the

problem and the enrichment functions, similar profiles of the derivatives are observed

in the y and z directions. From Figure 7.2 and Figure 7.3, it is evident that the max-

imum value of the solution at t = 1.0s is 0.07 while that of the first derivative at the

same simulation time is 0.3 in the positive direction and -0.3 in the negative direc-

tion. At the same simulation time, comparatively high values of the second derivatives

are observed as shown in Figure 7.4. Here the second derivatives of the solution in

the x-direction captured by both GFEM and exact solutions are presented at differ-
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Fig. 7.4 Second derivatives of the solution in x-direction for the exact solution (top
row) and GFEM solution with Q = 6 (bottom row) at times t = 0.1, 0.5 and 1.0s from
left to right. The distributions are obtained with ∆t = 0.01s.

ent simulation times. It can be seen from Figure 7.4 that the values of the second

derivatives at t = 1.0s are +1.5 and -3.5 which explains the high value of η2
2. Although

very similar profiles of the solution and its first derivatives are obtained by the exact

and GFEM solutions; there are still some dissimilarities in the profiles of their second

derivatives. One can tune the enrichment functions to give a very smooth approxima-

tion to the second derivative as well, but this would be very specific to the problem

under consideration, unlike the general nature of the method. In the current study,

they are kept in the general form, as used in [88, 126, 129].

7.3.1.2 Study 2: Effect of h−refinement

The second study is performed to determine the effect of h−refinement on the proposed

error estimates. Three different mesh grids as shown in Figure 7.5 are considered for

the computations. We start with a very coarse mesh of 64 elements in the 3D cube

and enrich the solution space with different numbers of enrichment functions Q =
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64 elements, 125 nodes 125 elements, 216 nodes 216 elements, 343 nodes

Fig. 7.5 Different meshes used for the computations.

2,3...6. We then refine the mesh to a total of 125 elements in the whole domain, with

5 elements in each direction. Again we consider the same enrichment functions Q

= 2,3...6. A third refinement of 216 elements with Q = 2,3...6 is also considered

to improve the results further. In the coming discussion, the computations with 64

elements will be referred as GFEM1, and with 125 and 216 elements as GFEM2

and GFEM3, respectively. The relative error, rel η and relative L2 norm error are

calculated for all the three mesh grids.

Figure 7.6 compares the results of GFEM1, GFEM2 and GFEM3 computations

at three different simulation times. The relative error (�), rel η (N) and relative

L2 norm error (H) are presented against the number of degrees of freedom. For all

the computations, the error estimate consistently bounds the actual errors in the

solution. As in the previous study, the relative error and rel η decrease as the number

of enrichment functions are increased, with similar trends as shown by the relative L2
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(a) GFEM1 (b) GFEM2 (c) GFEM3

(d) GFEM1 (e) GFEM2 (f) GFEM3

(g) GFEM1 (h) GFEM2 (i) GFEM3

Fig. 7.6 Variation of relative error (�), rel η (N) and ε% (H) for GFEM1, GFEM2 and
GFEM3 at times t = 0.1, 0.5 and 1.0s.

norm error. As expected, GFEM3 having the finest mesh grid of all the three meshes,

produces lower errors, which are efficiently captured by the presented error estimate.

7.3.1.3 Study 3: q−band analysis

This study investigates the possible use of a-posteriori error estimates for the optimal

selection of the combination of enrichment functions. The computations are performed

with a coarse mesh of 64 elements and three enrichment functions. With Q = 3 and q

varied between 1, ...6, out of the different possible combinations of q, four combination
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Table 7.1 q-bands used for Study 3.

Case q−bands
1 q = 1, 2, 3
2 q = 2, 3, 4
3 q = 3, 4, 5
4 q = 4, 5, 6

(a) t = 0.1 (b) t = 0.5 (c) t = 1.0

Fig. 7.7 Variation of relative error (�), rel η (N) and ε% (H) for different q−bands.

as shown in Table 7.1 are used in this present study.

Figure 7.7 calculates the relative time–integrated error, and rel η over the whole

domain Ω for different choices of enrichment functions and different time intervals

t = 0.1, 0.5 and 1.0s. The variation of relative L2 norm error is also calculated with

the selected combinations. It is observed from Figure 7.7 that the second combination

of q = 2, 3, 4 (Case 2) produces the lowest errors at all the simulation times. The

enrichment functions with flatter gradients such as q = 4, 5, 6 (Case 4) yield the worst

numerical approximation. As in the previous studies, very similar patterns of results

are obtained with the rel η and L2 norm error. The presented study can be useful

for the adaptive selection of the enrichment functions for q−refinement when little

or no information are known about the approximation properties of the enrichment

functions. Although only four combinations as stated in Table 7.1 are selected to show

the working of the presented error estimate, a thorough study with different q−bands

can be performed to select the optimal combination.
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Table 7.2 Different combinations of C and Rc used for Study 4.

Case C Rc

1
√

3
√

10
2

√
2

√
10

3
√

1
√

10
4

√
1

√
5

5
√

1
√

2
6

√
1

√
1

7.3.1.4 Study 4: Enrichment function optimization

The effectiveness of GFEM depends on the proper selection of enrichment func-

tions [11]. A suitably chosen enrichment function provide better approximation than

the standard polynomial shape functions used in the classical finite element method.

This current study is designed to exploit the error estimate for the proper selection

of enrichment functions. While the presented formulation can be used to test and

compare different enrichment functions for optimal solution, in the current study the

selected enrichment function (3.18) is optimized for minimum error. As stated in

section (7.3), the constants C and Rc in (3.18) control the shape of the enrichment

functions. To get the optimum shape of the enrichment function that best approxi-

mates the solution of the considered problem, different values of C and Rc as shown

in Table 7.2, are considered in this study. Figure 7.8 depicts the results of the relative

error and rel η along with the relative L2 norm error for the selected cases at three

stated simulation times. For Case-1 with C =
√

3 and Rc =
√

10, the errors are noted

to be the maximum of all the presented six cases. For all the simulation times, Case-3

with values of C =
√

1 and Rc =
√

10 produces the minimum errors. Although further

combinations of C and Rc can be tested for best possible solution, the purpose here is

only to detail the possible use of the proposed error estimate for the optimal selection

of the enrichment functions. From Figure 7.8 it is clear that the proposed error esti-

mate captures the same solution trends as obtained by the relative L2 error. While for

problems where the exact solution is known, the L2 norm error can be used to select

the optimal enrichment function, but for problems with no known exact solution, the
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(a) t = 0.1 (b) t = 0.5 (c) t = 1.0

Fig. 7.8 Variation of relative error (�), rel η (N) and ε% (H) for different values of
parameters C and Rc.

proposed error estimate can serve this purpose.

7.3.1.5 Study 5: Effect of the Condition Number (κ)

A major drawback of the GFEM is the ill-conditioning of the stiffness matrix [112].

Although the method has shown remarkable accuracy with lesser DOFs as compared

to the standard FEM, but the problem of ill-conditioning is an inherent property of the

GFEM when finer meshes or higher number of enrichment functions are used. Babuška

and Banerjee [10] investigated the conditioning issue of the GFEM while proposing a

modified GFEM, called SGFEM. They showed that in case of GFEM, the conditioning

number of the system matrix grows very quickly as compared to the standard FEM.

(a) t = 0.5 (b) t = 1.0

Fig. 7.9 Variation of relative error (�), rel η (N) and ε% (H) for GFEM4 with increasing
Q.
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Fig. 7.10 Variation of Condition Number (κ) with increasing Q for GFEM4.

This present study is designed to show that the proposed error estimate can be

used as a tool to detect the deterioration of the numerical results when condition

number grows very high. An 8 × 8 × 8 mesh with uniform elements is selected with

Q = 4, ...7 to perform the numerical computations, referred as GFEM4. Figure 7.9

shows the log values of relative error (�), rel η (N) and ε% (H) against the number

of enrichment functions Q. An important observation made from Figure 7.9 is that

upto Q = 5 both the relative L2 norm error and the rel η show a decreasing trend.

A small decrease is observed in the relative L2 norm error For Q = 6, but the rel

η starts increasing. As described in Chapter-6, the proposed error estimate is more

sensitive to the condition number than the relative L2 norm error. This is attributed

to the presence of derivative terms in the error estimate. In comparison to the relative

L2 norm error, the proposed error estimate gives an early indication about the ill-

conditioning of the system matrix and consequently the deterioration of the numerical

results. Figure 7.10 shows the variation of the conditioning number κ for increasing

Q. For Q = 7, the condition number increases to a value as high as 5.5E + 21, which

deteriorates the numerical results.
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Fig. 7.11 x-section of the 3D domain for Example problem 2 with a heat source in the
centre.

7.3.2 Example problem 2

The second example considers a transient heat diffusion problem in a 3D domain Ω =

[0, 2]3 with a heat source in the central part that dissipates heat symmetrically through-

out the domain. A cross section through the middle of the domain is shown in Figure

7.11. For the central part x ∈ [0.4, 0.8]3, the source dissipates heat at a constant rate

f =200◦C/s and is zero in the rest of the domain. The total simulation time is taken

to be t = 0.2s with a time step value of ∆t = 0.001s. The source dissipates heat for

half of the simulation time, i.e., from t = 0 to t = 0.1s, and then it is switched off and

the medium is allowed to cool down for the remaining half of the simulation. For con-

sistency, the same values of parameters h, λ are used as in Chapter 5 for 2D problem,

i.e. h= 1kg/◦Cs2 and λ = 0.1kgm/◦Cs2. The time step value is fixed at ∆t = 0.01s.

Example Problem 2 assesses the effectiveness of the proposed error estimates for

a more general problem where one can expect high thermal gradients. As the exact

solution is not known in this case, only the rel η defined by (7.3) is computed. The

quantities U and ∇U in the denominator of expression (7.3) are computed from a

reference FEM solution on a very fine mesh of 125000 elements. For the GFEM solu-

tion, a coarse mesh of 125 elements is considered. The meshes used for the reference
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(a) FEM mesh (b) GFEM mesh

Fig. 7.12 Meshes used for the reference FEM and GFEM solutions.

FEM and GFEM solutions are shown in Figure 7.12. To investigate the possible use

of the presented error estimate for a problem with no known analytical solution, two

different studies are performed. The first study is performed to show the effect of

q−refinement on the solution obtained with GFEM, and the other investigates the the

q−band analysis as performed in the previous Example problem.

7.3.2.1 Effect of q−refinement

To evaluate the effect of q−refinement for Example problem 2, GFEM solution is

calculated with a 5 × 5 × 5 mesh using different numbers of enrichment functions, Q

= 2,3,...6. Figure 7.13 shows the variation of the rel η as a function of the number

of enrichment functions Q at times t = 0.05, 0.1, 0.15 and 0.2s. In each of these cases,

two different values of the time step are considered: ∆t = 0.001 and 0.0001s. As in

the previous example, the rel η decreases as the number of enrichment functions is

increased. This shows that the error estimate captures the behaviour of the solution

efficiently and improves with every additional enrichment function. Similar trends are

achieved for both values of ∆t with slightly better results with ∆t = 0.0001s. Figure

7.14 shows the temperature distributions for both FEM and GFEM solutions. Both the

coarse mesh GFEM and fine mesh FEM solutions show similar temperature profiles. In
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(a) t = 0.05s (b) t = 0.1s

(c) t = 0.15s (d) t = 0.2s

Fig. 7.13 Variation of rel η with enrichment functions for Example problem 2.

Figure 7.15 and Figure 7.16 are shown the first and second derivatives with respect to

x respectively, of the GFEM solution. Again, the overall error estimate is dominated

by the η2
2 and very high values of the second derivatives are observed as compared to

the value of the solution and its first derivatives.

7.3.2.2 Effect of q−bands

To ascertain the effect of different combinations of q−bands, computations are per-

formed with three enrichment functions. With Q = 3, the same q−bands as shown

in Table 7.1 are considered again for Example problem 2. Figure 7.17 depicts the

rel η over the whole domain Ω for different combinations of enrichment functions at

four different simulation times, t = 0.05, 0.1, 0.15 and 0.2s. For the selected four

combinations, the Case-2 with combination q = 2, 3, 4 produces the lowest errors at

all the simulation times, followed by Case-1 with combination q = 1, 2, 3. The last
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Fig. 7.14 Temperature distribution for the reference FEM solution (top row) and
GFEM solution with Q = 6 (bottom row) at times t = 0.05, 0.1 and 0.2s from left to
right. The distributions are obtained with ∆t = 0.001s.

Fig. 7.15 First derivatives of the solution in the x-direction for the GFEM solution
at times t = 0.1, 0.5 and 1.0s from left to right. The distributions are obtained with
∆t = 0.001s.

combination q = 4, 5, 6 (Case-4) having enrichment functions with comparatively flat-

ter gradients results in higher errors. Further enrichment functions with more possible

combinations can also be used for the optimal selection of q−bands for any considered

problem. A suitably selected combination can improve the accuracy considerably. For

problems with unknown analytical solutions, the presented error estimate can be used
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Fig. 7.16 Second derivatives of the solution in the x-direction for the GFEM solution
at times t = 0.1, 0.5 and 1.0s from left to right. The distributions are obtained with
∆t = 0.001s.

to select the optimal q−combination.

7.4 Conclusions

In this chapter, the effectiveness of the proposed a-posteriori error estimate for GFEM

solutions of time–dependent heat transfer problems in 3D domains is investigated. The

proposed error estimate is tested for two example problems. In the first example, with

a known analytical solution, the error estimates are compared to the computed relative

errors obtained from the GFEM results and the analytical solution. It is concluded

that the proposed error estimate efficiently bound the actual errors of the GFEM so-

lution and the ratio of the error estimator to the actual error in about 10, in all cases.

The presented error estimate is also compared with the L2 norm error and it is shown

that both follows similar trends at all the simulation times. To show the possible use of

the proposed error estimate for the optimal selection of enrichment function and sub-

sequently better accuracy of the approximate solution, different numerical studies are

performed. For all the studies, it is shown that the error estimate effectively capture

the solution trends and can be used an alternative for the L2 norm error for problems

with no known analytical solution. The second example considers a problem where

the exact solution is not known. Again, a similar behaviour seen in the previous test

example is observed where the error estimates are shown to decrease as the number
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(a) t = 0.05s (b) t = 0.1s

(c) t = 0.15s (d) t = 0.2s

Fig. 7.17 Variation of rel η with different q−bands for Example problem 2.

of enrichment functions is increased. Also a comparatively better q−combination is

evaluated for Example problem 2 with the help of the proposed error estimate. Al-

though the proposed approach is studied for one type of enrichment functions, the

same approach can be followed with any other type of enrichment functions.
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Chapter 8

Conclusions and Future

Development

8.1 Conclusions

The work presented in this thesis addresses a limitation of the classical FEM for ef-

ficient solution of time dependent heat transfer problems with sharp gradients. The

proposed alternative is based on field enrichment with time-independent functions.

The new shape functions are therefore the product of Gaussian functions with vari-

ous decay rates, to capture the sharp variations of the temperature field, and linear

Lagrange functions, to automatically ensure inter-element continuity. This approach

has proven efficient in solving time dependent heat transfer problems with sharp gra-

dients on coarse mesh grids. Moreover, given that the enriching functions are time-

independent, the problem matrix is evaluated only at the first time step and reused

at the subsequent time steps. This aspect and the enrichment technique used on the

coarse mesh grid has led to significant reduction of the computational effort, in com-

parison to the widely used low-order classical FEM.

Indeed GFEM with time-independent enrichment is shown to produce better qual-

ity results and requires less DOFs in comparison to the classical FEM. However, com-
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paring GFEM to a low-order FEM is not fair since GFEM is considered as a high-order

method. This comparison is of practical interest in the sense FEM codes based on

low order elements, in particular Lagrange linear elements, can easily be adapted by

incorporating enrichment functions and introducing minor changes to produce efficient

approaches to solve challenging issues, such as steep gradient in time-dependent heat

diffusion problems.

The extension of GFEM to the three-dimensional case has confirmed the main

advantages of the enrichment approach achieved in the two-dimensional case, in com-

parison to FEM. For 3D case and for a comparable accuracy, a reduction of more

than 95% of the required degrees of freedom is achieved with GFEM. Both h and

q refinements are considered and it is concluded that such methods perform better

on coarse mesh grids and more enrichment functions, rather than refined mesh grids

and low enrichment. However, the number of field enrichment functions can only be

increased up to a certain level after which the system matrix ill-conditioning aspect

starts affecting the quality of the results.

The other contribution of this work consists in the development of an a-posteriori

error estimate for the GFEM approach to evaluate upper bounds of the numerical

errors in the solutions of time–dependent heat transfer problems. A detailed mathe-

matical formulation is presented for the 2D case first and the concept is then extended

to 3D. The residual estimate does not depend on the choice of enrichment functions

and is shown to efficiently and reliably reflect the behaviour of the numerical error of

GFEM on coarse mesh grids. It also reflects the errors incurred in the poorly condi-

tioned systems typically encountered in field enriched methods.

The results indicate the potential of the a-posteriori error estimate to be used for

an adaptive local choice of the number of the enrichment functions. An adaptive algo-

rithm is proposed to selectively add enrichment functions in elements with relatively
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higher error indicators. The results obtained for the uniform enrichment case and the

adaptive enrichment case show that, for a comparable accuracy, the proposed adap-

tive algorithm offers a further reduction in the computational cost, in terms of the

required DOFs, as compared to the uniform enrichment case and hence also reducing

the required computational time.

The effect of condition number on the quality of results is also investigated. It

is concluded that further adding enrichment functions improves the results only up

to a certain limit. Any further enrichment makes the system matrix ill-conditioned

and thus affecting the quality of the results. With the developed adaptive enrichment

algorithm, it is proposed to cap the condition number to a certain limit and reduce the

number of enrichment functions at elements exceeding this limit. This decreases the

overall condition number of the system matrix and improves the results while further

reducing the computational cost.

8.2 Ideas for Further Work

Based on the achievements of this work, there are many potential ideas for future

work in order to further enhance the capabilities of GFEM for effective solutions of

time dependent heat transfer problems with sharp gradients. Here are some examples:

• In this work, mainly Gaussian functions were used as enrichment functions in

the GFEM approach. It is worth exploring the use of other potential functions

which may effectively model the solution behaviour while keeping the condition-

ing within acceptable limits. Such functions do not have to be solutions of the

scalar transient diffusion equation. They may be intuitively devised functions

based on practical experience of the problem.
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• To address the issue of ill-conditioning of the standard GFEM, the concept of

Stable Generalized Finite Element Method (SGFEM) may be investigated. It is

claimed that the SGFEM conditioning to be of the same order as in standard

FEM. This may allow the use of higher numbers of enriching functions and thus

further reducing the computational cost.

• The developed a-posteriori error estimate is proposed and tested on 2D prob-

lems and the concept was then extended to 3D problems. For 2D problems, an

adaptive refinement procedure is also devised to further reduce the necessary

DOFs for a prescribed accuracy. This can be applied to 3D problems too, for

which the reduction in the required DOFs should be more significant.

• In the current work, the employed enrichment functions are tailored to effec-

tively capture sharp gradients on coarse mesh grids. The same concept can be

used to devise enrichment functions to deal with time-dependent heat diffusion

problems with singularities. In fact developing GFEM for problems exhibiting

both strong boundary layers and singularities would be of great interest.

• Finally, the developed error estimate in this thesis is based on residual errors.

However, goal-oriented errors are another avenue whereby for a given temper-

ature at a boundary, for example, the field variable is adaptively computed so

that the error in the defined goal quantity is as small as possible. This approach

may be well suited for GFEM and the choice of enrichment functions.
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