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Abstract
Supraphysiological ROS levels can lead to apoptosis, lipid peroxidation, and DNA and 
protein damage. This pilot study aimed to investigate the sperm oxidative damage 
in subfertile men, to describe the relationship between the antioxidant system and 
ROS. Sixty-four semen samples were categorised according to the evaluated rou-
tine parameters (WHO, WHO laboratory manual for the examination and processing of 
human semen, 2010). Results were cross-referenced with the DNA damage [Comet 
(n = 53) and TUNEL (n = 49) assays], antioxidant enzyme activity [SOD (n = 51), CAT 
(n = 48) and GST (n = 48)], and content of total thiols (n = 36), lipid hydroperoxides 
(n = 35) and MDA (n = 31). Compared to pathospermic samples, normozoospermic 
presented 40%–45% fewer spermatozoa with fragmented DNA, 19% fewer hydrop-
eroxides, and slightly higher total thiols and MDA levels. Asthenozoospermic/asthe-
noteratozoospermic samples had the lowest GST activity. SOD and CAT showed a 
similar trend. Our results evidenced significant positive correlations between DNA 
damage and immotile spermatozoa; SOD and CAT, GST and total thiols; CAT and GST; 
total thiols and sperm concentration; and MDA levels and head/midpiece abnormali-
ties and hydroperoxides. This work contributes to the existing body of knowledge by 
showing that the oxidative status correlates with the classic sperm analysis param-
eters. Oxidative stress and DNA damage evaluation might be a valuable diagnostic 
and prognostic tool in cases of idiopathic male subfertility.

K E Y W O R D S

antioxidant, DNA damage, infertility, oxidative status, sperm quality

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/388607372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.wileyonlinelibrary.com/journal/and
mailto:﻿
https://orcid.org/0000-0002-9080-877X
https://orcid.org/0000-0003-4128-0494
http://creativecommons.org/licenses/by/4.0/
mailto:fernando.lopes@port.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fand.14027&domain=pdf&date_stamp=2021-03-08


2 of 14  |     LOPES et al.

1  | INTRODUC TION

Male infertility continues to be a clinical challenge with several con-
tributing factors such as anatomy, hormones, genetics, epigenetics, 
biochemistry, immunology, infections, lifestyle or environmental ex-
posure (Hayden et al., 2018; Jungwirth et al., 2012; Moghbelinejad 
et  al.,  2018). Its aetiology and pathogenic mechanisms remain un-
known in about 30% of the cases, which is known as idiopathic in-
fertility (Duca et al., 2019).

Evidence suggests that sperm damage mediated by reactive ox-
ygen species (ROS) has a major effect on male idiopathic fertility 
(Bisht et al., 2017). ROS are free radicals or nonradicals as hydrogen 
peroxide, highly reactive, derived from the metabolism of oxygen 
and present in all aerobic organisms (Prieto-Bermejo et  al.,  2018). 
Depending on the concentration, location and time of exposure, 
ROS can have a beneficial or harmful effect on spermatozoa. At 
normal physiological levels, ROS are essential for motility, capacita-
tion, hyperactivation, acrosome reaction and, therefore, fertilisation 
(Agarwal & Sengupta, 2020; Di Meo et al., 2016). Overproduction 
of free radicals exceeding the antioxidant capacity of both the sper-
matozoa and the seminal plasma, known as oxidative stress (OS), can 
lead to apoptosis, lipid peroxidation, low sperm quality, and protein 
and DNA damage (Aitken, 2017; Subramanian et al., 2018).

The antioxidant system includes enzymatic and nonenzymatic 
antioxidant pathways that may protect cells against the adverse ef-
fects of ROS (Micheli et al., 2016).

The sulfhydryl group (also called thiol group) can be consid-
ered one of the most reactive chemical groups present in biological 
systems, reacting with a wide range of ROS and electrophilic com-
pounds. The maintenance of free protein sulfhydryl groups is essen-
tial for proper folding and protein activity (Champroux et al., 2016). 
Also, excessive protein oxidation can lead to enhanced suscepti-
bility to sperm DNA injury. Thus, the nonoxidised protein content 
is a good indicator of the antioxidant system capacity (Champroux 
et  al.,  2016; Nowicka-bauer & Nixon,  2020). Another appropriate 
tool to evaluate OS is by studying lipid peroxidation on the sperma-
tozoa. Hydroperoxide quantification is commonly used as a measure 
of early damage by ROS in lipids (Gay & Gebicki,  2003; Grintzalis 
et al., 2013; Rahmanto et al., 2010). Another option is to assess the 
levels of stable lipid peroxidation end products, like malondialde-
hyde (MDA), in spermatozoa and seminal plasma (Dutta et al., 2019).

This pilot study aimed to quantify biomolecular alterations and 
antioxidant enzymatic activity in the seminal plasma to investigate 
the relationship between the antioxidant system and ROS, using 
clinical and biochemical parameters of the spermatozoa of subfertile 
men. This study further aimed to elucidate the potential source of 
DNA fragmentation in human spermatozoa.

2  | MATERIAL AND METHODS

This pilot study comprised a final cohort of 64 males attending the 
Fertility Support Centre consultations at the Centro Hospitalar de 

Trás-os-Montes e Alto Douro (CHTMAD), E.P.E., Vila Real, Portugal, 
during a 6-month study period. Participants currently on any medi-
cation, tonics or antioxidant supplementation, and those suffering 
from any acute infection were excluded because of their well-known 
potential impact on ROS levels.

All the 64 anonymous semen samples were obtained by mastur-
bation following 3–5 days of sexual activity abstinence and collected 
into sterile containers. Routine semen analysis (liquefaction time, 
volume, pH, viscosity, sperm count, motility and morphology) was 
carried out after liquefaction, in accordance with WHO guidelines 
(World Health Organization, 2010).

The different ejaculated volume meant that the number of 
techniques performed per sample varied. Therefore, based on the 
available sample volume and the sample volume required for each 
technique, the most comprehensive set of assays were performed 
(Figure 1).

Following routine sperm analysis, DNA damage was analysed by 
terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP 
nick end labelling (TUNEL) assay technique (n  =  53), and alkaline 
comet assay (n = 49). The activity of three antioxidant enzymes was 
also investigated: superoxide dismutase (SOD; n = 51), catalase (CAT; 
n = 48) and glutathione S-transferase (GST, n = 48). Finally, three 
oxidative stress markers were evaluated: total thiols (n  =  36), hy-
droperoxides (n = 35) and malondialdehyde (MDA, n = 31).

This study was approved by the Ethics Committee of CHTMAD 
(Doc. nº 257/2020-P. C.A.). In accordance with the Declaration of 
Helsinki (as revised in Declaration of Helsinki,  2000—WMA—The 
World Medical Association, 2000), all participants were provided with 
information regarding the study and written consent was obtained 
prior to study enrolment.

2.1 | DNA damage

2.1.1 | TUNEL assay

TUNEL assay, as described by Muratori et  al.  (2000), was applied 
in 53 samples with the In situ Cell Death Detection Kit (Roche 
Diagnostics) to quantify DNA free 3′-OH ends.

Three sperm aliquots (200 µl) were washed 3 times (in 1× PBS, 
pH 7.2, centrifuged at 420 g for 10 min), then fixed in paraformalde-
hyde 4% and frozen at −20°C until use. After thawing, two washes 
with 200 µl of 1× PBS supplemented with 1% bovine serum albumin 
(BSA) were carried out, and spermatozoa were permeabilised with 
0.1% Triton X-100 in 0.1% sodium citrate (100 µl, for 2 min on ice). 
Sperm samples were washed twice again and split into 2 aliquots. 
One was incubated in 12.5 µl of the label solution with DNase I re-
combinant and the other was incubated with all reagents except ter-
minal deoxynucleotidyl transferase enzyme (TdT; negative control). 
The labelling reaction was carried out for 1 hr in the dark at 37°C. 
After labelling, two subsequent washes were conducted to eliminate 
nonspecific fluorescence. Finally, spermatozoa were resuspended in 
1× PBS. In some samples, positive controls were also prepared, but 
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with an additional treatment with DNAse I (DNase I free of RNase 
1 U/µl, 1,000 U; Fermentas, EU), 2 international units (IU) for 20 min 
at 37°C, before the labelling reaction. The number of spermatozoa 
undergoing apoptosis was observed in random fields in each slide 
and 200 spermatozoa were counted. The apoptotic index (%) was 
defined as follows: (number of apoptotic spermatozoa/total number 
of spermatozoa) × 100.

2.1.2 | Alkaline comet assay

The alkaline comet assay was performed in 49 samples, according to 
Sipinen et al. (2010). Three aliquots of 6 × 104 spermatozoa per sam-
ple were centrifuged (420 g, for 10 min at room temperature) and the 
pellet resuspended in cold PBS. They were kept on ice until mixed 
1:1 with 2% low melting point agarose (w/v in PBS). Samples were 
deposited in duplicate on two regular glass slides pre-coated with 
1% normal melting point agarose and covered by an 18 × 18 mm slide 
coverslip. Slides were placed for 5 min at 4°C. Then, the coverslips 
were removed, and cell lysis was achieved by washing the slides with 
two successive lysis solutions at 4°C, for 60 min each. The first lysis 
buffer contains 2.5 M NaCl, 100 mM EDTA, 10 mM Trizma base, 1% 
Triton X-100 and 10 mM DTT (pH 10), and the second lysis buffer 
consists of the first buffer with 0.05 mg/ml proteinase K.

Before electrophoresis, the DNA unwinding was promoted by in-
cubating the slides in electrophoresis buffer (300 mM NaOH, 1 mM 

EDTA, pH 13.2), for 30 min at 4°C. The electrophoresis tank (CSL-
COM20, Cleaver Scientific Ltd; 31 × 34 × 9 cm) was always filled 
with 20 slides and 1.2 L of the buffer, the necessary amount to cover 
slides only with a thin layer of the buffer. Then, electrophoresis was 
conducted at 25 V, 0.8 V/cm on a platform for another 30 min, at 
4°C.

Finally, slides were immersed and neutralised in 1× PBS (10 min, 
4°C), followed by a 10-min distilled water immersion, at 4°C. The vi-
sualisation and scoring of the comets were performed using a Nikon 
Eclipse E400 fluorescent microscope (original magnification 200×). 
DAPI staining and visual image analyses of DNA damage were per-
formed according to Collins et  al.  (2008). The DNA damage was 
quantified by visual classification, according to their tail length and 
intensity and length. The nucleoids were classified into 5 increasing 
DNA damage classes, where class 0 represent nucleoids with no tail 
and class 4 the nucleoids with almost all the DNA in the tail. The total 
score was expressed on a scale of 0–400 arbitrary units (AU) per 100 
scored nucleoids. A total of 50 nucleoids on each gel were classified, 
always by the same technician, previously trained by a comet assay 
expert.

2.2 | Assessment of the oxidative stress status

The evaluation of the oxidative stress status was performed based 
on two different approaches, considering the antioxidant defence 

F I G U R E  1  Distribution of the 64 semen samples by performed technique and groups [normozoospermic and oligozoospermic 
samples (N); pathospermic samples (P) composed by teratozoospermic and oligoteratozoospermic samples (T), asthenozoospermic and 
oligoasthenozoospermic samples (A), and asthenoteratozoospermic and oligoasthenoteratozoospermic samples (AT), according to WHO 
(2010)]
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system and oxidative stress markers (oxidant products). Three ali-
quots of liquified semen were centrifuged at 300 g for 10 min, and 
the sperm pellets were washed and resuspended in PBS. The seminal 
plasma (supernatant) was carefully removed and transferred to mi-
crofuge tubes. Aliquots of seminal plasma were frozen at −20°C until 
examination according to the following assays.

2.2.1 | Antioxidant enzymes activity

SOD
SOD was measured according to the method of McCord and 
Fridovich (1968), in 51 samples. This method employs xanthine and 
xanthine oxidase to generate superoxide radicals, which react with 
nitro blue tetrazolium chloride (NBT). The SOD activity is then meas-
ured by the degree of inhibition of this reaction. One unit of SOD 
inhibits the rate of formazan dye formation by 50% under the condi-
tions of the assay at 420 nm, and SOD activity was expressed as U 
min−1 mg protein−1.

CAT
CAT activity was measured with a Clark-type oxygen electrode 
(Hansatech) as described by del Río et al. (1977), in 48 samples. The 
catalase activity was expressed as µmol H2O2 min−1 mg protein−1.

GST
GST activity was measured spectrophotometrically at 340 nm, ac-
cording to the method of Chikezie et al. (2009), in 48 samples. The 
GST activity was expressed as µM of CDNB min−1 mg protein−1, and 
values were calculated using the extinction coefficient of the conju-
gated molecule (9.6 × 103 M−1 cm−1).

2.2.2 | Oxidative stress markers evaluation

In this study, one marker for protein oxidation (total thiols) and two 
markers of lipid peroxidation (lipid hydroperoxides and MDA) were 
analysed.

Total thiols
Seminal plasma samples’ free sulphydryl content was analysed ac-
cording to the method of Suzuki et al. (1990), in 36 samples. In this 
assay, the free sulphydryl (-SH) groups in seminal plasma react with 
5,5′dithiobis-2-nitrobenzoic acid (DTNB) to form a yellow dianion 
of 5-thio-2-nitrobenzoic acid (TNB) that can be measured spectro-
photometrically at 412 nm. The TNB molar absorption coefficient 
is 13.6 × 103 M−1 cm−1 as published by Ellman (1959). Results were 
expressed as mM/mg.

Lipid hydroperoxides
The quantification of lipid hydroperoxides was performed accord-
ing to a modified ferrous oxidation–xylenol orange (FOX) method, 

described by Devasagayam et al. (2003), in 35 samples. Values ob-
tained by this method were expressed in H2O2 equivalents/mg pro-
tein, and results were normalised considering Eq. H2O2 10−7cells.

MDA
The lipid peroxide levels in the seminal plasma were measured using a 
thiobarbituric acid reactive substances (TBARS) assay, which essen-
tially monitors MDA production, based on the method of Ottolenghi 
(1959), in 31 samples. The amount of MDA was calculated using its 
extinction coefficient (1.56 × 105 M−1 cm−1). The MDA content was 
measured at 530  nm and expressed as µM/MDA mg, and results 
were normalised considering µmol MDA 10–9 cells.

2.3 | Statistical analysis

All experiments were replicated at least three times on independent 
assays. Data were expressed as mean ± standard deviation. Data sets 
were analysed by ANOVA, Student's t test and Newman–Keuls mul-
tiple comparison test, using the GraphPad Prism ver. 8.0 (GraphPad 
Software). Spearman's correlation coefficients (ρ) were computed 
using IBM® SPSS® Statistics 25 software (IBM Corp.). A  p-value 
(p) < .05 was regarded as a statistically significant difference.

3  | RESULTS

3.1 | Sperm analysis and samples distribution

After the routine sperm analysis (Table 1), the 64 ejaculates were 
classified into 4 groups according to their quality and the World 
Health Organization (2010) criteria, with the following distribution: 
N (61% with normozoospermia and oligozoospermia); T (16% with 
teratozoospermia and oligoteratozoospermia); A (14% with astheno-
zoospermia and oligoasthenozoospermia); and AT (9% with the as-
thenoteratozoospermia and oligoasthenoteratozoospermia).

For the determination of oxidised proteins and lipid peroxidation, 
due to the small number of ejaculates analysed by each technique, 
the 64 ejaculates were divided into only two study groups: N (61%), 
enclosing normozoospermic and oligozoospermic samples; and P 
(39%), comprising the pathospermic samples (teratozoospermia, oli-
goteratozoospermia, asthenozoospermia, oligoasthenozoospermia, 
asthenoteratozoospermia and oligoasthenoteratozoospermia).

3.2 | DNA damage

3.2.1 | TUNEL assay

Samples from groups T (n = 8), A (n = 9) and AT (n = 5) presented 
more DNA damaged cells (%) than group N (n = 31; T- 15.9 ± 4.8, 
A- 16.0 ± 8.3, and AT- 17.4 ± 7.4 vs. N- 9.6 ± 4.2; n = 53; p <  .05; 
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Figure  2). However, no statistically significant differences were 
found among the groups T, A and AT (Figure 2).

3.2.2 | Comet assay

Samples from groups T (n = 7), A (n = 8) and AT (n = 5) presented 
numerically higher damage than group N (n  =  29; T—234 ±  18.8 
AU, A—211 ± 15.8 AU and AT—251 ± 44.0 AU vs. N—171 ± 57 AU). 
Statistical differences were found between groups N and T, and be-
tween groups N and AT (p < .05; Figure 3).

3.3 | Antioxidant enzymes activity

3.3.1 | SOD

SOD activity is illustrated in Figure 4a (n = 51). Differences between 
the groups were not statistically significant (p = .663). Nevertheless, 
groups with asthenozoospermia (A—0.3971 ± 0.1198 U/mg protein, 
n  =  8; AT—0.4000 ±  0.1453 U/mg protein, n  =  5) have a numeri-
cally lower activity when compared to groups N (0.4344 ± 0.1176 
U/mg protein, n = 28) and T (0.4600 ± 0.1176 U/mg protein, n = 10; 
p > .05).

TA B L E  1   Semen parameters (n = 64) grouped in normozoospermic and oligozoospermic samples (N), teratozoospermic and 
oligoteratozoospermic samples (T), asthenozoospermic and oligoasthenozoospermic samples (A), and asthenoteratozoospermic and 
oligoasthenoteratozoospermic samples (AT), according to WHO (2010)

N (n = 39) T (n = 10) A (n = 9) AT (n = 6)

Age (years) 32.69 ± 0.98 27.50 ± 3.27 36.67 ± 2.74 28.67 ± 2.74

Semen volume (ml) 2.71 ± 0.26 3.06 ± 0.39 2.97 ± 0.25 3.61 ± 0.76

Abstinence time (days) 3.65 ± 0.22 4.75 ± 0.59 3.44 ± 0.24 3.00 ± 0.52

pH 8.08 ± 0.06 7.98 ± 0.09 8.10 ± 0.18 7.87 ± 0.19

Sperm concentration (106 SPZ/ml) 100.77 ± 11.78 59.75 ± 26.62 27.97 ± 9.69 182.09 ± 165.43

Progressive motility (%) 17.74 ± 2.72 12.00 ± 3.25 4.67 ± 1.40 4.17 ± 2.02

Immotile spermatozoa (%) 16.36 ± 1.47 23.60 ± 2.02 47.33 ± 3.80 50.33 ± 4.78

Vitality (%) 82.84 ± 1.31 78.30 ± 1.61 56.22 ± 5.23 55.83 ± 8.03

Hypoosmolarity (%) 82.28 ± 1.31 78.10 ± 1.59 51.44 ± 3.76 54.00 ± 8.47

Normal forms (%) 7.26 ± 0.52 2.80 ± 0.88 5.44 ± 0.58 2.67 ± 0.33

Head abnormalities (%) 89.51 ± 1.11 94.40 ± 1.18 91.67 ± 0.97 95.17 ± 0.98

Midpiece abnormalities (%) 36.72 ± 2.46 52.10 ± 5.36 53.56 ± 5.18 62.17 ± 3.11

Tail abnormalities (%) 11.44 ± 1.20 18.80 ± 2.39 22.89 ± 3.89 26.67 ± 5.60

Teratozoospermia index 1.49 ± 0.03 1.72 ± 0.07 1.57 ± 0.08 1.84 ± 0.03

F I G U R E  2   Percentage of sperm cells with fragmented 
DNA evaluated by TUNEL assay. N—normozoospermic 
and oligozoospermic (n = 31); T—teratozoospermic and 
oligoteratozoospermic (n = 8); A—asthenozoospermic and 
oligoasthenozoospermic (n = 9); AT—asthenoteratozoospermic and 
oligoasthenoteratozoospermic (n = 5). (a) Statistically significant 
relative to N

F I G U R E  3  Sperm DNA damage evaluated by Comet assay 
and quantified in arbitrary units (AU). N—normozoospermic 
and oligozoospermic (n = 29); T—teratozoospermic and 
oligoteratozoospermic (n = 7); A—asthenozoospermic and 
oligoasthenozoospermic (n = 8); AT—asthenoteratozoospermic and 
oligoasthenoteratozoospermic (n = 5). (a) Statistically significant 
relative to N
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3.3.2 | CAT

Values for CAT activity are shown in Figure  4b (n  =  48). 
Groups A (0.4000  ±  0.1335  µmol H2O2 min−1  mg−1, n  =  8) and 
AT (0.3175  ±  0.1226  µmol H2O2 min−1  mg−1, n  =  5) had a nu-
merically slightly lower activity when compared to groups 
N (0.4352  ±  0.2078  µmol H2O2 min−1  mg−1, n  =  25) and T 
(0.4140 ± 0.2219 µmol H2O2 min−1 mg−1, n = 10). It corresponds to 
a reduction of 27% compared with N, and of 23.3% compared with 
T (p > .05).

3.3.3 | GST

Figure 4c shows GST activity (n = 48). Differences between group 
N (1.1254  ±  0.3304  µM CDNB min−1  mg−1, n  =  25) and group A 
(0.5796 ± 0.3170 µM CDNB min−1 mg−1, n = 8; p =  .0012) and AT 
(0.4519 ± 0.3299 µM CDNB min−1 mg−1, n = 5; p =  .0016) proved 
significant. Equally, a significant difference between group T 
(1.2034 ± 0.5786 µM CDNB min−1 mg−1, n = 10) and groups A (p = 
.0251) and AT (p = .0389) was found.

3.4 | Oxidative stress markers evaluation

3.4.1 | Total thiols

No significant differences between the two groups were observed 
(p = .6073) although the P group demonstrated a slight increase 
(8.3%; N—6.67  ±  2.62  mM/mg, n  =  26; P—7.22  ±  2.62  mM/mg, 
n = 10; Figure 5).

F I G U R E  4  Activity of antioxidant enzymes in the sperm 
samples. (a) Activity of SOD (n = 51 samples) defined as the 
amount of SOD inhibiting 50% of NBT reduction (U/mg protein); 
(b) activity of CAT (n = 48 samples) defined in µmol H2O2 
min−1 mg−1; (c) activity of GST (n = 48 samples) defined in µM 
CDNB min−1 mg−1. N—normozoospermic and oligozoospermic 
(SOD, n = 28; CAT and GST, n = 25); T—teratozoospermic and 
oligoteratozoospermic (n = 10); A—asthenozoospermic and 
oligoasthenozoospermic (n = 8); AT—asthenoteratozoospermic and 
oligoasthenoteratozoospermic (n = 5). (a) Statistically significant 
with respect to N. (b) Statistically significant with respect to T

F I G U R E  5   Determination of protein damage by total free thiols 
(mM/mg). N—normozoospermic and oligozoospermic (n = 26); 
P—teratozoospermic, oligoteratozoospermic, asthenozoospermic, 
oligoasthenozoospermic, asthenoteratozoospermic and 
oligoasthenoteratozoospermic (n = 10)
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3.4.2 | Lipid hydroperoxides

A statistically significant difference was found between group N 
(6.51 ± 1.19 Eq. H2O2 10–7 cells, n = 26) and group P (7.99 ± 1.47 Eq. 
H2O2 10−7cells, n  =  9; p = .0145), being the latter approximately 
22.7% higher (Figure 6).

3.4.3 | MDA

By contrast, the TBARS assay did not yield significant differences 
between the two groups. Nevertheless, group P contained a slightly 
higher MDA (12.2%; N- 16.6 ± 2.8 µmol MDA 10–9 cells, n = 23; P- 
18.7 ± 3.4 µmol MDA 10–9 cells, n = 8; Figure 7).

3.5 | Correlations

3.5.1 | Correlation analysis between semen 
parameters and DNA damage

Comet assay results were positively correlated with immotile sper-
matozoa (ρ =  .332, p <  .05; Figure 8a). TUNEL results found a sig-
nificantly positive correlation with immotile spermatozoa (ρ = .348, 
p < .01; Figure 8b), while a negative correlation with sperm concen-
tration (ρ = −.322, p < .05; Figure 8c) and vitality (ρ = −.312, p < .05; 
Figure 8d) was observed (Table 2).

3.5.2 | Correlation analysis between semen 
parameters and antioxidant enzymes, total thiols, 
hydroperoxides and MDA

SOD activity was positively correlated with ejaculate volume 
(ρ = .259, p < .05), CAT (ρ = .796, p < .001), GST (ρ = .777, p < .001) 
and total thiols (ρ =  .409, p <  .05), and negatively correlated with 
ejaculate pH (ρ = −.319, p = .010). With reference to GST, a signifi-
cant positive correlation with ejaculate volume (ρ =  .363, p <  .01), 
abstinence time (ρ = .367, p < .01) and CAT (ρ = .802, p < .001) was 
also observed, while a negative correlation with ejaculate pH was 
found (ρ = −.365, p < .01; Table 3).

In addition to the correlation with SOD, total thiols were found 
to be positively correlated with sperm concentration (ρ  =  .529, 
p < .001; Table 4; Figure 9) and negatively correlated with the ejacu-
late volume (ρ = −.340, p < .05; Table 4).

TBARS assay results were positively correlated with hydrop-
eroxides (ρ =  .339, p <  .05; Figure 10a), the percentage of head 
morphological abnormalities (ρ  =  .440, p  <  .05), percentage of 
midpiece abnormalities (ρ  =  .602, p <  .001) and teratozoosper-
mia index (ρ = .552, p < .001; Figure 10b). A negative correlation 
between TBARS results and the percentage of typical morpho-
logical spermatozoa was observed (ρ = −.405, p  <  .05; Table  4; 
Figure 10c).

4  | DISCUSSION

Three main topics were evaluated and correlated in our study, the 
spermatic parameters, the DNA damage and the oxidative stress 
status.

DNA damage in male germ cells has been linked to the aetiology 
of multiple diseases, namely infertility, miscarriage, dominant ge-
netic disorders and diverse neurological disorders such as epilepsy, 
autism and schizophrenia (De Iuliis et al., 2009). To study the DNA 
damage in our work, we used two different techniques, the TUNEL 
and comet assays.

Concerning the TUNEL assay, the percentage of spermato-
zoa with fragmented DNA varied significantly between the ana-
lysed groups (Figure  2). Similar results are found in other works 

F I G U R E  6  Lipid hydroperoxides (Eq. H2O2 10–7 cells). 
N—normozoospermic and oligozoospermic (n = 26); P—
teratozoospermic, oligoteratozoospermic, asthenozoospermic, 
oligoasthenozoospermic, asthenoteratozoospermic and 
oligoasthenoteratozoospermic (n = 9). (a) Statistically significant 
with respect to N

F I G U R E  7  TBARS assay (µmol MDA 10–9 cells). N—
normozoospermic and oligozoospermic (n = 23); P—
teratozoospermic, oligoteratozoospermic, asthenozoospermic, 
oligoasthenozoospermic, asthenoteratozoospermic and 
oligoasthenoteratozoospermic (n = 8)
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comparing normo-  and teratozoospermia (Brahem et  al.,  2011; 
Mehdi et  al.,  2009; Sun et  al.,  1997), and normo-  and asthenozo-
ospermia (Muratori et al., 2000; Sun et al., 1997). There were also 
statistically significant positive correlations between the percentage 
of spermatozoa with fragmented DNA and the percentage of immo-
tile spermatozoa and significant negative correlations with sperm 
concentration and vitality (Table  2). Similar results are described 
in the literature, with negative correlations between DNA dam-
age and motility (Muratori et al., 2000; Sun et al., 1997), morphol-
ogy (Brahem et al., 2011; Mehdi et al., 2009; Muratori et al., 2000; 
Sun et al., 1997), sperm concentration (Sun et al., 1997) and vitality 
(Mitchell et  al.,  2011). Regarding comet assay, group N presented 
samples with less DNA damage than groups T and AT (Figure 3), which 
is in accordance with other research works (Ahmad et  al.,  2007; 
Kumar et al., 2011; Shamsi et al., 2010; Sheikh et al., 2008). Besides, 
we found a significant positive correlation between DNA damage 
and the percentage of immotile spermatozoa (Table 2), as previously 
described in the literature (Lu et al., 2002; Morris et al., 2002; Sheikh 
et al., 2008; Silver et al., 2005).

ROS have a determinant role regarding the causes of abnormal 
sperm function. Excessive ROS production the seminal plasma seems 
to be associated with reduced sperm fertilising potential, impaired 
metabolism, motility and morphology (Agarwal & Sengupta, 2020). 
ROS-induced cell damage occurs due to an unbalanced cell redox, 

especially when the antioxidant systems cannot compensate for the 
increased ROS. In the seminal fluid, adequate levels of SOD and CAT 
play a crucial role in this balance (Abdallah et al., 2009; Khosrowbeygi 
& Zarghami, 2007; Kobayashi et al., 1991).

Regarding SOD activity, although the two groups that have 
asthenozoospermia presented slightly lower activity, similarly to 
other research, we did not find significant differences among the 
four studied groups (Figure 4a; Hsieh et al., 2002; Khosrowbeygi & 
Zarghami, 2007; Sanocka et al., 1996; Tavilani et al., 2008; Tkaczuk-
Włach et al., 2002). Only Ben Abdallah et al. (2009) described an ex-
ception. They found an increased SOD activity in oligoastheno- and 
asthenozoospermic samples comparing to normozoospermic sam-
ples. Our work evidenced that as SOD levels increase in sperm sam-
ples, the CAT, GST, thiol levels and ejaculate volume increase too, and 
the ejaculate pH decreases (Table 3). Shiva et al.  (2011) also found 
positive correlations with CAT, GST and total thiols, and Tavilani 
et al. (2008) with CAT. A positive correlation between SOD and MDA 
concentration (Abdallah et al., 2009; Tavilani et al., 2008) and a neg-
ative correlation with sperm concentration and normal morphology 
(Abdallah et al., 2009) are described in the literature also.

Concerning CAT activity, our results follow the same trend ob-
served for SOD activity (Figure 4b and Table 3) and are similar to what 
has been described previously (Abdallah et al., 2009; Khosrowbeygi 
& Zarghami, 2007; Shiva et al., 2011; Tavilani et al., 2008).

F I G U R E  8  Scatter plots corresponding to the correlation between (a) comet assay and immotile sperm (%); (b) TUNEL assay and immotile 
sperm (%); (c) TUNEL assay and sperm concentration (106 sperm cells per ml); and (d) TUNEL assay and the vitality of sperm cells (%)
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GST activity is very important for a normal cell function since 
sperm cells use GSH through the catalytic activity of GST to main-
tain functional competence (motility, vitality, mitochondrial state, 
oocyte binding capacity and fertilisation) during exposure to H2O2 
or lipid peroxidation products (Andonian & Hermo, 2003; Hayes & 
Strange, 2000; Vorobets et al., 2018). A novel finding of this study 
was the significant difference in GST activity found between groups 
N/T and groups A and AT (Figure 4c). This analysis proved to be very 
interesting since these results suggest that GST is closely related to 
changes in motility. It is not possible to compare the present findings 
with other studies, because as far as we know, there are no pub-
lished works on the subject so far. Only Hashemitabar et al. (2015), 
when looking at sperm gene expressions, found that GSTMu3 was 
down-regulated in asthenozoospermic samples when compared to 
normozoospermic samples. These results appear to be in line with 
evidence identifying GST as a relevant bioindicator for impaired fer-
tility (Vani et al., 2010; Vorobets et al., 2018).

We must refer that, for both SOD and GST activities, there is 
a negative correlation with the ejaculate pH (Table 3), which is ex-
plained by their optimal pH activity of 7.0 and 7.8 respectively (Habig 
& Jakoby, 1981; Keele et al., 1971).

The changes observed concerning the activity of the antioxidant 
enzymes may reflect the aim of protecting spermatozoa against oxi-
dative damage during spermiogenesis since mature spermatozoa are 
unable to synthesise proteins (Dıéz-Sánchez et al., 2003).

In this study, three oxidative stress markers were used, namely 
the content of total thiols, the formation of hydroperoxides and thio-
barbituric acid reactive species (MDA).

It is already described that oxidative stress in seminiferous 
tubules during spermatogenesis can lead to an alteration of the 
spermatozoa's thiol concentration, potentially causing pathological 
alterations (Haidl et al., 2015; Homa et al., 2015). Our results show 
a lower thiol concentration in the normozoospermic samples than 
in the pathospermic samples (Figure 5), which are in line with pre-
viously published data (Ebisch et al., 2006; Králíková et al., 2017). 
Furthermore, total thiols show positive correlations with sperm con-
centration and SOD activity, and negatively with ejaculate volume. 
It also seems that total thiols may negatively affect sperm morphol-
ogy, namely the sperm midpiece, and be potentially affected by GST 
activity (Table 4). Lewis et  al.  (1997) found statistically significant 
differences between asthenozoospermic and normozoospermic 
samples. Zini et al. (2001) described significant differences between 

TUNEL assay Comet assay

n ρ p n ρ p

Age 56 −.093 .496 48 −.062 .677

Ejaculate volume 56 −.156 .250 48 −.074 .616

Abstinence time 53 −.067 .635 47 −.042 .778

pH 56 .147 .280 48 −.075 .614

Concentration (SPZ/ml) 56 −.322* .015* (−) 48 −.094 .525

Immotile spermatozoa 56 .348** .009** (+) 48 .332* .021* (+)

Progressive spermatozoa 56 −.061 .657 48 −.079 .593

Vitality 56 −.312* .019* (−) 48 −.173 .241

Hypoosmolarity 56 −.240 .075 48 −.236 .106

Typical spermatozoa 56 −.033 .808 48 −.191 .192

Head abnormalities 56 .051 .710 48 −.103 .488

Midpiece abnormalities 56 .180 .184 48 .222 .130

Tail abnormalities 56 .143 .294 48 .111 .453

Teratozoospermia index 56 .176 .194 48 .171 .246

TUNEL assay – – – 48 .219 .135

Comet assay 48 .219 .135 – – –

SOD 56 .050 .716 48 .205 .162

GST 56 .001 .993 48 .065 .658

CAT 56 −.006 .965 48 .117 .428

TBARS 23 .093 .674 21 .381 .089

Hydroperoxides 26 .164 .424 23 −.120 .587

Total thiols 26 .013 .948 20 .238 .274

* Significance higher than 95%. 
** Significance higher than 99%; (+) positive correlation; (−) negative correlation; ρ. Spearman's rank 
correlation coefficient. 

TA B L E  2   Correlation between comet 
assay, TUNEL assay and the other 
parameters analysed
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the levels of thiol groups in the ejaculates from fertile and infer-
tile men and even a positive correlation with the denaturation of 
DNA. Negative correlations between total thiols and sperm con-
centration, motility and morphology were also reported by several 
authors (Irvine et al., 2000; Sun et al., 1997; Zini et al., 2001). The 
spermatic DNA is highly compressed, owing to the substitution of 
protamine histones rich in cysteine residues. The thiol oxidation in 
these groups is physiological to stabilise the tail and, consequently, 
gather sperm motility and DNA stabilisation. Thus, an increase in 
this oxidation may lead to an increase in susceptibility to DNA dam-
age. Despite this, and similarly to our results, Zini et al. (2001) found 
no differences in the DNA damage among men with different levels 
of thiols concentration. The strong positive correlations found with 
sperm concentration and SOD activity and the negative correlation 
with the ejaculate volume observed are similar to the results de-
scribed by other authors (Lewis et al., 1997; Shiva et al., 2011; Zini 
et al., 2001).

The hydroperoxide levels are commonly used as an early indica-
tion of damage by free radicals, and other ROS formed in the lipid 
environment (Gay & Gebicki, 2003; Grintzalis et al., 2013; Rahmanto 

et  al.,  2010). Normozoospermic and pathospermic samples dif-
fered significantly on hydroperoxide concentration, which, in turn, 
showed a tendency to correlate negatively with sperm concentra-
tion (Figure 6; Table 4).

Regarding the MDA, the differences found in the study groups 
(Figure 7) also seem to agree with other studies that found higher 
amounts of MDA negatively correlated with sperm motility (Colagar 
et al., 2013; Mehrotra et al., 2013; Subramanian et al., 2018; Tomar 
et  al.,  2017), sperm morphology (Atig et  al.,  2012; Benedetti 
et  al.,  2012; Colagar et  al.,  2013; Subramanian et  al.,  2018) and 
sperm concentration (Colagar et  al.,  2013; Mehrotra et  al.,  2013; 
Subramanian et al., 2018). Moreover, we found significant positive 
correlations between MDA levels and abnormal head, abnormal mid-
piece and teratozoospermia index, and a negative correlation with 
the morphologically normal spermatozoa (Table  4). Peroxidation 
of phospholipids in mammalian sperm causes membrane damage, 
which is associated with loss of motility, impaired metabolism, 
impaired acrosome reaction reactivity and morphology changes 
(Ebisch et  al.,  2006; Engel et  al.,  1999). As reported by Calamera 
et  al.  (2003), spermatozoa from normozoospermic men had lower 

TA B L E  3  Correlation between SOD, GST and CAT and the remaining results

SOD CAT GST

n ρ p n ρ p n ρ p

Age 65 −.085 .498 65 −.083 .509 65 −.105 .404

Ejaculate volume 65 .259* .037* (+) 65 .235 .060 65 .363** .003** (+)

Abstinence time 61 .191 .139 61 .126 .334 61 .367** .004** (+)

pH 65 −.319** .010** (−) 65 −.180 .152 65 −.365** .003** (−)

Concentration (SPZ/ml) 65 −.034 .788 65 −.075 .550 65 .117 .335

Immotile spermatozoa 65 −.149 .237 65 −.127 .315 65 −.181 .149

Progressive spermatozoa 65 .112 .373 65 .110 .383 65 .144 .254

Vitality 65 .024 .847 65 .053 .676 65 .073 .563

Hypoosmolarity 65 −.032 .803 65 −.006 .961 65 .036 .777

Typical spermatozoa 65 −.038 .765 65 .023 .857 65 −.041 .743

Head abnormalities 65 −.041 .745 65 −.065 .607 65 −.018 .886

Midpiece abnormalities 65 −.090 .477 65 −.126 .318 65 −.223 .074

Tail abnormalities 65 −.038 .761 65 −.031 .804 65 −.073 .565

Teratozoospermia index 65 −.077 .544 65 −.098 .438 65 −.192 .126

TUNEL assay 56 .050 .716 56 −.006 .965 56 .001 .993

Comet assay 48 .205 .162 48 .117 .428 48 .065 .658

SOD – – – 65 .796** <.001** (+) 65 .777** <.001** 
(+)

CAT 65 .796** <.001** (+) – – – 65 .802** <.001** 
(+)

GST 65 .777** <.001** (+) 65 .802** <.001** (+) – – –

TBARS 31 .075 .690 31 −.173 .353 31 −.162 .385

Hydroperoxides 35 −.056 .750 35 −.237 .170 35 −.127 .467

Total thiols 35 .409* .015* (+) 35 .214 .217 35 .296 .085

* Significance higher than 95%. 
** Significance higher than 99%; (+) positive correlation; (–) negative correlation; ρ. Spearman's rank correlation coefficient. 
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unsaturated fatty acid content than spermatozoa from asthenozo-
ospermic individuals. It suggests that they are less susceptible to 
ROS-induced peroxidative damage, which could explain our results. 
In our study, the concentration of MDA and hydroperoxides showed 
to be positively correlated (Table 4).

In sum, spermatozoa (as all aerobic cells) are prone to biomolec-
ular alterations when under oxidative stress that promotes modi-
fication in their physiology and behaviour. Despite the limited size 
sample, we showed that MDA and hydroperoxides seem strongly 
correlated and could serve as a good indicator of sperm morphol-
ogy and motility. It also appears that although there is an increased 
antioxidant enzymatic activity in group T, this was not enough to de-
crease the damage caused by ROS, potentially supporting the theory 
that spermatozoa with alterations in its morphology has increased 
production of ROS. Furthermore, decreased GST activity seems to 
be intimately associated with reduced motility and DNA damage 
with pathospermia. The TUNEL assay appears to be a reliable tool 
for assessing cell death. Our results suggest that the study of oxida-
tive stress and DNA damage might be useful tools in idiopathic male 
subfertility to aid with diagnostics and prognosis.

This work has added to the existing body of knowledge by veri-
fying that correlations between the oxidative status (including anti-
oxidant enzymatic activity and ROS effect on proteins and lipids) and 
the classic sperm analysis indicators seem to exist. However, larger-
size population studies are required to extend and verify our findings 

TA B L E  4  Correlation between the total thiols, lipid hydroperoxides, quantity of MDA and the remaining results

Total thiols Lipid hydroperoxides TBARS

n ρ p n ρ p n ρ p

Age 35 .070 .691 35 .020 .910 31 .076 .684

Ejaculate volume 35 −.340* .046* (−) 35 −.003 .987 31 .175 .345

Abstinence time 33 .278 .117 33 −.261 .142 29 .088 .650

pH 35 −.266 .123 35 .274 .111 31 .087 .640

Concentration (SPZ/ml) 35 .529** <.001** (+) 35 −.295 .086 31 −.146 .433

Immotile spermatozoa 35 .030 .863 35 −.150 .388 31 .060 .747

Progressive spermatozoa 35 −.121 .488 35 −.008 .965 31 −.145 .437

Vitality 35 .065 .712 35 −.025 .887 31 .117 .532

Hypoosmolarity 35 .031 .861 35 .014 .936 31 .122 .514

Typical spermatozoa 35 .017 .924 35 −.199 .252 31 −.405* .024* (−)

Head abnormalities 35 .090 .606 35 .258 .134 31 .440* .013* (+)

Midpiece abnormalities 35 .316 .064 35 .136 .435 31 .602** <.001** 
(+)

Tail abnormalities 35 .088 .617 35 .128 .463 31 .004 .981

Teratozoospermia index 35 .295 .085 35 .113 .519 31 .552** <.001** 
(+)

TUNEL assay 26 .013 .948 26 .164 .424 23 .093 .674

Comet assay 23 .238 .274 23 −.120 .587 21 .381 .089

SOD 35 .409* .015* (+) 35 −.056 .750 31 −.075 .690

CAT 35 .214 .217 35 −.237 .170 31 −.173 .353

GST 35 .296 .085 35 −.127 .467 31 −.162 .385

TBARS 31 −.035 .850 31 .399* .026* (+) – – –

Hydroperoxides 35 −.246 .155 – – – 31 .399* .026* (+)

Total thiols – – – 35 −.246 .155 31 −.035 .850

* Significance higher than 95%. 
** Significance higher than 99%; (+) positive correlation; (−) negative correlation; ρ. Spearman's rank correlation coefficient. 

F I G U R E  9   Scatter plot corresponding to the correlation 
between total thiols (mM/mg) and sperm concentration (106 sperm 
cells per ml)
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to specific medical conditions affecting male fertility. While not pro-
viding definitive evidence, our work informs the potential design of a 
more comprehensive study and provides clear trends.
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