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Abstract

In the quest to produce images of the sky at unprecedented resolution with high

sensitivity, new generation of astronomical interferometers have been designed. To

meet the sensing capabilities of these instruments, techniques aiming to recover the

sought images from the incompletely sampled Fourier domain measurements need to

be reinvented. This goes hand-in-hand with the necessity to calibrate the measure-

ment modulating unknown effects, which adversely affect the image quality, limiting

its dynamic range. The contribution of this thesis consists in the development of

advanced optimization techniques tailored to address these issues, ranging from radio

interferometry (RI) to optical interferometry (OI).

In the context of RI, we propose a novel convex optimization approach for full po-

larization imaging relying on sparsity-promoting regularizations. Unlike standard RI

imaging algorithms, our method jointly solves for the Stokes images by enforcing the

polarization constraint, which imposes a physical dependency between the images.

These priors are shown to enhance the imaging quality via various performed numeri-

cal studies. The proposed imaging approach also benefits from its scalability to handle

the huge amounts of data expected from the new instruments. When it comes to deal

with the critical and challenging issues of the direction-dependent effects calibration,

we further propose a non-convex optimization technique that unifies calibration and

imaging steps in a global framework, in which we adapt the earlier developed imaging

method for the imaging step. In contrast to existing RI calibration modalities, our

method benefits from well-established convergence guarantees even in the non-convex

setting considered in this work and its efficiency is demonstrated through several

numerical experiments.

Last but not least, inspired by the performance of these methodologies and drawing

ideas from them, we aim to solve image recovery problem in OI that poses its own

set of challenges primarily due to the partial loss of phase information. To this end,

we propose a sparsity regularized non-convex optimization algorithm that is equipped

with convergence guarantees and is adaptable to both monochromatic and hyperspec-

tral OI imaging. We validate it by presenting the simulation results.

i



Acknowledgements

Pursuing a PhD is a journey in itself. While I finish this journey, I would like to

extend thanks to many people who have contributed towards it.

First and foremost, I would like to express my gratitude to my PhD advisor, Professor

Yves Wiaux, for giving me the opportunity to work on this research project, for his

supervision and for engaging in many stimulating scientific discussions. I am also

grateful to a special mentor, Dr. Audrey Repetti, for her guidance throughout my

PhD. Audrey, your (in)numerous comments while reviewing the articles, your patience

to answer even the stupid questions I might have asked, have been truly invaluable.

I would also like to thank my thesis examiners, Professor Oleg Smirnov and Dr.

Alexander Belyaev, for critically examining my thesis and providing constructive feed-

back. I want to thank Dr. Arwa Dabbech and Dr. Pierre-Antoine Thouvenin for taking

out time to read my thesis and giving very useful comments. Thanks a lot, all those

corrections and feedback have clearly shaped the thesis in a better way.

Thanks to my lab mates (the current as well as the old ones) and friends from the

BASP group: Abdullah, Arwa, Audrey, Marica, P.-A., Roberto, Matthieu, Elie, Alex,

Silvia and Zhouye. Thank you for providing a great working environment and being

always available for scientific discussions. Having lunches together and discussing lives

outside the lab was a temporary getaway from the usual long working hours. Marica

and Roberto, I owe you a big thank you. Specially for your support in those last days

and yes, for helping me bind the thesis on such a short notice!

This thesis would not have been possible if it wasn’t for my family. Mummy, Daddy,

Didi and Jiju, thank you for always believing in me even when I didn’t and sup-

porting my decision of moving abroad for PhD. I can’t thank you enough for your

continued understanding. Finally, a big thanks to my partner for his constant sup-

port. Bashdeep, your role in the completion of this journey has been integral. Thank

you for instilling confidence in me when I doubted myself, keeping up my mood in the

difficult of the times and pushing me always.

Edinburgh, 2019

ii



ACADEMIC REGISTRY      	 	

Page 1 of 2 
RDC Clerk/Nov 2018 

	

Research Thesis Submission 
Please note this form should be bound into the submitted thesis. 
 
 

Name: JASLEEN BIRDI 

School: School of Engineering and Physical Sciences 

Version:  (i.e. First, 
Resubmission, Final) 

Final Degree Sought: Doctor of Philosophy 

 
 

Declaration  
 
In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 
 
1. The thesis embodies the results of my own work and has been composed by myself 
2. Where appropriate, I have made acknowledgement of the work of others 
3. Where the thesis contains published outputs under Regulation 6 (9.1.2) these are accompanied by a critical review 

which accurately describes my contribution to the research and, for multi-author outputs, a signed declaration 
indicating the contribution of each author (complete Inclusion of Published Works Form – see below) 

4. The thesis is the correct version for submission and is the same version as any electronic versions submitted*.   
5. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for 

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian 
may require 

6. I understand that as a student of the University I am required to abide by the Regulations of the University and to 
conform to its discipline. 

7. Inclusion of published outputs under Regulation 6 (9.1.2) shall not constitute plagiarism.   
8. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g. 

Turnitin. 
 

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted. 
 

Signature of 
Candidate: 

 Date:  

 
 

Submission  
 
Submitted By (name in capitals):  

 
Signature of Individual Submitting:  

 
Date Submitted: 
 

 

 
For Completion in the Student Service Centre (SSC) 
 
Received in the SSC by (name in 
capitals): 

 

Method of Submission  
(Handed in to SSC; posted through 
internal/external mail): 

 
 

E-thesis Submitted (mandatory for 
final theses) 

 

Signature: 
 

 Date:  



Contents

Abstract i

Acknowledgements ii

Contents iv

List of Tables vii

List of Figures viii

Abbreviations xi

List of Notations xii

List of Publications xv

1 Introduction 1

1.1 The rise of interferometers . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Challenges faced in radio interferometry . . . . . . . . . . . . . . . . . 6

1.3 Problems with imaging in optical regimes . . . . . . . . . . . . . . . . . 9

1.4 Thesis organization and contribution . . . . . . . . . . . . . . . . . . . 11

2 Problem setup in radio interferometry 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Basic principle of radio interferometry . . . . . . . . . . . . . . . . . . 14

2.3 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Emergence of RIME . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Calibration effects . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 RIME matrix formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Sparse representations and optimization framework 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The world of sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Exploiting sparsity for signal recovery . . . . . . . . . . . . . . . 33

iv



Contents

3.3.2 Sparse recovery methods . . . . . . . . . . . . . . . . . . . . . . 37

3.4 A tour of convex optimization framework . . . . . . . . . . . . . . . . . 40

3.4.1 Proximal splitting methods . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Primal-dual methods . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Non-convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Non-convex regularizations for sparse recovery . . . . . . . . . . 48

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Standard radio interferometric approaches 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Imaging techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 CLEAN and its family . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Maximum Entropy Method . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Non-negative least squares . . . . . . . . . . . . . . . . . . . . . 55

4.2.4 Sparse optimization methods . . . . . . . . . . . . . . . . . . . . 55

4.3 Calibration modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 External Calibration . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 DDE calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Stokes parameters imaging in radio interferometry 67

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Adopted measurement model . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Polarized SARA - Proposed imaging approach . . . . . . . . . . . . . . 72

5.3.1 Epigraphical projection . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Algorithm formulation . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.3 Polarization constraint for TV based problems . . . . . . . . . . 84

5.4 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Effect of polarization constraint . . . . . . . . . . . . . . . . . . 90

5.4.3 Comparisons performed . . . . . . . . . . . . . . . . . . . . . . 91

5.4.4 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Generalization to real data . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Results on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Self DDE calibration and imaging for radio interferometry 111

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Stokes I imaging and DDE calibration . . . . . . . . . . . . . . . . . . 113

6.2.1 Description of the proposed method . . . . . . . . . . . . . . . . 113

6.2.2 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . 117

v



Contents

6.2.3 Sparse images with point sources . . . . . . . . . . . . . . . . . 119

6.2.4 Image with an extended source . . . . . . . . . . . . . . . . . . 123

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Full polarization DDE calibration and imaging . . . . . . . . . . . . . . 126

6.4.1 Calibration problem . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Polca SARA - Proposed calibration & imaging approach . . . . 131

6.4.3 Algorithm formulation . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.4 Convergence properties . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.5 Computational complexity . . . . . . . . . . . . . . . . . . . . . 139

6.5 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.1 Comparisons performed . . . . . . . . . . . . . . . . . . . . . . 141

6.5.2 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5.3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 From radio to optical interferometric imaging 159

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2.1 Basics of Optical Interferometry . . . . . . . . . . . . . . . . . . 160

7.2.2 Phase retrieval algorithms . . . . . . . . . . . . . . . . . . . . . 163

7.2.3 Standard approaches for OI imaging . . . . . . . . . . . . . . . 165

7.3 Monochromatic OI imaging . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3.1 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3.2 Proposed regularized minimization problem . . . . . . . . . . . 169

7.3.3 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.4.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.4.2 Synthetic uv coverage . . . . . . . . . . . . . . . . . . . . . . . 180

7.4.3 Realistic uv coverage . . . . . . . . . . . . . . . . . . . . . . . . 186

7.5 Hyperspectral OI imaging . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5.2 Algorithmic details . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.6 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8 Conclusions and Perspectives 196

Bibliography 200

vi



List of Tables

5.1 SNR and NRMSE values for the reconstructed images corresponding
to the forward-jet and counter-jet models, obtained by different spar-
sifying regularizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Percentage of pixels not satisfying the polarization constraint in the
reconstructed images obtained by without imposing the polarization
constraint in the reconstruction process. . . . . . . . . . . . . . . . . . 95

6.1 Cygnus A (top two tables) and Hydra A (bottom two tables) results:
SNR and Dynamic range values for different considered cases. . . . . . 146

vii



List of Figures

1.1 Electromagnetic spectrum depicting different radiations spanning over
a range of frequencies and wavelengths. . . . . . . . . . . . . . . . . . . 2

1.2 Image of sky at optical and radio wavelengths. . . . . . . . . . . . . . . 3

1.3 The Very Large Array (VLA) consisting of 27 radio antennas, operated
by NRAO in Socorro, New Mexico. . . . . . . . . . . . . . . . . . . . . 5

2.1 Block diagram depicting an antenna pair within a typical interferometer. 17

2.2 Illustration of radio interferometric coordinate system. . . . . . . . . . 19

2.3 Illustration of a radio interferometric baseline. . . . . . . . . . . . . . . 20

2.4 Illustration of uv coverage of the VLA telescope with 27 antennas. . . . 22

2.5 Schematic representation of a 2 × 2N matrix, represented as a 2 × 2
block matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Illustration of sparsity of (a) an original intensity image of the W28
supernova remnant in the: (b) Haar wavelet basis and (c) gradient
(TV) domain. Credits for (a): Image courtesy of NRAO. . . . . . . . . 32

3.2 Illustration of the `1 norm inducing sparsity. . . . . . . . . . . . . . . . 34

3.3 Illustration of weighted-`1 norm for better recovery of a sparse signal
in comparison with `1 norm. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Graphs depicting convex and non-convex functions. . . . . . . . . . . . 38

3.5 Illustration of the soft-thresholding operation. . . . . . . . . . . . . . . 42

3.6 Projection of a point S̃ onto a convex set C. . . . . . . . . . . . . . . . 43

3.7 Graphs depicting non-convex functions. . . . . . . . . . . . . . . . . . . 47

5.1 Illustration of the adopted block-data splitting technique for the mea-
surement model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Diagram depicting epigraph of a function f̃ . . . . . . . . . . . . . . . . 76

5.3 The EHT uv coverage used for simulations for Stokes imaging. . . . . . 88

5.4 The two sets of ground truth images used for performing simulations
for Stokes imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 The NRMSE plots for the Stokes I image and the linear polarization
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Results for the Stokes I image corresponding to the forward-jet model. 98

5.7 Results for the linear polarization image corresponding to the forward-
jet model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Results for the Stokes I image corresponding to the counter-jet model. 100

viii



List of Figures

5.9 Results for the linear polarization image corresponding to the counter-
jet model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.10 The polarization error images for the forward-jet and the counter-jet
showing the pixels where the polarization constraint is not satisfied. . . 103

5.11 Results obtained for Stokes I and linear polarization intensity (|P |)
images from VLA data, displayed in log scale. . . . . . . . . . . . . . . 108

5.12 Zoomed west jet hotspot in Stokes I and linear polarization intensity
images from our method’s reconstructions and MS-CLEAN restored
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.13 Polarization error images corresponding to MS-CLEAN restored and
model images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Example of considered DDEs, with K = 7× 7 non-zero Fourier coeffi-
cients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 The diagrams of the proposed method (left) and the traditional selfcal
method using StEFCal and CLEAN (right). . . . . . . . . . . . . . . . 116

6.3 Results obtained for simulations using the proposed method and esti-
mating only the DIEs with StEFCal-FB, varying the number of sources
and total flux of ε1, while fixing E(xo) = 10. . . . . . . . . . . . . . . . 120

6.4 Results corresponding to the simulations performed considering point
sources image with 50 sources in ε1, and comparing different considered
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Results corresponding to the simulations performed with M31 image
using κ = 0.1 (first two columns) and κ = 1 (last two columns), and
comparing different considered cases. . . . . . . . . . . . . . . . . . . . 124

6.6 Cygnus A (first row) and Hydra A (second row) ground truth images
used for performing simulations. . . . . . . . . . . . . . . . . . . . . . . 140

6.7 Cygnus A Stokes I true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for
the different considered cases. . . . . . . . . . . . . . . . . . . . . . . . 149

6.8 Cygnus A Stokes Q true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for
the different considered cases. . . . . . . . . . . . . . . . . . . . . . . . 150

6.9 Cygnus A Stokes U true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for
the different considered cases. . . . . . . . . . . . . . . . . . . . . . . . 151

6.10 Hydra A Stokes I true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for
the different considered cases. . . . . . . . . . . . . . . . . . . . . . . . 152

6.11 Hydra A Stokes Q true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for
the different considered cases. . . . . . . . . . . . . . . . . . . . . . . . 153

6.12 Hydra A Stokes U true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for
the different considered cases. . . . . . . . . . . . . . . . . . . . . . . . 154

ix



List of Figures

6.13 Plots comparing the pixel values of (a) Cygnus A and (b) Hydra A true
and recovered linear polarization images P, for its real Re(.) component
(Stokes Q) on left and imaginary Im(.) component (Stokes U) on right. 156

7.1 Illustration of the principle behind phase closure analysis. . . . . . . . . 162

7.2 Original image LkHα, of size 64×64, used for simulations for OI imaging.178

7.3 Discretized spatial frequencies coverage plans for the image of size 64×
64, used for simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.4 SNR graph obtained for positivity and reality constrained case with
LkHα image and synthetic uv coverage for uP = 0.2, considering iSNR =
30 dB and varying uB. Different curves correspond to different number
of initializations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.5 SNR graphs obtained with LkHα image and synthetic uv coverage, con-
sidering iSNR = 30 dB, varying uB for two different power spectrum
under-sampling ratios: (a)uP = 0.05 and (b)uP = 0.2. . . . . . . . . . 183

7.6 Reconstructed (first row) and error (second row) images corresponding
to median SNR (over 10 simulations), obtained by considering the true
image LkHα with synthetic uv coverage for (uP , uB) = (0.05, 0.1). . . . . 183

7.7 Reconstructed (first row) and error (second row) images corresponding
to median SNR (over 10 simulations), obtained by considering the true
image LkHα with synthetic uv coverage for (uP , uB) = (0.05, 0.1). . . . . 185

7.8 The figure illustrating the orientation uncertainty in the recovered im-
age when no phase information is taken into account. . . . . . . . . . . 186

7.9 SNR graph obtained with LkHα image and realistic uv coverage, con-
sidering iSNR = 30 dB, varying uB. Comparison between different
regularization terms is depicted. . . . . . . . . . . . . . . . . . . . . . . 187

7.10 Reconstructed (first row) and error (second row) images corresponding
to median SNR (over 10 simulations), obtained by considering the true
image LkHα with realistic uv coverage for uB = 0.2. . . . . . . . . . . . 187

7.11 SNR graphs obtained for the reconstruction of two different hyperspec-
tral image cubes with the realistic uv coverage, considering iSNR =
30 dB for each spectral channel, varying uB. Each graph compares the
SNR values for single-channel reconstruction with `1 regularization and
reconstruction by considering joint sparsity with `2,1 regularization. . . 192

7.12 Results for hyperspectral imaging with realistic uv coverage for L = 8,
uB = 0.1 and LkHα as the original image. Reconstructed images ob-
tained by considering `1 and `2,1 regularizations are displayed followed
by their respective error images. . . . . . . . . . . . . . . . . . . . . . . 193

7.13 Results for hyperspectral imaging with realistic uv coverage for L = 8,
uB = 0.1 and synthetic image as the original image. Reconstructed
images obtained by considering `1 and `2,1 regularizations are displayed
followed by their respective error images. . . . . . . . . . . . . . . . . . 194

x



Abbreviations

2D Two-dimensional

3D Three-dimensional

CS-CLEAN Cotton-Schwab CLEAN

CS Compressive Sensing

DDEs Direction-dependent effects

DIEs Direction-independent effects

FFT Fast Fourier transform

FB Forward-backward

MAP Maximum a Posteriori

MS-CLEAN Multi-Scale CLEAN

OI Optical Interferometry

RI Radio Interferometry

RIME Radio Interferometric Measurement Equation

SARA Sparsity Averaging Reweighted Analysis

SNR Signal-to-noise ratio

TV Total variation

xi



List of Notations

Standard notations

x Scalar

x Vector

X Matrix

Xi,j Component in ith row and jth column of matrix X

Xi, : ith row of matrix X

X:,j jth column of matrix X

(·)∗ Conjugate of its argument

(·)† Hermitian conjugate of its argument

1N Ones row vector of size N

IN Identity matrix of size N ×N

‖x‖p `p norm of vector x

‖X‖F Frobenius norm of matrix X

|x| Absolute value of its argument x

|x| Element-wise absolute value of its argument x

Common notations

N Image dimension

M Number of measurements

na Number of antennas

T Number of time instants

λ Observation wavelength

λl Observation wavelength for lth frequency channel

xii



Notations

ν Observation frequency

S Original unknown Stokes matrix of size 2× 2N

x Original unknown total intensity image of size N

F 2D Fourier matrix

Ψ Sparsity basis for the image/s estimation

Modelling notations & configurable algorithmic parameters

Stokes imaging

Y′ Visibility matrix of size 4×M

S̃ Reshaped Stokes matrix of size N × 4 containing the

Stokes images in its columns

γ Parameter affecting the algorithm’s convergence speed

ϑ Tolerance parameter for `2 bound constraint

ε Stopping criterion parameter for Stokes imaging

% Stopping criterion parameter linked to the polarization

constraint

ε1, ε2, ε3, K
′ Parameters related to adaptive `2 bound scheme

Imaging & calibration

x0 Image containing the known brightest sources of x

ε Image containing the unknown sources of x and correction

for the amplitude of the known sources

dt,α Original unknown DDE related to antenna α at time

instant t
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The quest to understand the depths of the universe has fascinated mankind for a long

time. Whether it is the beholding sight of the stars and galaxies in the sky or the

curiosity to know the deepest secrets behind the origin and evolution of the universe,

astronomy has always been of great interest to the human kind, making it one of the

oldest sciences of all time. Over the past centuries, there has been a radical change in

our understanding of the universe. This has been achieved by studying the celestial

emission, spanning the whole electromagnetic spectrum (Figure 1.1). Out of this,

optical and radio astronomy are of particular interest. Optical astronomy is the most

known branch of astronomy which deals with the observations of the astronomical

objects in the visible light range, i.e. wavelengths from 400 nm to 700 nm, and is

known to the star gazers since time immemorial. It is the branch of astronomy that

has been instrumental in providing us with the fundamental information about the

structure of our galaxy and its evolution. While playing a key role in the detection

of exoplanets, the other interesting targets well studied by optical astronomy include

protostellar systems and nearby galaxies. It also gives insights into the composition

of the interstellar medium.
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Figure 1.1: Electromagnetic spectrum depicting different radiations spanning over
a range of frequencies and wavelengths. Source: NASA public domain image (CC

BY-SA 3.0).

While optical astronomy remains pivotal in providing astronomical information, there

are many interesting phenomena happening in other wavelength ranges which cannot

be probed by optical astronomy. For instance, observing in radio frequencies provides

unique information for astronomy. Radio astronomy encompasses the study of a wide

variety of highly energetic celestial objects emitting radiations at radio frequencies,

i.e. frequencies ranging from 3 kHz to 300 GHz (which in terms of wavelengths cor-

respond to 100 km - 1 mm). It serves as a means to explore the parts of the universe

which are undetectable in the visible domain of the electromagnetic spectrum. It

therefore complements optical astronomy, enlightening the astronomical community

with a whole new set of celestial objects and astrophysical phenomena. This is illus-

trated in Figure 1.2 which provides a comparative view of the sky at optical and radio

wavelengths, with the Milky way galaxy’s plane lying horizontally passing through

the centre of each of the image. As can be seen, the radio sky, depicting the neutral

hydrogen emission at 21 cm, is in contrast with the optical sky.

Since the first detection of the radio signals from space in 1930s, radio astronomy

has come a long way making revolutionary contribution to our current knowledge

of the universe. The long wavelength characteristic of radio waves renders various

benefits to radio astronomy in comparison with the other fields. For instance, their
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(a) (b)

Figure 1.2: The sky seen at (a) optical and (b) radio wavelengths. Credits: (a)
Axel Mellinger, SkyView; (b) J. Dickey (UMn), F. Lockman (NRAO), SkyView.

long wavelengths diminish their scattering and absorptivity, thus these radiations are

permeable even through cloudy skies, interstellar gas and dust. This makes it possible

to detect star formation obscured by gas and dust, as well as to discover other galaxies.

Another perk of radio astronomy is the discovery of a whole new class of celestial

objects and phenomena, such as pulsars, quasars, active galactic nuclei (AGNs), etc.

To add to the list, the detection of the characteristic emission of hydrogen, the most

abundant element in the universe, at 21 cm is a peculiar feature of radio astronomy,

providing the key to map the structure of galaxies.

Yet another interest of radio astronomy comes from the perspective of studying polar-

ization state of the astronomical sources, which are difficult to measure with optical

astronomy. In general, measuring polarization is an integral part of the process of

understanding the universe, offering a way to probe details in addition to the as-

trophysical information gleaned by the intensity alone. It acts as an indispensable

tool to explore the intervening interstellar medium of propagation of the radio waves.

Particularly, study of the polarized radiations aids in determining the magnetic field

distributions around the source of interest as well as along the propagation path.

Without the incorporation of the effects of magnetic fields, only a fragmentary under-

standing of the stars and galaxies is observed. Interestingly, analysing the polarization

of the cosmic microwave background (CMB) sheds lights on the physics of the early

universe.

In summary, radio astronomy opens the door to the detection and study of numerous
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astrophysical sources and phenomena, making itself an invaluable tool for understand-

ing the universe.

1.1 The rise of interferometers

In order to exploit the wealth of information provided by radio astronomy, radio

emission from various celestial objects are collected by the radio antennas on Earth.

Unlike optical waves, the radio waves having vastly longer wavelengths, carry very low

energies. Coupled with the far reaches of the source, this results into faint radiations

collected by the receiver antennas. Thus, large sized dishes need to be employed to

increase the amount of radiation collected and achieve a higher sensitivity. Such large

sized dishes are also favourable from the resolution perspective. More precisely, the

angular resolution θ (in radians) of a telescope is limited by the classical diffraction

theory to

θ = 1.22
λ

D
, (1.1)

where λ is the observation wavelength and D is the diameter of the telescope, both

in units of length. The factor 1.22 comes from the position of the first minimum of

the intensity pattern produced by diffraction through a circular aperture [1]. As such,

with the long wavelength characteristic of the radio waves, single-dish telescopes with

large diameters need to be designed for high angular resolutions. For instance, a 6 m

optical telescope dish reaches a resolution of ∼ 0.025 arcsec. On the contrary, even a

500 m radio telescope dish, the largest filled-aperture radio telescope in the world, can

only provide ∼ 3 arcmin resolution in the L Band (having wavelength range of 30-15

cm) [2]. In fact, in terms of the radio astronomy science goals, it is also crucial to probe

radio sources, especially their positions, with high precision to cross-match these with

the measurements made in other parts of the electromagnetic spectrum. Nevertheless,

in spite of the existence of large single-dish telescopes for radio astronomy, these are

not enough to achieve an angular resolution comparable to optical telescopes.

To resolve this conundrum, scientists leveraged interferometry to probe radio emis-

sion, a technique which led to a Nobel Prize in Physics in 1974. A radio interferometer
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Figure 1.3: The Very Large Array (VLA) consisting of 27 radio antennas, operated
by NRAO in Socorro, New Mexico. Credit: Alex Savello, NRAO public domain

image (CC BY 3.0).

consists of an array of antennas which collectively behave as a single very large aper-

ture telescope, one such example shown in Figure 1.3. In this setting, the resolution

of an interferometer is not determined by the diameter of individual antennas, but

by the largest separation between the constituting antennas. Since the development

of first radio interferometer, there has been an upsurge in the number of interferom-

eters being constructed. This includes the Very Large Array (VLA) in New Mexico,

USA, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, LOw

Frequency ARray (LOFAR) primarily in Netherlands, MeerKAT in South Africa, the

Murchison Widefield Array (MWA) in Australia, to name a few. Furthermore, a

widespread collection of radio telescopes and thus enhanced resolution is achieved by

the Very Long Baseline Interferometry (VLBI), which consists of antennas spread all

across the Earth. More recently, the Event Horizon Telescope (EHT), a ground-based

VLBI array, has been designed to observe the immediate environment around a black

hole at angular resolutions comparable to the event horizon. Its first results from the

observations of the center of the galaxy M87 shows the first image of a black hole, pro-

viding strong evidence for the presence of supermassive black holes [3]. A remarkable

addition to the family of radio interferometers will be the Square Kilometre Array

(SKA), the world’s largest radio telescope. One of the largest endeavours in scientific

history, in its functional stage SKA will cover almost a square kilometre of the col-

lecting area and hence its name. Consisting of thousands of dishes and a collection of

aperture arrays spreading over two continents (Africa and Australia), it will provide
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access to unprecedented resolution of the radio sky images at unparalleled sensitivity.

Scientific goals of SKA include probing the Epoch of reionization by seeing back to

the universe First Light, testing Einstein’s general theory of relativity, to name a few.

It is also expected to broaden our understanding of the ubiquitous magnetism in the

universe. These fields invisible to the optical telescopes, can be detected via polarized

radiations. Processes like synchrotron emission generate polarized radiations, and by

studying these, we can determine the magnetic field distributions. It will give insights

into the magnetic fields distribution in our galaxy and a comparison with that of

other galaxies. It will give answers to some of the crucial questions pertinent to the

origin and evolution of magnetism as well as questions related to the role played by

magnetism in the stars and galaxies formations.

1.2 Challenges faced in radio interferometry

Study of the Stokes parameters’ images by astronomers renders a way to achieve

the aforementioned scientific goals. These parameters characterize the brightness

distribution of the sought radio sky, providing a representation of the total intensity

as well as the polarization state of the radio emission [4]. However, these images

containing the required information about the underlying astrophysical process are

not a direct output of the interferometers. Instead, the measurements acquired by

interferometers, termed as complex visibilities, are related to the Fourier transform of

the sought images [4]. And from these Fourier domain measurements, the images of

interest need to be recovered. Moreover, each visibility measurement is acquired by a

pair of antennas in the interferometer. Given the limited number of antennas, only an

incomplete sampling of the Fourier plane is achieved. This leads to a highly under-

determined image reconstruction problem in radio interferometry [5] and demands the

development of sophisticated imaging techniques adapted to solve it.

To add to it, while producing high fidelity images using the imaging techniques, cali-

bration poses an issue of concern [6]. In essence, calibration consists in solving for the

unknown effects that corrupt the signal of interest from its origin till its reception by

the antenna to produce the final output. These unknown effects, often represented
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by 2 × 2 Jones matrix, involve instrumental terms such as antenna gains, as well as

the terms corresponding to atmospheric/ionospheric perturbations, which in turn are

often source direction-dependent [6]. As such, their direction dependency need to be

taken into account in the calibration process. In the wake of new generation radio

interferometers that aim to produce images of the sky with unprecedented resolution,

high dynamic range and sensitivity, calibration of these direction-dependent effects has

become pivotal. Without the incorporation of these effects, the produced target sky

image suffers particularly from limited dynamic range. The importance of calibration

can be further highlighted from the context of polarization. For many astrophysical

sources, the polarized intensity is lower in magnitude in comparison with the total

intensity. Moreover, it is comparable to the magnitude of the antenna gain terms

and leakage terms appearing in the calibration matrix. Thus, the polarization of the

source can be mapped accurately only if these calibration terms are estimated well.

Overall, it can be said that the estimation of these calibration terms is a requisite to

produce highly resolved, accurate maps of the radio emission.

In view of the discussion above, some of the major challenges brought by the new

radio interferometers can be listed as follows:

• Imaging quality : These interferometers are envisaged to provide highly resolved

images, associated with increased dynamic ranges. In order to use such capabil-

ities of these interferometers to their fullest potential, new imaging techniques

must be designed. Such techniques must incorporate sophisticated priors to en-

hance the image reconstruction quality both in terms of resolution and dynamic

range.

• Polarization imaging : In light of the importance of study of polarization state

of the radiations from astronomical sources, the designed technique must be

able to perform polarization imaging in addition to total intensity imaging. In

particular, owing to the small magnitude of the polarized intensity in comparison

with the total intensity, producing high quality polarization images is a difficult

task.
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• Scalability : With the advent of new generation interferometers, the amount of

acquired data will be enormous. For instance, in the case of SKA, the expected

data rate is around five terabytes per second stemming from the data collected

across thousands of frequency bands (∼65,000) over wide fields of view [7]. From

such volume of datasets, the aim is to produce high quality sky images of giga-

pixel sizes. Thus, the techniques to solve the associated image recovery problems

need to be fast and scalable to the high dimensionality of the problem.

• Calibration: Calibration modalities must be devised to estimate the unknown

measurement modulations that otherwise have detrimental effect on the re-

constructed images. In particular, accounting and solving for the direction-

dependency of these effects has become crucial to reach the precision level offered

by the new generation interferometers.

• Convergence guarantees : While handling the aforementioned points, it is desir-

able to have the developed algorithm benefiting from guarantees to converge to

the solution of the underlying problem. This feature renders stability to the

designed algorithm and ensures recovery of a meaningful solution.

While radio interferometry benefits from well-established imaging and calibration al-

gorithms, in general, these are not suffice to overcome the above mentioned challenges

presented by the new generation radio interferometers. In particular, CLEAN is the

standard imaging algorithm in radio interferometry relying on a greedy iterative de-

convolution approach [8]. However, the quality of images reconstructed by the cel-

ebrated CLEAN algorithm (and its variants) is expected to be inadequate to fully

justify the imaging capabilities of these interferometers. In this respect, its perfor-

mance has been shown to be surpassed by the recently proposed compressive sensing

based imaging approaches [9–11]. These approaches exploit the sparsity of the images

of interest in some sparsifying domain by leveraging convex optimization framework

[5, 12]. Moreover, in contrast with the CLEAN based approaches that are not designed

to scale with the flurry of the data produced by these interferometers, the compres-

sive sensing based techniques exploit the versatility of the underlying optimization

framework to achieve scalability [9, 13, 14]. Nevertheless, these techniques have been
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proposed mainly for total intensity imaging, and do not account for specialised priors

for full polarization imaging. On the calibration front, while earlier techniques were

developed only for calibrating direction-independent effects, algorithms aiming to cal-

ibrate for direction-dependent effects have been proposed in the past years, mainly

relying on a reference sky model of interest [15, 16]. Since the latter might not always

be available, the calibration modalities need to be integrated with imaging techniques

to design a global approach that aims to estimate both the calibration effects and the

sought images. However, when any of the existing calibration and imaging approaches

are combined, the convergence to the solution is not ascertained.

The objective of this thesis is to address these issues. Working in this direction, we

first propose a polarimetric specific imaging method for radio interferometry using

the versatile convex optimization framework. Furthermore, to deal with the problem

of calibration, we propose a full polarization joint calibration and imaging technique

that not only accounts for direction-dependent effects, but is also shipped with global

convergence guarantees.

1.3 Problems with imaging in optical regimes

The optical interferometers are relatively recent when compared to the radio interfer-

ometers. Particularly, in the last two decades or so, the emergence of new generation

optical interferometers including the CHARA array operated by Georgia State Uni-

versity, USA, Navy Precision Optical Interferometer (NPOI) in USA, the Very Large

Telescope (VLT) in Chile, operated by European Southern Observatory, have opened

the doors to unprecendented insights into the vastness of the universe [17]. Reach-

ing the angular resolutions of the order of sub-milliarcseconds, the domain of optical

interferometry is proving to be a powerful tool to probe the astrophysical sources

ranging from the ones in our solar system to the central supermassive black holes of

active galactic nuclei. Moreover, the optical interferometers are paving the way for

hyperspectral imaging aiming to provide high resolution images even in the spectral

dimension [18, 19].
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Despite being a means of invaluable astrophysical information, the short wavelength

property of the optical waves renders difficulty for optical interferometery. While it

requires dealing with mechanical stabilities and controlling the long delay lines with

high precision, it also causes the signal from the source to suffer from the atmospheric

turbulence induced phase distortions [17]. Because of former instrumental factors, the

optical interferometers in general consist of only a few number of optical telescopes

(typically 4-6) leading to the acquisition of very few measurements in the Fourier do-

main of the sought image. On the other hand, the optical waves being affected by the

random phase fluctuations while traversing through the atmosphere leads to cancella-

tion of complex visibilities values [20]. In fact, optical interferometric measurements

consist of phase insensitive observables: power spectrum (squared modulus of visi-

bilities) and bispectrum (triple product of the complex visibilities acquired by three

telescopes), that results into partial loss of phase information [21]. In other words,

in comparison with radio interferometry, additional difficulties arise in optical inter-

ferometry primarily because of the loss of phase information coupled with a highly

under-sampled Fourier domain, thereby resulting in a highly under-determined inverse

problem for image recovery [20]. Moreover, given the non-linearity of the underlying

observation model, the associated problem to be solved becomes non-convex.

Owing to the above difficulties, the radio interferometric techniques cannot be directly

applied here and new approaches tailored to the optical interferometric problem need

to be designed. Although some optical interferometric imaging techniques have been

developed in the past years, they mainly suffer from convergence guarantees while

solving the underlying non-convex optimization problem [22, 23].

Our goal here is to counteract these issues and solve this challenging problem of

image recovery. To this end, we seek to bridge the gap between radio and optical

interferometry. More precisely, drawing upon the ideas from radio interferometric

imaging and calibration methodologies, we propose an optical interferometric imaging

approach with convergence guarantees.
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1.4 Thesis organization and contribution

The thesis organization along with the main contributions of the research work carried

out is summarized as follows:

Chapter 2: Problem setup in radio interferometry

This chapter details the radio interferometric measurement framework, providing

background knowledge to the reader about this subject. Using this framework, I

present the radio interferometric imaging and calibration inverse problems to be

solved.

Chapter 3: Sparse representations and optimization framework

This chapter is dedicated to provide an optimization background to the reader to

facilitate his/her understanding of the techniques developed in this thesis to solve the

underlying problems. Particularly, I introduce the notion of sparsity coupled with the

compressive sensing framework and discuss the existing sparse recovery algorithms

in literature. At this point, I put special emphasis on convex and non-convex opti-

mization frameworks, describing different optimization tools that will be used later

for algorithmic developments.

Chapter 4: Standard radio interferometric approaches

This chapter presents the standard imaging and calibration approaches in radio in-

terferometry. The description of these state-of-the-art methods is essential to gain

insights into the current state of affairs in radio interferometry and to fully under-

stand their possible shortcomings, overcoming which is the aim of the research work

carried out here.

The rest of the chapters are devoted to the presentation of the original research work

undertaken in this thesis, with the last chapter providing the conclusion.
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Chapter 5: Stokes parameters imaging in radio interferometry

This chapter provides a detailed description of a novel algorithm we have developed for

full polarization imaging in radio interferometry using sophisticated priors. First, the

proposed method enforces the physical polarization constraint, that is the polarized in-

tensity being a lower bound on the total intensity. Second, each Stokes parameter map

is regularized through an average sparsity prior in the context of a reweighted anal-

ysis approach (SARA) [24]. Finally, a distributed data-block model combined with

an acceleration scheme and an adaptive noise bound estimation strategy are adopted

to offer scalability to the real data sets [11, 14]. The resulting approach, dubbed

Polarized SARA, solves the corresponding joint Stokes imaging inverse problem by

leveraging convex optimization techniques, offering a highly flexible and parallelizable

structure. We conduct several numerical experiments for the proposed approach, pre-

senting a proof of concept [25]. We further showcase its performance on a real dataset

[26].

This work has been published in [25] and [26].

Chapter 6: Self DDE calibration and imaging for radio interferometry

This chapter addresses the critical issue of calibration and presents a global algorithm

we have developed to estimate jointly the sought images and the direction-dependent

calibration terms. In particular, it employs a non-convex optimization technique to

solve the underlying problem. We begin by designing the algorithm for total intensity

imaging and calibration only [27–29]. Inspired by the achieved promising results, we

further extend it to incorporate the full polarization model [30]. The key features of

the proposed method include its global convergence guarantees and its flexibility to

incorporate sophisticated priors to regularize the imaging as well as the calibration

problem. Exploiting it, we adapt Polarized SARA method for the full polarization

imaging step in the proposed global approach. We perform extensive simulation stud-

ies to investigate the performance of the proposed algorithm.

Part of this work has been published in [27–29] and the other part is submitted for

publication [30].
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Chapter 7: From radio to optical interferometric imaging

This chapter focuses on describing the image reconstruction algorithm we have devel-

oped for optical interferometry. In this context, image recovery amounts to solving

an ill-posed, non-linear inverse problem. To tackle this challenging problem, we work

with its tri-linear formulation with the aim of exploiting the introduced linearity [31].

Using this model, we define the estimated image as a solution of a regularized non-

convex minimization problem, promoting sparsity of the sought image in a suitable

sparsifying domain. In order to solve the resultant problem, we develop an algorithm

that is able to deal with both smooth and non-smooth functions, and benefits from

convergence guarantees even in a non-convex context. Finally, we generalize our model

and algorithm to the hyperspectral case, promoting a joint sparsity prior. We present

simulation results, both for monochromatic and hyperspectral cases, to validate the

proposed approach.

This work has been published in [32] and [33].

Chapter 8: Conclusions and Perspectives

This chapter provides the concluding remarks for the thesis. It further indicates the

future perspectives, outlining the possible directions for the extension and applicability

of the work proposed in this thesis.
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2.1 Introduction

The aim of this chapter is to provide a detailed description of the measurement frame-

work in radio interferometry (RI). Starting with an explanation of the underlying

technique for interferometry, the RI measurement model is derived. This goes hand

in hand with a discussion on the encountered calibration issues, thereby formulating

the imaging-cum-calibration problem solving which is the focus of this thesis.

2.2 Basic principle of radio interferometry

The principle of interferometry can be deduced from the wave nature of the electro-

magnetic radiations emanated from the astronomical sources. In particular, it follows
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the observations made by the commonly known Young’s double slit experiment [34].

In this experiment, passage of light waves from a monochromatic source through two

slits produced a fringe pattern, thereby providing the first demonstration of the wave

character of light. A radio interferometer replicates this phenomena to provide the

RI measurements. In this context, the information about the source in the sky can

be retrieved by studying its electric field distribution in the emitted electromagnetic

radiations. For this purpose, the antennas within an interferometer receive these ra-

diations from the source while pointing towards it on the celestial sphere1. Typically,

the antennas point towards a phase reference position, which is usually the centre of

the source of interest and is identified by a unit vector s0. This is also referred to

as the phase centre. Furthermore, the source being located sufficiently distant from

the antennas, these radiations can be assumed to be received in the form of plane

waves. For simplification, let us consider an antenna pair within the interferometer.

Each antenna measures different parts of the incoming electromagnetic radiations’

wavefronts. The signals from the two antennas are correlated and similarly to the

previously mentioned experiment, it produces an interference fringe pattern, whose

amplitude and phase vary depending on the antennas separation. These complex

measurements, referred to as the complex visibilities, acquired by each antenna pair

are the outputs provided by an interferometer from which the unknown sought images

are recovered.

2.3 Observation model

In this section, a derivation of the radio interferometric measurement equation (RIME)

is provided based on [35, 36].

2.3.1 Emergence of RIME

Consider an element of the target radio source at a position s = s0 + σ subtending

a solid angle dθ. Let the electromagnetic radiations emitted at a frequency ν from

the source of interest be characterized by its electric field e, described within an

1The notion of celestial sphere is in fact abstract, representing an Earth concentric, large radius
sphere on whose inner surface the celestial objects are perceived to be projected.
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orthonormal coordinate system, (x,y, z). Considering z lying along the direction of

the phase centre s0, for each observation direction σ, e can be decomposed into a

vector

e(σ) =

ex
ey

 (σ). (2.1)

The polarization state of the incoming electromagnetic radiations, i.e. the signal of

interest, is described in terms of the Stokes parameters - I,Q, U and V which, using

the above notation, are defined as follows [1]:

I = 〈exe∗x〉+ 〈eye∗y〉 (2.2)

Q = 〈exe∗x〉 − 〈eye∗y〉 (2.3)

U = 〈exe∗y〉+ 〈eye∗x〉 (2.4)

V = −i
(
〈exe∗y〉 − 〈eye∗x〉

)
, (2.5)

where 〈·〉 stands for time averaging of its argument over a small interval. While

I represents the total intensity, Q and U refer to the linear polarization, and V

corresponds to the circular polarization. The net linear polarization can be deduced

as P = Q + iU . The magnitude of this complex valued quantity provides the linear

polarization intensity, while the electric vector polarization angle (EVPA) can be

obtained from its phase.

The signal is received by each antenna, which in turn consists of two feeds such that

each feed probes a specific polarization component. Figure 2.1 gives an example where

the horizontal and vertical components of the signal’s electric field vector are depicted.

Depending on the considered polarization state, the feeds can consist of either two

linear dipoles (X and Y ) or circularly polarized receptors (R and L). To keep it

general, we denote the two feeds by a and b. The incident field e induces voltage in

the receiver antennas. The voltage vα generated at each antenna α, is linked to the

field coming from direction σ by the relation

vα(σ) =

vαa
vαb

 (σ) = Jα(σ) e(σ), (2.6)
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Antenna α Antenna β

atmosphere
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dual
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feeds
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eαx eαy eβx eβy

vαa vαb vβa vβb

vαa,βa vαa,βb vαb,βa vαb,βb

Figure 2.1: Block diagram depicting an antenna pair within a typical interferom-
eter [36].

where vαa and vαb are the voltages at the feeds a and b of antenna α, respectively, and

Jα(σ) is the 2 × 2 Jones matrix that encompasses all the effects and interactions of

the signal, coming from direction σ to αth antenna, with its propagation medium. It

presents itself as a multiplication due to the assumption that the wave propagation and

all the transformations along its path are linear. Recalling from earlier discussion, the

output of an interferometer is obtained by correlating the voltages from each antenna

pair. Using equation (2.6) and considering an antenna pair (α, β), this produces a

2× 2 visibility matrix given by

Yα,β(σ) = 〈vα(σ)v†β(σ)〉 (2.7)

= Jα(σ)B(σ) J†β(σ), (2.8)

where (·)† denotes the Hermitian conjugate of its argument. B(σ) = 〈e(σ)e†(σ)〉 is

the brightness matrix which consists of a linear combination of the Stokes parameters.

Using the definition of the Stokes parameters in equations (2.2)-(2.5), it is given by
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[36]

B(σ) =

 I +Q U + iV

U − iV I −Q

 (σ). (2.9)

Furthermore, equation (2.8) assumes that Jα(σ) and Jβ(σ) do not vary during the

averaging time interval. As explained earlier, another thing to consider is that in

practice, a signal encounters multiple effects while propagating from the source to the

receiver antenna and finally resulting into the interferometric output. For P number of

different effects, these effects manifest themselves as P matrix multiplications, hence

forming a Jones chain as follows

Jα(σ) = Jα,1(σ) Jα,2(σ) . . . Jα,P (σ). (2.10)

The ordering of the terms in Jones chain is dictated by the physical order of the

occurrence of effects along the propagation path. In this context, the rightmost ma-

trices represent the perturbations introduced ‘near the source’, while the left matrices

describe the effects ‘at the receiver end’. A description of these physical and instru-

mental effects is provided in the next section. Among which, the most fundamental

effect is the phase delay. Linked with the signal propagation, it arises because of the

differences in the geometric path length of the radiations from the source to antennas

α and β constituting a pair.

To describe this phase difference and its implications, let us introduce the conventional

RI coordinate systems. On the one hand, the antenna position is specified in the

system with axes (u,v,w), depicted in Figure 2.2. In this system, u and v are the

coordinate axes in the plane normal to the source direction with u pointing towards

east and v towards north, whereas w is the axis in the direction of the phase centre

[4]. On the other hand, a location σ on the celestial sphere is represented in a parallel

coordinate system (l,m,n) such that (l,m, n) refer to the direction cosines with

respect to these axes, with n =
√

1− l2 −m2. In particular, the image plane lm is

taken tangential to the celestial sphere at the phase centre s0, which is the centre of

the radio sky image.
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u

v

w

m

l

s0

uv plane

lm plane

Figure 2.2: Illustration of radio interferometric coordinate system, (u,v,w). The
uv plane is normal to the direction of the source, s0 with the w axis pointing
towards s0. The associated lm plane is taken tangential to the celestial sphere at

the point of intersection of s0 with the sphere.

Given these coordinate systems, the phase difference in the signal coming from a

direction σ and observed at antenna α with respect to the phase centre is formally

given by

κα = 2π(uαl + vαm+ wα(n− 1)), (2.11)

where (uα, vα, wα) are the coordinates of the antenna α in units of observation wave-

length, λ. This phase difference, affecting each component of the signal equally, can

be represented by a scalar matrix. The corresponding phase delay matrix is thus given

by

Kα(σ) = e−iκαI2 = e−i2π(uαl+vαm+wα(n−1))I2, (2.12)

with I2 denoting a 2 × 2 identity matrix. The representation of a scalar matrix

is independent of the chosen coordinate system and thus, it can be put anywhere

within the Jones chain. In turn, the effective Jones matrix Jα in equation (2.10) boils

down to Jα(σ) = Dα(σ)Kα(σ) where Dα(σ) encompasses the rest of the corrupting,

calibration effects. Plugging it in equation (2.8) that describes the measurements for

a single direction in sky, and integrating it over all the possible directions results into

the total visibility Yα,β as follows

Yα,β =

∫
4π

Dα(σ)B(σ)D†β(σ)Kα(σ)K†β(σ) dθ. (2.13)
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w

bλ

v

u

Figure 2.3: Illustration of a radio interferometric baseline. The baseline bλ is given
by the separation vector between the two antennas, with its components projected

onto the (u,v,w) axes.

This equation can be reformulated by expressing it in terms of the components

(l,m, n), thereby giving

Yα,β =

∫
l

1

n
Dα(l)B(l)D†β(l) e−i2π(uα,β l+vα,βm+wα,β(n−1))d2l, (2.14)

where l = (l,m), dθ = dl dm
n

. uα,β = uα − uβ, vα,β = vα − vβ, and wα,β = wα − wβ
denote the baseline coordinates [4]. A baseline is a RI terminology for the separation

vector between two antennas, illustrated in Figure 2.3. From equation (2.14), it can

be observed that each acquired complex visibility measurement is identified by the

baseline associated with the antenna pair involved. In fact, the visibility plane consists

of the baselines components (u, v), forming the so called uv plane.

Furthermore, in equation (2.14), the term Wα,β = 1
n
e−i2πwα,β(n−1) arising from non-

coplanarity of the antennas can be considered as a Jones matrix for each antenna,

incorporated within the associated net Jones matrix. Consequently, the radio inter-

ferometric measurement equation (RIME) is given by

Yα,β =

∫
l

Dα(l)B(l)D†β(l) e−i2π(uα,β l+vα,βm)d2l, (2.15)

= F(DαBD
†
β) (2.16)

where F computes the two-dimensional (2D) Fourier transform of its argument. Thus,
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RIME provides 2D Fourier transform relationship between the measurements and the

target sky images modified by the Jones matrices, evaluated at the sampled spatial

frequency point (uα,β, vα,β). This is indeed a specific expression of the van Cittert

Zernike theorem that links the interference fringe pattern and the source brightness

distribution [4, 37].

Several remarks can be made regarding equation (2.15). First, in practice, the mea-

surements are degraded by an additive noise. The noise arising primarily from the

receivers is independent for each of the constituting receivers. Keeping this in mind,

it is a usual assumption to approximate the measurement noise by independent and

identically distributed (i.i.d.) Gaussian noise [4]. Second, in general, the visibilities

exhibit time as well as frequency dependency. This is due to the fact that the Jones

matrices and the brightness distribution can show variation with respect to the ob-

servation time instant t and the observation frequency ν. Moreover, the baselines

and hence the sampled (u, v) points depend on these parameters. This time and fre-

quency dependency can be signified by adding the subscripts t, ν in the corresponding

variables, and the most general form of measurement equation (2.15) can then be

expressed as

Yt,α,β,ν =

∫
l

Dt,α,ν(l)L
(
St,ν(l)

)
D†t,β,ν(l) e

−i2π(ut,α,β l+vt,α,βm)d2l + Ωt,α,β, (2.17)

where Ωt,α,β ∈ C2×2 is the additive Gaussian noise and the operator L acts on the

Stokes matrix St,ν(l) =
[
I Q
U V

]
t,ν

(l) to give the brightness matrix Bt,ν(l) (as in equa-

tion (2.9)). The latter formulation is introduced in equation (2.17) to highlight directly

the relation between the visibilities and the Stokes parameters, that are the unknown

quantities to be recovered from the measured visibilities.

Concerning the sampling, as previously explained, each baseline corresponds to a

point in the uv plane and thus, the number of (u, v) points probed is dictated by the

number of antennas in the interferometer. While an extensive sampling of the uv plane

is desirable to access maximum possible information about the brightness distribution

of the sought source, only a limited number of (u, v) points can actually be sampled

given the finite number of antennas. One way to enhance the uv coverage is to move
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Figure 2.4: Illustration of uv coverage of the VLA telescope with 27 antennas.
From left to right, the coverages obtained with short and longer observation dura-

tions, respectively are shown.

the antennas such that new baselines are created, which however is accompanied by a

lot of inconvenience and may not be feasible always. Instead, a dense (u, v) sampling

is achievable by whats called Earth rotation aperture synthesis [38]. To be precise,

as the Earth rotates, the baseline position varies with respect to the target source

and hence, distinct (u, v) points are probed. Consequently, the (u, v) sampling grows

with the observation time as illustrated in Figure 2.4, without needing to change the

antenna configuration. In turn, it gives access to more Fourier modes of the uv plane.

It is worth highlighting that the resultant uv coverage is still under-sampled, providing

only partial information about the sought images. The image recovery problem then

amounts to estimating the unknown Stokes images from these under-sampled noisy

Fourier measurements.

Finally, while performing image recovery, the Fourier transform of the true sky bright-

ness distribution at the sampled (u, v) points in the Fourier domain needs to be eval-

uated (equation (2.17)). For computational purposes, it is advantageous to bin these

continuous sampled points on a regular grid instead. This process, called gridding,

enables the usage of a fast Fourier transform (FFT) to compute the required Fourier

transforms over the underlying grid [39]. To this end, each point in the discrete grid

is obtained by performing interpolation over the sampled visibilities lying within a

certain region around the underlying grid point. Very often, a weighting scheme is

adopted before gridding the data to improve the reconstruction quality. While several
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such schemes exist in the literature, the bottom-line is to assign a weight to each

visibility, chosen as per the scientific goal of interest [40, 41]. In this context, ‘natu-

ral’ weights are given by the inverse of the noise variances of the visibilities, thereby

increasing the sensitivity, whereas ‘uniform’ weights are computed by the inverse of

the uv sampling density function for the visibilities, and hence offering a higher reso-

lution. Another scheme called ‘robust’ weighting provides a compromise between the

two approaches, that is between the sensitivity and the resolution.

2.3.2 Calibration effects

As previously mentioned, the Jones matrices encompass all the calibration effects

corrupting the signal from its point of origin till its processing by the interferometric

hardware to produce the observed visibilities. These effects can be attributed to

both instrumental and atmospheric origins. To give an intuitive idea, the signal

coming from the source of interest in sky undergoes Faraday rotation while traversing

through the ionosphere, which then encounters phase delays because of atmospheric

perturbations. In turn, it is modulated by the antenna primary beam and when it is

finally received by the antenna, it faces polarization leakage followed by application

of antenna gain. As such, the sequence of various terms in Jones chain needs to be

preserved in the order in which these perturbation occur as the signal makes it way

from the source to the final output of the antenna. Mathematically speaking, it refers

to non-commutative property of the involved Jones matrices, and the corresponding

Jones chain can be represented by the following structure [42]:

Jα = BαGαLαEαPαTαFα, (2.18)

where the various constituting terms can be described as follows:

• Fα: Faraday rotation entailing the rotation of the plane of polarization of the

incoming wave while propagating through ionosphere,

• Tα: Phase delays introduced by the propagation of the signal through tropo-

sphere and ionosphere,
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• Pα: Parallactic angle accounting for the antenna mount axis rotation with re-

spect to the sky,

• Eα: Primary beam gain varying with observation direction in the field of view,

• Lα: Polarization leakage arising from the cross-talk between the two polarizer

feeds,

• Gα: Complex gain term comprising of the gain of the receiver elements,

• Bα: Bandpass response incorporating the frequency-dependent component of

the receiver gain.

An important thing to be noticed is that the Jones matrices vary in their own specific

manner with respect to observation time, direction and frequency. For instance, the

complex gain matrix Gα exhibits a temporal variation, whereas the bandpass matrix

Bα primarily has a frequency dependence. The other frequency dependent components

include the atmospheric phase delay as well as the angle of Faraday rotation. On the

other hand, concerning about the direction dependency, while the terms pertaining to

instrumentation effects (complex gain terms) appearing towards left hand side of the

Jones chain do not show a dependence on (l,m) coordinates, the other perturbation

terms on the right including primary beam pattern, parallactic angle, atmospheric

phase delays and Faraday rotation vary within the field-of-view. The former class of

terms are categorised as direction-independent effects (DIEs), whereas the latter as

direction-dependent effects (DDEs).

2.4 RIME matrix formalism

In order to recover the Stokes parameters from the given measurements, we formu-

late the inverse problem (2.17) in the discrete domain. It amounts to sampling the

continuous variables such that the field of view is discretized into a grid, with the

vectorized form of this grid being represented by the index n ∈ {−N/2, . . . , N/2−1}.

Furthermore, in the current work, we consider the Stokes images without having time

or frequency dependence. In addition, for the Jones matrices, we deal with their
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Figure 2.5: Schematic representation of a 2× 2N matrix, Dt,α (left) that can be
seen as a 2× 2 block matrix, with each block (Dt,α)ii′ , {i, i′} ∈ {1, 2}2 containing a
vectorized image of dimension N . The Fourier transformation (FT) of this matrix
computes 2D Fourier transform of each of the block images. For each block in
matrix Dt,α on left, its corresponding FT is shown by the same colored vectors in

D̂t,α on right.

temporal dependency considered at a single observation frequency. Hence, for ease of

notation, hereafter we drop the frequency and time index from the Stokes parameters,

and frequency index from the other variables.

Within the considered representation, we thus have the Stokes matrix S ∈ R2×2N ,

and for each antenna α and time instant t, the DDEs (representing the calibration

effects) Dt,α ∈ C2×2N . As illustrated in Figure 2.5, these matrices can also be seen as

2×2 block matrices2, whose each block is a row vector of dimension N . In particular,

for the Stokes matrix S =
[
s1 s2
s3 s4

]
, the elements s1, s2, s3 and s4, each of size N ,

are respectively the discretizations of the Stokes parameters I,Q, U and V . On the

other hand, for the DDEs, for each index n, we have the effective 2× 2 Jones matrix

Dt,α(n) ∈ C2×2. Moreover, if for every (i, i′) ∈ {1, 2}2, [Dt,α]ii′ = δt,α1N with δt,α ∈ C

and 1N being N dimensional unitary row vector, then Dt,α reduces to a DIE.

Following the introduced notations, each component of the visibility matrix Yt,α,β,

2In this regard, for any such matrix S, S(n) denotes the 2×2 matrix consisting of the nth elements
of each of the blocks in the parent block matrix S. In particular, for (i, i′) ∈ {1, 2}2, the notation

[S(n)]ii′ refers to the nth element of the row vector block contained in the ith row and i′
th

column
of the argument block matrix.
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indexed by [·]ii′ with (i, i′) ∈ {1, 2}2, at discrete spatial frequency kt,α,β can be repre-

sented as

[Yt,α,β]ii′ =
2∑

j,j′=1

N/2−1∑
n=−N/2

[
Dt,α(n)

]
ij

[
L
(
S(n)

)]
jj′

[
D
∗
t,β(n)

]
j′i′

e−i2π(kt,α,β) n
N + [Ωt,α,β]ii′ , (2.19)

where for n ∈ {−N/2, . . . , N/2 − 1}, analogous to the continuous version (2.17),

L
(
S(n)

)
= B(n) ∈ C2×2 is the brightness matrix.

Given the observation model (2.19), the task at hand is to recover the Stokes images

from the acquired visibilities. In the case of having either pre-calibrated data or

knowledge of DIEs/DDEs beforehand, the problem needs to be solved only for image

recovery. On the other hand, within a more realistic setting, the DDEs are often

unknown. These need to be calibrated jointly with the imaging to obtain a good

estimation of the target sky. In this thesis, we consider both the cases, i.e. imaging

only and imaging with calibration. To estimate these variables of interest, for the sake

of brevity, the resultant inverse problem associated with (2.19) can be written as

Y = Φ̃(S,D) + Ω, (2.20)

where Φ̃ is the measurement operator mapping the images of interest coupled with

the DDEs to the acquired visibilities Y. This gives the standard inverse problem for

imaging and calibration in RI. In the particular case of known DDEs, the problem

needs to be solved only for the Stokes images and the operator Φ̃ becomes linear with

respect to the sought images. This linear operator taking into account the known

DDEs can be denoted by Φ and problem (2.20) can then be rewritten as

Y = Φ(S) + Ω, (2.21)

providing the underlying RI imaging inverse problem.
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2.5 Conclusion

In this chapter, I have discussed at length the RI measurement framework start-

ing from the source to the final interferometric output. The various effects encoun-

tered during this whole process manifest themselves as calibration effects affecting the

sought sky brightness distribution. The associated imaging and calibration inverse

problem has been set up which, in the particular case of known calibration terms,

reduces to an imaging inverse problem. The ways to solve these inverse problems is

the topic of discussion for the next chapters. Particularly, these methods rely on ex-

ploiting some suitable prior information about the images of interest. In this context,

recent years have seen the emergence of sparsity based techniques lying within the

paradigm of compressive sensing (CS) and exploiting the optimization framework,

that have demonstrated themselves as promising candidates for RI imaging. As a

matter of fact, the analogies of the standard RI imaging algorithm - CLEAN with

sparsity promoting methods have also been shown lately. Therefore, at this stage, the

reader will benefit from going through a tour of sparsity and optimization framework,

gaining background knowledge for better understanding of the existing RI algorithms

as well as of the ones proposed in this thesis.
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3.1 Introduction

This chapter is devoted to provide a mathematical background to the reader. It

will aid in understanding the approaches discussed and developed later in this thesis

to solve the underlying inverse problems. In particular, I focus on the notion of

sparsity and review the associated standard recovery algorithms. Inspired by the

versatility offered by the convex optimization framework among the classes of these
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sparse recovery approaches, I provide a detailed description of this framework and the

associated optimization toolbox. Furthermore, I shed light on a general class of non-

convex continuous optimization problems within which the RI calibration problem

falls. Parts of this chapter have been taken from the optimization background provided

in [26] and [32].

Before going into the details, I provide here some basic notations that will be used

throughout the thesis. In particular, the scalars are denoted by lower case, italic

letters (x), vectors by lower case, bold italic letters (x) and matrices by upper case,

bold straight letters (X).

For any vectorα, its `0 pseudo-norm represents a cardinality function counting its non-

zero entries, and is given by ‖α‖0 = #(i |αi 6= 0), where #(·) denotes the cardinality

of its argument.

In general, the `p norm of α is defined as

‖α‖p =

(∑
i

|αi|p
)1/p

, with p ∈ R∗+. (3.1)

The commonly used `1 and `2 norms can be deduced from it by considering p = 1

and 2, respectively. It is straightforward to see then that, on the one hand, the `1

norm computes the sum of the absolute value of all the elements of its argument. On

the other hand, the widely popular `2 norm represents the usual Euclidean distance

of the underlying vector from the origin. In terms of matrices, the Frobenius norm is

often used. For any matrix Ā ∈ CJ×I , it is defined as

‖Ā‖F =

(
J∑
j=1

I∑
i=1

|Āji|2
)1/2

. (3.2)

It can be observed that the `2 and the Frobenius norms are the Euclidean norms for

vector and matrix space, respectively.

I further introduce the notation: S̃ = R
(
S
)

where R : R2×2N → RN×4 is the operator

consisting in placing the four images contained in the matrix S in four columns to
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give S̃. Its adjoint R† : RN×4 → R2×2N does the contrary, i.e. stores the four images

in the rows of a 2× 2 block matrix. Employing this notation, the underlying inverse

problem (2.21) can be rewritten as Y = Φ′(S̃)+Ω, with the operator Φ′(·) = Φ(R†(·)).

It will be useful later as it provides a compact notation.

3.2 Inverse problems

Inverse problems are widely encountered in many fields with the core idea of estimating

the causal factors responsible for the given set of measurements. A typical inverse

problem is of the form Y = Φ(S) + Ω, where, from the known observations Y that

are degraded by some noise Ω, the unknown true images S need to be recovered. A

common approach to solve such a problem is by using a least squares criterion [43].

It estimates the sought images by minimizing a data fitting term, i.e.

minimize
S

‖Φ(S)− Y‖2
F , (3.3)

which ensures the data consistency of the estimated solution. However, in many

practical applications, the underlying inverse problem is ill-posed in that it does not

have a unique solution. To give an intuitive idea, in the context of RI imaging, the

noisy measurements contain a partial information about the images of interest as only

a sub-set of the Fourier space is sampled. There thus lies the possibility of existence

of many solutions satisfying the data constraints. Solving such an ill-posed inverse

problem is then a challenging task and ensuring only data consistency is not sufficient,

leading to data over-fitting. To overcome these difficulties, regularization strategy is

often employed [44]. It consists in reformulating the original minimization problem

to be solved as

minimize
S

‖Φ(S)− Y‖2
F + µ r(S), (3.4)

where r is the regularization function whole role is to incorporate additional informa-

tion about the target images, and the regularization parameter µ > 0 determines the

trade-off between the two terms.
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In general, an equivalent formulation of problem (3.4) also exists, giving its constrained

version as

minimize
S

r(S) subject to ‖Φ(S)− Y‖F 6 ε, (3.5)

where ε > 0 is determined from the noise level. While in problem (3.4) the parameter

µ needs to be tuned, problem (3.5) requires the value of ε to be specified. In the cases

with prior knowledge of the noise statistics governing the problem, it may be possible

to theoretically determine ε. To give an example, in the context of RI imaging, [45]

uses the assumption of i.i.d. complex Gaussian noise relating the constraint term

in (3.5) to a χ2 distribution, thereby obtaining the value of ε. Nonetheless, depending

upon the problem under consideration, one of the two formulations may be preferred.

Finally, concerning the regularization function r, it is chosen as per the desirable

features in the sought images. The choice of such a regularization function then plays

a key role in the reconstruction quality of the images. In this context, the concept

of sparsity has drawn huge interest especially in the last two decades [46, 47]. The

next sections are focused on the notion of sparsity priors, providing a background

knowledge.

3.3 The world of sparsity

By definition, a vector α ∈ CJ is k-sparse if it contains at most k non-zero coefficients.

In practice, the signal may not be strictly sparse, but compressible, in the sense that

only a few coefficients have a non-negligible amplitude [48]. Sparsity of the signal

can also be achieved in a data representation space, that is not necessarily its domain

[49]. In other words, the unknown signal depends on a smaller number of unknown

parameters. Mathematically, for a vector s ∈ RN , it is written as

s = Ψα (3.6)

such that s is represented by a sparse vectorα in the sparsifying dictionary Ψ ∈ CN×J .

Within the same context, for a matrix S̃ ∈ RN×4 containing an image in each of its

columns, the matrix formulation of equation (3.6) can be written as S̃ = ΨA. Here the

31



Chapter 3. Sparsity and optimization background

(a) (b) (c)

Figure 3.1: Illustration of sparsity of (a) an original intensity image of the W28
supernova remnant in the: (b) Haar wavelet basis and (c) gradient (TV) domain.

Credits for (a): Image courtesy of NRAO.

matrix A ∈ CJ×4 denotes the sparse representation for the considered images. More

precisely, each column of A contains a sparse vector associated with the corresponding

column image in S̃ via the dictionary Ψ.

The choice of an appropriate dictionary depends on the nature of the images under

consideration. Many studies conducted over the past few years have investigated

the suitability of sparsifying dictionaries for different types of images [49, 50]. For

example, considering the simplest case of a sparse image (i.e. an image consisting of

point sources), Ψ can be set to the Dirac basis, i.e. identity matrix with J = N ,

promoting sparsity in the image domain itself. In the case of piece-wise constant

images, sparsity can be promoted in the gradient domain, using total variation (TV)

based regularizations [51]. When the underlying images are smooth and have more

complex structures, the wavelet domain [52], a collection of wavelet bases [45], stand as

potential candidates for the sparsifying dictionary Ψ. Apart from these dictionaries,

other possibilities include the isotropic undecimated wavelet transform (IUWT) [53]

and the curvelets [54], to name a few. While the former is appropriate for images

consisting of isotropic sources/structures, the latter is suited for elongated, well-curved

patterns. To give an example, Figure 3.1 depicts the sparse representation of an

original image in two different sparsifying bases. Figure 3.1(b) and (c) show that

the information in the original image is concentrated in a small number of non-zero

coefficients when represented in appropriate transformed domains.

While we have introduced the notion of sparsity, the next step is to describe how
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to actually use them for image recovery in general. The next section focuses on

addressing it, providing image recovery problem formulations exploiting sparsity.

3.3.1 Exploiting sparsity for signal recovery

Sparsity has presented itself as a powerful prior for signal recovery from the given mea-

surements. One of the earliest instances of sparse signal recovery can be dated back

to 1980’s showing the recovery of geophysical signals comprising of spike trains from

an under-sampled set of Fourier measurements [55, 56]. A more recent exploitation of

the notion of sparsity that gained tremendous attention in the signal processing com-

munity is the Compressive Sensing (CS) [48], a data acquisition and reconstruction

theory. From the data acquisition point of view, under certain assumptions, the theory

asserts that acquisition of much less measurements than required by the conventional

Nyquist-Shannon sampling theorem is sufficient to recover exactly the sought sig-

nal with high probability [57–59]. From the reconstruction perspective, considering

the sparsity of signal in some dictionary and fulfilment of some technical conditions,

the CS theory claims that finding the sparsest estimate satisfying the measurements

corresponds to a unique solution of the underlying problem [58]. In general, in the

context of sparse recovery problems, a natural way to impose sparsity is to use the `0

pseudo-norm of the sought variable and the associated `0-minimization problem is of

the form

minimize
A

‖A‖0 subject to ‖Y −Φ′(ΨA)‖F 6 ε , (3.7)

where ε > 0 denotes an upper bound on the Frobenius norm of the additive noise.

By definition, minimizing the `0 norm eventually leads to a reduction in the number

of non-zero elements, thereby promoting sparse estimates. However, this problem is

non-convex and is not guaranteed to converge to a global minimum. In addition,

it usually involves combinatorial search that can become intractable especially for

large dimensional problems [60]. A common practice is then to consider its convex

relaxation, the `1 norm [61].
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♦
C

Figure 3.2: Illustration of the `1 norm favouring a sparse vector in R2 approxi-
mated by a one-dimensional affine space C [62]. The dashed lines denote the smallest
`1 (blue) and `2 (red) balls meeting C at the respective diamond-shaped points.

`1 minimization strategy

The `1 norm is commonly used as a proxy of `0 norm. The enforcement of sparsity

by the `1 norm can be better understood from Figure 3.2. In this figure, the dashed

lines show an `1 ball (blue) and an `2 ball (red) in R2, respectively obtained by a set

of vectors having the same `1 and `2 norms. For each of these `p balls, the point of

intersection (blue diamond for p = 1 and red for p = 2) of the smallest possible ball

with line C denoting an affine space can be interpreted as the vector with smallest `p

norm belonging to C. In this manner, it is straightforward to observe that `1 norm

favours a sparse solution [62, 63].

Using the `1 norm as the sparsity inducing term gives rise to the well known basis

pursuit denoising (BPDN) problem, having the following form

minimize
A

‖A‖1 subject to ‖Y −Φ′(ΨA)‖F 6 ε . (3.8)

This `1 minimization strategy lies at the heart of the CS framework to recover the

sparse signals. More precisely, under specific conditions on the measurement operator

Φ′, CS theory provides reconstruction guarantees for equation (3.8) [57, 64].

Variants of `1 minimization problem

In particular, problem (3.8) represents a synthesis-based approach as its solution A?

can be used to synthesize the signal of interest S? using the relation S? = R†(ΨA?).
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An alternative formulation is rendered by what is called analysis-based approach that

solves directly for the sought signal instead of its sparse representation. The associated

minimization problem is defined as

minimize
S̃

‖Ψ†S̃‖1 subject to ‖Y −Φ′(S̃)‖F 6 ε . (3.9)

When the considered dictionary is orthonormal, both synthesis- and analysis-based

approaches are equivalent. On the other hand, in the case of using overcomplete

dictionary, the two approaches exhibit unequivalence [65]. In general, both of these

formulations have their own sets of merits and demerits. For instance, while using

the overcomplete dictionaries, the synthesis-based approach takes advantage of the

redundancy in the employed dictionary for a better modelling of the complex signals

[66], whereas the analysis-based approach benefits from the lower problem dimension-

ality as it does not depend on the dictionary size. Nevertheless, comparing between

the two formulations is still an active area of investigation.

Finally, for the sake of completeness and recalling from Section 3.2, another possible

variation of problem (3.9) (or of (3.8)) can be provided. It comes from its associated

Lagrangian function and gives its unconstrained formulation as

minimize
S̃

µ‖Ψ†S̃‖1 +
1

2
‖Y −Φ′(S̃)‖2

F , (3.10)

where µ > 0.

Reweighted `1

Although `1 minimization, popularized by CS as a proxy for `0 minimization, has

been extensively used in scientific applications, one thing to be pointed out is that

unlike `0 pseudo norm, it is dependent on the magnitude of the underlying signal’s

coefficients. To address this imbalance, several approximations of the `0 pseudo norm

have been proposed in the literature [67–69]. In particular, as proposed in [67], `0

minimization behaviour can be nicely approximated by reweighted-`1 minimization

that is explained as follows.
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Given any signal S̃, its weighted `1 norm is defined as

‖Ψ†S̃‖W,1 = ‖WΨ†S̃‖1 =
4∑
i=1

J∑
j=1

Wj,i

∣∣[Ψ†S̃]j,i
∣∣ , (3.11)

where the subscripts j and i in the notation [·]j,i respectively stand for the row and

column indices of the argument matrix, and W ∈ RJ×4
+ is the weighting matrix. In the

case when this matrix is chosen to be identity, the `1 regularization term is obtained.

With the definition (3.11), the weighted-`1 regularized version of problem (3.9) is

given by

minimize
S̃

‖Ψ†S̃‖W,1 subject to ‖Y −Φ′(S̃)‖F 6 ε . (3.12)

Regarding the weights that need to be determined, [67] proposed to solve iteratively

a sequence of the weighted `1 minimization problems (e.g. problem (7.22)) - referred

to as the reweighting scheme. The weights for each reweighting iteration, indexed by

r∗ ∈ N, are computed from the previous solution (S̃
?
)(r∗) as follows:

(∀j ∈ {1, . . . , J}) W
(r∗+1)
j,i =

δ(r∗+1)

δ(r∗+1) +
∣∣[Ψ†(S̃?)(r∗)]j,i

∣∣ , (3.13)

where i ∈ {1, . . . , 4} and δ(r∗+1) > 0 acts as a stabilization parameter whose role is

to ensure that zero valued coefficients result in well defined weights. In essence, with

definition (3.13), large weights are associated with small-valued coefficients to penalize

them, whereas small weights are linked with large-valued coefficients to promote them.

Moreover, δ(r∗+1) is decreased iteration-by-iteration such that δ(r∗+1) → 0 when r∗ →

+∞, and hence the weighted `1 norm approaches to the `0 norm. Thus, reweighting

procedure tends to alleviate the magnitude dependency of the usual `1 norm.

To give an example, Figure 3.3 depicts the recovery of correct sparse signal by us-

ing weighted-`1 minimization. More precisely, for the `1 ball centred at origin with

radius ‖S0‖1, the feasible data constraint set intersects in its interior. As such, `1

minimization fails in recovering the correct solution ‖S0‖1 (case (b) in Figure 3.3).

On the other hand, by using suitable weights, the weighted-`1 ball’s shape changes in

a manner that the constraint set no longer intersect with the ball’s interior, thereby
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S0 S0 S0

Figure 3.3: Illustration of weighted-`1 norm providing better recovery of a sparse
signal in comparison with `1 norm. (a) shows the unknown sparse signal S0 with its

associated `1 ball, and the constraint set (red line) Y = Φ′(S̃). (b) depicts existence
of a signal S 6= S0 such that ‖S‖1 < ‖S0‖1. (c) shows a weighted `1 ball in which
case there is no S 6= S0 with ‖WS‖1 < ‖WS0‖1. Illustration extracted from [67].

finding the correct solution (case (c) in Figure 3.3).

3.3.2 Sparse recovery methods

The previous section has provided a variety of minimization problems, whether using

the `0 or (weighted) `1 prior, that need to be solved for the recovery of sparse signal

from the given measurements. The literature is brimming with methods performing

the sparse signal recovery in an efficient manner while benefiting from the stable

reconstruction guarantees. In general, these methods can be broadly categorised into

greedy, convex-optimization and Bayesian techniques, that are briefly described in the

following.

Greedy methods

These methods offer a way to solve the `0 minimization problem for sparse recovery

by relying on representation of the signal of interest as a linear combination of the

basic elements (atoms) of a suitably chosen dictionary. The idea is to iteratively

refine the sparse representation of the sought signal by greedily searching for the

columns in the dictionary having the maximum correlation with the noise residual.

Working on this principle, the most commonly used method is Matching Pursuit

(MP) [60, 70]. Although gaining immense success, MP suffers from large number
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x

f(x)

x

f̆(x)

(a) (b)

Figure 3.4: Graphs of one-dimensional functions where for convex function f(x)
in (a), the line segment (in red) joining two points on the graph lies above its
graph, whereas for non-convex function f̆(x) in (b), such a line segment lies below

the graph.

of iterations that might be required to reach a solution. To counteract this issue,

another MP based method, namely Orthogonal Matching Pursuit (OMP) has been

proposed upper-bounding the number of maximum MP iterations [71, 72]. In the

context of a signal that is not strictly sparse, Stagewise OMP (StOMP) offers a

computationally more efficient alternative to OMP [73]. The MP family is further

extended by the development of techniques including Compressive Sampling Matching

Pursuit (CoSaMP) [74], Regularized OMP methods [75, 76], to name a few, providing

uniform signal recovery guarantees that depend only on the sparsity of the signal and

the sampling operator.

As mentioned in [77], another popular algorithm within the class of greedy methods is

the iterative hard-thresholding algorithm (IHT) [78]. At each iteration, it consists in

computing a gradient descent step on the usual least squares criterion using the current

estimate of the sought k-sparse signal. This is followed by a hard-thresholding step,

i.e. keeping only the largest k coefficients while setting all the other signal coefficients

to zero. Its uniform performance guarantees have been demonstrated in [79].

In essence, greedy algorithms provide a straightforward way to conduct sparse signal

recovery. However, the obtained solution by these algorithms may not be guaranteed

to be the global optimum of the underlying non-convex problem.
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Convex optimization-based approaches

By definition, a function f : RN → R is convex if it satisfies

f(λx1 + (1− λ)x2) 6 λf(x1) + (1− λ)f(x2), (3.14)

for all x1,x2 ∈ (RN)2 and any λ ∈ [0, 1]. In simple terms, for a convex function, the

line segment joining any two points on the function’s graph lies either above or on

the graph, as illustrated in Figure 3.4. Optimization problems composed of convex

functions and subject to convex constraints are referred to as the convex optimization

problems. Such problems have many desirable features, particularly the fact that any

local minimum is a global minimum.

Within the considered settings, the previously introduced `1 minimization problems

for sparse recovery (problems (3.8) - (3.10)) incorporating convex functions (`1 and `2

norms) fall under the realm of convex problems, that can be efficiently solved leverag-

ing the convex optimization framework. Recently in the wake of CS, many improved

algorithms have been developed to take into account the non-smooth terms (such

as `1 term) in the minimization problem and to handle large dimensional problems.

One possibility is to cast the BPDN problem as a second order cone programming

problem that can be solved by interior-point methods [80]. A computationally faster

alternative is offered by the method of Gradient Projection for Sparse Reconstruc-

tion (GPSR) [47] or by the use of soft-thresholding/shrinkage, leading to algorithms

such as the iterative shrinkage-thresholding algorithm (ISTA) [46, 81–83], fast ISTA

(FISTA) [84], to name a few. The key idea behind these methods is to perform a

gradient descent step on the least-squares criterion followed by the soft-thresholding

operation. Intuitively, this operation consists in setting all the coefficients of its ar-

gument that are less than some threshold to zero while shrinking the others by the

threshold value. This operation thus induces sparsity. Within the optimization lit-

erature, ISTA can also be interpreted as a proximal splitting method, in particular

forward-backward algorithm [85].

To summarize, efficient convex optimization algorithms exist for sparse recovery. The

associated convergence guarantees to the global optimum plays a key role in drawing
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attention towards these approaches. Moreover, leveraging the versatility of the convex

optimization framework, new techniques tailoring the needs of the chosen application

area can be designed.

Bayesian methods

These methods rely on making appropriate assumptions on the statistics of the sig-

nal of interest. Particularly, they deal with the posterior distributions, incorporating

a prior distribution on the sought signal. Maximum a Posteriori (MAP) estimation

provides one such popular technique, aiming to find an estimate of the signal that

maximizes the posterior distribution. Within the sparse recovery settings, sparsity

can be promoted by choosing a suitable prior distribution. For instance, in the case of

Laplacian prior, the standard `1 regularized minimization problem can be achieved.

Therefore, in simple terms, MAP estimation can also be seen as a form of regular-

ized regression. Sparse Bayesian learning (SBL) approaches present another family of

probabilistic approaches consisting in learning the sparsity prior by methods such as

Relevance Vector Machines (RVMs) [86, 87]. Particularly for inverse problems encoun-

tered in CS, Bayesian compressive sensing (BCS) algorithm has also been designed

that employs techniques like Fast Marginal Likelihood Maximization [88].

Although the Bayesian based methods benefit from several advantages, such as their

robustness and providing error bars with the estimated solutions, they might not be

very adapted to large dimensional problems [89].

3.4 A tour of convex optimization framework

Among the different classes of sparse recovery techniques introduced before, convex

optimization methods are more attractive especially within the CS context and form

a well-known component of the commonly used optimization toolboxes. This can be

attributed to a range of desirable features they offer, such as convergence guarantees

to the global minimum of the optimization problem, adaptability and scalability for

complex, large dimensional problems. Driven by these features, the research work

undertaken in this thesis exploits various tools lying within this framework. Therefore,

40



Chapter 3. Sparsity and optimization background

it is beneficial to provide a more thorough understanding of the class of approaches

within this framework, especially proximal splitting and primal-dual methods that

will be used later for algorithmic developments in the manuscript.

3.4.1 Proximal splitting methods

Within the broad class of convex optimization approaches, we focus on iterative algo-

rithms based on proximal splitting methods. The main advantages of these methods

are their flexibility to deal with sophisticated minimization problems, and their scal-

ability offering the possibility to handle large dimensional variables. An overview of

these methods can be found in [90, 91]. They can be employed to solve a wide class

of problems expressed in the following generic form

minimize
S̃

K∑
k=1

fk(S̃), (3.15)

where for k ∈ {1, . . . , K}, fk is a proper, lower-semicontinuous convex function from

RN×4 to ]−∞,+∞]. It is important to emphasize that many problems encountered

in practice can be cast in the form (3.15). Indeed, any constrained problem can be

reformulated as (3.15). This can be achieved by casting one of the functions fk as

an indicator function of the constraint set of interest, and defined as follows. The

indicator function of a non-empty closed convex set C ⊂ RN×4, at a given point

S̃ ∈ RN×4, is defined as

ιC(S̃) =

0, if S̃ ∈ C,

+∞, otherwise.

(3.16)

Another interesting point of problem (3.15) is that it can take into account both

smooth and non-smooth functions. In practice, to handle these functions, proximal

splitting methods will use the gradient for each of the smooth functions and the

proximity operator for each non-smooth function. Formally, the proximity operator

of a function f : RN×4 →]−∞,+∞] at the point S̃ is defined as

proxf (S̃) = argmin
U∈RN×4

f(U) +
1

2
‖U− S̃‖2

F . (3.17)
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This operator has been introduced by [92] and extensively used in signal and image

processing to deal with non-smooth functions [90]. In particular, for the sparsity

inducing `1 norm, the proximity operator is given by the soft-thresholding operator

[93]. Considering f(·) = µ‖ · ‖1 in the definition of proximity operator (3.17), the

resultant operation is performed by the soft-thresholding operator T as follows:

T µ(S̃) = U? = max{|S̃| − µ,0} · sign(S̃), (3.18)

that is performed component-wise such that each component of U? is given by

U?j,i =


−S̃j,i + µ if S̃j,i < −µ,

0 if − µ 6 S̃j,i 6 µ,

S̃j,i − µ otherwise,

(3.19)

where i ∈ {1, 2, 3, 4} and j ∈ {1, . . . , N}. Intuitively, this operation consists in

forcing the elements smaller than some threshold µ to zero, while reducing the rest

of the elements by this threshold value. Therefore, using any iterative algorithm for

`1 minimization, iteration-by-iteration, the smaller values are removed and finally,

only the elements having significant values are left, hence promoting sparsity. This is

further illustrated in Figure 3.5 for an element S̃j,i of S̃ for a better understanding.

µ−µ

g(S̃j,i)

S̃j,i

g(S̃j,i) = S̃j,i
g(S̃j,i) = [proxµ‖·‖1(S̃)]j,i

Figure 3.5: Illustration of the soft-thresholding operation.

42



Chapter 3. Sparsity and optimization background

Finally, the proximity operator can be seen as a generalization of the projection op-

erator PC onto a closed convex set C when f is chosen to be the indicator function of

C. In this context, equation (3.17) reduces to

PC(S̃) = argmin
U∈RN×4

ιC(U) +
1

2
‖U− S̃‖2

F = argmin
U∈C

‖U− S̃‖2
F , (3.20)

thus finding the closest point from S̃ in C with respect to the Euclidean distance, as

depicted in Figure 3.6.

S̃

PC(S̃)

C

Figure 3.6: Projection of a point S̃ onto a convex set C.

Popular proximal-splitting methods include the forward-backward (FB) algorithm

[94, 95], Douglas-Rachford algorithm [96]. In fact, many well-known algorithms from

the literature can be seen as special instances of proximal splitting methods. To give

an example, let us recall problem (3.10) consisting of a sum of `1 and `2 terms:

minimize
S̃

µ‖Ψ†S̃‖1︸ ︷︷ ︸
f1(S̃)

+
1

2
‖Y −Φ′(S̃)‖2

F︸ ︷︷ ︸
f2(S̃)

.

Within the framework of proximal splitting methods, an efficient means to solve this

problem consists in resorting to a FB algorithm. To be precise, the FB algorithm

finds the solution to the underlying problem in an iterative manner where at each

iteration l ∈ N∗, the sought variable is updated as

S̃
(l+1)

= proxδ(l)f1︸ ︷︷ ︸
backward step

(
S̃

(l)
− δ(l)∇f2

(
S̃

(l)))︸ ︷︷ ︸
forward step

, (3.21)
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where a forward gradient step is performed on the Lipschitz-differentiable function f2.

The resultant variable is acted upon by a backward proximity step for the non-smooth

function f1. For the case when functions f1 and f2 are convex, the sequence generated

by the FB algorithm is proven to converge to a solution of the underlying problem

[97, 98], provided the stepsize δ(l) satisfies 0 < infl∈Nδ
(l) 6 supl∈Nδ

(l) < 2κ-1, where

κ is the Lipschitz constant of ∇f2. Furthermore, it can be noticed that when f1 is

defined as the `1 norm, the proximity step reduces to a soft-thresholding operation,

leading to the ISTA algorithm introduced earlier in the chapter.

3.4.2 Primal-dual methods

In the particular yet common case of composite problems where the non-smooth

functions are composed with a linear operator, adapted methods need to be designed.

For instance, consider the following problem

minimize
S̃∈RN×4

f1(S̃) + f2(TS̃), (3.22)

where f1 : RN×4 →] − ∞,+∞] and f2 : RQ×4 →] − ∞,+∞] are proper, lower-semi-

continuous convex functions, and T ∈ RQ×N is a linear operator. Considering f1 to be

a differentiable function and f2 to be a non-smooth function, one possibility to solve

this problem is by using the FB algorithm, alternating between a gradient step on f1

and a proximity step on f2◦T. However, using this approach may require the inversion

of the operator T or performing sub-iterations to compute the proximity step. This can

be problematic especially when the dimension of the underlying problem increases.

To overcome this issue, recently several primal-dual methods have been proposed

[90, 91, 99–102]. Basically, they provide full splitting and solve simultaneously for the

primal and the dual problems. More formally, the dual problem associated with the

primal problem (3.22) is given by

minimize
V∈RQ×4

f ∗1 (−T†V) + f ∗2 (V), (3.23)
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where T† is the adjoint operator of T and f ∗1 (resp. f ∗2 ) is the Legendre-Fenchel

conjugate function of f1 (resp. f2) [103], that is defined as

f ∗1 (U) = sup
S̃

(
〈S̃,U〉F − f(S̃)

)
, (3.24)

for any U ∈ RN×4 and 〈·, ·〉F denoting the Frobenius inner product of the argument

matrices. The key idea behind employing the dual problem stems from the Fenchel-

Rockafellar duality theorem stating that the dual problem provides a lower bound on

the minimum value obtained by the primal one. The difference between these two

optimal primal and dual values is known as the “duality gap”. For the considered

settings for the functions f1 and f2, this duality gap vanishes and the minimum values

of the primal and dual problems are equal. Exploiting this feature, efficient algorithms

aimed at concurrently solving primal and dual problems can be designed [100, 101].

Such algorithms seek to find a Kuhn-Tucker point (S̃
′
,V′) that satisfies

− T†V′ = ∇f1(S̃
′
), TS̃

′
∈ ∂f ∗2 (V′), (3.25)

and thus provides the solutions S̃
′

and V′ to the primal and the dual problems, re-

spectively.

A notable advantage of the primal-dual methods is the splitting achieved over all the

functions involved in the minimization problem. This includes the gradient and the

proximity operators as well as the involved linear operator. The latter prevents the

need to invert the linear operator [104]. These methods, thus, offer computational

advantages over other splitting methods.

3.5 Non-convex optimization

3.5.1 Overview

Non-convex optimization problems present another class of problems that arise natu-

rally in many practical cases. Contrary to convex problems, these problems consist of

a function or a constraint set, or both that are non-convex. In particular, a function

is said to be non-convex if it violates condition (3.14). To give further intuition, let us
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consider a function f(x, z) = xz consisting in taking the product of its argument vec-

tors. As can be observed from Figure 3.7(a), the line segment joining the two points

(highlighted in red) on the function’s graph lies below the graph, thereby concluding

its non-convexity. As a matter of fact, such a function can be extended to more than

two variables and is widely encountered in many application areas. In its most general

form, the corresponding data model can then be represented as

Y = f(X1,X2, . . . ,XK) + Ω, (3.26)

where f : (RN×4)K → C4×M is a multivariate function consisting in taking the prod-

ucts (possibly composed with some linear operators) of its arguments Xk’s where

for every k ∈ {1, . . . , K}, Xk ∈ RN×4. This data model is then non-linear thereby

inducing non-convexity in the associated minimization problem:

minimize
X1,...,XK

F̆ (X1, . . . ,XK), (3.27)

where F̆ is the net objective function consisting of sum of usual data fidelity term

corresponding to the model (3.26) and the regularization terms for the optimization

variables. The RI observation model presented in equation (2.19) (and (2.20)) is one

such instance of a non-linear data model leading to a non-convex optimization problem

to be solved.

Solving for non-convex problems is a highly challenging task. Particularly, they are

difficult to minimize to obtain a global minimum that stems from the fact that for

these problems, the local minimum may not necessarily coincide with the global min-

imum. Moreover, there might exist many local minima of the problem that makes

it highly likely for the adopted solver to get stuck in a local minima. As such, the

initialization provided to the solver plays a crucial role in the quality of the estimated

solution. The importance of initialization and the possibility to converge to a local

minimum rather than a global minimum is further depicted in Figure 3.7(b) for an

intuitive understanding. Adding onto these issues, obtaining theoretical convergence

guarantees for this class of problems is a difficulty in itself.
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Starting point

Local minimum

Global minimum

(a) (b)

Figure 3.7: Graphs depicting non-convex functions. (a) A line segment (in red)
joining two points on the graph of two-dimensional function f lies below its graph,
thereby illustrating its non-convexity. (b) A one-dimensional non-convex function
graph highlighting the critical role played by initilization while solving non-convex

problems.

Within the scope of this thesis, we focus on non-convex minimization problems of the

form (3.27). A primitive way to solve such problems is by the principle of alternating

minimization (AM). As the name suggests, the key idea behind it is to solve for each

of the variables while keeping the others fixed, in an alternating and iterative manner.

That is, starting with an initial point (X(0)
1 , . . . ,X(0)

K ), at each iteration l ∈ N∗, the

basic AM algorithm consists in the following

X(l+1)
1 ← argmin

X1

F̆ (X1,X
(l)
2 , . . . ,X

(l)
K )

...

X(l+1)
K ← argmin

XK

F̆ (X(l+1)
1 ,X(l+1)

2 , . . . ,XK). (3.28)

Many popular algorithms rely on the AM principle such as the coordinate descent

method [105], block coordinate method [106], block coordinate variable metric forward-

backward algorithms [107], to name a few. In particular, the convergence of the latter

has been established under mild technical assumptions [107, 108]. Furthermore, it

makes use of the fact that for each sub-problem solving for a (block)variable while

keeping the other fixed, the objective function is linear with respect to it. As a result,
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convex sub-problems need to be solved that is done using FB iterations. It is worth

emphasizing then it might be possible to exploit various convex optimization tools to

solve the challenging class of non-convex problems.

3.5.2 Non-convex regularizations for sparse recovery

In the context of sparse recovery, while Sections 3.3.1 and 3.3.2 have described typical

`0 minimization or `1 minimization problems, there also exists approaches solving the

general `p minimization problems (p ∈ (0, 1)) [109] that can be done using reweighting

schemes [110, 111]. Keeping aside the non-convexity of these problems, they require

fewer measurements than the `1 minimization to ensure a satisfactory recovery of

a sparse signal [109]. Similarly, particularly for the case of p = 1, the previously

introduced reweighted `1 minimization problem while reconciling the magnitude de-

pendency of `1 norm, provide an exact recovery of the sought signal using fewer mea-

surements than usual `1 minimization [67]. In particular, this problem can be seen as

a heuristic to a log-prior based non-convex problem and as such the whole reweight-

ing procedure is not accompanied by strong provable guarantees. Nevertheless, each

sub-problem (`1 minimization) is a convex problem that can be solved efficiently us-

ing any of the sparse recovery methods described in section 3.3.2 and is shipped

with convergence guarantees. Moreover in practice, several works have demonstrated

that reweighted `1 minimization outperforms the standard `1 minimization [67, 112].

More specifically, the effectiveness of this scheme has been demonstrated for radio-

interferometric imaging in [14, 45].

3.6 Conclusion

In this chapter, I have provided an overview of the concept of sparsity and the algo-

rithms exploiting it to recover an unknown signal. More specifically, the role played by

CS techniques for sparse recovery is highlighted. The underlying convex optimization

toolbox is detailed, primarily focusing on the proximal splitting and primal-dual meth-

ods on which the algorithmic developments in this thesis are based. The discussion is

further extended to the non-convex optimization setting that will be beneficial while

dealing with non-convex problems (eg. RI imaging and calibration problem) in this
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manuscript. Overall, the mathematical treatment provided in this chapter sets the

stage for the description of the existing standard RI approaches in the next chapter

and the development of the proposed techniques in the later chapters.
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4.1 Introduction

This chapter presents an overview of the standard approaches employed in RI to solve

imaging and calibration problems. For imaging purposes, the well-established methods

and the newly developed approaches exploiting the previously discussed CS based

sparse recovery methodology are described. In the context of calibration, various

techniques aiming for the estimation of DIEs or/and DDEs are presented.
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4.2 Imaging techniques

With the given background knowledge gained for image recovery techniques using

sparsity as a prior, we now move on to describe the methods developed for RI imag-

ing. In a nutshell, the measured visibilities in RI are related to the true sky bright-

ness distribution via Fourier transformation, sampled at discrete uv points by the

interferometer. From the image domain perspective, the inverse Fourier transformed

visibilities - referred to as ‘dirty image’, can be seen as a convolution of the interferom-

eter’s point spread function (PSF) with the true image of interest, contaminated by

an additive noise. In RI terminology, the PSF, obtained by inverse Fourier transform

of the uv sampling function, is called the ‘dirty beam’. The corresponding task of

recovering the sought images from the visibilities then amounts to a deconvolution

process, i.e. removing the effect of the PSF from the dirty image. Moreover, the ac-

quired incomplete and noisy information is not sufficient for accurate image recovery.

From an optimization point of view, the associated imaging inverse problem can be

seen as naturally falling under the CS framework [5] and thus, it can also be efficiently

solved drawing on the ideas from a suitable sparse recovery technique and adapting

it for RI imaging.

In light of the discussion above, the standard imaging approaches in RI are detailed

below.

4.2.1 CLEAN and its family

Initially proposed in early 1970’s by [8], the CLEAN algorithm has emerged as the

standard RI imaging technique. Its widespread use in the radio astronomical com-

munity can be attributed to its effectiveness in restoring high quality images from

the acquired data as well as its simplicity making it easily understandable by the

radio astronomers. The underlying assumption for Högbom CLEAN [8] is that the

sought image consists of only point or compact sources. As such, the sky model can

be effectively represented by various delta functions centred at these sources. Us-

ing this model, it consists in a greedy, non-linear iterative deconvolution approach.

More precisely, it involves the computation of the dirty image wherein the maximum
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absolute valued intensity pixel is searched for. This is followed by a beam removal

step (i.e. to remove the effect of the dirty beam) where a fraction, defined by the so

called loop gain factor, of this pixel’s value convolved with the dirty beam is removed.

The position and the amplitude of the removed peak is added as a delta function

to the recovered ‘model’ image. The process of beam removal is continued until the

maximum intensity value in the dirty image becomes lower than some threshold value

dependent on the noise level. At this stage, the dirty image mainly contains noise and

is often termed as ‘residual’ image. The resultant model image consists of multiple

delta functions at different locations, which is often non-physical, in particular for

extended emission. In order to have a more realistic representation of the radio sky,

the model image is convolved with the CLEAN beam, typically a Gaussian fitted to

the primary lobe of the dirty beam. The final ‘restored’ image of this algorithm is

generated by adding the residual image to the smoothed model image.

A point to be noted is that in the beam removal step, the full dirty beam is employed

by Högbom CLEAN. While it renders accuracy, it can also become computationally

intensive. [113] proposed a comparatively fast version of the basic CLEAN algorithm

by introducing what are called major and minor cycles. Minor cycles are performed

to identify the peak in the dirty image coupled with the beam removal step, the note-

worthy difference being the usage of only a small patch of the dirty beam. This leads

to a speed-up in the overall approach, however at the cost of potentially creating an

inaccurate residual image. In order to compensate this, as soon as the peak inten-

sity in the dirty image falls below a threshold level, a major cycle is performed to

recompute the residual image, by subtracting the contribution of the model image in

the Fourier domain from the gridded visibilities. The Cotton-Schwab CLEAN (CS-

CLEAN) [114] presents a variant of Clark algorithm in [113] where the subtraction of

the Fourier transformed model image in the major cycle takes place in the degridded

visibility data domain, thereby removing gridding errors. This improved variant also

benefits from CLEANing multiple sources simultaneously and independently in the

minor cycles, whereas the contribution of all these CLEANed components is removed

together in the major cycle.
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Although the initial CLEAN-based algorithms dealt with the delta function sky model,

lately many variants of CLEAN have been developed to account for the sky models

consisting of extended emission. One such variant is presented by Steer-Dewdney-Ito

(SDI) CLEAN [115]. It relies on removing a group of CLEAN components having

values higher than some fraction of the peak value in the residual image. It thus

helps in suppressing CLEAN stripes that appear in the recovered image if only a

single CLEAN component is removed while deconvolving smooth, extended emission.

Another popular variant is the Multi-Scale CLEAN (MS-CLEAN) [116], which treats

the components of the sky model image at different scale sizes. Its performance is often

dependent on the scales that can either be chosen by the user or set automatically when

implemented in WSCLEAN package [117]. In practice, CS-CLEAN is the standard

variant now together with MS-CLEAN.

In terms of implementation of CLEAN (or its variants), many parameters are involved

to ensure its stability due to its greedy nature. For instance, to stop cleaning, user

can specify the desired threshold below which if the peak in the residual images falls,

cleaning stops. On the other hand, for an automated processing, a auto-threshold

function can be adopted. In this context, in the WSCLEAN package, the threshold

value is set automatically depending on the residual noise level. Another feature is

the selection of the CLEAN components in a restricted region, defined by a clean

binary mask. The idea is to limit the region where radio emission is expected and

is advantageous in reducing the computational cost by searching for the peaks only

in masked regions. Such a mask can either be specified by the user or generated

automatically (referred to as auto-masking) during the cleaning process using the

auto-multithresh algorithm [118]. The latter is incorporated in tclean task in Common

Astronomy Software Applications (CASA) package1. In particular, at the beginning

of a minor cycle, it updates the mask by using multiple thresholds relying on noise

and sidelobe levels in the current residual image. It can also ‘prune’ the regions from

the mask that represent false astronomical emission, typically the regions that are

smaller than some fraction of the beam.

1https://casa.nrao.edu/casadocs/latest/global-task-list/task tclean/about
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The celebrated CLEAN algorithm for RI imaging can also be seen from the lens of

sparse recovery methods. Working pixel by pixel, CLEAN implicitly considers the

sought image to be sparse in its domain, and shares many attributes with the MP

algorithm described earlier [60]. Analogies of CLEAN with a sparsity regularized

gradient descent method have also been shown in [9, 24, 119]. In simple terms, it

aims to minimize the residual norm ‖Y − Φ′(S̃)‖2
F subject to a sparsity constraint

on the sought image. The update step is reminiscent of a typical forward-backward

step. More precisely, the computation of the dirty residual image Φ′†(Y − Φ′(S̃))

corresponds to a gradient step on the differentiable `2 norm term, whereas the beam

removal step resembles the proximity step for the considered sparsity prior, i.e. the

soft-thresholding operation. At each iteration, it selects a fraction of the peak value

to be removed from the residual image, which is then added to the model image.

This fraction determined by the loop gain factor is analogous to the soft-thresholding

parameter in `1-optimization terminology.

With regards to polarimetric imaging, the aforementioned CLEAN-based approaches

apply the same technique as developed for Stokes I imaging, to recover each of the

Stokes parameters. In particular, these algorithms operate by either searching for

the CLEAN components separately in each of the Stokes images or in the net image

given by: I2 +Q2 +U2 +V 2. Another technique called Generalized Complex CLEAN

has been proposed in [120] for polarimetric imaging. This technique is basically a

modification of the CLEAN algorithm. Unlike CLEANing independently for the real

valued Stokes Q and U images, as done in the traditional CLEAN methods, the

authors in [120] propose to CLEAN the complex valued linear polarization image P .

It offers the advantage of rotational invariance and detection of more true components

in sources near the noise level.

4.2.2 Maximum Entropy Method

Although CLEAN is the most popular technique in RI imaging, another standard

approach consists in the Maximum Entropy Method (MEM) [121]. Solving an op-

timization problem, this method aims to find an image that maximizes an entropy

function while being consistent with the acquired data. The entropy function includes
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a prior image and the estimated image is biased towards the choice of the prior image.

For instance, a prior flat image promotes smoothness of the estimated image. Using

the suitable penalty functions, MEM can also take into account the positivity of the

sought image. An extension of this approach for Stokes parameters imaging has been

developed as well [122–125]. In particular, the polarimetric MEM can be used to in-

corporate the physical polarization constraint via a special entropy function, thereby

solving jointly for the underlying Stokes parameters.

4.2.3 Non-negative least squares

Another approach to tackle the RI imaging problem stems from the estimation of the

original image by solving a constrained least-squares minimization problem. More

precisely, it consists of minimizing the `2 squared norm of the difference between the

observed and the predicted model, subject to the constraint that the sought image

is non-negative. To solve the resultant non-negative least-squares (NNLS) problem,

[126] developed the first algorithm that is based on an active set method [127]. In

the context of RI imaging, it has been studied in detail in [128]. In particular, NNLS

has been shown to perform well to recover sources that are too compact for MEM

and too extended for CLEAN to be dealt with properly. Moreover, NNLS produces

high-fidelity recovered sources and thus, is very suitable to be implemented with a

calibration technique in a self-calibration loop. In addition to the non-negativity

constraint, recently there have been some works suggesting the sought image’s pixel

values to be upper-bounded within the NNLS framework [129].

4.2.4 Sparse optimization methods

The above mentioned techniques, particularly CLEAN, have been used extensively to

produce sought images from the acquired data. They are, however, not expected to

meet the imaging requirements of the upcoming interferometers. In particular for the

celebrated CLEAN algorithm, its imaging reconstruction quality is often limited by

the nominal resolution of the interferometer. In addition, it may suffer from conver-

gence issues and might not always be stable. Its stability is highly dependent on the

choice of various parameters that need to be tuned during its implementation, whether
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automatically or manually. As an alternative to the standard RI techniques, in the

wake of CS, several sparsity regularized RI imaging techniques have been proposed in

the last decade. For instance, the SARA approach in [45] enforces average sparsity of

the sought image in a concatenation of multiple representations, the synthesis-based

approach in [12] uses the Dirac basis and the isotropic undecimated wavelet transform

(IUWT) as the sparsifying dictionary, and the approach in [130] developed to solve

specifically for the LOFAR data employs a synthesis approach exploiting curvelets

and IUWT dictionaries [49]. A hybrid synthesis-by-analysis greedy sparse recovery

technique has also been proposed in [131]. These methods, however, have been de-

veloped to image Stokes I only. I now describe in detail the methods relevant to the

work proposed in this thesis.

SARA

In the spirit of promoting average sparsity of the underlying signal over multiple

representations, [45] proposed the Sparsity Averaging Reweighted Analysis (SARA)

algorithm for RI imaging. It stems from the fact that an astronomical image in

general can consist of multiple features, such as point sources, with a diffuse emission

background and complex extended structures. In this respect, the image can be seen

as having average sparsity in multiple domains rather than a single domain. Exploiting

this feature, the authors proposed to enforce sparsity in a dictionary consisting of a

concatenation of multiple orthonormal bases: Ψ = 1√
q
[Ψ1,Ψ2, . . . ,Ψq] ∈ RN×J , with

J = qN . These orthonormal bases Ψi’s are chosen to be the Dirac basis and the

first eight Daubechies wavelet bases. While the Dirac basis encapsulate the point

and compact sources, the continuous extended structures are well represented by the

wavelet bases. Furthermore, the Haar wavelet basis in the chosen collection of wavelet

bases provides an alternative to sparsity in the gradient domain.

In order to enforce the considered priors, this algorithm relies on solving a reweighted

`1 analysis problem, mimicking the `0 minimization behaviour. It consists in itera-

tively solving a sequence of weighted `1 minimization problems of the form (7.22),

subject to positivity of the sought intensity image and considering S̃ to be containing

only Stokes I image.
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In its original formulation, the authors in [45] employed the Douglas-Rachford splitting

technique to solve the minimization problem proposed by the SARA approach. On

a further note, [9] adapted the SARA minimization problem within other two convex

optimization algorithms, tailoring to the demands of the upcoming telescopes. These

algorithms, namely alternating direction method of multipliers (ADMM) and primal-

dual forward-backward (PDFB), renders a parallelizability and distributed strategy

to achieve scalability to big data. In particular, PDFB approach solves jointly for

the primal problem and its dual formulation [91]. This comes with the computational

advantages as discussed in Section 3.4.2, especially achieving full proximal splitting

over the underlying functions that is in contrast with ADMM [132]. Though applied

only for Stokes I image reconstruction, the quality of reconstruction, both in terms of

resolution and sensitivity, obtained by these techniques have shown to outperform that

obtained by CLEAN on simulated as well as on few real data sets [9, 11, 14, 24, 120].

TV regularized sparse recovery

The aforementioned methods have been presented for Stokes I imaging only. Very

recently, the first application of the sparsity regularized methods for polarimetric

imaging has been developed in [133]. In this case, the authors promote the spar-

sity of the underlying images using the `1 norm along with the total variation (TV)

regularization [51, 134], and solve the resultant problem using a monotonic version

of FISTA [84, 135]. A remark to be made here is that similar to CLEAN, this ap-

proach also solves independent imaging inverse problems for each of the underlying

Stokes parameters. Regarding the choice of the sparsifying dictionary, the authors

show effectiveness of TV and `1+TV sparsifying regularizations in producing good

quality images. In particular, for these regularizations, the authors have considered

the isotropic TV norm. Basically, the TV norm is defined for a 2D image U ∈ RN1×N2

as the `2,1 norm of the horizontal and the vertical gradients of this image [51]2. More

2Here we consider the images are represented in vectorized form of dimension N = N1 × N2.
However, the 2D images can easily be obtained by reshaping these vectors.
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formally, it is given by

‖U‖TV = ‖∇U‖2,1 =

N1∑
n1=1

N2∑
n2=1

√
|[∇xU]n1,n2|2 + |[∇yU]n1,n2 |2 , (4.1)

where ∇ = [∇x,∇y] is the concatenation of the horizontal gradient operator∇x : RN1×N2

→ RN1×N2 and the vertical gradient operator ∇y : RN1×N2 → RN1×N2 .

The authors validate their technique on simulated EHT data and obtain higher re-

solved Stokes images than obtained by CLEAN.

4.3 Calibration modalities

The imaging approaches described earlier are applicable to the DIE calibrated data.

In fact, by neglecting the presence of DDEs, these methods consider Jones matrices

as identity, which leads to mis-modelling errors severely affecting the image recon-

struction quality. Furthermore, in practice, the DDEs are unknown. As such, the

associated Jones matrices are not only required to be incorporated in the observation

model, but more importantly, these must be calibrated for to estimate the unknown

effects. In general, the process of calibration can be carried out using either of the

two approaches: Jones-specific and global approach, both of which have their own

merits and demerits. On the one hand, the Jones-specific formalism involves the us-

age of parametric model/s to specify different Jones matrices within a Jones chain,

using the physics behind respective propagation effects [136–138]. The task is then to

estimate the unknowns in this model. With such specific representation of the various

effects, the associated models are generated using only a few number of parameters. It

thus requires estimation of only a small number of parameters while calibrating using

this approach. The downside is that, due to these models being too specific, even a

slight deviation from reality can have detrimental effect on the reconstruction quality.

Moreover, not all the interferometers are represented by the same models. As such,

these models need to be adapted for the interferometer under consideration. On the

other hand, in the context of the global approach, instead of dealing with each of the

Jones matrices separately, a global matrix incorporating the combined effects from all
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the Jones matrices is considered [139]. The calibration problem is then designed to

estimate the elements of this global matrix. This approach thus offers the flexibility

to account for even those effects which were not modelled in the Jones-specific formal-

ism. In addition, since no specifications need to be made about the underlying physics

models, these approaches tend to be more robust. However, this non-modelling leads

to estimation of far more number of parameters when compared with Jones-specific

approach.

The standard calibration techniques in RI adopting either of the above two approaches

are described below.

4.3.1 External Calibration

The technique of RI calibration started with the strategy of estimating the unknown

gains using the observations made on external bright calibrator sources. These sources

have well known properties, such as their intensity, position. For external calibration

to work, the chosen calibrator source must be situated close enough to the science

target in the sky to ensure the similarity of the perturbations encountered, failing

which interpolation might be required [140]. At the same time, the two sources must

not be too close to have inseparable contributions in the acquired data. Additionally,

such observations need to be made at frequent intervals to track the time evolution

of the calibration errors. A concerning issue with this technique is that it relies on

prior knowledge of the calibrator source which is not necessarily always available.

Moreover, it only solves for calibration errors in the calibrator source’s direction, and

hence may not be sufficient for antennas having a wide field-of-view.

4.3.2 Self-Calibration

It was in 1980s that scientists came up with the idea of self-calibration [141, 142], a

more evolved calibration technique. This immensely successful scheme, often abbrevi-

ated as selfcal, relies on alternating between the calibration and the imaging process,

in an iterative manner. To be more precise, this iterative procedure starts with a sky

reference model that might contain some errors. Using this model, the DIE calibra-

tion is carried out that can be cast as a non-linear least squares minimization problem
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(as discussed in Section 3.5.1). A commonly used approach to solve this problem is

the Levenberg-Marquardt (LM) solver, which is a gradient-based approach [143]. The

obtained solutions are then used to update the image via the adopted imaging tech-

nique. Consequently, this approach provides a refined, high dynamic range sky model

along with the calibration terms estimates.

Computationally speaking, the conventional LM algorithm for calibration exhibits

cubic scaling with the number of receiving antennas. As such, despite its good per-

formance, it is not suitable for new generation interferometers having a large number

of antennas, thereby calling for the need of developing fast solvers. StEFCal provides

one such fast solver, as described in the following.

StEFCal

With the idea of developing fast solvers, [144] introduced the concept behind alter-

nating direction implicit (ADI) method for RI, indicating that it could be faster to

estimate the gains for all antennas in a successive manner. Particularly, for single

antenna gain estimation, all the other antennas are assumed to be already calibrated.

Exploiting this technique, [145] proposed a statistically efficient and fast calibration

(StEFCal) solver. Developed for the estimation of antenna gains representing DIEs,

it aims to solve the inverse problem of the form:

Y = CXC† + Ω, (4.2)

where Y contains the observed visibilities corrupted by the additive noise Ω and C

is the diagonal matrix containing the antenna gains. In the full polarization case, C

stands for a block-diagonal matrix instead, with each of its 2 × 2 block represent-

ing Jones matrix associated with dual-feed antenna gains [146]. Furthermore, X in

equation (4.2) is the matrix representing the model visibilities formed by the Fourier

transform of the underlying brightness matrix at the spatial frequencies probed by

the antenna pairs. To solve problem (4.2), [145] proposed to reformulate it using a

bi-linear approach by introducing C1 = C2 = C. The resultant problem is solved

using an iterative method based on an ADI algorithm. This method alternates at
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each iteration between the estimation of C1 and C2, assuming they are independent.

Its analogy with the alternating minimization strategy discussed in Section 3.5.1 can

be noticed. Particularly for ADI, the update of C1 is taken to be the exact mini-

mizer of the least-squares objective function, i.e. C?1 = argmin
C1

‖C1XC
†
2 − Y‖2

F , while

the update of C2 is taken to be exactly equal to C1, i.e. C?2 = C?1. Moreover, for na

number of total antennas, this problem can in turn be split into na independent linear

least-squares problems, each solving for the respective antenna gain.

This algorithm has been shown to provide lower computational complexity, having

quadratic scaling with respect to the number of antennas. The authors also provide the

convergence conditions for StEFCal. Nevertheless, it works under the assumption of

exact knowledge of the original image or at least when the bright sources of the original

image are known. The authors then suggest to combine the StEFCal calibration

method with an imaging algorithm in order to estimate more accurately the image

once we have an estimation of the DIEs, and to iterate this process. However, this

combined DIE calibration and imaging approach does not benefit from the StEFCal

convergence guarantees.

Another issue of concern is that this approach is not adapted to DDE calibration that

is pivotal to produce sky images at unprecedented resolution with high sensitivity new

generation radio interferometers. The incorporation of the DDEs in the calibration

process is also essential to produce high quality images without limiting their dynamic

ranges [138]. To this end, several DDE calibration techniques have been proposed in

the last years, as described below.

4.3.3 DDE calibration

Peeling

This scheme aims to calibrate for the DDEs of the bright sources in a sequential

manner [147], i.e. solving a series of calibration problems source by source. The

order of peeling of sources within a sequence is governed by decreasing order of the

sources’ brightness. For each source, the peeling comprises of alternating between the

corresponding calibration and imaging steps. In particular, for a considered single
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direction in sky, the DDE can in fact be seen as a DIE. Thus, it can be calibrated

using conventional selfcal and in simple terms, providing the DDE in the direction

of the underlying source. Using the obtained antenna-based phase corrections and

the source model, the predicted visibility contribution of this source is subtracted

(‘peeled’) from the net measured data. This process is then repeated for the next

bright sources.

The peeling technique has been further leveraged by a Source Peeling and Atmospheric

Modeling (SPAM) calibration method developed in [137, 148]. This method consists in

modelling the ionosphere as a phase screen, whose parameters are estimated by fitting

the calibrated phases obtained from peeling with the modelled phases, using the LM

algorithm. Subsequently, this model can be used for the prediction of correction phases

in any arbitrary desired direction within the field of view. To apply these corrections,

SPAM relies on a facet-based imaging approach. For each considered facet, it applies

the previously calculated phase correction for the facet centre, defined by a bright

source or approximate centre of a cluster of closely located bright sources, to the

whole facet.

Faceting

This technique relies on partitioning the sky into a number of facets and applying

the DDE calibration solution for the facet centre to the whole facet [15, 149, 150].

In particular, this scheme works under the assumption that the DDEs show smooth

variation over the field of view, thereby having (approximately) constant value across

a given facet. The DDE calibration is then performed for all the small facets into

which the whole sky image is divided. Finally, these corrected facets are stitched

together to produce a corrected image of the sky. It is to be noted that such facet-

based approaches require specification of the facet centres, which may need to be done

manually by the user.
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SAGE

Space Alternating Generalized Expectation Maximization (SAGE) calibration tech-

nique is an alternative to traditional LM calibration techniques solving for the un-

derlying non-linear least squares problem [16, 139, 151]. It leverages the principle of

expectation-maximization algorithm [152], using a different assignment of noise to the

complete data. Typically, it considers the target sky to be composed of well separated,

discrete sources such that the acquired visibilities can be seen as a linear superposition

of the signals from each source. With this idea in mind, at each iteration, the data

model is represented by a sum of signals from a chosen set of sources (the so called

hidden data space [151]) and the contribution from all other sources. The algorithm

then performs two steps: Expectation (E) step - evaluating the expectation value of

the hidden data space conditionally to the complete observed data and the current

estimate of the calibration parameter vector associated with the chosen set of sources,

and the Maximization (M) step - estimating the associated parameter vector by solv-

ing a least squares criterion between the previously obtained conditional mean and the

predicted model of the hidden data space. Moreover, at each iteration, this strategy

is followed for all the sources, updating their corresponding parameter vectors.

[139] have demonstrated the superiority of this algorithm in comparison with the con-

ventional LM algorithm, in terms of accuracy and higher rate of convergence coupled

with low computational cost. However, in the scenarios with large number of sources

in the observed radio sky, manual inspection of sources’ characteristics for partition-

ing purposes will not be viable. As such, the authors highlighted the importance of

designing an automatic way of partitioning to enable usage of SAGE calibration for

such datasets. On top of it, regularization schemes need to be investigated to enhance

the solution accuracy.

A-projection

While the facet-based approaches solve for the DDEs in their image domain, another

approach for calibrating the DDEs arises from their convolutional nature, allowing

their estimation in the Fourier domain. More precisely, the multiplication of the

DDEs in the image domain can be equivalently seen as their convolution in the Fourier
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domain. The A-Projection algorithm [138] makes use of the latter characteristic and

offers a way to correct for known DDEs whose associated Jones matrix (and in turn,

the corresponding Mueller matrix) is approximately unitary, such as antenna power

patterns induced calibration errors. Furthermore, the proposed approach relies on the

assumption of finite support of the associated Jones matrix in the Fourier domain. In

other words, this matrix has appreciable values only in a limited neighbourhood of the

origin. From image domain perspective, it can be seen as having Jones matrix with

smoothly varying values. Following the limited support and unitarity assumption of

the Jones matrix, this can be embedded into the forward and backward operators

while performing degridding and gridding steps, respectively. On the one hand, the

former step consists in using the interpolation kernels to degrid the FFT computed

discrete Fourier coefficients of the underlying model image to the continuous sampled

points. It is used in the evaluation of the residual visibilities. On the other hand, the

latter step (i.e gridding) works inversely, gridding the continuous (residual) visibilites

on a discrete grid to obtain the residual image.

Although this FFT based approach benefits from a computational point of view, its

application is limited to the correction of known DDEs only.

Pointing selfcal

This algorithm has been developed in [153] to account for the DDEs which are not

known beforehand and need to be solved for during the calibration process. In partic-

ular, the authors consider the case of antenna pointing errors, modelling them using

only few parameters. Combining this model with the apriori known primary beam

effects results into the net Jones matrix. The A-Projection algorithm is then used

to compute the forward model, giving residual visibilities. Finally, a gradient de-

scent step is performed on the squared norm of the residual visibilities to update the

antenna pointing error parameters.

To summarize, the RI literature has many calibration techniques, both for DIEs and

DDEs. These techniques often rely on a pre-determined known model of sky. In

practice, such a model may not always be available. In such a scenario, imaging
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procedure needs to be taken into account as well. These algorithms then adopt the

basic structure of the selfcal loop, i.e. alternating between the calibration and the

imaging cycles, where for the former, they use the corresponding proposed technique,

while for the latter, typically CLEAN (or its variants) is used. However, by doing so,

the global algorithm fails to have any convergence guarantees.

4.4 Conclusion

In this chapter, I have discussed the standard approaches employed in RI for imaging

and calibration purposes. In general, only the imaging procedure needs to be imple-

mented when the calibration errors are assumed to be absent or neglected. In this

regard, the recently emerged sparse recovery methods have shown promising perfor-

mance. While providing comparable (or in many instances, superior) imaging quality

as obtained by well-established CLEAN based approaches, these techniques also of-

fer more flexibility, particularly scalability to big data and hence, are suitable for

new generation radio interferometers. Nevertheless, all these techniques have been

designed primarily for Stokes I imaging. For polarimetric imaging, they can be ex-

tended to solve independent problems for each of the Stokes parameters using the

same approach. Furthermore, to account for (and estimate) the calibration terms, I

have presented an overview of the techniques from RI literature for both DIEs and

DDEs estimation. In the most general settings, when neither the sky model nor the

calibration terms are known, the need for joint calibration and imaging has also been

highlighted. In this case, any of the calibration methods can be combined with an

imaging modality, both chosen from aforementioned techniques, but at the cost of no

global convergence guarantees.

Gathering all the information provided in the chapters so far, I now move onto the

contribution phase of this thesis. Particularly, to counteract the shortcomings of the

existing methods in RI literature, we propose new ones. To begin with, we consider

only imaging problem, and unlike existing Stokes I imaging oriented methods, we

develop a polarimetric specific technique using sophisticated priors, and explore its
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scalability aspect. It is followed by the consideration of calibration terms in the ob-

servation model, for which we design a full polarization joint calibration and imaging

technique with convergence guarantees. Finally, we extend these ideas to solve the

challenging problem of imaging in optical interferometry (OI), bridging the gap be-

tween RI and OI. In this case, noticing the similarity of the underlying inverse problem

with the RI calibration problem, we exploit the optimization strategy adopted for RI

to propose an OI imaging algorithm.
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5.1 Motivation

Previously discussed standard RI imaging techniques when applied for polarimetric

imaging, solve independently for each of the Stokes parameters. In practice, the

Stokes parameters are not completely independent but rather constrained by a phys-

ical non-linear relation imposing the polarized intensity to be a lower bound on the

total intensity:
√
Q2 + U2 + V 2 6 I. This constraint, referred to as the polarization

constraint, can also be seen as a generalization of the simpler positivity constraint on

the total intensity image in the context of unpolarized imaging. Nevertheless, none of

the state-of-the-art sparse recovery methods described in previous chapter (including

CLEAN and its variants) take this constraint explicitly into account, thus resulting

in possibly non-physical image reconstructions. One way to impose this constraint

is by employing the strategy of the change of variables. It consists in expressing the

polarimetric images in terms of their fractional polarization and position angle, and

solving directly for these variables [125]. However, adopting this approach amounts

to solving non-convex optimization problem, which may not benefit from convergence

guarantees to global minimum.

The work described in this chapter is motivated by the need for the development of

a polarimetric imaging specific method, that can not only incorporate sophisticated

priors (such as the polarization constraint) in the minimization problem but also ben-

efits from well-established convergence guarantees. To achieve this, we leverage the

flexibility offered by the powerful convex optimization framework and propose a new

sparse recovery method for joint estimation of Stokes images in RI. Our contribution

is threefold. First, within the proposed sparse modelling framework, the novelty of our

method lies in taking into account the polarization constraint explicitly in the image

reconstruction process, solving for a convex optimization problem. Second, we gener-

alize to polarimetric imaging the SARA approach introduced for Stokes I imaging in

[24, 154]. The resultant approach, referred to as Polarized SARA, promotes average

sparsity of each of the Stokes images I, Q, U and V . To solve the corresponding im-

age reconstruction problem, we develop an iterative algorithm based on a primal-dual

method [90, 100, 101, 155]. Third, motivated by the huge amounts of data provided
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by the new generation radio interferometers, we work on the scalability aspect of the

underlying imaging algorithm. This involves introducing the distribution and paral-

lelization scheme within the proposed approach, that further leverages an acceleration

strategy [9, 14]. When it comes to dealing with real data, our method also benefits

from an adaptive scheme to estimate the unknown noise bound parameters [11].

Starting with the RI imaging model, I present in detail the proposed scalable, full

polarization imaging approach in this chapter. This is followed by its performance

analysis on simulated and real data. Finally, I give the concluding remarks for the

work described in this chapter.

5.2 Adopted measurement model

In the case of performing only image recovery, a reformulation of equation (2.19) is

often preferred wherein the visibility matrix containing the measurements made by

an antenna pair (α, β) at time instant t is represented by a vector yt,α,β ∈ C4. Each

element p ∈ {1, . . . , 4} of the visibility vector y is given by

[yt,α,β]p =
4∑
q=1

N/2−1∑
n=−N/2

[Mt,α,β(n)]pq
[
L̃
(
S(n)

)]
q
e−i2π(kt,α,β) n

N + [ωt,α,β]p, (5.1)

where ωt,α,β ∈ C4 is a realization of an additive Gaussian noise, and L̃
(
S(n)

)
operates

on the Stokes matrix to produce the brightness matrix B(n), followed by its vector-

ization. Furthermore, Mt,α,β = (Dt,α⊗D
†
t,β) ∈ C4×4N is the Mueller matrix formed by

the outer product of the Jones matrices for antennas α and β at time instant t, and in

turn, this matrix can be seen as a 4× 4 block matrix with each block given by an N -

dimensional row vector. Let us note that, for the Fourier transformed Mueller matrix,

denoted by M̂t,α,β, each block can be seen as obtained by the complex convolution of

the Fourier transforms of the corresponding Jones matrices [156].

In line with equation (5.1), the overall measurement model can be written as

y = Φ̆(S) + ω, (5.2)
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where y ∈ C4M is the resultant visibility vector corrupted by the noise vector ω ∈

C4M . The measurement operator Φ̆ mapping the images of interest to the acquired

visibilities is modelled as

Φ̆(S) = Θ · GFZ̃L̃(S), (5.3)

with · denoting the Hadamard product. The operation L̃
(
S
)

generates the brightness

vector b ∈ C4N that needs to be Fourier transformed at the sampled spatial fre-

quencies. To evaluate these Fourier transforms in a computationally efficient manner,

we make use of the non-uniform fast Fourier Transform that relies on interpolating

the Fourier coefficients from discrete to continuous domain [157]. In this context,

first, the zero-padding matrix Z̃ ∈ Cκ4N×4N oversamples the images in b, by a fac-

tor κ in each dimension achieving a finer grid, and accounts for the scale factors to

pre-compensate for the interpolation convolution kernels. A fast Fourier transform

operator F ∈ Cκ4N×κ4N is then applied to compute the 2D Fourier transform of each

of these oversampled images. To interpolate these discrete Fourier coefficients to the

continuous frequency points, compact support convolution kernels (the so called de-

gridding kernels) are embedded in the matrix G ∈ C4M×κ4N . More precisely, the

matrix G is modelled to take into account the degridding kernels as well as the com-

ponents of the Fourier transformed Mueller matrix. In particular, each of the four

rows of G associated with a frequency kt,α,β contains the convolution of the degridding

kernel with the corresponding elements of M̂t,α,β centred on kt,α,β. The application

of this matrix on the Fourier transformed over-sampled images produce the measure-

ments. As a matter of fact, the measurement operator in equation (5.3) bears a direct

correspondence with the measurement operator used for Stokes I imaging [10, 14],

that can be seen as a particular case of the considered full polarization imaging set-

ting. Furthermore, the noise statistics are incorporated via the matrix Θ ∈ R4M . Its

elements are the inverse of the square root of the noise variances corresponding to the

respective measurements in the associated measurement vector. Thus, the measure-

ments y are considered as the result of the Hadamard product between Θ and the

unweighted measurements from the radio interferometer.

For notational convenience, we define Φ′ = M ◦ Φ̆ ◦ R†, i.e. Φ′(·) = M
(
Φ̆(R†(·))

)
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Y′ =

Y′1
...

Y′nd

 Ω′ =

Ω′1
...

Ω′nd



Φ′(S̃) =

 Φ′1(S̃)
...

Φ′nd(S̃)

 =

M1
...
Mnd



Θ1

...
Θnd

 ·
G1

...
Gnd

FZ̃L̃(R†(S̃))


Figure 5.1: Illustration of the adopted block-data splitting technique for the mea-

surement model.

where the operator M : C4M → C4×M reshapes a C4M vector into a C4×M matrix.

Regarding R, let us recall S̃ = R
(
S
)

with operator R consisting in placing the four

Stokes images within the matrix S in four columns to give S̃ ∈ RN×4. Employing

this notation, we use S̃ instead of S to describe the Stokes matrix in the rest of this

chapter, and inverse problem (5.2) can then be rewritten as

Y′ = Φ′(S̃) + Ω′. (5.4)

Here, each column, associated with a sampled spatial frequency kt,α,β, of the measure-

ment matrix Y′ ∈ C4×M contains the visibilities acquired at that frequency, and Ω′

denotes the corresponding additive noise matrix.

Moreover, to achieve the scalability capability for large dimensional problems, we

adopt a block-data splitting technique [9]. It corresponds to decomposing the measure-

ments (5.4) into nd blocks, such that Y′ = (Y′j)16j6nd , where, for every j ∈ {1, . . . , nd},

Y′j ∈ C4×Mj is given by

Y′j = Φ′j(S̃) + Ω′j. (5.5)

Here, Ω′j corresponds to the jth block of the additive noise matrix Ω′, and the mea-

surement operator Φ′j is given by Φ′j(S̃) =Mj

(
Θj ·GjFZ̃L̃(R†(S̃)

)
, Θj and Gj being

the jth block matrices of Θ and G, respectively. Mj is the operator reshaping the

4Mj vector into a 4 × Mj matrix. For ease of understanding, this strategy is also

depicted in Figure 5.1.
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5.3 Polarized SARA - Proposed imaging approach

Objective function for polarimetric imaging

The estimation of the Stokes images from the degraded measurements consists in

solving inverse problem (5.5). Given its ill-posedness and as explained in Chapter 3,

the problem needs to be regularized by injecting a priori information in the recon-

struction process. We thus aim to solve a minimization problem consisting of a data

fidelity and a regularization term, described as follows.

Leveraging the block-data splitting of the observation model, we propose to enforce

the data fidelity term in a distributed manner [9]. It consists in constraining the

residual blocks Y′j − Φ′j(S̃) to belong to the `2 ball centered on 0 with radius εj > 0,

by choosing

f
(
Φ′(S̃)

)
=

nd∑
j=1

fj
(
Φ′j(S̃)

)
with fj

(
Φ′j(S̃)

)
= ιBj(Y′j ,εj)

(
Φ′j(S̃)

)
, (5.6)

where, for every j ∈ {1, . . . , nd}, Bj(Y′j, εj) = {B ∈ C4×Mj : ‖B−Y′j‖F 6 εj} is the `2

ball centred on Y′j with radius εj chosen according to the theoretical noise level.

Concerning the regularization term, we propose to define it as a sum of several func-

tions accounting for the following prior information.

Real-valuedness. The Stokes images should be real-valued. This condition can be

enforced by the use of an indicator function of a set U = RN×4.

Sparsity regularization. Leveraging the CS theory, we promote sparsity of the

Stokes images in a sparsifying dictionary Ψ. In this context, as discussed in Sec-

tion 3.3.1, adopting the reweighting scheme that consists in iteratively solving the

weighted `1 minimization problems provides a better estimation of the sought images

in `0 sense as compared to the `1 norm. Therefore, we propose to use the weighted `1

norm as the sparsifying regularization term. A remark to be made here is that any

linear sparsifying operator could be used in the proposed method. However, inspired
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by the sparsity averaging proposed in [24, 154] for Stokes I imaging, we extend it to

polarimetric imaging and choose to promote sparsity averaging for each of the Stokes

parameter maps I, Q, U and V . It consists in choosing Ψ as the concatenation of the

first eight Daubechies wavelets and Dirac basis (see e.g. [9, 70]). Using this dictionary

coupled with the reweighting scheme corresponds to the SARA regularization.

Furthermore, to exploit parallelization capabilities, we propose to split the correspond-

ing weighted `1 term as a sum over the different bases involved as well as over the

different Stokes images, i.e.

g
(
Ψ†S̃

)
= ‖Ψ†S̃‖W,1 =

nb∑
l=1

gl
(
Ψ†l S̃

)
(5.7)

where gl
(
Ψ†l S̃

)
=
∑4

i=1 ‖[Wl] : ,iΨ
†
l S̃ : ,i‖1. For each l ∈ {1, . . . , nb}, Ψ†l ∈ RJ×N and

Wl ∈ RJ×4
+ is the weighting matrix (as per the weights defined in equation (3.13)).

For the chosen SARA regularization, nb = 9.

It is to be emphasized here that unlike the case of `1 norm, usage of the weighted

`1 norm also offers the advantage of no tuning of regularization parameters. More

precisely, since Stokes Q, U and V images are lower in intensity than Stokes I, the

latter dominates in the `1 norm term. To overcome this unequal contribution of the

Stokes images, different regularization parameters need to be chosen for each image.

On the contrary, thanks to the weights in (5.7), all the Stokes images are normalized,

thereby having equal importance in this sparsity term, avoiding the need to use any

additional parameters to enhance the contribution of the Stokes Q, U and V images.

Polarization constraint. One of the key contributions of the work carried out

here is to exploit the physical relation between the Stokes images by enforcing the

polarization constraint in the reconstruction process. Formally, this constraint can be

defined by the following set :

P =
{
S̃ ∈ RN×4

∣∣∣(∀n ∈ {1, . . . , N})− S̃n,1 + ‖S̃n,2:4‖2 6 0
}
, (5.8)
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where, for every n ∈ {1, . . . , N}, S̃n,1 denotes the nth coefficient of the first column

of the matrix S̃, and the notation S̃n,2:4 signifies the nth coefficients of the columns 2

to 4 of the matrix S̃. Imposing the polarization constraint then amounts to using an

indicator function of the set P. It can be noticed that this constraint also implicitly

enforces the positivity of the total intensity image (Stokes I).

With the above mentioned prior information at hand, the resulting minimization

problem to be solved for the Stokes images is given by

minimize
S̃

f
(
Φ′(S̃)

)
+ ιU(S̃) + g(Ψ†S̃) + ιP(S̃). (5.9)

It can be observed that enforcing the polarization constraint in problem (5.9) involves

projecting the variable S̃ onto the set P. However, the associated projection does

not have a closed form. To impose this constraint, we propose to employ a splitting

technique based on epigraphical projection that is described in detail in the next

section.

Remark: In the case when the polarization constraint is not taken into account, the

positivity of the total intensity image is no longer ensured and it needs to be imposed

explicitly. This can be done by modifying the set U to a set U′ given by

U′ =
{
S̃ ∈ RN×4

∣∣∣ S̃ : ,1 ∈ RN
+ , S̃ : ,2:4 ∈ RN×3

}
. (5.10)

In such a case, problem (5.9) simplifies to

minimize
S̃

f
(
Φ′(S̃)

)
+ ιU′(S̃) + g(Ψ†S̃). (5.11)

5.3.1 Epigraphical projection

The requirement to satisfy the polarization constraint is that the Stokes matrix be-

longs to the set P. In order to enforce this constraint, we utilize the epigraphical

projection techniques developed by [158]. The epigraphical projection is a recently

74



Chapter 5. Polarized SARA

proposed technique used to handle minimization problems involving sophisticated con-

straints (see e.g. [159–162]). Leveraging these techniques, we propose to introduce an

auxiliary variable Z ∈ RN×2 in the minimization problem (5.9). The polarization con-

straint set can then be split into simpler constraint sets, such that the projection onto

these sets can be efficiently computed. Doing so, problem (5.9) can be equivalently

rewritten as

minimize
S̃,Z

f
(
Φ′(S̃)

)
+ ιU(S̃) + g(Ψ†S̃) (5.12)

subject to (∀n ∈ {1, . . . , N}) 
h1(S̃n,1) 6 Zn,1, (5.12a)

h2(S̃n,2:4) 6 Zn,2, (5.12b)

Zn,1 + Zn,2 6 0, (5.12c)

where the functions h1 and h2 are defined as

(∀ζ ∈ R) h1(ζ) = −ζ, (5.13)(
∀ζ ∈ R3

)
h2(ζ) = ‖ζ‖2. (5.14)

To understand this modified minimization problem, one can observe that the polar-

ization constraint set P, defined in equation (5.8), can be rewritten as

P =
{
S̃ ∈ RN×4

∣∣∣(∀n ∈ {1, . . . , N}) h1(S̃n,1) + h2(S̃n,2:4) 6 0
}
. (5.15)

Therefore, the Stokes matrix S̃ satisfying the constraint defined by set P is equivalent

to have the variables (S̃,Z) satisfying the constraints defined by equations (5.12a) -

(5.12c).

In order to simplify the notation of the minimization problem (5.12), we need to

introduce the definition of the epigraph of a proper, lower semi-continuous function

f̃ : RN →]−∞,+∞]. As illustrated in Figure 5.2, it corresponds to the set of points

lying on or above the graph of f̃ , and formally, it is given by [163]

epi f̃ =
{

(z, υ) ∈ RN × R
∣∣∣ f̃(z) 6 υ

}
. (5.16)
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epi f̃f̃(z)

z

Figure 5.2: Diagram depicting epigraph of a function f̃ .

Using this definition, conditions (5.12a) and (5.12b) respectively represent the epi-

graph of the functions h1 and h2. More precisely, condition (5.12a) implies that

for every n ∈ {1, . . . , N}, (S̃n,1,Zn,1) ∈ epih1. For a compact notation, we define

E1 = (epih1)N to be the product space such that

(S̃:,1,Z:,1) ∈ E1 ⇔ (∀n ∈ {1, . . . , N}) (S̃n,1,Zn,1) ∈ epih1. (5.17)

Similarly, defining E2 = (epih2)N , condition (5.12b) is equivalent to

(S̃:,2:4,Z:,2

)
∈ E2 ⇔ (∀n ∈ {1, . . . , N}) (S̃n,2:4,Zn,2) ∈ epih2. (5.18)

Thus, the constraints (5.12a) and (5.12b) can be imposed as ιE1(S̃:,1,Z:,1) and ιE2(S̃:,2:4,

Z:,2), respectively. Furthermore, to impose condition (5.12c), we introduce

V =
{
Z ∈ RN×2

∣∣ (∀n ∈ {1, . . . , N}) Zn,1 + Zn,2 6 0
}
. (5.19)

Then, condition (5.12c) can be represented as an indicator function of the set V.

Finally, imposing the constraints (5.12a) - (5.12c) using their respective indicator

functions leads to the following minimization problem

minimize
S̃,Z

f
(
Φ′(S̃)

)
+ ιU(S̃)+γ g(Ψ†S̃)+ ιV(Z)+ ιE1(S̃:,1,Z:,1)+ ιE2(S̃:,2:4,Z:,2), (5.20)

where γ > 0 is a free parameter only affecting the convergence speed.
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It is to be noted that the minimization problem (5.20) considers the SARA regular-

ization and imposes the polarization constraint explicitly. We refer to this proposed

method of joint Stokes imaging as Polarized SARA. In the same line of thought, solv-

ing the problem of Stokes imaging with SARA regularization but without polarization

constraint, i.e. problem (5.11), is termed as Polarized SARA without constraint.

5.3.2 Algorithm formulation

In order to solve the resultant problem (5.20), we develop a method based on a primal-

dual forward-backward algorithm, which offers a highly flexible and parallelizable

structure [100, 101, 155]. The proposed algorithm is given in Algorithm 1. As per

discussion in Chapter 3, primal-dual methods consist in solving jointly the primal and

the dual problems. In our case, the primal problem to be solved is given in (5.20).

This problem can be written in a compact form as follows

minimize
S̃∈RN×4,
Z∈RN×2

q(S̃,Z) + γ g(Ψ†S̃) + f
(
Φ′(S̃)

)
+ p(S̃,Z), (5.21)

where,

q(S̃,Z) = ιU(S̃) + ιV(Z),

p(S̃,Z) = ιE1(S̃:,1,Z:,1) + ιE2(S̃:,2:4,Z:,2).

Then, according to the optimization background provided in section (3.4.2) (see e.g.

[91] for further detail), the dual problem associated with (5.21) is given by

minimize
Al∈RJ×4,Bj∈C4×Mj ,

C∈RN×4,D∈RN×2

q∗

(
−

nb∑
l=1

ΨlAl −
nd∑
j=1

Φ′j
†
(Bj)− C,−D

)
+ γ

nb∑
l=1

g∗l (Al/γ)

+

nd∑
j=1

f ∗j (Bj) + p∗(C,D). (5.22)

In problem (5.22), for every l ∈ {1, . . . , nb}, Al ∈ RJ×4 is the dual variable correspond-

ing to the lth sparsifying basis in the non-smooth `1 term (the function gl in equa-

tion (5.7)), and for every j ∈ {1, . . . , nd}, Bj ∈ C4×Mj is the dual variable associated

with the jth data-block in the data fidelity term (the function fj in equation (5.6)).
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On the other hand, C ∈ RN×4 and D ∈ RN×2 are the dual variables associated with

the indicator functions of the epigraphs of h1 and h2 in problem (5.20).

Using this primal-dual formulation, Algorithm 1 solves alternately for the primal and

dual problems. In this regard, the algorithm can be seen as consisting of two major

steps, denoted by: Primal updates and Dual updates. At each iteration k ∈ N, it

involves updating the primal variables S̃ and Z, followed by the update of the dual

variables A,B, C and D, as detailed in the following.

Primal updates

In Algorithm 1, the primal variables are updated using steps 3 and 5. These updates

have a structure reminiscent of the FB steps. Let us recall that FB step consists of

alternating between a gradient step and a proximity (or projection) step, whereas in

the absence of any smooth term, only the proximity step is performed. This structure

can be observed in the update of S̃ (i.e. step 3), where a projection onto the set U is

carried out. For any matrix X of size N × 4, this projection onto the set U is simply

given by

PU
(
X
)

= Re
(
X
)
, (5.23)

where the operator Re(.) provides the real part of its argument. One can notice that

an additive term appears in this update step 3, that allows the dual variables to be

taken into account. The same analogy can be made for the update step 5 of the

variable Z. This update takes into account the dual variable D associated with the

epigraphical constraints, followed by a projection onto the set V. Using Proposition

2.1 from [158], the projection onto the set V is performed as

(∀U ∈ RN×2) PV(U) = Ũ, (5.24)

where Ũ ∈ RN×2 is defined such that, for every n ∈ {1, . . . , N},

(
Ũn,1, Ũn,2

)
=

(Un,1,Un,2), if Un,1 + Un,2 6 0,

1
2
(Un,1 − Un,2,Un,2 − Un,1), otherwise.

(5.25)
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Algorithm 1 Joint Stokes imaging algorithm - Polarized SARA

1: given S̃
(0)
∈ RN×4, Z(0) ∈ RN×2, (∀l ∈ {1, . . . , nb}) A(0)

l ∈ RJ×4, Ã
(0)

l =

ΨlA
(0)
l ,Λl = γWl ∈ RJ×4

+ , (∀j ∈ {1, . . . , nd}) B(0)
j ∈ C4×Mj ,Qj ∈ R4Mj×4Mj

+ , ε
(0)
j ∈

R+, t
(0)
j ∈ R+, b̃

(0)
j = G†j

(
Θ†j · M

†
j

(
B(0)
j

))
, C(0) ∈ RN×4, D(0) ∈ RN×2.

2: For k = 0, 1, . . .

Primal updates

3: S̃
(k+1)

= PU

(
S̃

(k)
− τ
(
ρ1

nb∑
l=1

Ã
(k)

l + ρ2R
(
L̃†
(
Z̃
†
F†

nd∑
j=1

b̃
(k)
j

))
+ ρ3C

(k)

))
4: S̆

(k+1)
= 2 S̃

(k+1)
− S̃

(k)

5: Z(k+1) = PV

(
Z(k) − τρ3D

(k)

)
6: Z̆

(k+1)
= 2Z(k+1) − Z(k)

7: R(k+1) = FZ̃L̃
(
R†(S̆

(k+1)
)
)

Dual updates

Promoting sparsity:

8: for l ∈ {1, . . . , nb} and ∀i ∈ {1, 2, 3, 4} do in parallel

9: [A(k+1)
l ] : ,i =

(
1J − T [Λl] : ,i

)(
[A(k)

l ] : ,i + Ψ†l S̆
(k+1)

: ,i

)
10: [Ã

(k+1)

l ] : ,i = Ψl [A
(k+1)
l ] : ,i

11: end for

Enforcing data constraint:

12: for j ∈ {1, . . . , nd} do in parallel

13: b̄
(k)
j =M†

j

(
B(k)
j

)
+ QjΘj · Gj

(
R(k+1)

)
14: B(k+1)

j =Mj

(
b̄

(k)
j −Q1/2

j PLj(Y′j ,ε
(k)
j )

(
Q−1/2
j b̄

(k)
j

))
15: b̃

(k+1)
j = G†j

(
Θ†j · M

†
j

(
B(k+1)
j

))
16: Update `2 bound ε

(k)
j . Skip this step if ε

(k)
j is known; take ε

(k+1)
j = ε

(0)
j

17: end for

Enforcing polarization constraint:

18:

C(k+1)
:,1

D(k+1)
:,1

 =

C(k)
:,1 + S̆

(k+1)

:,1

D(k)
:,1 + Z̆

(k+1)

:,1

−PE1

C(k)
:,1 + S̆

(k+1)

:,1

D(k)
:,1 + Z̆

(k+1)

:,1


19:

C(k+1)
:,2:4

D(k+1)
:,2

 =

C(k)
:,2:4 + S̆

(k+1)

:,2:4

D(k)
:,2 + Z̆

(k+1)

:,2

−PE2

C(k)
:,2:4 + S̆

(k+1)

:,2:4

D(k)
:,2 + Z̆

(k+1)

:,2


20: end For
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Dual updates

The dual variables are updated in steps 8 - 19 of Algorithm 1. At each iteration k, it

requires the evaluation of the proximity operators of the associated functions.

Sparsity prior. Step 9 consists in updating the dual variable A associated with

the sparsity prior defined in equation (5.7). It requires computation of the proximity

operator of the `1 norm corresponding to the soft-thresholding operation [93]. It is

performed by the soft-thresholding operator T using the soft-threshold values given

by Λ = γW. This update is performed in parallel for all the Stokes images and in turn

for each image, in a parallel fashion over all the bases in the sparsifying dictionary.

Data constraint. The data constraint is enforced in parallel for each data block

in steps 12-17. It involves computation of the proximity operator of the associated

data fidelity term. In this respect, with the aim of accelerating the convergence of the

algorithm without modifying the underlying minimization problem itself, we exploit

the notion of the generalized proximity operator [164]. By definition, relative to a

strongly positive and self-adjoint operator Q1, the generalized proximity operator is

given by

proxQ
f (R) = argmin

R

f(R) +
1

2
(R− R)†Q(R− R), (5.26)

that reduces to the usual proximity operator when Q is an identity matrix. Using

this definition, for each data block j ∈ {1, . . . , nd}, we incorporate a preconditioning

diagonal operator Qj ∈ R4Mj×4Mj

+ [155]. The role of this operator is to accelerate

the algorithm’s convergence by utilizing additional prior information about the data.

More precisely, in the considered RI imaging settings, it takes into account the Fourier

sampling density, mimicking the uniform weighting scheme in RI [14]. Each diagonal

element of this matrix is strictly positive and chosen to be the inverse of the uv

sampling density in the neighbourhood of the corresponding data point. With this

preconditioning matrix at hand and considering the data fidelity term per block,

1A strongly positive and self-adjoint linear operator Q respectively satisfies 〈z|Qz〉 >
α‖z‖22,∀z,∀α > 0 and Q† = Q.
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equation (5.26) can then be written as

prox
Qj
fj

(R) = argmin
R

fj(R) +
1

2
(Q1/2

j R−Q1/2
j R )† (Q1/2

j R−Q1/2
j R). (5.27)

Using the change of variables O = Q1/2
j R and O = Q1/2

j R, equation (5.27) leads to

prox
Qj
fj

(Q
−1/2

j O) = Q−1/2
j

(
argmin

O

fj(Q
−1/2
j O) +

1

2
(O−O )† (O−O)

)
(5.28)

= Q−1/2
j PLj(O). (5.29)

Therefore, algorithmically speaking, to satisfy the `2 data constraints, the inclusion

of the preconditioning operator generalizes the projection onto the `2 balls to the

projection onto the ellipsoids Lj(Y′j, εj) =
{
b̄ ∈ C4Mj : ‖Q−1/2

j b̄ −M†
j(Y

′
j)‖2 6 εj

}
,

performed via the projection operator PLj . Intuitively, this can be understood as

follows. For uniform uv sampling, Qj is essentially identity. In this case, constraining

the residual to lie within the `2 ball Bj amounts to minimizing the Euclidean distance

of the predicted visibilities to Bj, leading to a projection onto Bj. For any matrix

B ∈ C4×Mj , the corresponding projection onto the `2 ball Bj(Y′j, εj) of radius εj and

centred on Y′j is given by

PBj(Y′j ,εj)(B) =


εj

B− Y′j
‖B− Y′j‖F

+ Y′j, if ‖B− Y′j‖F > εj,

B, otherwise.

(5.30)

However, in the case of RI, low Fourier modes are sampled more than the high Fourier

modes. With such sampling scheme at disposal, Qj departs from identity. In this case,

a skewed ball is instead obtained expressed by an ellipsoid Lj and thus, the projection

onto Lj needs to be performed. Nevertheless, the residual should still be upper-

bounded by the noise level and this is accomplished by the operator Q−1/2
j , moving

the resultant ellipsoid projection point to the usual `2 ball. It is to be emphasized

that the incorporation of Q does not change the underlying minimization problem.

It in fact acts only as an algorithmic tool to accelerate the convergence speed of

the algorithm by accounting for the uv sampling information and enforcing the data
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fidelity term in a different manner. A detailed performance analysis by employing

such preconditioning scheme for Stokes I imaging and exploring its connection with

CLEAN has been done in [14].

Epigraphical projections and polarization constraint. Steps 18 - 19 consist

in updating the dual variables C and D, which are associated with the epigraphical

projections on the functions h1 and h2. As previously mentioned, these projections are

required to enforce the polarization constraint. In particular, in step 18, projection

of the underlying variables onto the epigraph of h1 is needed. For any two variables

(c,d) ∈ (RN)2, following [158], the projection onto the epigraph of the function h1

boils down to

PE1(c,d) = (c̃n, d̃n)16n6N , (5.31)

where

(c̃n, d̃n) =


(cn, dn), if cn + dn > 0,(

1
2
(cn − dn), dn−cn

2

)
, otherwise.

(5.32)

On the other hand, step 19 involves projection onto the epigraph of h2. For every

(R ∈ RN×3,d ∈ RN), this projection is given by

PE2

(
R,d

)
= (R̃n, : , d̃n)16n6N , (5.33)

such that

(R̃n, : , d̃n) =



(
0, 0
)
, if ‖Rn, : ‖2 < −dn,(

Rn, : , dn
)
, if ‖Rn, : ‖2 < dn,

αn
(
Rn, : , ‖Rn, : ‖2

)
, otherwise,

(5.34)

where αn = 1
2

(
1 + dn

‖Rn, : ‖2

)
[158].

Convergence properties

The choice of the step sizes (ρ1, ρ2, ρ3, τ) ∈ R4
+ governs the convergence of Algorithm 1

to the solution of the minimization problem (5.20). These parameters should be chosen
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in a manner that the following holds [155]

1

τ
− ρ1 ‖Ψ‖2

2 − ρ2‖Q1/2Φ′‖2
2 − ρ3 > 0, (5.35)

where for any matrix X, ‖X‖2 denotes its spectral norm and the matrix Q denotes

a concatenation of the preconditioning matrices Qj defined earlier for the split data

blocks. Then, under this condition, the sequence of iterates (S̃
(k)

)k∈N generated by

Algorithm 1 converges to a solution of problem (5.20).

Additional remarks can be made for the proposed approach. The whole procedure

of updating primal and dual variables in Algorithm 1 is repeated until the required

convergence criterion, defined by the user, is met. Furthermore, it is worth mentioning

that Algorithm 1 offers a highly parallelizable implementation where different steps

involved can be performed in a parallel manner.

Reweighting scheme

As discussed earlier, we aim to solve the weighted `1 minimization problem itera-

tively, and hence approaching towards the solution in the `0 sense. More precisely,

each reweighting iteration, indexed by r∗ ∈ N, consists in solving the weighted `1 min-

imization problem (5.20) using Algorithm 1. The weights for each iteration W(r∗+1)

are computed using equation (3.13), which are then used to update the soft-threshold

values as Λ(r∗+1) = γW(r∗+1).

To initialize the weights, let us recall that one of the benefits of using this reweighting

scheme is to avoid the tuning of any additional regularization parameters. Keeping

this in mind, Algorithm 1 is used to solve the problem consisting of only data fi-

delity term and the positivity constraint, without imposing sparsity and polarization

constraint, i.e. problem (5.11) with function g = 0. This corresponds to solving a

constrained version of the non-negative least squares problem. Formally, in the al-

gorithm, it consists of updating the primal variable S̃ and the dual variable B, with

the rest of the primal and dual variables appearing in Algorithm 1 taken to be zero,

and the set U modified to set U′ to take into account positivity of the total inten-

sity image. The solutions obtained are then used to compute the weights (as defined
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in (3.13)) for r∗ = 1 and hence the soft-thresholding values for the first reweighting

iteration. Subsequent reweighting iterations solve for the problem (5.20) by passing

on the updated values along with the solutions of the primal and dual variables from

the previous iteration to Algorithm 1. The resultant reweighting scheme is described

in Algorithm 2. This process is repeated until convergence.

Algorithm 2 Reweighting procedure

1: given S̃
(0)
,Z(0), (∀l ∈ {1, . . . , nb})A(0)

l , Λ
(0)
l = γW(0)

l , (∀j ∈ {1, . . . , nd})B(0)
j ,

C(0),D(0)

2: repeat for r∗ = 0, 1, . . .

3: [S̃
(r∗+1)

,Z(r∗+1),A(r∗+1),B(r∗+1),C(r∗+1),D(r∗+1)] = Algorithm 1 (. . . )

4: ∀i ∈ {1, 2, 3, 4} and ∀l ∈ {1, . . . , nb} compute [Wl]
(r∗+1)
: ,i as per equation (3.13)

5: until convergence

5.3.3 Polarization constraint for TV based problems

For comparison purposes, we consider the full polarization sparse imaging technique

solved in [165]. The authors in [165] consider independent problems for each of the

Stokes parameters, applied in the context of EHT imaging. The associated model is

then given by Y′S = Φ′S(S̃) + Ω′S, where the subscript S denotes that the measure-

ments are considered in the Stokes domain by defining the corresponding measurement

operator accordingly. In particular, it involves changing from brightness domain in

equation (5.4) to Stokes domain that can be done via the operator L̃†, and thus, the

measurements are directly related to the Fourier transform of the Stokes matrix rather

than the brightness matrix.

The authors then propose to solve the following minimization problem

minimize
S̃∈RN×4

1

2
‖Y′S − Φ′S(S̃)‖2

F + ιU′(S̃) + ǧ(Ψ†S̃). (5.36)

In this problem, the unconstrained formulation is used and the data fidelity term is

given by the squared `2 term (first term in (5.36)). The polarization constraint is

not imposed, justifying the use of the set U′ to impose positivity of the total intensity

image. Furthermore, the third term, ǧ(Ψ†S̃) in (5.36) is the sparsity prior imposing the
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sparsity of the sought images in some sparsifying dictionary. In this regard, [165] shows

that the TV and `1+TV sparsifying regularizations are effective in producing super-

resolved images and lead to better reconstruction quality than using the standard

CLEAN method. For these regularizations, the authors have considered the isotropic

TV norm (equation (4.1)).

For the sake of completeness, we hereby propose to generalize the minimization prob-

lem (5.36) solved by [165] to incorporate explicitly the polarization constraint. It

amounts to

minimize
S̃∈RN×4,
Z∈RN×2

1

2
‖Y′S − Φ′S(S̃)‖2

F + ιU(S̃) + ǧ(Ψ†S̃) + ιV(Z)

+ ιE1(S̃:,1,Z:,1) + ιE2(S̃:,2:4,Z:,2). (5.37)

This problem can be solved by using a modified version of the primal-dual method

proposed in Algorithm 1. In particular, Algorithm 1 can incorporate any convex

sparsity regularization function, and can be adapted for the unconstrained problem

of interest. The resultant algorithm is provided in Algorithm 3, consisting of the

following amendments made in Algorithm 1.

(i). While Algorithm 1 has been provided for the constrained formulation with the

data fidelity term defined in (5.6), problem (5.37), where the data consistency is

instead ensured by a differentiable `2 squared term, can still be solved. The update of

variable B in Algorithm 1 is no longer required, instead the gradient term Φ′S
†(Φ′S(S̃)−

Y′S) is added in the update of the variable S̃, as shown in Step 3 of Algorithm 3.

(ii). For the sparsity prior, depending on the chosen regularization, the corresponding

thresholding operator T and the dictionary Ψ need to be modified in steps 7 - 10 of

Algorithm 3. With this in mind, either of the TV and `1+TV sparsifying regulariza-

tions can be taken into account in Algorithm 3 as follows.

TV regularization: The sparsity prior is given by ǧ(Ψ†S̃) =
∑4

i=1 µi‖∇S̃
′
i‖2,1,

where S̃
′
i is the reshaped matrix form of the vector S̃ : ,i and for every i ∈ {1, 2, 3, 4},
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Algorithm 3 Primal-dual algorithm to solve problem (5.37)

1: given S̃
(0)
∈ RN×4, Z(0) ∈ RN×2, (∀l ∈ {1, . . . , nb}) A(0)

l ∈ RJ×4, Ã
(0)

l =

ΨlA
(0)
l ,Λl ∈ RJ×4

+ , C(0) ∈ RN×4, D(0) ∈ RN×2.

2: For k = 0, 1, . . .

Primal updates

3: S̃
(k+1)

= PU

(
S̃

(k)
− τ
(
ρ1

nb∑
l=1

Ã
(k)

l + Φ′S
†(

Φ′S(S̃
(k)

)− Y′S
)

+ ρ3C
(k)

))
4: S̆

(k+1)
= 2 S̃

(k+1)
− S̃

(k)

5: Z(k+1) = PV

(
Z(k) − τρ3D

(k)

)
6: Z̆

(k+1)
= 2Z(k+1) − Z(k)

Dual updates

Promoting sparsity:

7: for l ∈ {1, . . . , nb} and ∀i ∈ {1, 2, 3, 4} do in parallel

8: [A(k+1)
l ] : ,i =

(
1J − T [Λl] : ,i

)(
[A(k)

l ] : ,i + Ψ†l S̆
(k+1)

: ,i

)
9: [Ã

(k+1)

l ] : ,i = Ψl [A
(k+1)
l ] : ,i

10: end for

Enforcing polarization constraint:

11:

C(k+1)
:,1

D(k+1)
:,1

 =

C(k)
:,1 + S̆

(k+1)

:,1

D(k)
:,1 + Z̆

(k+1)

:,1

−PE1

C(k)
:,1 + S̆

(k+1)

:,1

D(k)
:,1 + Z̆

(k+1)

:,1


12:

C(k+1)
:,2:4

D(k+1)
:,2

 =

C(k)
:,2:4 + S̆

(k+1)

:,2:4

D(k)
:,2 + Z̆

(k+1)

:,2

−PE2

C(k)
:,2:4 + S̆

(k+1)

:,2:4

D(k)
:,2 + Z̆

(k+1)

:,2


13: end For

µi > 0 is the regularization parameter. Thus, in Algorithm 3, Ψ = ∇ with nb = 1

and the operator T = T TV is the proximity operator for the TV norm [84, 134], using

the threshold-size Λ = [µ1, µ2, µ3, µ4] in step 8.

`1+TV regularization: It consists of two terms in the sparsity prior, ǧ(Ψ†S̃) =∑4
i=1 υ1,i‖S̃ : ,i‖1 +

∑4
i=1 υ2,i‖∇S̃

′
i‖2,1, with υ1,i and υ2,i > 0. The first term, i.e. `1

norm, imposes sparsity of the underlying images in the Dirac basis. The second term,

i.e. TV term, promotes the sparsity in the gradient domain (4.1). As a result, in

this case, the sparsifying dictionary Ψ = [IN ,∇] is the concatenation of the identity
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matrix (Dirac basis) and the gradient basis, respectively with nb = 2. Similarly, for

l = 1 and 2 in step 8, the operator T is the proximity operator corresponding to the

`1 and the TV norms, respectively. The associated thresholding sizes are given by

Λ1 = [υ1,1, υ1,2, υ1,3, υ1,4] and Λ2 = [υ2,1, υ2,2, υ2,3, υ2,4].

One can notice that the same algorithm can be used to solve problem (5.36) as well

wherein the polarization constraint is not imposed and only steps 3, 4, 7-10 in Algo-

rithm 3 need to be executed.

Lastly, regarding the terminology, solving problem (5.37) considering TV regulariza-

tion (resp. `1 + TV) is referred to as TV (resp. `1 + TV) problem with constraint.

Similarly, solving problem (5.36) with TV regularization (resp. `1 + TV) is termed

as TV (resp. `1 + TV) problem without constraint.

5.4 Simulations and Results

In this section, we discuss the considered simulation settings and describe the different

cases for simulations. We then investigate the performance of the proposed Polarized

SARA method, implemented in MATLAB, on simulated EHT datasets.

Without any loss of generality for the proposed algorithm, we consider the idealized

case and work in the absence of DDEs. In such a scenario, the Mueller matrix is

essentially the identity matrix. With these measurement settings, we perform tests

on the EHT uv coverage, as shown in Figure 5.3. This realistic coverage, adopted

from [133, 165], corresponds to the measurements made at wavelength λ = 1.3 mm

(i.e. observation frequency of 230 GHz), using a VLBI array consisting of six stations.

In this case, the maximum observation baseline, Bmax = 7.2 Gλ.

Furthermore, we consider two sets of images based on physically motivated models

of M87 radio emission at 1.3 mm wavelength. The first set of images consists of a

forward-jet model, which was initially developed in [166]. We use the version of this

model presented in [167], coherent with the EHT observations at the considered wave-

length. The second set of images involves a counter-jet model. It is based on general
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Figure 5.3: The EHT uv coverage used for simulations, taken from [133, 165]. It
corresponds to the meaurements made at 1.3 mm (230 GHz) using six stations of

the VLBI array.

relativistic magnetohydrodynamic (GRMHD) simulation results [168] and polarimet-

ric radiative transfer calculations [169]. We focus on imaging of Stokes I,Q and U

parameters, as done in [165], by considering only three columns in the sought Stokes

matrix. The two sets of images are displayed in Figure 6.6 in first and second row,

respectively. In both the cases, the true Stokes I, Q and U images are presented along

with the linear polarization image P , respectively in the columns one to four. For

both these sets, we consider the image size N = 100×100 with the field of view of 200

µas. The resultant pixel size of 2µas corresponds to a scale of ∼ 0.21Rs. For both the

sets of model images, we simulate the noisy measurements as per equation (5.2) with

the measurement operator given by (5.3), considering Mueller matrix to be identity.

We further consider the measurements related to each column of the brightness matrix

are corrupted by a Gaussian noise with the same variance σ2, where σ = 5 × 10−3

Jy. The scale of the chosen variance is broadly consistent with the EHT settings

considered in [165]. Although we consider the same variance for all the visibilities, it

is worth mentioning that the same approach can be applied for more realistic EHT

settings having different variances. In particular, such a case can be dealt with by

using suitable values in the matrix Θ.

Lastly, few things need to be pointed out. First, given a relatively small number of
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Figure 5.4: The ground truth images for forward-jet [166, 167] (first row) and
counter-jet [168] (second row) models, used to perform simulations. In each row,
left to right the following images are displayed: Stokes I, Stokes Q, Stokes U and the
linear polarization image P . For the latter, the electric vector polarization angle
(EVPA) distribution is shown in white bars, plotted over the linear polarization

intensity (|P |). All the images are shown in linear scale.

measurements with M of the order of 103, we do not exploit the block-data splitting

and acceleration strategies, i.e. we consider nd = 1 and the preconditioning matrix Q

to be identity in Algorithm 1. Doing so, the projection onto the ellipsoid in step 14

reduces to a projection onto the `2 ball (5.30). Second, we assume the `2 bound ε is

known beforehand. To be more precise, in the considered settings, the residual norm

resembles the χ2 distribution with 8M degrees of freedom, and the bound ε for the `2

ball B defined in (5.6) can be determined from the noise variance σ2/2 of the real and

imaginary parts of the noise. We thus set this bound as ε2 =
(
8M + 2

√
2(8M)

)
σ2/2,

where the bound ε2 is taken to be 2 standard deviations above the mean of the χ2

distribution [45]. Following this, step 16 need not be performed in Algorithm 1.

5.4.1 Computational complexity

In each iteration k ∈ N of Algorithm 1, the major computational burdens come

from the application of the measurement operator Φ′ and of the Discrete Wavelet

Transforms (DWT) Ψ, while enforcing data fidelity and sparsity, respectively. In

particular, the usage of the measurement operator (and its adjoint) can be broadly
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split into (a) computing the FFT of oversampled images contained in columns of the

underlying matrix, each such image requiring a complexity of O(κN log κN), and

(b) applying the linear operator G with complexity of O(nsMκN) for each Fourier

transformed image. Here ns is the sparsity percentage of each row of G, due to

the compact support convolution kernels used to reduce its computational burden.

For large data sets having M � N , the term (b) dominates in the computational

cost. Concerning the sparsity operation, the major computational load comes by the

application of the DWT in step 10 (and its adjoint in step 9), where we use its fast

implementation providing a complexity of O(N) considering compactly supported

wavelets [70, 170]. Thus, for a dictionary Ψ consisting of nb basis, it requires O(N)

computations for each basis and each image stored in the underlying matrix. In

the current code, we apply the sparsifying dictionary Ψ (and its adjoint) in parallel

for each such image. Regarding the remaining steps in Algorithm 1 which involve

performing projections onto the respective sets, each such projection scales linearly

with the size of the argument matrix.

Investigation of the MATLAB code indicated that the epigraphical projections to

impose the polarization constraint does not add much to the computational cost and

thus, Polarized SARA takes about the same time to converge as taken by Polarized

SARA without constraint. More specifically, in the current simulation settings, the

MATLAB code takes few hours in total, consisting of 10 reweighting iterations, to

provide the final estimates of the Stokes parameters. We also note that the larger

datasets will incur a high computational cost and thus more time to converge to the

solutions. Nonetheless, in this case, distribution and parallelization features can be

used in Algorithm 1.

5.4.2 Effect of polarization constraint

As previously discussed in Section 5.3, the polarization constraint needs to be satisfied

by the Stokes images to avoid unphysical reconstructions. To validate the importance

of imposing this constraint explicitly in the reconstruction process, we perform tests

with and without this constraint. The case of imposing this constraint, i.e. Polarized

SARA, consists of solving the minimization problem (5.20) using Algorithm 2 with
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each reweighting iteration consisting of implementing Algorithm 1. On the contrary,

Polarized SARA without constraint implies solving the minimization problem (5.11).

In this context, Algorithm 1 can still be used to solve the weighted `1 minimization

problems within the reweighting scheme. However, Algorithm 1 is employed to solve

only for the Stokes matrix S (step 3), taking into account only the sparsity prior

(steps 8 - 11) and the data fidelity term (steps 12 - 17). Additionally, recall that in

the absence of the polarization constraint, the positivity of the Stokes I image is taken

into account by the use of the modified set U′ (5.10). In step 3 of Algorithm 1, the

projection needs to be performed on this set. This projection also consists in taking

the real part of its arguments as described in (5.23), with an extra step of considering

only the positive values for Stokes I, i.e. X : ,1 = max

{
Re
(
X : ,1

)
,0

}
.

In order to compare between the tests performed with and without imposing polariza-

tion constraint, we keep track of the pixels not satisfying this constraint. It consists

in analyzing the polarization error image, p ∈ RN
+ , where, for every n ∈ {1, . . . , N},

pn =

−Sn,1 + ‖Sn,2:3‖2, if − Sn,1 + ‖Sn,2:3‖2 > ζ,

0, otherwise.

Basically, this image is generated by taking the difference between the linear polariza-

tion intensity image and the total intensity image, where only the pixels with values

larger than some threshold ζ are retained, while the others are put to zero. In essence,

this image is a representation of the pixels not satisfying the polarization constraint,

and having values greater than ζ. The value of ζ is taken to be 3 times the rms noise,

which is estimated from the residual image. Thus, by considering this threshold, the

pixels with values smaller than the noise level are discarded. Finally, we denote the

percentage of the non-zero pixels in the image p by Np, where Np ∈ [0, 100].

5.4.3 Comparisons performed

Comparisons with the other methods

In the context of EHT imaging for full polarization, as mentioned earlier, the work

in [165] represents the only existing method within the sparse modelling framework,

91



Chapter 5. Polarized SARA

aiming to solve problem (5.36). In Section 5.3.3, we have proposed to generalize

this problem by taking into account the polarization constraint and hence solving

for problem (5.37). Keeping these in mind, we compare the results obtained by the

following: Polarized SARA, Polarized SARA without constraint, TV problem with

and without constraint, `1 + TV problem with and without constraint. It is important

to emphasize that all these problems are solved using primal-dual approaches. More

specifically, while the first two problems are solved by Algorithm 2 which incorporates

Algorithm 1 in each iteration, Algorithm 3 is used to solve the last four problems.

These comparisons correspond to analyzing not only the performance of different

sparsifying regularizations for EHT imaging, but also the importance of polarization

constraint for image recovery.

In order to be coherent with the previous studies [125, 133, 165] for EHT imaging,

we also perform comparison with the widely used CS-CLEAN algorithm. To this

purpose, for each considered dataset in this article, we implemented CS-CLEAN in

the Common Astronomy Software Applications (CASA) package2.

Comparison in the super-resolution regime

Another comparison which can be made between the results obtained by different

sparsifying regularizations is regarding the optimal resolution achieved by the respec-

tive reconstructed images, especially in the super-resolution regime, i.e. when one goes

beyond the nominal interferometric resolution (λ/Bmax), also referred to as the diffrac-

tion limit. In this context, we adopt the comparison scheme introduced in [125] and

later on used in [124, 133, 165]. It consists in convolving the reconstructed images with

circular Gaussian beams of varying full width half maximum (FWHM) sizes. We then

compute the NRMSE between these convolved images and the corresponding ground

truth images. It is to be mentioned that such a convolution varies the resolution of

the underlying images. Therefore, not only the reconstruction errors, but also the er-

rors due to loss of resolution will contribute to the computed NRMSEs. We compare

the curves obtained from the TV problem with constraint, `1 + TV problem with

constraint, Polarized SARA and CS-CLEAN. For the TV and `1 + TV problems with

2https://casa.nrao.edu/
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constraint, we consider the implementation of Algorithm 3. This already provides

a better scenario for these TV based regularizations, and hence accounts for a fair

comparison of the performance of these methods with the Polarized SARA method.

5.4.4 Simulation settings

For each of the cases discussed earlier, we perform 5 simulations varying the noise

realizations. In order to stop the computation of the algorithm at convergence, we

consider a stopping criterion. First, we ensure that at convergence the residual norm

is in the vicinity of the `2 upper bound ε defined earlier, i.e. ‖Φ′(S̃)−Y‖F 6 (1 +ϑ)ε,

where ϑ > 0 is a tolerance parameter. We set it equal to 5× 10−3. In addition, as a

second stopping criterion, we impose the relative variation between two consecutive

iterates to be very small, i.e.:

max
i∈{1,2,3}

(
‖S̃

(k+1)

: ,i − S̃
(k)

: ,i‖2/‖S̃
(k)

: ,i‖2

)
6 ε, (5.38)

where ε > 0. For the case with the polarization constraint, not only the above two

mentioned criteria are taken into account, but we also verify that the constraint is

satisfied, up to a small error, i.e., Np 6 %, where % > 0.

As described previously, the proposed Polarized SARA method as well as the Polarized

SARA without constraint method incorporate the reweighting scheme (Algorithm 2),

wherein we perform 10 reweighting iterations. For each iteration and for both the

methods, we choose ε = 10−5 in (5.38). In addition to this, we choose % = 0.5 to

stop Algorithm 1 for Polarized SARA. This choice of % stops the algorithm when only

0.5% of the pixels in the polarization error image, generated from the reconstructed

Stokes images, are not satisfying the constraint.

Regarding the implementation of Algorithm 3 to solve for the TV and `1 + TV prob-

lems without constraint, we choose ε = 10−5 for the forward-jet model, and 7× 10−6

for the counter-jet model for the stopping criterion. While solving for the TV and

`1 + TV problems with constraint, we also choose % = 0.5. For the threshold param-

eters Λ in Algorithm 3, we tune these values to minimize the normalized root mean

square error (NRMSE). For any true image s and the corresponding reconstructed
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Polarization TV `1 + TV SARAconstraint

Stokes I image - SNR
/

NRMSE

without constraint 27.53
/

0.2549 27.64
/

0.2542 33.09
/

0.1912
with constraint 28.19

/
0.2442 28.72

/
0.2378 33.15

/
0.1906

Linear polarization image - SNR
/

NRMSE

without constraint 23.66
/

0.3063 24.46
/

0.2944 27.54
/

0.2527
with constraint 24.92

/
0.2876 24.91

/
0.2878 28.96

/
0.2350

(a)

Polarization TV `1 + TV SARAconstraint

Stokes I image - SNR
/

NRMSE

without constraint 12.81
/

0.5269 12.82
/

0.5268 15.97
/

0.4502
with constraint 13.51

/
0.5089 13.51

/
0.5090 16.71

/
0.4337

Linear polarization image - SNR
/

NRMSE

without constraint 5.03
/

0.7781 5.85
/

0.7469 9.01
/

0.6374
with constraint 8.62

/
0.6500 8.77

/
0.6449 9.51

/
0.6215

(b)

Table 5.1: SNR and NRMSE values for the reconstructed images corresponding to
the (a) forward-jet model, and (b) counter-jet model, obtained by different sparsi-
fying regularizations. For each case, the mean values (computed over 5 simulations)
are shown for the Stokes I image and the linear polarization image reconstructed

with and without imposing the polarization constraint.

image s, NRMSE is defined as

NRMSE =

√∑
n |sn − sn|2∑

n |sn|2
. (5.39)

Therefore, with this definition, lower the NRMSE, better is the reconstruction.

5.4.5 Results and discussion

For a quantitative comparison between the reconstructed images from different cases,

the reconstruction quality is assessed in terms of NRMSE as well as signal-to-noise

ratio (SNR). It is defined as

SNR = 20 log10

(
||s||2
‖s− s‖2

)
, (5.40)
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Model TV `1 + TV SARA
Forward-jet 20.47 16.14 15.02
Counter-jet 62.97 59.96 41.97

Table 5.2: Percentage of pixels not satisfying the polarization constraint in the
images reconstructed without the enforcement of the constraint. The percentage
(mean value computed over 5 simulations) is listed for the reconstructed images
corresponding to the forward-jet (first row) and counter-jet (second row) models,

obtained by different sparsifying regularizations.

implying that higher SNR corresponds to better reconstruction quality. These NRMSE

and SNR values for the reconstructed Stokes I image and the linear polarization image

P , generated from the reconstructed Stokes Q and U images, are listed in Table 5.1

for both set of models: (a) forward-jet model, and (b) counter-jet model. In each

case, the shown value corresponds to the mean value computed over the performed 5

simulations. It can be observed from Table 5.1 that, on the one hand, for a given reg-

ularization, imposing the polarization constraint yields lesser error (and thus higher

SNR) in the reconstructions than that obtained by without imposing it. More pre-

cisely, irrespective of the chosen regularization, enforcement of this constraint leads to

improvement in the reconstruction quality. On the other hand, comparison between

different regularizations shows that the SARA regularization performs significantly

better than the other two regularizations, having ∼ 1-5 dBs higher SNR. This holds

true not only for Polarized SARA but also for Polarized SARA without constraint.

This indicates the importance of choosing a suitable dictionary for better reconstruc-

tion. Concerning the importance of the polarization constraint, we quantify it by

giving the percentage (Np) of the pixels not fulfilling this constraint in Table 5.2. In

particular, this table provides the values of Np in the cases with absence of enforce-

ment of the polarization constraint, whereas in its presence Np 6 0.5% as specified in

the stopping criterion. Table 5.2 then demonstrates that without imposing this con-

straint, an appreciable percentage of pixels have non-physical values. Additionally, in

terms of the sparsifying regularizations, it again indicates the better performance of

the SARA regularization in comparison with the others.

For the comparison in the super-resolution regime and as mentioned in Section 5.4.3,
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Model TV `1 + TV Polarized SARA CS-CLEAN

(a) (b)

Figure 5.5: The NRMSE plots for the Stokes I image (first row) and the lin-
ear polarization image (second row) corresponding to (a) forward-jet model, and
(b) counter-jet model, as a function of the FWHM size of the restoring beam.
The NRMSE is evaluated between the original ground truth image and the beam-
convolved reconstructed images. The shown curves correspond to the reconstruc-
tions obtained by: TV problem with constraint (dotted red curve), `1 + TV problem
with constraint (dash-dotted green curve), Polarized SARA (dashed blue curve),
CS-CLEAN (pink, continuous thin curve). The grey curve (continuous thick curve)
shows the errors for the Model, i.e. error between the original ground truth image
and the beam-convolved ground truth image. For each of the plots, a zoomed por-
tion (of the curves inside the box) is shown to highlight the minimum error regions

of the TV and `1 + TV problems.

the NRMSE plots for both the forward-jet (first column) and counter-jet (second col-

umn) model are shown in Figure 5.5. The first and second row respectively display

the plots for the Stokes I and the linear polarization image P . In all these plots,

the curve (continuous thick, grey curve) labelled Model, depicts the NRMSE values

between the ground truth images convolved with circular Gaussian beams of varying

FWHM sizes and the original ground truth images. Relating it to the previous dis-

cussion (Section 5.4.3), this curve basically represents the minimum attainable errors
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at any given resolution, arising purely because of the loss of resolution. The other

curves correspond to the following: TV problem with constraint (dotted red curve),

`1 + TV problem with constraint (dash-dotted green curve), Polarized SARA (dashed

blue curve). We also give the curve (continuous thin, pink curve) obtained by the re-

constructions from the widely used CS-CLEAN algorithm using uniform weighting.

It can be seen that for the Stokes I images, CS-CLEAN NRMSE values start to

increase rapidly in the super-resolution regime, where the diffraction limit is speci-

fied by the FWHM of size 1. This indicates the inability of CS-CLEAN to produce

super-resolved images. Moreover, in this case, the minimum errors are obtained at

a resolution of ∼ 50 - 80 % of the diffraction limit. On the contrary, for the other

considered sparsifying regularizations, the NRMSE values vary gradually even in the

super-resolution regime. In fact the error tends to decrease. It can be noticed that

the values for the TV and `1 + TV problems with constraint are quite close, whereas

the errors from the Polarized SARA are lower than that obtained by the former two.

Another interesting observation is related to the resolution at which the minimum

error is achieved by these regularizations. While for the TV and `1 + TV problems,

it is at ∼ 25 - 35 % of the diffraction limit, the corresponding value for the Polarized

SARA is 0 %. This highlights that the reconstructions obtained by the latter do

not need to be convolved with a restoring beam. This is in contrast to the results

obtained by other curves, where convolution with a restoring beam is required to get

the minimum error. The same features can be noticed from the plots of the linear

polarization images. In this case, the errors obtained by CS-CLEAN are quite large,

with the minimum being at around 60 % of the interferometric resolution. These large

errors indicate that CS-CLEAN is not particularly suitable for recovering the linearly

polarized emission images.

For visual comparison of the results obtained from these tests, we show the recon-

structed images and the respective error images. The latter are computed by taking

the absolute difference between the true and the reconstructed images. Out of the 5

simulations, the displayed images correspond to the simulation results with the least

NRMSE. The results for the forward-jet model images are shown in Figures 5.6 and
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Figure 5.6: Results for the Stokes I forward-jet model image. First row shows the
ground-truth image, whereas the second row shows the CS-CLEAN reconstructed
image followed by its error image. Third, fourth and fifth rows show the results for
the TV, `1+ TV problems and Polarized SARA, respectively. For these rows, the
first two columns show the reconstructed and the error images obtained without
imposing the polarization constraint in the reconstruction process, whereas the
corresponding images in the case of imposing this constraint are shown in the last
two columns. The shown images correspond to the best results obtained over 5
performed simulations for each case. All the images are shown in linear scale,

normalized to the scale of the corresponding ground truth image.
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Figure 5.7: Results for the linear polarization forward-jet model image (linear
polarization intensity images, overlaid by the white bars representing the EVPA).
First row shows the ground-truth image, whereas the second row shows the CS-
CLEAN reconstructed image followed by its error image. Third, fourth and fifth
rows show the results for the TV, `1+ TV problems and Polarized SARA, respec-
tively. For these rows, the first two columns show the reconstructed and the error
images obtained without imposing the polarization constraint in the reconstruction
process, whereas the corresponding images in the case of imposing this constraint
are shown in the last two columns. The shown images correspond to the best results
obtained over 5 performed simulations for each case. All the images are shown in

linear scale, normalized to the scale of the corresponding ground-truth image.
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Figure 5.8: Results for the Stokes I counter-jet model image. First row shows the
ground-truth image, whereas the second row shows the CS-CLEAN reconstructed
image followed by its error image. Third, fourth and fifth rows show the results for
the TV, `1+ TV problems and Polarized SARA, respectively. For these rows, the
first two columns show the reconstructed and the error images obtained without
imposing the polarization constraint in the reconstruction process, whereas the
corresponding images in the case of imposing this constraint are shown in the last
two columns. The shown images correspond to the best results obtained over 5
performed simulations for each case. All the images are shown in linear scale,

normalized to the scale of the corresponding ground truth image.
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Figure 5.9: Results for the linear polarization counter-jet model image (linear
polarization intensity images, overlaid by the white bars representing the EVPA).
First row shows the ground-truth image, whereas the second row shows the CS-
CLEAN reconstructed image followed by its error image. Third, fourth and fifth
rows show the results for the TV, `1+ TV problems and Polarized SARA, respec-
tively. For these rows, the first two columns show the reconstructed and the error
images obtained without imposing the polarization constraint in the reconstruction
process, whereas the corresponding images in the case of imposing this constraint
are shown in the last two columns. The shown images correspond to the best results
obtained over 5 performed simulations for each case. All the images are shown in

linear scale, normalized to the scale of the corresponding ground-truth image.
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5.7, respectively for the intensity image I and the linear polarization image P . In

both the figures, the first row shows the ground truth image, whereas the second row

shows the CS-CLEAN reconstruction followed by its error image. For the CS-CLEAN

reconstruction, the shown image corresponds to the model image convolved with the

restoring beam of FWHM size giving the minimum error for this method. The last

three rows display the results for the TV, `1+ TV problem and Polarized SARA,

respectively. In particular, the first two columns in these rows show the reconstructed

and the error images obtained in the absence of enforcing the polarization constraint,

whereas in its presence, the respective images are shown in the last two columns. In

the same manner, the results for the intensity image and the linear polarization image

for the counter-jet model are shown in Figures 5.8 and 5.9, respectively.

Comparing the different regularizations from these figures, we can observe that the

reconstructions obtained using the TV and `1 + TV regularizations are similar, while

employing the SARA regularization leads to a better reconstruction quality. First, in

the case of the intensity image, for both forward and counter-jet models, the central

region is much more resolved for the SARA regularization. It is in contrast with

the reconstructions obtained by the TV and `1 + TV regularizations, where only the

sharp edges are retained, leading to the staircase effect. One can recall that this

effect arises due to the definition of the TV regularization, which tends to promote

piece-wise constant images. Second, for the linear polarization images, while all the

regularizations produce diffuse emission in the background, these artefacts in the

background are lower in the case of SARA regularization. In particular for the counter-

jet model, the SARA regularization performs significantly better than the other two.

It is to be noted that with the same noise variance, the low intensity values of this

model provides lesser signal-to-noise ratio than the forward-jet model images. Thus,

the image reconstruction is much more challenging in this case. The superiority of the

SARA regularization over other regularizations in reconstructing these images is also

supported by the error images. All these images shown in the linear scale, one can

notice that for the TV and `1 + TV regularizations, these images have more residual,

especially in the background. Furthermore, for the CS-CLEAN reconstructions, it can

be observed that the reconstruction quality is worse than that obtained by using any
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Figure 5.10: The polarization error images for the forward-jet model (first row)
and the counter-jet model (second row) showing the pixels where the polarization
constraint is not satisfied. These images are computed from the reconstructions
obtained from the TV problem without constraint (first column), `1+ TV problem
without constraint (second column) and Polarized SARA without constraint (third
column). All the images are shown in linear scale. It is to be mentioned here that
in the case of imposing this constraint, the corresponding polarization error images

only have around 0.5 % non-zero pixels, as ensured by the stopping criterion.

other sparsifying regularization, especially for the linear polarization image, validating

the high errors observed in Figure 5.5. These observations are consistent with those

obtained in other studies [125, 133, 165].

Regarding the comparison between the cases with and without polarization constraint,

reduction in the artificial diffuse background emission, especially for the linear polar-

ization images, by enforcing the constraint can be noticed from the presented results.

This is supported by the visual inspection of the results as well as by the lower residual

in the error images. In particular for linear polarization images of counter-jet model,

there is an appreciable improvement in the reconstruction quality for the TV and

`1 + TV regularizations.

The results show the suitability of the SARA regularization for EHT imaging. More-

over, the use of the polarization constraint not only imposes the physical coherency

between the reconstructed images, but it also tends to improve the reconstruction

quality, independently of the choice of the sparsifying regularization. The latter is
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even more evident in the reconstruction of the the images with low signal-to-noise

ratio, as observed for the linear polarization images for the counter-jet model. Fur-

thermore, it is to be noted that the non-physical reconstructions obtained in the

absence of the constraint are more likely to appear in the background where the to-

tal intensity image has smaller values. To illustrate this assertion, the corresponding

polarization error images are presented in Figure 5.10 for the forward and counter-

jet models, respectively in first and second columns. As previously mentioned, these

images basically show the pixels where the polarization constraint is not satisfied by

the reconstructed Stokes images. Having only 0.5 % (corresponding to the chosen

stopping criterion) of such undesirable pixels, we do not show the polarization error

images obtained in the presence of the constraint. In Figure 5.10, the images are

shown column-wise for the following: TV problem without constraint (first column),

`1+ TV problem without constraint (second column) and Polarized SARA without

constraint (third column). It can be clearly seen from these images that not imposing

the constraint leads to the reconstruction of many pixels with physically unacceptable

values. Another observation is regarding the SARA regularization, which performs

better in suppressing these pixels than the other two regularizations, coherent with

the values in Table 5.2.

5.5 Generalization to real data

While the numerical experiments in the previous section provided a proof of concept

for the Polarized SARA method, we apply it to real data in the current section. In

this context, we exploit the parallel data-block strategy and preconditioning scheme in

Algorithm 1. Let us recall that the latter is used to accelerate the convergence of the

algorithm by utilizing additional prior information about the data. In the considered

settings, it takes into account the Fourier sampling density, mimicking the uniform

weighting scheme in RI [14].

As discussed in Section 5.3.2, by the incorporation of this preconditioning matrix, the

proximity operator of the data fidelity term reduces to a projection onto the ellipsoid

Lj that requires the knowledge of the bounds εj for each data block. However, when
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dealing with real data sets, the measurement model and in particular, the noise model

may not be perfectly known. In practice, these bounds not only incorporate the

thermal noise, but also the calibration errors which are unknown. To address this

Algorithm 4 Adaptive scheme for `2 bound update

1: given S̃
(k+1)

, S̃
(k)

, Y′j, Φ′j, k, ε
(k)
j , t

(k)
j , K ′ ∈ N, (ε1, ε2) ∈ R2

+, and ε3 ∈ ]0, 1[.

2: ∆ = ‖S̃(k+1)−S̃(k)‖F
‖S̃(k+1)‖F

3: µj = ‖Y′j − Φ′j(S̃
(k+1)

)‖F

4: if ∆ < ε1 &
(
k − t(k)

j >K ′
)

&
(
‖µj−ε

(k)
j ‖2

ε
(k)
j

> ε2

)
5: ε

(k+1)
j = ε3 µj + (1− ε3) ε

(k)
j

6: t
(k+1)
j = k

7: else

8: ε
(k+1)
j = ε

(k)
j

9: t
(k+1)
j = t

(k)
j

10: end if

11: return ε
(k+1)
j , t

(k+1)
j

issue, we leverage the noise bound estimation adaptive scheme proposed in [11] while

performing Stokes I imaging. Applying it to our case of full polarization imaging,

we present it as Algorithm 4. More specifically, at each iteration k of Algorithm 1,

step 16 performs this `2 bound update for each data block j by calling Algorithm 4. In

this algorithm, εj is updated in step 5 as a weighted mean of the current value of this

bound ε
(k)
j and the `2 norm of the corresponding residual data block µj. This update

is only performed if (i) the relative variation between two consecutive estimates of

the Stokes images (∆ in step 2) is below a fixed threshold ε1, (ii) a minimum number

of iterations K ′ has been executed and, (iii) the relative difference between µj and

ε
(k)
j is above a fixed threshold ε2. It is important to highlight that with every update

of the `2 bound, the underlying minimization problem is redefined. Nonetheless, the

stability of this adaptive scheme is ensured by avoiding unnecessary updates that are

performed only if the aforementioned conditions are met.

For the initialization ε
(0)
j of the epsilon bounds, we solve a non-negative least squares

(NNLS) problem for each of the data blocks. The initial values for the bounds εj
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are then provided by the `2 norms of the obtained residuals. Conceptually, in the

absence of any regularization term, the estimates obtained by the NNLS are likely to

be overfitting the data, leading to under-estimated bounds. With the introduction

of the priors (sparsity and polarization constraint) and the adaptive noise bound

estimation scheme, these bounds tend to increase to the true values in an adaptive

manner.

5.6 Results on real data

We apply our method on VLA observations of the radio galaxy Cygnus A, performed

over the period 2015-2016. The data consists of measurements made in X band (8-12

GHz) with a spectral window of 128 MHz and a spectral resolution of 2 MHz. The

data set used for the current study corresponds to the single-channel observations

centred at the frequency 8.422 GHz, taken with the VLA in B-configuration. The

total synthesis time of the observations is 3 hr, with integration time of 2 s. The

phase centre of the observed sky is given by RA = 19hr 59m 28.356s (J2000) and DEC

= +40
◦
44
′
2.07”. The size of the processed data set is M = 3.6× 105. We implement

Algorithm 1 in MATLAB to image the Stokes parameters I,Q and U (Stokes V being

of negligible intensity), each of size 1024×1024 pixels with the corresponding pixel size

δl = 0.16′′. It corresponds to recovering the images at 1.5 times the nominal resolution,

i.e. the interferometric resolution determined by the maximum baseline. We split the

dataset into three blocks and perform 15 reweighting iterations in total, where each

iteration is stopped when the relative variation between consecutive estimates of the

Stokes images is less than 10−5, and the percentage of pixels (in the estimated images)

not satisfying the polarization constraint is less than 0.1.

We compare our method with the RI imaging algorithm MS-CLEAN with Briggs

weighting, implemented in the WSCLEAN package [117]. For visual comparison,

Figure 5.11 shows the reconstructed images for Stokes I (first column) and the linear

polarization intensity image |P | (second column), generated from the reconstructed

Stokes Q and U images. We scale recovered images from our method with the flux of

the CLEAN beam, and since the MS-CLEAN restored images are dominated by the
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noise, we also show the beam convolved model images. The shown images are cropped

to the size 512×1024 pixels. Furthermore, in Figure 5.12, we display the zoomed west

jet hotspot (marked with a white box in the associated full images in Figure 5.11).

The results indicate the super-resolution capability of our method, capturing the finer

details in the source structure, in contrast with MS-CLEAN which provides images at

the nominal resolution by convolving with the CLEAN beam. Moreover, the model

images from MS-CLEAN have around 15% of the pixels with non-physical values,

violating the polarization constraint. This holds true for the restored images as well,

having around 28% of such pixels, as illustrated in Figure 5.13. It is interesting to note

that such pixels are mostly observed in the background region where we do not expect

emission and can be attributed primarily to the added residual. Nevertheless, these

observations are in contrast with our method which explicitly enforces the polarization

constraint and thus, is bound to produce images with physical values.

Additionally, comparing our method’s reconstruction with the MS-CLEAN model

image, both smoothed at the nominal resolution, gives a similarity of 29.4 dB for

Stokes I and 19.3 dB for linear polarization image. It implies that the reconstructions

from the two methods, especially for Stokes I, are in agreement in terms of their low

spatial frequency content.

5.7 Conclusion

We have presented a new method, named Polarized SARA, for joint estimation of

sparse Stokes images in the context of RI, considering explicitly the polarization con-

straint. The latter is used to exploit the physical link between the Stokes images,

imposing the polarization intensity as a lower bound on the total intensity. We have

proposed to deal with this constraint using the techniques of epigraphical projection,

solving for a convex optimization problem. In addition, our method leverages the

sparsity of the underlying images using SARA regularization which consists in pro-

moting the average sparsity of each Stokes parameter using the weighted `1 norm

encompassed in a reweighted scheme. Thanks to this weighting, the proposed method

does not require the tuning of any regularization parameter and only the noise bound

107



Chapter 5. Polarized SARA

-3

-2

-1

0

1

-3

-2.5

-2

-1.5

-1

-0.5

0

-3

-2

-1

0

1

-3

-2.5

-2

-1.5

-1

-0.5

0

-3

-2

-1

0

1

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 5.11: Results obtained for Stokes I (first column) and linear polarization
intensity (|P |) (second column) images, displayed in log scale. Row-wise, from top
to bottom: Polarized SARA reconstructed images, MS-CLEAN restored images
using Briggs weighting, and CLEAN beam convolved model images of MS-CLEAN

using Briggs weighting.
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Figure 5.12: Zoomed west jet hotspot in (a) Stokes I and (b) linear polarization
intensity images from our method’s reconstructions (first column) and MS-CLEAN

restored images (second column). All the images are shown in log scale.
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Figure 5.13: Polarization error images showing the pixels in the image (|P | − I)
violating the polarization constraint, corresponding to MS-CLEAN (a) restored and

(b) model images. All the images are shown in log scale.

needs to be specified. To solve the resultant image reconstruction problem, we have

designed an iterative proximal primal-dual algorithm. In this respect, the proposed

approach presents the first application of sparsity based optimization techniques for

the reconstruction of Stokes images, taking into account the polarization constraint

within a convex formulation. Moreover, our algorithm presents a highly versatile

structure. On the one hand, this allows the incorporation of different sparsifying

regularizations in the algorithm. On the other hand, this renders scalability of the

method by employing distributed and parallel processing coupled with a precondi-

tioning strategy. The MATLAB code of the proposed method is available on GitHub

(https://basp-group.github.io/Polarised-SARA/).

To investigate the performance of the proposed Polarized SARA method, we have ap-

plied it on the simulated EHT datasets. For the choice of sparsifying regularization,

apart from the SARA regularization, we have also considered the TV and `1 + TV

regularizations, the latter two being suggested in [165] for full-polarization EHT imag-

ing. To judge the effect of the polarization constraint on the reconstruction quality,

we have also generalized the problem considered in [165] to take into account this

constraint. It is solved using a modified version of the proposed algorithm. It is to

be noted that this generalization provides an improvement over the technique used

in [165], because of its scalability, non-sub-iterative nature (especially for `1 + TV

regularized problem) as well as the incorporation of the polarization constraint. Com-

parison between different cases considered, on the one hand, indicates the importance

of imposing the polarization constraint in reconstructing physically acceptable images.

Additionally, irrespective of the considered sparsifying regularization, the enforcement
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of this constraint tends to enhance the reconstruction quality, particularly for the lin-

ear polarization images. This enhancement is significant for the results obtained by

solving the TV and `1 + TV problems with constraint. Thus, we can conclude that the

polarization constraint is highly effective in producing images not only with physical

meaning, but also with fewer artefacts.

On the other hand, regarding the choice of sparsifying regularization, the results

demonstrate the ability of the SARA regularization to produce images with better

reconstruction quality and higher resolution, without requiring the convolution of the

reconstructed images with any restoring beam. First, for Stokes I imaging, for which

this regularization was initilally proposed, its good performance is in agreement with

the previous studies [14, 24, 45]. These reconstructions also prevail over those obtained

by the standard CS-CLEAN algorithm. Second, the obtained results also highlight the

suitability of SARA regularization for polarimetric imaging. Indeed, Polarized SARA

yields better results for the considered datasets than solving the TV-based problems,

both with and without the constraint. Thus, the proposed Polarized SARA method

stands out as a promising candidate for polarimetric imaging in RI.

Finally, we have tested the developed method on a real data set. It shows the su-

periority of our method over MS-CLEAN, both in terms of encapsulating the source

structure details going beyond the nominal resolution, and in producing physical im-

ages satisfying the polarization constraint.
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6.1 Motivation

The RI measurements, in practice, rather than providing an accurate representation

of the true sky distribution, are corrupted by various atmospheric and instrumen-

tal effects that are often unknown. To produce high fidelity, high dynamic range

images from the given measurements, calibration of these unknown effects is of ut-

most importance. In fact in the wake of new generation radio interferometers, the

direction-dependency of the calibration terms (the DDEs) needs to be accounted for.

Conventionally, calibration and imaging have been considered as two separate pro-

cesses implemented using their respective techniques, but linked together in an itera-

tive approach like selfcal. In this respect, any of the existing calibration approaches

is usually combined with a CLEAN based imaging strategy within a selfcal loop.

However, by doing so, the global algorithm fails to have any convergence guarantees.

We make the first step in the direction of addressing this issue and propose a joint

DDE calibration and imaging algorithm that leverages recent non-convex optimiza-

tion techniques and benefits from convergence guarantees. The basic idea behind the

developed approach is to alternate between the estimation of the images of interest

and the DDEs, relying on an iterative structure using the same optimization tool-

box for both the images and the DDEs estimation. In addition to the convergence

guarantees, unlike the approaches requiring sky partitioning that may not always be

best achieved in an automatic manner, the key point of our algorithm is that it works

globally on the whole image with minimal user intervention.

In the first part of this chapter, without delving into the mathematical details, I

describe the developed approach considering only the model for Stokes I imaging

and calibration. Grasping the main idea and inspired by the achieved promising

performance of this approach, I provide a detailed presentation of the proposed gen-

eralization to the full polarization model in the next part.
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6.2 Stokes I imaging and DDE calibration

6.2.1 Description of the proposed method

Before going onto the challenging case of full polarization model, we first consider the

case when the sky is considered to be unpolarized and only Stokes I imaging needs to

be performed. In this respect, the 2×2 Jones matrix is often replaced by a scalar value

and instead of using the whole Stokes matrix, the Stokes I image is represented by

x ∈ RN for notational brevity. The observation model (2.19) can then be simplified.

In particular, the visibility y′t,α,β ∈ C measured by the antenna pair (α, β) at time

instant t at the discrete spatial frequency kt,α,β can be modelled as

y′t,α,β =

N/2−1∑
n=−N/2

dt,α(n) dt,β(n)∗ x(n) e−2iπkt,α,β
n
N + ω′t,α,β, (6.1)

where dt,α = (dt,α(n))−N/26n6N/2−1 ∈ CN is the sampled DDE related to antenna α,

and ω′ = (ω′t,α,β) 16t6T
16α<β6na

∈ CM is a realization of a complex i.i.d. Gaussian additive

noise. In practical scenarios, the DDEs are unknown. Thus, in order to obtain

the sought image using this data model, both the image and the DDEs need to

be estimated. In this context, the underlying minimization problem is non-convex,

and adapted techniques have to be designed. To this end, inspired by the imaging

techniques using optimization and CS theories, and the alternating calibration method

StEFCal (Section 4.3), we propose the first joint calibration and imaging method in

RI, with proven convergence guarantees.

First, for the imaging step, we consider the matrix formulation of problem (6.1), given

by y′ = GFx + ω′, where F is the Fourier matrix and G is the matrix containing on

each row the antenna-based gain related to each antenna pair acquiring the complex

visibilities. In the case of a perfectly calibrated antenna array (i.e. G is known),

the imaging problem is linear and can be solved efficiently using convex optimization

methods as previously discussed in Section 3.4. For instance, FB algorithm presents

a simple technique to solve the underlying minimization problem consisting of data

fidelity and regularization terms. Moreover, in the considered case of unknown DDEs
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where joint calibration and imaging needs to be performed, the non-convexity of

the underlying optimization problem demands for a critically chosen initialization as

per the discussion in Section 3.5.1. With this in mind, we make use of the prior

information on the bright sources of the original image. We note that this assumption

is common in the context of DDE calibration methods [15, 16], and is useful to reduce

the ambiguity problems appearing between the image and the DDEs [149]. More

precisely, we assume that the original image x can be split as a sum of two images x0

and ε, where x0 is assumed to be known exactly, while ε has to be estimated.

Second, for the calibration step, we generalize the inverse problem used by StEF-

Cal (4.2) in order to take into account the DDEs in C1 and C2. To this aim, we

assume that the DDEs are smooth functions across the field of view, i.e. they are

spatially band-limited (see Figure 6.1). Therefore, we propose to reduce drastically

the dimensionality of the problem by estimating only the non-zero Fourier coefficients

of the DDEs, now represented by compact-support kernels Ŭ. Furthermore, following

[171] we adopt a bi-linear inverse calibration problem by introducing Ŭ1 = Ŭ2 = Ŭ.

Finally, instead of using two different algorithms to estimate the DDEs and the image,

respectively, we design a joint framework. In essence, this joint method involves

alternating between the estimation of Ŭ1, Ŭ2 and the faint sources ε contained in

x, using the same algorithmic structure, based on the FB iterations. To do so, we

propose to

minimize
ε,Ŭ1,Ŭ2

h1(ε, Ŭ1, Ŭ2) + r1(ε) + p1(Ŭ1, Ŭ2), (6.2)

where h1 is the data-fidelity term corresponding to a least-squares criterion, r1 and

p1 are the regularization functions for the image and the DDEs, respectively. In

particular, r1 is chosen to constrain the image to be positive and to promote sparsity

either directly in the image domain or in a given dictionary. Concerning the DDEs,

p1 is chosen to incorporate constraints on the direction-dependent Fourier coefficients,

and to control the similarities between Ŭ1 and Ŭ2.

Recalling the discussion in Section 3.5.1, it can be observed that problem (6.2) is non-

convex with respect to the concatenation of the variables (ε, Ŭ1, Ŭ2), but is convex
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Figure 6.1: Example of considered DDEs, with K = 7 × 7 non-zero Fourier

coefficients. Modulus of (left) the Fourier transform of the DDE d̂t,α in log scale,
and (right) the DDE dt,α in image space in linear scale.

with respect to each of them. In other words, keeping (Ŭ1, Ŭ2) [resp. (ε, Ŭ2) and

(ε, Ŭ1)] fixed, problem (6.2) is convex with respect to the variable ε (resp. Ŭ1 and

Ŭ2). Exploiting this block-structure of the underlying problem, we propose to solve

it using an iterative method based on a block-coordinate FB approach that benefits

from the convergence guarantees [107]. More precisely, at each iteration, we first

estimate approximately the DDEs computing a fixed number of FB iterations, and

then estimate approximately the image again using FB iterations. It is important to

emphasize that, as a particular case, the proposed approach can be applied to solve

the joint DIE calibration and imaging problem.

It is interesting to note that the global structure of the proposed algorithm is very

similar to the traditional selfcal method, since they both aim to alternate between the

estimation of the gains and the estimation of the image. To illustrate the similarities

and differences between the two methods, diagrams depicting the relevant steps of the

proposed method and the traditional selfcal method are given in Figure 6.2 (left) and

(right), respectively1. One can observe that the global structure of the two diagrams

are very similar, but they differ in the structure of the inner-loops. In particular, in

our method, Jcyc − 1 inner-loops are performed to estimate approximately the DDEs

(Ŭ1, Ŭ2). Within each of these inner-loops, JŬ1
FB steps are performed to estimate

Ŭ1, followed by JŬ2
FB steps to estimate Ŭ2. Importantly, JŬ1

and JŬ2
are finite so as

to have approximate estimations of Ŭ1 and Ŭ2, respectively. Then, to complete one

global iteration (i.e. a cycle), Jε FB steps are performed to estimate approximately the

1The selfcal method presented in this diagram consists in alternating between the StEFCal algo-
rithm and CLEAN. However, StEFCal can be coupled with other imaging methods as well.
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convergence
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Update C2

C2 = C1

Image update

Estimate ε

Use CLEAN

Figure 6.2: The diagrams of the proposed method (left) and the traditional selfcal
method using StEFCal and CLEAN (right). In the proposed method, only a finite
number of iterations are performed to estimate Ŭ1, Ŭ2, and ε, given by JŬ1

∈ N,
JŬ2
∈ N, and Jε ∈ N respectively. The parameter Jcyc ∈ N gives the number of

sub-iterations performed on the DDEs before estimating the image. The structure
of the two methods is very similar consisting in alternating between the estimation
of the DIEs (and possibly the DDEs for the proposed method) and the estimation
of the image. The main differences are: (i) our method uses the same FB based
steps to estimate both the DDEs and the image, while the selfcal method uses two
independent techniques to estimate them, and (ii) unlike the selfcal method, our
method computes only a finite number of sub-iterations in each inner-loop. These
two differences are crucial to ensure the convergence of the global proposed method.
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image ε. It is worth highlighting that computing only approximated estimates is very

important in practice to ensure the convergence of the overall algorithm. Intuitively,

one can understand this point as follows: when the algorithm is initialized with a very

poor estimation of the image, it is obvious that estimating completely the DDEs from

this incorrect image can be inefficient. Therefore, it is important to control the accu-

racy of the estimates at each iteration in order to make the overall algorithm converge

step by step for the image and the DDEs together. This adopted methodology for

approximate estimates is different from the traditional selfcal method, where the prob-

lem of estimating the gains (restricted to DIEs) is solved completely before solving the

imaging problem, and vice versa. As explained above, this strategy can lead to poor

reconstruction results. Furthermore, the calibration part is different from the StEF-

Cal approach where we instead adopt a FB approach. Using a FB-based algorithm

allows us to introduce constraints on the DDEs. Moreover, StEFCal is an implicit

method, stating directly that the update of C2 is equal to C1, whereas our method

updates independently the variables Ŭ1 and Ŭ2. Thus, in order to constrain them to

be equal at convergence, the distance between Ŭ1 and Ŭ2 is explicitly controlled in the

minimization problem. Finally, StEFCal is only designed for DIE calibration, while

our method jointly corrects for the DDEs and estimates the image. It can be noted

that traditional selfcal method does not benefit from the convergence guarantees of

the proposed method since both rely on different algorithmic structures. Therefore,

our method can be seen as generalizing the framework of selfcal, with theoretical

convergence guarantees.

6.2.2 Simulations and results

To investigate the performance of our method, we conducted an extensive study by

considering a wide variety of cases, varying parameters for both the calibration and

the imaging part. Concerning the uv coverage, we consider na randomly distributed

antennas, where each antenna pair acquires T measurements. The Earth rotation

is incorporated to track the (u, v) positions of each resulting baseline by considering

a time interval of 10 hours2. Moreover, in order to simplify the experiments, we

2The uv tracks are simulated using the code available at
http://www.astro.umd.edu/∼cychen/MATLAB/ASTR410/uvAnd Beams.html
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use discrete versions of the associated uv coverages, done by considering the nearest

discrete (u, v) position of each antenna. This approximation is adopted in order to

avoid introduction of gridding and degridding operations to model the non-uniform

FFT in this first presentation of the proposed DDE selfcal algorithm. Regarding the

DDE kernels for each antenna and at each time instant, we simulate them randomly

in the Fourier domain, with their real and imaginary parts lying around ±1 for DIEs

and in the neighbourhood of 0 for DDEs (in both cases with standard deviation υ).

It can be noticed that it is reasonable to consider small values for the higher order

spatial frequencies since they represent direction-dependent variations in the gain

across the field of view with respect to the mean gain. Furthermore, the size K of the

support of the direction-dependent Fourier coefficients is assumed to be known exactly.

Lastly, keeping in mind the sensitivity of the final solution to the initialization for the

underlying non-convex optimization algorithm, we first perform joint DIE calibration

and imaging, where the former implies estimation of only the central zero coefficients

of the DDE Fourier kernels themselves initialized randomly. The obtained solutions

are then used to initialize the algorithm jointly solving for the full support of the

DDEs and the image.

To validate the performance of our approach, I present here two main classes of results

obtained, considering images with point sources and the image with sophisticated

extended sources. In both cases, I display the results obtained using our method

to reconstruct the DDEs and the image ε, the results obtained with the StEFCal

algorithm solving only for the DIEs, and combined with an imaging method based on

the FB iterations, referred to as StEFCal-FB.

To assess the reconstruction quality, we use SNR of the reconstructed image ε? with

respect to the original image ε and the `2 norm of the residual images, obtained

either considering the estimated DDEs or the true DDEs. More precisely, we will

consider the weighted `2 norm of the residual images ‖F†G? †(G?Fx? − y′
)
‖2/
√
N ,

where x? = xo + ε? corresponds to the global estimated image and G? corresponds to

the estimated DDEs. Similarly, we will consider the weighted `2 norm of the residual

images ‖F†G†
(
GFx? − y′

)
‖2/
√
N , where the matrix G corresponds to the original
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DDEs. The latter metric is used in order to point out the ambiguity problems which

can appear between x? and G?, i.e. due to the imaging inverse problem formulation,

parts of x? can be absorbed in G?, and vice versa.

6.2.3 Sparse images with point sources

In this first part, we consider simulated sky images, x (= xo + ε) of size 128 × 128,

consisting of point sources, where each source corresponds to a small 2D Gaussian

kernel of size 3 × 3. We assume that xo corresponds to 10 bright sources gener-

ated randomly such that their total flux, computed as E(xo) = (
∑N

n=1 |xo(n)|2)1/2, is

E(xo) = 10. Moreover, the sources in ε are generated randomly with two intensity

levels, i.e. ε = ε1 + ε2, where we consider E(ε2) = 10−5 and to be composed of 200

sources. The latter has sources with intensity ∼ 107 weaker than the sources belong-

ing to xo and is thus considered in our simulations as astrophysical noise, and we do

not focus on its estimation. Therefore, our main objective is to find an estimate of

ε1, reconstructing its faint sources. Furthermore, regarding the sparsity of the sought

image that contains only point sources, it is promoted in its domain itself. Finally,

we adopt an additional metric in this case in the form of a success rate counting the

number of successfully recovered positions of the sources in ε1, when compared with

the true image ε1.

With the aim to illustrate the assertion that accounting for the DDEs is crucial for

more accurate reconstruction of the images with high dynamic range [6, 149], we

perform tests by varying the total flux (E(ε1) ∈ {10, 1, 10−1, 10−2, 10−3}) and the

number of sources (10, 50 and 90) belonging to ε1. Considering na = 200 antennas for

a single time interval T = 1, and DDE Fourier kernels with support size K = 7×7 and

standard deviation set to be υ = 0.05, the obtained results are shown in Figures 6.3

and 6.4 for quantitative and qualitative comparison, respectively,

Figure 6.3 gives the results, as a function of E(ε1) using different metrics. In particular,

the first two graphs correspond to SNR and sources’ positions recovery success rate,

respectively and show that, irrespective of the number of considered sources in ε1

and the value of E(ε1), our method outperforms the StEFCal-FB method, showing
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Figure 6.3: Results obtained for simulations using the proposed method (blue
lines) and estimating only the DIEs with StEFCal-FB (black lines), considering
10, 50, and 90 sources in ε1 (resp. solid lines, dashed lines, and dotted lines),
varying E(ε1) ∈ {10−3, 10−2, 10−1, 1, 10}, while E(xo) = 10. From left to right:
SNR of the reconstructed ε? with respect to ε; Success rate determining the per-
centage of recovered sources positions from ε1; `2 norm of the residual image
‖F†G? †

(
G?Fx? − y′

)
‖2/
√
N considering G? obtained with the estimated DDEs;

`2 norm of the residual image ‖F†G†
(
GFx? − y′

)
‖2/
√
N considering G obtained

with the true DDEs. Results are given for an average over 10 realizations varying
the antenna distribution, the random images, and the DDEs.

the importance of reconstructing the DDEs. More precisely, on the one hand, our

method is able to recover 100% of sources’ positions for E(ε1) ∈ {0.1, 1, 10}, with

respective SNR values of 10.7, 16.9 and 13.4 dBs, independently of the number of

sources belonging to ε1. It is important to emphasize that, in these three cases,

the reconstruction quality depends mainly on the total flux of the image and not

on the intensity level of the constituting sources. Indeed, if ε1 contains 90 sources

with E(ε1) = 10, the intensity of sources belonging to ε1 is almost two times lower

than the intensity of the sources in xo. On the other hand, the StEFCal-FB obtains

approximately 100% success rate only in the case E(ε1) = 10 with SNR value of 11

dB (resp. 9.1 dB and 8.6 dB) when 10 (resp. 50 and 90) sources belong to ε1. It

can be observed that the latter corresponds to the case when the sources in ε1 are

almost of same intensity as the sources in xo. Concerning our method, the only case

when the number of sources considered in ε1 gives different reconstruction results

is when E(ε1) = 10−2. Therefore, this case can be seen as a limit case, since for

E(ε1) = 10−3 our method has a success rate for position recovery of 0%. It suggests

that the proposed method is able to improve the dynamic range by at least three

orders of magnitude compared to accounting for DIEs only. The last two graphs for

weighted `2 norms of the residual images show again the advantage of reconstructing

120



Chapter 6. Joint DDE calibration and imaging

True images Recovered images Residual images with Residual images with

estimated DDEs/DIEs true DDEs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.05

0.1

0.15

0.2

0.25

0.3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.001

0.002

0.003

0.004

0.002

0.004

0.006

0.008

0.01

0

0.5

1

1.5

2

2.5

×10
-3

0

0.5

1

1.5

2

2.5

×10
-3

0.001

0.002

0.003

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Figure 6.4: Images corresponding to the simulations performed considering 50
sources in ε1. The first column shows the original unknown images ε; the second
column gives the associated reconstructions; the third column shows the residual
images considering G? and ε? obtained either with the proposed method or with
StEFCal-FB; and the fourth column corresponds to the residual images considering
the true DDEs and ε? obtained either with the proposed method or with StEFCal-
FB. The first and second rows correspond to the case when E(ε1) = 1. In the
first row the results are obtained using our method, and in the second row using
StEFCal-FB. The third and fourth rows correspond to the cases when E(ε1) = 0.1

and E(ε1) = 0.01, respectively, and the results are obtained using our method.
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the full DDEs instead of considering only DIEs. In particular, the third graph shows

that our method gives a smaller norm of the residual images (of order 10−3 vs. 10−1

with StEFCal-FB), taking into account both the estimated image and the estimated

DDEs. However, the fourth graph suggests that there is an ambiguity error between

G? and x?, mainly when E(ε1) ∈ {1, 10} (i.e. corresponding to the cases when the

sources in ε are of similar range as the sources in xo) leading to important errors

in the residual images when the true DDEs are considered. In particular, as can

be observed in Figure 6.4, the most significant ambiguities are associated with the

brightest sources positions. This behaviour has already been observed in previous

works, even in the DIE calibration case, and is known as “ghost sources” (see e.g.

[172]).

The above global observations are supported by Figure 6.4 showing images obtained

considering 50 sources in ε1, with total flux E(ε1) ∈ {0.01, 0.1, 1}. The first two

rows correspond to E(ε1) = 1 with second column showing the reconstructed images

obtained using the proposed method (first row) and the StEFCal-FB method (second

row). For this realization, our method finds 100% of the positions of the sources in ε1

and the estimate has an SNR equal to 18.9 dB, while the StEFCal-FB method finds

90% of the sources with a reconstructed image of SNR = −3.22 dB. This difference

of SNR in the reconstruction can be understood by noticing that the background

of the estimated image with StEFCal-FB is very noisy due to the non-estimation

of the DDEs, which is not the case using our method. Similarly, the third and the

fourth columns correspond to the different computed residual images. In both cases,

one can notice that the errors of the residual images obtained using our method and

considering G? (resp. G) are 100 (resp. 10) times smaller than using the StEFCal-FB

method. However, as already observed in Figure 6.3, there is obviously an ambiguity

error between G? and x? leading to larger errors when the true observation matrix

G is considered. The third and fourth rows show similar results, in the cases when

E(ε1) = 0.1 and E(ε1) = 0.01, respectively. However, since in these cases the StEFCal-

FB method has a success rate of 0% for finding the positions of faint sources, only

the results obtained using our method are shown. Particularly, for the case E(ε1) =

0.1, the proposed method recovers all the positions of the faint sources, and the
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reconstructed image has an SNR of 12.32 dB. Similarly, for the case E(ε1) = 0.01, our

method recovers 90% of the faint sources positions, and the SNR of the estimate is

equal to 6.5 dB. Thus, when the SNR is low, one can still observe visually that our

method leads to good reconstruction results. Furthermore, as observed in Figure 6.3,

the `2 norm of the residual images decreases with the total flux of ε1.

6.2.4 Image with an extended source

In this second part, to show the behaviour of the proposed algorithm in the context

of images involving extended sources, we consider an image (x = x0 + ε) of M31 of

size 128× 128, with na = 100 antennas, T = 10, K = 9× 9, and associated standard

deviation υ = 0.05. In this case, we generate xo and ε such that E(ε) = κE(xo), where

κ > 0. In the performed simulations, we investigate the reconstruction of the image

ε for the cases when κ ∈ {0.1, 0.5, 1}. The original image is not sparse in its domain

and thus, we propose to promote its sparsity choosing Ψ to be the SARA collection

of wavelets.

The results obtained considering the two extreme cases of κ ∈ {0.1, 1} are displayed

in Figure 6.5 in first two and last two columns, respectively. For each set of columns,

the following are shown. The first row displays (left) the known approximation xo,

and (right) the unknown background ε to be estimated. The second row shows the

estimated image ε? of ε, obtained (left) using the StEFCal-FB method solving only for

DIEs, and (right) after the complete estimation of ε and the DDEs using the proposed

method. As a matter of fact, the StEFCal-FB method gives similar reconstruction

results as those obtained after the initialization of our method considering only the

zero spatial frequency coefficients of the DDEs. The SNR between the true ε and

its estimate ε? obtained using StEFCal-FB is equal to 0.65 dB (resp. 5.52 dB and

3.64 dB) for κ = 0.1 (resp. κ = 0.5 and κ = 1). Similarly, the estimate ε? obtained

after the complete estimation of the DDEs using our method has an SNR equal to

16.83 dB (resp. 17.47 dB and 13.54 dB) for κ = 0.1 (resp. κ = 0.5 and κ = 1).

These results suggest that our method is efficient not only for the reconstruction of

point sources, but also to estimate the background of extended sources. Similar to the

simulations presented earlier, the accuracy of the reconstruction for extended sources
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Figure 6.5: Images corresponding to the simulations performed with κ = 0.1
(first two columns) and κ = 1 (last two columns). For each set of columns, the
first row corresponds to (left) the known bright sources xo of the original image x
and (right) the unknown image ε. The second row corresponds to the estimates ε?

of ε obtained using (left) StEFCal-FB solving for DIEs, and (right) the proposed
algorithm estimating the full DDEs. The third row shows the residual images con-
sidering the estimated G? and ε? obtained using (left) StEFCal-FB solving for DIEs,
and (right) the proposed algorithm estimating the full DDEs. The fourth row corre-
sponds to the residual images considering the true DDEs and the estimated image
ε? obtained using (left) StEFCal-FB solving for DIEs, and (right) the proposed

algorithm estimating the full DDEs.
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depends on the total flux of the known approximation xo with respect to the total

flux of the unknown image ε. As observed previously, if E(ε) � E(xo), our method

reconstructs accurately the unknown sources. However, in the case when E(ε) is of the

same order as E(xo), the reconstruction is more difficult. Nonetheless, in the worst

case considered when E(ε) = E(xo) (i.e. κ = 1), visually it can be observed that our

method gives a good estimate ε? of ε. The two last rows of Figure 6.5 are dedicated to

the residual images obtained considering κ ∈ {0.1, 1}. More precisely, the third row

shows the residual images |F†G? †(G?Fx? − y′
)
| considering the estimated G? and x?

obtained (left) using the StEFCal-FB method solving only for DIEs, and (right) after

the complete estimation of the image and the DDEs using our method. Similarly,

the last row shows the residual images |F†G†
(
GFx? − y′

)
|. As expected, it can be

observed that estimating the full DDEs with respect to estimating only the DIEs leads

to residual images with smaller amplitudes for all the cases presented. Moreover, for

the final results with DDEs estimation, the residual images have smaller amplitude

considering the estimated DDEs (third row) than the original DDEs (fourth row).

This observation again sheds light onto the ambiguity errors between the image and

the direction-dependent Fourier kernels that need to be corrected.

6.3 Concluding remarks

We have proposed a non-convex optimization algorithm to jointly calibrate DDEs

and estimate the sky intensity, making use of suitable priors on both the image and

the DDEs. Our method presents several advantages. First, it benefits from the

convergence guarantees for both the image and the DDEs. Second, in contrast with

DDE calibration methods developed recently, our method does not require a selection

of calibrator directions since it constructs a smooth DDE screen applied to all the

sources across the image. Finally, the proposed method is very general and can

be easily adapted to the nature of the considered image. The MATLAB code of

the proposed method is available on GitHub (https://basp-group.github.io/SARA-

CALIB/).

We have studied the performance of the proposed method considering a variety of
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simulations and in all the presented simulations, we have shown that our method leads

to better reconstruction quality than obtained by only estimating the DIEs. Moreover,

our simulations suggest that using our method to jointly estimate the DDEs and the

image result in significant improvement of the the dynamic range, which is orders of

magnitude higher when compared to accounting for DIEs only.

Even though the proposed method is very promising, there are some points to work on.

Particularly, although the presented simulations assume the exact knowledge of the

bright sources in the images, a more suitable initialization strategy needs to be adopted

for practical cases. In addition, to model more realistic data simulations, the gridding

(and degridding) steps need to be incorporated in the algorithm using non-uniform

FFT. More importantly, this approach has been developed only for Stokes I imaging

and calibration, without dealing with the full polarization model. As a matter of fact,

in the case of full Stokes imaging and calibration, even the global algorithm consisting

of combination of CLEAN based imaging and any of the standard RI calibration

techniques, do not adopt any polarimetric imaging specific approach. These factors

raise the scope for the development of a globally convergent algorithm which not only

incorporates full polarization model, but also uses advanced approaches specific for

full Stokes imaging to produce high quality images. We thus work on generalizing

this approach to the full polarization model, that is the focus of study for the next

sections.

6.4 Full polarization DDE calibration and imaging

Although the approach developed above aims to estimate the sky model while having

imperfect knowledge of the calibration terms, it cannot deal with the full polarization

model. The rest of this chapter is devoted to this case where we propose a joint

calibration and imaging algorithm for full polarization model with proven convergence

guarantees. In particular, we build our method on the approach developed earlier for

Stokes I imaging and calibration model only, that has been later on extended in

[173] and [174], assuming spatial and temporal smoothness of the DDEs. On the

one hand, we generalize this approach to the full polarization model, developing an
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algorithm alternating between the estimation of the DDEs and the Stokes images.

On the other hand, thanks to the underlying non-convex optimization technique,

the proposed approach can deal with sophisticated priors suited to the images under

consideration as well as to the DDEs. Leveraging this flexibility, we adapt Polarized

SARA method, specifically designed for Stokes imaging, to be used for the imaging

step in the considered case.

While the overall structure of the proposed joint calibration and imaging algorithm

remains the same as before, the main difference arises from the adopted data obser-

vation model. More specifically, it relies on the full polarization model introduced

in equation (2.19). Using this model, let us briefly recall the imaging problem to

be solved in the case when either pre-calibrated data or knowledge of DIEs/DDEs

beforehand is available. For this purpose, we adapt the previously developed Po-

larized SARA approach. In particular, due to the technical assumptions related to

the proposed joint imaging and calibration algorithm [107], we propose to solve an

unconstrained version of the imaging problem, given by

minimize
S

h̄
(
S
)

+ r(S). (6.3)

Using this formulation and assuming that the additive noise is i.i.d. Gaussian, the

data fidelity term is given by a least squares criterion

(∀S ∈ R2×2N) h̄(S) =
1

2
‖Φ̆(S)− y‖2

2. (6.4)

In order to incorporate various prior informations in the regularization function r, we

again consider the SARA regularization as well as the polarization constraint.

I now introduce the calibration problem in detail. A blend of the imaging and cali-

bration problems to give the resultant joint calibration and imaging problem and the

proposed algorithm to solve it are detailed afterwards.
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6.4.1 Calibration problem

In practice, the DDEs are often unknown and need to be estimated. In this section,

the corresponding calibration problem to be solved is formulated. We assume that

the DDEs exhibit a smooth variation both across the field of view and in time. It

implies that DDEs are band-limited spatially as well as temporally. This is enforced

by considering compact-support kernels of the DDEs in both spatial [27, 173] and

temporal Fourier domains [174]. More specifically, for each antenna α ∈ {1, . . . , na},

the DDEs (Dt,α)16t6T are represented by the Fourier kernels Uα ∈ C2×2K×P , where K

and P are the support sizes in spatial and temporal Fourier domain, respectively, with

K � N,P � T . Then, the task is to estimate only non-zero Fourier coefficients of the

DDEs, thereby reducing the dimension of the underlying problem significantly. Anal-

ogous to the calibration inverse problem in [27], problem (2.19) can be reformulated

as

Yt,α,β = Dt(Uα)Xt,α,β
(
F Z̃ L̃(S)

)
D′t(Uβ) + Ωt,α,β, (6.5)

where Dt : C2×2K×P → C2×2N is the operator acting on Uα to give a sparse matrix

Dt(Uα) containing the compact support kernels in D̂t,α, flipped and centred at the zero

spatial frequency. Similarly, the operator D′t : C2×2K×P → C2N×2 is defined such that

D′t(Uβ) is a sparse matrix consisting of the compact support kernels in D̂
†

t,β centred

at the zero spatial frequency. Finally, Xt,α,β
(
F Z̃ L̃(S)

)
∈ C2N×2N is a 2 × 2 block

matrix, with each block of size N × N . Each row/column of such a block consists

of a shifted version of the Fourier transform of the corresponding image in reshaped

brightness vector L̃(S), mimicking the convolution operation. Moreover, to account

for the continuous sampled frequencies, these Fourier transforms are convolved with

the degridding kernels centred at the associated frequency kt,α,β.

It can be observed that problem (6.5) is non-linear with respect to the compact-

support kernels (Uα)16α6na . Following the approach proposed in [171] and [27], we

linearize it by introducing the matrices Uα,1 and Uα,2 such that Uα,1 = Uα,2 = Uα

for every α ∈ {1, . . . , na}. Using this strategy, the problem becomes bi-linear and

then the objective is to estimate both the matrices U1 = (Uα,1)16α6na ∈ C2×2K×P×na
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and U2 = (Uα,2)16α6na ∈ C2×2K×P×na , where U1 (resp. U2) concatenates the non-

zero Fourier coefficients Uα,1 (resp. Uα,2) for all the antennas. These matrices are

estimated by solving the following minimization problem for DDE calibration:

minimize
U1,U2

h̃
(
U1,U2

)
+ p(U1,U2), (6.6)

where h̃ is the least-squares data fidelity term and p is the regularization function for

U1 and U2. The data fidelity term for DDE calibration reads as

h̃
(
U1,U2

)
=

∑
16α6na

1

2
‖Gα,1(Uα,1)− Yα‖2

F , (6.7)

=
∑

16α6na

1

2
‖Gα,2(Uα,2)− Yα‖2

F , (6.8)

where Yα = (Yt,α,β)t,β 6=α with t and β taking all the values respectively in the ranges

{1, . . . , T} and {1, . . . , na}. Considering inverse problem (6.5) for all possible values

of (t, β), the operators Gα,1(.) and Gα,2(.) are defined as a function of Uα,1 and Uα,2 to

model the measurements respectively in equations (6.7) and (6.8). To be more precise,

for all values of (t, β), Gα,1(Uα,1) generates a concatenation of the terms of the form

Dt(Uα,1)Xt,α,β
(
F Z̃ L̃(S)

)
D′t(Uβ,2), whereas Gα,2(Uα,2) consists of concatenating the

terms Dt(Uβ,1)Xt,β,α
(
F Z̃ L̃(S)

)
D′t(Uα,2).

The regularization term p in problem (6.6) is given by

p
(
U1,U2

)
= γ̄ ‖U1 −U2‖2

F + ιD
(
U1

)
+ ιD

(
U2

)
, (6.9)

where γ̄ > 0 is the regularization parameter and the first term in equation (6.9)

controls the distance between the matrices U1 and U2, thereby imposing the constraint

that these two matrices should be equal. The set D is defined to constrain the values of

the Fourier coefficients of the DDEs to lie within the specified bounds. In particular,

D is defined such that for each t ∈ {1, . . . , T}, the Fourier kernels stored in diagonal

terms of D̂t,α have the central coefficients
(
[D̂t,α(0)]11 and [D̂t,α(0)]22

)
belonging to an

`∞ complex ball centred at 1 with radius θ1 > 0, whereas the rest of the coefficients
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belong to an `∞ complex ball centred at 0 with radius θ1. For the Fourier kernels

at the off-diagonal terms, the central and the other coefficients are assumed to be

contained in `∞ balls centred at 0 with radius θ2 and θ3, respectively. Intuitively, this

can be understood as follows.

The calibration terms to be dealt with mainly consist of the standard gain terms and

the polarimetric calibration terms that include the polarization leakage and the cross-

hand phase terms [175]. In the current study, we focus primarily on the calibration

of the leakage terms. This relies on the assumption that the gain terms and the

cross-hand phase terms have been pre-calibrated and transferred. Typically, this

process carries out DIE calibration on a nearby calibrator source using the technique

of external calibration (Section 4.3.1) and transfers the interpolated DIEs to the field

of interest. Each measurement is then divided by these approximated DIE solutions,

thereby producing normalized DIEs. Under this assumption, the Jones matrices can

be considered as identity as a first instance. We will refer to this case as ‘calibrator

transfer’ in the rest of the chapter. We further note that a complete framework would

be provided by calibrating for the cross-hand phase terms as well. Formally speaking,

it would require the incorporation of these terms within the measurement operator

that can then be calibrated for using the same algorithmic structure.

In the considered settings of the calibrator transfer, the zero spatial frequency coeffi-

cient of the DDEs (i.e. the Fourier coefficient for the DIEs) encoded in the diagonal

terms of the Jones matrices are normalized to 1, thus lying in a complex neighbour-

hood of 1 + i0. Moreover, while the central coefficient in the spatial Fourier domain

represents the mean gain, the higher order spatial frequencies characterize the gain

variations across the field of view with respect to this mean gain. Therefore, these

coefficients have smaller values in comparison with the central coefficient. Lastly, con-

cerning the off-diagonal terms which encompass the polarization leakage, their values

are usually much smaller than the diagonal terms.
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6.4.2 Polca SARA - Proposed calibration & imaging approach

The current work deals with a practical case when neither the Stokes images nor the

DDEs are known. Motivated by the good performance obtained by the previously

proposed Stokes I imaging and calibration method, we extend this approach for full

polarization model and propose a joint calibration and imaging algorithm to solve a

global minimization problem estimating the Stokes parameters S and the calibration

matrices U1 and U2. This non-convex problem can be cast by combining the mini-

mization problems (6.3) and (6.6) that were proposed in the earlier sections solely for

Stokes imaging and DDE calibration, respectively.

Given the non-convexity of the underlying minimization problem, choice of initializa-

tion is crucial. In this context, we exploit the fact that the calibrator transfer has

been performed to (i) initialize the DIEs, and (ii) obtain an initial estimate of the

Stokes images for the joint calibration and imaging algorithm. To be more precise,

this first imaging step consists in solving the associated minimization problem for

imaging while considering Jones matrices as identity (analogous to work in [173] for

Stokes I imaging only). Let S′ be the Stokes parameters estimated by solving prob-

lem (6.3). Since these are obtained ignoring the DDEs, in general, these may contain

artefacts. Therefore, we instead use a thresholded version of S′, denoted by S0, which

contains only the high amplitude coefficients of S′. With this first approximation of

the images at hand, the original unknown images can be seen as a sum of S0 and

E ∈ R2×2N , where the latter is unknown and need to be estimated.

Finally, we propose to define the estimates (E,U1,U2) as solutions to the following

global, non-convex minimization problem:

minimize
E,U1,U2

h
(
E,U1,U2

)
+ r(E) + p

(
U1,U2

)
, (6.10)

where h is the least squares data fidelity term associated with the data model. With

S = S0 + E, the data fidelity term is given by the least squares criterion as proposed

131



Chapter 6. Joint DDE calibration and imaging

in equations (6.4), (6.7) and (6.8), i.e.

h
(
E,U1,U2

)
= ‖Φ̆(S0 + E)− y‖2

2 (6.11)

=
∑

16α6na

1

2
‖Gα,1(Uα,1)− Yα‖2

F , (6.12)

=
∑

16α6na

1

2
‖Gα,2(Uα,2)− Yα‖2

F , (6.13)

where operator Φ̆ in equation (6.11) is formed using fixed values of (U1,U2). Similarly,

Gα,1(Uα,1) in equation (6.12) (and Gα,2(Uα,2) in equation (6.13), resp.) is determined

by fixed (Uβ,2,E) ((Uβ,1,E), resp.) with β ∈ {1, . . . , na} and β 6= α. While estimating

the Stokes parameters, equation (6.11) is employed as the data fidelity term. Keeping

(U1,U2) fixed, the convexity of this term with respect to E can be noticed. Similarly,

equation (6.12) ((6.13), resp.) is chosen while updating U1 (U2, resp.), which is con-

vex with respect to U1 (U2, resp.) keeping the other two variables fixed. It is then

straightforward to see that the non-convex function h is in fact convex for each of the

variables while fixing the others.

Concerning the regularization terms, the function p
(
U1,U2

)
is given from equa-

tion (6.9), whereas the function r(E) for the images is associated with the priors

introduced in the previous chapter. In particular, one can choose whether to take

the polarization constraint into account or not. In the former case, the regularization

term boils down to

r(E) = g(E) + ιP(S0 + E) + ιK(E), (6.14)

where g(E) =
∑4

i=1 µi‖
(
Ψ†R(S0 + E)

)
: ,i
‖1 denotes the SARA prior and for every

i ∈ {1, 2, 3, 4}, µi > 0 is the regularization parameter. Here we have taken the

weighting matrix to be equal to identity, i.e. without adapting the reweighting scheme.

The set K is chosen to take into account the errors that might appear on the estimated

non-zero coefficients of S0. Formally, it is defined as

K =
{
E ∈ R2×2N |(∀n ∈ S0) E(n) ∈ [−ϑS0(n), ϑS0(n)]

}
, (6.15)
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where S0 is the support of S0. The parameter ϑ ∈ [0, 1] is chosen according to the

error percentage assumed for S0.

In the absence of the polarization constraint, the positivity of Stokes I image needs

to be imposed explicitly, that can be accounted for by replacing the set K in equa-

tion (6.14) by a set K′, defined as

K′ =
{
E ∈ R2×2N |(∀n ∈ S0) E(n) ∈ [−ϑS0(n), ϑS0(n)] , (∀n 6∈ S0) [E(n)]1,1 > 0

}
.

(6.16)

In such a case, the function r reads as

r(E) = g(E) + ιK′(E). (6.17)

6.4.3 Algorithm formulation

In order to solve problem (6.10), we observe that it has a block-variable structure with

U1,U2 and E being the three blocks constituting the problem. On top of it, although

the global problem is non-convex, it is convex with respect to each of these blocks.

Leveraging this block-variable structure, we propose to use an iterative algorithm

based on a block-coordinate forward-backward approach [107] to solve problem (6.10).

It consists in alternating between the estimation of the DDEs and the Stokes images.

In turn, for each of these estimations, FB iterations are employed. In light of the

discussion above, we present the proposed algorithm as Algorithm 5. It consists of a

global loop and inner iteration loops. At each iteration of the global loop, indexed

by i ∈ N (step 2), we choose either to update the DDEs or the image following an

essentially cyclic rule, that is each of the variables must be updated at least once

within a given finite number of iterations. For every ith iteration, this is taken care

by the choice of number of inner loop iterations L(i) ∈ N and J (i) ∈ N to update the

DDEs and the images, respectively. To be more precise, in the former case, each of

the calibration matrices U(i)
1 (step 5) and U(i)

2 (step 9) are updated by performing

L(i) number of FB iterations in the inner loop, using the images estimated at the
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previous global iterate. When the images are chosen to be updated in the global

loop, the updated DDEs from the previous iterate are used to estimate the image in

step 15, executing J (i) FB iterations. The overall algorithm can then be understood

by splitting it into two parts: Calibration and Imaging. These two parts are explained

in what follows.

Algorithm 5 Joint DDE calibration and Stokes imaging algorithm

1: Initialization: E(0) ∈ R2×2N , (U(0)
1 ,U(0)

2 ) ∈
(
C2×2K×P×na

)2
. Let, for every i ∈ N,

(L(i), J (i)) ∈ N2.

2: for i = 0, 1, . . . do
Choose to update either the DDEs or the images.

If the DDEs are updated:

3:
(
U(i,0)

1 ,U(i,0)
2

)
=
(
U(i)

1 ,U
(i)
2

)
4: for ` = 0, . . . , L(i) − 1 do

5: U(i,`+1)
1 = PD

(
U(i,`)

1 − Γ
(i)
1 · ∇U1h

(
E(i),U(i,`)

1 ,U(i)
2

)
− Γ

(i)
1 · γ̄

(
U(i,`)

1 −U(i)
2

))
6: end for

7: U(i+1)
1 = U(i,L(i))

1

8: for ` = 0, . . . , L(i) − 1 do

9: U(i,`+1)
2 = PD

(
U(i,`)

2 − Γ
(i)
2 · ∇U2h

(
E(i),U(i+1)

1 ,U(i,`)
2

)
− Γ

(i)
2 · γ̄

(
U(i,`)

2 −U(i+1)
1

))
10: end for

11: U(i+1)
2 = U(i,L(i))

2

12: E(i+1) = E(i)

If the Stokes images are updated:

13: E(i,0) = E(i)

14: for j = 0, . . . , J (i) − 1 do

15: E(i,j+1)= proxσ(i)r

(
E(i,j)− σ(i)∇Eh

(
E(i,j),U(i+1)

1 ,U(i+1)
2

))
16: end for

17: E(i+1) = E(i,J(i))

18:
(
U(i+1)

1 ,U(i+1)
2

)
=
(
U(i)

1 ,U
(i)
2

)
.

19: end for

Calibration: It comprises of the estimation of the matrices U1 and U2. In this case,

while the data fidelity term h is differentiable, the regularization term p consists of

both smooth and non-smooth terms. Thus, in each `th FB iteration to estimate either

of these matrices, the gradient step for the differentiable terms is coupled with the
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projection step for the non-smooth term, as shown in steps 5 and 9. In particular, for

the gradient step, for every q ∈ {1, 2}, the step size Γ
(i)
q ∈ R2×2K×P×na is chosen as

Γ(i)
q =

(
ζ(i)
q,α 12×2K×P

)
16α6na

, (6.18)

where 1R is a matrix of ones of dimension R, and ζ
(i)
q,α is given by 0 < ζ

(i)
q,α < 1/(γ̄+υ

(i)
q,α),

with υ
(i)
q,α denoting the Lipschitz constant of the partial derivative of h with respect

to U(i)
q,α.

Furthermore, since in this case the non-smooth term is the indicator function of the

set D, as explained previously, this reduces to performing projection PD on this set,

which basically ensures that the values of the estimated DDE Fourier coefficients lie

within the earlier specified bounds.

Imaging: This step updates the Stokes images while using the DDEs estimates from

the previous iterate. As shown in step 15, it involves computing the gradient of the

data fidelity term, followed by the proximity operator of the regularization function

r. In this case, the step size σ(i) for the gradient step is chosen such that it satisfies

0 < σ(i) < 1/‖Φ̆‖2, (6.19)

where ‖Φ̆‖2 computes the spectral norm of Φ̆ that is generated using the updated

values (U(i+1)
1 ,U(i+1)

2 ).

For the proximity step, the regularization term r(E) is a hybrid term incorporating a

mixture of prior information. Particularly, based on the choice of inclusion or exclusion

of the polarization constraint, the computation of the proximity operator differs. For

comparison purposes, here we consider both the cases.

Regularization without polarization constraint: When we work in the absence

of the polarization constraint, the regularization term r(E) is given by equation (6.17).
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Then, the proximity operator of r evaluated at any point R ∈ R2×2N amounts to

proxσ(i)r(R) = argmin
Ẽ

σ(i)g(Ẽ) + ιK′(Ẽ) +
1

2
‖Ẽ− R‖2

F , (6.20)

which does not have an explicit formulation and thus requires sub-iterations for its

computation. One such possibility is to employ dual forward-backward algorithm

[90, 176], as presented in Algorithm 6. In particular, step 3 of Algorithm 6 performs

the projection onto the set K′. It is followed by the computation of the proximity

operator of function g in step 5, which in the current case of g being the `1 norm,

corresponds to the soft-thresholding operator.

Algorithm 6 Dual Forward-Backward algorithm to compute (6.20)

1: Initialization: Let P̃
(0)
∈ RJ×4, ε̄ ∈ ]0,min{1, 1/‖Ψ†‖2

2}[, µ̄ ∈ [ε̄, 2/‖Ψ†‖2
2 − ε̄]

2: for k = 0, 1, . . .

3: V(k) = PK′

(
R−R†

(
ΨP̃

(k)))
4: H(k) = P̃

(k)
+ µ̄Ψ†R

(
V(k)

)
5: P̃

(k+1)
= H(k) − µ̄T σ(i)/µ

(
µ̄−1H(k)

)
6: end for

7: Return: Ẽ = limk V
(k)

Regularization with polarization constraint: In the case when the polarization

constraint is to be enforced, the regularization term is given by equation (6.14) and

the associated proximity operator at a point R is given by

proxσ(i)r(R) = argmin
Ẽ

σ(i)g(Ẽ) + ιK(Ẽ) + ιP(Ẽ + S0) +
1

2
‖Ẽ− R‖2

F . (6.21)

The evaluation of this operator requires projection onto the set P, that does not

have a closed form solution. To circumvent this difficulty, we adapt the previously

proposed Polarized SARA method, that enforces this constraint leveraging the epi-

graphical projection technique. In this context, with the introduction of an auxiliary

variable Z ∈ RN×2, the polarization constraint set is split into simpler, easily man-

ageable constraint sets, thereby performing the projection onto these sets. Formally,
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it corresponds to the following reformulation of problem (6.21):

proxσ(i)r(R) = argmin
Ẽ,Z

σ(i)g(Ẽ) + ιK(Ẽ) +
1

2
‖Ẽ− R‖2

F (6.22a)

subject to (∀n ∈ {1, . . . , N})
h1(R(Ẽ + S0)n,1) = −R(Ẽ + S0)n,1 6 Zn,1, (6.22b)

h2(R(Ẽ + S0)n,2:4) = ‖R(Ẽ + S0)n,2:4‖2 6 Zn,2, (6.22c)

Zn,1 + Zn,2 6 0. (6.22d)

In order to impose the constraints (6.22b)- (6.22d), we make use of the indicator

functions of the corresponding sets, as explained in the previous chapter. Doing so,

this proximity operator results in

proxσ(i)r(R) = argmin
Ẽ,Z

σ(i)g(Ẽ) + ιK(Ẽ) +
1

2
‖Ẽ− R‖2

F + ιV(Z)

+ ιE1

(
R(Ẽ + S0) : ,1,Z:,1

)
+ ιE2

(
R(Ẽ + S0) : ,2:4,Z:,2

)
, (6.23)

that is computed employing Polarized SARA method which is based on primal-dual

forward-backward algorithm. Particularly, leveraging the flexibility and parallelizabil-

ity offered by the primal-dual algorithms, we can easily adapt Polarized SARA method

to solve our underlying problem (6.23). For the sake of completeness, we also present

this adapted version in Algorithm 7. To recall, it comprises of solving for the vari-

ables of interest, the primal variables, along with the associated auxiliary variables,

the dual variables. In this context, the update of the primal variables is similar to the

FB strategy. For the current case, it implies projection onto the set K (step 3) and V

(step 5) for the update of the variables Ẽ and Z, respectively. It is to be noted that

these updates incorporate an additive term based on the corresponding dual variables.

More precisely, the update of Ẽ involves the variables Al ∈ RJ×4 (∀l ∈ {1, . . . , nb}) and

C ∈ RN×4 related to the sparsity prior and the epigraphical constraints, respectively.

Similarly, step 5 comprises of the variable H ∈ RN×2 associated with the epigraphical

constraints. These dual variables are in turn updated by the computation of their
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associated proximity operators, that is the soft-thresholding operation (step 8) and

the projections onto the sets E1 and E2.

Algorithm 7 Primal-dual algorithm to solve problem (6.23)

1: given Ẽ
(0)
∈ R2×2N , Z(0) ∈ RN×2, (∀l ∈ {1, . . . , nb}) A(0)

l ∈ RJ×4, Ã
(0)

l =

ΨlA
(0)
l ,Λl ∈ RJ×4

+ , C(0) ∈ RN×4, H(0) ∈ RN×2.

2: For k = 0, 1, . . .

Primal updates

3: Ẽ
(k+1)

= PK

(
Ẽ

(k)
− τ
((

Ẽ
(k)
− R

)
+R†

(
ρ1

nb∑
l=1

Ã
(k)

l + ρ3 C
(k)
)))

4: Ĕ
(k+1)

= R
(

2 Ẽ
(k+1)

+ S0 − Ẽ
(k)
)

5: Z(k+1) = PV

(
Z(k) − τρ3H

(k)

)
6: Z̆

(k+1)
= 2Z(k+1) − Z(k)

Dual updates

Promoting sparsity:

7: for l ∈ {1, . . . , nb} and ∀i ∈ {1, 2, 3, 4} do in parallel

8: [A(k+1)
l ] : ,i =

(
1J − T [Λl] : ,i

)(
[A(k)

l ] : ,i + Ψ†l Ĕ
(k+1)

: ,i

)
9: [Ã

(k+1)

l ] : ,i = Ψl [A
(k+1)
l ] : ,i

10: end for

Enforcing polarization constraint:

11:

C(k+1)
:,1

H(k+1)
:,1

 =

C(k)
:,1 + Ĕ

(k+1)

:,1

H(k)
:,1 + Z̆

(k+1)

:,1

−PE1

C(k)
:,1 + Ĕ

(k+1)

:,1

H(k)
:,1 + Z̆

(k+1)

:,1


12:

C(k+1)
:,2:4

H(k+1)
:,2

 =

C(k)
:,2:4 + Ĕ

(k+1)

:,2:4

H(k)
:,2 + Z̆

(k+1)

:,2

−PE2

C(k)
:,2:4 + Ĕ

(k+1)

:,2:4

H(k)
:,2 + Z̆

(k+1)

:,2


13: end For

6.4.4 Convergence properties

The convergence properties of the proposed joint calibration and imaging algorithm

for full polarization model (Algorithm 5) can be deduced from [107]. Particularly, if

a finite number of iterations are performed to update each of the variables, that is for

every ith iteration, choosing L(i) and J (i) to be finite in Algorithm 5, and if the
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• blocks (E(i),U(i)
1 ,U

(i)
2 ) in Algorithm 5 are estimated at least once in every finite

number of given iterations,

• step sizes Γ
(i)
1 and Γ

(i)
2 for the gradient steps while updating U1 and U2, respec-

tively are chosen as per equation (6.18), and

• step size σ(i) for the update of E is chosen as per equation (6.19),

then Algorithm 5 is guaranteed to converge to a critical point (E′,U′1,U
′
2) of the

underlying objective function given in equation (6.10). Additionally, iteration-by-

iteration, the value of this objective function decreases.

6.4.5 Computational complexity

The computational complexity of Algorithm 5 can be analyzed from its two sub-parts:

Calibration and Imaging. In the former case, the update of matrix U1 in steps 4 - 6

(and U2 in steps 8 - 10) is performed in parallel for na antennas, using FB iterations.

In this case, the gradient evaluation of the data fidelity term in equation (6.12) (and

in (6.13)) is required. It involves the degridding operation while generating the matrix

Xt,α,β
(
F Z̃L̃(S0 + E)

)
for all t ∈ {1, . . . , T} and β ∈ {1, . . . , na}, with β 6= α. This

turns out to be the most expensive step. However, it is to be noted that for each

global calibration iteration, this matrix needs to be computed only once before the

inner FB iterations (both for U1 and U2 updates).

For the imaging step, the FB strategy presents the computationally most demanding

part of the algorithm. In particular, in step 15, the gradient computation (forward

step) of the data fidelity term (equation (6.11)) consists in performing the application

of the operator Φ̆, followed by its adjoint operator. Furthermore, the evaluation of

the proximity operator (backward step) involves sub-iterations, performed either by

Algorithm 6 or Algorithm 7. While this iterative process adds to the computational

cost, the heaviest steps within either of the algorithms is the application of the wavelet

transform operator Ψ consisting of eight wavelet bases and the Dirac basis (having

nb = 9) to impose sparsity. This can in turn be implemented in a parallel fashion, for

each sparsity basis as well as for each of the underlying images.
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Figure 6.6: Cygnus A (first row) and Hydra A (second row) ground truth images
used for performing simulations. In each row, from left to right the following images

are shown (all in log scale): Stokes I, Stokes Q and Stokes U .

6.5 Simulations and results

In this section, we describe the various numerical experiments performed to assess the

performance of the proposed algorithm, using its MATLAB implementation.

We simulate the observations with the VLA in A-configuration, at a frequency of 1

GHz. It consists of na = 27 antennas and the measurements are acquired over a total

synthesis time of 12 hr for T = 200 time integrations3. In the current simulation

settings, we have considered linear feeds for the antennas. In practice, our approach

presents a general framework and can thus be implemented for circular feeds as well.

While performing the non-uniform Fourier transform at the sampled frequencies, we

make use of the Kaiser-Bessel kernels of size 5× 5 for interpolation [157]. We perform

tests on two sets of model images of size N = 256× 256. The two sets correspond to

the images of the radio galaxies Cygnus A and Hydra A, shown respectively in first

and second rows of Figure 6.6. For each set, Stokes I, Q and U images (V = 0 due

to negligible circular polarization) are displayed from left to right.

3The u-v tracks are simulated using the code available at
http://www.astro.umd.edu/∼cychen/MATLAB/ASTR410/uvAndBeams.html
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Regarding the DDE Fourier kernels, for every antenna α ∈ {1, . . . , na} and at each

time integration t ∈ {1, . . . , T}, these kernels are generated randomly in the Fourier

domain, with a spatial Fourier support of K = 5×5 and a temporal Fourier support of

size P = 3× 3. The values of the Fourier coefficients are chosen as per the discussion

in Section 6.4.1. More precisely, for the diagonal terms in the Jones matrix, the

central coefficients that correspond to the Fourier coefficients of the DIEs have their

real and imaginary parts lying in the interval [1−θ1, 1+θ1] and [−θ1, θ1], respectively,

whereas the other frequency coefficients (related to the DDEs Fourier coefficients)

belong to [−θ1, θ1] with θ1 = 5 × 10−2. The central and all the other coefficients in

the off-diagonal terms belong to [−θ2, θ2] and [−θ3, θ3], respectively. Here we choose

(θ2, θ3) = (5×10−2, 5×10−4). The chosen values are in line with VLA characteristics,

wherein the leakage terms (i.e. the off-diagonal terms) are ∼ 10−2 lower in peak

amplitude compared to the diagonal terms, representing a leakage of around 5% of

the diagonal terms [138].

6.5.1 Comparisons performed

For an assessment of the proposed algorithm, we perform an extensive study on a

number of cases based on choices made both on calibration and imaging fronts. From

the calibration viewpoint, we consider different generations of calibration schemes, i.e.

1GC, 2GC and 3GC, consisting in comparing the results obtained by DDE calibration

with those of considering only DIEs. We also run tests with and without calibrating

for the off-diagonal Jones terms to study their importance. From the imaging per-

spective, it is interesting to analyze the performance of different regularizations for

the Stokes parameters. Thus, we consider the cases with and without enforcement

of the polarization constraint. A blend of these approaches leads to following list of

tests:

(1) Imaging with calibrator transfer (1GC): Working under the assumption of cal-

ibrator transfer having been applied, the first step is to consider the Jones

matrices as identity, without any directional dependency. It is important to

mention that this is the usual case considered by RI imaging algorithms, either

ignoring the calibration effects or relying on the pre-calibrated data. In such a
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scenario, only imaging step is performed to obtain an estimation of the Stokes

images S. Furthermore, in this imaging problem, we can consider two different

regularizations and hence two sub-cases: Imaging with calibrator transfer (1.a)

without and (1.b) with the enforcement of the polarization constraint.

(2) Joint DIE calibration and imaging (2GC): This involves using the proposed

algorithm for calibration and imaging. While calibrating, only the DIEs, i.e.

considering support size K = 1 for Fourier kernels, are solved for. A thresh-

olded version of the images estimated from (1.a) and (1.b) are used respectively

to initialize the problems while working in the absence and presence of the po-

larization constraint. This corresponds to two sub-cases: DIE calibration and

imaging (2.a) without and (2.b) with the polarization constraint.

(3) Joint DDE calibration and imaging (3GC-polarized): This consists of using the

proposed algorithm for calibrating the DDEs in conjunction with the imaging

step. Similar to (2), the images are initialized from thresholded versions of (1.a)

and (1.b), resulting into four cases:

(3.a) DDE calibration for the Jones matrices, excluding the off-diagonal terms &

imaging without the polarization constraint: This corresponds to the case

when the calibration steps are applied only to update the diagonal terms of

the Jones matrices and without accounting for the polarization constraint

in the imaging step.

(3.b) DDE calibration for the Jones matrices, excluding the off-diagonal terms

& imaging with the polarization constraint: Here, the calibration strategy

is the same as (3.a), whereas the polarization constraint is considered in

the imaging step.

(3.c) DDE calibration for the whole Jones matrix, including the off-diagonal

terms & imaging without the polarization constraint: This consists in cal-

ibrating for the full Jones matrix and without enforcing the polarization

constraint in the imaging step.

(3.d) DDE calibration for the whole Jones matrix, including the off-diagonal

terms & imaging with the polarization constraint: This approach comprises
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of full Jones matrix calibration and imposing the polarization constraint in

the imaging step.

6.5.2 Simulation settings

As previously mentioned, one of the key points for convergence of the proposed algo-

rithm is to update the variables at least once in every finite number of given iterations.

To ensure this, within the global loop of Algorithm 5, we perform Lcyc = 2 global it-

erations for the DDEs (i.e. steps 3 to 12 are iterated twice) followed by an update

of the Stokes images (steps 13 to 18). After a certain number of global loops, it

may happen that the DDE updates stabilize in fewer than Lcyc iterations. Thus, to

avoid unnecessary computation, we define a stopping criterion for the DDE updates

as the relative variation between the consecutive estimates of DDEs to be less than a

threshold εU > 0, i.e.

max
q∈{1,2}

(
‖U(i+1)

q −U(i)
q ‖F/‖U(i)

q ‖F
)
6 εU, (6.24)

where we set εU = 10−5. In other words, if this criterion is met, no more DDE

update iterations are performed, and the algorithm leaps to the imaging step using

the estimated DDEs. The estimation of the Stokes images adopts a similar strategy

where the iterations in the inner imaging loop are stopped and the algorithm resorts to

the calibration step once, for the considered ith global iteration, the following stopping

criterion is satisfied:

max
q∈{1,2,3}

(
‖E(i,j+1)

: ,q − E(i,j)
: ,q ‖2/‖E(i,j)

: ,q ‖2

)
6 εE, (6.25)

with εE = 10−5. In addition to it, to ensure stopping of the global algorithm at

convergence, we define a stopping criterion as the relative variation between the values

of the objective function at consecutive iterates to be less than a threshold ε0 > 0, i.e.

‖ϕ(i+1) − ϕ(i)‖2/‖ϕ(i)‖2 6 ε0, (6.26)

where ϕ(i) denotes the objective function value for the ith iteration computed using

the updated values (E(i+1),U(i+1)
1 ,U(i+1)

2 ) and ε0 is fixed to 2×10−2. For the choice of
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number of iterations L(i) and J (i) for calibration and imaging inner loops, respectively,

we choose L(i) = 5 when DDE updates need to be performed and J (i) = 100 when

imaging step is carried out. On a further note, for each of the above mentioned cases,

we run 5 simulations varying the DIEs/DDEs and noise realizations.

For quantitative comparison of the results obtained by different tests, we use signal-

to-noise ratio (SNR) as a metric. Given an original image s ∈ RN , the SNR of the

reconstructed image s′ with respect to s is defined as

SNR = 20 log10

(
‖s‖2

‖υ′s′ − s‖2

)
, (6.27)

where υ′ = argmin
υ>0

‖υs′ − s‖2
2 accounts for the ambiguity problem in the underly-

ing blind deconvolution problem. The values of the regularization parameters µ =

[µ1, µ2, µ3] and γ̄ are chosen to maximize the SNR.

We also report the dynamic range (DR) obtained for the reconstructed images. For

every image contained in the estimated Stokes matrix S′ = S0+E′, with (i, j) ∈ {1, 2}2

it is defined as follows:

DRij =

√
N ‖Φ̆‖2

2∥∥[Φ̆†(y − Φ̆(S′)
)]
ij

∥∥
2

max
n

[S′(n)]ij, (6.28)

where Φ̆ is generated using the estimated calibration matrices.

6.5.3 Results and analysis

This section presents the results obtained by conducting tests on the various cases

mentioned before. For quantitative comparison, Table 6.1 provides the obtained SNR

and DR values for both the sets of images, for the different cases performed. In each

case, the mean values evaluated over the 5 performed simulations are shown.

First, consider the cases of calibrator transfer and DIE calibration. They differ as the

latter also accounts for the DIEs in the off-diagonal Jones terms, and thus further

affected by the estimation of these terms. These terms are mainly responsible for

the flux leakage from one Stokes parameter to others and if not perfectly calibrated,
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can lead to error propagation. It particularly affects the low amplitude Stokes Q and

U images. This can be seen from the smaller SNR values of Cygnus A’s Stokes Q

image with DIE calibration than that obtained by the case of calibrator transfer (Ta-

ble 6.1(a)). On a further note, these cases appear to suffer strongly from the inherent

ambiguity problem in the considered approach, especially when the polarization con-

straint is not imposed. To be more precise, any unitary matrix R can be subsumed

into the sought sky model and the recovered calibration matrices, without affecting

the observed visibilities [6]. Considering a general RIME given in (2.16), this can be

shown by the following equation:

Yα,β = F
(
(DαR

†)(RBR†)(RD†β)
)
. (6.29)

It is apparent then that this ambiguity, which manifests itself as a rotation and a

phase term, can lead to recovering a source brightness model B′ = RBR† that is

a misrepresentation of the original sky model B. In fact, the observed visibilities

provide information only about the quantities that are invariant under the unitary

transformation. Such quantities include the total intensity and the polarized intensity

(i.e.
√
Q2 + U2 + V 2) [120]. Nevertheless, the latter only preserves the net magnitude

of the polarization state of the radio emission. The angles specifying the polarization

vector’s orientation (i.e. [Q,U, V ] in three-dimensional space) at each point of the

polarization image is affected by the ambiguity [144]. To give some more intuition,

consider the case of linear polarization (V = 0). The net polarized intensity can be

distributed in the recovered Stokes Q and U in a way that the polarization angle that

is deduced from it appears to be rotated, referred to as polrotation.

The effect of such an ambiguity can be seen particularly in the DR values of the

reconstructed Stokes Q and U images for the cases of calibrator transfer and DIE

calibration. More precisely, the residuals Φ̆†
(
y− Φ̆(S′)

)
obtained using the estimated

calibration matrices and the estimated Stokes images have smaller `2 norms for Stokes

Q and U than those of the residuals obtained using the true calibration matrices and

the estimated images. While indicating the ambiguity problem, it causes Stokes Q

and U images to have high DR values (having inverse relation with the residual norm
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without polarization constraint with polarization constraint

Stokes Calibrator DIE cal. DDE cal. DDE cal. Calibrator DIE cal. DDE cal. DDE cal.

images transfer w/o off- of full transfer w/o off- of full

diagonal Jones diagonal Jones

terms matrix terms matrix

I 19.4 21.4 34 34.7 18.4 20.2 33.6 37.4

Q 18.6 16.9 20.8 21.2 16.3 15.2 23.4 24.9

U 16.9 18 19.9 22.5 15.6 16.7 21.3 25.2

(a) SNR (in dB) values for Cygnus A

without polarization constraint with polarization constraint

Stokes Calibrator DIE cal. DDE cal. DDE cal. Calibrator DIE cal. DDE cal. DDE cal.

images transfer w/o off- of full transfer w/o off- of full

diagonal Jones diagonal Jones

terms matrix terms matrix

I 1.04 1.73 10.8 12.8 1.07 1.82 9.64 41.4

Q 3.31 3.43 4.79 4.94 2.59 2.16 6.79 9.61

U 2 2.14 2.62 3.38 0.55 0.87 1.39 19.8

(b) Dynamic range (DR) values for Cygnus A in units of 104

without polarization constraint with polarization constraint

Stokes Calibrator DIE cal. DDE cal. DDE cal. Calibrator DIE cal. DDE cal. DDE cal.

images transfer w/o off- of full transfer w/o off- of full

diagonal Jones diagonal Jones

terms matrix terms matrix

I 18.3 20.6 24.9 25 18.3 20.7 31.2 33.2

Q 17.8 18.6 11.3 11.4 17.9 18.8 19.7 20.7

U 10.3 11.5 8.09 9.07 10.9 12.2 12.6 19.8

(c) SNR (in dB) values for Hydra A

without polarization constraint with polarization constraint

Stokes Calibrator DIE cal. DDE cal. DDE cal. Calibrator DIE cal. DDE cal. DDE cal.

images transfer w/o off- of full transfer w/o off- of full

diagonal Jones diagonal Jones

terms matrix terms matrix

I 0.82 1.54 2.35 2.45 0.82 1.49 6.43 15.9

Q 2.01 2.21 0.23 0.23 0.68 0.93 1.01 1.19

U 2.44 2.53 0.21 0.28 0.31 0.5 0.48 2.7

(d) Dynamic range (DR) values for Hydra A in units of 104

Table 6.1: Cygnus A (top two tables) and Hydra A (bottom two tables) results:
SNR and Dynamic range values for different considered cases. For each of the recon-
structed Stokes image, the shown values are the mean computed over 5 performed
simulations for the cases with following considerations - for calibration step: cali-
brator transfer, DIE calibration, only diagonal Jones terms DDE calibration, and
full Jones matrix DDE calibration; and for imaging step: without and with the

enforcement of the polarization constraint.
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(equation (6.28))), which for the considered cases turn out to be even higher than

that of Stokes I in Table 6.1. Another thing to be noticed is that regularizing the

underlying problem with the polarization constraint may not be very effective when

DDEs are not accounted for (i.e. cases of calibrator transfer and DIE calibration).

Indeed, not enforcing it can produce slightly better results than those obtained by its

enforcement for these cases.

Second, consider the cases incorporating the DDE calibration scheme. In this context,

an interesting observation is the degradation in the quality of Stokes Q and U images

(Table 6.1(c) and 6.1(d)), when reconstructed in the absence of the polarization con-

straint. This could be attributed to the fact that with an increase in the number of

degrees of freedom (i.e more variables to be estimated owing to DDEs incorporation),

if the underlying non-convex joint DDE calibration and imaging problem is not well

regularized, it may stuck in a local minimum, leading to poor reconstruction quality.

This assertion is supported by the results analysis for the case when the DDEs are

calibrated along with the enforcement of the constraint. These cases achieve superior

performance when compared with not only the calibrator transfer and DIE calibration

cases without the constraint, but also with the DDE calibration performed without

the constraint. Further comparison between the DDE calibration cases with and with-

out the constraint indicates an appreciable improvement of ∼ 9 − 10 dBs in SNR of

Stokes Q and U images (Table 6.1(c)) and around one order of magnitude in DR (Ta-

ble 6.1(d)) especially for Hydra A, with the enforcement of the constraint. It should be

noted that Hydra A images have lesser amplitude than the first set of images (Cygnus

A). This is true specifically for Stokes Q and U images which are around one order

of magnitude lower in amplitude than the corresponding Stokes I image and hence,

difficult to be recovered. In this respect, the obtained results emphasize the crucial

role played by suitably chosen regularization prior in enhancing the reconstruction

quality. Thus, the good performance of the polarization constraint to recover these

images shows suitability of this prior for full polarization imaging. This validates the

findings of [25] and further extends these findings to the case of joint calibration and

imaging. Lastly, comparing the results obtained with and without calibrating for the
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off-diagonal Jones terms highlights higher SNR and DR values are achieved in the

former case.

The above listed observations are further supported by the visual inspection of the

recovered images and the associated absolute error images, shown in Figures 6.7-6.12.

While Figures 6.7, 6.8 and 6.9 display the Cygnus A images for Stokes I, Q and U ,

respectively, the corresponding images for Hydra A are shown in Figures 6.10, 6.11

and 6.12. The error images are obtained by computing the absolute difference between

the ground truth and the reconstructed images. In each of these figures, the recovered

images (first and third columns) followed by their absolute error images (second and

fourth columns) are shown. The shown images correspond to the reconstructions (and

the associated error images) obtained when imaging is performed with: (second row)

calibrator transfer (1.a) without and (1.b) with the polarization constraint, and (third

row) DIE calibration (2.a) without and (2.b) with the enforcement of the polarization

constraint. Similarly, the reconstructed images (and the associated error images)

for the case of joint DDE calibration and imaging, excluding the off-diagonal terms

and performing full Jones matrix calibration are presented respectively in third and

fourth rows, both for (3.a) (and (3.c)) without the polarization constraint case and

(3.b) (and (3.d)) with the polarization constraint case. It can be observed that joint

DDE calibration and imaging offers remarkable advantage over considering only DIEs,

mitigating the artefacts occurring because of the calibration errors. Moreover, in line

with other studies [138], calibration of the off-diagonal Jones terms aids in producing

high dynamic range images by diminishing the diffused calibration artefacts in the

background. In addition to these remarks, the quality of reconstruction is promoted

by considering the polarization constraint in the reconstruction process, specially in

conjuction with DDE calibration. While the enforcement of this constraint yields

lesser residual in the error images, a careful examination of the recovered images also

indicates that this prior is able to produce highly resolved images with finer details

as opposed to the case when the constraint is not taken into account.
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Figure 6.7: Cygnus A Stokes I true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for the cases:
Imaging with calibrator transfer (second row), Joint DIE calibration and imaging
(third row), Joint DDE calibration and imaging excluding the off-diagonal terms
(fourth row), and considering full Jones matrix (fifth row). In each case, column-
wise recovered images followed by their corresponding error images are displayed
when imaging is performed without the polarization constraint (first two columns)
and with the polarization constraint (last two columns). All the images are shown
in log scale, with the same color range corresponding to the colorbar in first row.
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Figure 6.8: Cygnus A Stokes Q true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for the cases:
Imaging with calibrator transfer (second row), Joint DIE calibration and imaging
(third row), Joint DDE calibration and imaging excluding the off-diagonal terms
(fourth row), and considering full Jones matrix (fifth row). In each case, column-
wise recovered images followed by their corresponding error images are displayed
when imaging is performed without the polarization constraint (first two columns)
and with the polarization constraint (last two columns). All the images are shown
in log scale, with the same color range corresponding to the colorbar in first row.
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Figure 6.9: Cygnus A Stokes U true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for the cases:
Imaging with calibrator transfer (second row), Joint DIE calibration and imaging
(third row), Joint DDE calibration and imaging excluding the off-diagonal terms
(fourth row), and considering full Jones matrix (fifth row). In each case, column-
wise recovered images followed by their corresponding error images are displayed
when imaging is performed without the polarization constraint (first two columns)
and with the polarization constraint (last two columns). All the images are shown
in log scale, with the same color range corresponding to the colorbar in first row.
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Figure 6.10: Hydra A Stokes I true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for the cases:
Imaging with calibrator transfer (second row), Joint DIE calibration and imaging
(third row), Joint DDE calibration and imaging excluding the off-diagonal terms
(fourth row), and considering full Jones matrix (fifth row). In each case, column-
wise recovered images followed by their corresponding error images are displayed
when imaging is performed without the polarization constraint (first two columns)
and with the polarization constraint (last two columns). All the images are shown
in log scale, with the same color range corresponding to the colorbar in first row.
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Figure 6.11: Hydra A Stokes Q true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for the cases:
Imaging with calibrator transfer (second row), Joint DIE calibration and imaging
(third row), Joint DDE calibration and imaging excluding the off-diagonal terms
(fourth row), and considering full Jones matrix (fifth row). In each case, column-
wise recovered images followed by their corresponding error images are displayed
when imaging is performed without the polarization constraint (first two columns)
and with the polarization constraint (last two columns). All the images are shown
in log scale, with the same color range corresponding to the colorbar in first row.
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Figure 6.12: Hydra A Stokes U true image in first row and reconstructed images
(best ones over 5 performed simulations for each case) in other rows for the cases:
Imaging with calibrator transfer (second row), Joint DIE calibration and imaging
(third row), Joint DDE calibration and imaging excluding the off-diagonal terms
(fourth row), and considering full Jones matrix (fifth row). In each case, column-
wise recovered images followed by their corresponding error images are displayed
when imaging is performed without the polarization constraint (first two columns)
and with the polarization constraint (last two columns). All the images are shown
in log scale, with the same color range corresponding to the colorbar in first row.
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Before concluding, we further investigate the ambiguity issue for the proposed ap-

proach, performing DDE calibration and Stokes imaging in the presence of the polar-

ization constraint. For the same, the plots in Figure 6.13 compare the pixel values of

(a) Cygnus A and (b) Hydra A for the real Re(.) component (Stokes Q) and imaginary

Im(.) component (Stokes U) in their true and recovered linear polarization images P

(=Q+ iU). In the ideal case with perfect recovery and rotational invariance, the true

and the recovered values (shown by red circles) will be equal in each plot, correspond-

ing to a straight line passing through the origin and having slope 1 (dashed green

line). However, in the current scenario, the blue line represents the least squares fit

to the data. For each case, it can be observed that this line (having slope ∼ 0.9)

is deviated only slightly from the ideal fit, implying that the recovered images (and

hence, the polarization angles) are in close agreement with the true values.

Thus, the results suggest that the ambiguity is implicitly dealt with (at least to some

extent) due to the considered choice of the regularization terms. On the one hand,

the enforcement of the sparsity priors separately for Stokes Q and U images causes

the solution of the sky model to be driven towards certain polarization angles. To

give an intuitive idea, let us consider the simplest case of a single point source with

1 Jy of linearly polarized flux. Because of the ambiguity, this flux can be rotated

between Stokes Q and U (provided the total linearly polarized flux is 1 Jy), with

the rotation being absorbed into the Jones matrices. Relating it to the imposed `1

sparsity prior, the algorithm will prefer a sky model with Q = 1, U = 0 that has lower

`1 norm than say, Q = U = 1/
√

2, and thus implicitly implies certain polarization

angles. On the other hand, the amplitude and the smoothness constraints considered

for the DDEs diminish this bias and act tighter than the sparsity prior. To be more

precise, the amplitude constraints dictate that the calibration matrices should lie in

a neighbourhood of an identity matrix, and thus the calibration solutions cannot be

deviated far away from unity. Moreover, if a unitary matrix also exhibit direction

dependence, then it should comply with the smoothness prior that is enforced on

the calibration matrices by the algorithm. As such, the absorption of any unitary

matrix that does not vary as smoothly as the DDEs will be restricted, causing the

model to be resilient to introduction of any such matrix. To shed more light onto the
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(a) Cygnus A plots

(b) Hydra A plots

Figure 6.13: Plots comparing the pixel values of (a) Cygnus A and (b) Hydra
A true and recovered linear polarization images P, for its real Re(.) component
(Stokes Q) on left and imaginary Im(.) component (Stokes U) on right. The red
circles show the values, the dashed green line is for the ideal fit when the true
and recovered values are equal, whereas the blue line represents the least-squares
straight line fit (y = mx+ c) to the data. For Cygnus A, m = 0.9981 (resp. 0.9974),
c = −1.0199×10−5(resp.−2.3432×10−5) for real (resp. imaginary) component of P.
For Hydra A, m = 0.9818 (resp. 0.9704), c = −4.7429× 10−6(resp. − 2.2115× 10−7)

for real (resp. imaginary) component of P.

last assertion, let us recall that while the net polarized intensity is unaffected by the

ambiguity issue, the polarization angles (i.e. the phases) might be absorbed into the

calibration matrices. A careful examination of the images under scrutiny highlighted

that the DDEs exhibit far more smoothness than the phases computed from the true

Stokes Q and U images. This justifies the inability of the phases to be completely

lost in the calibration matrices, and thus recovered accurately to a large extent by

our approach.

In view of the discussion above, we further point out that although the proposed

approach offers implicit handling of the unitary ambiguity issue, the extent to which
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it is handled is governed by the specifications of the priors for the DDEs. For in-

stance, an ambiguity matrix having values within the amplitude range permitted by

the approach can still be observed. As a result, some uncertainties on the recovered

non-invariant quantities will remain. To handle this problem explicitly, a future line

of investigation should be to solve directly for the invariant quantities only such as the

linear polarization image, as suggested in [120]. Relating it to the proposed approach,

this would involve imposing the sparsity prior directly on the linear polarization im-

age, rather than on Stokes Q and U . In addition, as a next step, the obtained solutions

can be used as an initialization to solve the problem explicitly for the estimation of

the non-invariant polarization angles. A way to deal with it could be to add exterior

constraints on the ambiguity by incorporating prior information based on the aver-

age feed characteristics and external calibration [144]. In terms of the minimization

problem to be solved, it resorts to adding this prior either strongly in the form of

an indicator function or as a loose bound with a least-squares criterion, constraining

the calibration matrices to follow these characteristics. These modifications can still

be dealt with by the proposed approach using gradient or proximity/projection steps

depending on the property of the underlying terms.

6.6 Conclusion

In this chapter, we have proposed a joint calibration and imaging technique for RI.

Starting from Stokes I model, the technique is generalized to full polarization model.

The proposed approach, dubbed Polca SARA, unifies the estimation of the DDEs

for the full Jones matrix and the Stokes images of interest within a global algorith-

mic structure, exploiting the same optimization framework for both calibration and

imaging. In particular, it solves the underlying non-convex minimization problem

employing a block-coordinate forward-backward algorithm, thereby following a FB

scheme for estimation of each of the variables. The MATLAB code of the proposed

method is available on GitHub (https://basp-group.github.io/Polca-SARA/).

Our approach, shipped with convergence guarantees, can also be adapted to incorpo-

rate suitable regularization priors for the variables under consideration. Thanks to
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this flexibility, for the imaging step in the global algorithm, we have employed the

Polarized SARA approach specifically developed for full Stokes imaging enforcing the

physical polarization constraint. These features offered by our method are in contrast

with the existing calibration and imaging algorithms in RI which (i) do not bene-

fit from global convergence guarantees and (ii) use in fact Stokes I imaging based

techniques even for polarimetric imaging. Finally, the results have shown that when

DDEs are calibrated along with imaging in the presence of the polarization constraint,

superior performance is obtained. While mitigating the artefacts appearing otherwise

in the reconstructed images, this case produces high dynamic range images without

being strongly affected by the ambiguity errors.
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7.1 Motivation

While the previous chapters have dealt with the algorithmic developments to solve

imaging and calibration problems in RI, an analogy can be drawn between the RI and

optical interferometry (OI) problems. In particular, owing to a sparser uv coverage

and loss of partial phase information in the acquired data, a highly under-determined,

non-linear imaging inverse problem is encountered in OI. Compared to the RI imaging

literature that is brimming with a variety of techniques both for monochromatic and

hyperspectral imaging, reconstruction methodology aiming to solve the extremely

challenging OI imaging problem is still in its infancy. To perform this task of image

recovery, we bridge the gap between the RI and OI world. On the one hand, from

the perspective of inverse problems, we observe that posing a tri-linear model for

OI imaging exhibits a direct correspondence with the tri-linear problem formulated

earlier for RI calibration. In this respect, a similar approach exploiting the block-

structure characteristic of the problem can be designed for OI imaging. On the other

hand, inspired by the promising performance of sparsity priors for RI imaging, it can

further be extended to recover astronomical images in the optical wavelength regimes.

Working in this direction and leveraging the RI techniques proposed in this thesis, we

furthermore propose a sparsity regularized tri-linear approach for OI imaging.

In this chapter, I first present the background required to understand the image

recovery problem in OI. It is followed by an overview of the standard approaches to

solve the corresponding problem. I then move onto the description of the proposed

approach, detailing the adopted measurement model and the developed algorithm.

This is done for both monochromatic and hyperspectral imaging. In both the cases,

simulation results are presented to validate the approach.

7.2 Background

7.2.1 Basics of Optical Interferometry

The basic principle behind the data acquisition strategy for OI is the same as that

for RI. However, the two differ in the manner the signals are finally correlated and
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time averaged to produce the final output. For a better understanding, let us recall

from Chapter 2 that for each antenna pair, the measurement (so-called complex vis-

ibility) is obtained by averaging the correlated signals from the two antennas over a

finite, small observation time interval. Exploiting the long wavelength characteristic

of the radio waves, it relies on the assumption that the random phase fluctuations

induced by atmospheric turbulence are small and can be neglected during the averag-

ing time interval. On the contrary, at optical wavelengths that are shorter than the

radio wavelengths, fast and random variation in the phase over the exposure interval

implies that the complex visibility values cannot be measured directly. This drives

the measurement of phase-insensitive observables in OI, namely power spectrum and

bispectrum [20]. In particular, power spectrum corresponds to the squared modulus

of the complex visibilities. It does not contain any phase part, and thus not affected

by the phase variations due to atmospheric turbulence, rendering its measurement

possible. Formally, considering pre-calibrated data and the total intensity image I,

the sampled power spectrum yp,α,β,t at the spatial frequency να,β,t is given by

yp,α,β,t = |Îα,β,t|2 + ηp,α,β,t , (7.1)

where Îα,β,t is the Fourier coefficient of the image of interest at the sampled frequency

να,β,t and ηp,α,β,t is the associated random additive Gaussian noise.

However, power spectrum does not provide any information about the Fourier phases,

making the reconstruction even tougher. This Fourier phase information can be re-

trieved by measuring what is called bispectrum, represented as a triple product of the

complex visibilities measured by the interferences from three optical telescopes:

yb,α,β,γ,t = Îα,β,t Îβ,γ,t Îγ,α,t + ηb,α,β,γ,t , (7.2)

where α, β and γ are the indices of the involved telescopes, with the corresponding

bispectrum measurement yb,α,β,γ,t being corrupted by a Gaussian noise ηb,α,β,γ,t. We

especially focus on the phase of the bispectrum, commonly referred to as the phase
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Figure 7.1: Illustration of the principle behind phase closure analysis. Phase er-
rors introduced at any telescope causes equal but opposite phase shifts, cancelling
out in the closure phase (figure after [177]). This figure is reproduced through the
courtesy of the NASA/Jet Propulsion Laboratory, California Institute of Technol-

ogy, Pasadena, California.

closure and is given by

φ(αβγ, t) = arg (yb,α,β,γ,t) = φ0(αβ, t) + φ0(βγ, t) + φ0(γα, t) mod 2π , (7.3)

where for every (α, β) ∈ {1, . . . , na}2 (with α 6= β), φ0(αβ, t) = arg (Îα,β,t) is the

intrinsic phase of the complex visibility Îα,β,t. A point worth highlighting is that since

the phase closure encompasses the sum of three phases probed with the baselines

forming a closed triangle, it is unaffected by the external phase errors. This principle

behind phase closure analysis is further illustrated in Figure 7.1. Phase errors due to

atmospheric turbulence cause shifts in the phases of the complex visibilities measured

by the three considered telescopes. However, these phase shifts are equal and oppo-

site such that they cancel out in phase closure. This insensitivity towards random

phase fluctuations makes bispectrum/phase closure a good interferometric observable,

especially for OI.

Exploiting this property, the phase of the underlying Fourier transformed image can

thus be retrieved from the bispectrum measurements. However, each phase closure is

a sum of three phases and provides only a single phase out of three spatial sampled
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frequencies. To add to the difficulty, not all of it are independent. More precisely, for

a na number of telescopes in an interferometer, the independent spatial frequencies

sampled, each probed by a pair of telescopes, are equal to
(
na
2

)
= na(na − 1)/2,

and the number of possible closing triangles (i.e. phase closures) is
(
na
3

)
= na(na −

1)(na − 2)/(3 × 2). Out of these, only those phase closures that contain a unique

frequency/baseline are independent giving a total of
(
na−1

2

)
= (na−1)(na−2)

2
independent

phase estimates [21, 178]. Coupled with the small number of telescopes involved in

an optical interferometer, only partial phase information is obtained. It is then clear

that additional difficulties arise in OI due to much sparser sampling of the spatial

frequencies in the uv plane and the loss of most of the Fourier phase information.

In terms of image reconstruction, since the uv plane is highly under-sampled, many

solutions are possible satisfying the measured data leading to an ill-posed imaging

inverse problem. Moreover, owing to the non-linearity of the power spectrum and

bispectrum measurements, this partial phase retrieval problem results into a non-

convex minimization problem to be solved, further worsening the situation. In the

next sections, we discuss the phase retrieval algorithms existing in the signal processing

literature and then describe such standard approaches adapted for OI imaging.

7.2.2 Phase retrieval algorithms

Consider the measurements of the form y = |Ax|2 + η , where x = (xn)16n6N ∈ RN
+

is a discretized representation of the intensity image of interest, A ∈ CM×N denotes

the measurement matrix and η ∈ CM is the additive Gaussian noise. The phase

retrieval problem seeks to recover the signal x from the measurements y by solving a

non-convex minimization problem of the form

minimize
x∈RN

||y − |Ax|2||22 . (7.4)

In the context of OI, we have A = LsF, where F denotes the 2D Fourier transform op-

erator and Ls is an under-sampling selection operator such that |Ax|2 are the squared

moduli of the under-sampled Fourier coefficients of x, i.e. power spectrum. Since it
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is measured along with partial phase information from the phase closure data, the

recovery of the sought signal can be seen as solving a partial phase retrieval problem.

Alternating projections

For the well studied phase retrieval problem, early methods were based on alternated

projections. In this context, the pioneering work of Gerchberg and Saxton (GS) [179]

exploits two intensity measurements: one at the real (imaging) plane and other at the

Fourier (diffraction) plane. In essence, the algorithm involves alternating between the

real-space and the Fourier-space imposing the measured magnitudes at the respective

planes. An extension of this idea has been proposed as the Fienup algorithm [180],

which in addition to ensuring consistency with the measured Fourier magnitude in

the Fourier space, enforces constraints like positivity in the image space.

In practice, these algorithms are very sensitive to additive noise and they do not

benefit from any convergence guarantees due to the non-convexity of the underlying

problem.

Semi-definite programming algorithms

An alternative approach is provided by the techniques relying on relaxing this problem

as a semi-definite program (SDP). PhaseLift [181] presents one such prominent method

where the key idea is to lift the problem to a higher dimensional space. To be more

precise, instead of the vector x, it aims to solve for a positive semi-definite matrix

X = xx† resulting into solving a linear inverse problem. Another method called

PhaseCut [182] incorporates separating the sought vector into its amplitude and phase

components, and then optimizing only for the phase variable. On the one hand, SDP

relaxations come with convergence guarantees and in many instances, as described

in [183], SDP methods are seen to outperform GS and Fienup algorithms. On the

other hand, the major drawback of these methods lies in the fact that they become

computationally very demanding as the dimension of the problem increases.
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Regularized methods

In general, the aforementioned methods tend to be less efficient when solving for

under-determined problems. For such cases, several other methods based on alternat-

ing projections [184], SDP relaxations [185, 186] and greedy pursuit [187] have been

proposed that leverage sparsity of the sought signal to regularize the phase retrieval

problem. Furthermore, a regularized non-convex technique has been proposed in [188]

aiming to minimize a penalized criterion in accordance with MAP approach. While

ensuring data consistency of the estimated solution, the algorithm can also take into

account priors (such as sparsity) to regularize the problem. Accompanied with the

convergence guarantees, this algorithm also benefits from low computational cost,

making it suitable for large dimensional problems.

Apart from being a partial phase retrieval problem, the OI image recovery problem

suffers from incomplete sampling of the Fourier domain of the sought image. To

counteract this additional difficulty, the imaging techniques draw upon the ideas from

any of the existing phase retrieval algorithms in the signal processing literature, as

discussed previously, and adapt it for the OI settings. A brief description of several

such OI imaging techniques is provided in the next section.

7.2.3 Standard approaches for OI imaging

While RI flourishes with well established imaging algorithms, the same is not true

for OI. Nevertheless, the latter has witnessed emergence of few algorithms in the past

decade or so demonstrating success on realistic OI data [20]. In [22], the MIRA method

has been developed, using a MAP approach to recover the image, where different types

of quadratic regularization can be considered. The resultant minimization problem

is solved using a limited variable metric algorithm (the VMLMB algorithm [189])

accounting for parameter bounds to enforce positivity of the sought image. Another

technique, namely WISARD, proposed by [23] makes use of a self-calibration approach

to solve for missing phase information, using smooth regularizations. In particular,

it recovers Fourier phase information from the current image estimate and the phase

closure data. These phases are then used to produce pseudo-complex visibilities from

which the image is reconstructed following any RI imaging methodology. The so-called
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BSMEM method, proposed in [190], consists of using MEM to impose smoothness

on the estimated image. More recently, [191] proposed the IRBis method (image

reconstruction software using the bispectrum), which solves the minimization problem

from a MAP approach, considering smooth regularization terms, and employing a

non-linear optimization algorithm based on conjugate gradients [192, 193].

Due to non-linearity of the underlying OI imaging inverse problem, the minimization

problems solved by the aforementioned methods perform only local optimization. For

global minimum search, different approaches have been proposed these last years.

In particular, techniques based on a Markov Chain Monte Carlo (MCMC) method

[194] have been adopted in MACIM [195] and SQUEEZE [196], while in [31], a tensor

approach has been proposed. In the latter, following the idea of phase-lift methods

for phase retrieval problems [181, 182], the data model is lifted from a vector to a

super-symmetric rank-1 order-3 tensor formed by the tensor product of the vector

representing the sought image with itself. This yields a linear inverse problem, and

a convex minimization problem can be deduced from a MAP approach. In [197],

the tensor approach has been extended to account for the signal sparsity, thereby

improving the reconstruction quality. However, solving for order-3 tensor instead

of an image (represented by a vector) increases the dimensionality of the problem

drastically and makes this approach computationally very expensive. Thus, [31] pro-

posed another method wherein the data model is reformulated as a tri-linear model:

y = T1u1 ·T2u2 ·T3u3 +η, where for every i ∈ {1, 2, 3}, Ti is the operator computing

the Fourier transform followed by a suitable selection operator to generate measure-

ments, and u1 = u2 = u3 = x. Linear and convex sub-problems are then obtained

for each of these images, which are solved alternately and iteratively. Although the

global minimization problem remains non-convex and dependent on the initial guess,

in practice, it has been shown that it provides much better reconstruction quality and

accelerates the convergence speed as compared to the tensor approach. Moreover,

contrary to the state-of-the-art-methods, it brings convexity to the sub-problems.

However, [31] proposed to solve this tri-linear problem using a Gauss-Seidel method

([198], [199, Chapter 7], [200, Chapter 2]), which does not have any convergence guar-

antees in this context. Additionally, only positivity constraints have been considered,
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without imposing any other a priori information on the underlying image.

All of the above mentioned methods are designed to reconstruct monochromatic im-

ages. However, electromagnetic radiations at different wavelengths can be emitted

from an astrophysical source, corresponding to its spectrum. In order to exploit the

spectrum of the source, modern optical interferometers are paving the way for multi-

wavelength imaging. Instruments such as AMBER [18], GRAVITY [19] and MATISSE

[201], can take measurements at multiple wavelength channels. This necessitates the

progression of imaging techniques from monochromatic to hyperspectral case. Lately,

initial works have been done in the direction of OI hyperspectral imaging. In partic-

ular, the method proposed by [202], namely SPARCO, is a semi-parametric approach

for image reconstruction of chromatic objects, whereas the method proposed by [203]

deals with a sparsity regularized approach considering the observed scene to be a col-

lection of point-like sources. Recently, the use of differential phases for hyperspectral

imaging has been proposed in PAINTER [204]. In particular, the methods proposed

by [203] and [204] use the ADMM algorithm [132] to solve the considered minimization

problem.

In view of the discussion above, we aim to develop an image reconstruction algorithm

that can be applied both for monochromatic and hyperspectral cases in OI. More

precisely, in the monochromatic case, we propose to improve the method based on the

tri-linear data model proposed by [31]. First, we propose to regularize the problem

using sparsity priors [5, 45]. Second, the adopted tri-linear model bears similarity

with the RI calibration and imaging model, and thus we develop an algorithm based

on the block-coordinate forward-backward algorithm [107, 108, 205], which has pre-

viously been adapted for joint calibration and imaging in RI. Finally, we generalize

the proposed method to the hyperspectral case. It translates to a new approach for

hyperspectral imaging in OI. In this context, we exploit the joint sparsity of the image

cube through an `2,1 norm [203].

The rest of the chapter deals with a detailed presentation and performance evaluation

of the proposed OI imaging approach.
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7.3 Monochromatic OI imaging

7.3.1 Observation model

Let the discrete Fourier transform of the image of interest x be denoted by x̂ =

(x̂n)16n6N ∈ CN . We furthermore note that the total flux is assumed to be measured

independently and the zero frequency Fourier coefficient, denoted by x̂c, is normalized

to be equal to 1. In particular, each OI measurement can be represented by a triple

product of Fourier coefficients of the image of interest, i.e. x̂ix̂jx̂k, where i, j and k

belong to {1, . . . , N}. Considering the Hermitian symmetry, we denote by x̂i∗ the

Fourier coefficient at the opposite spatial frequency to that related with x̂i. Following

this notation, the power spectrum measurements are obtained by choosing indices

j = i∗ and k = c, thus giving triple product of the form x̂ix̂i∗x̂c = |x̂i|2. Similarly, for

the bispectrum measurements, phase closure should be satisfied so that the spatial

frequencies corresponding to x̂i, x̂j and x̂k sum to zero [21]. As a result, the bispectrum

measurements are given by x̂ix̂jx̂(i+j)∗ .

In view of the description provided above, the OI imaging inverse problem can be

written as

y =
[
(T1x) · (T2x) · (T3x)

]
+ η, (7.5)

where · denotes the Hadamard product, y = (ym)16m6M ∈ CM , with M = MP +MB,

i.e. sum of MP power spectrum measurements and MB bispectrum measurements.

η ∈ CM is a realization of an additive i.i.d. Gaussian noise, and T1, T2, T3 are linear

operators from RN to CM . More precisely, for every p ∈ {1, 2, 3}, Tp performs a

discrete 2D Fourier transform F ∈ CN×N , followed by selection operators, denoted by

K ∈ RMP×N and Lp ∈ RM×MP , i.e.

Tp = LpKF. (7.6)

First, the operator K selects MP Fourier coefficients corresponding to the spatial

frequencies given by the telescopes’ position. It is to be noted that due to Hermitian

symmetry, only half of the Fourier plane is sampled. Then, the operators L1, L2 and
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L3 select the different coefficients from KFx, in order to construct the triple products

corresponding to the power spectrum and bispectrum measurements. This makes

these three operators different from each other.

7.3.2 Proposed regularized minimization problem

Problem formulation

The data model in equation (7.5) being non-linear, applying directly a MAP approach

would lead to a non-convex minimization problem. To bring linearity in (7.5), follow-

ing the model proposed by [31], we introduce (u1,u2,u3) ∈ (RN
+ )3 such that

u1 = u2 = u3 = x. (7.7)

Then, the data model (7.5) is equivalent to

y =
[
(T1u1) · (T2u2) · (T3u3)

]
+ η, (7.8)

where u1, u2 and u3 correspond to the unknown image to be estimated. The new

model described in (7.8) is tri-linear, i.e., it is linear in each of the variables u1, u2 and

u3. Thus, the problem can be solved separately for each of these variables, keeping

other two fixed.

We propose to use a MAP approach to find an estimation of the original image x.

More precisely, we propose to define the estimation of (u1,u2,u3) as a solution to

minimize
(u1,u2,u3)∈(RN )3

f(u1,u2,u3) +
3∑
p=1

r(up) , (7.9)

where f : RN →] − ∞,+∞[ is the data fidelity term and r : RN →] − ∞,+∞] is a

regularization term incorporating a priori information on the target image x. Here,

due to equality (7.7), we propose to choose the same regularization for u1, u2 and u3.
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Since η in (7.8) is assumed to be a realization of an i.i.d. Gaussian noise, the usual

least-squares criterion can be used for the data fidelity term:

f(u1,u2,u3) =
1

2

∥∥y − (T1u1) · (T2u2) · (T3u3)
∥∥2

2
. (7.10)

This formulation is under the assumption that the noise variance is same for both the

power spectrum and bispectrum measurements. However, in practice, the bispectrum

measurements are degraded by a noise with greater variance than that of the noise

associated to the power spectrum [206]. In such scenario, the above formulation can

be easily extended to incorporate information from the noise covariance matrix by

using a weighted least-squares data fidelity term [191].

In order to ensure a good reconstruction quality, we propose to use a hybrid regular-

ization term:

(∀x ∈ RN) r(x) = ιRN+ (x) + µ g(x), (7.11)

where the first term ιRN+ (x) enforces reality and positivity of the sought image, µ > 0

is the regularization parameter and g : RN →]−∞,+∞] is a convex non-necessarily

smooth function. Thus, the proposed formulation can be seen as a generalization of

the model proposed in [31]. Indeed, [31] proposed to solve (7.9) using f defined in

(7.10), and r given by (7.11) when µ ≡ 0.

Symmetrized data fidelity term

Problem (7.9) can be solved by alternating sequentially between the estimation of each

variable u1, u2 and u3 while keeping the other two fixed. Since the vectors are solved

separately in each sub-problem, the 3 estimated vectors can converge to different

estimations. One method to avoid this issue is to add the information (7.7) in the

regularization term, e.g. to consider quadratic terms controlling the distance between

the variables u1, u2 and u3. However, introducing such regularization terms involve

additional regularization parameters to be tuned. Thus, to ensure convergence of the

three vectors to similar estimations, while avoiding to complicate the minimization

problem with additional regularization parameters, we consider a symmetric data

fidelity term for u1, u2 and u3, instead of considering the usual least-squares criterion
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(7.10). More precisely, in order to take into account the symmetry between u1, u2

and u3, we propose to consider the following data fidelity term:

f̃(u1,u2,u3) =
1

6

(
f(u1,u2,u3) + f(u1,u3,u2) + f(u2,u1,u3) + f(u2,u3,u1)

+ f(u3,u1,u2) + f(u3,u2,u1)
)
, (7.12)

where f is given by (7.10). In this case, it can be noticed that u1, u2 and u3 are

commutative in (7.12), i.e. we have

f̃(u1,u2,u3) = f̃(u1,u3,u2) = f̃(u2,u1,u3) = f̃(u2,u3,u1)

= f̃(u3,u1,u2) = f̃(u3,u2,u1). (7.13)

The symmetrization of the data fidelity term can be explained as follows. Due to

equality (7.7), images u1, u2 and u3 correspond to the sought image x. Let ûp =(
ûp,i
)

16i6N
denote the Fourier transform of up, for p ∈ {1, 2, 3}. Then, for a given

frequency index i, we have û1,i = û2,i = û3,i. This implies that each measurement yijk,

where (i, j, k) is a triplet of frequency indices, can be given by ûp,iûq,jûs,k, for all the

possible permutations of (p, q, s) ∈ ({1, 2, 3})3, with p 6= q 6= s.

Thus, following this symmetrized approach, we propose to

minimize
(u1,u2,u3)∈(RN )3

{
h(u1,u2,u3) = f̃(u1,u2,u3) +

3∑
p=1

r(up)
}
, (7.14)

where f̃ is defined by (7.12), and r is given by (7.11). It can be observed that since

the data fidelity term is symmetrized and the same regularization term is used for

u1,u2,u3, the global cost function h is symmetric as well with respect to u1,u2,u3.

Furthermore, the minimization problem is solved using identical initialization for the

unknown vectors u1, u2, and u3, and the final estimation x? of x is taken to be the

mean of the three estimated vectors. We will demonstrate in Section 7.4, through

simulation results, that the recovered estimations of u1, u2 and u3 are indeed very

close.
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Alternated minimization

As discussed earlier, problem (7.14) can be solved sequentially, alternating between

the estimations of u1, u2, and u3. To describe the three corresponding sub-problems,

additional notations are introduced. In particular, let us rewrite the considered sym-

metrized data fidelity term (7.12) as follows

f̃(u1,u2,u3) =
1

2

∥∥ỹ − (T̃1u1) · (T̃2u2) · (T̃3u3)‖2
2, (7.15)

where T̃1, T̃2, and T̃3 are linear operators defined to be the concatenations of the

permutations of the operators
(
Tp

)
16p63

:

T̃1 =
1

61/6



T1

T1

T2

T2

T3

T3


, T̃2 =

1

61/6



T2

T3

T1

T3

T1

T2


, and T̃3 =

1

61/6



T3

T2

T3

T1

T2

T1


, (7.16)

and ỹ ∈ C(6M) is the concatenation of the corresponding 6 permutations of the obser-

vation vector y, divided by 61/2. Let (p, q, s) ∈ {1, 2, 3}. Fix uq ∈ RN and us ∈ RN

such that p 6= q 6= s, and consider the operator T̃(uq ,us) : RN → CM defined by

T̃(uq ,us)up =
[
(T̃1uq) · (T̃2us) · (T̃3up)

]
. (7.17)

Then, the minimization of h with respect to up (while uq and us are fixed) can be

rewritten as follows

minimize
up∈RN

f̃p(up |uq,us) + r(up), (7.18)

where r is given by (7.11) and

f̃p(up |uq,us) =
1

2
‖ỹ − T̃(uq ,us)up‖2

2. (7.19)
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We further highlight that the data fidelity term f̃p(· |uq,us) defined by (7.19) is a

convex differentiable function, with its gradient given by

∇f̃p(up |uq,us) = T̃
†
(uq ,us)

(
T̃(uq ,us)up − ỹ

)
. (7.20)

Moreover, ∇f̃p is κ(uq,us)-Lipschitzian [103, Def. 1.46] with

κ(uq,us) =
∥∥T̃(uq ,us)

∥∥
2
, (7.21)

‖ · ‖2 denoting the spectral norm of its argument.

Concerning the choice of g in (7.11), inspired by the performance of sparsity regulariza-

tion for RI imaging, we consider both `1 and reweighted-`1 terms to promote sparsity.

Particularly, in the latter case, a sequence of weighted-`1 minimization problems is

considered, i.e. problem (7.14) with

g(x) = ‖WΨ†x‖1, (7.22)

where the weights W = Diag(w1, . . . , wJ), with (wj)16j6J ∈]0,+∞[J , are computed

from the current estimation of x. Let us recall that when W is taken to be identity,

equation (7.22) reduces to usual `1 minimization.

7.3.3 Proposed algorithm

Algorithm formulation

In this section, we will describe more in detail the proposed alternating minimization

algorithm to solve problem (7.14). In particular, exploiting its analogy with the

variable block-structure experienced for RI calibration as well, we adopt the block-

coordinate forward-backward algorithm for the current case.

In this method, u1, u2 and u3 are updated sequentially, by solving (7.18), as described

in Algorithm 8. More precisely, this algorithm consists in computing, at each iteration

k ∈ N,
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1. u
(k+1)
1 while

(
u

(k)
2 ,u

(k)
3

)
are fixed,

2. u
(k+1)
2 while

(
u

(k+1)
1 ,u

(k)
3

)
are fixed,

3. u
(k+1)
3 while

(
u

(k+1)
1 ,u

(k+1)
2

)
are fixed.

The update of each variable
(
u

(k+1)
p

)
16p63

is computed with the FB iterations de-

scribed in steps 7-12 of Algorithm 8. Each iteration involves alternating between

• Step 9: gradient step (or forward step) on the corresponding differentiable func-

tion, i.e., f̃1(· |u(k)
2 ,u

(k)
3 ) for u1, f̃2(· |u(k+1)

1 ,u
(k)
3 ) for u2 and f̃3(· |u(k+1)

1 ,u
(k+1)
2 )

for u3,

• Step 10: proximity step (or backward step) on the non-necessarily smooth func-

tion r.

It can be observed that in Algorithm 8, for every k ∈ N, the gradient of f̃1(· |u(k)
2 ,u

(k)
3 )

(resp. f̃2(· |u(k+1)
1 ,u

(k)
3 ) and f̃3(· |u(k+1)

1 ,u
(k+1)
2 )) depends on the current iterates

(u
(k)
2 ,u

(k)
3 ) (resp. (u

(k+1)
1 ,u

(k)
3 ) and (u

(k+1)
1 ,u

(k+1)
2 )). Thus, the linear operator T̃

(u
(k)
2 ,u

(k)
3 )

(resp. T̃
(u

(k+1)
1 ,u

(k)
3 )

and T̃
(u

(k+1)
1 ,u

(k+1)
2 )

) needs to be updated at each iteration k ∈ N.

Convergence results

The key point of the proposed Algorithm 8 is that its convergence can be derived

from [107, 108]. Let (u
(k)
1 )k∈N, (u

(k)
2 )k∈N and (u

(k)
3 )k∈N be sequences generated by

Algorithm 8. Assume that, for every k ∈ N and t ∈ {0, . . . , tmax},

δ
(k,t)
1 ∈

]
0, 2/κ

(
u

(k)
2 ,u

(k)
3

)[
,

δ
(k,t)
2 ∈

]
0, 2/κ

(
u

(k+1)
1 ,u

(k)
3

)[
,

δ
(k,t)
3 ∈

]
0, 2/κ

(
u

(k+1)
1 ,u

(k+1)
2

)[
,

(7.23)
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Algorithm 8 Block coordinate Forward-Backward algorithm

1: Initialization: Let u
(0)
1 = u

(0)
2 = u

(0)
3 ∈ RN

+ , tmax ∈ N∗, and, for every k ∈ N, let

(δ
(k,t)
1 )06t6tmax−1, (δ

(k,t)
2 )06t6tmax−1 and (δ

(k,t)
3 )06t6tmax−1 be positive sequences.

2: for k = 0, 1, . . .
3: for p = 1, 2, 3

4: if p = 1 ; T = T̃
(u

(k)
2 ,u

(k)
3 )

; end if

5: if p = 2 ; T = T̃
(u

(k+1)
1 ,u

(k)
3 )

; end if

6: if p = 3 ; T = T̃
(u

(k+1)
1 ,u

(k+1)
2 )

; end if

7: ũ(0) = u
(k)
p

8: for t = 0, . . . , tmax − 1
9: z(t) = ũ(t) − δ(k,t)

p T†
(
Tũ(t) − y

)
10: ũ(t+1) = prox

δ
(k,t)
p r

(
z(t)
)

11: end for

12: u
(k+1)
p = ũ(tmax)

13: end for
14: end for

15: Return: x? =
(
u?1 + u?2 + u?3

)
/3, where u?1 = limk u

(k)
1 , u?2 = limk u

(k)
2 , u?3 =

limk u
(k)
3 .

where κ(·, ·) is defined by (7.21). If g is a semi-algebraic function1, then (u
(k)
1 ,u

(k)
2 ,u

(k)
3 )k∈N

converges to a critical point (u?1,u
?
2,u

?
3) of h, and

(
h(u

(k)
1 ,u

(k)
2 ,u

(k)
3 )
)
k∈N is a non-

increasing function converging to h(u?1,u
?
2,u

?
3).

Moreover, according to [107], to ensure the convergence of Algorithm 8, tmax needs to

be finite (and equal to 1 in [108]). In the limit case that tmax → +∞, Algorithm 8 can

be viewed as an approximated Gauss-Seidel algorithm ([198], [199, Chapter 7], [200,

Chapter 2]). However, up to the best of our knowledge, the most general convergence

results for the Gauss-Seidel method are presented in [106], and require technical as-

sumptions on f̃p+r that are not necessarily satisfied in our minimization problem, due

to the selection operators involved in (7.8)2. Thus, it is important to note that our

1A function is semi-algebraic if its graph is a finite union of sets defined by a finite number
of polynomial inequalities. Semi-algebraicity property is satisfied by a wide class of functions. In
particular, it is satisfied by the function g used in the current settings.

2In particular, convexity of sub-problems f̃p + r, p ∈ {1, 2, 3} is not enough to ensure the conver-
gence of the Gauss-Seidel algorithm [207].
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method is in contrast with the algorithm proposed by [31], where an approximated

Gauss-Seidel method is adopted.

Implementation details

As mentioned earlier, each sub-problem (7.18) is solved using the FB iterations. At

each sub-iteration t ∈ {0, ..., tmax − 1}, for every p ∈ {1, 2, 3}, step 10 performs the

proximity operator of r, computed as follows:

ũ(t+1) = prox
δ
(k,t)
p r

(z(t))

= argmin
u∈RN

ιRN+ (u) + ζ(k,t)
p g(u) +

1

2
‖u− z(t)‖2

2 , (7.24)

where ζ
(k,t)
p = δ

(k,t)
p µ. The computation of the proximity operator in (7.24) depends

on the choice of g. It can have either an explicit formulation or need to be computed

using sub-iterations. In the following, we describe briefly the proximity steps obtained

for the different regularization terms g.

Positivity and reality. In [31], only positivity and reality constraints have been

considered. Thus, the regularization term (7.11) corresponds to the case when µ = 0.

In this case, the proximity step 10 boils down to the projection of the current iterate

onto the real positive set RN
+ , i.e. PRN+

(
z(t)
)

=
(

max
{

Re(z
(t)
n ), 0

})
16n6N

.

Positivity, reality and sparsity in the image space. In the case when the

original image is known to be sparse, function g can be used to promote sparsity

directly in the image space. This corresponds to regularization (7.22) with Ψ (and

the weighting matrix) chosen equal to the identity matrix. The proximity step 10

then boils down to the positive soft-thresholding operator [208, Table 10.2(ix)].

Positivity, reality and sparsity in a given dictionary. In the particular yet

common case of the sought astronomical image not being sparse, its sparse represen-

tation in a given dictionary Ψ is rather exploited by using equation (7.22). However,
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the proximity operator (7.24) does not have a closed form solution. Its computa-

tion in step 10 involves sub-iterations, which we propose to perform using the dual

forward-backward algorithm [90, 208], described in Algorithm 9.

Algorithm 9 Dual Forward-Backward algorithm to compute (7.24)

1: Initialization: Let p̃(0) ∈ RN , ε̄ ∈ ]0,min{1, 1/‖WΨ†‖2}[, µ̄ ∈ [ε̄, 2/‖WΨ†‖2− ε̄].
2: for ` = 0, 1, . . .

3: v(`) = PRN+

(
z(t) −ΨW†p̃(`)

)
4: s(`) = p̃(`) + µ̄WΨ†v(`)

5: p̃(`+1) = s(`) − µ̄ prox
µ̄−1ζ

(k,t)
p g

(
µ̄−1s(`)

)
6: end for

7: Return: ũ(t+1) = lim` v
(`).

In Algorithm 9, W is the identity matrix if the `1 regularization is used, or W

corresponds to a diagonal matrix with positive weights (w1, . . . , wJ) if weighted-`1

regularization is chosen. The proximity operator in step 5 corresponds to the soft-

thresholding operator [93] computed in the dictionary space. Unlike the positive

soft-thresholding, it does not impose positivity.

Reweighting approach

In the current work, we propose to use a reweighted-`1 regularization term to promote

sparsity. As described in Chapter 3, initial step consists in solving the minimization

problem either without the sparsity term or by including `1 regularization term. The

solution obtained is then used to compute the weights for the first weighting proce-

dure. Using these computed weights, Algorithm 8 is executed again to solve the new

minimization problem, taking into account the weighted-`1 regularization (7.22). In

the same manner, the new obtained solution is used to compute the weights for the

next reweighting iteration. The resultant reweighted-`1 minimization problem can be

solved in turn using Algorithm 8. This reweighting procedure can be repeated until

a stable solution is obtained.
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Figure 7.2: Original image LkHα, of size 64× 64, used for simulations, taken from
the 2004 Imaging Beauty Contest [210].

7.4 Simulations and results

In this section, we investigate the performance of the proposed method and present

simulation results, obtained by implementing the proposed algorithm in MATLAB.

7.4.1 Simulation settings

All the simulations are performed on the image of LkHα, a star with a powerful Hα

emission line, which is a famous subject of study for various astrophysical interests

[209]. The image is shown in Figure 7.2, taken from the 2004 Optical Interferometric

Imaging Beauty Contest [210], with N = 642 corresponding to a resolution of the

order of milli-arcseconds. Two types of uv coverages are considered:

• Figure 7.3(a): Synthetic uv coverage, which consists of random variable-density

sampling scheme in 2D discrete Fourier space. In this case, the uv coverage

is generated by random Gaussian sampling such that low frequencies are more

likely to be sampled than high frequencies.

• Figure 7.3(b): Realistic uv coverage, corresponding to discretized version of the

2016 Optical Interferometric Imaging Beauty Contest coverage plan [211]. It

corresponds to the measurements made by the GRAVITY instrument at the

VLTI. The observation wavelength is 1.95µm. It samples 72 points in the uv

plane resulting in 72 power spectrum measurements.

For simplification, the bispectrum points are chosen at random (mainly the low fre-

quency region) from the sampled spatial frequencies, i.e. the phase closure constraint
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Figure 7.3: Discretized spatial frequencies coverage plans for the image of size
64× 64. (a) Synthetic uv coverage for MP/N = 0.05: consists of random variable-
density sampling scheme. (b) Realistic uv coverage: taken from the 2016 Imaging

Beauty Contest for Optical Interferometry [211].

is relaxed. It is taken care that no two bispectrum measurements correspond to the

same triple product. Furthermore, for both coverages, the simulated measurements

in (7.8) are obtained by taking the input signal-to-noise ratio (iSNR) equal to 30 dB,

where

iSNR = 20 log10

(
‖y‖2√
Mση

)
, (7.25)

σ2
η being the variance of the noise. For quantitative comparison of the reconstructed

images, SNR is considered. In our simulations, results are presented considering a

stopping criterion for Algorithm 8, given by max
p∈{1,2,3}

(
‖u(k)

p −u(k−1)
p ‖2/‖u(k)

p ‖2

)
6 10−2.

Finally, let us define the power spectrum under-sampling ratio as uP = MP/N , and the

bispectrum under-sampling ratio as uB = MB/N . It is worth emphasizing here that

due to the Hermitian symmetry, MP power spectrum measurements in fact correspond

to 2MP sampled spatial frequencies in the Fourier plane. This implies that in the

particular case when uP = 0.5, all the spatial frequencies in the Fourier plane are

sampled.

As discussed in Section 7.3, the number of spatial frequencies probed MP depends

on the number of telescopes na. Thus, uP will change, depending on na. Also, for

a given uP , there can be at most
(
na
3

)
possible bispectrum measurements (that are

not all independent), i.e. MB 6
(
na
3

)
. Keeping this in mind, for a fixed uP , we have

performed simulations by varying the number of bispectrum measurements considered,

which results in varying uB. Furthermore, for each pair (uP , uB), 10 simulations
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Figure 7.4: SNR graph obtained for positivity and reality constrained case with
LkHα image and synthetic uv coverage for uP = 0.2, considering iSNR = 30 dB
and varying uB. The graph shows the comparison of average SNR values (over
10 simulations), and corresponding 1-standard-deviation error bars, for different
number of initializations I: I = 5 (blue), I = 10 (pink), I = 15 (green), and I = 20

(red).

are performed, varying the noise realization, and for the synthetic uv coverage, the

sampling pattern as well.

7.4.2 Synthetic uv coverage

This section presents the simulations performed on the image LkHα considering the

synthetic uv coverage given in Figure 7.3(a). Simulations corresponding to the differ-

ent regularization terms are described below.

Positivity and reality constraints. We consider the simplest case, described by

[31], corresponding to the minimization problem (7.14) with only positivity and reality

constraints taken into account. Details of the implementation of the Algorithm 8 in

this case are described in Section 7.3.3.

As mentioned in Section 7.3.3, given the non-convexity of the minimization prob-

lem (7.14), Algorithm 8 can only converge to a critical point of h. Thus, the recon-

structed image depends on the initialization. To avoid local minima, we propose to run

Algorithm 8 several times, for I random initializations x
(0)
i = u

(0)
1 = u

(0)
2 = u

(0)
3 , with

i ∈ {1, . . . , I}. Let x?i be the estimation found with initialization x
(0)
i . Then the best
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estimation x? is selected by taking x? = x?i? , where i? corresponds to the initializa-

tion index with minimum value of the objective function, i.e. for every i ∈ {1, . . . , I},

f(x?i?) + r(x?i?) 6 f(x?i ) + r(x?i ).

To choose the number I of random initializations, first tests for different I are per-

formed and presented in Figure 7.4. Four curves are depicted, corresponding to the

different number of initializations considered, I ∈ {5, 10, 15, 20}. Each curve repre-

sents the average SNR values over 10 simulations, along with 1-standard-deviation

error bars, as a function of the under-sampling ratio uB, for a fixed uP = 0.2. It can

be seen from the graph that the SNR changes a lot as the number of random initial-

izations increases from 5 to 20. It reflects the sensitivity of the minimization problem

to the number of initializations. However, between 15 and 20 initializations, the SNR

not only saturates, in fact it exhibits very small standard deviation error bars. Thus,

in all the subsequent simulations, when only positivity and reality constraints are

taken into account, we consider I = 15 random initializations for each pair (uP , uB).

`1 and weighted-`1 regularizations. In order to solve the minimization prob-

lem (7.14) promoting sparsity, we consider the regularization function given by (7.11),

and we examine both `1 and weighted-`1 regularizations, using Ψ to be Daubechies 8

wavelet basis [70]. In this case, we use Algorithm 8 with the implementation details

and the reweighting process described in Section 7.3.3.

Concerning the initialization, both for `1 and weighted-`1 minimization problems,

two different cases have been tested. On the one hand, we considered the same

initialization strategy as described earlier, with I = 15. On the other hand, we

used the final estimation obtained from the positivity constrained problem, itself

initialized with I = 15. Preliminary simulations indicated that the results obtained

in the two cases have similar reconstruction quality. However, the computation time

was much longer considering several random initializations than using the solution

obtained from the positivity constrained problem. Thus, for computational efficiency,

all further simulations for `1 and weighted-`1 regularization are performed using the
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final solution obtained when only positivity constraint is considered, as described

earlier.

To inspect the quality of reconstruction, we consider two sub-cases for `1 minimiza-

tion with different number of FB sub-iterations (corresponding to steps 9-10 in Al-

gorithm 8): tmax = 200 and tmax = 400. In addition, for the weighting scheme, two

sub-cases are considered for different number of weighting iterations: a weighted-`1

regularization (with only one weighting computation), and a second weighting iter-

ation (i.e. reweighted-`1)3. As discussed in Section 7.3.3, the weights are computed

using (3.13), where, for the weighted-`1 regularization, we take x? to be the solu-

tion obtained from the positivity constrained minimization problem, whereas for the

reweighted-`1 regularization, x? is the solution obtained from the weighted-`1 mini-

mization problem.

Note that during weighted and reweighted-`1, tmax is taken to be 200. In the simu-

lations performed, the regularization parameter µ in (7.11) is tuned to maximize the

SNR: µ = 10−5 (resp. µ = 1.5 × 10−5) for `1 (resp. weighted and reweighted-`1)

minimization problem.

Simulation results

We have implemented several tests to analyze the performance of the proposed method

with respect to the number of measurements made by the interferometer. More pre-

cisely, to take into account different under-sampling ratios of the u-v plane, we have

performed simulations by varying uP and uB. First, concerning the choice of uP ,

we have considered two cases: uP = 0.05 corresponding to highly under-sampled u-v

plane, and uP = 0.2 to simulate a less under-sampled data set. Second, for each of the

considered values of uP , we have varied number of bispectrum measurements, i.e. uB.

Taking these different values of uP and uB into account, Figure 7.5 shows the SNR

graphs corresponding to the reconstructed images, as a function of uB for uP = 0.05

3Note that the simulations were performed with more than 2 weighting iterations. However,
preliminary results indicated that after the second weighting iteration, a stable solution was achieved
both in terms of the SNR and visual quality.
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Figure 7.5: SNR graphs obtained with LkHα image and synthetic uv coverage,
considering iSNR = 30 dB, varying uB for two different power spectrum under-
sampling ratios: (a)uP = 0.05 and (b)uP = 0.2. In each graph, comparison of
average SNR values (over 10 simulations), and corresponding 1-standard-deviation
error bars, for different regularization terms is shown: positivity constraints (solid
blue), `1 regularization with tmax = 200 (dotted cyan) and tmax = 400 (dotted
pink), weighted-`1 regularization (dashed green) and reweighted-`1 regularization

(dashed red).
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Figure 7.6: Reconstructed (first row) and error (second row) images correspond-
ing to median SNR (over 10 simulations), obtained by considering the true image
LkHα with synthetic uv coverage for (uP , uB) = (0.05, 0.1). In each row, images
corresponding to different regularization terms are shown column-wise: positivity
constraint (first column), `1 regularization with tmax = 200 (second column), and

reweighted-`1 regularization (third column).
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(left) and 0.2 (right), respectively. Typically, the range over which uB is varied is

chosen depending on the value of uP . As such, we have taken the values of uB com-

parable to and greater than uP . Consequently, for the smaller value of uP = 0.05, we

have considered a smaller number of bispectrum measurements with uB ∈ {0.04, 0.2},

whereas for the larger value of uP = 0.2, the number of bispectrum measurements

considered are also increased, uB ∈ {0.05, 0.5}.

In each graph of Figure 7.5, comparisons are given for the results obtained using

the aforementioned different regularizations. For visual assessment, reconstructed im-

ages having SNR corresponding to the median of the SNRs obtained for 10 performed

simulations are shown in Figures 7.6 and 7.7. The reconstructed images for `1 regular-

ization with different tmax are visually very similar. Same is the case for reconstructed

images with weighted `1 and reweighted `1 regularization. Hence, in Figure 7.6 and

Figure 7.7, we show the images corresponding to positivity constrained case, `1 reg-

ularization with tmax = 200 and reweighted `1 regularization. The respective error

images are also displayed to show the absolute error |x? − x| between the recon-

structed image x? and the true image x. From Figures 7.5, 7.6 and 7.7, we can

observe that promoting sparsity, either by `1, weighted-`1, or reweighted-`1 regular-

ization term, gives better reconstruction quality, and hence lesser residual in the error

images, than the positivity and reality constrained case (SNR improves between 2 and

3 dB depending on the considered (uP , uB)).

Another observation that can be made is regarding the non-recovery of the central

compact source in the estimated images. This could be because of the chosen value

of the regularization parameter µ that is set to maximize the SNR. However, it might

not be the optimal one and as demonstrated in [20] through various examples, if

the problem is over-regularized, the obtained image could be over simplified. On a

further note, from the results given in Figure 7.5, it can be seen that when uP =

0.2 (Figure 7.5(b)), the quality of reconstruction obtained with the `1 regularization

and the (re)weighted-`1 regularization is almost the same. On the contrary, when

uP = 0.05 (Figure 7.5(a)), as uB is increased, the SNR values obtained with either

of the weighted-`1 or reweighted-`1 regularization terms are greater than the SNR
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Figure 7.7: Reconstructed (first row) and error (second row) images correspond-
ing to median SNR (over 10 simulations), obtained by considering the true image
LkHα with synthetic uv coverage for (uP , uB) = (0.2, 0.3). In each row, images
corresponding to different regularization terms are shown column-wise: positivity
constraint (first column), `1 regularization with tmax = 200 (second column), and

reweighted-`1 regularization (third column).

obtained using an `1 regularization. This implies that weighting scheme tends to be

more beneficial for the case of highly undersampled uv plane.

Considering the importance of symmetrization, it is worth mentioning here that the

reconstructed images for the final solution x? = (1/3)
(
u?1 +u?2 +u?3) as well as for the

solutions of u?1, u?2, u?3 are visually indistinguishable. This observation is supported

by the small values of the variations between the solutions : ‖u?1 − u?2‖2, ‖u?2 − u?3‖2

and ‖u?3 − u?1‖2, which are of the order of 10−2, 10−4 and 10−2, respectively.

Image reconstruction without the bispectrum measurements

In order to emphasize the benefit of using phase information from bispectrum mea-

surements, simulations have been performed considering only the power spectrum

measurements, i.e. with uB = MB = 0. In this case, Algorithm 8 has been imple-

mented by considering only positivity and reality constraints. Moreover, as explained

earlier, owing to the non-convexity of the minimization problem (7.14), several simu-

lations are performed with different random initializations. Particularly, considering
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(a) (b)

Figure 7.8: The figure illustrating the orientation uncertainty when no phase infor-
mation is taken into account. Reconstructed images with (a) the correct orientation
of the true image LkHα and (b) the opposite orientation, respectively obtained by
considering two different initializations for positivity and reality constrained case,
with synthetic uv coverage for (uP , uB) = (0.05, 0) (considering only power spec-

trum measurements) and having median SNR over 10 simulations.

a synthetic uv coverage with uP = 0.05 and uB = 0 (no bispectrum measurements),

the reconstructed images obtained from two different random initializations for posi-

tivity and reality constrained case are shown in Figure 7.8. Since the power spectrum

measurements do not contain any phase information, it can be observed that the re-

constructed images suffer from phase ambiguity. This arises from the space-reversal

property of the Fourier transform, i.e. if a signal is inverted in the spatial domain,

then in the Fourier domain, this inversion only reverses the sign of the phase of the

Fourier coefficients. It implies that with no phase information, the uncertainty re-

lated to signal inversion remains. While the image in Figure 7.8(a) is recovered with

correct orientation, i.e. the same orientation as that of the original image LkHα given

in Figure 7.2, the image in Figure 7.8(b) is recovered with the opposite orientation.

On the one hand, this indicates that the proposed Algorithm 8 is still able to restore

images with only power spectrum measurements, i.e. without any phase informa-

tion, though with the uncertainty in the orientation. On the other hand, the results

obtained from the case when uB > 0 highlight that the incorporation of phase infor-

mation is essential to recover properly oriented images.

7.4.3 Realistic uv coverage

The performance of the proposed algorithm has been assessed for the realistic uv

coverage given in Figure 7.3(b). We have performed several simulations by varying
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Figure 7.9: SNR graph obtained with LkHα image and realistic uv coverage,
considering iSNR = 30 dB, varying uB. In the graph, comparison of average SNR
values (over 10 simulations), and corresponding 1-standard-deviation error bars, for
different regularization terms is shown: positivity constraints (solid blue), `1 regu-
larization with tmax = 200 (dotted cyan) and tmax = 400 (dotted pink), weighted-`1

regularization (dashed green) and reweighted-`1 regularization (dashed red).
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Figure 7.10: Reconstructed (first row) and error (second row) images correspond-
ing to median SNR (over 10 simulations), obtained by considering the true image
LkHα with realistic uv coverage for uB = 0.2. In each row, images corresponding
to different regularization terms are shown column-wise: positivity constraint (first
column), `1 regularization with tmax = 200 (second column), and reweighted-`1

regularization (third column).
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the number of bispectrum measurements and thus in turn the bispectrum under-

sampling ratio uB. Recalling that for the considered realistic uv coverage, MP = 72,

and with N = 642, this implies that uP ' 0.018. Figures 7.9 and 7.10 illustrate the

results obtained for the different considered regularization terms. While Figure 7.9

depicts the SNR graph for the reconstructed images as a function of uB ∈ {0.05, 0.5},

the corresponding recovered images and the error images for uB = 0.2, with median

SNR, are shown in Figure 7.10. Here again considering the visual similarity between

the reconstructed images for `1 regularization with different tmax, and that between

images for weighted and reweighted `1 regularization, we only show the images for

positivity constraint, `1 with tmax = 200 and reweighted `1.

It is to be remarked here that the results obtained are in coherence with the obser-

vations made for the synthetic uv coverage. More precisely, the results indicate the

superiority of promoting sparsity relative to just positivity and reality over the full

under-sampling range, leading to an improvement of the SNR between 3 and 4 dB, de-

pending on the considered value of uB. Moreover, given the small value of uP , the SNR

gets better not only with increasing uB, but also by considering the (re)weighted-`1

regularization term.

7.5 Hyperspectral OI imaging

7.5.1 Problem statement

The spatial frequencies sampled by an interferometer depend on the observation wave-

length. It means that the interferometric measurements made at different wavelengths

correspond to probing different spatial frequencies in the uv plane of the image of in-

terest. Considering L spectral channels, in accordance with the data model proposed

for the monochromatic case (7.5), the measurement equation at each spectral channel

l ∈ {1, . . . , L}, can be written as:

yl =
[
(T1,l xl) · (T2,l xl) · (T3,l xl)

]
+ ηl, (7.26)
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where yl ∈ CM denotes the measurement vector, xl ∈ RN
+ is the intensity image,

ηl ∈ CM is a realization of an additive Gaussian noise, and, in analogy with (7.6),

the l-th measurement operators are given by Tp,l = Lp,lKlF, for every p ∈ {1, 2, 3}.

Following the approach adopted in the monochromatic case and considering u1,l =

u2,l = u3,l = xl for 1 6 l 6 L, the tri-linear counter-part of the inverse problem (7.26)

becomes

yl =
[
(T1,l u1,l) · (T2,l u2,l) · (T3,l u3,l)

]
+ ηl. (7.27)

Then, concatenating all the spectral channels, we define the ill-posed hyperspectral

inverse problem as

Y =
[
T1(X1) · T2(X2) · T3(X3)

]
+ H, (7.28)

where Y = [y1, . . . ,yL] ∈ CM×L is the measurement matrix, for every p ∈ {1, 2, 3},

Xp = [up,1, . . . ,up,L] ∈ RN×L
+ is the image matrix. More precisely, column l ∈

{1, . . . , L} of Xp represents the intensity image at wavelength λl, whereas row n ∈

{1, . . . , N} represents the variation of pixel values along the spectral channels. In

equation (7.28), H = [η1, . . . ,ηL] ∈ CM×L is the noise matrix, and T1, T2, T3

are the concatenated measurement operators such that, for p ∈ {1, 2, 3}, Tp(Xp) =

(Tp,lup,l)16l6L.

In analogy with the monochromatic case and the minimization problem described

in (7.14) by symmetrizing the data fidelity term, we propose to define the estimate of

(X1,X2,X3) as a solution to

minimize
(X1,X2,X3)∈(RN×L)3

{
h(X1,X2,X3) = f̃(X1,X2,X3) +

3∑
p=1

r(Xp)
}
, (7.29)

where the same regularization term

(∀X ∈ RN×L) r(X) = ιRN×L+
(X) + µ g(X), (7.30)
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is chosen for X1,X2, and X3, and f̃ is the symmetrized data fidelity term given by

f̃(X1,X2,X3) =
1

2
‖Ỹ − T̃1(X1) · T̃2(X2) · T̃3(X3)‖2

2 =
L∑
l=1

f̆l(u1,l,u2,l,u3,l), (7.31)

with

f̆l(u1,l,u2,l,u3,l) =
1

2
‖ỹl − (T̃1,l u1,l) · (T̃2,l u2,l) · (T̃3,l u3,l)‖2

2. (7.32)

Ỹ = [ỹ1, . . . , ỹL] ∈ C6M×L and T̃p(Xp) = (T̃p,l up,l)16l6L are the symmetrized versions

of the measurements matrix and the linear operators for p ∈ {1, 2, 3}, respectively in

accordance with Section 7.3.2.

As discussed in the earlier sections, given the voids in the uv coverage, ensuring

data consistency is not sufficient to obtain a good estimation from the measurements,

and imposing a priori information is essential. In the monochromatic case, we have

considered promoting sparsity prior with a, possibly weighted, `1 regularization term.

In the context of hyperspectral imaging, joint sparsity gives an additional degree of

possible regularization, in the spectral dimension, that should be leveraged to improve

the overall image reconstruction quality compared to reconstructing each channel

separately [203, 212, 213]. Mathematically, joint sparsity is defined for a set of sparse

signals such that the non-zero entries of each signal are located at the same spatial

position. From physical point of view, if a source is absent, i.e., the corresponding pixel

has a zero value in a spectral channel, then the pixels at the same spatial positions

along all the spectral channels will be zero. Thus, the joint sparsity prior enforces

spatial sparsity while imposing spectral continuity. We propose to promote the joint

sparsity prior using an `2,1 norm [203, 214] for the regularization term, defined as

follows:

(∀X = [x1, . . . ,xL]) g(X) =
J∑
j=1

( L∑
l=1

∣∣[Ψ†xl]j∣∣2)1/2

, (7.33)

where Ψ can either be identity matrix, or a given dictionary belonging to RJ×N . The

`2,1 norm is characterized by taking `2 norm along the columns and then `1 norm of

the resultant vector.
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In order to solve the minimization problem (7.29), we propose to adopt the same

methodology as developed for monochromatic case.

7.5.2 Algorithmic details

The implementation of Algorithm 8 to solve (7.29) requires replacing the variables

and the operators with the corresponding variables and operators for hyper-spectral

case, as defined in Section 7.5.1.

First, according to (7.31)-(7.32), for every l ∈ {1, . . . , L}, partial gradients of f̆l are

independent. Thus, the gradient descent step 9 of Algorithm 8 can be computed in

parallel for each spectral channel. Second, the proximity operator of the non-smooth

function r defined by (7.30), with g given by (7.33), does not have a closed form

solution. In order to compute this, we propose to resort once more to Algorithm 9. In

this case, step 3 in Algorithm 9 requires performing the proximity operator of (7.33),

defined, for every B ∈ RJ×L and ν > 0, as

proxν‖.‖2,1(B) =


p1

...

pJ

 , (7.34)

where, for every j ∈ {1, ..., J}, pj is a line vector given by

pj =

bj
‖bj‖2−ν
‖bj‖2 if ‖bj‖2 > ν,

0 otherwise,

(7.35)

bj denoting the n-th row of B. Thus, the proximity operator of the `2,1 norm corre-

sponds to a soft-thresholding operation row-wise.

7.6 Simulations and results

In this section, we show the performance of Algorithm 8 for hyperspectral imaging

by solving (7.29). Simulations are performed on two sets of images, with N = 642

for each image. More precisely, two original images are considered: LkHα, given in

the top left of Figure 7.12, and an image consisting of two simulated uniform discs,
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Figure 7.11: SNR graphs obtained for the reconstruction of two different hyper-
spectral image cubes with the realistic uv coverage, considering iSNR = 30 dB for
each spectral channel, varying uB. For the two graphs, the ground truth images
at first spectral channel are given by: (a) LkHα (top left image in Figure 7.12),
and (b) synthetic image (top left image in Figure 7.13). Each graph depicts
the comparison of the average SNR values (over 10 simulations) and correspond-
ing 1-standard-deviation error bars, between single-channel reconstruction with `1
regularization (7.37) (red dashed) and reconstruction by considering joint sparsity

with `2,1 regularization (7.33) (blue solid).

which we refer to as synthetic image, shown as the top left image in Figure 7.13.

These images correspond to the observed image at the first spectral channel x1. Then,

the images corresponding to other spectral channels l ∈ {2, . . . , L} are obtained by

following power-law model. In this context, we have, for xl = (xl,n)16n6N ,

xl,n = x1,n

(λ1

λl

)αn
, (7.36)

where λl denotes the wavelength at spectral channel l, and α = (αn)16n6N is the

spectral indices’ vector [215]. Spatial correlation is ensured by taking α to be a linear

combination of a random Gaussian field and the reference image convolved with a

Gaussian kernel of size 3 × 3 at FWHM [216]. For both the images, L = 8 spectral

channels in the wavelength range 1.95-1.97 µm are considered. The corresponding

uv coverage plan is given in Figure 7.3(b) for observation wavelength 1.95 µm. The

generated ground-truth images for l = 8 are shown as top right images in Figures 7.12

and 7.13, respectively for LkHα and synthetic image.

We compare the results obtained considering the `2,1 norm with the case when each
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Figure 7.12: Results for hyperspectral imaging with realistic uv coverage for
L = 8, uB = 0.1 and LkHα as the original image. Images corresponding to first
(l = 1) and last (l = 8) spectral channels are shown respectively in first two and
last two columns. For each pair of columns, the following are shown row-wise
from top to bottom: true image, reconstructed image with `1 regularization (7.37),
reconstructed image with `2,1 regularization (7.33). Each such reconstructed image

is followed by its respective error image in the next column.

channel is treated separately, considering an `1 norm on each image produced by each

spectral channel:

(∀X ∈ RN×L) g(X) =
L∑
l=1

‖Ψ†xl‖1. (7.37)

While the case considering `1 norm is initialized with the solution of problem (7.29)

obtained with only positivity and reality constraints (i.e. µ = 0 in (7.30)), the solu-

tion obtained for each channel by `1 regularized case is in turn used to initialize `2,1

regularized case. For both cases, the FB iterations (steps 8-11 in Algorithm 8) are

performed with tmax = 200. In the hyperspectral case, we observed that considering

Ψ as the identity matrix gives better reconstruction results than using Daubechies

wavelets. Moreover, the SNR of the reconstructed image matrix X? is computed as
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Figure 7.13: Results for hyperspectral imaging with realistic uv coverage for
L = 8, uB = 0.1 and synthetic image as the original image. Images corresponding
to first (l = 1) and last (l = 8) spectral channels are shown respectively in first two
and last two columns. For each pair of columns, the following are shown row-wise
from top to bottom: true image, reconstructed image with `1 regularization (7.37),
reconstructed image with `2,1 regularization (7.33). Each such reconstructed image

is followed by its respective error image in the next column.

the mean of the SNRs from the reconstructed images of each channel (x?l )16l6L. The

SNR comparisons between the regularizations (7.33) and (7.37) are provided in Fig-

ure 7.11. For both cases, average SNR curves with 1-standard-deviation error bars

are presented (performed over 10 simulations, varying both the noise realization and

the measured bispectrum). From these plots, we can observe that using `2,1 norm

as a regularization term leads to better reconstruction than considering only `1 inde-

pendently in each channel. The reconstructed and the corresponding error images for

the first and the last spectral channels, considering Ψ to be the identity matrix, are

shown in Figures 7.12 and 7.13. For the two image examples, the figures demonstrate

the superiority of solving globally for the hyperspectral channels over single-channel
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reconstruction, where no advantage of inter-channel information is taken.

7.7 Conclusion

We have presented a new method for image reconstruction in OI, based on the tri-

linear data model proposed in [31]. While only monochromatic imaging has been

considered in the previous work, we extended this model to hyperspectral imaging.

Furthermore, to improve the reconstruction quality, since in [31] only positivity con-

straints have been considered, we proposed additionally to promote sparsity using

either an `1 or a weighted-`1 regularization term in the monochromatic case, and

an `2,1 regularization term in the hyperspectral case. Moreover, the sparsity of the

sought image can be promoted not necessarily in its domain, but in fact in any suitable

sparsifying domain based on the underlying image. In order to solve the resultant min-

imization problem, we have developed an alternated minimization algorithm, based on

a block-coordinate forward backward algorithm. This algorithm presents convergence

guarantees, and benefits from the fact that it can be designed to work with smooth

functions, using gradient steps, and with non-necessarily smooth functions thanks to

proximity steps. The MATLAB code of the proposed method is available on GitHub

(https://basp-group.github.io/Optical-Interferometry-Trilinear/).

We have assessed the performance of the proposed method on several simulations both

for synthetic and realistic uv coverages, in monochromatic and hyperspectral cases.

On the one hand, for monochromatic imaging, adding a sparsity prior gives promising

results. On the other hand, for hyperspectral imaging, we have shown numerically

that exploiting joint sparsity, using an `2,1 norm, improves drastically the quality of

reconstruction as compared to single-channel reconstruction. To summarize, we have

proposed a method which presents a general framework, where the regularization

term can be non-smooth and adapted either for the monochromatic case or for the

hyperspectral case.
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Conclusions and Perspectives

The research reported in this thesis proposes novel optimization techniques to solve

imaging inverse problems encountered in astronomical interferometry spanning the

radio and optical wavelength regimes. In particular, to recover the images from the

given set of measurements, the developed methods leverage the notion of sparsity

popularised recently by the compressive sensing framework, providing superior recon-

struction quality in comparison with state-of-the-art methods. From an optimization

perspective, the methods described in this manuscript are based on convex and non-

convex optimization framework, benefiting from convergence guarantees and flexible

features to adapt to the structure of the problem of interest.

In the context of radio interferometry, we have considered a complete treatment of

the monochromatic radio interferometric measurement equation, accounting for full

polarization model and calibration issues. In the absence of calibration errors, the

proposed Polarized SARA method [25] adopts a primal-dual scheme for image recov-

ery. Sparsity priors and the physical polarization constraint are incorporated into the

reconstruction process. When compared with standard radio interferometric imaging

approaches, Polarized SARA has been shown to produce higher quality, super-resolved

images with physical meaning and reduced artefacts. Furthermore, the underpinning

convex optimization technique not only guarantees convergence to a solution of the

problem, but is also equipped with various desirable features. Particularly, while of-

fering flexibility to incorporate sophisticated regularization priors in the problem, it
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also benefits from the parallelizability features leveraging which the involved func-

tions and the associated variables can be dealt with in a parallel fashion. The latter

feature is exploited to render scalability to the Polarized SARA method [26] to deal

with the large data volumes provided by the new generation radio interferometers.

Moreover, for the more challenging case of unknown DDEs that need to be calibrated,

we have taken the first step towards designing a global joint calibration and imag-

ing technique with proven convergence guarantees. In this context, the proposed self

DDE calibration and imaging method for Stokes I model [27–29] and further extended

to full polarization model, named Polca SARA [30], showcase a unifying framework,

merging the calibration and imaging methodologies into a global algorithmic struc-

ture. In particular, the non-linearity of the underlying inverse problem is tackled by

introducing a tri-linear model, thereby solving convex sub-problems for each of the

variables of interest, in an alternating and iterative manner. The proposed approach

is able to deal with sophisticated priors to regularize the sought images and/or DDEs.

Leveraging the latter characteristic, we have adapted Polarized SARA method for the

imaging step when dealing with the full polarization model. This feature coupled with

the DDE calibration of the full Jones matrices has been shown to be instrumental in

producing high dynamic range Stokes images.

Finally, we have extended the aforementioned developments to optical interferome-

try, where we have exploited a tri-linear data model to propose an image recovery

method [32, 33]. In particular, it is inspired by the performance of sparsity priors

in radio interferometric imaging and the non-convex optimization technique devel-

oped for radio interferometric self-calibration and imaging. The developed approach

benefits from convergence guarantees and is applicable for both monochromatic and

hyperspectral imaging in optical interferometry, exhibiting good performance in the

various numerical studies performed.

Perspectives

Performance assessment on real data

Although the work presented in this thesis has been intensively analysed, mainly over
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simulated data sets using realistic models, the achieved promising performance of the

developed methods calls for testing them on real data sets for their wider acceptability

in the research community.

Particularly for the Polarized SARA method, an interesting next step would be to

apply on such data sets where the radio emissions are apparently polarized more than

100%. Such instances can arise (for eg. while observing diffuse galactic emission) when

the total intensity of the target sky is very smooth and broad, while the polarization

maps consist of high resolution, small scale structures [217, 218]. In such cases, owing

to the lack of short baselines, it is highly likely for the acquired data to not capture

the information in Stokes I maps, thereby presenting more than 100% polarization.

Enforcing polarization constraint to jointly reconstruct the Stokes parameters maps

would tend to produce physical images, ensuring consistency of the total intensity

with the polarized emissions. And thus, it could be useful to recover the ‘unseen’

large-scale total intensity structure.

Concerning optical interferometry, the novelty and convergence guarantees of the pro-

posed method makes it a potential candidate for imaging. Thus, its application on

more realistic data sets is worth exploring. The validation of our method for image

recovery and explicit comparison with other imaging modalities in optical interferom-

etry would be a step closer to reality, promoting our contribution.

Evolution of the model: a fully integrated approach (wide-band full polar-

ization joint calibration and imaging)

An important line of future work involves the merger of polarization imaging with the

hyperspectral imaging modalities. Such developments are of critical interest partic-

ularly for Faraday synthesis [219, 220]. In this respect, noting that the polarization

constraint acts independently at each wavelength, our work can be directly adapted.

Moreover, exploiting the flexibility of the underlying convex optimization framework,

more complex priors can be incorporated to regularize the images in the spectral do-

main [221]. In fact, to further solve for the calibration errors, the adaptibility offered

by our developed self-calibration and imaging algorithm can be leveraged. This would
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involve blending the wide-band polarimetric imaging technique with the calibration

scheme incorporating DIEs/DDEs variation with the observation frequency . We be-

lieve that such an extension of our work to spectral dimension would result into an

invaluable, complete formalism for radio interferometry.
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