
ADAPTIVE ARCHITECTURE-TRANSPARENT POLICY

CONTROL IN A DISTRIBUTED GRAPH REDUCER

by

Evgenij Belikov

Submitted for the degree of

Doctor of Philosophy

Department of Computer Science

School of Mathematical and Computer Sciences

Heriot-Watt University

May 2019

The copyright in this thesis is owned by the author. Any quotation from the report or

use of any of the information contained in it must acknowledge this report as the source

of the quotation or information.

Supervisors

Prof Dr Hans-Wolfgang Loidl, Heriot-Watt University

Prof Dr Greg Michaelson, Heriot-Watt University

Examination Committee

Prof Dr Henrik Nilsson, University of Nottingham

Prof Dr Sven-Bodo Scholz, Heriot-Watt University

Dedicated to my parents

Abstract

The end of the frequency scaling era occured around 2005 as the clock frequency
has stalled for commodity architectures. Thus performance improvements that could
in the past be expected with each new hardware generation needed to originate
elsewhere. Almost all computer architectures exhibit substantial and growing levels
of parallelism, exploiting which became one of the key sources of performance and
scalability improvements. Alas, parallel programming proved much more difficult
than sequential, due to the need to specify coordination and parallelism management
aspects. Whilst low-level languages place the burden on the programmers reducing
productivity and portability, semi-implicit approaches delegate the responsibility to
sophisticated compilers and run-time systems.

This thesis presents a study of adaptive load distribution based on work stealing
using history and ancestry information in a distributed graph reducer for a non-
strict functional language. The results contribute to the exploration of more flexible
run-time-system-level parallelism control implementing a semi-explicit model of par-
allelism, which offers productivity and high level of abstraction by delegating the
responsibility of coordination to the run-time system.

After characterising a set of parallel functional applications, we study the use of
historical information to adapt the choice of the victim to steal from in a work steal-
ing scheduler. We observe substantially lower numbers of messages for data-parallel
and nested applications. However, this heuristic fails in cases where past applica-
tion behaviour is not resembling future behaviour, for instance for Divide-&-Conquer
applications with a large number of very fine-grained threads and generators of par-
allelism that move dynamically across processing elements. This mechanism is not
specific to the language and the run-time system, and applies to other work stealing
schedulers.

Next, we focus on the other key work stealing decision of which sparks that rep-
resent potential parallelism to donate, investigating the effect of Spark Colocation
on the performance of five Divide-&-Conquer programs run on a cluster of up to
256 PEs. When using Spark Colocation, the distributed graph reducer shares related
work resulting in a higher degree of both potential and actual parallelism, and more
fine-grained and less variable thread size. We validate this behaviour by observing
a reduction in average fetch times, but increased amounts of FETCH messages and
of inter-PE pointers for colocation, which nevertheless results in improved load bal-
ance for three of the five benchmark programs. The results show high speedups and
speedup improvements for Spark Colocation for the three more regular and nested
applications and performance degradation for two programs: one that is excessively
fine-grained and one exhibiting limited scalability. Overall, Spark Colocation ap-
pears most beneficial for higher numbers of PEs, where improved load balance and
higher degree of parallelism have more opportunities to pay off.

In more general terms, we show that a run-time system can beneficially use his-
torical information on past stealing successes that is gathered dynamically and used
within the same run and the ancestry information dynamically reconstructed at run
time using annotations. Moreover, the results support the view that different heuris-
tics are beneficial for applications using different parallelism patterns, underlining
the advantages of a flexible architecture-transparent approach.

Acknowledgments

I am overwhelmed thinking about all the people who enriched my life, helped

and influenced me in many different ways. Alas I am able to only mention a few.

I am grateful to Hans-Wolfgang and Greg for offering me the opportunity to

undertake this research project and for their patience, guidance and crucial technical

advice as well as detailed comments on countless drafts. Thanks to Henrik and Bodo

for taking on the examination and for helpful comments that have significantly

improved the thesis. Any remaining errors and poor prose are my own.

Thanks to Kons, Prabh, Akis, who not only shared our office, but also keen

interest in parallelism and their friendship. Organising the AiPL’14 Summer School

was fun, but also a lot of work. During my time at HWU I was fortunate to meet

Hans-Nikolai, Max, Stuart, Kevin, Franta – thanks for many pub outings and board

game nights. I am also grateful to friends and colleagues at MACS who provided a

stimulating environment, in particular, Rob, Manuel, Phil, and Artem. Thanks to

Daniel, Tim, Stuart, Gavin and Matt who taught me lots and contributed to the

enjoyment of my visit at Oracle Labs in Cambridge. Thanks to David for unique

leadership style and for Andy for great joint work on some among the various Data

Lab projects. I am grateful to SICSA for the initial funding. Please check out

and consider contributing to The Carpentries initiative that aims at teaching basic

computational skills and best practices to researchers.

Thanks to all the different interest groups that offer great activities for balance:

HWUMC – for epic days out in the mountains, my Jiu Jitsu family for giving

hugs and throwing me into the air, Michael and Andy who share with me Systema,

something you have to try for yourself, Rhubaba Gallery and Studios – for offering a

refreshing programme of events over the years – extra shout out to the Situationist

Three-Sided Football League. Friends from Berlin – Julian, Linda, Jonas, Markus,

Jenny, Chris, among many others, I miss you all! Thanks to Siân for love and

companionship over those years, and for help with the figures in Chapter 3. I am

also immensely grateful to my family for continuous unconditional love and support!

i

Contents

1 Introduction 1

1.1 Parallelism, Programmer Productivity and Performance Portability . 2

1.2 Semi-Explicit Parallel Functional Programming 4

1.3 Adaptive Architecture-Transparent Control of Parallelism 5

1.4 Contributions and Authorship . 7

1.5 Outline . 9

2 Background 10

2.1 Parallel Architectures . 11

2.1.1 Shared-Memory Architectures 12

2.1.2 Distributed-Memory Architectures 13

2.1.3 Heterogeneous Architectures 14

2.1.4 Implications for Language Design and Implementation 15

2.2 Parallel Functional Programming . 16

2.2.1 Concurrency and Parallelism 17

2.2.2 Why Parallel, Why Functional 17

2.2.3 Fundamental Concepts . 18

2.2.4 Coordination Aspects . 20

2.2.5 Strict versus Non-Strict Semantics 23

2.2.6 Parallel Languages and Abstractions 24

2.2.7 Applications . 29

2.3 Implementing Parallel Functional Languages 29

2.3.1 Approaches to Evaluation . 29

2.3.2 Abstract Machines . 31

ii

2.3.3 Parallel and Distributed Graph Reduction 32

2.4 Adaptive Control of Parallelism . 34

2.4.1 Load Distribution . 34

2.4.2 Scheduling . 36

2.4.3 Memory Management . 37

2.4.4 Communication . 38

2.4.5 Granularity Control . 39

2.4.6 Run-Time System Comparison 40

2.5 Summary . 41

3 Graph Reduction on a Unified Machine Model 43

3.1 Language Overview . 43

3.1.1 Haskell Extension for Semi-Explicit Parallelism 44

3.1.2 Evaluation Strategies . 46

3.1.3 Graph Reduction . 48

3.1.4 Unified Machine Model . 50

3.2 RTS Components . 51

3.2.1 Thread Management . 53

3.2.2 Communication Management 54

3.2.3 Memory Management . 57

3.2.4 Workload Management . 58

3.3 Policies and Mechanisms . 59

3.3.1 Scheduling . 60

3.3.2 Granularity Control . 62

3.3.3 Data Locality . 63

3.3.4 Load Balancing . 67

3.4 Adaptivity . 71

3.4.1 Monitoring and Tuning Classification 72

3.4.2 Parameter Selection . 74

3.4.3 Tuning GUM . 75

3.5 Summary . 76

iii

4 Characterisation of Parallel Functional Applications 78

4.1 Application Characterisation Studies 78

4.2 Parallel Applications . 80

4.2.1 Divide and Conquer . 80

4.2.2 Data Parallelism . 82

4.3 Application Characterisation . 83

4.3.1 Experimental Design . 84

4.3.2 Performance and Scalability 85

4.3.3 Granularity . 88

4.3.4 Memory Use and Garbage Collection 90

4.3.5 Communication . 94

4.4 Discussion . 95

5 History-Based Work Stealing 99

5.1 Using Monitored Historical Information in Work Distribution Decisions100

5.2 Implementing the RTS Extension . 103

5.3 Empirical Evaluation . 104

5.3.1 Methodology . 105

5.3.2 Target Platform . 106

5.3.3 Benchmark Applications . 106

5.3.4 Results . 107

5.3.5 Evaluation . 114

5.4 Discussion . 116

6 Colocation of Potential Parallelism 119

6.1 Design . 120

6.2 Implementation . 123

6.2.1 Spark Selection . 124

6.2.2 Matching Function . 125

6.2.3 Packet Format . 125

6.2.4 Profiling . 125

iv

6.3 Performance Evaluation of Spark Colocation 126

6.3.1 Methodology . 126

6.3.2 Target Platform . 127

6.3.3 Benchmark Applications . 127

6.3.4 Results . 128

6.4 Discussion . 152

7 Conclusion 154

7.1 Summary . 154

7.2 Limitations . 157

7.3 Future Work . 158

Bibliography 160

A Applications and Measurements 186

A.1 Source Code . 186

A.2 Message Counts . 186

A.2.1 History-Based Stealing . 186

B Implementation Details 190

B.1 Compile and Run-Time Flags . 190

B.2 Extending Victim Selection . 192

B.3 Extending Spark Selection . 194

B.4 Extending the Profiling Component 196

B.4.1 Enriching Cumulative Statistics with Detailed Message Counts 196

B.4.2 Per-Thread Granularity Profiles 198

v

List of Tables

2.1 Overview of GUM and Related Systems 41

3.1 GUM’s Message Types . 57

3.2 Temporal Relation between Monitoring and Tuning 72

3.3 A Selection of Observable and Tunable Parameters 75

4.1 Parallelism Degree: Actual vs Potential 87

4.2 Application Characteristics using GUM on 64 PEs 96

5.1 Overview and Interpretation of the Stored Historical Information . . 102

5.2 Summary of benchmark applications 107

5.3 Run Times (in seconds) and Absolute Speedups 108

5.4 Summary of Sent Messages (on 256 PEs) 115

5.5 Summary of Message Ratios (on 256 PEs) 115

6.1 Applications Overview . 127

6.2 Application Speedups on 256 PEs . 128

6.3 Spark Counts for Benchmarks on 256 PEs 144

6.4 Thread Counts for Benchmarks on 256 PEs 144

6.5 Summary of Fetching Behaviour on 256 PEs 150

A.1 Summary of Sent Messages for parfib 187

A.2 Summary of Sent Messages for coins 187

A.3 Summary of Sent Messages for sumEuler 188

A.4 Summary of Sent Messages for parfibmap 188

A.5 Summary of Sent Messages for parSEmap 189

vi

B.1 Commonly Used Compile Flags . 190

B.2 Commonly Used Run-Time Flags . 191

B.3 GUM’s Debugging Output Options 191

vii

List of Figures

3.1 Graph Reduction Example . 48

3.2 An Overview of the GpH Compilation Pipeline 51

3.3 Thread States and Transitions . 53

3.4 Fetching Protocol . 56

3.5 Spark States . 62

3.6 Generic Heap Object Layout . 64

3.7 GUM’s Virtual Shared Heap (from [30]) 65

3.8 GUM’s Graph Packing (from [30]) . 66

3.9 Single-Hop Successful Fishing Attempt 69

3.10 Multi-Hop Successful Fishing Attempt 70

3.11 Unsuccessful Fishing Attempt . 70

3.12 GUM’s Control Model . 71

4.1 Application Execution Times (lower is better) 86

4.2 Application Scalability (higher is better) 86

4.3 Distribution of Thread Run Times in ms (GUM vs SMP on 48 PEs) . 89

4.4 Distribution of Thread Run Times in ms (GUM vs SMP on 48 PEs)

(contd.) . 90

4.5 Garbage Collection Overhead . 91

4.6 Allocation Rates . 92

4.7 Heap Residency . 93

4.8 Global Address Table Residency (Heap Fragmentation) 93

4.9 Communication Rate Comparison for GUM 94

5.1 parfib Summary of Execution Times 109

viii

5.2 coins Summary of Execution Times 110

5.3 sumEuler Summary of Execution Times 111

5.4 parfibmap Summary of Execution Times 112

5.5 parSEmap Summary of Execution Times 113

6.1 Example of Potential for Colocation 120

6.2 Spark Ancestry Encoding Example 122

6.3 Spark Colocation: Runtimes (log scale) 129

6.4 Speedup Change in % for SC (higher is better) 130

6.5 Spark Colocation: Speedups . 131

6.6 Spark Colocation: parfib Speedups 131

6.7 Spark Colocation: parpair Speedups 132

6.8 Spark Colocation: sumeuler Speedups 132

6.9 Spark Colocation: worpitzky Speedups 133

6.10 Spark Colocation: minimax Speedups 134

6.11 Event-Based Load Balancing Per-PE Profile Comparison for parfib

PEs 1-64 out of 128 . 136

6.12 Event-Based Load Balancing Per-PE Profile Comparison for parfib

PEs 65-128 out of 128 . 137

6.13 Event-Based Load Balancing Per-PE Profile Comparison for parpair

PEs 1-64 out of 128 . 138

6.14 Event-Based Load Balancing Per-PE Profile Comparison for parpair

PEs 65-128 out of 128 . 139

6.15 Event-Based Load Balancing Per-PE Profile Comparison for sumeuler

PEs 1-64 out of 128 . 140

6.16 Event-Based Load Balancing Per-PE Profile Comparison for sumeuler

PEs 65-128 out of 128 . 141

6.17 Event-Based Load Balancing Per-PE Profile Comparison for worpitzky

PEs 1-64 out of 128 . 142

6.18 Event-Based Load Balancing Per-PE Profile Comparison for worpitzky

PEs 65-128 out of 128 . 143

ix

6.19 Sparks per PE on 256 PEs . 145

6.20 Threads per PE on 256 PEs . 145

6.21 Sparks and Threads per PE on 256 for worpitzky 146

6.22 Granularity of parfib on 256 PEs . 148

6.23 Granularity of parpair on 256 PEs 148

6.24 Granularity of sumeuler on 256 PEs 149

6.25 Granularity of worpitzky on 256 PEs 149

6.26 Spark Colocation: FISH Message Counts (log scale) 151

6.27 Spark Colocation: Median Global Addresses (log scale) 152

x

Chapter 1

Introduction

Up to around the year 2005 new generations of commodity processors have deliv-

ered immediate performance gains through increased clock frequencies. Since then,

hardware performance improvements are achieved through increasing the number of

cores per processor. Exploiting these cores requires parallel program execution.

Alas, parallel programming is in general more difficult than sequential, because

of the added complexity of specifying coordination and parallelism management

aspects, such as partitioning, mapping, communication, thread management, gran-

ularity control and load balancing. Whilst low-level languages place the burden

of parallelism control on the programmers thereby reducing productivity, systems

for automated parallelism delegate the responsibility to sophisticated compilers and

run-time systems.

This thesis tackles the challenge of adaptive semi-explicit parallelism control,

where most coordination aspects are handled by the run-time system (RTS) for dis-

tributed execution of a high-level parallel functional language with non-strict eval-

uation: Glasgow parallel Haskell (GpH). This RTS implements distributed graph

reduction using a virtual shared heap abstraction across a distributed memory ar-

chitecture, whilst also supporting shared-memory architecture.

This thesis contributes to the state of the art in load distribution by developing

and evaluating novel RTS policies and mechanisms that use system-level information

in a distributed graph reducer to improve application performance. In particular,

we focus on historical information regarding successes of work requests and on infor-

1

Chapter 1: Introduction

mation about ancestry representing the relationship between tasks and sub-tasks.

The results demonstrate the benefits of more flexible architecture-transparent

system-level parallelism control for a class of run-time systems implementing high-

level parallel programming models. These models offer productivity and high level

of abstraction by delegating the responsibility of coordination to the RTS, whilst

ensuring scalability beyond a single machine by supporting distributed evaluation,

with focus on a commodity cluster platform using a relatively fast non-specialised

local network.

In parallel programming there is an inherent tension between performance, pro-

ductivity and portability that involves a trade-off. Although fully implicit paral-

lelism may be attainable in a restricted setting and in the longer run, whilst there

always be demand for explicit programming to tune for maximum performance, we

argue the tension should be resolved giving more weight to programmer produc-

tivity, whilst maintaining portable performance as much as possible in many cases.

Thus, from the language design angle, we advocate the use of a high-level functional

language, which offers large amounts of fine-grained parallelism. Whilst from the

systems design point of view, we follow an adaptive and architecture-transparent

approach, which provides the necessary flexibility. At the same time we believe

in the value of diversity of approaches in helping discover improved solutions and

therefore explore a less well-researched direction.

1.1 Parallelism, Programmer Productivity and Per-

formance Portability

In the information age, our globalised society critically relies on increasingly com-

plex and computationally demanding and distributed systems comprising diverse

software and hardware components. Effectively and efficiently exploiting modern

parallel architectures is key for improving application performance and scalability,

for instance in areas such as Large-Scale Data Analytics and High-Performance

Computing [12, 208]. This is due to a halt of the increase in CPU clock frequencies

2

Chapter 1: Introduction

in commodity architectures [229], because of fundamental physical limitations, such

as heat dissipation, minituarisation and current leakage [165]. Since then hardware

vendors managed to keep up with Gordon Moore’s prediction [184] that the number

of transistors would double roughly every two years by packaging more cores onto

the chips. However, this no longer translates into automatic performance gains as

the software often fails to fully exploit the available resources.

Mainstream parallel languages focus on explicit coordination, which allows maxi-

mum control over synchronisation between tasks and data transfer, but also imposes

the responsibility of specifying coordination on the programmer, thus reducing pro-

ductivity. Even worse, these programs are prone to a new class of errors that are no-

toriously difficult to detect and correct, such as race conditions and deadlocks [149],

whilst the results of stateful computations may become non-deterministic. Thus

when programming in such relatively low-level languages, program development

tends to be more time-consuming due to the need to explicitly encode synchroni-

sation and communication, whilst ensuring correctness. Therefore there is a need

for parallel programming models with higher levels of abstraction to tame the com-

plexity and allow more flexibility to adapt to changing architectures and execution

environment to maintain high performance.

Exploiting parallelism is inherently more difficult as modern computer archi-

tectures are increasingly diverse: hierarchical with non-uniform memory access

(NUMA), e.g. as in multi-socket machines, and heterogeneous with qualitatively

different processing elements (PEs1) including CPUs, GPUs, co-processors as well

as DSPs and FPGAs [190, 43]. Most of these architectures have different trade-offs,

bottlenecks and programming models for specifying the coordination aspects of par-

allel execution such as identification of parallelism, partitioning and aggregation to

specify suitable granularity, work distribution, communication and synchronisation,

underlining the need for adaptivity. In this thesis we focus on distributed-memory

architectures in the form of commodity clusters, which offer an affordable and scal-

able high-performance platform. Cloud Computing and Heterogeneous Computing,

though popular, remain out of the scope of this work, posing separate challenges.

1here we also use PE as a synonym for an RTS instance that runs on the physical PE

3

Chapter 1: Introduction

1.2 Semi-Explicit Parallel Functional Programming

Functional programming is often cited as beneficial for programmer productivity due

to the declarative style, where the programmer is focused on problem specification

rather than on describing how the problem is to be solved as a sequence of instruc-

tions [16, 244, 252]. The high level of abstraction is supported by key language fea-

tures such as higher-order functions, polymorphism, and type classes [84, 126, 121].

In particular due to the Church-Rosser property [63], functional languages appear

suitable for exploitation of fine-grained parallelism as independent sub-expressions

can be evaluated in any order, especially in parallel, without changing the resulting

value. Although some care is required to avoid changing the program’s termination

behaviour by ensuring that parallel expressions are shared with the remainder of the

computation and correct evaluation order is preserved. Moreover referential trans-

parency [227] and isolation of side-effects, enables the programming model that is

deterministic by design, guaranteeing the absence of race conditions and deadlocks,

a class of errors that is very difficult to diagnose and eliminate [149]. However im-

plementing such a language may still require the use of some unsafe mechanisms at

the systems level shifting the difficulty away from application-level programmers.

This facilitates incremental parallelisation, where sub-expressions can be grad-

ually marked for parallel evaluation without affecting the final result, and allows

for sequential debugging of parallel programs, where the program can be debugged

using existing sequential debugging tools with parallelism turned-off and the result

of parallel execution is deterministically2 guaranteed to be the same [109].

Similarly, a high-level mostly-implicit approach to parallelism can provide a uni-

fied architecture-independent programming model where the programmer is focused

on specifying the computation, whereas the coordination is mostly managed by the

compiler and the RTS. Compared to explicit approaches, it increases system-level

adaptive flexibility for tuning to diverse target architectures and applications.

Moreover, additional flexibility can be obtained through the use of advisory

rather than mandatory RTS policies offering opportunities for adaptive tuning. This

2however the performance may differ substantially, requiring parallel profiling for tuning

4

Chapter 1: Introduction

distinction is not specific to functional programming languages, many implementa-

tions of which actually use mandatory policies. The latter policies are inflexible

due to forcing a particular decision, whereas the former leave the final decision to

the compiler and the RTS, which may utilise dynamic system information to make

better decisions depending on the given situation at run time, whilst potentially

disregarding any hints provided by the programmer.

Further advantage of the functional approach to parallel programming results

from the use of HOFs to capture common parallelism patterns in a composable way

facilitating the implementation of algorithmic skeletons [66, 206, 103].

As most of the responsibilities are shifted to the RTS, the challenge is thus the

efficient implementation of adaptive parallelism control inside a language RTS.

1.3 Adaptive Architecture-Transparent Control of

Parallelism

Due to high complexity of both software and hardware architectures, explicitly en-

coding thread synchronisation and data exchange patterns as well as thread place-

ment is deemed inhibitively difficult in many cases, as it becomes more time and

resource consuming as well as less likely to be close to the optimal solution, e.g. min-

imal run time, within the rapidly growing multi-dimensional optimisation space.

A relevant observation is that in many cases the software tends to outlive the

hardware it initially used to be run on. Often there is a significant difference between

target architectures of different generations and vendors. For example many HPC

platforms used flat clusters in the past, whilst currently most HPC clusters are

hierarchical due to use of NUMA nodes. Thus changing the underlying platform

requires re-tuning, which is a tedious and ad hoc process based on deeply specialist

knowledge. This may result in less portable code and performance degradation once

the assumptions made in the past no longer hold.

To achieve high programmer productivity, architectural details should be hidden,

as much as possible, within a compiler and the run-time system, whilst allowing some

5

Chapter 1: Introduction

architecture awareness at those lower levels to enable adaptation to architectural and

system-level changes. Additonal flexibility results in additional overhead that should

be kept minimal.

Our Approach: We tackle the challenge of efficient semi-explicit parallel pro-

gramming at the RTS level, because at this level most relevant information is avail-

able and can directly influence the evaluation of the running application. Architecture-

transparency and adaptivity offer the needed flexibility of control of parallelism

without sacrificing performance, whilst an expressive high-level language caters for

the productivity needs.

Moreover, advisory parallelism is used for additional flexibility in granularity

control to better adapt the degree of parallelism to the given static number of PEs

and dynamic application characteristics. Potential parallelism is represented in the

RTS, allowing it to be either turned into actual parallelism in the form of light-weight

threads if idle PEs are available, or sequentially executed otherwise.

We use a random work-stealing mechanism for load distribution as the baseline

for comparison [38, 237]. It has grown in popularity over the last two decades because

of its scalability, which is due to its decentralised core algorithm that requires no

global knowledge. However, due to randomisation the operational behaviour is non-

deterministic, even though the delivered results are deterministic, which complicates

the analysis and requires in-depth system profiling.

We develop and evaluate adaptive heuristics and mechanisms that can respond

to changing conditions within the same application run. In particular, load balance

can be improved without directly monitoring the load. Adaptivity enables the RTS

to react to phase changes within the application, to input-dependent differences that

are difficult to anticipate in irregular applications, and to variations in parallelism

degree during the execution by utilising historical system-level information, as well

as information on the ancestry of parallelism recovered during compilation and dy-

namically reconstructed by the RTS. Historical information can help de-randomise

work-stealing behaviour when parallelism generation patterns are spatiotemporally

stable, whilst co-locating related parallelism is aimed at improving load balance.

6

Chapter 1: Introduction

1.4 Contributions and Authorship

This thesis makes the following contributions:

1. The design, implementation and empirical evaluation of a Spark Colocation

mechanism for allocating advisory parallelism to improve application perfor-

mance through better load balance and locality. The mechanism uses ancestry

information which encodes the location of potentially parallel computations

(sparks) in the computational graph making it available to the RTS, which

uses this information by selecting related sparks for donation in response to

work requests based on maximum prefix matching on the encodings.

2. The design, implementation and empirical evaluation of a History-Based Work

Stealing mechanism, which uses partial monitored information on past stealing

successes and failures within the same application run to select PEs to request

work from.

3. The characterisation of several small- to medium-sized applications written

in a non-strict parallel functional language using end- as well as means-based

metrics on a multi-core and a cluster of multi-cores. This demonstates scala-

bility limitations of aggressive load distribution and provides the rationale for

the introduced mechanisms.

4. The comprehensive survey of support for distributed graph reduction and an

overview of language run-time systems with support for adaptive parallelism

control, as well as the introduction of a classification scheme for RTS mecha-

nisms for adaptive management of parallelism.

The work presented in this thesis is based upon and extends several publications

and technical reports. Chapter 2 includes information from a technical report sum-

marising high-level parallel programming models [24] (TR #1 in the list below) and

from an overview paper covering language run-time systems [23] (Paper #3). The

material reported in Chapter 4 has been published [25] (Paper #2), whilst results

presented in Chapter 5 extend an earlier publication [21] (Paper #1). A paper based

7

Chapter 1: Introduction

on the results from Chapter 6 has been accepted for publication [26] (Paper #4).

Some of the implementation details overlap with information provided in a compan-

ion technical report [22] (TR #2). All of the publications are available online as

Open Access documents. The full list is provided below.

Publications

1. E. Belikov. History-based adaptive work distribution. In Proc. of Imperial

College Computing Student Workshop, volume 43 of OpenAccess Series in In-

formatics (OASIcs), pages 3–10. Leibniz-Zentrum fuer Informatik, 2014

2. E. Belikov, H.-W. Loidl, and G. Michaelson. Towards a characterisation of

parallel functional applications. In Gemeinsamer Tagungsband der Workshops

der Tagung Software Engineering, Dresden, Germany, pages 146–153, 2015;

as the first author, the author co-designed the study, run the experiments,

analysed and evaluated the data, and wrote the bulk of the paper.

3. E. Belikov. Language Run-time Systems: an Overview. In Proc. of Impe-

rial College Computing Student Workshop, volume 49 of OpenAccess Series in

Informatics (OASIcs), pages 3–12. Leibniz-Zentrum fuer Informatik, 2015

4. E. Belikov, H.-W. Loidl, and G. Michaelson. Colocation of potential parallelism

in a distributed adaptive run-time system for parallel Haskell. In Proceed-

ings of the International Symposium on Trends in Functional Programming,

Gothenburg, Sweden, pages 1–19. Springer, 2018; as the first author, the au-

thor co-developed the idea, run the experiments, analysed and evaluated the

data, and wrote the bulk of the paper.

Technical Reports

1. E. Belikov, P. Deligiannis, P. Totoo, M. Aljabri, and H.-W. Loidl. A survey

of high-level parallel programming models. Technical Report HW-MACS-TR-

0103, Dept of Computer Science, Heriot-Watt University, Dec. 2013; as the

first author, the author initiated the effort, acted as lead author for sections

1, 2, 3, in particular 6 (on run-time systems), 8, and edited the whole paper.

8

Chapter 1: Introduction

2. E. Belikov. Hitchhiker’s guide to GUM hacking. Technical Report HW-MACS-

TR-0112, Dept of Computer Science, Heriot-Watt University, Dec. 2015

1.5 Outline

The structure of the rest of the thesis is as follows:

• Chapter 2 provides the context based on literature from the areas of parallel

architectures, parallel programming models, parallel functional programming,

parallel run-time systems and adaptive parallelism management.

• Chapter 3 describes distributed graph reduction in the Graph reduction on a

Unified machine Model (GUM) RTS that is used to execute Glasgow parallel

Haskell programs, its abstract model, design decisions, and implementation

details related to key policies and mechanisms. In particular, the focus is on

load balancing and work stealing. Additionally, an adaptivity classification

scheme is introduced.

• Chapter 4 investigates the characteristics of parallel functional applications

and, building on Chapter 3, gives the rationale for extensions for the default

load balancing mechanism.

• Chapter 5 introduces and evaluates History-Based Stealing where the choice

of PEs to steal from is no longer completely random, but biased based on

the historical information on past stealing successes to improve future stealing

success rate.

• Chapter 6 discusses the design, implementation and evaluation of Spark Colo-

cation, that is colocation of potentially parallel work (sparks) using the knowl-

edge about the location of the spark within the computation graph at run time

to decide which spark to donate, given the ancestry of the requesting thread.

• Chapter 7 concludes, discusses the limitations of this work and suggests several

directions for future research.

9

Chapter 2

Background

This chapter presents relevant background information on concepts related to adap-

tive architecture-transparent control of semi-implicit parallelism including current

and historical developments, using information from a co-authored technical re-

port [24], among other literature.

We focus on the following key areas. We begin with a discussion of parallel archi-

tectures in Section 2.1, including Flynn’s taxonomy, Skillicorn’s taxonomy, shared-

memory as well as distributed-memory architectures, uniformity, hierarchy and het-

erogeneity, and summarise the perceived consequences of the recent architectural

trends for language design and implementation.

Section 2.2 describes different high-level approaches to exploiting parallelism

with a focus on parallel functional programming languages, classifies approaches to

coordination based on the level of implicitness, and contrasts different languages

and libraries. We also discuss key concepts such as strictness and laziness.

In Section 2.3, we discuss practical implementation challenges associated with

the non-strict functional approach and abstract-machine-based compiled graph re-

duction in a distributed setting. A detailed overview of the GUM RTS for Haskell

is provided in Chapter 3.

Finally in Section 2.4, we focus on adaptivity in run-time systems, covering

coordination policies and mechanisms such as scheduling, load balancing, memory

management, communication, and granularity control.

10

Chapter 2: Background

2.1 Parallel Architectures

This section summarises the rapidly changing landscape of parallel architectures.

In particular, we focus on distributed-memory architectures which offer high levels

of scalability beyond a single node [208]. Detailed discussion of GPUs [190] and

FPGAs [143] is outside of the scope of this thesis.

Computer architecture describes the organisation and the capabilities of the pro-

cessing elements (PEs), memory units, controllers and the interconnection network.

The first digital computers had only a single central processing unit (CPU) that

could process a single stream of data, where code and data shared the same mem-

ory. This is also called the von Neumann architecture to honour one of the major

pioneers of Computing Science [247]. Subsequently, different designs were explored,

and Flynn established a taxonomy to classify computer architectures based on the

number of instruction and data streams [87, 88, 89], single or multiple, resulting in

four classes: SISD, SIMD, MISD, and MIMD.

Although criticised for its bottleneck between the processor and memory that

limits system performance [16, 258], von Neumann or SISD architecture was popu-

lar for a long time until frequency scaling became economically unprofitable around

2005 due to fundamental physical limitations [229]. In particular continued mini-

tuarisation and wire fan-out, needed to further increase the number of transistors,

resulted in higher current leakage, and heat dissipation issues, because of increased

power needs, also referred to as power wall [40, 165]. The effect was mitigated to

some extent through the use of gradually more sophisticated pipelining, pre-fetching

and caching mechanisms and out-of-order execution, but it couldn’t be eliminated.

However, Flynn’s classic taxonomy is now no longer sufficient to distinguish

between different architectures, as most modern architectures fall into the same

MIMD category according to Flynn. Graphics Processing Units (GPU) provide

a prominent example of a SIMD architecture, and are now increasinly used for

general-purpose computation [190]. The rather esoteric MISD architecture, e.g.

systolic arrays [142], found use in Aerospace [53] due to increased fault tolerance.

More recently, Google has released the Tensor Processing Unit (TPU) [210] designed

11

Chapter 2: Background

around a 256 × 256 systolic array of matrix multipliers to accelerate computations

in Convolutional Neural Networks.

Flynn’s Taxonomy was extended from 4 to 28 classes by Skillicorn [222] to in-

crease its discriminatory power based on explicit assessment of coupling between

processors and using state machine view of processors at finer granularity, but turned

out too complex to become widespread.

In practice, the MIMD category is commonly sub-divided into distributed- and

shared-memory architectures based on the accessibility of the physical memory [78].

Another distinction is made between uniform and non-uniform memory-access for

the latter (UMA and NUMA repectively), distinguished by the topology and speed

of interconnect as well as on computational power of the nodes in the network.

Furthermore, the requirement for and implementation of cache coherence can be

used as an additional distinguishing characteristic [225]. Finally, with increasing

heterogeneity, further features can be used such as the number and type of processing

units. Next we discuss the main sub-classes.

2.1.1 Shared-Memory Architectures

Shared-memory architectures provide a unified view of a single address space to all

PEs and are designed so that PEs have access to all physical memory without the

need to send off-node messages over a network. The advantage of such architec-

tures is that often interconnect is orders of magnitude faster than using an off-node

network connection.

From the programming model angle, a global memory view was deemed conve-

nient as it allows for every thread to access any memory region, but gradually explicit

synchronisation became recognised as detrimental for performance and programmer

productivity, because of contention and locking granularity issues, as well as due to

non-deterministic errors [189, 149]. Scalability is limited due to the global view of

memory which leads to increasing overheads for maintaining cache coherence, i.e. a

consistent view of memory across all the PEs [225].

Uniform Memory Access (UMA) architectures ensure that memory access results

12

Chapter 2: Background

in the same costs no matter from which PE and which memory region is accessed.

This category constitutes a sub-category of shared-memory architectures and sub-

sumes Symmetric Multiprocessors (SMPs). With growing numbers of PEs it proved

challenging to maintain uniform access which resulted in the Non-Uniform Memory

Access (NUMA) architectures.

NUMA architectures are now more common as memory controllers are placed

closer to and integrated within the processors [144] and are more cost-effective in

production at the price of sacrificing uniformity.

Modern server-class architectures exhibit tens of cores spread across multiple

sockets with several cores sharing a socket. The access and communication cost

may differ by a factor of two or more depending of whether PEs are sharing a

socket and whether nearby or further-away memory bank is accessed. This non-

uniformity introduces non-trivial process placement trade-offs making data locality

an increasingly important concern [151]: even more so in a distributed setting where

communication cost is very high compared to computation.

2.1.2 Distributed-Memory Architectures

Distributed-memory architectures avoid sharing memory resulting in a more scalable

design. PEs and networked nodes have separate physical memory and communicate

via message passing, which reduces coupling and avoids cache coherence issues.

However, it is possible to implement software abstractions that hide communication

and synchronisation on top of the architecture such as virtual shared-memory and

the Partitioned-Global-Address-Space (PGAS) [254], which can provide an illusion

of shared memory.

A cluster comprising multiple nodes which could contain several PEs each is a

widely used distributed architecture. For instance Beowulf clusters [209] gained pop-

ularity due to their favourable cost-performance ratio and the off-the-shelf availabil-

ity of software and hardware components. Similar to Networks-of-Workstations [5],

clusters often use relatively slow networks such as Ethernet to establish local area

and wide-area network connections. Computational Grids [93, 92, 91, 94], Rackscale

13

Chapter 2: Background

systems [68, 112], Cloud systems [8] and most Supercomputers (87.4% of Top500 list

entrants in June 2018 [76]) utilise clusters of networked machines at the underlying

infrastructural level, often using a fast interconnect such as Infiniband or Myrinet,

which is more expensive, but offers an order of magnitude lower latency and higher

bandwidth than Ethernet.

Although we run our experiments on a mainstream distributed architecture, we

briefly discuss trends towards heterogeneity for completeness as such architectures

are increasingly more commonly used.

2.1.3 Heterogeneous Architectures

As described above, most systems are hierarchical to some extent in terms of commu-

nication costs. Accessing files from a hard disk and communicating over an off-chip

network is orders of magnitude slower than accessing working memory or on-chip

cache [117], with recent improvements on both sides through Solid State Disk (SSD)

and Non-Volatile Memory (NVM) technologies. Additionally, modern architectures

are becoming more heterogeneous with respect to the number and capabilities of the

avalialble PEs.

For example, chips such as IBM Cell BE found in Sony’s Playstation contain

both conventional cores and synergistic processing units (SPEs) that use RDMA

for data transfer [57]. Similarly, ARM’s big.LITTLE features both more traditional

CPUs and several smaller and more power-efficient cores [132]. On the other hand

companies such as Tilera and Parallela are promoting tiled architectures using ho-

mogeneous cores [207, 106].

Another example is Intel’s Xeon Phi, a 60-core general-purpose co-processor sup-

porting a typical x86 instruction set with extensions for vectorisation [59]. Despite

being connected via PCIe (as most GPUs are), this allows MPI to be used as com-

munications library. It offers higher maximum performance than comparable Xeon

processors, but to fully exploit it the code needs to be vectorised [133, 59].

GPUs have recently gained attention as a power-effcient way to improve parallel

performance of suitable data-parallel application. Speedups of 100x and even 1000x

14

Chapter 2: Background

over CPU performance have been reported [150, 104]. In particular, independent

data-parallel computationally intensive workloads that operate on floats or doubles

benefit from massively parallel execution.

Other processors are specialised for particular applications1 such as for Network

Traffic Monitoring and Digital Signal Processing (DSPs), Fast Fourier Transform

or Cryptography. Depending on the applciation area, such solutions are potentially

available off-the-shelf, despite being costly to build and maintain.

Some architectures, such as Field Programmable Gate Arrays (FPGAs) [143],

support the possibility to reprogram the functionality and grouping of gate arrays

to suit application demands and are suitable for applications that use integer-based

and logic operations, with cores running at lower frequency than traditional CPUs.

Novel experimental architectures have been proposed based on the System-on-

Chip design [257], including the key components on the die area thus resulting in

very fast intrachip communication able to reach higher throughputs. Additionally,

Dark Silicon refers to the inability to simultaneously power on all the available

transistors [80], so it is conceivable that in the future architectures will to some

extent have the ability to change on-the-fly based on application requirements.

2.1.4 Implications for Language Design and Implementation

As almost all architectures are now parallel, and all large-scale architectures are

distributed to overcome scalability limitations of single-node solutions, there is a

need for native parallelism and distribution support at both the language design

and implementation levels.

Additionally, increasing architectural diversity substantially complicates manual

performance tuning. From this perspective, a RTS appears well-suited to provide

adaptive yet mostly transparent support for parallelism and distribution. For exam-

ple, the RTS can transparently arrange communication and synchronisation without

the need for the programmer to intervene, whilst adapting the number of light-weight

threads based on monitored system load. Next, we describe parallel programming

1also called Application-Specific Integrated Circuits or ASICs

15

Chapter 2: Background

languages for distributed parallel architectures, with particular focus on non-strict

functional languages.

2.2 Parallel Functional Programming

This section describes parallel functional programming, a increasingly more popular

approach with mathematical foundations in the λ-calculus [62, 19, 18] that offers a

high level of abstraction, whilst being suitable for safe and flexible exploitation of

parallelism inherent in many applications. We also discuss distributed computing

as a way to improve application scalability and utilise powerful large-scale parallel

architectures.

Moreover, we argue that high-level languages can help battle increasing software

complexity by avoiding placing the burden of explicitly specifying coordination deci-

sions on application-level programmers. This can both increase productivity, which

is critical if we are to meet the growing societal computational demands, and avoid

overspecification, which we claim can be considered harmful given the substantial

architectural diversity and the disadvantages of manual tuning.

First, we review definitions of concurrency and parallelism and discuss the ad-

vantages of the functional approach, as well as its fundamental properties that are

beneficial for exploiting parallelism. Next, we discuss coordination aspects relevant

for efficient exploitation of parallelism. Furthermore, we describe key differences

between the strict and non-strict semantics as we use a non-strict language in our

studies. Finally, we discuss several prominent functional programming languages

and the abstractions they support, including language features, libraries, skeletons,

and patterns, with a focus on expressing parallelism. The discussion of implemen-

tation and distributed execution follows in Sections 2.3, whilst adaptive parallelism

management is reviewed in Section 2.4.

We exclude detailed discussion of imperative and object-oriented as well as logic

parallel programming languages due to the breadth of the area and the relatively

low levels of abstraction of the former languages. Surveys and historical information

on these approaches can be found in the literature [261, 220, 58, 248, 103, 74].

16

Chapter 2: Background

2.2.1 Concurrency and Parallelism

Concurrency and parallelism are related concepts and different definitions may over-

lap, which can lead to confusion. Whereas processes running on a sequential com-

puter need to take turns executing on the single CPU they share, using parallel

hardware enables multiple processes to execute truly simultaneously on different

processors or cores.

On the one hand, the broad definition of concurrency refers to several events

happening without a specified ordering. Thus concurrent processes could proceed

simultaneously, interleaved or sequentially. In particular, if dependencies exist some

order may be imposed for concurrent processes to synchronise. This definition sub-

sumes parallelism, if parallelism is defined as strict simultaneity.

On the other hand, in programming, concurrency is often defined more narrowly

with reference to the execution of threads and as a program-structuring technique to

modularise programs that need to handle multiple tasks. The goal is both modular-

isation and performance by providing responsiveness and asynchronous processing,

e.g. when handling I/O and processing in a GUI, or responding to multiple requests

in a web server.

Moreover, parallelism usually implies the use of parallel architectures. Thus

we define parallelism as simultaneous execution of multiple processes or threads on

physical parallel hardware. The goal of parallelism is performance improvement,

which can manifest itself as decreased runtime, higher output accuracy, or through

the ability to handle larger inputs. The definitions we are using are inspired by

those recently suggested by Marlow [166].

2.2.2 Why Parallel, Why Functional

As most computer architectures are now parallel and many algorithms exhibit some

degree of inherent parallelism, whilst ever larger amounts of data need to be pro-

cessed, the need to exploit parallelism becomes apparent [11]. Otherwise, if poten-

tially parallel algorithms are expressed sequentially, much potential for performance

improvement is wasted and the opportunity to handle larger inputs with respect to

17

Chapter 2: Background

data as well as computation is missed.

In an influential paper [126], Hughes emphasised the suitability of functional

programming as a new kind of “glue” providing new high level features, in partic-

ular higher order functions (HOFs) and lazy evaluation. HOFs are functions that

may take other functions as arguments and return functions as results. Lazy evalu-

ation is also called call-by-need, where an expression’s evaluation is delayed until the

result is demanded by another computation. These features facilitate structuring

of complex programs, modularisation, reuse and problem decomposition as well as

separation of concerns, which is more difficult to achieve in languages with unre-

stricted side-effects. Using HOFs and laziness, programs can be concisely expressed

as a composition of functions working on potentially infinite data structures, as

also advocated by Turner [244]. Furthermore, a powerful type system helps ensure

correctness at compile time.

The functional approach also appears suitable to exploit high-level parallelism in

a structured way by offering higher levels of abstraction resulting in benefits for pro-

grammer productivity, as Hammond eloquently argued in a panel statement [109].

Additionally, a flexible execution environment naturally complements a high-level

language. In particular, using pure functional languages that avoid and isolate side-

effects enables parallel execution of sub-computations, facilitating partitioning and

shifting the challenge to granularity control and load balancing, whilst preventing

deadlocks and race conditions. Moreover, the application can be developed and de-

bugged sequentially and could then run in parallel and deterministically deliver the

same result, whilst taking full advantage of the parallel hardware. This allows for

incremental profiling-based parallelisation, rather than requiring the programmer to

completely rewrite the program.

Next we review the key concepts associated with the functional approach [122].

2.2.3 Fundamental Concepts

Functional programming is mathematically founded on the λ-calculus [19, 18], in-

vented by Church in 1930s to describe effectively computable functions [61, 62],

18

Chapter 2: Background

and can be considered the first universal general-purpose programming language,

despite its appearance well before the first digital computers became operational. It

has been shown to be equivalent to other prominent ways to describe computable

functions – the Turing Machine [242, 241] and general recursive functions [138].

In λ-calculus, a term is an expression that is a variable that refers to a value

or a function, a function application, or an abstraction which results in binding of

free variables. Thus, a program is an expression to be evaluated by applying the

conversion and reduction rules in the context of function definitions. The power of

the λ-calculus arises from the ability of functions to be applied to themselves. There

exist different flavours of the calculi, both untyped and typed.

A key relationship with respect to evaluation order is described by the Church-

Rosser theorem stating that any valid order of reductions will lead to the same

normal form value (where no further reduction is possible), starting from the same

original expression [63], if reduction sequence terminates [19]2. Care must be taken

to ensure termination behaviour is not affected through the chosen evaluation order,

e.g. through the use speculative parallelism that can lead to a more strict evalua-

tion degree than in the sequential non-strict program. In general this facilitates

equational reasoning and is beneficial for exploiting parallelism, if it is possible to

decide which redexes can be evaluated without causing infinite computation [46].

The interested reader may refer to Hudak’s survey [122] and Turner’s account [246]

for a history of functional programming.

Purity is a key concept, which refers to functions with no side-effects that can be

treated like mathematical functions. Imperative languages are focused on mutating

state and allow implicit state changes to potentially global variables at any point

in the program. However in purely functional languages, there is no assignment

operation and with it a whole class of errors is eliminated, making the order of

execution irrelevant for correctness, and avoiding the need for the programmer to

explicitly prescribe the flow of control. Thus such languages exhibit referential trans-

parency [227] and variables can be replaced by the values they denote, enabling the

use of equational reasoning to prove the correctness of optimising transformations.

2in other words it shows that λ-calculus is confluent under β-reductions

19

Chapter 2: Background

Another key concept is currying3, which allows uniform treatment of all functions

as nested function applications of functions of only one argument without loss of

generality. This is possible by expressing a function of arity n as a function applied

to the first argument returning a function of arity n−1. This expects the remaining

arguments, of which it may be partially applied to the first one to return a function

of arity n− 2 and so forth until all arguments are consumed, e.g. f(a, b) = (fa)b.

An important branch of research associated with functional programming is type

theory and practical implementation of type inference, in particular the notable

Hindley-Milner [120, 180] type system developed for ML as a restricted parametric

polymorphic type system for which type inference is decidable. Static strong typing

discipline has been shown to be beneficial by avoiding whole classes of type errors

at compile-time, thus saving debugging effort and cost associated with finding such

errors at run time and in production. The related Curry-Howard isomorphism

suggests that types can act as propositions and programs as proofs. Additionally,

many deep connections exist to the Category Theory branch of mathematics.

Moreover, imperative languages such as C++, C#, Java, JavaScript, and Python

now include lambdas (anonymous functions) as part of their features, with pattern

matching proving more difficult to implement given the semantics of the respective

language.

We discuss strict and non-strict sematics in Subsection 2.2.5. What follows is

the description of the coordination aspects of exploiting parallelism.

2.2.4 Coordination Aspects

The added complexity of parallel programming stems from the need to arrange co-

ordination, including access to shared resources, synchronisation and inter-process

communication. This in addition to computation, which needs to be decomposed

and data to be partitioned and mapped to threads which are in turn mapped to

processors or cores, to enable parallel execution. For example, the popular PCAM

parallelisation methodology by Foster [90], which is independent of the program-

3named after Haskell B. Curry, a prominent logician after whom the language Haskell is named

20

Chapter 2: Background

ming language used, stands for partitioning, communication, agglomeration, and

mapping. These all refer to coordination aspects defining how a task is split into

sub-tasks, which dependencies are present that require communication, and how

tasks can be re-combined to increase granularity and mapped to PEs to minimise

inter-PE communication. Most of the coordination decisions are NP-hard and some

of them reflect direct trade-offs, such as the one between communication and re-

computation. Different approaches to parallelism can be characterised based on the

level of explicitness [223] in expressing coordination aspects, i.e. whether it is the

programmer’s or the system’s responsibility to deal with coordination aspects.

Although they allow for maximum control, low-level programming models, such

as C+MPI, are often fully explicit and require the programmer to specify all coor-

dination aspects in addition to providing a correct solution to the actual problem

in a specific domain. By contrast, higher-level languages, such as parallel functional

programming and skeleton-based approaches, are often semi-implicit by hiding some

of the coordination aspects from the programmer and thus increasing productivity

and allowing the run-time system to flexibly adapt application behaviour to the

changing execution environment and application demands.

Low-level approaches are often prescriptive, requiring mandatory thread creation

when a particular language construct or function for thread creation is used. This

can lead to overspecification of the parallelism degree and evaluation order. One

exampleis manually setting the number for MPI processes. This requires re-tuning

of the application if it is moved to a new target platform with a different number of

PEs or when application parameters are changed, as the original assumptions may

no longer hold. Rapid hardware evolution adds further difficulty to manual tuning

in many cases, emphasising the need for more flexible, automated and adaptive

solutions. Here we focus on the high-level approaches. On the other hand, the

advisory approach to parallelism management, where the user provides non-binding

hints to the RTS, results in additional flexibility by leaving the final decision with

the system, helping to avoid overspecification.

Thus achieving efficient parallel execution is challenging, as all coordination

21

Chapter 2: Background

mechanisms contribute to the parallel overhead [44], which may end up cancelling

out the benefits from exploiting parallelism. Using a high-level approach, this com-

plexity is generally pushed from application-level programmers to system-level pro-

grammers and from application-level code to language implementations and libraries

that can be reused and so application code can benefit from future updates. How-

ever, we acknowledge that in many cases static and explicitly tuned solutions reach

the highest levels of performance, which may justify higher development and main-

tenance costs.

From the point of view of reusability and flexible adaptability, fully implicit

approaches are appealing – sequential code can run in parallel without any extra

effort from the application programmer. However, some degree of explicit tuning

may also be desirable and so far it proved very difficult to achieve scalable implicit

parallelism in practice in a general setting, due to the complexity of the coordination

decisions. Most successful examples are limited to restricted forms of parallelism

such as algorithmic skeletons [66, 206, 103], which encapsulate common parallelism

patterns, or to cases where there are no dependencies. Prominent examples are

Google’s MapReduce [72] for the former, and Monte Carlo simulation [56] for the

latter, and cases that are restricted to certain data structures such as streams or

arrays [178, 214].

Another approach uses a functional intermediate language with rewrite rules to

generate viable versions of a given program and select the best version by profiling,

reporting performance comparable to hand-optimised versions in OpenCL [226].

In the non-strict high-level setting, recent examples of implicit parallelism are

Feedback-Directed Implicit Parallelism (FDIP) [114], where sequential Haskell pro-

grams are profiled to identify parallelism that can be used to reach speedups of

10-80% for 7 out of 20 ’nofib’ benchmark [192] programs on a 4-core shared-memory

machine. In Calderon Trilla’s thesis [50], run-time-directed and profile-directed it-

erative feedback are used to improve over static analysis in utilising parallelism,

reporting speedups of 3.31× and 1.64× for two out of six benchmark programs

when translated to Haskell from a custom intermediate language4. FDIP authors

4simulations showed speedups of up to 15× (on 16 cores) depending on the number of cores

22

Chapter 2: Background

emphasise that their approach is not a replacement, but rather complimentary to

existing semi-explicit programming models. These results show that it is possible to

exploit modest amounts parallelism “for free”, but also that this amount is appli-

cation and input dependent and thus more research is needed to be able to detect

applications that are likely to benefit from fully implicit approach at all.

As at present we cannot realistically rely on fully implicit parallelism in general,

it appears that a limited number of annotations by the programmer are helpful

and we can come close to the ideal in the semi-explicit case, where identification

of parallelism is explicit whilst other coordination aspects remain implicit, with

the exception of crude application-level granularity control through thresholding or

through more sophisticated fuel-based5 techniques [231].

Types of Parallelism Broadly speaking parallelism can be sub-divided based on

a focus on either control or data [191]. Task parallelism emphasises the computation

and how it can be split into sub-tasks that can be executed in parallel. Any de-

pendencies and ordering requirements have to be enforced through synchronisation.

By contrast, data parallelism is focused on the data and how data can be decom-

posed into chunks for multiple PEs to work on multiple data units simultaneously.

As opposed to operations on scalars, vector operations are designed to perform the

operation on each element of the vector in parallel. Both approaches can also be

combined and nested. Moreover, loop parallelism can be considered as either task

or data parallelism based on the loop body and parallelism exploited by executing

multiple independent loop iterations simultaneously [205].

2.2.5 Strict versus Non-Strict Semantics

Denotational semantics [216] describes what is to be computed by formally assigning

meaning to expressions written in a given programming language, whilst how the

computation is performed is defined through the operational semantics [204] and

the actual implementation.

and chosen sparking cost in the number of reductions
5fuel is the quantity of parallelism initially assigned to a function that is spend during parallel

evaluation; once fuel reaches zero the evaluation is switched to sequential

23

Chapter 2: Background

A language is called denotationally strict when the expression f ⊥ always eval-

uates to ⊥, where ⊥ (pronounced as bottom) refers to an undefined computation,

whilst otherwise the language is called non-strict. Thus in a non-strict language,

the expression f ⊥ may refer to a value despite the argument being undefined.

An example of a non-strict language construct that is used in most languages

is the conditional expression6 if cond ... else ... that chooses which branch

to execute depending on the Boolean cond at run time. Similarly, boolean opera-

tors supporting short-circuit evaluation can be considered non-strict, because some

arguments may be skipped during evaluation if they do not contribute to the final

value of the whole expression7.

2.2.6 Parallel Languages and Abstractions

This subsection gives a brief overview of parallel functional languages, including

history, recent developments, and key language features to express both computation

and coordination at a high level of abstraction. More details on the history of

functional programming are provided by Hudak [122] and Turner [246].

The potential for parallelism due to purity has been widely recognised early on,

but initially much effort focused on producing an efficient sequential implementation

to challenge the past sentiment that functional languages are inherently inefficient.

In particular, Lisp [176, 177]8, although originally based on Kleene’s theory of first-

order recusive functions rather than λ-calculus (which is now the basis of modern

Lisp implementations) introduced many influential concepts. Lisp is impure due to

the use of assignment and goto, and supports S-expressions, garbage collection, and

metaprogramming using eval, quote and apply functions.

Another influential family of languages is ISWIM [146]9 based on λ-calculus

with let, rec, and where syntactic sugar, with offside-rule for scoping. This also

included assignment and a generalised jump operator [147], designed for evaluation

by an abstract machine (SECD).

6its invention is attributed to McCarthy during the development of Lisp in the 1950s
7e.g. if a in a AND b evaluates to false, so immediately does the whole expression
8Lisp stands for ”LISt Processor” and was designed for symbolic and AI applications
9which short for ”If you See What I Mean”

24

Chapter 2: Background

The reasons why initial implementations of functional languages were slow in-

clude the use of interpreters, hardware with very limited amount of memory, and

use of call-by-name. This radically changed during the next several decades. In his

thesis, Wadsworth proposed normal-order graph reduction that avoided work du-

plication through sharing and in-place updates [253], which was applied by Turner

to Curry’s SK-combinators [71] when implementing SASL [243], using a fixed set

of combinators with some additional derived combinators for efficiency. Related

work offered arguments in favour of lazy evaluation, in particular that CONS should

not evaluate its arguments [251, 116, 96]. In the 1970s there was broad excitement

about the potential of the functional approach, with Backus presenting a strong ar-

gument in his acclaimed Turing Award lecture [16]. A lot of research commenced in

the 1980s on functional languages [122], abstract machines [139], as well as special-

purpose architectures [250].

This strand of research was additionally motivated as a response to the ambitious

Japanese research programme on 5th-Generation Computing [219] to build large

parallel processing systems and corresponding programming languages with partic-

ular focus on AI. A comprehensive overview of the European ESPRIT-415 project

exemplifies the breadth of explored parallel languages and architectures [234].

The introduction of supercombinators [128] and λ-lifting [134] enabled the de-

velopment of compiled graph reduction [15], coinciding with a motion away from

custom-build hardware, such as NORMA [212], ALICE [70] and GRIP [199] ma-

chines, towards compilation for execution on commodity hardware [193, 195]10. Ad-

ditionally, many similar experimental functional languages existed at the time, lead-

ing to a consensus that it would be useful to define a standard language for research

and teaching, culminating in the development of Haskell [124, 196, 172, 123]. Haskell

was inspired by Miranda [245], SML [181], and Hope [48], among other languages,

most recent standard being Haskell 2010 (with upcoming Haskell 2020).

Another strand of research focused on implementation of parallel functional lan-

guages [194, 215, 108], and initially many attempts were made to provide implicit

10the Stackless Tagless G-Machine (STG) being the basis of current Haskell implementation in
the de facto standard Glasgow/Glorious Haskell Compiler (GHC)

25

Chapter 2: Background

parallelism, whilst simultaneously defining a suitable special-purpose architecture

for the language [250]. In the context of the ZAPP architecture [173], Burton and

Sleep explored ways to evaluate sub-expressions on a virtual tree of processors in

parallel [49]. They found it beneficial to initially generate parallelism in a breadth-

first way until all the PEs were busy and then switch to depth-first strategy, which

can be considered adaptive with respect to the number of PEs and the amount of

parallelism in the given program.

Meanwhile, Kindgon, Burn et al., had investigated distributed execution of non-

strict functional programs on the HDG-machine11 and developed evaluation trans-

formers as a way to specify evaluation degree of expressions [137, 46].

Further notable work revolved around Multilisp [107], a parallel Lisp implemen-

tation, and Mul-T RTS for parallel Scheme [140], which was among the first to de-

scribe the concept of futures and lazy task creation [183], which allows tasks to be un-

inlined if parallel execution is desired. Distributed Filaments investigated exploiting

fine-grained fork/join parallelism on multiprocessors, using stateless threads [95].

Examples of languages with implicit parallelism include Id [10] and pH, intro-

ducing the use of I-Structures [187] and M-Structures [20], shared data structures

for synchronisation that are either empty or full, and can be used to implement

futures. Performance competitive to Fortran was demonstrated by SISAL [82, 51]

using the Livermore Loops benchmark, an applicative array- and stream-oriented

language for HPC and numerical applications.

Additionally, the implicitly data-parallel NESL [36] introduced the flattening

transformation to improve performance. The Manticore [86] implementation of

Concurrent ML provides support for implicit data-parallelism similar to NESL and

explicit message passing, a non-deterministic choice operator, futures, and explicit

synchonisation.

Single-Assignment C (SAC) [213, 214] is a first-order array programming lan-

guage with implicit parallelism, focused on high productivity through high level of

abstraction, and high performance through exploitation of parallelism over first-class

n-dimensional arrays with potential for delayed type specialisation. This makes the

11i.e. the Highly-Distributed G-machine

26

Chapter 2: Background

language well-suited for applications in signal processing and numerical computing,

as well as for execution on GPUs and FPGAs. The performance achieved by the op-

timising compiler was shown in many cases to be similar to that of hand-optimised

code.

Haskell proved an exceptionally fertile base language for many different parallel

EDSLs [166]. Among those, most notable include Par Monad [168] and Evaluation

Strategies discussed in Chapter 3. Par Monad is implemented as a library and

uses Haskells concurreny support to provide deterministic parallelism using IVars,

which are inspired by I-structures. Parallelism is explicitly expressed using the fork

function that creates a new lightweight thread.

Eden [164] extends Haskell and its RTS with explicit process creation primitives

and channels that are used to communicate data fully evaluated by parent process as

arguments to processes, whilst processes produce the outputs eagerly. Instantiated

processes are executed in parallel using a shared-nothing message passing model.

Communication and synchronisation are handled implicitly by the RTS. HOFs are

used to define skeletons on top of the basic language primitives, which encapsulate

common patterns of parallelism [29, 28].

A recent paper compares parallelism features of Haskell, F#, and Scala [232]

using the N-Body application, providing an overview of a high-level approach to

parallelism in popular functional languages. Parallel and distributed Haskells are

compared by Trinder et al. [239]. Implictily parallel PMLS (Parallel ML with Skele-

tons) is compared to GpH and Eden by Loidl et al. [161].

Instead of implementing a whole new language and the associated toolchain,

another approach is to use existing language features to implement libraries that

support parallelism. It is possible to exploit parallelism at process level which re-

quires adding the ability to coordinated execution across OS processes. One example

is PThreads [186], which is a library conforming to the POSIX standard that imple-

ments threads and offers synchronisation primitives that can be used to implement

higher-level abstractions. Low-level libraries such as PVM [98] and MPI [105] (e.g.

MPICH and OpenMPI) provide the means to explicitly arrange distributed com-

27

Chapter 2: Background

putations by using the provided communication abstractions, i.e. send/receive and

collective operations.

Higher-level libraries provide abstractions such as skeletons, which can be im-

plemented using higher-order functions. These encapsulate patterns of parallelism

and coordination and can hide most complexity from the library users, who are only

required to plug in a computation, since parallelism is transparently managed by

the skeleton implementation [103].

A more refined sub-division of applications may be possible based on the used

parallelism patterns, which in higher-order languages coincide with the notion of

skeletons. The map function, which applies a function to each element of a collection

simultaneously, can be parallelised and is an example of data parallelism, and thus

can be considered a pattern. In a skeleton-based language parallel map can be

implemented using a task farm approach with either static or dynamic scheduling,

where a master process dispatches work to the workers.

The fold function, which reduces a data structure using a binary operator, can

be parallelised and implemented efficiently using a tree structure. Note that this

pattern is very general [129]: for instance it can be used to implement map.

Another pattern is the pipeline, where multiple stages are arranged and data is

streamed through the pipeline. Semantically, it is similar to function composition

and is parallelised for stage to work on different data at the same time.

Other patterns include zip that takes two lists of same length and returns a

list of tuples, zipWith which acts as zip but takes a binary function and applies it

to tuple elements to return a list, scan, task farm, parallel workpool, stencil, and

rolling buffer, among others.

Further notable patterns include divide-and-conquer, where a problem is recur-

sively sub-divided into smaller problems until those can be solved in parallel and

the combined to form the final result, and branch-and-bound [6] which implements

a search where paths can be abandoned as soon as it becomes clear the the best

solution can not be found using that branch.

We review Glasgow Parallel Haskell (GpH) and a HOF-based approach to par-

28

Chapter 2: Background

allelism in GpH called Evaluation Strategies, as well as the GUM RTS in the next

Chapter. More details about different programming models can be found in a recent

technical report [24].

2.2.7 Applications

A recent publication reviewed the success stories related to and the increasing pop-

ularity of functional languages, concluding that it “had a wide impact on the society

as a new generation of programming” [121].

Apart from wide uses in research and in education, the article quotes many appli-

cations across different domains: symbolic computation and compilers as historical

core domains, WhatsApp using Erlang to power its messaging servers, and Facebook

using Haskell to improve news feed performance and to filter out spam. Other com-

panies including LinkedIn and Skyscanner use Scala in the backend, whilst Google’s

highly successful MapReduce was inspired by the HOFs map and reduce. Moreover,

functional EDSLs have been successfully used in circuit design [33].

As verification is facilitated through equational reasoning, applications that re-

quire high confidence in, or even proof of, the correctness of the software, such as

in the financial and defense sectors, functional programming is being employed on

a large scale. Notable companies include Galois, Jane Steet Capital and QuviQ.

2.3 Implementing Parallel Functional Languages

This subsection reviews the history and state-of-the-art in implementation of parallel

functional languages and includes distributed-memory as well as shared-memory

implementations. The focus is on approaches to evaluation, covering eager, lenient,

and lazy evaluation, as well as on abstract machines and distributed graph reduction.

2.3.1 Approaches to Evaluation

To implement strict or non-strict semantics that were introduced in Subsection 2.2.5,

an evaluation model needs to be chosen that defines how expressions are evaluated,

29

Chapter 2: Background

for instance eager evaluation for the former or lazy evaluation for the latter.

To evaluate an expression such as f e1 ... en, eager evaluation, also termed call-

by-value, will first evaluate all the arguments to the function f before proceeding to

evaluate the function body.

By contrast, lazy evaluation using normal order reduction will first begin to

evaluate a function body by passing the arguments unevaluated and deferring their

evaluation until the demand is expressed. Lazy evaluation, also referred to as call-

by-need, will thus never perform unnecessary work. However, it is at odds with the

idea of exploiting parallelism as it aims to delay evaluation of arguments as long as

possible, although it is imaginable that values of multiple expressions are demanded

simultaneously. Thus strictness analysis can be used to determine evaluating which

arguments should not be delayed [64].

A middle ground is sought by lenient evaluation that seeks to retain expres-

siveness of non-strict semantics, whilst exploiting as much parallelism as if using

eager evaluation, by evaluating both function body and arguments in parallel, but

only as far as data dependencies allow [233]. Moreover, lenient evaluation appears

a good match for dataflow languages with massive fine-grained parallelism [10] and

for speculation, where some parts of the computation are attempted optimistically

and are cancelled, or the results are discarded once it becomes clear that they are

not required.

Although in the lazy setting the implementation is complicated through the

need for strictness analysis and maintenance of thunks [37] that represent delayed

evaluation, normal order reduction is guaranteed to produce the result if such exists

and laziness avoids potential work duplication through sharing, whilst improving

expressiveness and modularity [244, 126] by facilitating separation of data from

control. As such it appears a good fit for pipeline- and stream-oriented parallelism,

where data are gradually processed, avoiding the full instantiation of the whole

stream. In particular, a program may be split into generators of potentially infinitely

many candidate results and a selector that chooses the suitable one.

30

Chapter 2: Background

2.3.2 Abstract Machines

An abstract machine defines how programs written in or compiled to this machine’s

instruction set are evaluated step-by-step, usually with the help of a stack, a store,

and registers. Omitting many details of real hardware, abstract machines are suit-

able as an intermediate target for interpretation or compilation. We focus on ab-

stract machines for functional languages, whilst more information can be found in

an annotated bibliography by Diehl et al. [75].

The first abstract machine for evaluating λ-calculus expressions was Landin’s

SECD machine [145] (short for stack, environment, control, and dump), also used

as a target for ISWIM. One of its key novelties was the use of closures in the heap to

represent functions, but it also left many operational aspects unspecified. SECD was

extended by Cardelli [52] and adapted for non-strict languages by Burge [45] and

Henderson [115]. SECD-M extends the original SECD machine with concurrency

and non-determinism [1]. More details can be found in Chapter 10 of the textbook

by Field and Harrison [84].

In his seminal paper Turner describes compilation of SASL to a fixed set of

combinators, which correspond to graph rewriting rules [253, 243], combining ideas

from combinatory logic with λ-calculus. The the SK-machine provides instructions

the S and K combinators, with derived instructions equivalent to a number of the

key additional combinators, added for efficiency. Johnsson and Hughes showed the

benefits of using more coarse grained combinators derived through λ-lifting [134]

and as supercombinators [127, 128], respectively.

Further developments and optimisations led to compiled graph reduction and

the G-machine [15], originally used for evalution of Lazy ML programs. Subsequent

extensions include the Spineless G-machine [47] that limits updates to shared expres-

sions significantly reducing the amount of heap and stack accesses. The Spineless

Tagless G-machine [195] (STG) uses a uniform representation of objects on the heap

as closures with a code pointer in the first field used as a direct jump avoiding the

need to allocate and examine an extra tag field. It uses a small functional language

as its intermediate language. It is the basis of the current GHC Haskell imple-

31

Chapter 2: Background

mentation [201, 169, 170]. Tags were later reintroduced for efficiency on modern

architectures, where the tagless scheme negatively impacts branch prediction [171].

An alternative approach is taken by the Categorical Abstract Machine [69] that

uses instructions modelled on the Cartesian closed category and combinatory logic.

This is used in the implementation of Caml, and its more efficient ZINC [152] and

Caml Light [153] variants, forming the basis for OCaml [154].

The related Krivine machine [141] is a three-instruction abstract machine for

call-by-name evaluation (i.e. without sharing) of the λ-calculus, using the argument

stack also as a return stack (i.e. as continuation). It can be extended to implement

call-by-need evaluation [218]. Similarly, the Three Instruction Machine (TIM) has

three instructions supporting lazy supercombinator reduction [81, 7] and is known

for pioneering the uniform representation design inspiring tagless implementations.

An issue for lazy parallel implementation is that the stack frame includes arguments

that may not be needed exacerbating the overhead of graph shipping and requiring

more remote pointers in a distributed setup [111].

2.3.3 Parallel and Distributed Graph Reduction

Large scale parallel machines often span clusters of nodes and require distributed

execution to exploit all the available PEs to improve scalability and performance.

This introduces many challenges with respect to implementation of the coordination

aspects mentioned above, which we discuss in the next subsection. In this subsection,

we focus on distributed graph reduction and abstract machines that were created

with distribution in mind. A more detailed abstract machine comparison can be

found in Hammond and Michaelson [111].

Lower-level abstractions such as Partitioned Global Address Space [254] require

the programmer to control the mapping of data to PEs explicitly, which reduces

productivity, but may help boost performance by improving data locality. Similarly,

the Actor model [119, 2], as used in Erlang and Scala, and coordination languages,

e.g. Linda [99] and Caliban [136], build on top of a communication layer (message

passing), offering foundation for higher-level abstractions.

32

Chapter 2: Background

Several parallel reduction machines have been proposed. In most cases, a sequen-

tial machine is used on each node or PE and is extended with a coordination protocol

and potentially a shared store abstraction, which presents additional challenge of

efficient and scalable implementation.

The v,G-machine [14] follows a packet-based approach. It uses tags, where each

packet represents a closure and also has a local stack. It uses sequential compi-

lation technology and a harness that manages communication and starting up the

sequential G-machines on each PE, whilst sharing the graph and the task pool.

The Four-Stroke Reduction Engine [65] is a supercombinator reduction machine

that interprets the program graph and was the first abstract machine to be imple-

mented on the GRIP architecture. It is notable for introducing many concepts and

mechanisms that influenced further development of parallel graph reduction, for in-

stance the “evaluate-and-die” evaluation model (even though it was not so termed

at the time) with implicit communication and encoding of the dump in the heap

rather than using an explicit stack, among others [111].

The Highly-Distributed G-machine (HDG) [137] is based on the Spineless G-

machine that uses a stackless design and was developed for a network of Transputers

utilising the evaluation transformers reduction model. This demonstrated speedups

on several small benchmark applications, offering evidence for the feasibility of ex-

ecuting implicitly parallel functional programs on distributed architectures despite

the significant communication costs.

The STG-machine is designed to be suitable for parallel evaluation [198] and is,

with many optimisations, used as the basis for the current shared-memory GHC-

SMP runtime system [169], as well as for the distributed GUM RTS, discussed in

more detail in Chapter 3. A variant of the STG machine is also used in the DREAM

RTS [41] for the Eden language as it shares a large part of the RTS with GUM and

extends it with implict channels and support for zero-copy communication on shared-

memory machines. Recently, GHC’s SMP RTS and GUM have been combined to

yield a multi-level RTS, which allows balancing between the distributed and the

shared heap [3].

33

Chapter 2: Background

2.4 Adaptive Control of Parallelism

In this subsection we review common approaches to parallelism control with focus

on adaptivity as found in several original mechanisms and recent extensions. We

discuss key RTS mechanisms [27, 30], starting with load distribution strategies,

moving on to scheduling, memory management including virtual shared memory,

followed by communication, and granularity control. As most coordination-related

decisions are NP-hard, as for instance the locality-maximising placement that can

be mapped to an instance of the Bin Packing problem [60], most of the mechanisms

discussed are heuristics-based and lead to sub-optimal solutions in most cases, which

is additionally exacerbated by probabilistic operational behaviour of the baseline

work stealing algorithm12.

2.4.1 Load Distribution

Load distribution is one of the key areas of parallelism management as it involves

the trade-off between spreading the work across the PEs to balance the computa-

tional load to increase utilisation, whilst grouping related data and computations to

ensure locality and avoid communication overhead. There are two main classes of

mechanisms: work stealing and work pushing.

Load distribution may be static or dynamic. We focus on dynamic load distri-

bution, as static distribution is too inflexible to be considered adaptive. However,

in some cases using static load distribution is justified if all knowledge for reaching

the optimal distribution is available at compilation time. In lazy distributed graph

reduction machines, load distribution is dynamic, because parallelism is created as

evaluation unfolds.

Work stealing is a demand-driven load distribution mechanism [260] popularised

by the work in the context of Cilk [38], but was commonly used in prior implementa-

tions of parallel functional languages mentioned above [49, 140, 194]. Here idle PEs

attempt to steal work from busy PEs, thus minimising the amount of requests when

load in the system is high. In most implementations the victims of steal attempts

12whilst value-determinism of the result can still be maintained

34

Chapter 2: Background

are chosen at random, which does not require global knowledge and therefore con-

stitutes a scalable design. However, many stealing requests are created when the

system is lightly loaded, as idle PEs will attempt to initiate work transfer. One way

to prefetch work is to use watermarks – if a PE is about to run out of work it may

start searching for work before this actually happens in the hope that new work will

have arrived by the time it actually runs out of work.

By contrast, work pushing is a sender-initiated way to distribute load, where the

busy PEs attemt to offload work to less busy PEs [79]. This potentially generates

less messages, but tends to create many messages when the system load is already

high, which may overwhelm the system.

An interesting result for the job-shop formulation of load balancing problem,

based on choosing two workers, interrogating them about their load and then passing

the load to the less loaded one, results in a close-to-optimal decision [182].

Other scalable algorithms include gossip (or epidemic broadcast) [73], where the

information or load is shared to the immediate neighbours. This is similar to a

diffusion model of communication as used in a distributed implementation of graph

reduction for a hypercube architecture [101, 100], although such protocol may be

slow to react to frequent load changes.

Both work pushing and work stealing can be considered adaptive as they respond

to changing load levels and parallelism degree, although some implementations ex-

hibit additional adaptivity by taking into account additional system parameters

such as task granularity if available [131]. For instance, the BUSD mechanism [173]

uses breadth-first (FIFO) distribution until saturation and then switches to depth-

first (LIFO) on a Transputer-based implementation of the ZAPP architecture [173].

Whilst using architectural parameters may be beneficial we consider them static.

In any case, some limiting back-off mechanism and restriction on the number of

messages per PE is commonly used to avoid flooding the system with messages.

35

Chapter 2: Background

2.4.2 Scheduling

We refer to scheduling in a narrow sense as dispatching light-weight threads on a

single node under RTS control, which is similar to OS-level scheduling of processes

and heavy-weight threads [221]. We focus the discussion on dynamic rather than

static scheduling [217, 35].

Scheduling includes thread management, such as creation of threads, layout of

thread descriptors, as well deciding which of the runnable threads to execute and

how to implement a thread pool. In particular, multi-threading is needed for asyn-

chronous execution that helps to hide communication and I/O latencies by executing

a runnable thread, whilst other threads may be blocked waiting for messages.

Scheduling can be classified as fair, when each thread is guaranteed to run for

some time and will not be starved, or unfair, where theoretically a thread can’t be

prevented from running indefinitely. Although desirable, fairness may incur addi-

tional book-keeping and context-switching overheads.

Scheduling may be pre-emptive, where the scheduler may interrupt threads and

re-schedule. Or scheduling may be cooperative, where the running thread is required

to yield once it has finished execution.

For instance, a pre-emptive round-robin mechanism can be considered fair as each

thread can work in turn for the same specified time slice using the same resources.

However, a priority-based scheme can be unfair if low-priority tasks end up being

postponed indefinitely, if new high-priority threads are continuously spawned [221].

Thread management is more complicated if parallelism in the language is ad-

visory, due to the need to efficiently manage potential threads that repserent par-

allelism, but have not yet been turned into full-blown threads. In particular, if

parallelism is very fine-grained, as in the functional setting, management of poten-

tial parallelism has to be very light-weight. We will discuss creation of potential

parallelism, also termed sparking, in more detail in Chapter 3. By contrast, manda-

tory thread creation leads to immediate allocation of the thread descriptor, but gives

up the flexibility to ignore the parallelism even if it is beneficial to do so, for example

to dynamically increase thread granularity [183].

36

Chapter 2: Background

The notification model can be either synchronous, when either the child thread

notifies the parent once the computation is finished, or a barrier synchronisation is

periodically used as with fork-and-join parallelism. Or a notification model may be

asynchronous where synchronisation is implicit via the graph, where node of the

graph representing the value to be computing is replaced by the value once available

and only those threads waiting on that value are notified. The asynchronous approch

is potentially adaptive to load as the first thread to access a graph node, potentially

its parent, will claim and evaluate it.

2.4.3 Memory Management

Managing memory allocation, and heap and stack layout, can be challengening es-

pecially if performed manually by the programmer. Automated garbage collection

(GC), which releases the previously allocated memory once it is no longer in use,

shifts the responsibility to the implementation [176], and is common with most high-

level and, in particular, declarative languages. There are several main GC mecha-

nisms: reference counting, mark-and-sweep, copying (two-space), and generational

GC [135].

As the name suggests, reference counting keeps track of the number of references

to each object in the system and safely releases an object once the count has gone

down to zero. Despite the conceptual elegance, the overhead of incrementing and

decrementing the counts is significant and the scheme has difficulties with detecting

and collecting cycles.

Instead, a mark-and-sweep scheme traces whether the objects can be referenced

in the heap from the root set and collects the unreachable ones. This scheme is

capable of collecting cycles, but often requires the execution (mutation) to be halted

entirely, while GC is being performed (in the so-called “stop-the-world” variants).

Furthermore, the GC time tends to depend on the heap size.

Another scheme is a copying (two-space) collector that copies reachable object

to the new space and thus compacts the memory and frees up space in the old-space

at the cost of copying. After the operation is complete, the new space becomes old

37

Chapter 2: Background

and the old is now the new where allocation happens.

Based on the insight that few old objects that have already survived for a long

time will remain alive and most objects expire early, a generational collector has

a nursery space, where new objects are placed, which are then promoted to older

generations that are collected less often, if they have survived until the collection

phase.

Distributed GC is needed if parts of the graphs are shared across remote PEs and

adds to the challenge through the need to track inter-PE references [203], effectively

creating a (partial) virtual shared memory view of memory, for instance using a

distributed reference counting scheme [31], even though cycles can’t be collected in

this scheme. GC can be considered adaptive with respect to object use patterns,

and in specific implementations can change the heap size at run time [9].

2.4.4 Communication

In general, communication including serialisation and message packing accounts for

a substantial portion of the overhead in the distributed setting. One of the key

decisions for a graph reducer, which handles communication and synchronisation

implicitly inside the RTS, is much sub-graph to pack into a packet [160]. The choice

is between packing only indirections that may prompt further communication later

on, or some amount of graph. It may be beneficial to pack some neighbouring graph

as well to implement a version of prefetching as it is likely to be required too. On

the other hand, a decision could be made to only send normal form data, as done

in Eden, which avoids the need to maintain the virtual shared memory abstraction.

Latency hiding can be implemented using multi-threading, where packing and

sending of the message buffer is performed by a separate thread. The trade-off is

between local evaluation where only an indirection is sent off, and remote evaluation

where the expression and the needed data are sent off [157].

Another decision is whether to treat communication as a priority task, before

computation is performed. Moreover, if thread migration is to be supported, a

more complicated packing scheme needs to be implemented [249]. In the context of

38

Chapter 2: Background

a non-strict distributed functional RTS (extended version of GUM), it was shown

that limiting the export based on the network hierarchy level can be beneficial for

performance in hierarchical clusters [13].

2.4.5 Granularity Control

Granularity of a thread informally refers to the “size” of the associated computation,

which is often abstractly measured in clock cycles, or more concretely in mutation

time, representing the amount of work associated with that thread. Related to

partitioning, granularity control is one of the key decision areas for the RTS [157],

and for the programmer if annotations or explicit thresholds are used [125, 188, 159].

Granularity control aims to resolve a trade-off between increased overhead of

parallelism managment, if granularity is too fine, and limited parallelism, if gran-

ularity is too coarse. As predicting granularity is challenging in general, especially

for recursive and higher-order functions [100], due to its dependence on architecture

as well as on the application characteristics, some flexibility is desirable to allow the

RTS to adapt granularity at run time.

A common explicit way to specify granularity is through programmer annotations

or specified thresholds, such as a limit on depth in divide-and-conquer computations

which determines whether a sub-problem should be sub-divided and solved in par-

allel or solved sequentially. Such a crude approach has been shown to perform well

for balanced D&C applications, whereas it exhibits limited flexibility when the com-

pute tree is unbalanced. More sophisticated algorithms use a notion of fuel that

is dynamically distributed as computation unfolds, and of give-back, where unused

parallelism instead of being discarded may be used later on, exploiting circularity

in data structures, which requires laziness in the language to express these schemes

at library level [231].

Alternatively, granularity control can be built into the RTS implementing lower-

level parallelism control. Using mandatory parallelism would result in eager thread

creation, whilst advisory parallelism in using more flexible, but more costly evaluate-

and-die model of computation, which is similar to lazy task creation [183]. Potential

39

Chapter 2: Background

parallelism is handled, either by creating parallelism, but either leaving the option to

inline it back into the parent thread if necessary [183], or by first seeding parallelism,

and later un-inlining it, if additional resources have become available [211, 102].

More coarse-grain granularity tends to reduce the number of threads and thus the

parallelism overhead, but care must be taken to prevent starvation and load im-

balance by avoiding too coarse settings. Using granularity information in GpH was

shown to improve work stealing performance on hierarchical clusters [131]. More

information, in particular on compile-time granularity analyses, can be found in

Loidl’s thesis [157].

2.4.6 Run-Time System Comparison

Table 2.1 provides an overview of GUM compared to the most recent related systems,

which together span a wide spectrum of parallel language run-time systems. For

more detailed and broader comparisons refer to further literature [24, 23].

With respect to parallelism identification GUM and SMP occupy a unique place

in the design space as the annotations provide hints that are advisory rather than

mandatory, as is e.g. process instantiation performend in an Eden program, which

will lead to a creation of a remote process. Eden and GUM are similar in the

architectural respect that unlike other systems they enable distributed execution.

On the other hand they differ in the implementation as GUM provides a Global

Indirection Table for inter-PE pointers implementing the virtual shared memory

abstraction, whilst DREAM uses shared-nothing design and sends data once it is in

normal form. Manticore and X10 are somewhat similar in chosing to incorporate

both implicit data parallelism and explicit task parallelism, whilst GUM makes no

special arrangements for data parallelism and treats expressions requiring data as

tasks.

There is no agreement on the scheduling style among the systems, Manticore

allowing nested schedulers and X10 following PGAS distribution style. GUM and

SMP follow the evaluate-and-die model that leads to an unfair design, but helps

improve performance.

40

Chapter 2: Background

Table 2.1: Overview of GUM and Related Systems

RTS parallelism scheduling archi- synchro- load
(Language) identification tecture nisation balancing

Cilk [38] explicit LIFO shared explicit work
(C ext.) (cilk spawn) stealing
GHC-SMP [169] annotations FIFO shared implicit work
(GpH) (advisory) unfair stealing
Manticore [86] impl. data par. FIFO shared implicit work
(NESL/CML-alike) expl. task par. nestable pushing
X10 [54] impl. data par. PGAS shared implicit work
(X10) expl. task par. stealing
GUM [237] annotations FIFO virtual implicit work
(GpH) (advisory) unfair shared stealing
DREAM [41] explicit process round robin shared- implicit work
(Eden) instantiation fair nothing pushing

In all these systems, thread and memory management are implicit as well as

synchronisation, with an exception of Cilk. This allows for a high level of expression,

compared to explicit synchronisation and parallelism management. Despite the

popularity of work stealing, some systems have chosen to use work pushing to reduce

the amount of communication. This diversity exacerbates the difficulty of directly

comparing these systems and languages. Thus, we will focus on GUM and SMP,

and to a lesser extent DREAM as they are most closely related.

2.5 Summary

This chapter presented an overview of the literature and of the state-of-the-art in

areas related to parallel functional programming in general, and adaptive RTS-level

parallelism control for distributed execution of non-strict parallel purely functional

languages in particular. In particular, this Chapter provides context for the detailed

discussion of the GUM RTS for GpH in the next Chapter, as well as points to related

work.

First, we have seen how architectural trends, driven by fundamental physical

limitations, have made a turn towards increasingly more hierarchical, heterogeneous

and massively parallel architectures. The main distinction is in the memory arrange-

ment: whether the memory is shared across all PEs, or each PE owns a private mem-

41

Chapter 2: Background

ory and requires communication to exchange data between PEs. There is evidence

that the shared-nothing design is more scalable, but higher performance can poten-

tially be reached if expensive communication over a slow network can be avoided.

At rack scale, which constitutes an intermediate point in the design space between

multi-cores and globally distributed multiprocessors, substantially faster communi-

cation networks can be employed that allow scalability beyond a single node, but

keep communication costs lower and provide higher throughput (e.g. Infiniband).

Next, we followed the development of parallel programming models and traced

the evolution of functional languages to provide means to exploit parallelism offered

by the underlying hardware. Automatic parallelism has turned out to be an elu-

sive goal so far, but we have demonstrated the benefits and trade-offs associated

both with low- and high-level models. We have argued that manual tuning often

exacerbates portability and maintenance issues and therefore the advantages of the

high-level approach gain in importance.

Subsequently, we have seen that substantial challenges are associated with the

implementation of efficient parallel run-time systems which can support parallel

execution in ways in which libraries might not and are usually based on an abstract

machine as an intermediate target. In particular, to make use of additional flexibility

requires careful parameterisation and heuristics choice that reflect the architecture-

system-input combination well enough. This is exacerbated in case where languages

use non-strict semantics and are implemented with distributed graph reduction.

Finally, we reviewed the RTS-level parallelism control mechanisms for load dis-

tribution, scheduling, memory management, communication and granularity with

focus on adaptive variants of the mechanisms as they exhibit added flexibility for

distributed execution of semi-explicit parallel functional languages, comparing GUM

to related run-time systems.

42

Chapter 3

Graph Reduction on a Unified

Machine Model

The GUM (Graph Reduction on a Unified Machine Model) [237] run-time system

(RTS) for Glasgow parallel Haskell (GpH) [235, 238] implements distributed graph

reduction supporting execution on shared- and distributed-memory architectures.

This chapter describes GUM’s design and the driving forces behind it, its abstract

model, and the implementation of the key components, policies and mechanisms,

such as load distribution.

The focus of this thesis is on extending GUM’s adaptive policy control mecha-

nisms to increase performance and scalability on distributed-memory platforms by

improving load balancing and data locality. Finding optimal policies and policy

parameters to achieve high performance is challenging, since parallelism is auto-

matically controlled by the RTS. Hence the discussion is focused on the extended

system components that implement advisory parallelism, profiling, scheduling and

load balancing using work stealing.

3.1 Language Overview

This section provides an overview of the semi-explicit programming model and syn-

tax of GpH for identification of parallelism. We also briefly introduce Evaluation

Strategies [236, 167] used to implement abstractions that separate computation and

43

Chapter 3: Graph Reduction on a Unified Machine Model

coordination concerns on top of the basic parallelism primitives provided by GpH.

Then graph reduction and the Unified Machine Model are discussed, which pro-

vide substantial flexibility for adaptive architecture-transparent management of ad-

visory parallelism.

3.1.1 Haskell Extension for Semi-Explicit Parallelism

Glasgow Parallel Haskell (GpH) [235, 238] extends Haskell [172, 123], a de-facto

standard non-strict purely functional language, by adding both sequential and par-

allel combinators, par and pseq of type a → b → b. These combinators allow the

identification of potential parallelism as well as evaluation order and evaluation de-

gree. Both combinators are projections onto their second argument, i.e. they return

the result of evaluating the second argument. This way GpH remains a conservative

extension of sequential Haskell retaining referential transparency [235]. The pro-

gramming model is high-level and semi-explicit because, apart from identification of

potential parallelism and evaluation degree and order, other coordination aspects,

such as communication and synchronisation, are implicitly controlled by the RTS.

The pseq and par combinators are implemented as built-in functions1. These

are translated by the compiler to a call within the RTS. The multi-threaded GHC-

SMP RTS [169] supports execution on shared-memory multi-cores, whilst GUM (or

GHC-GUM) supports execution on distributed-memory clusters of multi-cores.

Using par, the programmer provides a hint to the RTS that the first expression

can be beneficially evaluated in parallel by creating a spark. A spark is a pointer to

a sub-graph, represented by par’s first argument, which can be reduced in parallel.

Compared to thread creation, sparking is cheap as it amounts to adding a pointer

to the spark pool data structure. Ultimately, the RTS decides whether the spark

will be 1) turned into a light-weight thread if no runnable threads are available, 2)

inlined into its parent if the spark was not picked up before parent subsumes it, or 3)

discarded if the spark pool is full or spark refers to an already-evaluated expression.

We discuss management of threads and sparks in more detail below.

1the functions can be bound to variables and passed to functions, which is exploited in the
implementation of the Evaluation Strategies

44

Chapter 3: Graph Reduction on a Unified Machine Model

Note that to create useful parallelism the first expression supplied to par has to

satisfy the following conditions [166]:

• it is unevaluated and not already under evaluation,

• it represents a large-enough computation relative to the associated overhead,

• it is not immediately required by the parent thread (if it would be immediately

required then it could be inlined into the parent, i.e. executed by the thread

that created the spark, and thus not introduce any additional parallelism),

• it is shared with the rest of the program to avoid being reclaimed by the GC.

This mechanism can be viewed as implementing lazy futures [107, 140] as the

computation is lazily started when the result is demanded instead of being ea-

gerly evaluated at the spark creation time, where a future (sometimes also called a

promise) refers to an eventually available value (a proxy for a result) [97, 17, 156].

The implementation may support implicit synchronisation.

The parallelism is advisory, because the RTS is free to ignore the hint and eval-

uate the expression sequentially. This better supports adaptive policy control by

offering more flexibility than the common approach where parallelism is mandatory,

as threads are created explicitly at every fork/spawn site. Additionally, it is cheaper

to exchange sparks than threads between PEs.

1 fib :: Integer -> Integer

2 fib 0 = 0 -- sequential version

3 fib 1 = 1

4 fib n = fib (n-1) + fib (n-2)

5

6 pfib :: Integer -> Integer -> Integer

7 pfib 0 _ = 0 -- parallel version

8 pfib 1 _ = 1

9 pfib n t | n <= t = fib n -- t for granularity tuning

10 | otherwise = x ‘par‘ y ‘pseq‘ x + y

11 where x = pfib (n-1) t

12 y = pfib (n-2) t

Listing 3.1: Sequential and Parallel Fibonacci Functions in GpH

45

Chapter 3: Graph Reduction on a Unified Machine Model

Listing 3.1 provides an example of how a sequential function fib is modified to

enable parallel execution. The changes are fairly small and require introduction of

par to identify parallelism and of pseq to specify evaluation order. Thus in line 10,

first x ‘par‘ y is evaluated creating a spark for x and returning y and then the sum

x + y is evaluated thus demanding the results of both sub-expressions. Additionally,

a threshold t is used for application-level granularity control by restricting sparking

to the specified depth in the compute tree. The inherent parallelism is too fine-

grained to merit full exploitation due to the relatively high per-thread overhead.

Granularity control is discussed in more detail in Section 3.3.2.

Although the changes to the code in Listing 3.1 are minor, this is a somewhat

unstructured approach as coordination and computation aspects are intermixed. In

larger programs, this is unsatisfactory as the algorithm is obscured by coordination

aspects which are spread across multiple locations in the code, making the code

more difficult to read and maintain.

3.1.2 Evaluation Strategies

To cleanly separate the computation and coordination concerns, Evaluation Strate-

gies [236, 167] were introduced on top of the basic primitives to facilitate under-

standing of the algorithm without considering the coordination aspects as well as

allowing changes to coordination without the need to change the computation.

Listing 3.2 below shows the definition of the Eval monad, which allows to sep-

arate operational aspects of coordination from pure computations, as well as some

basic Strategies. For instance, parList applies a strategy to each element of a list in

parallel using the sequential evalList. In turn, parList can be used to implement

the parMap skeleton, which applies a function to each element of the list in parallel.

One challenge is choosing optimal granularity by tuning the degree of evaluation.

This can be achieved by using an appropriate Evaluation Strategy – an expression

of monadic type Eval that takes another strategy that determines evaluation degree

as an argument. Listing 3.2 illustrates the core data types and basic Evaluation

Strategies that can be composed to form more complex parameretised ones.

46

Chapter 3: Graph Reduction on a Unified Machine Model

1 data Eval a = Done a

2 type Strategy a = a -> Eval a

3 runEval :: Eval a -> a

4 runEval (Done x) = x

5

6 instance Monad Eval where

7 return = Done

8 m >>= k = case m of Done x -> k x

9

10 r0 , rseq , rpar :: Strategy a

11 r0 x = return x -- no evaluation

12 rseq x = x ‘pseq ‘ return x -- evaluate to whnf

13 rpar x = x ‘par ‘ return x -- create a spark

14

15 rdeepseq :: NFData a => Strategy a -- evaluate to normal form

16 rdeepseq x = x ‘deepseq ‘ () -- relies on Control.DeepSeq

17

18 using :: a -> Strategy a -> a -- strategy application

19 e ‘using ‘ strat = runEval (strat e)

20

21 dot :: Strategy a -> Strategy a -> Strategy a -- composition

22 strat2 ‘dot ‘ strat1 = strat2 . runEval . strat1

23

24 -- applies its strategy argument to all elements of a list

25 evalList , parList :: Strategy a -> Strategy [a]

26 evalList strat [] = return []

27 evalList strat (x:xs) = do x’ <- strat x

28 xs’ <- evalList strat xs

29 return (x’:xs ’)

30

31 -- applies a strategy to all elements of a list in parallel

32 parList strat = evalList (rpar ‘dot ‘ strat)

33 -- a parallel map skeleton

34 parMap :: Strategy b -> (a -> b) -> [a] -> [b]

35 parMap strat f xs = map f xs ‘using ‘ parList strat

Listing 3.2: Basic Eval Strategies (from [167])

47

Chapter 3: Graph Reduction on a Unified Machine Model

For instance rdeepseq can be passed in to demand full evaluation to NF by

recursively applying the strategy, thus forcing evaluation. In particular, note how

parMap skeleton is implemented using parList, which applies its strategy argument

to all elements of a list in parallel by sparking each with rpar, which is in turn

passed as argument to evalList. The strat argument determines the evaluation

degree for each list element. Also note the separation of algorithm and strategy with

using in line 35.

Design decisions and implementation details of this new version of the Evaluation

Strategies can be found in the literature [167, 166].

3.1.3 Graph Reduction

Graph Reduction is an implementation technique [250] and evaluation model for

functional languages based on the λ-calculus [62, 19, 18]. As shown in Figure 3.1,

the computation is logically represented through a graph of operations (function-

s/combinators) and values2. The reduction process describes the application of

functions to their arguments and overwriting the application node with its result, to

eventually obtain the final value as a result. The example from [157] shows how the

result value of 49 is computed from the expression square (1+2*3) where square

x = x*x by repeated function application. Note that the value 7 bound to x is

computed only once and then shared.

Figure 3.1: Graph Reduction Example

The corresponding computational structure resembles a dynamically expanding

and contracting general graph as opposed to a directed acyclic graph (DAG), due

to recursion and because sub-expressions may be shared to avoid work duplication.

2the actual implementation may use a different data structure for efficiency

48

Chapter 3: Graph Reduction on a Unified Machine Model

Choosing appropriate evaluation degree affects the potential parallelism.

In a lazy language, the default evaluation degree is to weak-head normal form

(WHNF). This means that only the outermost constructor or function is applied,

potentially resulting in too fine granularity (cf Section 3.3.2). By contrast, full

evaluation to normal form (NF) as used by strict languages leads to reduction until

no reduceable expressions (redexes) remain.

However, the choice of evaluation degree is not binary – it may be beneficial or

feasible to evaluate only a part of a large and complex data structure, for exam-

ple when the full data structure is too large to fit into the local memory available.

Moreover, tuning the actual degree of parallelism as a fraction of potential paral-

lelism (e.g. through thread subsumption or application-level explicit thresholding,

chunking or clustering [162]) can help increase granularity and reduce overheads.

Additionally, the evaluation model may be chosen from the following and in-

fluence the implementation of RTS policy control. Common evaluation models are

strict, lazy or lenient, as discussed in Section 2.3.1. Under strict evaluation, the

function is applied to its arguments once the arguments have been evaluated to

NF, whilst under lazy evaluation, a thunk is created to represent yet unevaluated

expression which is by default evaluated to WHNF and only fully evaluates its ar-

guments when they are demanded. Whilst strict evaluation simplifies speculative

and parallel execution and avoids the need to use thunks, in some cases it may

result in unnecessary work duplication that is avoided in the lazy (demand-driven)

setting, and a strict program can crash or fail to terminate3, where a lazy program

would terminate delivering the final result. It is possible for a language to support

both strict and lazy evaluation and annotations as well as strictness analysis can be

used to help predict program’s needs. Furthermore, lenient evaluation can provide a

flexible middle ground, as discussed in Section 2.3.1, where a function body can be

evaluated in parallel with its arguments. This can potentially result in an evaluation

degree somewhere inbetween WHNF and NF.

Lazy evaluation is one of the main driving forces behind the design of GUM

since, due to lazy evaluation, thunks need to be maintained for potentially shared

3e.g. in take 5 [1..] or fst (1, error "boom!")

49

Chapter 3: Graph Reduction on a Unified Machine Model

computations that have not yet been evaluated. Thus we need to ensure that in our

program the results of a sparked computation are demanded. Strictness annotations

can be used to avoid deferred evaluation of values that are known to be required.

3.1.4 Unified Machine Model

A key feature of GUM is its machine-independent execution model that uses a

network of abstract processing elements (PEs) with private heaps that interact

via logically sending and receiving messages, which allows for execution on both

shared-memory and distributed-memory architectures. Whilst physical memory is

not shared in this model, there exist inter-heap pointers maintained using a virtual

shared memory implementation to allow sharing of sub-graphs across PEs to avoid

work duplication.

Notably, GUM’s virtual shared memory implementation hides explicit communi-

cation from the programmer, whilst enabling execution on distributed-memory ar-

chitectures. It allows thunks and their values to be shared across multiple PEs. This

enables GUM’s deterministic unified programming model for both shared-memory

and distributed-memory architectures, whilst avoiding race conditions and dead-

locks. Note that the determinism refers to the final result, rather than operational

behaviour, which may differ from run to run, as some RTS decisions are randomised.

Moreover, the key adaptive mechanisms of thread subsumption, as discussed

in Section 3.3.1, and work stealing, as discussed in Section 3.3.4, are very generic

and align well with the architecture-independent approach. Thread subsumption

in conjunction with advisory parallelism removes the need to specify a particular

number of threads in relation to the number of PEs. In turn, work stealing only

relies on local knowledge and operates in a decentralised fashion avoiding static

communication dependencies.

The main benefit of architecture-independence is the support for a high-level

programming model that increases programmer productivity, paired with a self-

optimising RTS that is flexible enough to adapt to different target platforms to

potentially achieve performance portability. This latter aspect is challenging due to

50

Chapter 3: Graph Reduction on a Unified Machine Model

high architectural diversity and a large number of system-level and application-level

parameters that influence both performance and scalability.

3.2 RTS Components

This section explains the logical structure of the distributed GUM (Graph reduction

on a Unified machine Model) RTS that implements the virtual shared memory model

by discussing the main components and the key concepts behind these components.

GUM implements Glasgow parallel Haskell (GpH) and manages potentially par-

allel execution of GpH programs on both shared-memory and distributed-memory

platforms in accordance with the recently defined PAEAN framework for shared-

nothing parallelism [30]. The core of the RTS is a graph reduction engine that is writ-

ten in C and implements a variant of the Spineless Tagless G-Machine (STG) [195].

Figure 3.2 provides an overview of the compilation pipeline. The user writes

parallel Haskell code and uses libraries such as Evaluation Strategies which are then

compiled using an optimising Haskell compiler (in our case the Glorious Glas-

gow Haskell Compiler (GHC)) [170] and the system’s C compiler (in our case from

the GNU Compiler Collection (GCC)).

Figure 3.2: An Overview of the GpH Compilation Pipeline

First, Haskell application and library code is translated into a statically-typed

intermediate language called Haskell Core. Core is a smaller functional language

with support for variables, data constructors, literals, value and type abstraction and

application, as well as let and case expressions, patterns, casts and coercions [170].

Core code is then optimised and translated to C-- portable assembler [202], which

can interoperate with C. The resulting C code is then linked with the RTS and

51

Chapter 3: Graph Reduction on a Unified Machine Model

other C libraries to produce the actual executable, depending on whether static or

dynamic linking is used. Examples of libraries include the GNU Multiple Precision

Arithmetic Library (GMP) used to implement Haskell’s arbitrary length Integers,

and communication libraries such as Message Passing Interface (MPI) or Parallel

Virtual Machine (PVM). As an alternative to the C-- compilation route, GHC more

recently also supports compilation via LLVM [148, 230].

The RTS includes the following key logical components [30]:

• an execution engine based on graph reduction that evaluates expressions,

• thread and spark management for efficient control of parallelism, in particular

the scheduler responsible for local execution and calling other components and

driving load balancing, on which this work is focused,

• memory management responsible for virtual shared memory, implicit synchro-

nisation, and local as well as distributed GC,

• communications that implicitly handles messaging and packing/unpacking of

the sub-graph sent.

In addition to the four logically well-separated PAEAN components, we iden-

tify monitoring and profiling as a logically distinct component that facilitates the

investigation of effects of system parameters such as the number and granularity of

threads on performance, even though in practice many calls to the component are

interspersed across other components.

Further components responsible for OS interaction, signal handling, exceptions,

concurrency, foreign function interface, and I/O [200, 197, 169] covered through

specific libraries are not further discussed here, since they are orthogonal to the

purposes of the present work and hence remain unchanged. The changes to the RTS

necessary to implement new primitive operations and to extend the default policies

are discussed in a related technical report [22] and in Chapters 5 and 6 of this thesis.

52

Chapter 3: Graph Reduction on a Unified Machine Model

3.2.1 Thread Management

A key design concept in GUM, as well as in the threaded, shared-memory RTS for

GHC, is that of light-weight threads. For scalability and to reduce thread manage-

ment overheads, light-weight threads are mapped to relatively few heavy-weight OS

threads (usually one per core) in Many-to-Many fashion [221]. This is similar to

Green Threads4, which are managed in user space instead of kernel space, and to

Qthreads [255] which offer an API for implementing light-weight threads.

In GUM, each RTS instance maintains a local thread pool for runnable threads, a

spark pool for potential parallelism represented as pointers to graph structures, and

blocked queues for threads waiting on a result of evaluation performed by another

potentially remote thread. This improves scalability and facilitates the separation

between the actual and the potential parallelism. In particular, threads can be

re-used rather than destroyed and re-allocated. Parallelism is exploited over pure

functions and I/O is handled by a separate thread.

Light-weight Threads Each thread is represented using a heap-allocated Thread

State Object (TSO) that contains slots for register values, a stack, and some other

book-keeping information, as well as a pointer to the code to evaluate the sub-

expression. As heap objects, TSOs can be GC’d once they are no longer needed,

but some are kept in a free-list to avoid any reallocation overhead. Figure 3.3 shows

the thread state transition model.

Figure 3.3: Thread States and Transitions

Initially, threads are created in the runnable state and added to the thread pool

4the name referes to the original Java threads implementation by the Green Team

53

Chapter 3: Graph Reduction on a Unified Machine Model

via transition a.

A thread is running once it has been selected by the scheduler and passed to

the evaluation engine (b).

A running thread then either (c) terminates, (d) becomes blocked on a closure

being evaluated by another local thread (blocking state), or (f) blocks while waiting

for remote thread on another PE to respond to the sent FETCH message (fetching

state). Closure layout is described in Section 3.3.3.

A blocked thread will eventually unblock (e), similarly to a fetching thread that

will eventually receive the data it needs to proceed with the evaluation (g).

The scheduling mechanism is discussed in more detail in Section 3.3.1, whilst the

work stealing (fishing) mechanism for load balancing is illustrated in Section 3.3.4.

3.2.2 Communication Management

The key design principle behind GUM’s communication sub-system is latency hiding.

Because the communication latency is high in distributed architectures, computation

and communication can be overlapped to hide latency. In particular, when a thread

is blocked waiting on a message to arrive, another runnable thread can be scheduled

to run instead, as discussed in detail in Section 3.3.1. This follows the evaluate-and-

die execution model [65, 198, 195].

In the beginning of an execution, a manager process spawns a specified number

of GUM instances, usually one per core. We will use the term PE to include the

RTS instance. These are initialised and then one PE is elected to be the main PE

that will evaluate the Main.main closure that acts as the main entry point for the

application, whilst others will start off fishing for work.

A program terminates once the main thread has finished evaluation or if an error

occurs, by the main PE sending a FINISH message to all RTS instances.

GUM uses a broadcast and a barrier during initialisation and termination, and

point-to-point communication during execution. Currently there is no support for

fault tolerance, relying on low-level mechanisms provided by communication libraries

and the OS. For instance, the underlying TCP/IP protocol guarantees the arrival

54

Chapter 3: Graph Reduction on a Unified Machine Model

of GUM messages.

The communication is asynchronous and implemented using layers. A high-level

API is used in most RTS modules and can be implemented using a low-level library

such as MPI or PVM with support for send/receive communication functions. The

required changes are localised in only 3 out of around 150 RTS modules [235].

If no local work is available, the RTS instance will attempt to obtain remote

work as discussed in Section 3.3.4.

Fetching and Implicit Synchronisation Another important design principle is

implicit synchronisation that hides the intricacies of synchronisation as well as com-

munication from the programmer, facilitating the expression of parallelism, whilst

delegating performance tuning mostly to the RTS. The benefit is worthwhile: race

conditions and deadlocks are ruled out by design. The former are avoided by using

private memories only accessible by the owner PEs, whilst sharing requires commu-

nication. The latter are avoided through the structured use of communication prim-

itives inside the communication layer, because synchronisation is mediated through

the graph being reduced.

Moreover, synchronisation on graph nodes can be used to implement sharing and

call-by-need semantics [253, 195] and to avoid potential duplication of work.

If a thread requires a part of the graph, it will be fetched from the remote PE

rather than evaluating it directly, as shown in Figure 3.4. A global address (GA),

which is a unique identifier across the physically distributed heaps, is used to refer

to the sub-graph5.

However, if the graph node is local, and not under evaluation, the thread will

start to evaluate it, and will overwrite the graph node representing a yet unevaluated

expression by a Blackhole (BH) which acts as an implicit synchronisation point.

Thus, if another thread attempts to evaluate an expression that is currently under

evaluation by a local thread it will enter the BH, which will result in it blocking and

5we use the standard UML Message Sequence Charts graphical notation to illustrate the mes-
saging protocol and relevant message types: top boxes represent independent RTS instances and
arrows labelled with message types and key payload contents denote messages being exchanged in
the order from top to bottom; Haskell syntax is used to denote a list of pairs of GAs (ACK payload)

55

Chapter 3: Graph Reduction on a Unified Machine Model

Figure 3.4: Fetching Protocol

adding itself to the associated waiting queue, returning the control to the scheduler.

Once the evaluation is complete, the BH is overwritten by the result value and all

awaiting threads are notified and moved to the runnable pool. The use of GAs to

implement sharing across private heaps is discussed in Section 3.2.3.

Message Types and Format Messages in GUM comprise a header and a pay-

load. Message types are specified in the header denoting the payload contents to

expect and are used to determine the way to handle each message and to respond

according to the protocol. Table 3.1 summarises GUM’s message types.

The message header also contains the source PE and the destination PE which

enables the main GUM communication protocol to remain stateless. The first six

message types reflect the main protocol, whilst the remaining three are used during

the start-up and termination phases. The payload part of the message carries its

own meta information depending on the message type.

For example, each SCHEDULE message specifies the buffer size required to be able

to unpack the graph packed in the payload of the message. Some messages, such as

FISHes, are of small fixed size and offsets are used to extract particular values.

56

Chapter 3: Graph Reduction on a Unified Machine Model

Table 3.1: GUM’s Message Types

Type Description

FISH request for work (steal attempt; original,
forwarded, or expired on the way back to origin)

SCHEDULE response with some work (spark(s) and nearby graph)
FETCH request for required remote data
RESUME response with some graph data
ACK positive acknowledgment of reception of

required sub-graph and indirection information update
NACK negative acknowledgment, indicates failure

to receive the required sub-graph
PETIDS synchronisation request, sent at initialisation

by the main PE
READY synchronisation response from worker PEs to main PE
FINISH termination request from main PE, sent to other PEs

at the end of execution

3.2.3 Memory Management

GUM implements GpH by supporting distributed graph reduction. Each graph node

represents computation that is potentially shared among multiple PEs that require

its result. Thus, there are the independent PE-local heaps for local reduction along-

side the virtual shared memory overlay that holds the shared graph. Once a node

has been evaluated it is replaced by the result, which is in turn sent to all the PEs

that require it. GUM’s design, based on private heaps with some potential sharing

across them, is scalable as most garbage collection (GC) [135] can be performed lo-

cally without the need for communication and synchronisation. In particular, there

are two different GC layers: local GC is independent and global GC which only

applies to a small subset of graph nodes.

Local Generational Garbage Collection GUM uses a generational garbage

collector that is either copying or compacting depending on the RTS flags set, thus

avoiding using a stop-the-world design which has significant scalability limitations.

Heap objects that survive for a long time are promoted from the initial and frequently

GC’d heap area (called nursery) to a different heap region that is GC’d less often.

This GC scheme assumes that most heap objects will expire after a short period of

57

Chapter 3: Graph Reduction on a Unified Machine Model

time allowing the associated memory to be reclaimed, whilst older objects are likely

to continue being needed.

Distributed Weighted Reference Counting Usually, only a small subset of

the graph is shared across PEs, which is collected using distributed GC based on

weighted reference counting [31]. The Global Indirection Table (GIT) that maps

global addresses (GAs) to local addresses (LAs) and vice versa is also used as a

source of roots for GC.

Each GA represents an outgoing pointer and has an associated PE identifier, a

local index, and a weight, which represents the percentage of all references to this

object. GAs are used to link objects across PEs, whilst LAs are the local addresses

(pointers to heap) that may have many GAs. If a closure is shared across PEs, its

initially assigned weight is evenly split between the local and the remote PEs that

maintain a reference to it. The underlying invariant is that the sum of weights for

each GA in GIT for all out-pointers and the weight in the owner’s GIT plus the sum

of the weights in all messages in transit equals a fixed maximum weight at all times.

The GIT table ensures the mapping is up-to-date and is rebuilt during GC. The

mapping from GAs to LAs facilitates finding of the correct LA when processing

incoming FETCH messages. The reverse mapping is used to identify whether a heap

object that is being packed has already been packed to maintain sharing. Moreover,

the mapping needs to be updated if the location of the object changes after the

transfer of a graph structure, which may require getting a new GA and replacing

the old GA with an indirection heap object. Local GC also updates the GIT as LAs

may change, which is the source of additional overhead.

Once the owner has the full weight back, the memory can be released as it is no

longer required. An example of using a GA is discussed in Section 3.3.3.

3.2.4 Workload Management

Work needs to be distributed across PEs to enable effective exploitation of par-

allelism. The aim is to maximise utilisation of the available PEs whilst avoiding

communication overhead and achieving the performance goal. In this thesis, the

58

Chapter 3: Graph Reduction on a Unified Machine Model

focus is on decreasing execution time and increasing scalability.

Work can be either actively (eagerly) off-loaded to other PEs (work pushing)

or passively (lazily) obtained by idle PEs who ask other PEs for work rather than

waiting for work to arrive (work stealing; cf Section 3.3.4). GUM’s default load

balancing mechanism is random work stealing, where victims are chosen at random

by idle PEs. GHC-SMP supports work pushing through allowing direct access to

other PEs’ spark pools.

3.3 Policies and Mechanisms

We follow the system design principle of separation of concerns between policies

and mechanisms [221]. Policies are focused on what is to be achieved, which can be

formulated as a plan or a set of rules or the requirements and conditions that lead to

a desirable outcome [42, 224]. In contrast, mechanisms describe how the policies are

to be supported or enforced to achieve the set goal and allow for significant freedom

in the choice of implementation techniques that include selection of algorithms and

data structures. At a lower level, the implementation is concerned with the specific

choice of suitable algorithms and data structures using a particular programming

language.

This separation is beneficial for it gives more flexibility to extend the system

through a set of localised changes, allowing a policy to be exchanged without the

need to change the mechanism. Therefore, a mechanism should avoid unnecessarily

restricting the choice of policies, and vice versa, the policy should not presuppose a

particular mechanism or implementation.

For example a load balancing policy could specify the goal to minimise run

time whilst maintaining high average utilisation across PEs, where work pushing

or work stealing could be used as a mechanism to enforce the policy. Assuming

we have chosen a work stealing mechanism, we can tune its components such as

victim selection and selection of sparks to donate. Finally, the implementation of

the mechanism offers further design decisions: for instance, work stealing could use

a centralised or a decentralised approach, whilst a spark pool could be implemented

59

Chapter 3: Graph Reduction on a Unified Machine Model

as a priority queue or as a lock-free dequeue. Below we describe GUM’s policies

along with the corresponding mechanisms and their implementation in more detail.

3.3.1 Scheduling

The scheduler is the central RTS component and is responsible for the following

tasks, delegating some of them to the respective RTS sub-components:

1. perform garbage collection, if necessary;

2. process incoming messages, if any have arrived;

3. run a thread, if there is at least one runnable thread available;

4. or if possible, activate a local spark;

5. otherwise, look for a remote spark (attempt to steal work from other PEs).

Listing 3.3 illustrates GUM’s scheduler (cf rts/Schedule.c). After 1) perform-

ing GC, if necessary, and 2) processing any incoming messages, e.g. notifying blocked

threads once the values they have been waiting for have become available, 3) the

unfair scheduler selects a runnable thread to run in First-Come-First-Serve (FCFS)

fashion. The chosen thread then non-preemptively either runs to completion, or un-

til the space is exhausted, or it blocks on a shared computation under evaluation by

another thread or on remote data access, or it is terminated due to an error. From

a design point of view, an unfair scheduler improves time and space behaviour by

avoiding book-keeping and context switching among light-weight threads, but risks

starvation and makes speculation and concurrency more difficult to exploit [237].

If no runnable thread is available, the scheduler will 4) look for work in the local

spark pool. If there are sparks, the oldest will be turned into a thread and evaluated

(FIFO). Otherwise, if no potential work is available locally, the scheduler will 5)

attempt to steal a spark from a randomly chosen remote PE (cf Section 3.3.4).

When a thread attempts to evaluate a sub-graph, the sub-graph may either be

under evaluation or unevaluated. In the latter case the thread can evaluate it and

mark it as being under evaluation, effectively subsuming the corresponding spark.

60

Chapter 3: Graph Reduction on a Unified Machine Model

In the former case, if the sub-graph is either under local or under remote evaluation,

the thread will block and wait for the local thread to update the root, or for a

message to arrive with the required data, respectively.

1 while (not terminated) { // core of the schedule () function

2 if (needGC ())

3 performGC () // 1. reclaim unused memory , if necessary

4

5 if (incomingMessages ())

6 processMessages () // 2. process any incoming messages

7

8 if ((t = findRunnableThread ()))

9 run(t) // 3. run a thread , if there is a runnable one

10 else {

11 if ((s = findSpark ()))

12 activateSpark(s) // 4. else , use a spark , if available

13 else

14 getRemoteSpark () // 5. otherwise look for remote work

15 }

16 }

Listing 3.3: GUM Core Scheduler Loop (Pseudocode)

Sparks for Advisory Parallelism Sparks are kept in a separate local pool on

each PE. Sparking is cheap, as it adds a pointer to a closure heap object representing

the expression to be evaluated (a thunk) to the spark pool. Note that STG uses

programmed graph reduction and therefore no explicit graph is maintained in the

heap, but rather TSOs, sparks and objects representing closures.

Figure 3.5 depicts potential states of a spark: once created a spark representing

potential parallel work may either be converted into a thread to be evaluated in par-

allel or it may end up not being converted. Here, a spark may be already evaluated

(i.e. pointing to WHNF) as in the dud/fizzled case, discarded in the case that the

spark pool is already full, or garbage-collected if it was not needed, i.e. it was not

shared with the rest of the computation. It is a separate question as to whether the

work represented by a spark was useful work.

61

Chapter 3: Graph Reduction on a Unified Machine Model

Figure 3.5: Spark States

The pool is implemented using an efficient lock-free dequeue [55] which allows

the owner, i.e. the PE that created the dequeue, to use one end locally for popping

and pushing (LIFO), whilst older sparks are stolen off the other end using a single

atomic compare-and-swap operation (FIFO). This choice is based on the insight that

older sparks are often associated with computations of larger granularity (similar to

the Breadth-first Until Saturation then Depth-first (BUSD) mechanism [49]). Note

that the overhead is absent unless two threads actually attempt to dequeue the same

spark. Sparks are discarded if they have been already evaluated, e.g. through thread

subsumption, or if the spark pool is full. This can influence the actual degree of

parallelism and thread granularity at run time.

3.3.2 Granularity Control

Control of granularity, i.e. the computational size of tasks, is crucial for ensur-

ing good performance, since it addresses balancing granularity and actual paral-

lelism [162, 109]. As parallelism is very fine-grained in graph reduction, because

every sub-expression can be evaluated in parallel, the overhead of creating new

threads may overwhelm the benefit of evaluating many relatively small computa-

tions in parallel. Hence, there is often a need to throttle the available parallelism

and keep actual parallelism at a fraction of the available.

62

Chapter 3: Graph Reduction on a Unified Machine Model

Additionally, it is critical to ensure that sparks associated with larger granularity

are kept for parallel execution and export, whilst sparks that are associated with

too fine-grained computations are discarded. Moreover, granularity control interacts

with load balancing, since having too little actual parallelism may lead to load

imbalance, as can a large variation in granularity. For example, if a very large

computation is evaluated last, all other PEs would have to wait for the straggler.

One RTS-level mechanism for self-throttling granularity control is thread sub-

sumption through inlining of the child spark into the parent thread that requires

its result. This effectively increases GUM’s architecture independence by adaptively

throttling granularity depending on the number of idle PEs, using the mechanism as

described in Section 3.3.1. In particular, D&C computations are suitable for thread

subsumption due to their tree-like computational structure.

Although not the focus of this work, it shoud be noted that the user can improve

granularity by using application-level techniques such as thresholding, chunking, and

clustering, which complement the RTS-level mechanisms. Essentially, these tech-

niques logically increase the nesting of the data structures and exploit parallelism

across whole groups of elements instead of working on each single element in paral-

lel. This leads to reduced parallelism, i.e. it reduces the number of created sparks

and consequently of threads. This results in increased granularity, as on average

threads are now associated with larger computations. Overall, granularity control is

challenging due to the difficulty of reliably predicting spark sizes in advance, either

statically or dynamically, and hence heuristics are often used in practice.

3.3.3 Data Locality

Data locality in the context of distributed graph reduction refers to keeping data re-

quired for computations local or nearby rather than to cache-related behaviour. We

will use the size of the global indirection table, the format of which we described in

Section 3.2.3, as a means-based metric for fragmentation of the global heap, as each

GA entry in the table represents a cross-PE pointer referring to exactly one shared

closure. Hence, the larger the table size, the higher the degree of graph sharing

63

Chapter 3: Graph Reduction on a Unified Machine Model

across PEs. This is relevant, as inter-PE sharing requires additional communica-

tion, which contributes to the overall overhead and may not always be overlapped

with computation. Although the number of GAs is only an approximation of the

absolute shared heap size, it is sufficient to allow relative decisions.

Heap Organisation Closures and other objects, such as TSOs that represent

light-weight threads and state information, are allocated from the heap and are

automatically reclaimed by the GC once no longer needed. The advantage of this

scheme is that both internal objects and different types of closures can be handled

uniformly by the garbage collector [195]. Figure 3.6 illustrates the generic layout of

heap-allocated objects in the RTS.

Figure 3.6: Generic Heap Object Layout

A heap object consists of a header and a payload that contains pointers to other

objects and non-pointer data as described by the header. The header points to the

entry code used to evaluate the closure. An info table resides at an offset just before

the entry code and can be examined to check the type of the object to ensure it

is handled appropriately. For example, a function closure contains references to its

free variables in the payload.

Virtual Shared Memory The description below is based on [237, 30]. GUM’s

virtual shared memory implementation allows sharing of graph nodes across PEs

by globalising closures, i.e. by assigning a GA to each thunk, instead of recording

64

Chapter 3: Graph Reduction on a Unified Machine Model

a GA inside of each closure. By contrast, data in normal form (NF) is copied

across nodes [158]. Each PE uses a Global Indirection Table (GIT) to maintain the

mapping between local and global addresses. The size of the transmitted sub-graph

is limited by the fixed upper limit for the packet size, which can be set using an RTS

option. If the graph does not fit into the packet indirection closures are packed and

transmitted using multiple packets instead.

Figure 3.7: GUM’s Virtual Shared Heap (from [30])

Figure 3.7 shows how parts of the graph are shared across PEs. Nodes 1 and

3 on PE1 (initially referred to by using temporary GAs GA 1.1 and GA 1.2), are

indirection closures (FetchMe objects) which after transfer refer to remote sub-graph

using GAs (GA 2.1 and GA 2.2 on PE2). Nodes number 2, 4, and 5 are copied across

as they are data in NF. To evaluate node 6, PE1 will use the fetching protocol to

obtain the necessary values from PE2. The GIT needs to be updated after each GC

to maintain correct mapping, which contributes to the overhead and is the reason

for keeping the number of GAs as low as possible.

This mechanism is based on the assumption that most of the graph nodes remain

unshared and there is no need to globalise them [199]. Moreover, GUM’s distributed

GC is currently unable to collect cycles across PEs, which remain in the GIT until

the end of the run6. However, suitable schemes exist [31] to handle this uncommon

6communicating values and thunks that are part of a cycle requires no special treatment

65

Chapter 3: Graph Reduction on a Unified Machine Model

case and could be implemented in the future.

Graph Packing A shared sub-graph needs to be serialised before it is sent to

remote PEs over the network. The packing proceeds in breadth-first order to allow

local cycles to be reconstructed when unpacking the message using the implicit

ordering. Additionally, the packet header specifies the size of the pack buffer needed

to unpack the graph.

The receiving PE checks whether a more defined copy of the sub-graph is avail-

able locally and if so uses it, whilst updating the GIT. Some nearby graph that is

likely to be needed is usually included the message, which is similar to pre-fetching,

resulting in data being packed somewhat eagerly.

Figure 3.8: GUM’s Graph Packing (from [30])

Figure 3.8 depicts a packed graph including closures, that are identified by a tag

and a GA, and references to shared graph nodes. For example on the right-hand

side, node 5 is shared by nodes 2 and 3 and hence is packed only once and then

referenced. The graph root is found at the offset of one and subsequent closures

and references at their respective offsets, which depend on the cumulative size of

the preceding ones.

66

Chapter 3: Graph Reduction on a Unified Machine Model

3.3.4 Load Balancing

In GUM, the load balancing policy that involves distribution of work across PEs is

realised using a work stealing mechanism (also called fishing) and aims at reducing

the overall idle time across PEs, whilst keeping the communication overhead as low

as possible and ensuring the highest possible performance.

Work Stealing Work stealing is a passive, i.e. receiver-initiated, decentralised

workload distribution mechanism used in many parallel language run-time sys-

tems [38, 85, 67].

The two main decision points are:

• where to steal from: victim selection by a thief or selection of forwarding des-

tination by victim with no sparks available for export; function choosePE().

• which spark to export : decision made by a victim that has exportable sparks;

function findSpark().

These decisions are the main points where we can intervene by letting extended

mechanisms take decisions differently from the baseline system. Listings 3.4-3.6

show the work stealing pseudocode, whilst Figures 3.9-3.11 illustrate the message

types and the protocol. Refer to Table 3.1 for message type descriptions.

As shown in Listing 3.4, the choosePE() function is used by the default mech-

anism to select a victim at random and send out a FISH message, as long as the

maximum number of FISH messages in transit was not exceeded and delay between

sending consecutive FISH messages is adhered to.

By default, a victim that receives a FISH, selects the oldest spark for donation and

sends it back to the origin PE (see Figures 3.10 and 3.11). The thief acknowledges

reception of a spark by sending an ACK message with an updated list of pairs of old

GAs and new GAs to the victim (Listing 3.6).

1 getRemoteSpark () { // thief looking for work

2 // ...

3 if (outstanding_fishes < MAX_FISHES)

4 if (next_fish_to_send_at <= now()) // FISH delay has passed

67

Chapter 3: Graph Reduction on a Unified Machine Model

5 sendFish(to = choosePE() , origin = thisPE , age = 0)

6 }

Listing 3.4: GUM Work Stealing: Thief Sending a FISH

The tunable fish delay and delay factor determine the pause between sending

consecutive FISH messages to avoid swamping the network with messages in addition

to a limitation on the number of outstanding fishes (currently one per PE by default).

The variable outstanding fishes is updated when sending or receiving a FISH,

whereas the delay and delay factor are set at RTS startup, either to a default value

or to a value of the corresponding RTS flag, and delay is multiplied by the factor

every time an expired FISH message returns to the originating PE.

1 processMessages () { // victim ’s response to a FISH

2 //... // msg.type == FISH and msg.origin != thisPE

3 if (msg.age == MAX_AGE) // return expired FISH to origin

4 sendFish(msg , to = msg.origin)

5 else if (s = findSpark()) // export a spark if available

6 sendSchedule(pack(myPEid , s), to = msg.origin)

7 else {

8 msg.age = msg.age + 1

9 sendFish(msg , choosePE()) // forward FISH to another PE

10 }

11 // ...

12 }

Listing 3.5: GUM Work Stealing: Victim’s Response

1 processMessages () {

2 // ...

3 if (msg.type == SCHEDULE) { // THIEF either receives work ...

4 s = unpack(msg)

5 add(spark_pool , s)

6 updateGIT () // send updated GAs to owner

7 sendAck ([(oldGA ,newGa)], to=msg.sender)

8 }

9 // ... // ... or expired own FISH

10 if (msg.type == FISH && msg.origin == thisPE) {

68

Chapter 3: Graph Reduction on a Unified Machine Model

11 outstanding_fishes --;

12 last_fish_arrived_at = now()

13 fish_delay = fish_delay * fish_delay_factor

14 next_fish_to_send_at = last_fish_arrived_at + fish_delay

15 }

16 // ...

17 }

Listing 3.6: GUM Work Stealing: Thief Handling a Response

Single-Hop Successful Fishing Attempt: Figure 3.9 demonstrates the case

where the thief got lucky by randomly selecting a victim that was able to donate

a spark. After the victim is selected, a FISH is sent and the thief proceeds with

the scheduling loop. Once a victim has received the FISH, it selects a spark to

donate, packs it with a nearby sub-graph of tunable size that is likely to be needed

and sends it in a SCHEDULE message back to the thief. The thief responds with

an ACK message that is used to update global addresses in the recipient’s GIT (see

Figures 3.9 and 3.10) that have changed as a result of spark movement.

Figure 3.9: Single-Hop Successful Fishing Attempt

Multi-Hop Successful Fishing Attempt: Often a FISH has to travel over mul-

tiple hops to find a victim that can donate a spark, as shown in Figure 3.10.

The protocol starts as for the single-hop case, but deviates when a victim receiv-

ing the FISH has no sparks and forwards the request to another randomly chosen

69

Chapter 3: Graph Reduction on a Unified Machine Model

Figure 3.10: Multi-Hop Successful Fishing Attempt

PE (see also Listing 3.5). Once a suitable spark is found the protocol ends with the

exchange of SCHEDULE and ACK messages as discussed above. Note that the FISH

contains the PEid of the thief, so that the spark can be sent directly to the thief.

Unsuccessful Fishing Attempt: Every time the FISH is forwarded its age is

incremented and it can expire if it reaches the maximum allowed age. Figure 3.11

presents the protocol in this case, where the expired FISH is sent back to the thief,

which then may send out a new FISH after a short delay (see also Listing 3.6).

Figure 3.11: Unsuccessful Fishing Attempt

Although useful for avoiding scheduling accidents when one PE turns most of

70

Chapter 3: Graph Reduction on a Unified Machine Model

the sparks into threads and others stay idle, thread migration [77], where a thread

can be shipped to a remote PE, is currently not supported. Such accidents are

deemed unlikely, as in practice parallelism is usually rather fine-grained in functional

programs and the cost of migrating a thread often outweighs the benefits.

3.4 Adaptivity

Adaptivity is a key feature of systems that are capable of coping with dynami-

cally changing circumstances such as load variations. Architecture-independence

at application level requires some degree of architecture-awareness and adaptation

at implementation level to achieve high performance across different architectures.

Adaptivity is enabled by using a feedback loop at run-time that allows the system to

monitor itself and its environment and to tune the employed mechanisms based on

that information, as illustrated in Figure 3.12 depicting GUM’s control model. This

is more flexible than a tuning cycle involving a human expert manually tuning the

parameters after examining the profiling data and mostly requiring interruption of

the current application run or even recompilation. Manual tuning appears increas-

ingly less feasible in practice due to rapidly increasing software complexity, larger

parameter spaces and an expanding architectural landscape.

Figure 3.12: GUM’s Control Model

Profiling has always played a key role in performance evaluation of computer sys-

tems [130]. It is complemented by analytical techniques, which are however of limited

applicability and accuracy, as abstraction often requires severe simplifications to fit

71

Chapter 3: Graph Reduction on a Unified Machine Model

existing formalisms that often are inadequate in reflecting the diversity and com-

plexity of systems and applications operating in dynamic environments. Simulation,

which covers the middle ground and allows exploration of a larger design space, is

somewhat less abstract and idealised and sometime can be parameterised by actual

target platform characteristics.

3.4.1 Monitoring and Tuning Classification

Table 3.2 illustrates the temporal relationships between monitoring and tuning based

on the control loop model of adaptation, with a focus on classifying the degree of

adaptivity of a given mechanism or system.

• When and how often is monitoring performed?

• When and how often is tuning performed?

We distinguish between several points in the design space based on these ques-

tions, and focus on hard-coded control (never monitor, never tune), configuration

(never monitor, tune at start-up time), and dynamic adaptation (monitor often,

tune often), as these appear most relevant for language RTS design, highlighted in

Table 3.2.

Table 3.2: Temporal Relation between Monitoring and Tuning

Tune
never once often

Monitor

never hard-coded static at start-up random mutation
control (configuration)

once detached trigger snapshot at run time triggered mutation
(one sample)

often detached sensor decision at run time dynamic
(multiple samples) (event-based)

The least general category, and our baseline case, is hard-coded control, which

is very common in software systems and lacks flexibility. Often manual code adap-

tations are required to respond to change and in most cases this is prohibited at

72

Chapter 3: Graph Reduction on a Unified Machine Model

run-time. However, adaptation is still possible using hard-coded control if a decen-

tralised algorithm is employed that embodies a capability to react to environmental

and system state changes.

For instance, the work stealing algorithm for load balancing and work distribu-

tion may hard-code victim choice and spark selection for export, but is still classified

as adaptive because it reacts to load changes. Nevertheless, the decisions are made

by the system programmers based on their domain knowledge and experience and

are fixed at compile-time. Changing the hard-coded parameters requires recompila-

tion and restart of the application.

The least useful categories include isolated components such as detached trigger

(monitor once, never tune) and detached sensor (monitor often, never tune) and are

briefly mentioned for completeness. The usefulness is limited as no action is taken,

however, if a human observer is involved, the output may still be used in a manual

fashion, e.g. by analysing the logs produced by the sensors.

A dual class of systems we will not further discuss includes random mutation

(never monitor, tune often), which may have some merit in simulations or generating

random test input, but in adaptive systems would lead to instabilities, as the state

of the system and the behaviour could change regardless of the need, resulting in

sub-optimal trajectory. Similarly, triggered mutation (monitor once, tune often) can

not ensure that multiple tuning actions reflect the actual need.

Another point in the design space similar to hard-coded control is static config-

uration at start-up time, since the number of configuration options is usually hard-

coded. The benefit of the scheme is that it requires no re-compilation and exchanges

the configuration settings via a config file or some RTS parameters. Some systems

allow changes to the configuration at run-time and hence enable re-configuration.

These can rather be considered dynamic and potentially adaptive. However, con-

figuration relies on the a-priori knowledge of the entity which sets the configuration

parameters and not on monitoring.

A related design point is the snapshot (monitor once, tune once), where the

tuning decision is made based on a single observation, which may be inaccurate,

73

Chapter 3: Graph Reduction on a Unified Machine Model

unless the sample is representative of the behaviour of the system. For instance,

a program can query the operating system to check for availability of accelerator

hardware and decide to off-load parts of the computation to improve performance.

Additionally, it is difficult to determine the best time to make such an observation.

The decision category (monitor often, tune once) is based on multiple samples

and may involve some statistical analysis to determine the following tuning action.

The key limitation leading to inflexibility is that the tuning step is performed only

once. An example is an emergency sub-system that constantly monitors system state

and acts appropriately (e.g. gracefully shuts down the system) once the emergency

state is detected. Such a system could be used to support fault tolerance by invoking

a specific fault handling component.

Finally, the most general and flexible option is dynamic adaptation at run-time

(monitor often, tune often), where multiple decisions and actions are taken based

on many samples. This option can emulate any other option depending on the

possible use of the monitoring information (e.g. ignore or use once) and tuning

activities (e.g. decide never to tune, which is equivalent to tuning often to the same

parameter values as before, or tune once).

A further sub-division can be made based on the frequency of monitoring and

tuning: periodic or event-based. Event-based is a more general case, because the

periodic case is equivalent to the event-based with fixed intervals between events.

The benefit of using a dynamic mechanism may be offset by the cumulative pro-

filing and tuning overheads and hence constitutes a trade-off between the frequency

of monitoring and tuning and the level of responsiveness of the system.

3.4.2 Parameter Selection

The choice of suitable parameters and values poses yet another challenge. Monitored

system parameters include total counts of different messages and threads in different

states, providing an overview of the system, as well as per-thread profiles for more

fine-grained control. Table 3.3 summarises key parameters available in GUM.

For example, a high overall number of messages (FISH, FETCH), large indirection

74

Chapter 3: Graph Reduction on a Unified Machine Model

Table 3.3: A Selection of Observable and Tunable Parameters

high-level Monitoring Tuning
concept start-up run time compile time start-up run time

load balance latency, per-thread info, max FISHes location victim and
and locality nodes, PEs table size, load sched algo of main PE spark choice
parallelism, nodes, PEs, per-thread info, (as for LB) (as for LB) inlining
granularity code/object pool/queue size policy
communi- latency, avg packet size, packet size, nodes, PEs, max FISHes

cation bandwidth rate of transm. max closures main PE loc max closures

table size, and many blocking threads hint at potential load imbalance. The chal-

lenge is to devise general ways to respond to such situations. Further parameters

include architectural information such as the number and computational power of

PEs and characteristics of the memory and network hierarchy, which can help de-

termine where to look for work or to which PE to off-load work to maximise the

benefits and reduce the costs. Empirical evaluation is necessary to assess tuning

effects and to justify the selection and tuning of the chosen parameters.

3.4.3 Tuning GUM

Here we briefly discuss sources of adaptivity in GUM. The main adaptive mecha-

nisms are work stealing for load balancing and thread subsumption for control of

granularity and parallelism.

Thread subsumption is an adaptive mechanism as it reacts to load in relation

to available PEs. As discussed in Section 3.3.1, thread granularity is indirectly

increased based on load, by inlining child sparks into a parent thread, thus effectively

reducing the actual degree of parallelism and increasing average thread granularity.

This is useful if the system is saturated with sparks and under relatively heavy load,

for it avoids thread creation overheads and improves locality, as the parent thread

is likely to require the results of a computation associated with its child sparks.

Work stealing is another example of an adaptive mechanism. Even in its baseline

version the mechanism adapts to changing load patterns and balances the load across

the system. According to the suggested classification, the algorithm is dynamic as it

75

Chapter 3: Graph Reduction on a Unified Machine Model

uses events (running out of work) to generate work request that are sent by the idle

PEs, resulting in rebalancing of the load, when PEs that have work react to further

events (receipt of the FISH messages) by sending sparks to idle PEs, thus distributing

the work. In particular, the set of local decisions results in global behaviour change.

Additionally, work stealing utilises an adaptive back-off mechanism by tuning a

delay factor to avoid swamping a lightly loaded cluster with stealing requests based

on recent fishing failures.

We argue that adaptivity is not a binary concept, as it is possible to recognise

different levels of adaptivity, for instance direct and indirect. Moreover, adaptivity

appears crucial for implementing support for performance portability as the a-priori

knowledge available at compile time and at start-up is fundamentally limited and

performance in many cases depends on parameters only known at run time. Ex-

amples of such parameters include task granularity, dynamic degree of parallelism,

stream data size, shape or degree of sparseness.

3.5 Summary

This chapter focused on the design and implementation of the GUM RTS, illustrating

architecture-transparent control of parallelism at run time on top of the virtual

shared memory for seamless execution on distributed-memory architectures. The

GpH language and Evaluation Strategies abstractions were introduced as the means

to express parallelism and control granularity at application level. Moreover, we

discussed the Graph Reduction evaluation model and the Unified Machine Model

that enables architecture transparency and adaptation.

Relevant key concepts and the driving forces behind GUM’s design, such as

lazyness, advisory parallelism, determinism, as well as implicit synchronisation and

communication with latency hiding, were described alongside the related policies

and corresponding mechanisms controlled by the RTS. These mechanisms include

scheduling, thread management, memory management (including GC and manage-

ment of globally shared closures), load balancing using work stealing, granularity

control, and data locality.

76

Chapter 3: Graph Reduction on a Unified Machine Model

In particular, the key work stealing decisions that influence load balancing, i.e.

which PE to steal from and which spark to donate, offer places to intervene and adapt

the mechanism at run time. This suggests areas for investigation and extension both

from the thief’s and the victim’s point of view. More specifically, the thief chooses

the victim entirely at random, a decision that can potentially be improved by using

relevant historical system-level information. Additionally, the victim donates the

oldest spark in response to thief’s request. We envisage that using system-level

information a related spark can be donated.

Another central theme is adaptivity and the associated flexibility exemplified by

thread subsumption that adaptively controls granularity and parallelism degree in

GUM. To the best of our knowledge, the adaptivity classification scheme introduced

in Section 3.4.1 is a novel contribution that enables classification of RTSes based

on the frequency of monitoring and tuning actions. We identify the dynamic event-

based approach as the most flexible due to its ability to emulate any other form of

adaptation.

Based on the GUM model and key intervention points identified in this chapter,

we proceed to characterise a set of parallel functional applications in the following

Chapter 4 using relevant metrics such as heap residency and size of the global

indirection tables as well as thread granularities and communication rate.

77

Chapter 4

Characterisation of Parallel

Functional Applications

This chapter presents a profiling-based characterisation of eight small and medium-

sized parallel functional applications with respect to the wider issues of load balanc-

ing and data locality. To gain an insight on these, we consider specific characteristics

available through profiling and relevant for adaptive management of parallelism, such

as the potential and actual degree of parallelism, scalability, communication degree,

thread granularity, and memory usage. These means-based metrics are useful in re-

vealing differences between applications and among run-time systems. Experiments

are conducted on a modern 48-core server with a NUMA architecture and on a

Beowulf-class cluster consisting of multiple 8-core nodes using up to 64 cores in to-

tal, as described in Section 4.3.1. This characterisation, paired with information on

the model of GUM from the previous chapter, is the basis for the choice of heuristics

presented in Chapters 5 and 6, and is an extended version of our 2015 paper [25].

4.1 Application Characterisation Studies

To provide broader context, we discuss several characterisation studies from the

literature and the differences to our purposes. Application characterisation studies

can be used to assess and inform the design of computer architectures, as well as

run-time systems and virtual machines such as JVM [155] and CLR [179], using

78

Chapter 4: Characterisation of Parallel Functional Applications

well-known benchmarks, e.g. SPEC, STREAM, DaCapo [118, 175, 34], to assess

processor performance and memory throughput. More relevant to our work, the

GHC nofib suite [192] has been used for a long time as the standard benchmark suite

in Haskell, in particular to assess the effectiveness of new compiler optimisations.

Another common use case is workload characterisation, i.e. the comparison of the

coverage of a parameter space by several benchmark suites or sets of workloads to

assess their similarity.

The widely cited Berkeley Report [12] introduces twelve motifs (originally termed

dwarfs, when there were seven) that describe common computational kernels (e.g.

graph algorithms, structured grid, dense and sparse matrix operations) and reviews

their use in different application domains to justify their importance. However, this

view is very high-level as multiple motifs can overlap in terms of run-time behaviour

and parallelism patterns used.

Another study suggests a classification based on last-level-cache (LLC) access

behaviour and uses animal names [259]: Turtles do not stress LLC much because

of a small working set or few memory instructions; Sheep are well-behaved and

unlikely to be disturbed by others; Rabbits are sensitive to cache usage patterns;

Tasmanian Devils are highly undesirable since they interact badly with almost any

other program and overall system performance should benefit from their isolation.

In contrast to the above purposes, we aim to discover system parameters that

could be monitored and dynamically tuned within the GUM RTS and that could

suggest potentially beneficial interventions or improved heuristics. In our work, we

focus on a run of a single application on a dedicated cluster and do not investigate

interference patterns.

Choice of Characteristics Similar to the characterisation of the SPLASH-2 and

PARSEC benchmarks [32], we use several common characteristics such as the work-

ing set size (maximum heap residency), communication-to-computation ratio and

the number of light-weight threads as well as their granularity.

Specific to the implementation of a virtual shared memory abstraction, we also

measure memory allocation rate and collect detailed information on threads blocking

79

Chapter 4: Characterisation of Parallel Functional Applications

and fetching times and counts. In particular, along with studying inter-PE sharing in

general terms, we focus on the size of global address tables as a means-based metric

of inter-PE sharing, as well as on the amount of graph sent to assess locality. These

characteristics as important in non-strict functional setting as the graph reduction

evaluation model puts additional pressure on the heap usage [169].

4.2 Parallel Applications

We use eight small and medium-sized parallel functional applications.

Choice of Applications Most of the applications we use have been adopted from

the parallel part of the established nofib benchmarking suite [192] and from a recent

study of Evaluation Strategies [167]. Applications using simple yet powerful patterns

are deemed representative of a large class of task and data parallel applications [72].

We group the applications by the exploited parallelism pattern and investigate how

program characteristics change across different run-time systems and architectures

with varying number of PEs.

4.2.1 Divide and Conquer

Five of the applications use the divide and conquer (D&C) pattern, where a problem

is recursively split into sub-problems that are solved and the results combined to

form the final result. A generic D&C skeleton [236] could take a function that checks

whether the problem is divisible, a splitting function, a merging function, and a

function to solve an indivisible problem. If the problem is divisible, it is split into

sub-problems that are solved recursively and the results are combined to produce

the final result. In order to control the granularity of the computation, a threshold

value can be used to restrict the depth of a compute tree resulting from parallel

evaluation to a certain level from which on the problem is solved sequentially.

However, in our implementation we do not use the generic interface, but stick

with the existing implementations that use similar but slightly different formulations,

which mostly boil down to calling par to spark sub-computations.

80

Chapter 4: Characterisation of Parallel Functional Applications

• The parfib program computes the number of function calls for the recursive

computation of the Nth Fibonacci number using arbitrary-length integers.

This benchmark is deliberately aggressive in generating parallelism and aims

at assessing thread subsumption capabilities of the RTS. This program is rep-

resentative of regular D&C applications with a deep compute tree and with a

single source of parallelism without nesting: both the splitting and the combin-

ing phases require two arithmetic operations on integers of arbitrary length and

the sequential work is exponential. Therefore parallelism is very fine-grained,

although the use of the GNU GMP arbitrary precision integer library, which

implements Haskell’s Integers, means that basic operations are not single

assembler instructions. We use N = 50 and a threshold of 23.

• The worpitzky application checks the Worpitzky identity1, a combinatorial

identity over integers, for two given arbitrary-length integers and is represen-

tative of the domain of symbolic computations.

xn =
n∑

k=0

〈n
k

〉(x+ k

n

)
(4.1)

At the top level this requires one exponentiation, one equality comparison,

and a fold summing over a list of n intermediate results, which are computed

in part in parallel and for the other part require two arithmetic operations and

binomial computation using three factorial and three arithmetic operations.

Parallel computations include a single source of parallelism and 3 arithmetic

operations for both the combine and the split phase. We take 19 to the expo-

nent of 27 and use a threshold of 10 (in terms of the second input value) as

input parameters.

• The queens program determines the number of solutions for placements of N

queens on a square NxN board so that no two queens are attacking each other.

The positions are represented by a list of integers and generated by discarding

unsafe positions. We use N = 16.

1http://mathworld.wolfram.com/WorpitzkysIdentity.html

81

http://mathworld.wolfram.com/WorpitzkysIdentity.html

Chapter 4: Characterisation of Parallel Functional Applications

• The coins program computes possible ways to pay out a specified amount from

a given set of coins. The program is similar to parfib in the sense that the

split and the combine phases require one arithmetic operation each, whilst a

sequential solution requires finding suitable permutations of coins. In our case

the value is 5777. The individual coins can take the following values: 250, 100,

25, 10, 5, or 1.

• The minimax application [163] calculates winning positions for a noughts-vs-

crosses game on a NxN board up to a specified depth using alpha-beta search

and exploits laziness to prune unpromising sub-trees and parList strategy

to introduce parallelism. The board is represented by a list of rows of cells

containing either Empty, X or O. We use N = 4 and a lookahead depth of 8.

4.2.2 Data Parallelism

Three of the applications are data parallel, i.e. the parallelism is exploited by simul-

taneously applying a function to the elements of a data structure. Explicit chunking

can be used by the programmer for advisory granularity tuning at application level.

• The sumeuler program computes the sum over Euler Totient2 numbers in

a given integer interval, uses chunking for granularity control and is fairly

irregular, as depending on the chosen interval granularity can vary by over an

order of magnitude and is non-monotonic3. All the parallelism is generated in

the beginning of the execution. We use interval from 0 to 100000 with a chunk

size of 500.

• The mandelbrot application computes the Mandelbrot fractal set for a given

range and image size as well as number of iterations. The application is fairly

irregular due to the difference in the amount of required computation in dif-

ferent regions of the image. We use the image region between −2.0 and 2.0,

4096× 4096 pixels image size, and 3046 iterations;

2http://mathworld.wolfram.com/TotientFunction.html
3but in general it increases with n from the specified interval

82

http://mathworld.wolfram.com/TotientFunction.html

Chapter 4: Characterisation of Parallel Functional Applications

• The maze program is a nested data-parallel search application which searches

for a path in a maze. Speculation is used to prune some of the unpromising

solution candidates. Once a solution is found, the program terminates, result-

ing in non-deterministic behaviour due to use of randomisation in the work-

stealing scheduler, whilst the computed result remains deterministic. We use

the maze of size 29× 29, specified via a single input parameter.

4.3 Application Characterisation

This section presents the experimental design and evaluates the results to charac-

terise the dynamic behaviour of the applications, with a particular focus on load

balancing and data locality, using the following metrics:

• time elapsed and speedup reflecting performance and scalability,

• sparks and thread counts showing available and actual degree of parallelism,

• thread sizes to assess application granularity distribution,

• heap residency as a proxy for application’s working set size,

• allocation rate as a measure for heap activity,

• along with the percentage of garbage collection,

• size of the global indirection table reflecting inter-PE sharing,

• number of communication messages transmitted as a measure of communica-

tion overhead.

Elapsed time provides a direct measure of application performance, whilst speedup

allows to assess scalability with increasing number of PEs. In contrast to these ends-

based metrics, the means-based metrics help to explain the changes in behaviour

and provide information about different RTS components. The available degree of

parallelism places an upper bound on parallelism that could be exploited, whilst

83

Chapter 4: Characterisation of Parallel Functional Applications

the actual degree of parallelism refers to the number of converted threads. Granu-

larity information provides insight into sizes as well as fetch and block counts and

times for each thread. Heap residency, allocation rate and percentage of GC provide

information on the memory management behaviour, whist global indirection table

size indicates the usage of the virtual shared memory overlay (i.e. the amount of

inter-PE sharing). Additionally, the communication behaviour can be assessed by

using the numbers of transmitted messages grouped by message type.

4.3.1 Experimental Design

We report application performance and profiles from a median run out of three on

a multi-core and on a cluster of multi-cores. We report relative speedup as we are

primarily interested in the behaviour of the parallel applications.

The 48-core machine (cantor) consists of four AMD Opteron processors with

two NUMA nodes with six 2.8GHz cores each. Every two cores share 2MB L2 cache

and all six cores on a NUMA-node share 6MB L3 cache and 64GB RAM, a total

of 512GB. Memory access latency differs by up to a factor of 3 depending and the

NUMA regions involved with average latency of 16ns (measured using numactl -h).

Although our primary focus is on distributed memory architectures, we use a NUMA

machine for a two-fold comparison, GUM on shared-memory machine versus GUM

on a distributed-memory machine, as well as to compare GUM against the estab-

lished GHC-SMP RTS, which is tuned for multi-cores [169]. Moreover, NUMA

architectures can be viewed as distributed-memory architectures with a very fast

interconnect and thus offer an interesting design space point for comparison.

The beowulf cluster comprises a mix of 8-core Xeon 5504 nodes with two sockets

with four 2GHz cores each, using 256 KB L2 cache, and 4MB shared L3 cache and

12GB RAM, and 8-core Xeon 5450 nodes with two sockets with four 3GHz cores

each, using 6MB shared L2 cache and 16GB RAM. The machines are connected via

a commodity Gigabit Ethernet with average latency of 0.15 µs.

On all the machines we run CentOS 6.5 and use run-time systems based on GHC

6.12.3, gcc 4.4.7, and PVM 3.4.6. We use the somewhat dated GHC version since

84

Chapter 4: Characterisation of Parallel Functional Applications

we have not yet ported the GUM RTS and profiling support to a newer version.

However, we did run a small set of experiments using GHC 7.6 on the 48-core

machine, which showed improved scaling for SMP, but the overall trends remained

unchanged.

4.3.2 Performance and Scalability

For each application we fix the input size and increase the number of PEs to assess

strong scaling. Figure 4.1 presents the run times on up to 48 cores on cantor and

up to 64 cores on the beowulf cluster. Note the different scales.

We observe that for most applications the run time decreases as the applications

are able to profitably exploit some parallelism resulting in an order of magnitude

reduction in execution time for 5 out of 8 programs. The exceptions are queens, due

to excessive memory use as discussed in Section 4.3.4, and maze, which generates

more work with increasing PE numbers as more sparks end up being converted into

threads. Moreover, scalability is poor for most GHC-SMP4 runs on higher numbers

of PEs, which indicates a system-level scalability issue. Surprisingly, in most cases

GUM outperforms SMP on a NUMA multi-core server although primarily designed

for a distributed-memory architecture.

We observe strong scaling for parfib and coins for GUM with efficiency of over

70% on beowulf and over 50% on cantor, and good scaling for sumeuler. However,

it seems to have load balancing issues for high numbers of PEs as the number of

converted threads already almost reaches a limit on 32 PEs (see Table 4.1).

Programs run using SMP show the best performance for low to medium PE

numbers, whilst 48-cores results in a slowdown for 5 programs due to a memory

management issue discussed in Section 4.3.4. Surprisingly, maze doesn’t scale on

SMP although it creates work proportional to the number of PEs.

By contrast, programs using GUM scale up to 64 PEs in most cases, although

often the benefit of adding further PEs decreases due to increasing overhead and

reduced work per PE. In particular, queens, mandelbrot, and to a lesser extent

4we use SMP and GUM as a shorthand for GHC-SMP and GHC-GUM, respectively

85

Chapter 4: Characterisation of Parallel Functional Applications

Figure 4.1: Application Execution Times (lower is better)

Figure 4.2: Application Scalability (higher is better)

minimax, exhibit limited scalability due to excessive heap residency and commu-

nication, as discussed in Sections 4.3.4 and 4.3.5, which hints at improvement po-

tential at application level. Likewise, we believe that increasing granularity would

also improve performance of worpitzky, since currently median thread size for this

86

Chapter 4: Characterisation of Parallel Functional Applications

application is very small5 (see Section 4.3.3) and the number of threads very high

(see Table 4.1).

Table 4.1: Parallelism Degree: Actual vs Potential

application number of threads on N cores total
c=cantor;b=bwlf 2 4 8 16 32 48 64 sparks
G=GUM;S=SMP
sumeuler-Gb 128 165 184 192 196 198 198 200
sumeuler-Gc 135 171 186 193 197 197 - 200
sumeuler-Sc 2 4 8 16 32 48 - 200
minimax-Gb 10 30 62 143 318 449 451 1480
minimax-Gc 12 161 69 139 269 410 - 1480
minimax-Sc 5 31 92 115 127 170 - 1480
queens-Gb 10 66 135 293 544 932 1065 2462
queens-Gc 14 57 146 281 521 809 - 2462
queens-Sc 5 69 153 201 237 261 - 2462
mandelbrot-Gb 763 1259 1772 2179 2321 2333 2321 4096
mandelbrot-Gc 734 1245 1823 2261 2445 2406 - 4096
mandelbrot-Sc 1537 782 7224 22128 31999 57135 - 4096
parfib-Gb 4 34 82 328 705 1011 1733 514228
parfib-Gc 4 38 89 231 668 1834 - 514228
parfib-Sc 20 136 881 11127 54432 74347 - 514228
coins-Gb 16 62 170 591 1670 4170 5194 3507939
coins-Gc 13 36 170 633 1915 3130 - 3507939
coins-Sc 3 93 3687 7478 14784 18753 - 3507939
worpitzky-Gb 57 403 1449 4246 12510 20866 - 7340004
worpitzky-Gc 55 401 1430 4508 12728 20130 - 7340004
worpitzky-Sc 162 565 12113 49979 248115 324138 - 7340004
maze-Gb 4 13 56 412 1131 2446 4029 varies
maze-Gc 4 15 116 454 750 1682 - varies
maze-Sc 3 52 1172 3029 timeout timeout - varies

Degree of Parallelism We observe a wide range of actual and potential paral-

lelism degrees across applications, as shown in Table 4.1. The sumeuler application

only has 200 sparks which appears insufficient to keep all the PEs busy. This is a

rare case across the benchmarks and mainly due to parameter settings. For coins

and worpitzky there are four orders of magnitude more sparks available, most of

which are pruned at run time. For instance for coins on 48 PEs, less than one per-

cent of sparks are converted, showcasing that the system can handle large amounts

5using GUM the mean thread size for worpitzky is over an order of magnitude smaller than
the second smallest mean thread size for parfib

87

Chapter 4: Characterisation of Parallel Functional Applications

of potential parallelism.

Overall GUM appears well-suited for D&C applications [159] and is able to sub-

sume threads to a larger extent than SMP which creates threads more aggressively.

In particular on cantor using 48 PEs, for coins, worpitzky and parfib SMP

has 6×, 16×, and 41× more threads, respectively. This way, the RTS automati-

cally adapts the degree of actual parallelism to the number of available PEs. For

other applications, the factors range from 24× for mandelbrot, to 0.24×, 0.42×,

and 0.32× for sumeuler, minimax, and queens, respectively. Parallelism is often

over-abundant and fine-grained in functional programs, leaving considerable parallel

slackness and emphasises the need for an effective thread subsumption mechanism.

In contrast to the D&C applications which represent a tree-like computation,

thread subsumption is less effective in data-parallel applications, such as sumeuler,

especially those where all the parallelism is created at the start of the computation.

Hence, to exploit the subsumption mechanism, data-parallel applications seem to

require some nesting in creating parallelism.

4.3.3 Granularity

We have extended run-time profiling capabilities of GUM and SMP to record thread

granularity information (cf Section 3.3.2) and more details on the time threads spend

fetching and blocking. The profiling overhead is negligible as it involves counters.

In contrast to GHC, GUM RTS instances maintain private heaps and thus avoid

GC-related synchronisation overhead.

In Figures 4.3 and 4.4 we present the granularity profiles of the applications.

Logarithmic scales are used across both dimensions for comparability, because of

orders of magnitude differences in thread sizes and numbers. For each application-

architecture combination a histogram plots the distribution of threads differentiated

by thread size. The x-axis presents the intervals of run times (in milliseconds) for

threads that are counted on the y-axis. It therefore visualises how many small,

medium, and large threads have been generated. The sub-graphs are grouped by

row based on the architecture: GUM runs on Beowulf are presented in the first row

88

Chapter 4: Characterisation of Parallel Functional Applications

Figure 4.3: Distribution of Thread Run Times in ms (GUM vs SMP on 48 PEs)

of sub-figures, followed by GUM runs on cantor, and, lastly, by SMP runs on cantor.

For parfib, coins, and worpitzky, we observe an order of magnitude fewer

and larger threads for GUM than for SMP, which demonstrates the effectiveness of

GUM’s thread subsumption mechanism and aggressiveness of SMP’s thread creation

for D&C applications. An interesting case is the flat, data-parallel sumeuler for

which we see the opposite picture, as all of the work is created at the beginning of

execution and almost no thread subsumption can take place. Similarly, for minimax,

queens, and maze, SMP has fewer and larger threads. However the performance is

poor for these programs, due to effects of memory use, sharing, and communication

discussed in Sections 4.3.4 and 4.3.5. Moreover, queens and mandelbrot are the

only applications where the execution using the SMP RTS outperforms the runs that

use GUM by a small margin, due to differences in communication costs as discussed

in Section 4.3.5.

In general, the shapes of the profiles for GUM on shared-memory architectures

are similar to the shape of the corresponding profile on a distributed-memory ar-

chitecture, but remain distinctively different for SMP profiles. This suggests that

89

Chapter 4: Characterisation of Parallel Functional Applications

Figure 4.4: Distribution of Thread Run Times in ms (GUM vs SMP on 48 PEs)
(contd.)

RTS characteristics have a strong influence on the granularity profile, especially if

the architectural features are not explicitly taken into account. SMP results in more

and finer-grained threads due to more aggressive thread instantiation, as seen in

Table 4.1. This aggressiveness can be attributed to the SMP allowing direct access

to other PEs’ spark pools, whereas in GUM work stealing is used even if the PEs

are located on the same physical node, indirectly acting as a throttling mechanism

that allows for more subsumption to take place. For the more scalable applications

we observe fewer and larger threads for GUM than for SMP. In other cases per-

formance is relatively poor and we observe more very small threads in addition to

higher memory use and communication overheads described in the following two

sub-sections.

4.3.4 Memory Use and Garbage Collection

Many lazy parallel functional programs are memory-bound as they perform graph

reduction that involves frequent heap operations. We measure:

90

Chapter 4: Characterisation of Parallel Functional Applications

• heap residency to represent a program’s working set6,

• allocation rate as a characteristic representing heap activity,

• median percentage of elapsed time used for garbage collection,

• number of global references as a proxy for inter-PE sharing.

Figure 4.5: Garbage Collection Overhead

Figure 4.5 depicts the percentage GC takes and reveals a reason for scalability

issues observed with SMP. The GC% increases consistently across all applications for

SMP and results in severe contention on the first generation heap. By contrast, GUM

initially starts off with higher GC% which then reduces or at least remains roughly

constant in most cases, with the exception of minimax where heap residency is very

high. This highlights one benefit of a distributed-memory design on shared-memory

architectures by avoiding some of the synchronisation, which pays off particularly

for applications with low communication rates. Moreover, in the cluster setting with

N PEs N× the heap is available often reducing the need for GC on each core. GC

overhead is increased for larger numbers of active threads due to resulting larger

working set sizes.

In addition to GC%, the allocation rate signifies the heap activity of each ap-

plication as shown in Figure 4.6. GUM maintains the allocation rate with growing

PE numbers for most applications on beowulf, whereas on cantor allocation rate

drops at 32 PEs indicating reduced relative heap activity due to GC overhead, as

quantified in Figure 4.5. After an initial rise in the allocation rate on SMP, which

6which is larger when there are more active threads

91

Chapter 4: Characterisation of Parallel Functional Applications

confirms the benefit of more aggressive thread creation on lower number of cores on

cantor, we observe a rapid drop for higher PE numbers, which correlates with a

large increase in GC% that leads to decreased system productivity7 and points to a

scalability issue as heap activity drops significantly below the sequential level.

Figure 4.6: Allocation Rates

Application working sets are represented by heap residency in Figure 4.7. Note

the different units across applications. We observe roughly constant or decreasing

residency for GUM on both distributed-memory and shared-memory architectures,

except for minimax, whilst for SMP the residency is growing in most cases due to

higher number of live threads that refer to parts of the graph (cf Table 4.1).

Increased number of live threads leads to more roots for GC and more heap data

that needs to be collected leading to increased GC frequency assuming that the

avaialble heap size is constant.

This results in increased GC%, as due to contention some of the heap-allocated

objects are retained for longer, an effect most pronounced for queens and coins.

The jump in residency from one to two PEs for GUM is the result of sharing and the

need to maintain global addresses. This reflects the potential for optimising queens

by reducing the amount of sharing.

Moreover, as GUM uses virtual shared memory, each instance of the distributed

RTS maintains a Global Address (GA) table of stable inter-processor pointers which

are used as roots for garbage collection, thus increasing the live data set. However,

this table only contains the indirections that reflect data dependencies determined

7defined as the difference of total elapsed time and GC time

92

Chapter 4: Characterisation of Parallel Functional Applications

Figure 4.7: Heap Residency

by the structure of the program.

Thus, fragmentation of the shared heap can lead to decreased performance since

excessive sharing results in higher GA residency and reduced locality, which leads

to additional communication overhead. Thus, GIT table size, in particular GA

residency, can be used as an indicator of poor locality. This hints at RTS-level

optimisation potential as the location of the data structures is available inside the

RTS.

Figure 4.8: Global Address Table Residency (Heap Fragmentation)

Based on this metric, our application set can be partitioned into two classes:

most of the applications shown in Figure 4.8, exhibit a moderate GA residency of at

most 600 per PE. By contrast, worpitzky reaches a value of 2500 for a large number

of PEs. Even worse mandelbrot (not shown in the Figure as those are an order of

magnitude larger) reaches a GA residency of 8000, and queens (not shown) reaches

a GA residency of 250000. The latter two programs exhibit a high GA residency

already for low numbers of PEs, with decreasing residency when the number of PEs

93

Chapter 4: Characterisation of Parallel Functional Applications

increases. This points to a high degree of sharing in the program, which incurs a lot

of communication and becomes a bottleneck for parallel performance.

These three programs appear to suffer most from heap fragmentation, which

explains, along with very fine granularity, the limited scaling on larger number of PEs

(see Figure 4.2). This underlines that the GA residency metric is a good indicator

of poor data distribution in an application, which also relates to communication

overhead discussed in the following Section 4.3.5. The GA residency grows for

worpitzky, since the granularity is very fine and many sparks are stolen, which

creates many GAs.

4.3.5 Communication

GUM-specific communication characteristics provide additional insight into the op-

erational behaviour of non-strict parallel functional programs (cf Section 3.3.4).

These characteristics include the communication rate, defined as the total number

of messages sent per second, representing communication degree, and the percentage

of steal requests (FISH messages) as an indicator of load imbalance or lack of work.

Figure 4.9: Communication Rate Comparison for GUM

As shown in Figure 4.9, for parfib, coins, maze, and to lesser extent minimax

and sumeuler, we observe a modest linear increase in the communication rate with

less than 40% of FISH messages. The median of the graph sent and GA residency

increases slightly in most cases, but they are excessive only for queens with over

19k GA residency and around 14MB median graph sent per mutation second on 48

94

Chapter 4: Characterisation of Parallel Functional Applications

cores, as communication rate skyrockets to 840k messages on 48 cores with frequent

very long fetches, but only 15% of messages are FISHes.

The next highest communication rate is for worpitzky with over 100k messages

sent on 48 cores, almost 50% of which are requests for work, due to very fine thread

granularity. Following suit is sumeuler, which exemplifies another issue — a lack of

inherent parallelism for the given threshold leads to load imbalance on higher number

of PEs. This is demonstrated by over 95% of sent messages being requests for work,

which also coincides with decreasing memory residency and low allocation rate. For

most applications the number of packets sent increases linearly and reflects the size

of the shared graph, whilst the packet size is mostly very small and constant, in

the range between 5 and 50 bytes, except for queens (4k) and mandelbrot (ca. 9k).

We find that packets are smallest for integer-based programs and smaller for D&C

programs which work on integers compared to data-parallel programs that work

across data-structures. The communication rate increases with GA residency and

the percentage of work requests of the total number of messages seems to indicate

the degree of load imbalance.

4.4 Discussion

We have characterised a set of small and medium-sized parallel functional appli-

cations run on a server-class NUMA multi-core and on a cluster of multi-cores in

terms of communication rate, heap and GA residency, allocation rate, and thread

granularity. Detailed profiling of these aspects reveals diverse bottlenecks and helps

gain insight into dynamic application behaviour.

First, we draw the application characterisation conclusions, where Table 4.2 pro-

vides the summary of the results for applications run using GUM ordered by scal-

ability. We use distributed-memory results, but results on the NUMA server are

similar. The characteristics are presented as categories ranging from very high to

very low relative to other results rather than as absolute numbers.

Then, we discuss the conclusions from the RTS point of view, where we focus on

system-level issues and discuss the observed differences between GUM and SMP.

95

Chapter 4: Characterisation of Parallel Functional Applications

Table 4.2: Application Characteristics using GUM on 64 PEs

application scalability heap allocation GC GA communication
residency rate overhead residency rate

parfib high low low low low low
coins high low high medium medium high
sumeuler medium low low very low very low medium
maze medium low high medium medium low
minimax low very high medium high medium medium
worpitzky low low medium low very high very high
queens low very high very low very low high very high
mandelbrot low very high medium low n/a medium

In particular, our application characterisation conclusions are:

• Thread subsumption works well across D&C applications and architectures, as

the RTS is able to handle a large number of light-weight threads and prune su-

perfluous parallelism by merging computations into a single thread. Table 4.1

demonstrates orders of magnitude larger number of sparks than threads. Lim-

ited degree of parallelism can limit scalability as showcased by sumeuler,

which otherwise displays favourable characteristics, but reaches only medium

scalability on 64 PEs.

• From Table 4.2 we conclude that low heap residency is necessary for good

performance. However, it is not sufficient as demonstrated by worpitzky

results. Not only does performance suffer if heap residency is very high, as for

minimax, queens, and mandelbrot, but also if communication or GA residency

are high or very high.

• High GA residency indicating the degree of inter-PE sharing is strongly corre-

lated with high degree of communication, a major overhead limiting scalability.

• Communication rate and GA residency vary considerably across applications

and have a high, direct impact on parallel performance.

• Although D&C applications tend to perform better, there is no clear best

parallelism pattern.

96

Chapter 4: Characterisation of Parallel Functional Applications

The first point empirically validates GUM’s design choice with respect to thread

subsumption for throttling paralleilsm degree and for granularity control, whilst the

second and third support the use of private heaps and emphasise the need to avoid

fragmentation of the virtual shared heap.

Moreover, we observe a medium to strong correlation8 between GA residency and

the communication rate across applications. For instance on 48 PEs Pearson corre-

lation coefficient is 0.55 on bwlf and 0.75 on cantor, whilst Spearman correlation

coefficient is 0.88 and 0.86, respectively.

From the RTS vantage point, we find:

• GUM characteristics on shared-memory machine appear very similar to the

distributed-memory results, in particular with respect to granularity as shown

in Figures 4.3 and 4.4.

• Compared to SMP, which allows any PE to directly access any spark pool

and doesn’t require communication, GUM is less aggressive in instantiating

parallelism, i.e. it generates fewer threads of more coarse granularity, adapting

to system latency. The higher the latency, the lazier the instantiation, as more

potential threads are subsumed.

• Increased memory residency and GC-percentage in a shared-memory design

limit scalability due to contention on the first generation heap, in contrast

to a distributed-memory design, confirming and more percisely quantifying a

similar observation from [4]. This finding is further supported by the drop of

the allocation rate for SMP on high numbers of PEs as show in Figure 4.6.

• System-level information, e.g. GA residency representing inter-PE sharing and

the fraction of FISH messages in relation to total number of messages, are

potential indicators of a lack of locality and therefore are suitable parameters

to control the behaviour of enhanced load distribution mechanisms.

8Pearson correlation coefficient reflects linear relationship, whilst Spearman relects monotonic
relationship; a coefficient close to 1 or −1 is considered strong, whilst coefficient of 0 signifies that
there is no relationship between the statistical variables under test

97

Chapter 4: Characterisation of Parallel Functional Applications

As well as flagging up a scalability bottlececk of SMP, the second-to-last point

also refers to a general scalability limitation of the shared-memory designs that

should reach beyond the applications studied here.

The insights from this characterisation, in particular from the third bullet point,

in conjunction of with the knowledge of GUM’s operational behavior (see Chap-

ter 3) inform the design of adaptive parallelism control mechanisms, two of which

are explored in the following chapters. Focusing on work distribution, we aim to ex-

tend the default work stealing mechanism to influence both the selection of victims

(see Chapter 5) and the choice of sparks to be exported (see Chapter 6).

98

Chapter 5

History-Based Work Stealing

In this chapter, we investigate the effects of using historical information about past

stealing successes and failures to improve work stealing. The key idea is to use moni-

tored RTS-level system information to de-randomise work stealing. In particular, we

extend the victim selection mechanism to increase predictability as well as flexibility

of adaptation to system-level changes within a single application run by using mon-

itored information that reflects the program’s behaviour. The improvement aims at

increasing the stealing success ratio, thus reducing the amount of communication

and the associated overhead.

History-based work stealing is one of several complementary mechanisms that

were identified as suitable RTS extensions based on the knowledge of the random

work stealing mechanism and GUM’s control model, as introduced in Chapter 3, and

the results of a recent application characterisation [25], presented in Chapter 4. This

chapter substantially extends the paper presented at the ICCSW’14 workshop [21].

Here we focus on the effectiveness of using information about past stealing suc-

cesses and failures when selecting target PEs for work requests. The RTS is extended

to maintain a list of relevant locations of past stealing successes, update it using the

information carried by the enriched messages and use it as appropriate.

Additionally, we discuss the importance of selecting a suitable information inval-

idation interval used for ensuring that only relevant information is retained whilst

stale records are removed, and the relationship between the interval, coverage and

information accuracy.

99

Chapter 5: History-Based Work Stealing

5.1 Using Monitored Historical Information in Work

Distribution Decisions

Using an RTS that relies on random work stealing for work distribution makes it

challenging to statically predict the locations of parallelism generators, i.e. threads

that create sparks thus increasing the degree of potential parallelism, over the execu-

tion of a given application. This is because the placement of the generators depends

both on the input and the work stealing behaviour that is operationally stochastic.

The behavioural variability is increased, as different runs of an application with the

same input on the same target platform result in different placement of the genera-

tors across PEs, unless the programming model is prescriptive with respect to task

instantiation and placement.

As a motivating example consider the non-nested data-parallel variant of sumEuler.

We know that all parallelism will be created close to the beginning of the execution

by the main PE. However, in the baseline case random stealing will lead PEs to try

steal from the PEs that will not have any work and will forward on the request.

We hope to improve matters by piggy-backing information on stealing successes so

that the choice would be biased towards trying again where one was successful in

the recent past. In our example, this would lead PEs to ask main PE again in

the future after receiving a spark from it in the past, thus reducing the amount of

communication.

Therefore, we extend the choice of PEs to steal from to use the available moni-

toring information to improve load distribution and to reduce the number of FISH

messages, as failed work requests lead to additional messages being transmitted,

which increases the communication overehad. In other words, we seek to increase

the chance of choosing a PE from which stealing is more likely to succeed.

Work stealing is mainly concerned with three choices (cf Section 3.3.4):

1. victim choice for an initial FISH by an idle PE;

2. victim choice for a forwarded FISH by a false positive PE;

3. work sharing choice, i.e. which spark to export.

100

Chapter 5: History-Based Work Stealing

Except in the case of spark selection, choosePE() is the core function imple-

menting the corresponding PE selection decision in the RTS and the one we extend

to use historical RTS-level system information. Conveniently, points one and two

above can re-use most of the code implementing the decision.

If a stealing request is not successful it is forwarded to another PE resulting in

additional messages being transmitted. Our extension aims at reducing the number

of sent messages and associated overhead by choosing suitable victim PEs. If the

historical information is accurate and has sufficient coverage, then PEs which are

ready to donate work are more likely to be chosen, thus reducing the number of

forwarded requests. This can potentially decrease the total number of FISH messages

whilst increasing the percentage of successful FISHes and thus of SCHEDULE messages,

leading to the reduction of the total number of messages.

We investigate whether stealing from PEs where the most recent stealing at-

tempts were successful yields any substantial benefits.

The key change to the baseline mechanism is in victim selection inside the

choosePE() function: a table is maintained that records the number of recent con-

secutive stealing successes from a given PE or zero if the last attempt has failed.

A time stamp is used to indicate how recent and reliable the information is, with

zero marking the information as stale if it was not updated within the previous

invalidation interval.

Logically, this can be viewed as a function that maps PEid to the time-stamped

success information. In our case, it is the number of past consecutive successes or

zero signifying failure.

getInfo(i :: PEid)→ (successInfoi , timeStampi)

The coverage can be calculated as the percentage of the non-stale entries of the

total number of PEs. A value close to one hundred percent indicates good coverage,

whilst coverage close to zero is deemed poor. Table 5.1 shows how the stored data

is interpreted to select a PE with most consecutive successes, tie-breaking on the

PEid that is used as the index to access the information.

101

Chapter 5: History-Based Work Stealing

Table 5.1: Overview and Interpretation of the Stored Historical Information

information table field value = 0 value > 0
history information failed stealing attempt number of consecutive successes
time stamp information is stale time of last update

From the implementation point of view, each PE holds two arrays of the size

equal to the number of PEs and indexed by PEid. This representation is compact

and favours cache locality, justifying the linear search used to find the best matching

PE in the arrays. Although the array sizes grow linearly with the number of PEs,

we argue that the search can in practice be viewed as a constant factor due the small

maximum array size (equal to the number of PEs, e.g. 256).

The policy is expected to work best in cases where a set of parallelism gener-

ators is fairly stable over time. The overhead is low, as it involves counters, and

is amortised, as the updates of the information table happen at garbage collection

times (removal of stale information) and on arrival of FISH or SCHEDULE messages

(update of the stored information based on the arrived information).

Additionally, the message size is increased by a small constant to carry some

historical information for sharing across PEs, to increase coverage by piggy-backing

in the protocol messages.

The extended mechanism falls back to random stealing if no suitable PE could be

selected, either because of the lack of recent successful stealing attempts on record,

or because of the information being stale, i.e. it has not changed within the last

invalidation interval and is due to be purged from the information table.

Moreover, the total number of messages and the proportion of the FISH messages

of the total message count is recorded and examined.

Balancing Accuracy and Coverage The quality of victim selection hinges on

both the accuracy and coverage of the stored information. The information about

the number of successful steals for a PE is deemed accurate if it is recent and truly

represents the actual likelihood of successfully stealing from that PE in the system,

whereas coverage is high when up-to-date information is available on most PEs.

102

Chapter 5: History-Based Work Stealing

This results in a trade-off: to ensure the largest coverage the information should

be retained for longer before being invalidated; however, this may lead to stale and

inaccurate or even wrong information being kept and used in making the choices. On

the other hand, if the invalidation interval is set to a low value to ensure accuracy,

the coverage tends towards zero, in which case the fallback baseline mechanism is

likely to be used, whilst the overhead of the new mechanism is still present.

A time stamp of the last update is recorded for each PE to judge whether the

stored information is reliable and to purge stale data at garbage collection times,

based in the specified invalidation interval.

An additional difficulty arises from the characteristics of the application and

from the dynamic nature of work stealing. Some applications exhibit flat parallelism

structure with few generators, whilst other applications are more nested or recurse

when generating parallelism. Thus the former generators tend to be stationary, i.e.

residing on the same PE throughout the run. Whereas, in the latter case, sparks

that represent the generators can be stolen resulting in different PEs becoming hosts

of generator tasks at different points during the execution, which may reduce the

usefulness of historical information.

Therefore, one of the main challenges is the choice of a suitable interval that

leads to the highest coverage, i.e. the fraction of up-to-date information relative to

the total number of PEs, whilst keeping the most accurate information. Using stale

information can be misleading and reduce fishing success ratio, which may lead to

severe performance degradation.

Whilst balancing accuracy and coverage appears important and would merit a

separate in-depth investigation, we focus on parallel performance and communica-

tion overhead in this chapter, leaving detailed exploration of the aforementioned

trade-off for future work and choose the interval using a trial-and-error heuristic.

5.2 Implementing the RTS Extension

To enable the use of historical information on past stealing successes and failures,

as described above, the RTS needs to be extended in several ways. Some technical

103

Chapter 5: History-Based Work Stealing

details on extending the RTS can be found in a companion technical report [22] and

in Appendix B.2.

First, a RTS option is introduced to allow the mechanism to be turned on at

startup time using the -qz<n> option, where n is the information invalidation in-

terval which is set to 100 milliseconds by default that is equivalent to the explicit

-qz100 setting.

Next, a per-PE data structure, in our case comprising two arrays, is added to

the RTS and initialised and used to store incoming time-stamped information for

each PEid as described in Table 5.1, if the RTS option is set.

Additionally, an extension of the communication sub-system is necessary to pack

and unpack historical information into FISH messages and to forward most recent

subset of the information in SCHEDULE messages. In our case, five extra slots for

PEids of most recent successes are added.

Finally, the work stealing logic in the choosePE() function is extended to use the

historical information for PE selection and the scheduling mechanism is extended

to update the information table when new messages arrive, whilst invalidating some

entries based on the value of the invalidation interval.

The previously extended profiling sub-system already provides relevant informa-

tion on the number of FISH and SCHEDULE messages that allows us to assess the new

policy in comparison with the baseline random work stealing.

The implementation is localised and does not require changes to the compiler.

The advantage of the RTS-level implementation is that the application source code

requires no changes. The only required step for the application programmer is to

recompile the RTS and the applications so that they link to the new version of the

RTS that supports the new mechanism.

5.3 Empirical Evaluation

We report the elapsed application run times, the absolute speedups, the numbers of

FISH and SCHEDULE messages, as well as the total number of messages from respective

runs with the run time close to the median run time. As we aim to reduce applica-

104

Chapter 5: History-Based Work Stealing

tion execution time by reducing communication overhead and increasing utilisation,

the latter parameters are represented in terms of directly measurable numbers of

messages and the number stealing successes. From these we can calculate stealing

success ratio as the fraction the SCHEDULE messages represent in percent of FISH

messages. Ideally, each FISH would lead to immediate SCHEDULE as a response,

whilst in practice FISHes often travel over multiple hops before finding some work

and sometimes expire and return to origin.

5.3.1 Methodology

We operationalise performance as execution time and use other observable metrics

for explanation. We measure elapsed time in seconds, which includes both garbage

collection and mutation time, i.e. time spent on evaluation of expression represent-

ing the computation leading to the final result. Times are recorded using RTS-level

wrapper functions around standard OS timing functions and are reported if the

related profiling flag is turned on (-qPg flag; see Chapter 3). This ends-based mea-

sure represents application performance and scalability, whilst means-based metrics,

such as the number of FISH and SCHEDULE messages in relation to the total number

of messages, are necessary to explain the results of comparing the baseline random

work stealing mechanism to the extended mechanism in more detail.

We report summarised results of 32 runs for five applications run on increasing

number of PEs (from 64 to 256 in steps of 16). Boxplots were chosen for visualisation

as they show the summary of all the available data [256] including variability as the

box size, as opposed to choosing only few runs and a mean or a single best run time

for comparison, which does not include any measure of dispersion and is more likely

to be affected by outliers, in particular if the number of runs is very low [130]. We

settled for 32 samples per configuration, because of the stochastic nature of work

stealing and the noisy environment of a shared cluster, and to improve confidence

in our results, whilst often smaller number of samples are reported in the literature.

105

Chapter 5: History-Based Work Stealing

5.3.2 Target Platform

The 32-node Beowulf cluster comprises a mix of 8-core Xeon 5504 nodes with two

sockets with four 2GHz cores, 256 KB L2 cache, 4MB shared L3 cache and 12GB

RAM, and 8-core Xeon 5450 nodes with two sockets with four 3GHz cores, 6MB

shared L2 cache and 16GB RAM. The machines are connected via Gigabit Ethernet

with an average latency of 0.23 µs as measured by the standard Linux ping tool.

We use the CentOS 6.7 operating system, the GHC 6.12.3 Haskell compiler, the

GCC 4.4.8 C compiler, and the PVM 3.4.6 communication library. The focus is on

a distributed architecture as it is a more scalable but challenging architecture due

to higher inter-node latency and hence higher associated communication costs.

5.3.3 Benchmark Applications

We use three applications from the set introduced in Section 4.2, where a more

detailed description can be found. We select the applications that are most scalable

and stable, with parfib, sumEuler, coins, representing flat parallelism.

To complement this set of benchmarks we add parfibmap and parSEmap bench-

marks that represent nested parallelism.

• The nested parfibmap application uses data parallelism at the outer level and

D&C parallelism at the inner level to compute the Nth Fibonacci number

using arbitrary-length integers for each spark generated by the outer level.

This benchmark is regular as the inner workloads are regular. However, some

inefficiency may arise if sparks created at the inner level are stolen instead of

the larger outer sparks. Input parameters specify the number of outer sparks

and the arguments passed to the inner call (N and a threshold).

• The nested parSEmap application uses data parallelism at both levels. The

application is irregular at the inner level due to the use of sumEuler as the

workload associated with the outer sparks, whilst some regularity stems from

use of the same input parameters with each outer spark. Therefore, potential

imbalance is more pronounced, especially in the case where one PE steals small

106

Chapter 5: History-Based Work Stealing

inner sparks as opposed to the outer sparks, resulting in increased number

of messages. The parameters specify the number of outer sparks and the

arguments passed to the inner call, which include the upper bound for the

interval to be used and the number of outer sparks. The chunk size is hard-

coded as 1000.

Table 5.2: Summary of benchmark applications

application regularity nesting parallelism input
degree pattern(s) parameters

sumEuler irregular flat data parallel 300000 300
parfib regular flat divide&conquer 53 38
coins irregular flat d&c 7 9777

parfibmap regular nested d. p. + d&c 256 32 28
parSEmap irregular nested d. p. + d. p. 3000 512

For compilation guidelines and other details such as the list of run-time flags

used, refer to the Appendix B.2 and to the companion technical report [22].

Below we present the measurement results that demonstrate the effects of using

history-based stealing.

5.3.4 Results

The figures show the run time performance of the applications in seconds elapsed

using boxplots to summarise both the central tendency and the dispersion of the

data. Note the different scales.

Each box depicts fifty percent of the data that falls between the first and third

quartiles, with the median represented by the horizontal line within the box. The

whiskers show data outside the quartiles but within 1.5 times the inter-quartile range

in either top or bottom direction from the box. The dots depict the outliers that

fall outside the range of the whiskers.

We discuss the results and evaluate them using message counts as the main

metric commonly used to represent overhead in distributed systems.

107

Chapter 5: History-Based Work Stealing

Performance and Scalability As summarised in Table 5.3, we observe that run

times decrease by at least one order of magnitude compared to sequential run time

for all applications, demonstrating substantial improvement in performance and

scalability and thus the ability to benefit from using additional PEs.

However, for most applications the benefit from adding more PEs reduces with

the number of PEs because of increased relative overheads and the lack of work due

to fixed input size1.

Table 5.3: Run Times (in seconds) and Absolute Speedups

application sequential baseline history-based history-based
run time best speedup best speedup improvement

parfib 4945 63 on 192 PEs 45 on 208 PEs −29%
coins 7181 116 on 256 PEs 130 on 256 PEs +12%

sumEuler 12155 94 on 176 PEs 131 on 224 PEs +39%
parfibmap 171 1.36 on 240 PEs 33 on 240 PEs +2327%
parSEmap 466 2.36 on 256 PEs 46 on 208 PEs +1849%

We distinguish between the baseline random stealing and the enhanced mecha-

nism based on historical information with an invalidation interval of 1000 millisec-

onds (-qz1000 run-time flag), except for parfib where a shorter interval of 100 ms

is used. Note that for the nested applications baseline performance is poor compared

to the optimised sequential runs2.

In some cases a longer interval can be beneficial but a detailed investigation

of this accuracy/coverage trade-off is out of the scope of this work. We use the

trial-and-error heuristic to select a reasonable interval.

Additionally, we observe poor performance of the nested applications in the

baseline case exacerbated through stealing of the smaller inner sparks whilst larger

outer sparks are available at the main PE. Due to lower amount of randomisation,

in the history-based case we see a substantial improvement as older and larger outer

sparks are stolen first leading to reduced amount of communication. A more detailed

discussion can be found in Section 5.3.5 below.

1we examine strong scaling which requires fixing the input and increasing the number of PEs
2although we do not apply specific manual optimisations, the sophisticated compiler effectively

exploits the latent optimisation potential

108

Chapter 5: History-Based Work Stealing

Divide & Conquer Applications Here we focus on flat (i.e. not nested) D&C

parallelism and discuss the run time results of the regular parfib and of the more

irregular coins.

Figure 5.1: parfib Summary of Execution Times

Figure 5.1 summarises the data of 32 runs for each number of PEs and compares

the baseline case to a case using history-based stealing. We have chosen to cut

the scale at 300 seconds to reduce the amount of white space [240] and to amplify

the differences for readability: 13 extreme outliers are not shown. We use a short

invalidation interval as parfib is flat, in the sense that there is only one source

of parallelism, and regular, as both sub-trees are associated with essentially equal

amount of work, and thus matches perfectly the baseline execution mechanism3.

As expected for a simple well-tuned program, we see no improvement and limited

scaling with over 112 PEs in both cases, as there is little optimisation potential. The

performance drop ranges from marginal to significant as the boxes overlap, as we

3some researchers have humorously referred to GUM as ’the parfib machine’

109

Chapter 5: History-Based Work Stealing

observe increased variability for history-based stealing for higher PE numbers, albeit

visually overemphasised due to y-axis scaling. This is due to reduced stealing success

as shown in Tables 5.4 and 5.5, because of dynamic parallelism generators frequently

moving from PE to PE.

The results of the runs of the flat irregular coins application are presented in

Figure 5.2. We begin the y-axis at 40 seconds to emphasise the differences and cut

the axis at 320 seconds to exclude four exceptionally far-off outliers which would

distort the visualisation4.

Figure 5.2: coins Summary of Execution Times

Despite a marginal improvement when using the history-based stealing, the dif-

ference is not statistically significant as boxes mostly overlap, except for 208 PEs

case. Overall, the variability decreases in both cases as the behavior averages out

with more PEs and the scaling continues to a high number of PEs (i.e. 208 for the

baseline and 256 for history-based stealing).

4we believe the outliers are due to interference with sporadic jobs run by other cluster users

110

Chapter 5: History-Based Work Stealing

In summary, we cannot recommend the use of history-based stealing for D&C

applications as new parallelism sources are created dynamically, are short-lived and

tend to move from PE to PE, rendering historical information inaccurate. The new

mechanism performs somewhat better for the irregular rather than the regular case,

since the effects of using inaccurate information are amortised through the difference

in granularity of potentially parallel tasks. The results offer some evidence for the

suggestion that history-based stealing should not be used with flat regular D&C

applications, whilst it appears to produce marginal improvements for flat irregular

applications.

Data Parallel and Nested Applications Next we present run time results for

data parallel and nested applications. Figure 5.3 shows the results for the flat

irregular sumEuler application (note that y-axis begins at 75).

Figure 5.3: sumEuler Summary of Execution Times

Compared to the baseline, for history-based stealing we consistently observe

111

Chapter 5: History-Based Work Stealing

significantly lower run times, lower variability (smaller boxes and shorter whiskers)

and improved scaling up to 224 PEs, as opposed to 176 PEs. We further notice that

the improvements decrease with increasing numbers of PEs in both cases, which is

due to the lack of work to keep all the PEs busy.

The new mechanism is effective, because in this flat application all parallelism

is created by the main PE and thus past information remains accurate for a long

time. This leads to a decrease in the number of sent messages whilst increasing the

fraction of successful FISHes and therefore reducing the overhead. We evaluate the

numbers of messages in Section 5.3.5 below.

Figure 5.4 depicts the run time for the nested parfibmap application, which uses

data parallelism at the outer level and D&C parallelism at the inner level.

Figure 5.4: parfibmap Summary of Execution Times

In this case, history-based stealing outperforms the baseline case despite exhibit-

ing higher variability, with best run times differing by over an order of magnitude.

The baseline case randomly selects the victim PEs, thus neglecting the more coarse-

112

Chapter 5: History-Based Work Stealing

grained outer sparks produced by the main PE, whilst inner sparks are more suit-

able for thread subsumption. This is due to randomness increasing the probability

of stealing an inner spark from other than main PEs, which are more likely to be

randomly chosen in the baseline case.

Hence in the baseline case smaller inner sparks are more likely to be stolen than

outer ones leading to an increased number of FISHes and synchronisation messages

when parent threads depend on the results of the child sparks that were stolen. The

variation is significantly lower for the baseline in most cases as fully random choices

are more similar in their run-time behaviour. This is indicated by smaller box sizes

in the graphs.

By contrast, in the history-based case, outer sparks are distributed first, because

the information is shared about higher likelihood of successful stealing from the

main PE. This leads to lower communication degree (cf Section 5.3.5). Note that

the improvements are much higher than in the flat case.

Figure 5.5: parSEmap Summary of Execution Times

113

Chapter 5: History-Based Work Stealing

Next we examine an instance of nested irregular applications that employ data

parallelism at both levels. Figure 5.5 shows the run time performance of the nested

parSEmap that uses sumEuler as the computation associated with each outer spark.

History-based stealing consistently outperforms random stealing, with over an

order of magnitude difference in best run times demonstrating the effectiveness of

history-based stealing. The variability is initially lower for the baseline, but from

160 PEs on it is much lower for the history-based mechanism.

Moreover, we note that from 176 PEs on, history-based stealing does not signifi-

cantly benefit from additional PEs, which is due to the limited amount of work. We

see that the new mechanism can substantially increase performance and scalability

for nested data-parallel programs beyond the limits of the traditional approach.

In summary, on 256 PEs the run times for D&C applications do not decrease

whilst the variation increases, whereas for data parallel and nested applications using

historical information is consistently beneficial. In particular, the run time decreases

by over an order of magnitude for the nested applications. The policy is effective

for such cases, because most coarse-grained sparks are generated by the main PE

and at the outer level of parallelism, hence past behaviour is predictive of future

behaviour during the initial phase of the computation. By exploiting the program’s

behaviour the heuristic leads to reduction in communication costs and increases the

work stealing success ratio, defined as the percentage of SCHEDULEes compared to

FISHes, as discussed next.

5.3.5 Evaluation

Table 5.4 presents a summary of sent messages for runs on 256 PEs, the run times

of which are closest to the respective median run time.

Columns two to four present the baseline data, whilst columns five to seven

contain the data using the history-based stealing. For the full message profiling

data refer to the tables in the Appendix A.2.

We observe significant number of transmitted messages in Table 5.4, along with

high communication rates for most applications as illustrated by column two and

114

Chapter 5: History-Based Work Stealing

Table 5.4: Summary of Sent Messages (on 256 PEs)

application baseline history SCHED%
total FISH SCHED total FISH SCHED change

parfib 27348 17918 2352 25288 16978 2074 −11.8
coins 143303 49459 23445 201421 90844 27639 +17.9

sumEuler 750895 746901 996 429166 425163 997 +0.1
parfibmap 150161 145439 1176 21175 14278 1722 +46.4
parSEmap 97747 95325 603 21669 18691 742 +23.1

five in Table 5.5 for the baseline work stealing and for the history-based mechanism,

respectively. However, this rate alone is not very meaningful, as lower run times can

lead to higher rates whilst performance is actually increased.

Moreover, these results show that applications occupy different points in the

communication degree space. In particular, communication rate covers a wide range

from tens of messages per second for parfib, over hundreds messages per second

for parSEmap to over 5000 for sumEuler.

Table 5.5: Summary of Message Ratios (on 256 PEs)

application baseline history
msg per FISH% SCHED% msg per FISH% SCHED% S.o.F.%

sec of total of FISH sec of total of FISH change
parfib 63 66.5 13.0 52 67.1 12.0 −1.0
coins 2559 34.5 47.4 3800 45.1 30.4 −17.0

sumEuler 5441 99.5 0.1 4379 99.1 0.2 +0.1
parfibmap 1155 96.9 0.8 3529 67.4 12.1 +11.3
parSEmap 501 97.5 0.6 1667 86.3 4.0 +3.4

Only for sumEuler do we notice a decrease in both the messaging rate and in the

execution time. Note that for the nested applications we observe a strong reduction

in messages numbers of up to an order of magnitude and a simultaneous increase

of the desirable SCHEDULE messages, compared against the baseline. Although the

improvement in the percentage of SCHEDULE messages is small, from 0.1% to 0.2%

it constitutes an increase by a factor of 2×.

In particular, for parfibmap the success ratio is increased from 0.8% to 12.1%

corresponding to a 15.1× improvement, whilst for parSEmap the shared of FISH

115

Chapter 5: History-Based Work Stealing

messages grows form 0.6% to 4.0% corresponding to an increase of over 6.6×, which

is also reflected by the improved performance. On the other hand, parfib data

show reduction in the number of messages by 7.5% but also reduction in SCHEDULE

messages by 11.8% as well as reduction in the percentage of SCHEDULEs of the total

number of FISHes by 1% (factor of −1.08×). Similarly, for coins a descrease in

the percentage of SCHEDULEs of FISHes by 17% (factor of −1.56×, even though the

number of SCHEDULE messages is increased by 17.9%, which is still at a lower rate

than the total increase in messages of 40.8%. This suggests that History-Based

Stealing is not effective for D&C applications.

Furthermore, the FISH messages represent the largest fraction of the total num-

ber of messages, because for high numbers of PEs the fixed work amount leads to a

lower potential work amount per PE. In particular, for the applications that benefit

from using historical information, all of them have over 97% of all messages being

FISHes, which is substantially decreased when history is used. We can see an increase

in the percentage of FISHes in relation to the total number of messages for D&C

applications (marginal 0.4% for parfib, and substantial 10.6% for coins), whilst

the percentage is decreased for data-parallel and, more substantially, for nested ap-

plications (0.4% for sumEuler; 29.5% for parfibmap; 11.2% for parSEmap). Coupled

with the improvements in the percentage of SCHEDULE messages in relation to the

number of FISHes, this explains the increase in performance, as fewer messages are

sent and a higher proportion of work requests are successful, thus further reducing

the number of messages.

The improvements are most striking for parfibmap, where the total number of

messages on 256 PEs for the new mechanism is smaller than the number of FISHes

alone on 64 PEs for the baseline case.

5.4 Discussion

We find improved run time of up to an order of magnitude on up to 256 PEs, show-

casing substantial scalability. This is in part due to decreased number of messages,

in particular of FISHes for data-parallel and nested applications. For these bench-

116

Chapter 5: History-Based Work Stealing

marks we also observe increased percentage of SCHEDULEs of FISHes, signifying that

the mechanism is effective in biasing PE choice to improve the likelihood of obtain-

ing work. The mechanism is effective because much of the parallelism is initially

generated by the main PE and these sparks once turned into threads also generate

multiple further sparks. This is exploited through the use of historical informa-

tion. However, this heuristic fails in cases where past application behaviour is not

predictive of the future behaviour as it is the case for more irregular D&C appli-

cations with large number of very fine-grained threads and parallelism generators

spreading across PEs. Additionally, there is further room for improvement suggested

by sub-linear speedups and by the still relatively large number of messages being

transmitted.

Possible threats to validity include confirmation bias, selection bias, implemen-

tation and architectural details. Whilst we have discarded some applications from

our set of benchmarks, this was due to very limited scaling and unstable sequential

performance, which would result in misleading results. Moreover, we contend that

the five used applications cover sufficiently different points in the application space

in terms of communication degree, parallelism degree and pattern, as well as ap-

plication regularity and nesting. We believe that the results are meaningful as we

run real code on real hardware. Although we can’t fully control the external load

on the shared cluster, we checked the load before starting the runs and we use 32

runs for each input-application-PE-number combination to improve confidence and

avoid impact by outliers. As the variation is reduced in most cases with increased

PE numbers, we believe the overall trends are likely to remain for larger inputs.

Furthermore, the mechanism is not specific to the language and the run-time

system, and could be applied to other work stealing schedulers. Additionally, the

absolute speedup here is not for the optimal sequential application but for a sequen-

tial elision of the parallel code. However, we observe that in most cases the compiler

is able to optimise the applications well. We also do not compare the run times

to C programs as we did not have the resources to develop corresponding low-level

versions using Pthreads or OpenMP and MPI, which we would expect to outperform

117

Chapter 5: History-Based Work Stealing

GpH applications at a higher development cost.

The following chapter presents a complementary extension, investigating the way

to influence the spark selection for export based on additional system-level infor-

mation to co-locate sparks from the same source of parallelism to improve locality

according to ancestry dependencies within the computation, made explicit through

the use of a new language primitive.

118

Chapter 6

Colocation of Potential Parallelism

Work stealing is a popular passive work distribution mechanism where idle PEs

attempt to steal work from busy PEs. We introduced general work stealing in

Section 2.4.1 and its implementation in the context of GUM in Section 3.3.4.

In the simplest version the victim PEs are selected at random. Used in the

Cilk [38] RTS and in run-time systems for functional languages such as Multi-

lisp [140], and GHC-SMP [113], this mechanism often employs a FIFO policy for

storing and selecting potentially parallel tasks for donation. The rationale for this

choice is to favour exporting older potentially parallel work units or sparks, which are

deemed more likely to have larger granularity and may generate further parallelism,

especially if Divide-&-Conquer (D&C) pattern is used [174].

Choosing larger computations aims to offset the communication costs, in addition

to latency hiding, by reducing the number of transmitted messages, in particular in

computations that use the D&C parallelism or are nested, and are run on distributed

architectures with very high communication costs. This is due to the resulting

computation structure, where parent threads create sparks and require the results

of children threads, created from these sparks, to proceed.

In this chapter we investigate the effect of Spark Colocation (SC), our alternative

approach to choosing sparks to be donated, on performance and scalability of five

applications and explain the results based on means-based metrics from execution

profiles including per-PE thread activity, thread granularity information, message

counts as well as the degree of sharing across PEs.

119

Chapter 6: Colocation of Potential Parallelism

The main idea of Spark Colocation is to improve load balancing by donating

the spark that is most closely related to the computation performed by the thief

according to a specific similarity metric in response to an incoming FISH message.

We use an encoding of the sparks’ places in the computation tree to colocate closely

related sparks, based on the computed maximum prefix matching that represents

the distance between sparks.

6.1 Design

Spark Colocation extends the baseline random work stealing mechanism and aims

at investigating the effect of favouring colocation of related sparks, rather than

selecting a spark to export based only on its implicit age. The aim of this choice is

to improve data locality and load balancing, which in turn would improve application

performance and scalability.

Consider the example from Figure 6.1 that illustrates a situation where two PEs

work on several tasks. The tree structure represents computational dependencies,

whilst the dashed regions depict which tasks are located on which PE.

Figure 6.1: Example of Potential for Colocation

In particular, both sparks ended up on PE1. As PE2 continues the evaluation it

runs out of tasks and sends a FISH to PE1. In turn, PE1 can now decide which spark

120

Chapter 6: Colocation of Potential Parallelism

to donate. It would donate B, which we assume is older1, in the baseline case. Then

it would continue to execute the remaining spark A locally. However, the result of

A is needed by PE2, which would require additional communication. Similarly, if

spark B is exported and turned into a thread on PE2, communication is required

to send the result to PE1. If Spark Colocation is used A would be donated as it is

more related to the computation on PE2.

The main idea is to allocate computations to PEs that have worked on related

computations. A related computation is located closely in the same computational

sub-tree, because its result or produced data are likely to be required by the other

computation. The concept of SC builds on the notion of proximity between com-

putations. Two sparks are defined to be in close proximity if the path in the tree

between their nodes is short. In particular, if the root node is on the path, the

sparks can be considered unrelated.

This needs to be made explicit in the implementation by encoding these paths

(see Figure 6.2), thus recording the information about the relationships among sub-

computations, which is initially implicitly available in the source code, but is lost

during compilation in the default case. Hence with SC, the encodings marking the

sources of parallelism are forwarded to the RTS, which reconstructs the relationships

between sub-computations and uses them to influence scheduling and load balancing

decisions at run time. In our case these encodings are used to dynamically select

suitable sparks to export.

Keeping all the PEs busy tends to increase the proportion of useful communica-

tion messages. The load can be represented by the number of the runnable threads

at the time of measurement, whilst the size of the global indirection table (GIT)

expressed through the number of Global Addresses (GAs) represents the amount

of inter-PE sharing. Additionally, exporting different tasks is likely to affect the

number of created sparks and the conversion rate into threads. The local reduction

mechanism that includes thread subsumption remains unchanged.

Informally, the colocation algorithm behaves as follows: if a PE is idle, it will

attempt to steal work from others that will respond with the spark on the path

1this is reasonable as PE1 is the main PE and PE2 starts with no work

121

Chapter 6: Colocation of Potential Parallelism

through the compute tree that is most closely related to the stealing thread, rather

than with the oldest.

We use this ancestry relation with the maximum prefix function as the matching

function for finding the best match between the encoding of the thief and of the

sparks available to the victim. If no match is found, the baseline mechanism is used

by either exporting the oldest spark or forwarding the FISH to another PE.

One computation X is deemed an immediate parent of another computation Y

if it has created the spark from which Y resulted when this spark was converted

into a thread. By extension, Z is Y ’s ancestor if it is X’s parent or ancestor. In

our case, the ancestry relation is encoded as a path in the tree represented by a

string of symbols that encode the branch at each tree level. Thus, the degree of

relatedness between two computations can be defined by the extent their encoding

prefixes match.

Figure 6.2: Spark Ancestry Encoding Example

Figure 6.2 illustrates the encoding for two sources of parallelism, where each

choice point becomes a label in the encoding sequence. Thus according to the

number of possible labels base 2 is used for the encoding in this case. Note that the

nodes in the tree represent spark points and the tree is not the full compute tree.

For example, if spark A with the encoding 01 was turned into a thread and

then had the choice between sparks B and C, the latter would be chosen as given its

encoding 010 it has longer common prefix of length two with A as opposed to B with

encoding 00, which shares only one symbol with A. We can also see that A requires

122

Chapter 6: Colocation of Potential Parallelism

the result of computation C, whilst it does not require the result of computation B

to proceed.

We select maximum prefix as a matching function because the resulting encoding

mirrors closely the actual tree-like computational structure of the applications. The

ancestry relation defines the distance between a thread’s encoding and the encoding

of a given spark. The smaller the distance the more related two sub-computations

are deemed to be. An investigtation of alternative encodings and matching functions

is out of the scope of this work.

6.2 Implementation

Spark Colocation is implemented in the RTS. An explicit language primitive, a

version of the par combinator we call parEnc, is used to label the sparks. This takes

additional encoding arguments that are forwarded to the RTS. The path to the spark

constitutes an encoding, where we start from the root and add a symbol for each

sub-branch chosen at each level. The symbol corresponds to the label attached to a

parEnc site that lead to the creation of the spark and is appended to its inherited

parent’s encoding.

Note that we introduce no new concepts here: parEnc is just another variant

of par. Alternatively, user-defined cost centres [110], separate from par, could be

used. Although we use programmer-placed annotations, we argue that it is possible

to automatically place such annotations by enumerating pars and replacing each

with parEnc, with the corresponding encoding as an argument. All the parallelism

management is performed transparently by the RTS.

Data Structures Internally, this experimental implementation employs hash ta-

bles to store and access the information on threads and sparks by mapping respec-

tive ids to information-holding data structures. This mechanism enables the RTS to

distinguish sparks based on their location within the implicit compute tree of the ap-

plication for a given input. A potentially more efficient implementation would store

the encoding as an additional field directly in the thread descriptors (TSOs), but

123

Chapter 6: Colocation of Potential Parallelism

this would require substantial changes to the compiler and to the garbage collector.

Finding the Best Spark Each time a spark is created it stores its full encoding

in the hash table. This encoding is compared to the encoding carried by an incoming

FISH message, extended with information about the encoding of the thread most

recently executed by the thief. The spark pool is traversed and a spark with a

maximum prefix match is donated. The maximum traversal length can be specified

as an RTS option. In case there is no match, the oldest spark is donated. Finally, if

there are no sparks available, the request is passed on to another PE. When a thread

is created the data structure holding the spark’s encoding information is released

after the encoding has been passed on to the thread’s corresponding data structure

inside the hash table.

6.2.1 Spark Selection

As mentioned above, our focus is on changing spark selection, which is originally im-

plemented as the findSpark() function that selects a spark for export, by traversing

the spark pool.

In the baseline mechanism, the spark pool is implemented as a lock-free double-

ended queue (deque) [228], so that the owning PE can add new sparks at the tail of

the deque whilst sparks are exported off the head in First-In-First-Out (FIFO) man-

ner. This mechanism avoids most of the synchronisation cost as it is only incurred

when threads actually attempt to evaluate the same spark. Older sparks tend to

refer to work of larger granularity and that also likely to generate more parallelism

making corresponding sparks suitable for donation, whilst the youngest sparks tend

to be related to the current computation and could be beneficially inlined. This is

similar to the Breadth-first-Until-Saturation-then-Depth-first mechanism [49] that

we discussed in Chapter 2.4.

124

Chapter 6: Colocation of Potential Parallelism

6.2.2 Matching Function

We encode ancestry as a string of symbols to the base of the total number of pars

in the program.

Rather than using a static call-tree which may be available at compile time,

the labels attached to the spark sites are passed to the RTS which dynamically

collates the ancestry information into encodings, so that it incorporates the dynamic

relationship that arises at run time. This is beneficial as in a non-strict setting some

parts of the graph may remain completely unevaluated if they are not demanded

based on the application-input combination.

As a fitting choice, maximum prefix string matching is used to determine the

spark for donation, since it represents the closest relation between the computations

in the tree based on the corresponding encodings.

6.2.3 Packet Format

To propagate ancestry information between the PEs, the packet format is extended

for the FISH and the SCHEDULE protocol messages. FISH is extended to carry the

requesting PE’s encoding, whilst SCHEDULE includes the exported spark and its en-

coding. Once turned into a light-weight thread, the spark’s encoding is used to

update the current thread’s encoding, which is in turn inherited by the sparks gen-

erated by this thread.

6.2.4 Profiling

To assess the behavioural difference compared to the baseline mechanism, the event-

based profiling sub-system is extended to record thread granularities in addition to

the already available profiling information such as per-PE load over time, message

counts, and GA residency. If event-based profiling is turned on, we record for each

thread its life time from creation to destruction along with PE id in the correspond-

ing log file. More details on this extension can be found in Appendix B.4.

The extension does not impede scalability as it only involves keeping an addi-

tional counter adding little to the existing profiling overhead, whilst the events are

125

Chapter 6: Colocation of Potential Parallelism

written out to file as they occur using a separate asynchronous thread that is re-

sponsible for buffered I/O. At the implementation level, a small number of localised

changes to the RTS is required.

6.3 Performance Evaluation of Spark Colocation

To evaluate the effectiveness of Spark Colocation we compare it to the baseline

mechanism by running five applications on a 32-node Beowulf-class cluster of 8-core

nodes using up to 256 cores. SC is particularly relevant for high-latency clusters,

because it is designed to reduce communication costs. We describe the hardware

setup in Section 6.3.2 and the applications used in Section 6.3.3.

6.3.1 Methodology

We run each application five times for each PE-count both with and without event-

based profiling and compare the median runs with and without Spark Colocation.

We report run times and speedups from the runs without event-based profiling

avoiding the profiling overhead. The profiling runs are used to generate the graphs

in Figures 6.11-6.18 (per-PE load) and 6.22-6.25 (granularity). The number of runs

is relatively low due to the long sequential run time for the chosen inputs and the

amount of measurement points due to variation in PE counts, which allows us to

assess scalability on higher PE numbers. We use a lightly loaded cluster. However,

as the cluster is not dedicated and does not use a queueing system, we can not

fully rule out some variation due to interference with other processes running on the

machines. As PVM is used as a communication library, processes are placed onto

nodes in a round robin fashion as specified in a hostfile.

We measure the elapsed time and calculate the relative speedups based on the

sequential elisions2 of the programs to assess scalability on up to 256 PEs.

Using ends-based metrics such as elapsed (wall-clock) time and speedup alone

doesn’t provide sufficient insight into why the observed effects of SC take place, for

instance with respect to load balance over time. Therefore, we also collect profiling

2the compiler obtains an elision by disregarding the par annotations

126

Chapter 6: Colocation of Potential Parallelism

data for several means-based metrics: per-PE numbers of threads over time as a

measure of load balance and degree of parallelism; thread sizes reflecting granularity;

numbers of transmitted messages of different types; as well as sizes of internal data

structures holding inter-PE pointers to assess data locality.

6.3.2 Target Platform

The applications are run on a 32-node Beowulf cluster of multi-cores using up to

256 PEs. The cluster comprises a mix of 8-core Xeon 5504 nodes with two sockets

with four 2GHz cores, 256 KB L2 cache, 4MB shared L3 cache and 12GB RAM,

and 8-core Xeon 5450 nodes with two sockets with four 3GHz cores, 6MB shared L2

cache and 16GB RAM. The machines are connected via Gigabit Ethernet with an

average latency of 0.23 µs measured using the Linux ping utility (average round-trip

time of 100 packets of standard size).

We use the CentOS 6.7 operating system, the GHC 6.12.3 Haskell compiler, the

GCC 4.4.8 C compiler, and the PVM 3.4.6 communication library. The applications

are compiled with optimisations turned on (-O2).

6.3.3 Benchmark Applications

We use applications from the set introduced in Section 4.2, that could be expressed

using the parEnc notation, which results in D&C parallelism.

In particular, we use parfib, parpair with calls to sumeuler and parfib nested

within the pair and evaluated in parallel, interval-based sumeuler reformulated using

the D&C pattern, worpitzky and minimax.

Table 6.1: Applications Overview

application parallelism regularity input
pattern parameters

parfib D&C regular 50 35
parpair nested D&C irregular/regular 100000 10 50 35
sumeuler D&C irregular 100000 10
worpitzky D&C irregular 27 30 18
minimax D&C irregular 4 8 2

127

Chapter 6: Colocation of Potential Parallelism

We ported the flat data-parallel sumeuler to the interval-based D&C version to

add a second source of parallelism. Otherwise, in a flat data-parallel version with a

single source of parallelism, the SC version would result in exactly the same choices

at the baseline.

6.3.4 Results

We present graphs visualising the performance and scalability for the applications

using run time and speedup. The run time is the end-to-end elapsed time of the

application run, including garbage collection and mutation time.

Table 6.2 shows the overview of the results of using Spark Colocation on 256

PEs: substantial speedups can be reached for both the baseline as well as for the

colocation case, achieving speedup improvement of up to 46% with SC.

Table 6.2: Application Speedups on 256 PEs

application baseline colocation change
speedup speedup in %

parfib 204 219 +7
parpair 200 231 +16
sumeuler 142 207 +46
worpitzky 175 101 −42
minimax 95 79 −17

However, we also observe a drop in speedup for SC of 17% and 42%, for the less

scalable minimax, and for worpitzky with excessively fine-grained parallelism and

parallelism degree, respectively.

Run Time Performance Figure 6.3 depicts orders of magnitude reduction in run

time as the number of PEs increases. Note the logarithmic scale using the natural

logarithm, employed due to the high differences in run times among the applications;

the data for SC runs is denoted by the suffix sc in the legend. The results, selected

from the median run based on the performance for 256 PEs, indicate that functional

programs can scale, exploiting large amounts of parallelism and additional PEs.

We consider some extreme values outliers and thus report the median of the

data after outlier removal. Figure 6.4 presents an alternative view showing the

128

Chapter 6: Colocation of Potential Parallelism

Figure 6.3: Spark Colocation: Runtimes (log scale)

percentages of change in speedup for SC using the median for each of the selected

PE numbers. This way we see that the spike for sumeuler is an outlier. Positive

values show the advantage from using SC, in particular for higher PE numbers,

whilst negative change in speedup depicts the cases where baseline outperforms SC.

Summarising Figure 6.3, in particular for 256 PEs, SC leads to better perfor-

mance for parfib, parpair and sumeuler. However, for the more fine-grained

worpitzky and the less scalable minimax the baseline mechanism outperforms SC.

Scalability The scalability is assessed using strong scaling as the input is fixed and

is not increased with increasing numbers of PEs. We report application speedups

based on sequential elisions of the parallel programs that a compiler optimises au-

tomatically, given the correct flags, whilst disregarding the parallel annotations on

one PE. We focus on the comparison between Spark Colocation and the baseline

for different numbers of PEs with more than two PEs, because multiple PEs are

required for work stealing to operate.

Figure 6.5 presents an overview of speedup, whereas Figures 6.6 – 6.10 present

the scalability of each application in the baseline and the colocation case compared

to ideal speedup, represented by a straight dashed line. Figure 6.5 demonstrates

that all applications are able to scale achieving at least 75× speedup, and exceeding

200× on 256 PEs for parfib, parpair and sumeuler (with Spark Colocation).

129

Chapter 6: Colocation of Potential Parallelism

Figure 6.4: Speedup Change in % for SC (higher is better)

The per-application speedup comparison reveals that parfib, parpair, as well

as sumeuler, scale well initially and gradually less well for higher PE numbers,

whilst worpitzky and minimax have relatively flat speedup curves. The individual

figures show the best performance, whilst summary figures show the median across

runs. This way we can observe both, the picture of what is achievable as well as the

average trend.

Figure 6.6 examines the speedups for parfib in more detail. We observe almost

linear speedup for both the default policy and for Spark Colocation on up to 96 PEs.

Overall, in all cases Spark Colocation outperforms the default policy with increased

differences for growing numbers of PEs. The fixed amount of work results in less

130

Chapter 6: Colocation of Potential Parallelism

Figure 6.5: Spark Colocation: Speedups

Figure 6.6: Spark Colocation: parfib Speedups

steep speedup curves for higher numbers of PEs compared to ideal.

Figure 6.7 depicts the speedup behaviour for parpair, where SC again domi-

nates, with both policies exhibiting good scaling of over 200×. However, despite

initial linear scaling, we observe earlier flattening out for the default policy from 64

131

Chapter 6: Colocation of Potential Parallelism

Figure 6.7: Spark Colocation: parpair Speedups

Figure 6.8: Spark Colocation: sumeuler Speedups

132

Chapter 6: Colocation of Potential Parallelism

PEs on. Using SC results in a steeper speedup curve for this nested application.

The situation is similar for sumeuler as shown in Figure 6.8. We observe that

Spark Colocation appears beneficial in most cases with an increasing gap between the

speedup curves for higher PE numbers. Note that inner sparks for this application

have similar granularity across spark of the same level, decreasing with the level of

the computational tree.

Figure 6.9: Spark Colocation: worpitzky Speedups

Figure 6.9 shows a very different picture for worpitzky, where the baseline policy

consistently exhibits higher speedup than Spark Colocation, which shows a fairly

flat initial speedup curve. It fails to catch up with the baseline speedup that is

initially close to linear. We suspect that a better threshold setting can be obtained

for this application.

An even poorer speedup is reached for both policies for minimax as demonstrated

in Figure 6.10. The baseline algorithm reaches slightly higher speedups than Spark

Colocation, with flattening occurring early for both.

As we don’t scale the input size with a growing number of PEs, it is expected

133

Chapter 6: Colocation of Potential Parallelism

Figure 6.10: Spark Colocation: minimax Speedups

that the speedup curves would eventually flatten out due to the limited amount of

available work. Otherwise, a speedup curve that is flat even for a small number of

PEs suggests that the implementation of the application itself is less scalable.

Next we look at the results from profiling the runs which will help explain the

exhibited performance. First, we focus on per-PE load balance over time and on the

degree of parallelism, then we examine thread granularity, the time spent fetching

remote data and investigate the numbers of transmitted FISH messages. Finally, we

review the numbers of inter-PE references.

Load Balancing We use event-based profiling to examine thread activity across

PEs over time as a measure of utilisation, to compare load balance for SC against

the baseline mechanism. We expect a better load distribution for a larger number

of smaller threads of less variable granularity, as this allows more flexibility and

helps avoid pathological cases which are likely if some threads are disproportionally

coarse-grained. Moreover, if SC is effective, we should observe lower times to fetch

134

Chapter 6: Colocation of Potential Parallelism

needed data as discussed in detail below (see the Fetching Behaviour paragraph).

Figures 6.11 – 6.18 provide a picture of the load balance across PEs. They depict

the per-PE thread pool sizes over execution time based on the event time stamps

for selected median runs on 128 PEs. A deeper shade of green represents a larger

number of runnable threads (higher load), whilst red and white gaps show blocking,

and blue lines at the bottom of each PE stripe indicate fetching. Unfortunately, no

data are available for minimax due to instability.

SC mostly results in better load balance due to higher number of active threads

across PEs, as visualised by a more even shade of green lines across PEs. We observe

reduced idle and blocking time for SC, visualised in red and white.

Moreover, we notice a decreased difference in run time for each PE for SC as

compared against the baseline. The execution times themselves are different for the

128 PE case3 in favour of SC for three out of five applications. These differences are

most pronounced for high PE numbers.

These suggest that the RTS is able to exploit the increased parallelism and

decreased granularity that result from the use of SC and can better utilise all the

available PEs. Fetching occurs at similar times for SC and the baseline because all

but the main PE start off idle. More PEs start fetching early at those times and

the fetching times are lower for SC, as summarised in Table 6.5, whilst the overall

number of fetches is lower for the baseline.

Hence, we argue that, despite the larger number of smaller threads, Spark Colo-

cation can improve load balance by facilitating the sharing of related work which

results in fetching of more useful data. Except for worpitzky with an excessive de-

gree of parallelism. Next we examine degree of parallelism and thread granularity.

Degree of Parallelism Tables 6.3 and 6.4 demonstrate the measured spark and

thread counts over all PEs representing the potential and actual degree of paral-

lelism, respectively. We report the total counts, the medians and standard devia-

tions across all PEs from the median run profiled on 256 PEs for each benchmark

application, comparing the baseline against Spark Colocation.

3we have chosen this case because it is the highest number for which visualisation is still readable

135

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
11

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
p
a
r
f
i
b

P
E

s
1-

64
ou

t
of

12
8

136

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
12

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
p
a
r
f
i
b

P
E

s
65

-1
28

ou
t

of
12

8

137

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
13

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
p
a
r
p
a
i
r

P
E

s
1-

64
ou

t
of

12
8

138

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
14

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
p
a
r
p
a
i
r

P
E

s
65

-1
28

ou
t

of
12

8

139

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
15

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
s
u
m
e
u
l
e
r

P
E

s
1-

64
ou

t
of

12
8

140

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
16

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
s
u
m
e
u
l
e
r

P
E

s
65

-1
28

ou
t

of
12

8

141

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
17

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
w
o
r
p
i
t
z
k
y

P
E

s
1-

64
ou

t
of

12
8

142

Chapter 6: Colocation of Potential Parallelism

F
ig

u
re

6.
18

:
E

ve
n
t-

B
as

ed
L

oa
d

B
al

an
ci

n
g

P
er

-P
E

P
ro

fi
le

C
om

p
ar

is
on

fo
r
w
o
r
p
i
t
z
k
y

P
E

s
65

-1
28

ou
t

of
12

8

143

Chapter 6: Colocation of Potential Parallelism

Table 6.3: Spark Counts for Benchmarks on 256 PEs

application baseline SC change
total median stddev total median stddev in %

parfib 2755 11 2.28 3172 12 3.46 +15
parpair 3840 14 4.34 5045 19 6.24 +31
sumeuler 1854 6 3.51 1983 7 4.67 +7
worpitzky 337116 1322 88.71 488550 1927 161.14 +45
minimax 2466 7 6.31 2525 5 9.90 +2

Table 6.4: Thread Counts for Benchmarks on 256 PEs

application baseline SC change
total median stddev total median stddev in %

parfib 1127 4 1.02 1584 6 0.64 +41
parpair 1195 5 1.35 2508 10 1.54 +110
sumeuler 802 3 0.71 955 4 0.97 +19
worpitzky 82065 322 31.39 243709 979 82.79 +197
minimax 1092 4 1.27 1055 4 1.18 −3

Overall, we observe consistently higher potential parallelism for SC, which can

be attributed to the export of related sparks rather then strictly the oldest, which

may reduce potential for subsumption once the computation is shared across the

PEs. This turns out to be particularly beneficial for larger numbers of PEs as

the number of threads per PE is increased in all but one case (minimax). The

worpitzky benchmark shows that although beneficial for load balancing, having a

higher number of threads may become counterproductive when there are already

more than enough threads in the baseline case due to additional overhead.

Moreover, we notice the larger number of converted threads that represent actual

parallelism for SC, except for minimax, which exhibits little change (see Table 6.4).

This results from the higher number of created sparks (see Table 6.3) and is useful

for a higher number of PEs to spread the load across more nodes and PEs, poten-

tially reducing idleness. The worpitzky program exhibits overwhelming parallelism

management overhead leading to poor scalability and is an example of worst-case

behaviour. Both spark and thread counts per PE in Figures 6.19, 6.20 and 6.21

show that most of the 256 PEs complete work with each using multiple threads.

The spark counts suggest that the differences between the mechanisms are rela-

144

Chapter 6: Colocation of Potential Parallelism

Figure 6.19: Sparks per PE on 256 PEs

Figure 6.20: Threads per PE on 256 PEs

145

Chapter 6: Colocation of Potential Parallelism

tively low, with slightly higher potential parallelism for benchmarks for which Spark

Colocation shows an improvement, whereas it is lower otherwise. An exception is

worpitzky, which exhibits much higher potential and actual parallelism for SC but

the performance and scalability are negatively impacted by the additional overhead

of managing excessive parallelism.

Figure 6.21: Sparks and Threads per PE on 256 for worpitzky

The thread figures show a distinction between benchmarks that perform better

with more threads with SC and the benchmarks with no difference. This summary

is complemented by the per-PE load balancing data, emphasizing the desirability of

spreading the load evenly across PEs, spatially as well as temporally.

However, the granularity of threads is not visible from this display, so that even

though all the PEs have enough sparks to convert some of them into threads, some

of the sparks and associated threads may be relatively small whilst others require

more computation. In particular, if one PE receives a disproportionally larger task

in the end of the execution, others may run out of work and go idle.

146

Chapter 6: Colocation of Potential Parallelism

Granularity We compare the distribution of thread granularities exhibited by a

program, representing thread sizes in terms of run time. Ideally, a program would

be composed of equal-sized independent computations which would make paralleli-

sation relatively easy. The granularity should be at least larger than the thread

creation overhead. In practice, most tasks are of different sizes and lead to more

complex work distribution decisions, making it hard to obtain optimal solutions.

GUM’s profiling sub-system was extended to provide the per-thread granularity

information (see Appendix B.4.2 for details).

The granularity profiles in Figures 6.22 – 6.25 show that Spark Colocation con-

sistently generates more threads of smaller granularity, offering more opportunities

for load balancing for higher PE numbers, but also increasing overhead. We focus

on the data for 256 PEs as the difference in run time is most pronounced in those

cases. Note the difference in thread numbers compared to Table 6.4, which is due

to work-stealing non-determinism, because we use data from a different run with

event-based profiling turned on.

Figure 6.22 shows the granularity distribution for parfib where Spark Colo-

cation results in more short-lived threads than the baseline. The threads for SC

are clustered around the 1000ms mark, whereas the granularity is less even for the

baseline case ranging from 500 to 5000ms. This supports the intuition that appli-

cations with a larger granularity range are more sensitive to scheduling decisions as

allocating larger computations to the same PE could lead to load imbalance.

On the other hand, PEs with larger threads are unlikely to be actively looking

for more work unless using the watermark mechanism. However, they may still be

interrupted by the FISH messages, which they would forward on unless they are gen-

erators of parallelism, which is unlikely in the initial phases of D&C computations.

We see a similar picture for parpair in Figure 6.23 (note the different scales

across granularity figures). The peaks are located in the same buckets in the his-

togram showing that SC does not fundamentally change application’s granularity

profile. We rewrote the originally data parallel sumeuler in D&C style to take

advantage of SC4, so it exhibits behaviour alike to the other applications.

4in a flat data parallel program all sparks can be considered direct siblings at the same level

147

Chapter 6: Colocation of Potential Parallelism

Figure 6.22: Granularity of parfib on 256 PEs

Figure 6.23: Granularity of parpair on 256 PEs

148

Chapter 6: Colocation of Potential Parallelism

Figure 6.24: Granularity of sumeuler on 256 PEs

Figure 6.25: Granularity of worpitzky on 256 PEs

149

Chapter 6: Colocation of Potential Parallelism

An extreme case is worpitzky where a lot of tiny threads (well over 225000

threads of around 20ms granularity) are generated which negatively impacts scala-

bility. We have kept the parameters for SC and baseline the same for comparability,

but it appears that worpitzky with SC may benefit from a different threshold setting

to limit the amount of threads5.

Fetching Behaviour Another distinguishing characteristic is the fetch time threads

spend waiting for data required by the computation to arrive. Table 6.5 compares

the baseline and SC across applications for the median run on 256 PEs.

Table 6.5: Summary of Fetching Behaviour on 256 PEs

application baseline colocation mean total total
mean (ms) mean (ms) fetch time fetch time fetch count
fetch time fetch time change in % change change

across PEs across PEs across PEs in % in %
parfib 829.24 637.11 −23 +8 +35
parpair 1109.11 565.49 −49 −5 +78
sumeuler 593.84 290.17 −51 −29 +49
worpitzky 19.02 12.19 −40 +81 +163

In some cases it is possible that the data is already available or fits into the

same packet, resulting in fetch time of zero, as for many sumeuler threads, and

in other cases the fetch time may exceed the time the thread spends performing

the computation. We observe that SC has consistently a smaller mean fetch time

across PEs than the baseline with decrease in the range between 23% and 51%. This

suggests that SC is indeed effective, by indicating that the threads in SC case are

’more useful’ in the sense that they spend less time waiting on data to arrive, which

is what SC design aims to achieve. Thus, despite smaller granularity, SC threads

have higher average utilisation as can be seen from the load balancing results, and

the degree of parallelism is increased.

Additionally, the total number of fetches is increased due to the larger number of

threads, but in most cases both the mean number of fetches per PE and the standard

5unfortunately the other input parameters we tested lead either to too short or too long se-
quential run time

150

Chapter 6: Colocation of Potential Parallelism

deviation are slightly lower for SC. Next we examine communication characteristics

as another source of overhead.

Communication Figure 6.26 shows the number of the FISH messages across the

applications, which is an indicator of the need to obtain remote work, and compares

Spark Colocation against the baseline mechanism. Note the logarithmic scale used

due to a large difference in numbers across applications. As expected, we see an

increase of FISH counts with increasing number of PEs.

Figure 6.26: Spark Colocation: FISH Message Counts (log scale)

We also observe lower FISH counts for SC for cases in which the new mechanism

outperforms the baseline. This is due to improved load balancing leading to less idle

PEs and it is an improvement as it leads to reduction in communication costs by

decreasing the number of messages sent.

Global Indirection Table Residency Figure 6.27 depicts the median number

of global indirections across PEs for baseline runs and runs with SC on up to 256

PEs which shows the degree of sharing across PEs using the distributed shared heap.

We notice that the number of global addresses is consistently higher for SC

suggesting an increase in the amount of inter-PE sharing. This is due to the higher

parallelism degree and the sharing pattern that favours sharing related sparks rather

than oldest. In Table 6.5 we have observed a reduced average fetching time despite

151

Chapter 6: Colocation of Potential Parallelism

Figure 6.27: Spark Colocation: Median Global Addresses (log scale)

more global addresses as more useful data is exchanged. In particular, we observe

an excessive number of global addresses for worpitzky where the parallelism degree

is very high.

An interesting pattern is that the difference consistently decreases with an in-

creasing number of PEs. This suggests that SC scales better with the number of

PEs and may be able to overtake the baseline for even higher PE numbers, whereas

the baseline mechanism works well for lower numbers of PEs. We attribute this be-

haviour to the higher parallelism degree and sharing of smaller sparks that require

more fetching messages with shorter average fetching time for SC as opposed to the

baseline.

6.4 Discussion

Comparing SC to the baseline mechanism, the results show speedups and speedup

improvements of up to 46% with SC on 256 PEs for the three more regular and

nested applications: parfib, parpair, sumeuler. For minimax, which exhibits

stronger irregularity and limited scalability, and for worpitzky, which is excessively

fine-grained, we observe performance degradation.

When using SC, the distributed graph reducer shares related work resulting in a

152

Chapter 6: Colocation of Potential Parallelism

higher degree of both potential and actual parallelism, and more fine-grained and less

variable thread size. In particular, we observe a higher thread conversion increase

rate than the increase rate of sparks for SC, which suggests that less threads are

subsumed because younger sparks are shared (see Tables 6.3 and 6.4). Having more

sparks that are also more fine-grained allows for more flexibility when balancing the

load and improves scalability on higher PE numebrs for SC.

We validate this behaviour by observing a reduction in average fetch times of

between 23% and 51% for SC, suggesting improved locality. This results in improved

load balance for parfib, parpair, sumeuler. This is despite the increased amount

of FETCH messages and of inter-PE pointers, resulting from larger number of sparks.

As expected, SC appears most beneficial for higher numbers of PEs where im-

proved load balancing and higher degrees of parallelism have more opportunities to

pay off. The SC mechanism is therefore effective in improving scalability.

In more general terms, we show that a RTS can beneficially use the ancestry

information that was originally lost during compilation. However, a balance needs

to be struck with the overhead incurred by the finer thread granularity.

Finally, even though we have placed the annotations manually it is possible to

automatically enumerate pars, changing them to parEncs. Recent work [50], which

complements this work, investigates automated placement of par annotations as a

step towards fully-implicit parallelism.

153

Chapter 7

Conclusion

This thesis contributes to the study of efficient distributed execution of semi-explicit

parallel non-strict functional languages on distributed-memory architectures. We

characterise a set of parallel programs and investigate two novel approaches to im-

prove the work stealing mechanism and compare their performances to the baseline

random work stealing scheduler.

7.1 Summary

First, we characterise a set of small and medium-sized parallel functional applica-

tions run on a server-class NUMA multi-core and on a cluster of multi-cores using

either GUM or SMP RTS. We identify the key sources of coordination overhead in

terms of associated metrics such as communication rate, heap and GA residency,

allocation rate, and thread granularity. Detailed profiling reveals diverse bottle-

necks and helps gain insight into dynamic application behaviour and into RTS-level

aspects. In particular, we observe that if either of the chosen metrics is high the

performance and scalability are likely to degrade. The results also reveal a strong

correlation between GA residency and the amount of communication. Moreover,

thread subsumption appears to work well with D&C applications as a way to throt-

tle parallelism. Additionally, we find GUM behaviour similar and consistent across

architectures and identify and confirm a scalability bottleneck within SMP. These

insights inform the approaches to work stealing we set out to investigate.

154

Chapter 7: Conclusion

The first approach we study uses historical information to adapt the choice of

the victim by preferring processors with successful steal attempts in the past. As

expected, we observe substantially lower numbers of messages, in particular of FISH

messages, for data-parallel and nested applications.

However, this heuristic fails in cases where past application behaviour is not

resembling future behaviour, for instance for D&C applications with large number

of very fine-grained threads and generators of parallelism that move dynamically

across PEs. This mechanism is not specific to the language and the RTS, and

applies to other work stealing schedulers.

In the second approach, we focus on the other key work stealing decision of which

sparks to donate, investigating the effect of Spark Colocation. When using SC, the

PEs in the distributed graph reducer donate related work as evidenced by reduced

fetch times and decomposes the parallelism into smaller work units as suggested by

the granularity profiles. This results in a higher degree of both potential and actual

parallelism, and more fine-grained and less variable thread sizes, which helps to

improve load balance, in particular for higher numbers of PEs. Moreover, reduced

fetch times provide evidence for improved locality. We observe reduced run time

for three programs: parfib, parpair, and sumeuler despite increased number of

FETCH messages and of inter-PE pointers for SC.

The results show high speedups both for the baseline and for SC, and speedup

improvements of up to 46% with SC on 256 PEs for the three more regular and

nested applications out of five, and performance degradation for two programs, one of

which is excessively more fine-grained and another one exhibiting limited scalability.

Using SC results in higher parallelism degree and more fine-grained threads and the

fetch times are consistently reduced by between 23% and 51%, suggesting improved

locality, despite the increased amount of inter-PE pointers.

As expected, SC appears most beneficial for higher numbers of PEs where im-

proved load balancing and higher degrees of parallelism have more opportunities to

pay off. Therefore SC improves application scalability and we expect better scala-

bility beyond 256 PEs.

155

Chapter 7: Conclusion

In more general terms, we show that a RTS can beneficially use historical in-

formation on past stealing successes that is gathered dynamically and used within

the same run in most D&C applications, as well as the ancestry information that

was originally lost during compilation, but is reconstructed using programmer an-

notations that are forwarded on to the RTS at run time, in data parallel and nested

applications with stable sources of parallelism. Moreover, the results support the

view that different heuristics are beneficial for applictions using different parallelism

patterns, mandating a flexible approach.

In summary the main contributions are as follows:

• Design, implementation and empirical evaluation of the Spark Colocation

mechanism for distribution of advisory parallelism for D&C and nested parallel

applications dynamically using the ancestry relation that reflects the proximity

of tasks in the compute tree;

• Design, implementation and empirical evaluation of the generic History-Based

Work Stealing mechanism which uses recent past stealing success and failure

information to select work stealing victim PEs at run time within the current

run;

• Characterisation of applications written in a non-strict parallel functional lan-

guage using ends-based as well as means-based metrics, identifying sources

of coordination overhead and confirming the differences between applications

with different parallelism patterns;

• Introduction of an adaptivity classification scheme that can be applied to

run-time system mechanisms for parallelism management, complemented by a

survey of high-level parallel programming models and an overview of langauge

run-time systems.

Next we identify several limitations of this work and suggest multiple directions

for future work.

156

Chapter 7: Conclusion

7.2 Limitations

We use a limited number of benchmark programs of small-to-medium size, lack-

ing large-scale applications. Moreover, we mainly use a commodity cluster as the

hardware platform. Currently, there is no agreement among researchers as to what

constitutes a minimal and representative set of applications necessary to assess run-

time system performance and scalability.

For History-Based Stealing our study leaves out the investigation of the accuracy–

coverage trade-off, which appears important for achieving performance improve-

ments, as if either accuracy or coverage is too low, using historical information may

become counterproductive. We have manually selected a reasonable invalidation in-

terval for each application, but we believe a more systematic treatment of the search

space would merit a separate project.

For Spark Colocation, we require the programmer to manually annotate the

program to identify the sources of parallelism. Although a reasonable experimen-

tal trade-off that facilitates prototyping, it makes it more difficult to more widely

adopt the use of the method as applications need to be rewritten. We believe a

compiler would be able to automatically annotate GpH programs by enumerating

the respective sources or parallelism.

Additionally, we have only compared the baseline to SC with maximum prefix

matching on encodings, which is only one possible, albeit fitting, way to compare

ancestry among sparks. Perhaps the encoding itself could be designed in a different

way to incorporate additional information, e.g. on the architectural constraints. In

the current implementation, the RTS is unable to switch between the baseline and

the SC mechanism at run time.

In non-strict languages, operational behaviour is only loosely coupled with the

static code-level denotational semantics. This makes optimisation more challenging

in this setting. In this work we have not utilised any static analysis which could

potentially give a clue to the granularity associated with sparks. We also do not use

cost models or architectural information in our heuristics. The literature suggests

that such features can be beneficially incorporated into some of the decisions.

157

Chapter 7: Conclusion

7.3 Future Work

Given the above limitations, we identify serveral directions for future research.

Operationally Deterministic Work Stealing We would like to explore ways to

implement operationally deterministic work stealing, for instance by using overlap-

ping multicast groups or MPI comm-groups, which would enable better predictabil-

ity and cost analysis by splitting the set of all PEs into subgroups and allowing

stealing only in these subgroups using fixed communication paths. Because the

subgroups overlap every PE would be reachable from every other, even though the

communication would be indirect. The groups could share more knowledge amongst

its members to improve performance. This would also enable more flexible study of

adaptation to NUMA architectures, as the groups could be defined to match NUMA

regions. Additionally, a gossip or a publish/subscribe overlay could be investigated

for dissemination of load and other relevant system-level information as well as ar-

chitectural information within the group and among the groups. This can be viewed

as orthogonal to the GUM protocol and treating it as such would result in a more

modular implementation.

Investigating Accuracy-Coverage Trade-Off for History-Based Stealing

Further exploration is needed to evaluate the accuracy-coverage trade-off and inval-

idation interval selection on a broader range of architectures using additional larger

applications. Coverage can be measured as the fraction of the PEs of total, for which

the information is up-to-date. This can be either added to the global profiling as a

running average updated every time the information is used or as part of the census-

based profiling providing a more detailed view over time. Accuracy is more difficult

to assess, as it requires a golden standard to compare against. This could potentially

be achieved if execution replay work [83] can be ported to GUM. However, using an

operationally non-deterministic work stealing variant may complicate this, making

the work from previous paragraph well-suited to complement this direction.

158

Chapter 7: Conclusion

Automating Spark Colocation Following up on Spark Colocation, introducing

the encoding, which was manually done for this work, could be automated based

on existing techniques and would entail replacing the par annotations with parEnc

whilst keeping track of parallelism sources as a pass in the compiler or using a prepro-

cessor. This would facilitate further study and the use of the approach. Moreover, it

would be of interest to investigate the effects on other kinds of parallel architectures,

using larger parallel applications with different parallelism patterns, and to compare

different matching functions ways to encode ancestry. In particular it appears useful

to be able to flexibility switch between the baseline and SC at runtime based on the

number of PEs and system-level parameters such as spark pool size.

Graph Reduction in Hardware Observing recent trends in continuing FPGA

clock and memory size scaling, it seems worthwhile to revisit past work on graph

reduction hardware using this opportunity. Recent work on Reduceron [185] and

PilGRIM [39] appears promising. We believe that graph reduction is particularly

suited for fine-grained parallel execution offered by FPGA-based approach, which

has the benefit of much faster prototyping life cycle than the graph reduction ma-

chine projects had in the past. Defining a parallel machine that is able to use

multiple Reduceron cores could be the first step in this direction.

159

Bibliography

[1] S. Abramsky and R. Sykes. SECD-M: A virtual machine for applicative pro-

gramming. In Conference on Functional Programming Languages and Com-

puter Architecture, pages 81–98. Springer, 1985.

[2] G. A. Agha. Actors: A model of concurrent computation in distributed sys-

tems. Technical report, Massachusetts Institute of Technology, Cambridge,

Artificial Intelligence Lab, 1985.

[3] M. Aljabri, H.-W. Loidl, and P. Trinder. The design and implementation

of GUMSMP: a multilevel parallel Haskell implementation. In Proc. of 25th

ACM Symp. on Implementation & Application of Functional Languages, pages

37–48, 2013.

[4] M. Aljabri, H.-W. Loidl, and P. Trinder. Distributed vs. shared heap, parallel

Haskell implementations on shared memory machines. In Proc. of Symp. on

Trends in Functional Programming, Univ. of Utrecht, The Netherlands, 2014.

[5] T. E. Anderson, D. E. Culler, and D. Patterson. A case for NOW (networks

of workstations). IEEE micro, 15(1):54–64, 1995.

[6] B. Archibald, P. Maier, R. Stewart, P. Trinder, and J. De Beule. Towards

generic scalable parallel combinatorial search. In Proceedings of the Interna-

tional Workshop on Parallel Symbolic Computation, page 6. ACM, 2017.

[7] G. Argo. Improving the three instruction machine. In Proceedings of the

Fourth International Conference on Functional Programming Languages and

Computer Architecture, pages 100–115. ACM, 1989.

160

BIBLIOGRAPHY

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing.

Communications of the ACM, 53(4):50–58, 2010.

[9] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey of

adaptive optimization in virtual machines. Proceedings of the IEEE, 93(2):449–

466, 2005.

[10] Arvind and R. S. Nikhil. Id: A language with implicit parallelism. In A Com-

parative Study of Parallel Programming Languages, pages 169–215. Elsevier,

1992.

[11] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al. The land-

scape of parallel computing research: A view from Berkeley. Technical report,

UCB/EECS-2006-183, EECS Dept, University of California, Berkeley, 2006.

[12] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick.

A view of the parallel computing landscape. CACM, 52:56–67, October 2009.

[13] M. Aswad, P. Trinder, and H.-W. Loidl. Architecture aware parallel pro-

gramming in Glasgow Parallel Haskell (GPH). Procedia Computer Science,

9:1807–1816, 2012.

[14] L. Augustsson and T. Johnsson. Parallel graph reduction with the (v, G)-

machine. In Proceedings of the Fourth International Conference on Functional

Programming Languages and Computer Architecture, pages 202–213. ACM,

1989.

[15] L. Augustsson and T. Johnsson. The Chalmers Lazy-ML compiler. The Com-

puter Journal, 32(2):127–141, 1989.

[16] J. Backus. Can programming be liberated from the von Neumann style?: a

functional style and its algebra of programs. CACM, 21(8):613–641, 1978.

161

BIBLIOGRAPHY

[17] H. C. Baker Jr and C. Hewitt. The incremental garbage collection of processes.

In ACM SIGPLAN Notices, volume 12, pages 55–59, 1977.

[18] H. Barendregt, W. Dekkers, and R. Statman. Lambda calculus with types.

Cambridge University Press, 2013.

[19] H. P. Barendregt. The lambda calculus, volume 3. North-Holland Amsterdam,

1984.

[20] P. S. Barth, R. S. Nikhil, et al. M-structures: extending a parallel, non-strict,

functional language with state. In Conference on Functional Programming

Languages and Computer Architecture, pages 538–568. Springer, 1991.

[21] E. Belikov. History-based adaptive work distribution. In Proc. of Imperial

College Computing Student Workshop, volume 43 of OpenAccess Series in

Informatics (OASIcs), pages 3–10. Leibniz-Zentrum fuer Informatik, 2014.

[22] E. Belikov. Hitchhiker’s guide to GUM hacking. Technical Report HW-MACS-

TR-0112, Dept of Computer Science, Heriot-Watt University, Dec. 2015.

[23] E. Belikov. Language Run-time Systems: an Overview. In Proc. of Imperial

College Computing Student Workshop, volume 49 of OpenAccess Series in

Informatics (OASIcs), pages 3–12. Leibniz-Zentrum fuer Informatik, 2015.

[24] E. Belikov, P. Deligiannis, P. Totoo, M. Aljabri, and H.-W. Loidl. A survey

of high-level parallel programming models. Technical Report HW-MACS-TR-

0103, Dept of Computer Science, Heriot-Watt University, Dec. 2013.

[25] E. Belikov, H.-W. Loidl, and G. Michaelson. Towards a characterisation of

parallel functional applications. In Gemeinsamer Tagungsband der Workshops

der Tagung Software Engineering, Dresden, Germany, pages 146–153, 2015.

[26] E. Belikov, H.-W. Loidl, and G. Michaelson. Colocation of potential par-

allelism in a distributed adaptive run-time system for parallel Haskell. In

Proceedings of the International Symposium on Trends in Functional Program-

ming, Gothenburg, Sweden, pages 1–19. Springer, 2018.

162

BIBLIOGRAPHY

[27] J. Berthold, A. Al Zain, and H.-W. Loidl. Scheduling Light-Weight Paral-

lelism in ArTCoP. In P. Hudak and D. Warren, editors, Practical Aspects of

Declarative Languages, volume 4902 of Lecture Notes in Computer Science,

pages 214–229. Springer Berlin / Heidelberg, 2008.

[28] J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Distributed mem-

ory programming on many-cores a case study using Eden Divide-&-Conquer

skeletons. In 22nd Intl Conf. on Architecture of Computing Systems (ARCS),

pages 1–9. VDE, 2009.

[29] J. Berthold, M. Dieterle, and R. Loogen. Implementing parallel Google map-

reduce in Eden. In European Conference on Parallel Processing, pages 990–

1002. Springer, 2009.

[30] J. Berthold, H.-W. Loidl, and K. Hammond. PAEAN: Portable runtime sup-

port for physically-shared-nothing architectures in parallel Haskell dialects.

Journal of Functional Programming, 2016.

[31] D. Bevan. An efficient reference counting solution to the distributed garbage

collection problem. Parallel Computing, 9(2):179–192, 1989.

[32] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A quantitative

comparison of two multithreaded benchmark suites on chip-multiprocessors.

In Proc. of the IEEE Intl Symposium on Workload Characterization, pages

47–56, 2008.

[33] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware design in

Haskell. In ACM SIGPLAN Notices, volume 34, pages 174–184. ACM, 1998.

[34] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, et al. The

DaCapo benchmarks: Java benchmarking development and analysis. In ACM

Sigplan Notices, volume 41, pages 169–190. ACM, 2006.

[35] J. Blazewicz, K. H. Ecker, G. Schmidt, and J. Weglarz. Scheduling in computer

and manufacturing systems. Springer Science & Business Media, 2012.

163

BIBLIOGRAPHY

[36] G. E. Blelloch. Nesl: A nested data-parallel language (version 3.1). Tech-

nical report, Carnegie-Mellon University Pittsburgh PA School of Computer

Science, 1995.

[37] A. Bloss, P. Hudak, and J. Young. Code optimizations for lazy evaluation.

Lisp and Symbolic Computation, 1(2):147–164, 1988.

[38] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.

Cilk: An efficient multithreaded runtime system. In Proceedings of the Sympo-

sium on Principles and Practice of Parallel Programming (PPoPP’95), pages

207–216, 1995.

[39] A. Boeijink, P. K. F. Hölzenspies, and J. Kuper. Introducing the PilGRIM:

A processor for executing lazy functional languages. In 22nd International

Symposium on the Implementation and Application of Functional Languages,

Alphen aan den Rijn, The Netherlands, September 1-3, 2010, Revised Selected

Papers, pages 54–71. Springer, 2010.

[40] S. Borkar. Thousand core chips: a technology perspective. In Proceedings of

the 44th annual Design Automation Conference, pages 746–749. ACM, 2007.

[41] S. Breitinger, U. Klusik, R. Loogen, Y. Ortega-Mallén, and R. Pena. DREAM:

the distributed Eden abstract machine. In Symposium on Implementation and

Application of Functional Languages, pages 250–269. Springer, 1997.

[42] P. Brinch Hansen. The nucleus of a multiprogramming system. Communica-

tions of the ACM, 13(4):238–241, 1970.

[43] A. Brodtkorb, C. Dyken, T. Hagen, J. Hjelmervik, and O. Storaasli. State-of-

the-art in heterogeneous computing. Scientific Programming, 18(1):1–33, May

2010.

[44] J. M. Bull. A hierarchical classification of overheads in parallel programs.

In Software Engineering for Parallel and Distributed Systems, pages 208–219.

Springer, 1996.

164

BIBLIOGRAPHY

[45] W. H. Burge. Recursive programming techniques. 1975.

[46] G. L. Burn. Implementing lazy functional languages on parallel architectures.

Parallel Computers— Object-Oriented, Functional, Logic, Series in Parallel

Computing, pages 101–140, 1990.

[47] G. L. Burn, S. Peyton Jones, and J. D. Robson. The Spineless G-machine. In

Proceedings of the 1988 ACM conference on LISP and functional programming,

pages 244–258. ACM, 1988.

[48] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An experimental

applicative language. In Proceedings of the 1980 ACM conference on LISP

and functional programming, pages 136–143. ACM, 1980.

[49] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual

tree of processors. In Proceedings of the 1981 Conference on Functional Pro-

gramming Languages and Computer Architecture, pages 187–194. ACM, 1981.

[50] J. M. Calderon Trilla. Improving Implicit Parallelism. PhD thesis, University

of York, 2015.

[51] D. Cann and J. Feo. SISAL versus FORTRAN: A comparison using the Liv-

ermore Loops. In Proceedings of the 1990 ACM/IEEE conference on Super-

computing, pages 626–636. IEEE Computer Society Press, 1990.

[52] L. Cardelli. The functional abstract machine. AT&T Bell Laboratories. Com-

puting Science, 1984.

[53] G. D. Carlow. Architecture of the space shuttle primary avionics software

system. Communications of the ACM, 27(9):926–936, 1984.

[54] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Von Praun, and V. Sarkar. X10: an object-oriented approach to non-

uniform cluster computing. In Acm Sigplan Notices, volume 40, pages 519–538.

ACM, 2005.

165

BIBLIOGRAPHY

[55] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In Proc. of the

17th ACM Symposium on Parallelism in Algorithms and Architectures, pages

21–28, 2005.

[56] G. M.-B. Chaslot, M. H. Winands, and H. J. van Den Herik. Parallel Monte-

Carlo tree search. In International Conference on Computers and Games,

pages 60–71. Springer, 2008.

[57] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broadband Engine

architecture and its first implementation – a performance view. IBM Journal

of Research and Development, 51(5):559–572, 2007.

[58] D. Y. Cheng. A survey of parallel programming languages and tools. NASA

Ames Research Center, 1993.

[59] G. Chrysos. Intel Xeon Phi coprocessor - the architecture. Intel Whitepaper,

176, 2014.

[60] F. Chung, R. Graham, R. Bhagwan, S. Savage, and G. M. Voelker. Maxi-

mizing data locality in distributed systems. Journal of Computer and System

Sciences, 72(8):1309–1316, 2006.

[61] A. Church. A set of postulates for the foundation of logic. Annals of Mathe-

matics, pages 346–366, 1932.

[62] A. Church. The calculi of lambda-conversion, volume 6 of Annals of Mathe-

matics Studies, 1941.

[63] A. Church and J. B. Rosser. Some properties of conversion. Transactions of

the American Mathematical Society, 39(3):472–482, 1936.

[64] C. Clack and S. Peyton Jones. Strictness analysis – a practical approach. In

Conference on Functional Programming Languages and Computer Architec-

ture, pages 35–49. Springer, 1985.

166

BIBLIOGRAPHY

[65] C. Clack and S. Peyton Jones. The four-stroke reduction engine. In Proceedings

of the 1986 ACM conference on LISP and functional programming, pages 220–

232, 1986.

[66] M. Cole. Algorithmic Skeletons: Structural Management of Parallel Compu-

tation. Research Monographs in Parallel and Distributed Computing. MIT

Press, 1989.

[67] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen.

Solving large, irregular graph problems using adaptive work-stealing. In Par-

allel Processing, 2008. ICPP’08. 37th International Conference on, pages 536–

545. IEEE, 2008.

[68] P. Costa, H. Ballani, and D. Narayanan. Rethinking the network stack for

rack-scale computers. In HotCloud, 2014.

[69] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine.

Science of computer programming, 8(2):173–202, 1987.

[70] M. Cripps, J. Darlington, A. Field, P. Harrison, and M. Reeve. The design and

implementation of ALICE: A parallel graph reduction machine. In Proceedings

of the Workshop on Graph Reduction, 1987.

[71] H. B. Curry, R. Feys, W. Craig, J. R. Hindley, and J. P. Seldin. Combinatory

logic, volume 1. North-Holland Amsterdam, 1958.

[72] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[73] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-

gis, D. Swinehart, and D. Terry. Epidemic algorithms for replicated database

maintenance. In Proceedings of the sixth annual ACM Symposium on Princi-

ples of distributed computing, pages 1–12. ACM, 1987.

167

BIBLIOGRAPHY

[74] J. Diaz, C. Munoz-Caro, and A. Nino. A survey of parallel programming

models and tools in the multi and many-core era. IEEE Transactions on

parallel and distributed systems, 23(8):1369–1386, 2012.

[75] S. Diehl, P. Hartel, and P. Sestoft. Abstract machines for programming lan-

guage implementation. Future Generation Computer Systems, 16(7):739–751,

2000.

[76] J. J. Dongarra, H. W. Meuer, E. Strohmaier, et al. Top500 supercom-

puter sites. Supercomputer, 13:89–111, 1997. www.top500.org (last accessed:

28.06.2018).

[77] A. R. Du Bois, H.-W. Loidl, and P. Trinder. Thread migration in a parallel

graph reducer. In Implementation of Functional Languages, pages 199–214.

Springer, 2002.

[78] R. Duncan. A survey of parallel computer architectures. Computer, 23(2):5–

16, 1990.

[79] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-

initiated and sender-initiated adaptive load sharing. Performance evaluation,

6(1):53–68, 1986.

[80] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger.

Dark silicon and the end of multicore scaling. In ACM SIGARCH Computer

Architecture News, volume 39, pages 365–376. ACM, 2011.

[81] J. Fairbairn and S. Wray. TIM: A simple, lazy abstract machine to execute

supercombinators. In Conference on Functional Programming Languages and

Computer Architecture, pages 34–45. Springer, 1987.

[82] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the SISAL language

project. Journal of Parallel and Distributed Computing, 10(4):349–366, 1990.

168

BIBLIOGRAPHY

[83] H. Ferreiro, V. Janjic, L. M. Castro, and K. Hammond. Repeating history:

execution replay for parallel Haskell programs. In International Symposium

on Trends in Functional Programming, pages 231–246. Springer, 2012.

[84] A. Field and P. Harrison. Functional programming. Addison-Wesley, 1988.

[85] M. Fluet, M. Rainey, and J. Reppy. A scheduling framework for general-

purpose parallel languages. In ACM SIGPLAN Notices, volume 43, pages

241–252, 2008.

[86] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore: A hetero-

geneous parallel language. In Proceedings of the 2007 workshop on Declarative

aspects of multicore programming, pages 37–44. ACM, 2007.

[87] M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,

54(12):1901–1909, 1966.

[88] M. J. Flynn. Some Computer Organizations and Their Effectiveness. Com-

puters, IEEE Transactions on, C-21(9):948–960, sept. 1972.

[89] M. J. Flynn and K. W. Rudd. Parallel architectures. ACM Comput. Surv.,

28(1):67–70, Mar. 1996.

[90] I. Foster. Designing and building parallel programs, volume 78. Addison Wesley

Publishing Company Boston, 1995.

[91] I. Foster and C. Kesselman. The Grid 2: Blueprint for a new computing

infrastructure. Elsevier, 2003.

[92] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the

grid. Grid computing: making the global infrastructure a reality, pages 217–

249, 2003.

[93] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations. International journal of high performance com-

puting applications, 15(3):200–222, 2001.

169

BIBLIOGRAPHY

[94] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud Computing and Grid Computing

360-degree compared. In Grid Computing Environments Workshop, 2008.

GCE’08, pages 1–10. Ieee, 2008.

[95] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. Distributed Filaments:

Efficient fine-grain parallelism on a cluster of workstations. In Proceedings of

the 1st USENIX conference on Operating Systems Design and Implementation,

page 15. USENIX Association, 1994.

[96] D. P. Friedman and D. S. Wise. CONS should not evaluate its arguments.

Computer Science Department, Indiana University, 1976.

[97] D. P. Friedman and D. S. Wise. The impact of applicative programming on

multiprocessing. Indiana University, Computer Science Department, 1976.

[98] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine: A User’s Guide and Tutorial for networked

Parallel Computing. MIT Press, 1994.

[99] D. Gelernter and N. Carriero. Coordination languages and their significance.

Communications of the ACM, 35(2):96, 1992.

[100] B. Goldberg. Multiprocessor execution of functional programs. International

Journal of Parallel Programming, 17(5):425–473, 1988.

[101] B. Goldberg and P. Hudak. Alfalfa: distributed graph reduction on a hyper-

cube multiprocessor. In Graph Reduction, pages 94–113. Springer, 1987.

[102] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads: Implementing

a fast parallel call. Journal of Parallel and Distributed Computing, 37(1):5–20,

1996.

[103] H. Gonzalez-Velez and M. Leyton. A survey of algorithmic skeleton frame-

works: high-level structured parallel programming enablers. Software: Prac-

tice and Experience, 40(12), 2010.

170

BIBLIOGRAPHY

[104] C. Gregg and K. Hazelwood. Where is the data? Why you cannot debate

CPU vs. GPU performance without the answer. In Performance Analysis

of Systems and Software (ISPASS), 2011 IEEE International Symposium on,

pages 134–144. IEEE, 2011.

[105] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel program-

ming with the message-passing interface, volume 1. MIT press, 1999.

[106] L. Gwennap. Adapteva: More flops, less watts. Microprocessor Report,

6(13):11–02, 2011.

[107] R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.

ACM Transactions on Programming Languages and Systems, 7(4):501–538,

1985.

[108] K. Hammond. Parallel functional programming: An introduction. In Proc.

PASCO, volume 94, pages 181–193. World Scientific, 1994.

[109] K. Hammond. Why parallel functional programming matters: Panel state-

ment. In Reliable Software Technologies Ada-Europe, pages 201–205. Springer,

2011.

[110] K. Hammond, H.-W. Loidl, and P. Trinder. Parallel Cost Centre Profiling. In

Proceedings of the Glasgow Workshop on Functional Programming, Ullapool,

Scotland, Sept. 1997.

[111] K. Hammond and G. Michaelson. Research directions in parallel functional

programming. Springer Science & Business Media, 2012.

[112] T. Harris. Hardware trends: Challenges and opportunities in distributed com-

puting. ACM SIGACT News, 46(2):89–95, 2015.

[113] T. Harris, S. Marlow, and S. P. Jones. Haskell on a Shared-Memory Multi-

processor. In Proceedings of the 2005 ACM SIGPLAN workshop on Haskell,

Haskell ’05, pages 49–61, New York, NY, USA, 2005. ACM.

171

BIBLIOGRAPHY

[114] T. Harris and S. Singh. Feedback directed implicit parallelism. In ACM

SIGPLAN Notices, volume 42, pages 251–264. ACM, 2007.

[115] P. Henderson. Functional programming: application and implementation.

Prentice-Hall, 1980.

[116] P. Henderson and J. H. Morris Jr. A lazy evaluator. In Proceedings of the

3rd ACM SIGACT-SIGPLAN symposium on Principles on programming lan-

guages, pages 95–103. ACM, 1976.

[117] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[118] J. L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Com-

puter Architecture News, 34(4):1–17, 2006.

[119] C. Hewitt, P. Bishop, and R. Steiger. Session 8 Formalisms for Artificial

Intelligence – a universal modular actor formalism for artificial intelligence.

In Advance Papers of the Conference, volume 3, page 235. Stanford Research

Institute, 1973.

[120] R. Hindley. The principle type-scheme of an object in combinatory logic.

Transactions of the american mathematical society, 146:29–60, 1969.

[121] Z. Hu, J. Hughes, and M. Wang. How functional programming mattered.

National Science Review, 2(3):349–370, 2015.

[122] P. Hudak. Conception, evolution, and application of functional programming

languages. ACM Computing Surveys (CSUR), 21(3):359–411, 1989.

[123] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A History of Haskell:

Being Lazy With Class. In Proceedings of the third ACM SIGPLAN conference

on History of programming languages, HOPL III, pages 12–1–12–55. ACM,

2007.

[124] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.

Guzmán, K. Hammond, J. Hughes, T. Johnsson, et al. Report on the pro-

172

BIBLIOGRAPHY

gramming language Haskell: a non-strict, purely functional language version

1.2. ACM SIGPLAN Notices, 27(5):1–164, 1992.

[125] P. Hudak and L. Smith. Para-functional programming: a paradigm for pro-

gramming multiprocessor systems. In Proceedings of the 13th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages 243–

254. ACM, 1986.

[126] J. Hughes. Why functional programming matters. The Computer Journal,

32(2):98–107, 1989.

[127] R. J. M. Hughes. Super-combinators a new implementation method for ap-

plicative languages. In Proceedings of the 1982 ACM symposium on LISP and

functional programming, pages 1–10. ACM, 1982.

[128] R. J. M. Hughes. The design and implementation of programming languages.

PhD thesis, University of Oxford, 1983.

[129] G. Hutton. A tutorial on the universality and expressiveness of fold. Journal

of Functional Programming, 9(4):355–372, 1999.

[130] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley &

Sons, Inc., 1991.

[131] V. Janjic and K. Hammond. Granularity-aware work-stealing for

computationally-uniform grids. In Cluster, Cloud and Grid Computing (CC-

Grid), 2010 10th IEEE/ACM International Conference on, pages 123–134.

IEEE, 2010.

[132] B. Jeff. Big.LITTLE system architecture from ARM: saving power through

heterogeneous multiprocessing and task context migration. In Proceedings

of the 49th Annual Design Automation Conference, pages 1143–1146. ACM,

2012.

[133] J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor high performance pro-

gramming. Newnes, 2013.

173

BIBLIOGRAPHY

[134] T. Johnsson. Lambda lifting: Transforming programs to recursive equations.

In Conference on Functional programming languages and computer architec-

ture, pages 190–203. Springer, 1985.

[135] R. Jones, A. Hosking, and E. Moss. The garbage collection handbook: the art

of automatic memory management. Chapman & Hall/CRC, 2012.

[136] P. H. Kelly. Functional programming for loosely-coupled multiprocessors. MIT

Press, 1989.

[137] H. Kingdon, D. R. Lester, and G. L. Burn. The HDG-machine: a highly

distributed graph-reducer for a transputer network. The Computer Journal,

34(4):290–300, 1991.

[138] S. C. Kleene et al. λ-definability and recursiveness. Duke Mathematical Jour-

nal, 2(2):340–353, 1936.

[139] W. Kluge. Abstract Computing Machines: A Lambda Calculus Perspective.

Springer Science & Business Media, 2006.

[140] D. A. Kranz, R. H. Halstead Jr, and E. Mohr. Mul-T: A high-performance

parallel Lisp. In ACM SIGPLAN Notices, volume 24, pages 81–90, 1989.

[141] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-order and

symbolic computation, 20(3):199–207, 2007.

[142] H.-T. Kung. Why systolic architectures? IEEE computer, 15(1):37–46, 1982.

[143] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and challenges.

Foundations and Trends in Electronic Design Automation, 2(2):135–253, 2008.

[144] C. Lameter. An overview of non-uniform memory access. Communications of

the ACM, 56(9):59–54, 2013.

[145] P. J. Landin. The mechanical evaluation of expressions. The Computer Jour-

nal, 6(4):308–320, 1964.

174

BIBLIOGRAPHY

[146] P. J. Landin. The next 700 programming languages. Communications of the

ACM, 9(3):157–166, 1966.

[147] P. J. Landin. A generalization of jumps and labels. Higher-Order and Symbolic

Computation, 11(2):125–143, 1998.

[148] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In International Symposium on Code Generation

and Optimization, pages 75–86. IEEE, 2004.

[149] E. Lee. The problem with threads. IEEE Computer, 39(5):33–42, May 2006.

[150] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, et al. Debunking the 100x

GPU vs. CPU myth: an evaluation of throughput computing on CPU and

GPU. ACM SIGARCH Computer Architecture News, 38(3):451–460, 2010.

[151] B. Lepers, V. Quéma, and A. Fedorova. Thread and memory placement on

{NUMA} systems: Asymmetry matters. In 2015 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 15), pages 277–289, 2015.

[152] X. Leroy. The ZINC experiment: an economical implementation of the ML

language. PhD thesis, INRIA, 1990.

[153] X. Leroy. The Caml Light system release 0.74. URL: http://caml.inria.fr,

1997.

[154] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The objective

caml system release 3.11. Documentation and users manual. INRIA, 2008.

[155] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java virtual machine

specification. Pearson Education, 2014.

[156] B. Liskov and L. Shrira. Promises: linguistic support for efficient asynchronous

procedure calls in distributed systems, volume 23. ACM, 1988.

175

BIBLIOGRAPHY

[157] H.-W. Loidl. Granularity in Large-Scale Parallel Functional Programming.

PhD thesis, Department of Computing Science, University of Glasgow, Mar.

1998.

[158] H.-W. Loidl. The virtual shared memory performance of a parallel graph

reducer. In 2nd IEEE/ACM International Symposium on Cluster Computing

and the Grid, pages 311–311, 2002.

[159] H.-W. Loidl and K. Hammond. On the granularity of divide-and-conquer

parallelism. In Functional Programming, page 8, 1995.

[160] H.-W. Loidl and K. Hammond. Making a packet: cost-effective communication

for a parallel graph reducer. In Symposium on Implementation and Application

of Functional Languages, pages 184–199. Springer, 1996.

[161] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik,

R. Loogen, G. J. Michaelson, R. Peña, S. Priebe, et al. Comparing paral-

lel functional languages: Programming and performance. Higher-Order and

Symbolic Computation, 16(3):203–251, 2003.

[162] H.-W. Loidl, P. Trinder, and C. Butz. Tuning task granularity and data local-

ity of data parallel GpH programs. Parallel Processing Letters, 11(04):471–486,

2001.

[163] H.-W. Loidl and P. W. Trinder. Engineering Large Parallel Functional Pro-

grams. In Implementation of Functional Languages, 1997, LNCS. Springer-

Verlag, Sept. 1997.

[164] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Pro-

gramming in Eden. Journal of Functional Programming, 15(3):431–475, 2005.

[165] I. L. Markov. Limits on fundamental limits to computation. Nature,

512(7513):147–154, 2014.

[166] S. Marlow. Parallel and Concurrent Programming in Haskell: Techniques for

Multicore and Multithreaded Programming. O’Reilly, 2013.

176

BIBLIOGRAPHY

[167] S. Marlow, P. Maier, H.-W. Loidl, M. Aswad, and P. Trinder. Seq no more:

better strategies for parallel Haskell. In Proc. of the 3rd ACM Symposium on

Haskell, pages 91–102, 2010.

[168] S. Marlow, R. Newton, and S. Peyton Jones. A Monad for Deterministic

Parallelism. In Haskell ’11, Tokyo, Japan, pages 71–82. ACM Press, 2011.

[169] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore

Haskell. In ACM SIGPLAN Notices, volume 44, pages 65–78, 2009.

[170] S. Marlow and S. L. Peyton Jones. The Glasgow Haskell Compiler. The

Architecture of Open Source Applications, 2, 2012.

[171] S. Marlow, A. R. Yakushev, and S. Peyton Jones. Faster laziness using dy-

namic pointer tagging. In ACM SIGPLAN Notices, volume 42, pages 277–288.

ACM, 2007.

[172] S. Marlow (Ed.). Haskell 2010 language report. 2010. http://www.haskell.

org/onlinereport/haskell2010.

[173] D. L. McBurney and M. R. Sleep. Transputer-based experiments with the

ZAPP architecture. In International Conference on Parallel Architectures and

Languages Europe, pages 242–259. Springer, 1987.

[174] D. L. McBurney and M. R. Sleep. Experiments with a virtual tree machine

using transputers. In System Sciences, 1989. Vol. I: Architecture Track, Pro-

ceedings of the Twenty-Second Annual Hawaii International Conference on,

volume 1, pages 355–364. IEEE, 1989.

[175] J. D. McCalpin et al. Memory bandwidth and machine balance in current

high performance computers. IEEE computer society technical committee on

computer architecture (TCCA) newsletter, 1995:19–25, 1995.

[176] J. McCarthy. Recursive functions of symbolic expressions and their computa-

tion by machine, part i. Communications of the ACM, 3(4):184–195, 1960.

177

http://www.haskell.org/onlinereport/haskell2010
http://www.haskell.org/onlinereport/haskell2010

BIBLIOGRAPHY

[177] J. McCarthy. History of LISP. In History of programming languages I, pages

173–185. ACM, 1978.

[178] J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert,

I. Dobes, and P. Hohensee. SISAL: streams and iteration in a single-assignment

language. language reference manual, version 1. 1. Technical report, Lawrence

Livermore National Lab., CA (USA), 1983.

[179] E. Meijer and J. Gough. Technical overview of the common language runtime.

language, 29:7, 2001.

[180] R. Milner. A theory of type polymorphism in programming. Journal of com-

puter and system sciences, 17(3):348–375, 1978.

[181] R. Milner. The definition of standard ML: revised. MIT press, 1997.

[182] M. Mitzenmacher. The power of two choices in randomized load balancing.

IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–1104,

2001.

[183] E. Mohr, D. Kranz, R. Halstead Jr, et al. Lazy task creation: A technique for

increasing the granularity of parallel programs. IEEE Transactions on Parallel

and Distributed Systems, 2(3):264–280, 1991.

[184] G. E. Moore. Cramming more components onto integrated circuits. Electron-

ics, 8:144–117, 1965.

[185] M. Naylor and C. Runciman. The Reduceron reconfigured and re-evaluated.

Journal of Functional Programming, 22(4-5):574–613, 2012.

[186] B. Nichols, D. Buttlar, and J. Farrell. Pthreads programming: A POSIX

standard for better multiprocessing. ” O’Reilly Media, Inc.”, 1996.

[187] R. S. Nikhil, K. K. Pingali, et al. I-structures: Data structures for paral-

lel computing. ACM Transactions on Programming Languages and Systems

(TOPLAS), 11(4):598–632, 1989.

178

BIBLIOGRAPHY

[188] E. Nöcker, J. Smetsers, M. C. van Eekelen, and M. J. Plasmeijer. Concurrent

Clean. In International Conference on Parallel Architectures and Languages

Europe, pages 202–219. Springer, 1991.

[189] J. Ousterhout. Why threads are a bad idea (for most purposes). In Presen-

tation given at the 1996 Usenix Annual Technical Conference, volume 5. San

Diego, CA, USA, 1996.

[190] J. Owens, D. Luebke, N. Govindaraju, et al. A survey of general-purpose

computation on graphics hardware. Computer Graphics Forum, 26(1):80–113,

2007.

[191] P. Pacheco. An introduction to parallel programming. Elsevier, 2011.

[192] W. Partain. The nofib benchmark suite of Haskell programs. In Functional

Programming, Glasgow 1992, pages 195–202. Springer, 1993.

[193] S. Peyton Jones. The implementation of functional programming languages

(prentice-hall international series in computer science). Prentice-Hall, Inc.,

1987.

[194] S. Peyton Jones. Parallel implementations of functional programming lan-

guages. The Computer Journal, 32(2):175–186, 1989.

[195] S. Peyton Jones. Implementing lazy functional languages on stock hard-

ware: the Spineless Tagless G-machine. Journal of Functional Programming,

2(02):127–202, 1992.

[196] S. Peyton Jones. Haskell 98 language and libraries: the revised report. Cam-

bridge University Press, 2003.

[197] S. Peyton Jones. Tackling the Awkward Squad: monadic input/output, con-

currency, exceptions, and foreign-language calls in Haskell. 2008.

[198] S. Peyton Jones, C. Clack, and J. Salkild. High-performance parallel graph

reduction. In PARLE’89 Parallel Architectures and Languages Europe, pages

193–206. Springer, 1989.

179

BIBLIOGRAPHY

[199] S. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP – a high-

performance architecture for parallel graph reduction. In Functional Program-

ming Languages and Computer Architecture, pages 98–112. Springer, 1987.

[200] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In POPL,

volume 96, pages 295–308, 1996.

[201] S. Peyton Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The

Glasgow Haskell Compiler: a technical overview. In Proc. UK Joint Framework

for Information Technology (JFIT) Technical Conference, volume 93, 1993.

[202] S. Peyton Jones, N. Ramsey, and F. Reig. C--: A portable assembly language

that supports garbage collection. In Principles and Practice of Declarative

Programming, pages 1–28. Springer, 1999.

[203] D. Plainfossé and M. Shapiro. A survey of distributed garbage collection

techniques. In Memory Management, pages 211–249. Springer, 1995.

[204] G. D. Plotkin. A structural approach to operational semantics. 1981.

[205] M. Quinn. Parallel Programming using C with MPI and OpenMP. McGraw-

Hill, 2003.

[206] F. Rabhi and S. Gorlatch. Patterns and skeletons for parallel and distributed

computing. Springer, 2003.

[207] C. Ramey. Tile-GX100 manycore processor: Acceleration interfaces and ar-

chitecture. In Hot Chips 23rd Symposium, pages 1–21. IEEE, 2011.

[208] D. A. Reed and J. Dongarra. Exascale computing and big data. Communica-

tions of the ACM, 58(7):56–68, 2015.

[209] D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: harnessing the

power of parallelism in a pile-of-PCs. In Aerospace Conference, 1997. Proceed-

ings., IEEE, volume 2, pages 79–91. IEEE, 1997.

[210] J. Ross and A. E. Phelps. Computing convolutions using a neural network

processor, July 4 2017. US Patent 9,697,463.

180

BIBLIOGRAPHY

[211] D. Rushall. Task exposure in the parallel implementation of functional pro-

gramming Languages. PhD thesis, University of Manchester, 1995.

[212] M. Scheevel. NORMA: a graph reduction processor. In Proceedings of the

1986 ACM conference on LISP and functional programming, pages 212–219.

ACM, 1986.

[213] S.-B. Scholz. Single-assignment C – functional programming using imperative

style. In J. Glauert, editor, 6th International Workshop on Implementation

of Functional Languages (IFL’94), pages 211–2113. University of East Anglia,

Norwich, England, UK, 1994.

[214] S.-B. Scholz. Single Assignment C: efficient support for high-level array opera-

tions in a functional setting. Journal of Functional Programming, 13(6):1005–

1059, 2003.

[215] W. Schreiner. Parallel functional programming – an annotated bibliography.

1993.

[216] D. S. Scott and C. Strachey. Toward a mathematical semantics for computer

languages, volume 1. Oxford University Computing Laboratory, Programming

Research Group, 1971.

[217] H. Seidl and R. Wilhelm. Probabilistic load balancing for parallel graph re-

duction. In TENCON’89. Fourth IEEE Region 10 International Conference,

pages 879–884. IEEE, 1989.

[218] P. Sestoft. Analysis and Efficient Implementation of Functional Languages.

PhD thesis, DIKU, University of Copenhagen, 1991.

[219] E. Shapiro. The fifth generation project – a trip report. Communications of

the ACM, 26(9):637–641, 1983.

[220] E. Shapiro. The family of concurrent logic programming languages. ACM

Computing Surveys (CSUR), 21(3):413–510, 1989.

181

BIBLIOGRAPHY

[221] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating system concepts es-

sentials. John Wiley & Sons, Inc., 2014.

[222] D. Skillicorn. A taxonomy for computer architectures. Computer, 21(11):46–

57, nov. 1988.

[223] D. B. Skillicorn and D. Talia. Models and Languages for Parallel Computation.

ACM Computing Surveys, 30(2):123–169, June 1998.

[224] M. Sloman. Policy driven management for distributed systems. Journal of

network and Systems Management, 2(4):333–360, 1994.

[225] D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on memory consistency

and cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–

212, 2011.

[226] M. Steuwer, T. Remmelg, and C. Dubach. Lift: a functional data-parallel IR

for high-performance GPU code generation. In 2017 IEEE/ACM Intl Sym-

posium on Code Generation and Optimization (CGO), pages 74–85. IEEE,

2017.

[227] J. E. Stoy. Denotational semantics: the Scott-Strachey approach to program-

ming language theory. MIT press, 1977.

[228] H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists. Journal

of Parallel and Distributed Computing, 68(7):1008–1020, 2008.

[229] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobbs journal, 30(3):202–210, 2005.

[230] D. Terei and M. Chakravarty. An LLVM backend for GHC. In ACM SIGPLAN

Notices, volume 45, pages 109–120, 2010.

[231] P. Totoo. Parallel evaluation strategies for lazy data structures in Haskell.

PhD thesis, Heriot-Watt University, 2016.

182

BIBLIOGRAPHY

[232] P. Totoo, P. Deligiannis, and H.-W. Loidl. Haskell vs. F# vs. Scala: a high-

level language features and parallelism support comparison. In Proceedings of

the 1st ACM SIGPLAN workshop on Functional High-Performance Comput-

ing, pages 49–60. ACM, 2012.

[233] K. R. Traub. Implementation of non-strict functional programming languages.

MIT Press, 1991.

[234] P. C. Treleaven. Parallel Computers: Object-Oriented, Functional, Logic. 1990.

[235] P. Trinder, E. Barry Jr, M. Davis, K. Hammond, S. Junaidu, U. Klusik, H.-

W. Loidl, and S. Peyton Jones. GpH: An architecture-independent functional

language. IEEE Transactions on Software Engineering, 1998.

[236] P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algorithm +

Strategy = Parallelism. Journal of Functional Programming, 8(1):23–60, Jan-

uary 1998.

[237] P. Trinder, K. Hammond, J. Mattson Jr, A. Partridge, and S. Peyton Jones.

GUM: a portable parallel implementation of Haskell. In Proc. of PLDI, pages

79–88, 1996.

[238] P. Trinder, H.-W. Loidl, E. Barry Jr, K. Hammond, U. Klusik, S. Peyton

Jones, and A. Rebon Portillo. The multi-architecture performance of the

parallel functional language GpH. In Proc. of Euro-Par, volume 1900 of LNCS,

pages 739–743, 2000.

[239] P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and distributed

Haskells. Journal of Functional Programming, 12(4-5):469–510, 2002.

[240] E. R. Tufte and P. Graves-Morris. The visual display of quantitative informa-

tion, volume 2. Graphics Press Cheshire, CT, 1983.

[241] A. M. Turing. Computability and λ-definability. The Journal of Symbolic

Logic, 2(4):153–163, 1937.

183

BIBLIOGRAPHY

[242] A. M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, 2(1):230–265,

1937.

[243] D. A. Turner. A new implementation technique for applicative languages.

Software: Practice and Experience, 9(1):31–49, 1979.

[244] D. A. Turner. The semantic elegance of applicative languages. In Proceedings

of the 1981 conference on Functional Programming Languages and Computer

Architecture, pages 85–92. ACM, 1981.

[245] D. A. Turner. Miranda: A non-strict functional language with polymorphic

types. In Conference on Functional Programming Languages and Computer

Architecture, pages 1–16. Springer, 1985.

[246] D. A. Turner. Some history of functional programming languages. In In-

ternational Symposium on Trends in Functional Programming, pages 1–20.

Springer, 2012.

[247] S. Ulam. John von Neumann 1903-1957. Bulletin of the American mathemat-

ical society, 64(3):1–49, 1958.

[248] P. Van Roy et al. Programming paradigms for dummies: What every pro-

grammer should know. New computational paradigms for computer music,

104, 2009.

[249] P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer.

Mobile objects in distributed Oz. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 19(5):804–851, 1997.

[250] S. R. Vegdahl. A survey of proposed architectures for the execution of func-

tional languages. Computers, IEEE Transactions on, 100(12):1050–1071, 1984.

[251] J. Vuillemin. Correct and optimal implementations of recursion in a simple

programming language. Journal of Computer and System Sciences, 9(3):332–

354, 1974.

184

BIBLIOGRAPHY

[252] P. Wadler. The essence of functional programming. In Proceedings of the 19th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 1–14. ACM, 1992.

[253] C. P. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. PhD

thesis, University of Oxford, 1971.

[254] M. D. Wael, S. Marr, B. D. Fraine, T. V. Cutsem, and W. D. Meuter. Par-

titioned global address space languages. ACM Computing Surveys (CSUR),

47(4):62, 2015.

[255] K. B. Wheeler, R. C. Murphy, and D. Thain. Qthreads: An API for program-

ming with millions of lightweight threads. In Proceedings of International

Symposium on Parallel and Distributed Processing, pages 1–8. IEEE, 2008.

[256] D. Williamson, R. Parker, and J. Kendrick. The box plot: a simple visual

method to interpret data. Annals of internal medicine, 110(11):916–921, 1989.

[257] W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor system-on-chip (MP-

SoC) technology. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 27(10):1701–1713, 2008.

[258] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the

obvious. ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

[259] Y. Xie and G. Loh. Dynamic classification of program memory behaviors in

CMPs. In the 2nd Workshop on Chip Multiprocessor Memory Systems and

Interconnects, 2008.

[260] J. Yang and Q. He. Scheduling parallel computations by work stealing: A

survey. International Journal of Parallel Programming, 46(2):173–197, 2018.

[261] A. Yonezawa and M. Tokoro. Object-oriented concurrent programming. 1986.

185

Appendix A

Applications and Measurements

This appendix section presents selected data and information how to obtain the

source code and the data.

A.1 Source Code

Application and RTS source code as well as the data sets are available as part

of the e-thesis. Additionally, the application source code is available on GitHub:

https://github.com/jevbelikov/gum-apps.

A.2 Message Counts

The tables below present message counts from a selected run with execution time

closest to the calculated median. All history-based data is for run with an inval-

idation interval of 1000 ms, unless otherwise specified. For summary Figures and

discussion refer to Chapter 5.

A.2.1 History-Based Stealing

186

https://github.com/jevbelikov/gum-apps

Appendix A. Applications and Measurements

Table A.1: Summary of Sent Messages for parfib

number baseline history-based (-qz100)
of PEs total FISH SCHEDULE total FISH SCHEDULE

64 6719 3573 784 7637 4785 712
80 8254 4754 872 9527 5474 1010
96 11547 6857 1171 10034 6387 910

112 12830 8143 1166 13782 7936 1459
128 13298 7546 1437 13464 7829 1408
144 15062 8577 1620 13916 7802 1527
160 14000 6922 1768 15688 9653 1507
176 17671 11116 1637 16635 9200 1855
192 18459 10649 1950 18968 11212 1935
208 21214 13222 1995 19840 12208 1904
224 21145 12942 2048 22597 13696 2223
240 26910 17935 2240 24949 15840 2271
256 27348 17918 2352 25288 16978 2074

Table A.2: Summary of Sent Messages for coins

number baseline history-based
of PEs total FISH SCHEDULE total FISH SCHEDULE

64 62318 24597 9426 58621 26127 8120
80 53031 23166 7462 82806 37351 11360
96 82785 31024 12935 67446 28373 9745

112 79698 27777 12976 86520 38917 11898
128 76663 25144 12875 110678 47527 15784
144 119468 43605 18960 104909 43312 15396
160 83380 27252 14028 120678 47958 18178
176 89215 29628 14890 140251 62162 19517
192 116625 48366 17057 147054 63618 20855
208 140217 47643 23135 146794 70110 19167
224 165909 67209 24666 210617 89119 30370
240 227641 96444 32789 208301 95986 28071
256 143303 49459 23445 201421 90844 27639

187

Appendix A. Applications and Measurements

Table A.3: Summary of Sent Messages for sumEuler

number baseline history-based
of PEs total FISH SCHEDULE total FISH SCHEDULE

64 120459 116493 989 77460 73490 990
80 143078 139101 991 103207 99228 992
96 193732 189751 992 149519 145537 993

112 242664 238681 993 170186 166204 994
128 305747 301761 994 154180 150190 995
144 371290 367309 994 241620 237634 995
160 431408 427425 994 182503 178511 996
176 376271 372281 995 253946 249956 996
192 496463 492477 995 311124 307132 996
208 578651 574661 995 384696 380705 996
224 691053 687063 995 317506 313511 997
240 809933 805944 995 372308 368305 997
256 750895 746901 996 429166 425163 997

Table A.4: Summary of Sent Messages for parfibmap

number baseline history-based
of PEs total FISH SCHEDULE total FISH SCHEDULE

64 31006 27838 576 15259 10909 815
80 23961 22085 468 17059 12534 1001
96 38945 36397 635 23745 15052 1478

112 46335 43487 709 17789 13272 1128
128 56724 53720 749 16327 10933 1347
144 67495 64198 821 16830 10780 1510
160 80550 76999 886 23446 16491 1623
176 91545 87575 991 15977 9105 1717
192 107458 103106 1086 15457 8500 1737
208 119039 114580 1113 15618 9052 1639
224 130397 125527 1215 18013 9130 2115
240 145219 140062 1285 19966 13301 1662
256 150161 145439 1176 21175 14278 1722

188

Appendix A. Applications and Measurements

Table A.5: Summary of Sent Messages for parSEmap

number baseline history-based
of PEs total FISH SCHEDULE total FISH SCHEDULE

64 13538 12586 235 9063 7236 417
80 18281 17230 260 9795 7617 471
96 21633 20461 292 10210 8306 474

112 26585 25287 322 14160 11478 610
128 30972 29587 345 35639 32252 794
144 37503 35957 386 8877 6151 680
160 45146 43522 403 9049 6217 707
176 53051 51292 437 8334 5424 727
192 60847 58903 484 10578 7733 710
208 68991 66976 502 13842 10858 744
224 80961 78830 529 22343 19327 752
240 86920 84629 571 22370 19391 742
256 97747 95325 603 21669 18691 742

189

Appendix B

Implementation Details

This appendix section provides some details on the implemented extensions ex-

cerpted mostly verbatim from a companion technical report [22], which was created

by the author to share this information prior to submission. Refer to the report for

further details.

B.1 Compile and Run-Time Flags

When compiling a selection of flags can be used. The tables below summarise the

most commonly used flags.

Table B.1: Commonly Used Compile Flags

compile-time flag effect
-O<N> turn on optimisation of level N (0 = off; typically N = 2)
--make automatically find the dependencies and build the executable
-fforce-recomp forces recompilation of used modules
-glasgow-exts enables many language extensions (deprecated: use -XextName)
-cpp enables the use of the C preprocessor for conditional compilation
-rtsopts enables extended (but unsafe) RTS options
-threaded links with the multi-threaded RTS (GHC-SMP)
-eventlog enables event logging for ThreadScope (GHC-SMP)
-parpvm or -parmpi links with the distributed RTS (GUM) and PVM or MPI
-debug enables verbosity flags and extra sanity checks for debugging
-prof -auto-all enables sequential profiling (may require profiling versions of libs)
-i<path> specifies a non-standard path to a library
-v verbose compiler output (e.g. to check locations searched for libs)
-with-rtsopts<optstr> sets specified RTS options to different default values

190

Appendix B. Implementation Details

Table B.2: Commonly Used Run-Time Flags

run-time flag
-H<size> suggested heap size (add e.g. M for Mbyte; not a limit)
-A<size> suggested stack size
-K<size> maximum stack size (limit)
-M<size> maximum heap size
-p generates a time profile
-hT or -hC creates a heap profile (.hp, convert with hp2ps and ps2pdf)
-G<N> number of generations for GC (typically 2)

GUM-specific flag
-qp<N> specifies number of GUM instances (usually one per core)
-qPg prints summary statistics to par log <PeID>

-qP generates event-based profile (.gr files)
-qPc generates census-based profile (.gs files)
-qz<I> enables history table with update interval I (experimental)
-qy<L> enables spark co-location with lookahead bound L (experimental)
-qW<S> wait S seconds at the start of execution (useful for attaching gdb)
-qD<level> debugging output verbosity level (power of two, see Table B.3)
-qF<N> sets maximum number of simultaneous FISH messages for a node
-qf<N> and -qqf<N> to set FISH delay and FISH delay factor
-qL<N> low watermark (start stealing if the number of local sparks is lower)
-qT<N> maximum number of thunks in a packet

SMP-specific flag
-N<X> use X Capabilities (worker threads)
-l[<flag>] creates .eventlog trace file for ThreadScope
-S[<filename>] detailed GC statistics (to stdout or to a file)
-s[<filename>] GC summary statistics
-t one-line GC summary statistics
-I<N> idle GC delay in seconds (experimental)

Table B.3: GUM’s Debugging Output Options

option effect (print debugging output for a sub-component)

-qD1 or -qDv verbose output related to parallel RTS in general
-qD2 or -qDc mpcomm; low level message handling
-qD4 or -qDp pack; packing code
-qD8 or -qDq packet; verbose packing
-qD16 or -qDP processes; process management
-qD32 or -qDo ports; port management code
-qD64 or -qDw weight; weights and distributed GC
-qD128 or -qDF fetching-related
-qD256 or -qDf fishing-related
-qD512 or -qDl tables; print internal address tables
-qD1024 or -qDd unused (reserved for GdH)
-qD2048 or -qDz paranoia; (creates huge output files)

191

Appendix B. Implementation Details

B.2 Extending Victim Selection

Work stealing is a passive load distribution mechanism that assumes no knowledge

about the system as idle PEs (thieves) initiate the process and select their victims

at random. This has the potential to scale and has been shown to perform well on

tightly-coupled shared-memory multiprocessors for well-formed workloads [38].

However, the execution starts with a single PE generating the initial sparks and

in some cases (e.g. when using parMap) most of the parallelism will be generated

early during the execution by a small set of PEs. Since idle PEs would attempt to

randomly steal work, they will generate many unsuccessful stealing requests (FISH

messages). This situation can potentially be improved by sharing and using informa-

tion about the locations of past stealing successes to choose victims less randomly,

increasing the likelihood of choosing PEs that have useful work to donate.

First, we inspect the implementation of work stealing beginning with the main

scheduler loop that runs on each PE (see Schedule.c). At some point, if no threads

are runnable, a local spark will be picked up and turned into a thread if available.

Failing that, a FISH message will be sent to a PE chosen using the choosePE()

function defined in HLComms.c. This is the main function to be altered to use the

available history about the location of past stealing successes when choosing a PE

to steal from. Below we summarise the necessary changes to extend the baseline

work stealing mechanism within the RTS (see /rts/parallel subdirectory).

• Introduce a new data structure to hold per-PEs stealing success and failure

information within each RTS instance.

• Add a new RTS option that turns on the new mechanism and takes as argu-

ment an interval that determines when the stored information can be consid-

ered out of date so it can be discarded from the history. Add the necessary

initialisation and cleanup code to RtsStartup.c and ParInit.c.

• Update the code processing the incoming work request, i.e. FISH, messages

(in the processFish() function in HLComms.c); if sparks are available, one is

sent to the thief; if no work is available, the message is forwarded to another

192

Appendix B. Implementation Details

PE, unless it has expired, in which case it is returned to the original sender.

Moreover, if an own expired FISH message arrives, a new work request is sent

to some other PE.

• Similarly, modify the code that processes the successful response to the steal-

ing attempts, i.e. a SCHEDULE message with at least one spark that can be

converted into a new thread (see processSchedule()), to update the history

information.

• The packet format is extended to include the additional history information

(see sendSchedule() in HLComms.c and sendOpNV() in LLComms.c), ensuring

that the offsets used for packing and unpacking are properly updated. The

easiest way is to extend the header but conceptually the data rather belongs

into the payload. Note that endianness is important as ultimately a packet in

a buffer is represented by a sequence of bytes.

• Update the choosePE() function to use the available history information for

a less random victim selection (if the RTS option is specified).

• Add code to periodically remove stale information from the history to avoid

poor choices (e.g. when processing new incoming messages).

• Enhance census-based profiling to emit history coverage (how many of the

stored values are not stale for how many PE ids out of total number of PEs).

This can help evaluate the appropriate choice of the invalidation interval for

a given application on a specific target platform.

This is a high-level overview of the changes and the difficulty is often in correctly

implementing a mechanism in detail.

193

Appendix B. Implementation Details

B.3 Extending Spark Selection

Parallelism in GpH is exposed using par that is based on a primitive operation

(PrimOp) par# from the GHC.Conc module1, whereas pseq specifies evaluation order.

To implement spark colocation we add a different version of par to the language

by adding support for suitable primitive operations to the RTS. The new primitive,

parEnc#, takes extra two arguments that carries some information about spark’s

ancestry: it includes a symbol and a base for the encoding. At run-time encoding

of the parent thread is extended with a symbol from the new primitive that allows

tagging of the spark with a encoding made from multiple symbols. This allows

to dynamically pinpoint the location of a spark within the overall computational

structure. The following are the steps necessary to add parEnc to the language.

1. PrimOp definition is added to compiler/prelude/primops.txt.pp includ-

ing the PrimOp signature primop ParInformedOp "ParEnc#" GenPrimOp fol-

lowed by the type, e.g. a → b → Int# → Int# → b, followed by with

and few property specifiers like has side effects = True and out of line

= True.

2. An RTS function is created that will be called by the PrimOp and perform the

actual work (e.g. in Spark.c). It records the ancestry information for a new

spark based on the parent thread’s encoding and the information provided via

parEnc. Let’s call the function sparkParEnc().

3. We update inludes/stg/MiscClosures.h with RTS FUN(stg parInformedzh);

where zh stands for # in the required z-encoding (see GHC Wiki for more in-

formation).

4. A new symbol for ghci can be added to rts/Linker.c by extending the list

of symbols with SymI hasProto(stg parInformedzh) at the end.

5. The function in rts/PrimOps.cmm is implemented using the conventions and

features of the Cmm language. For instance, first eight arguments are passed in

registers named R1-R8 and can be accessed as illustrated in Listing B.1.

1which can be found in libraries/base/GHC/Conc.lhs

194

Appendix B. Implementation Details

1 stg_parEnczh {

2 W_ x;

3 W_ y;

4 W_ symbol;

5 W_ base;

6 MAYBE_GC(R1_PTR , stg_parEnczh);

7 MAYBE_GC(R2_PTR , stg_parEnczh);

8 x = R1;

9 y = R2;

10 symbol = R3;

11 base = R4;

12 // call RTS function to enqueue a spark based on the info

13 foreign "C" sparkParEnc(x "ptr", symbol , base);

14 RET_P(y);

15 }

16

Listing B.1: Cmm Implementation of the New Primitive

After re-compiling both the compiler and the RTS ($ make clean && make in

the compiler and rts sub-directories) along with the benchmark programs, we can

proceed to test and compare the new implementation to the baseline case. Note

that this discussion is based on using GHC 6.12.3 and related Cmm (a variant of

the C-- portable assembly language [202]) which have meanwhile evolved further,

so that particular syntax, conventions, and source file references may be different

from what you will find with the most recent GHC version. We have only used and

discussed the out-of-line PrimOps, which require minimal changes to the compiler,

whilst potentially more efficient inline PrimOps require some changes to the code

generator and are discussed on the GHC Wiki.

195

Appendix B. Implementation Details

B.4 Extending the Profiling Component

We extend the existing profiling component to record a break-down of message

counts as well as to record granularity information. In particular, thread run time

is recorded in milliseconds (instead of cycles as used in GranSim-based profiling).

B.4.1 Enriching Cumulative Statistics with Detailed Mes-

sage Counts

The profiling module is called ParTicky (see rts/parallel/ParTicky.c and .h),

but the necessary changes are spread across multiple files. For instance, -qPg enables

summary statistics, which we wish to enrich by adding information on the number

of sent and received messages for different message types (e.g. FISH (work requests),

ACK, RESUME and FETCH, SCHEDULE).

• Starting from the rts/RtsFlags.c, we find that the variable associated with

the -qPg flag is RtsFlags.ParFlags.ParStats.Global, so we can search for

its occurences to find definition and usage sites in the code and extend it to up-

date the new counters. Note that RtsFlags.ParFlags.ParStats.Suppressed

flag needs to be turned off and is thus included in the conditional test.

• At usage sites we find the test whether the flag is set wrapped into a preproces-

sor constant PAR TICKY for conditional compilation, as shown in Listing B.2.

It allows to re-compile the RTS to exclude this type of profiling from the code

so that the overhead is not incurred if summary statistics are not required.

Additionally, in the multi-threaded RTS a mutex has to be used to protect

counter update. We can add similar code in other places. For instance, if we

want to add some messaging-related code we would declare and initialise new

counters and then use them to count messages by extending relevant parts of

the rts/HLComms.c module. For example, an obvious place for counting sent

FISH messages is inside the sendFish() function.

• Once we have added new counters (e.g. to the globalParStats structure) and

196

Appendix B. Implementation Details

appropriately update them, we can print out the formatted results, similar to

other results printed in rts/parallel/ParTicky.c.

1 #if defined(PAR_TICKY) && defined(PARALLEL_RTS)

2 if (RtsFlags.ParFlags.ParStats.Global &&

3 !RtsFlags.ParFlags.ParStats.Suppressed) {

4 // ... // incrementing relevant counters

5 }

6 #endif

Listing B.2: Conditional Compilation Using C Pre-Processor

Once the set of changes is complete, re-compile the RTS ($ make clean && make

inside the rts sub-directory) and re-link the application with the modified RTS. Test

the implementation by running some test programs with summary profiling turned

on (-qPg) and examine the generated output.

1 // ...

2 111 messages transmitted (105 fish , \\

3 2 fetch , 2 resume , 1 schedule , 1 ack)

4 55 messages received (52 fish (6 own dead), \\

5 1 fetch , 1 resume (1 without GAs), 1 schedule , 0 ack)

6 56 messages sent (53 fish (7 own , 45 fwd , 1 dead), \\

7 1 fetch (0 fwd), 1 resume (1 without GAs), 0 schedule , 1 ack)

8 // ...

Listing B.3: Additional Messaging Statistics (Part of the Profiling Output)

Listing B.3 presents an excerpt from the extended summary statistics found

in the par log * files which also contain further cumulative statistics such as the

number of sparks created and pruned as well as global address table residency for

each PE. We can use a scripting language such as perl to parse the output files and

extract the values we wish to analyse.

197

Appendix B. Implementation Details

B.4.2 Per-Thread Granularity Profiles

As seen above, granularity profiles may provide additional insight into the computa-

tional structure of the application. Here we will look at how per-lightweight-thread

granularity profiling can be added to event-based profiling (-qP). It is instructive to

first browse the existing profiling code to understand how the related data struc-

tures are defined, initialised and used. Additionally, examining the output .gr

files gives an idea of the output format and of necessary post-processing for data

analysis and visualisation. Notably, we find the globalParStats structure, of type

GlobalParStats defined in rts/parallel/ParallelRts.h, which could include ad-

ditional information.

In GUM, each light-weight thread is implemented by a Thread State Object

(TSO) that contains a pointer to the current Capability, a stack and some other

book-keeping information such as the unique thread id and state (e.g. runnable

or blocked). A TSO is allocated on the heap so it can be automatically garbage-

collected once no longer needed after the thread terminates. We opt for avoiding to

change the TSO itself as this would require non-trivial modifications to the compiler,

the code generator as well as to the garbage collector, because TSO layout is crucial

for efficient execution and garbage collection. Instead, we define a separate data

structure to hold the information regarding execution, fetching and blocking times

for each TSO (let’s call it TSOParInfo; we also add functions for allocating and

disposing the structure).

We can use a hash table to map from a thread id to the corresponding info

structure. The hash table implementation is provided in rts/Hash.c and the API

is defined in rts/Hash.h, which needs to be included in the files that use the hash

table. The hash table can be created at RTS startup time if profiling is on and

remains empty until new threads are created and info records are added to the table

for each thread (e.g. in createThread() in Thread.c). When threads run or block

(see Schedule.c, e.g. case ThreadRunGHC), the cumulative timers and counters

inside the info structure are updated accordingly to reflect the events (msTime()

function is used to obtain current time).

198

Appendix B. Implementation Details

1 #if defined(PARALLEL_RTS) && defined(PAR_TICKY)

2 if ((tpi = lookupHashTable(globalParStats.parInfoTable ,

3 cap ->r.rCurrentTSO ->id)) == NULL) {

4 par_info = allocTSOParInfo ();

5 if (par_info != NULL) {

6 insertHashTable(globalParStats.parInfoTable ,

7 cap ->r.rCurrentTSO ->id , par_info);

8 tpi = par_info;

9 }

10 }

11

12 if (tpi != NULL) {

13 tpi ->last_time_stamp = msTime ();

14 }

15 #endif

16

17 // ... run the thread using StgRun ()

18

19 #if defined(PARALLEL_RTS) && defined(PAR_TICKY)

20 tpi = lookupHashTable(globalParStats.parInfoTable , cap ->r.

rCurrentTSO ->id);

21 if (tpi != NULL) { // update RT

22 tpi ->exectime += (msTime () - tpi ->last_time_stamp);

23 }

24 #endif

Listing B.4: Updating Granularity Info for a TSO

Example code in Listing B.4 illustrates how the the granularity counter is up-

dated for a given thread. When a thread terminates (see Schedule.c, e.g. case

ThreadFinished), an event description is written to the event file (we model our

printing function on DumpRawGranEvent()), before the info structure is removed

from the hash table and deallocated explicitly, whilst the TSO is automatically

garbage-collected.

A similar approach applies to extending the census-based profiling (-qPc), which

is performed at particularly disruptive points in the execution such as garbage col-

199

Appendix B. Implementation Details

lection to amortise the overhead and tends to sample the RTS state less frequently

which may result in lower accuracy. On the other hand, the generated .gs files are

usually smaller compared to the files generated using event-based profiling.

Monitoring refers to online profiling where the results are used at run time. This

allows the RTS to react more flexibly to detected events. For instance, RTS can

distinguish parallelism generators from workers based on the running average of the

spark pool size and switch to active load distribution if deemed beneficial for some

periods of time.

200

	Introduction
	Parallelism, Programmer Productivity and Performance Portability
	Semi-Explicit Parallel Functional Programming
	Adaptive Architecture-Transparent Control of Parallelism
	Contributions and Authorship
	Outline

	Background
	Parallel Architectures
	Shared-Memory Architectures
	Distributed-Memory Architectures
	Heterogeneous Architectures
	Implications for Language Design and Implementation

	Parallel Functional Programming
	Concurrency and Parallelism
	Why Parallel, Why Functional
	Fundamental Concepts
	Coordination Aspects
	Strict versus Non-Strict Semantics
	Parallel Languages and Abstractions
	Applications

	Implementing Parallel Functional Languages
	Approaches to Evaluation
	Abstract Machines
	Parallel and Distributed Graph Reduction

	Adaptive Control of Parallelism
	Load Distribution
	Scheduling
	Memory Management
	Communication
	Granularity Control
	Run-Time System Comparison

	Summary

	Graph Reduction on a Unified Machine Model
	Language Overview
	Haskell Extension for Semi-Explicit Parallelism
	Evaluation Strategies
	Graph Reduction
	Unified Machine Model

	RTS Components
	Thread Management
	Communication Management
	Memory Management
	Workload Management

	Policies and Mechanisms
	Scheduling
	Granularity Control
	Data Locality
	Load Balancing

	Adaptivity
	Monitoring and Tuning Classification
	Parameter Selection
	Tuning GUM

	Summary

	Characterisation of Parallel Functional Applications
	Application Characterisation Studies
	Parallel Applications
	Divide and Conquer
	Data Parallelism

	Application Characterisation
	Experimental Design
	Performance and Scalability
	Granularity
	Memory Use and Garbage Collection
	Communication

	Discussion

	History-Based Work Stealing
	Using Monitored Historical Information in Work Distribution Decisions
	Implementing the RTS Extension
	Empirical Evaluation
	Methodology
	Target Platform
	Benchmark Applications
	Results
	Evaluation

	Discussion

	Colocation of Potential Parallelism
	Design
	Implementation
	Spark Selection
	Matching Function
	Packet Format
	Profiling

	Performance Evaluation of Spark Colocation
	Methodology
	Target Platform
	Benchmark Applications
	Results

	Discussion

	Conclusion
	Summary
	Limitations
	Future Work

	Bibliography
	Applications and Measurements
	Source Code
	Message Counts
	History-Based Stealing

	Implementation Details
	Compile and Run-Time Flags
	Extending Victim Selection
	Extending Spark Selection
	Extending the Profiling Component
	Enriching Cumulative Statistics with Detailed Message Counts
	Per-Thread Granularity Profiles

