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a b s t r a c t

We consider a problem of multi-decision sorting subject to multiple criteria. In the newly formulated
decision problem, besides performances on multiple criteria, alternatives get evaluations on multiple
interrelated decision attributes involving preference-ordered classes. We propose a dedicated method
for dealing with such a problem, incorporating a threshold-based value-driven sorting procedure.
The Decision Maker (DM) is expected to holistically evaluate a subset of reference alternatives by
indicating the quality or risk level on a pre-defined scale of each decision attribute. Based on these
evaluations, we construct a set of interrelated preference models, one for each decision attribute,
compatible with intra- and inter-decision constraints imposed by such indirect preference information.
We also formulate a new way of dealing with potentially non-monotonic criteria by discovering local
monotonicity changes in different performance scale regions. The marginal value functions for criteria
with unknown monotonicity are represented as a sum of two value functions assuming opposing
preference directions, one non-decreasing and the other non-increasing. This permits to obtain an
aggregated marginal value function with an arbitrary non-monotonic shape. The practical usefulness
of the approach is demonstrated on a case study concerning risk management related to handling (i.e.,
production, use, manipulation, and processing) nanomaterials in different conditions. We analyze the
expert judgments and discuss the inferred preference models, which can be applied to support health
and safety managers in reducing the possible risk associated with the respective exposure scenario.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Multiple Criteria Decision Analysis (MCDA) concerns decision
roblems where a set of alternatives are evaluated on a family of
riteria, which represent all relevant, heterogeneous viewpoints
n the quality of alternatives [1,2]. Many such decision problems
all into the general category of classification, where the alter-
atives need to be assigned to distinct classes [3]. If the classes
re completely ordered, one deals with ordinal classification or,
quivalently, sorting problems [4]. They are considered, e.g., in
he ABC analysis, which is a type of inventory categorization
ethod where high-, mid-, and low-value alternatives need to
e identified [5], in medical diagnosis, where high-risk patients
eed to be distinguished from the low-risk ones [6], in business
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failure prediction, where firms are sorted into healthy, uncertain,
and close to bankruptcy [7], or in nanomanufacturing, where
synthesis processes of nanomaterials can be sorted according to
their greenness level [8].

Decision aiding sorting methods aim to provide recommen-
dations to the Decision Maker (DM) regarding the assignment
of alternatives to pre-defined and ordered classes [9]. There are
various approaches serving this purpose though differing with
respect to the underlying assumptions and characteristics of de-
livered results. In particular, various methods expect the DM to
provide different types of preference information through a co-
constructive elicitation process led by a decision analyst. On the
one hand, some methods assume that the DM would directly
specify values for a set of parameters of an assumed sorting
model [10,11]. However, this is a bit unrealistic because (s)he
usually has difficulties with keeping consistency between the
supplied values and the model output [4]. On the other hand,
preference disaggregation procedures have been proposed to pre-

vent such difficulties [12]. They aim at deriving compatible model
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arameters from the analysis of the DM’s comprehensive judg-
ents (assignment examples) concerning a subset of reference
lternatives. This allows generalizing the DM’s policy to an entire
et of alternatives through the use of a suitably parametrized sort-
ng model. Specifically, UTADIS disaggregates the DM’s assign-
ent examples into marginal value functions and class thresholds
eparating the consecutive decision classes on a scale of com-
rehensive value [13,14]. This idea was found appealing in such
arious fields as finance [15], energy management [16], or stock
ortfolio analysis [17].
Motivated by the complexity of real-world sorting problems,

TADIS has been extended in various ways. First, different pro-
edures for dealing with inconsistency of assignment examples
ith an assumed model have been proposed [14,18]. Second,
hierarchical classification approach, called MHDIS, has been

ntroduced in [19]. Third, the Multiple Criteria Hierarchy Pro-
ess has been adapted to UTADIS to allow handling preference
nformation and deriving recommendations at both comprehen-
ive and intermediate levels of the hierarchy of criteria [20].
oreover, novel preference modeling procedures have been de-
igned to admit the specification of desired class cardinalities,
ssignment-based pairwise comparisons [21], or valued assign-
ent examples [22]. Furthermore, the frameworks for robustness
nalysis have been proposed [4,23,24] to exploit infinitely many
nstances of the preference model (e.g., value functions and class
hresholds) compatible with the DM’s holistic decisions. While
ll approaches mentioned above considered a single DM, [25] in-
roduced a group decision framework, called UTADISGMS-GROUP,
nvestigating the spaces of agreement and disagreement between
orting recommendations obtained for different DMs. Some other
ecent methodological advancements of the UTADIS method con-
ern the form of an employed value-based model. In this regard,
n additive value function has been extended in [26] to account
or positively and negatively interacting pairs of criteria. The
ther stream concerned dealing with the non-monotonicity of
references on a per-criterion level. In particular, [27] defined a
road spectrum of non-monotonic shapes that could be consid-
red along with the gain- and cost-type criteria. Moreover, [28]
nd [29] introduced the models admitting non-monotonicity of
arginal value functions while not restraining their complex-

ty. In turn, [29,30] and [31] minimized, respectively, the varia-
ion in the slope or the number of changes of non-monotonicity
n the shape of marginal value functions to ensure the most
nterpretable sorting model.

The contribution of this paper is three-fold. First, we introduce
new problem of multi-decision sorting in MCDA and propose
dedicated method for dealing with it. In this problem, each

lternative is evaluated in terms of multiple decision attributes
nvolving preference-ordered classes. We expect the DM to assign
subset of reference alternatives to classes of each decision at-

ribute by indicating a quality or risk level on a scale pre-defined
or all decision attributes. A similar setting has been considered
n [32] and [33] in the context of credit rating problems. On
he one hand, [32] adapted the UTADIS method to infer a single
hreshold-based value-driven sorting model compatible with the
atings provided by Moody’s and Standard & Poor’s, hence pro-
iding a precise recommendation based on potentially conflicting
nputs for the same alternative. On the other hand, [33] used the
hree credit rating agencies’ recommendations to form an interval
ating that was subsequently used as a potentially imprecise
eference benchmark to be reproduced by the ELECTRE TRI-nC
ethod [34].
The multi-decision sorting problem and dedicated approach

ntroduced in this paper are original in the sense of requiring
onstruction of a set of interrelated preference models, one for

ach decision attribute. Such a requirement contrasts with the

2

inference of a single sorting model that would align with multiple
classifications at the same time [32] or an imprecise assignment
built on multiple ratings for the same alternative [33]. Specifi-
cally, we propose a threshold-based value-driven sorting method.
It involves a set of intra- and inter-decision constraints. The for-
mer ones ensure appropriate relations between comprehensive
values of different alternatives for an individual value function
used to derive the assignments for a single decision attribute. The
latter correspond to the relations between comprehensive values
of the same alternative for multiple value functions employed
for classifying this alternative given various decision attributes.
This makes sense when the classes of various decision attributes
correspond to the same default categories, having the same scope
and interpretation.

This paper’s second contribution derives from presenting the
results of a case study concerning risk management related to
handling nanomaterials in different conditions [35]. The produc-
tion, processing, and use of nanomaterials may lead to health
or life exposure. Depending on the particular exposure scenario,
different types of precautions or safety measures can be used
to counteract the respective risk [36]. Also, some precautions
meet general hazards, whereas others are dedicated to deal with
some specific dangers. Each of the precaution types (e.g., in-
corporation of some personal protective equipment, engineering
controls, or work practices) can be interpreted as a decision at-
tribute with pre-defined preference-ordered classes representing
different levels of risk [37]. When facing hazards that particular
nanomaterials carry with them, some precautions are required,
and others are optional or unnecessary [31]. However, different
precautions are not independent, being defined on the same set
of criteria and related in terms of their interpretation.

There is a need for a method dealing with multiple interrelated
preference-ordered decision attributes to tackle such a problem.
In this regard, MCDA has little to offer. This, in turn, implies
that such complex problems would typically be decomposed into
independent ones. This would allow for modeling intra-decision
dependencies, neglecting the inter-decision relations that could
negatively affect results’ usefulness. Other ideas are solutions de-
rived from multi-label classification, such as label powerset [38]
or probabilistic classifier chains [39]. The label powerset gener-
ates a vast number of classes and requires many examples so
that each class has a sufficient number of its representatives.
The latter is difficult to satisfy for the case study. Probabilistic
classifier chains offer different solutions depending on the order
of the decisions under consideration and require repeated solving
of the same problem. The limitations of the existing approaches
motivated the development of a dedicated multiple criteria sort-
ing method. In the context of the considered case study, the
information coming from the proposed approach will help the
DMs in assessing the risk related to the treatment of nanoma-
terials in different conditions. Specifically, it can be used for
recommending the level of need for the use of specific personal
protective equipment, engineering controls, or work practices.

Our third contribution consists of proposing a new way of
dealing with potentially non-monotonic criteria. Non-monotonic
criteria appear in the MCDA problem when, for some attributes,
neither the univocal preference direction could be specified, nor
the non-monotonic shape of respective marginal value function
could be defined a priori. This happens in our case study. Then,
such a shape needs to be inferred from data describing the
multiple criteria problem and the DM’s holistic judgments. In
particular, the method should verify whether a monotonic rela-
tionship exists, if it is of gain- or cost-type, or if the monotonicity
is not global. The latter scenario could reveal some local positive
or negative relationships in different parts of the investigated

performance scale [40]. To perform this task, we propose a new
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pproach that attempts to discover local monotonicity changes
ithout requiring the DM to fix the preference directions for
ll criteria. Specifically, we represent the marginal value func-
ions of potentially non-monotonic criteria as a sum of marginal
alue functions assuming opposing preference directions, one
on-decreasing and the other non-increasing. This permits to
btain an aggregated marginal value function with an arbitrary
on-monotonic shape. However, the two monotonic components
emain easy to interpret.

The remainder of the paper is organized in the following
ay. Section 2 is devoted to the new method dealing with
ulti-decision sorting problems and handling potentially non-
onotonic criteria. Section 3 illustrates the use of the proposed
ethod on a didactic instance. In Section 4, we report the results
f a case study concerning the analysis of exposure scenarios
elated to the treatment of nanomaterials in various conditions.
he last section concludes and outlines the ideas for a future
ork.

. Notation and problem statement

We use the following notation:

• A = {a1, a2, . . . , ai, . . . , an} – a finite set of n alternatives;
• AR

= {a∗, b∗, . . .} – a finite set of reference alternatives,
which are holistically judged by the DM; we assume that
AR

⊆ A;
• G = {g1, g2, . . . , gj, . . . , gm} – a finite set of m criteria, gj :

A → R for all j ∈ J = {1, 2, . . . ,m};
• Xj = {xj ∈ R : gj(ai) = xj, ai ∈ A} – a set of all different

performances on gj, j ∈ J;
• x1j , x

2
j , . . . , x

nj(A)
j – increasingly ordered values of Xj, xkj <

xk+1
j , k = 1, 2, . . . , nj(A) − 1, where nj(A) = |Xj| and nj(A) ≤

n; consequently, X =
∏m

j=1 Xj is the performance space;
• D = {D1,D2, . . . ,Dl} – a finite set of l decision attributes;
• CDs

1 , CDs
2 , . . . , CDs

p – p pre-defined preference-ordered classes
defined for each decision attribute Ds, s = 1, . . . , l, where
CDs
h+1 is preferred to CDs

h , h = 1, . . . , p − 1; moreover,
H = {1, . . . , p}. Remark that the number of pre-defined
preference-ordered classes for all l decision attributes is the
same and equal to p. Qualitative meaning of class Ch is also
the same for all decision attributes Ds ∈ D.

• bDs
0 , bDs

1 , . . . , bDs
p – thresholds separating the classes on de-

cision attribute Ds, s = 1, . . . , l, such that bDs
h−1 and bDs

h
are, respectively, the lower and upper comprehensive values
admissible for alternatives assigned to CDs

h , h = 1, . . . , p.

In what follows, we discuss the employed preference model
and preference information. We present the mathematical con-
straints that allow dealing with multi-decision sorting problems
while originally handling potentially non-monotonic criteria. The
latter ones are interpreted as criteria with unknown monotonic-
ity. This means that a decision analyst and the DM cannot specify
a preference direction for them, and they admit that such a
direction may not exist. Moreover, they accept that the shapes
of marginal value functions for these criteria will be inferred
through disaggregating the DM’s holistic preferences. The re-
sulting shape will determine if the monotonic relation can be
imposed in the entire performance space of a given criterion, and,
if not, what are the local relationships of monotonicity in different
regions of this space.

2.1. Preference model

For each decision attribute Ds ∈ D, a comprehensive quality

of each alternative ai ∈ A is quantified using an additive value

3

function defined as the sum of marginal values uDs
j (ai) on all

criteria gj, j = 1, . . . ,m:

UDs (ai) =

m∑
j=1

uDs
j (ai) ∈ [0, 1]. (1)

Alternatives are evaluated in terms of three types of criteria: gain
gj ∈ Gg , cost gj ∈ Gc , and potentially non-monotonic gj ∈ Gn
(Gg∪Gc∪Gn = G). For the gain-type criteria, greater performances
are more preferred than smaller performances. This implies the
following monotonicity and normalization constraints:

uDs
j

(
xkj

)
≥ uDs

j

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j

(
x1j

)
= 0. (2)

Analogously, for the cost-type criteria, smaller performances are
more preferred:

uDs
j

(
xkj

)
≤ uDs

j

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j

(
xn(A)j

)
= 0. (3)

Example marginal value functions for the gain- and cost-type
criteria are presented in Fig. 1. Note that these functions are,
respectively, non-decreasing and non-increasing.

The marginal value function for the potentially non-monotonic
criterion gj ∈ Gn is modeled as the sum of marginal values
derived from the non-decreasing and non-increasing components
contributing to the comprehensive assessment of alternatives
from this particular viewpoint:

uDs
j

(
xkj

)
= uDs

j,nd

(
xkj

)
+ uDs

j,ni

(
xkj

)
, k = 1, . . . , nj(A),

where the monotonicity of uDs
j,nd and uDs

j,ni is modeled in a standard
way:

uDs
j,nd

(
xkj

)
≥ uDs

j,nd

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j,nd

(
x1j

)
= 0, (4)

uDs
j,ni

(
xkj

)
≤ uDs

j,ni

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j,ni

(
xn(A)j

)
= 0. (5)

In case the method discovers that a monotonic relationship exists,
either uDs

j,nd

(
xkj

)
or uDs

j,ni

(
xkj

)
takes non-negative values for k =

1, . . . , nj(A) and the other component is zeroed for all perfor-
mances. Then, the resulting marginal value function uDs

j is also
monotonic. In Figs. 2a and b, we present the examples of such
non-decreasing and non-increasing functions along with the two
components.

When both components uDs
j,nd and uDs

j,ni take some positive val-

ues over the range from x1j to x
nj(A)
j , then any non-monotonic

shape of the marginal value function uDs
j can be obtained. How-

ever, this may yield a comprehensive marginal value function,
which is not equal to zero for the worst performance on the non-
monotonic criterion. Such a situation is undesired because it is
hard to interpret such a model, and, moreover, the scale of values
attained by the comprehensive model gets reduced. To prevent
such a scenario, the marginal value function should be normalized
so that ∃xkj ∈ Xj such that uDs

j

(
xkj

)
= 0. This can be obtained by

subtracting a value of bias tDs
j ≥ 0 from the marginal values of gj,

and adding a constraint that uDs
j

(
xkj

)
should be non-negative for

all performances xkj , k = 1, . . . , nj(A):

uDs
j

(
xkj

)
= uDs

j,nd

(
xkj

)
+ uDs

j,ni

(
xkj

)
− tDs

j , k = 1, . . . , nj(A), (6)

1 ≥ tDs
j ≥ 0, (7)

uDs
j

(
xkj

)
≥ 0, k = 1, . . . , nj(A). (8)

In Figs. 2c–f, we present the two components, a value of bias,
and the resulting non-monotonic functions of different types:
A-, V-, W-, and M-type functions. The elementary components

are monotonic, but the marginal functions which aggregate them
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Fig. 1. Example monotonic marginal value functions.
a

I

ith a bias are arbitrarily non-monotonic. Such functions can cap-
ure the local relationships of monotonicity that can be positive
n some of the considered performance space and negative in the
ther part of the same space. Since in the proposed approach,
hese functions are inferred from the assignment examples, their
omplexity (i.e., the non-monotonic character, the number of
onotonicity changes, or differences in slopes in various regions
f the performance space) depends on the dependencies ob-
erved in the preferences of alternatives and input preference
nformation.

To assign the alternatives to pre-defined and ordered classes
or decision attribute Ds ∈ D, we will apply a threshold-based
sorting procedure. It derives the assignment of alternative ai ∈ A
from the comparison of UDs (ai) with a set of thresholds bDs

h , h =

, . . . , p, such that for Ds ∈ D:
Ds
0 = 0, bDs

p−1 ≤ 1 − ε, and bDs
p = 1 + ε, (9)

bDs
h ≥ bDs

h−1 + ε, h = 2, . . . , p − 1, (10)

here ε is an arbitrarily small positive value. In this way, the
alues of the worst and the best thresholds are set to, respec-
ively, zero and greater than one. Moreover, there is a difference
etween the extreme thresholds delimiting each class so that
t could accommodate some alternatives. Then, ai is assigned to
lass CDs

h iff bDs
h−1 ≤ UDs (ai) < bDs

h , i.e., if ai is at least as good
s the respective lower threshold and strictly worse than the
orresponding upper threshold. Such a threshold-based sorting
rocedure is illustrated in Fig. 3. Eqs. (1)–(10) form a core compo-
ent of a larger set of linear programming constraints defining a
et of instances of an assumed sorting model that are compatible
ith the DM’s preference information. We will refer to it as
BASE .

.2. Preference information

We expect the DM to specify the desired assignments for a
ubset of reference alternatives a∗

∈ AR
⊆ A on each decision

ttribute Ds ∈ D:
∗

∈ AR
→ CDs

DM (a∗). (11)

ote that the classes provided by the DM for different deci-
ion attributes Ds ∈ D can be different for the same reference
lternative. Such holistic preference information is used in a two-
old way. On the one hand, we need to reproduce the desired
4

ssignments on each decision attribute, i.e.:

for all a∗
∈ AR

:

v(a∗) ∈ {0, 1},
for all Ds ∈ D :

UDs (a∗) ≥ bDs

CDs
DM (a∗)−1

− v(a∗),

UDs (a∗) + ε ≤ bDs

CDs
DM (a∗)

+ v(a∗).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ER(intra − D) (12)

n case v(a∗) = 0, UDs (a∗) falls in the range corresponding to class
CDs
DM (a∗), i.e., [bDs

CDs
DM (a∗)−1

, bDs

CDs
DM (a∗)

). Then, the assignment provided

for a∗ on Ds is reproduced. If v(a∗) = 1, the respective constraints
are always satisfied, being relaxed. The binary variables v(a∗),
a∗

∈ AR, will be subsequently used to minimize the prediction
distance of the inferred model from the reference data in case
the sorting model would not be able to align with all assignment
examples.

On the other hand, in line with the specificity of the multi-
decision sorting problem, we will compare the desired assign-
ments for each reference alternative a∗

∈ AR for different pairs
of decision attributes. Let us remind that both the number and
interpretation of classes are the same for all decision attributes.
In this way, the classes specified by the DM determine an order
of labels associated with each reference alternative. If CDs

DM (a∗)
is more preferred than CDt

DM (a∗), this can be interpreted as the
label Ds being more desired for a∗ than label Dt . Consequently,
a comprehensive value of a∗ associated with Ds should be greater
than its respective value associated with Dt , i.e.:

for all a∗
∈ AR

:

if CDs
DM (a∗) > CDt

DM (a∗) :

UDs (a∗) ≥ UDt (a∗) + ε − v(a∗).

⎫⎬⎭ ER(inter − D) (13)

Analogously as in ER(intra − Ds), binary variable v(a∗) implies
that the respective constraints associated with the assignments
of a∗ are either instantiated (when v(a∗) = 0) or relaxed (when
v(a∗) = 1).

2.3. Compatible sorting model

We aim to infer a sorting model that would be compatible
with the provided assignment examples while respecting the as-
sumptions on additivity, monotonicity, and normalization, as well
as intra- and inter-decision constraints. The model is composed of
a set of interrelated additive value functions and vectors of class
thresholds such that a single function is associated with a single



M. Kadziński, K. Martyn, M. Cinelli et al. Knowledge-Based Systems 218 (2021) 106879

n

v
W
s
w
F
P

M

Fig. 2. Example non-decreasing (uj,nd) and non-increasing (uj,ni) components along with resulting marginal value functions (uj) of different types for the potentially
on-monotonic criteria.
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ector of thresholds corresponding to each decision attribute.
e admit that the reference assignments are burdened with

ome error, though we would like the model to be compatible
ith as many assignments of reference alternatives as possible.
or this purpose, we solve the following Mixed-Integer Linear
rogramming (MILP) model:

inimize fw = (r · l + 1)
∑
a∗∈AR

v(a∗) +

∑
j∈Gn, Ds∈D

tDs
j ,

subject to EBASE
∪ ER(intra − D) ∪ ER(inter − D). (14)
5

he primary goal of the above objective function fw is to mini-
ize the number of reference alternatives for which the desired
ssignments are inconsistent with an assumed preference model,
.e.,

∑
a∗∈AR v(a∗). The secondary goal is to minimize a sum of

ias values for all decision attributes and all potentially non-
onotonic criteria, i.e.,

∑
j∈Gn, Ds∈D tDs

j . To ensure a lexicographic
ptimization of these two targets, we multiply the first compo-
ent by (r · l+1) and the second by 1. Note that (r · l+1) is greater
han a maximal possible sum of all bias values. Based on Eqs. (6)
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nd (7), such a sum is constrained by r · l, i.e.:∑
∈Gn, Ds∈D

tDs
j ≤ r · l, (15)

here r = |Gn| is the number of potentially non-monotonic
riteria, and l is the number of decision attributes. As a result,
he above model always favors a lesser number of reference
lternatives a∗

∈ AR that need to be removed to restore consis-
ency. Specifically, among the models for which such a number
s minimal, we favor the one for which the sum of biases on all
riteria with unknown monotonicity is as small as possible.

. Illustrative example

In this section, we illustrate the use of the proposed method
n a simple didactic example composed of a pair of scenarios,
enoted as Scenarios 1 and 2. The considered problem involves
en alternatives, which are evaluated on the following three cri-
eria: g1 of gain type, g2 of cost type, and g3 being potentially
on-monotonic. For the performance matrix, see Table 1. The
lternatives are comprehensively evaluated using two decision
ttributes (D1 and D2) with five preference ordered classes C1−C5
uch that C5 and C1 are, respectively, the most and the least
referred ones.
Let us first consider Scenario 1 for which the reference as-

ignments are provided in Table 1. For example, a1 is assigned
o C4 on D1 and to C3 on D2, whereas the order of classes for
5 is inverse. The inferred model is able to reconstruct the as-
ignments for eight alternatives (see column v(a∗) (Scenario 1) of
able 2). The comprehensive judgments for a6 and a10 could not
e reproduced. The assignments of a6 were contradictory with
hose of a7. Specifically, a7 is more preferred than a6 on g1 and
2, while attaining the same performance on g3. However, the
lasses of a7 are worse than the respective classes of a6, which
ontradicts the dominance principle. Similarly, a10 dominates a1
hile being at least as good on all monotonic criteria and having
he same performance on the non-monotonic criterion. However,
he desired class of a on D is worse than that of a , while they
10 1 1

6

able 1
erformance matrix and the reference assignments considered in the two
cenarios in the illustrative example.
Alternative Criteria Scenario 1 Scenario 2

ai g1 g2 g3 D1 D2 D1 D2

a1 2 1 2 C4 C3 C4 C3
a2 0 2 0 C2 C1 C2 C1
a3 1 3 4 C5 C2 C5 C2
a4 3 2 3 C5 C4 C5 C4
a5 3 3 3 C3 C4 C3 C4
a6 0 4 1 C2 C3 C1 C3
a7 1 3 1 C1 C2 C1 C3
a8 3 0 0 C4 C5 C4 C5
a9 0 3 4 C3 C1 C3 C1
a10 2 0 2 C1 C3 C1 C3

are both assigned to the same class on D2. Also in this case, the
assignments of a10 and a1 could not be reproduced jointly.

The comprehensive values of all ten alternatives and the as-
signments generated with the inferred sorting model are pre-
sented in Table 2. For the separating class thresholds, see Table 3.
Let us first discuss the assignments of reference alternatives
which agree with the one specified by the DM. For example on D1,
1 is assigned to C4 and a3 is assigned to C5. Not only a3 attains a
reater comprehensive value than a1, but also the comprehensive
alues of these alternatives fall in the ranges delimited by the
espective class thresholds (compare Tables 2 and 3). Similarly,
n D2, a1 is assigned to a more preferred class than a3, which is
eflected in the relationship between their comprehensive values
UD2 (a1) = 0.4762 > UD2 (a3) = 0.2886). However, the inferred
omprehensive values respect also the desired inter-decision re-
ationships. For example, a3 was assigned to C5 on D1 and to C2 on
2. As a result, its comprehensive value on D1 (UD1 (a3) = 0.6162)
s greater than that on D2 (UD2 (a3) = 0.2886). In the same spirit,
ince a8 was assigned to C4 and C5 on, respectively, D1 and D2,
e have UD1 (a8) = 0.6078 < UD2 (a8) = 0.6162. When it comes
o the reference alternatives for which the desired assignments
ere not fully reproduced, the resulting class of a6 on D2 and a10
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able 2
omprehensive values U(a∗), respective class assignments on decision attributes D1 and D2 , and values of binary variables v(a∗) for the two scenarios in the illustrative
xample.
Alternative Scenario 1 Scenario 2

a∗

i UD1 (a∗) UD2 (a∗) D1 D2 v(a∗) UD1 (a∗) UD2 (a∗) D1 D2 v(a∗)

a1 0.4846 0.4762 C4 C3 0 0.1223 0.0057 C1 C2 1
a2 0.2800 0.1402 C2 C1 0 0.1279 0.0001 C2 C1 0
a3 0.6162 0.2886 C5 C2 0 0.5556 0.0056 C5 C2 0
a4 0.6722 0.5408 C5 C4 0 0.5556 0.5001 C5 C4 0
a5 0.4762 0.4846 C3 C4 0 0.4944 0.5000 C3 C4 0
a6 0.0002 0.0002 C1 C1 1 0.0613 0.4444 C1 C3 0
a7 0.1402 0.1486 C1 C2 0 0.1224 0.4500 C1 C3 0
a8 0.6078 0.6162 C4 C5 0 0.5500 0.5556 C4 C5 0
a9 0.4762 0.1402 C3 C1 0 0.4944 0.0001 C3 C1 0
a10 0.6722 0.4763 C5 C3 1 0.1224 0.4444 C1 C3 0
s
c
v

4
m

n
d
a
t
i
h
p
m
c

t
t
y
o
t
d
m
o
o
n

4

4

t
i
w
d

Table 3
The class thresholds for the two scenarios in the illustrative example.
Scenario Decision attribute b1 b2 b3 b4

Scenario 1 D1 0.1445 0.3585 0.4800 0.6100
D2 0.1445 0.3585 0.4800 0.6100

Scenario 2 D1 0.1251 0.1807 0.4972 0.5527
D2 0.0028 0.4416 0.4972 0.5527

on D1 was C1 as compared to, respectively, C2 and C5 in the DM’s
udgments.

The marginal value functions inferred for Scenario 1 are pre-
ented in Fig. 4. The imposed monotonicity constraints are re-
pected for the gain (g1) and cost (g2) criteria and the monotonic
omponents of g3. The shapes of marginal value functions on the
different decisions are similar. The differences concern slightly
greater marginal value assigned to performance 3 on g1 for D2
nd to performances 0–2 on g2 and 3–4 on g3 for D1. The non-
ncreasing component for g3 was the same for both decision
ttributes. The marginal value function’s overall course for g3 took
he V-shape with 1 being the least preferred performance.

As the other scenario (Scenario 2), let us consider slightly
odified desired assignments (see Table 1). When compared to
cenario 1, the assignments of a7 on D2 and a6 on D1 were
hanged to, respectively, C3 and C1. Now, only assignments of
lternative a1 could not be reproduced with an assumed model
see Table 2, column v(a∗)) for Scenario 2). The comprehensive
alues and the respective assignments are presented in Table 2
nd the class thresholds are given in Table 3. Similarly as for
cenario 1, we could observe that the classifications on the two
ecision attributes and the relationships between comprehensive
alues attained by each alternative on D1 and D2 are preserved.
or example, a2 is assigned to C2 on D1 and to C1 on D2, because
D1

2 = 0.1807 > UD1
(a2) = 0.1279 ≥ bD

1

1 = 0.1251, bD
2

1 =

.0028 > UD2
(a2) = 0.0001, and UD1

(a2) > UD2
(a2). However,

he primary motivation for considering Scenario 2 is to show the
mpact of eliminating a bias for a non-monotonic criterion (for the
arginal value functions, see Fig. 5). Indeed, when summing up

he non-decreasing and non-increasing components for g3 for de-
ision D2, all performances would be assigned positive marginal
alues. To ensure that the worst performance on g3 (for this
cenario – gD2

3 (a) = 2) was assigned zero, the constructed model
ubtracted a bias tD2

3 = 0.4444. In this way, a comprehensive
alue of the anti-ideal alternative was also zeroed, while not
ffecting the relative comparison of existing alternatives.
To support the comprehension of different types of constraints

efining a set of inter-related sorting models, in Table 4, we
llustrate the use of these constraints in the context of an example
resented in this section. Specifically, for nine different constraint
ypes, we provide their general form, an example constraint for a
7

pecific decision attribute, alternative, criterion, performance, or
lass, and the values assigned in this example constraint to the
ariables by the sorting models inferred for Scenario 2.

. Multi-decision sorting in the context of exposure manage-
ent of nanomaterials

Nanomaterials are particles with a size of several dozen
anometers and physicochemical properties being significantly
ifferent from the materials of larger sizes composed of the same
toms [35]. Due to these specific properties, they can improve
he performance of products in several application areas, includ-
ng energy production and storage [41], water treatment [42],
ealthcare [43], and food preservation [44], to name a few. The
roduction of nanomaterials is based on the manipulation of
aterials at the nanoscale (1–100 nanometers), which requires
aution and protective measures to guarantee their safe handling.

Since nanotechnology is a relatively new scientific field, all
he potentially harmful effects of individual nanomaterials and
hreats resulting from their production and employment are not
et precisely known [45,46]. The research on this subject is still
ngoing, but the safety standards used in nanomaterials produc-
ion are currently mainly adopted from similar chemical pro-
uction processes [37,47,48]. Nevertheless, the safety of nano-
aterials production processes is a pressing issue in the area
f nanotechnology [48,49]. In this perspective, the development
f guidelines for the appropriate selection of precautions for
anomanufacturing would be a beneficial contribution.

.1. Problem definition

.1.1. Criteria
When evaluating nanomanufacturing exposure scenarios,

here are several characteristics of the nanomaterials and operat-
ng conditions that need to be accounted for. In this case study,
e will consider the following ten criteria, which are common
escriptors for this type of scenarios [31,35,48]:

• Particle size (g1) – in general, the smaller the size, the easier
the nanomaterial gets through any filter. Nevertheless, since
nanomaterials have different toxicological profiles according
to their size, it is not yet possible to generalize a monotonic
dependency between size and harmfulness [50].

• Toxicity (g2) determines type of effect the nanomaterial has
on human health [51].

• Airborne capacity (g3) characterizes the engineered nanoma-
terials’ capacity to spread in the workplace through the air
stream. It is scored on 4-point scale from none to high, with
none and high being, respectively, the most and the least
preferred performances [52].
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Fig. 4. Marginal value functions for all criteria and decision D1 and D2 for Scenario 1 of the illustrative example.

8
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Fig. 5. Marginal value functions for all criteria and decision D1 and D2 for Scenario 2 of the illustrative example.

9
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Table 4
Example constraints defining two inter-related sorting models for Scenario 2.
Type Constraint

Comprehensive value of an alternative defined using an additive value function
General constraint form UDs (ai) =

∑m
j=1 u

Ds
j (ai)

Example constraint for D2 and a7 UD2 (a7) = uD2
1 (a7) + uD2

2 (a7) + uD2
3 (a7)

Example values assigned to the model variables 0.4500 = 0.0056 + 0.0 + 0.4444

Constraints on a comprehensive value of an alternative
General constraint form 1 ≥ UDs (ai) ≥ 0
Example constraint for D2 and a7 1 ≥ UD2 (a7) ≥ 0
Example values assigned to the model variables 1 ≥ 0.4500 ≥ 0

The least preferred marginal value for a monotonic criterion of a gain-type
General constraint form uDs

j

(
x1j

)
= 0

Example constraint for D1 , g1 , and x11 = 0 uD1
1 (0) = 0

Example values assigned to the model variables 0 = 0

Monotonicity constraint for a gain-type criterion
General constraint form uDs

j (xkj ) ≥ uDs
j (xk−1

j )
Example constraint for D2 , g1 , x31 = 2, and x21 = 1 uD2

1 (2) ≥ uD2
1 (1)

Example values assigned to the model variables 0.3888 ≥ 0.0056

Monotonicity constraint for a cost-type criterion
General constraint form uDs

j (xkj ) ≤ uDs
j (xk−1

j )
Example constraint for D2 , g2 , x22 = 1, and x12 = 0 uD2

2 (1) ≤ uD2
2 (0)

Example values assigned to the model variables 0.0001 ≤ 0.0556

Marginal value for a potentially non-monotonic criterion
General constraint form uDs

j (xkj ) = uDs
j,nd(x

k
j ) + uDs

j,ni(x
k
j ) − tDs

j

Example constraint for D2 , g3 , and x23 = 1 uD2
3 (1) = uD2

3,nd(1) + uD2
3,ni(1) − tD2

3
Example values assigned to the model variables 0.4444 = 0.4445 + 0.4445 − 0.4446

Constraints between the neighboring thresholds separating decision classes
General constraint form bDs

h ≥ bDs
h−1 + ε

Example constraint for D1 and h = 3 bD1
3 ≥ bD1

2 + ε

Example values assigned to the model variables 0.4972 ≥ 0.1807 + 0.0001

Intra-decision constraints imposed by an assignment example
General constraint form UDs (a∗) ≥ bDs

CDs
DM (a∗)−1

− v(a∗)

Example constraint for a5 → CD1
3 UD1 (a5) ≥ bD1

2 − v(a5)
Example values assigned to the model variables 0.4944 ≥ 0.4416 − 0
General constraint form UDs (a∗) + ε ≤ bDs

CDs
DM (a∗)

+ v(a∗)

Example constraint for a5 → CD1
3 UD1 (a5) + ε ≤ bD1

3 + v(a5)
Example values assigned to the model variables 0.4944 + 0.0001 ≤ 0.4972 + 0

Inter-decision constraint imposed by assignment examples
General constraint form UDs (a∗) ≥ UDt (a∗) + ε − v(a∗)
Example constraint for a7 → CD2

3 and a7 → CD1
1 UD2 (a7) ≥ UD1 (a7) + ε − v(a7)

Example values assigned to the model variables 0.4500 ≥ 0.1224 + 0.0001 − 0
T
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g
d
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• Detection limit (g4) specifies the capacity of the instruments
used for exposure assessment to detect the nanomaterials.
The better the detection limit is, the safer the exposure
scenario is assumed to be [35].

• Exposure limit (g5) indicates the limit of exposure, expressed
on five ranges, for a given exposure scenario. The lower this
limit, the less risk concerning a given exposure is [35].

• Quantity (g6) of a nanomaterial (in kg) handled in a given
scenario. Smaller quantities are preferred as they imply a
smaller chance of exposure [53].

• Engineering controls (g7) is a potentially non-monotonic at-
tribute, specifying a setting in which the nanomanufacturing
tasks are performed. It refers to the combinations of open
(O) or closed (C) system and positive (PP) or negative (NP)
pressure.

• Number of employees (g8) indicates the number of people
required to handle a given exposure scenario. One cannot
define a priori how this attribute is associated with the risk
of an exposure scenario [35].

• Duration of exposure (g9) is negatively associated with the
risk, i.e., the shorter duration is deemed to be less risky [53].
c

10
• Multiple exposures (g10) is related to the frequency of expo-
sure (a scenario is safer in case the number of exposures is
lesser) [54].

he measurement units, preference directions, performance
cales, and encoding of performances for all criteria are provided
n Table 5. In general, there are six criteria of cost type, a sin-
le gain criterion, and three criteria for which the preference
irection is unknown.

.1.2. Alternatives
The considered set of alternatives is composed of exposure

cenarios for nanomanufacturing generated by the JMP soft-
are [35]. They correspond to the existing and future types
f nanomaterials and manufacturing processes. To demonstrate
he proposed method’s applicability, we consider a set of 45
xposure scenarios, denoted by a1 − a45. For their performances,
ee Tables 6 and 7.

.1.3. Multi-decision sorting
The alternatives are holistically evaluated in terms of four de-

ision attributes that could be considered individually. However,
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able 5
set of criteria considered in the risk management of exposure scenarios for

anomanufacturing.
gj Criterion Preference Performance Code

g1 Particle size (nm) none

< 2 1
2–10 2
10–100 3
100–500 4
500–1000 5
> 1000 6

g2 Toxicity cost
Low 1
Moderate 2
High 3

g3 Airborne capacity cost

None 0
Low 1
Moderate 2
High 3

g4 Detection limit gain

None 0
Poor 1
Moderate 2
Good 3

g5 Exposure limit (fiber/cc) cost

< 0.1 1
0.1–0.2 2
0.2–0.5 3
0.5–1.0 4
> 1.0 5

g6 Quantity (kg) cost

< 1 1
1–100 2
100–1000 3
1000–10000 4
> 10000 5

g7 Engineering controls none

O-PP 1
O-NP 2
C-PP 3
O-NP 4

g8 Number of employees none

1–3 1
3–10 2
11–50 3
51–100 4
101–500 5

g9 Duration of exposure (h) cost

incidental 1
< 0.25 2
< 1 3
1–5 4
5–8 5

g10 Multiple exposure (number) cost

none 0
1–3 1
> 3 2
unknown 3

the multiplicity of these attributes, the reference to the same
aspect of production, i.e., safety, and the resulting inter-relations
between the examined decisions form the basis for multi-decision
sorting. Specifically, the decision attributes correspond to four
types of precautions that can be used to reduce the risk. They
concern three main aspects of safety: respirator (D1) represents
personal protective equipment, fume hood (D2) and fume hood
ith HEPA filter (D3) stand for the engineering controls, and HEPA
acuum cleaner (D4) corresponds to the work practices. Let us
ote that a respirator is a form of a mask with a filter that protects
gainst dangerous substances in the air. A fume hood is a type of
entilation system protecting against harmful gases and toxins.
inally, High Efficiency Particulate Air (HEPA) filter is a filter that
as a very high capacity of retaining particles in the range of
everal micrometers and above, as well as below.
For each precaution type, we make decisions about its re-

uirement during the nanomanufacturing process. The holistic
t

11
preference on each decision attribute includes five preference-
ordered classes corresponding to the levels of need for the specific
precaution: required (C1), might be required (C2), optional (C3),
ight be optional (C4), and not required (C5). The reasoning on

he decision attributes is the following: if the exposure scenario
s deemed as risky, then a given precaution will be indicated as
equired. If it is not, then the expert would indicate no need for
he precaution. A non-risky scenario is preferred to the risky one.

.2. Preference information

For forty exposure scenarios (a1 − a40), we consider input
rovided by the health and safety managers in the form of class
ssignments on four decision attributes [35]. The experts were
sked in a survey what precautions should be taken and in what
ntensity they should be used given a set of production parame-
ers and features of the nanomaterials based on those presented
n Table 5. For the scenarios deemed as risky and dangerous by
he specialists, a given precaution is required. In the case of safer
cenarios, the requirements are lower, and the necessity of some
recaution types is not required. For the answers of the experts,
ee Table 9. The numbers of reference alternatives assigned to
ach class for the four decisions are presented in Table 8. The
ost common decisions are ‘‘required" (C1), ‘‘optional" (C3) and

‘not required" (C5), whereas the least chosen classes in the survey
lasses are ‘‘might be required" (C2) and ‘‘might be optional" (C4).
Let us discuss the performances and assignments for the three

xample reference alternatives (a26, a5, and a1). Alternative a26
ttains very favorable performances on four criteria of cost type
2, g6, g9 and g10 and the best performance on gain criterion g4.
s a result, the assigned classes for respirator, fume hood with
EPA filter and HEPA vacuum cleaner are ‘‘not required" and for
ume hood – ‘‘required". Consequently, the most risky evaluation
n terms of fume hood is linked to the performances on g3, g5, and
he potentially non-monotonic criteria. Furthermore, a5 performs
oorly on g2, g3, g4, g5, g9 and g10, which was an important
eason to classify this scenario to C1 (‘‘precaution is required")
or all precaution types. Finally, a1 attains favorable performances
n criteria g2, g3, g4 and g10, while being less advantageous on
riteria g5, g6 and g9. Therefore, its classification for all decisions
s between ‘‘might be required" (C2) and ‘‘optional" (C3).

.3. Research questions

The research goal consists of understanding under which op-
rational conditions and according to which characteristics of the
anomaterials, different types of precautions can be required,
ight be required, are optional, might be optional, or not be

equired. This contribution results in a sorting model capable
f providing decision recommendations on multiple risk man-
gement measures, corresponding to various precautions, for the
ame exposure scenario.
We wish to find a set of additive value functions and class

hresholds that will describe the allocation to a particular class
or each decision attribute based on the scenario described in
erms of a set of ten criteria/attributes. Such a preference model
s expected to capture the patterns from experts’ choices. Then,
e will demonstrate that these discovered regularities can be
sed to support decision making. Thus, the inferred preference
odel involving intra- and inter-decision relations will be used

o classify a set of non-reference exposure scenarios.
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erformance matrix of the reference exposure scenarios a1 − a40 (↑ and ↓ indicate gain and cost criteria, respectively; – denotes criteria without a pre-defined
reference direction).

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
– ↓ ↓ ↑ ↓ ↓ – – ↓ ↓ – ↓ ↓ ↑ ↓ ↓ – – ↓ ↓

a1 4 1 0 3 3 4 3 5 4 1 a21 6 1 2 2 2 3 1 4 4 1
a2 5 2 0 0 2 4 1 2 3 1 a22 6 1 3 0 5 3 3 1 2 1
a3 5 2 3 2 4 1 2 5 5 0 a23 4 1 0 3 4 2 1 1 3 2
a4 4 1 3 2 3 4 2 4 3 2 a24 6 3 2 1 5 5 2 3 5 0
a5 1 3 3 0 3 1 2 2 4 3 a25 2 1 2 0 1 4 4 4 2 0
a6 3 1 1 0 4 5 1 4 1 3 a26 1 1 2 3 2 1 3 3 1 0
a7 3 1 1 1 2 3 2 3 3 3 a27 1 1 2 1 1 2 2 2 3 1
a8 4 3 3 1 1 1 4 3 3 0 a28 6 2 2 2 5 4 1 1 1 2
a9 4 2 0 1 5 5 1 1 5 1 a29 5 1 1 3 4 3 1 1 1 1
a10 2 1 3 2 1 5 1 3 4 3 a30 2 3 1 2 5 2 2 1 1 1
a11 2 2 3 0 1 3 2 3 5 2 a31 6 2 2 2 3 3 4 2 2 3
a12 4 2 1 1 1 3 4 1 4 3 a32 6 2 0 0 1 2 2 1 3 0
a13 1 1 3 3 4 5 1 2 2 0 a33 5 1 0 1 3 5 2 4 2 2
a14 6 1 0 2 4 1 3 3 4 3 a34 1 3 1 2 3 3 2 1 4 0
a15 2 3 0 1 3 4 3 1 4 0 a35 6 1 2 3 4 2 2 3 3 2
a16 6 3 1 3 3 1 1 4 5 0 a36 5 3 2 1 2 4 4 5 5 3
a17 6 1 0 2 2 2 3 5 4 0 a37 5 3 2 3 1 2 3 1 2 3
a18 1 1 3 2 1 5 1 5 5 1 a38 4 2 3 3 2 1 2 2 2 1
a19 1 1 1 2 2 3 2 2 1 0 a39 2 1 0 0 5 4 2 5 1 3
a20 6 1 1 0 1 1 4 5 2 0 a40 6 2 1 0 2 4 1 3 4 2
Table 7
Performance matrix of the non-reference exposure scenarios a41 − a45 (↑ and
↓ indicate gain and cost criteria, respectively; – denotes criteria without a
pre-defined preference direction).

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
– ↓ ↓ ↑ ↓ ↓ – – ↓ ↓

a41 5 2 3 2 3 3 3 3 1 2
a42 2 1 0 2 2 2 2 2 2 3
a43 5 1 0 1 0 4 1 1 2 3
a44 0 2 2 0 3 3 0 3 2 1
a45 1 1 2 2 3 4 2 0 4 2

4.4. Results

4.4.1. Marginal value functions
The marginal value functions for the ten criteria and four

ecision attributes are presented in Figs. 6 and 7. They pre-
erve the imposed monotonicity constraints. In particular, the
arginal value function u2 for the cost-type criterion toxicity is

non-increasing, i.e., a value assigned to the ‘‘moderate" perfor-
mance is always greater than to the ‘‘high" performance and equal
or lesser (depending on the decision attribute) than the value
corresponding to the ‘‘low" toxicity (see Fig. 6). Similarly, the
marginal value function u4 for the gain-type criterion detection
limit is non-decreasing. It assigns a strictly greater value to ‘‘poor"
than to ‘‘null" performance, and exhibits a stable or a slightly
increasing trend from ‘‘poor" through ‘‘moderate" to ‘‘good" de-
tection limit (see Fig. 6). On the contrary, the marginal value
functions for the criteria with unknown monotonicity exhibit a
non-monotonic trend. For example, the least marginal value on
u1 does not correspond to either of the extreme performances
(see Fig. 6). However, the corresponding non-decreasing and non-
increasing components adhere to the monotonicity constraints.

The impact of each criterion on the recommended decision
can be estimated with the maximal share of each criterion in
the comprehensive value (see Table 10). The greatest shares
correspond to: for respirator – airborne capacity and detection
limit, for fume hood – particle size and airborne capacity, for fume
hood with HEPA filter – airborne capacity, and for HEPA vacuum
cleaner – exposure limit and airborne capacity. The values of bias
for all non-monotonic criteria are given in Table 11. They allowed
normalizing the performance of an anti-ideal alternative to zero,
as described in Section 2.
12
For the marginal value function u1 for particle size, the greatest
value is assigned to the size greater than 1000 nm for all decisions
but fume hood with HEPA filter, for which the greatest value is
attained for the size of lesser than 2 nm. The function is of ‘‘W"
shape for respirator, fume hood with HEPA filter and HEPA vacuum
cleaner with a significant peak corresponding to sizes of 10 −

100 nm or 100 − 500 nm. Such a shape is implied by the largest
decrease of value for the non-increasing component observed
between sizes 10–100 nm, 100–500 nm, and 500–1000 nm, and
the largest increase of value for the non-decreasing component
observed for sizes between 2–10 nm, 10–100 nm, and 100–
500 nm. For fume hood, the shape of u1 is similar to ‘‘V", and the
zero value is assigned to the intermediate size.

The value function u2 for toxicity indicates a negligible dif-
ference between the low and moderate performances. Such a
difference is slightly greater only for HEPA vacuum cleaner. Intu-
itively, the precautions are less required with low toxicity. This
criterion has a very low impact on the comprehensive value
when considering respirator and fume hood. This means that this
precaution type is needed even with low toxicity.

Airborne capacity has a very significant impact on the alterna-
tives’ assignments. The ‘‘null" performance vastly contributes to
reducing the requirement of a given precaution type. In addition,
for fume hood the value differences between performances ‘‘null"
and ‘‘low" or ‘‘moderate" and ‘‘high" are very marginal or non-
existing. Thus, in this case, only the difference between ‘‘low"
and ‘‘moderate" matters. For the remaining decision attributes,
the difference between ‘‘moderate" and ‘‘high" and ‘‘low" and
‘‘moderate" are huge.

The shapes of marginal value functions for detection limit (u4)
reveal high discrepancy between the decisions, even if they are
similar in terms of a general trend. For fume hood, this criterion
has almost no effect on the comprehensive value, whereas for
respirator – the impact of g4 is significant. The main difference
in terms of a trend is that for fume hood with HEPA filter, the
difference between values assigned to ‘‘poor" and ‘‘moderate" or
‘‘good"’ detection limits is negligible, whereas for the respirator
and HEPA vacuum cleaner it is around 0.025.

Analogously, the slight differences in the shapes of value func-
tions for various decision attributes can be observed for the
exposure limit (u5). For respirator, fume hood with HEPA filter, and
HEPA vacuum cleaner, the greatest value difference is between the
performances of < 0.1 and 0.1−0.2, whereas for fume hood – the
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Fig. 6. Marginal value functions for criteria g1 – g6 for four decision attributes.
Table 8
The number of reference alternatives assigned to a given class on four decision attributes.
Decision Respirator (D1) Fume hood (D2) Fume hood with HEPA vacuum

HEPA filter (D3) cleaner (D4)

‘‘Required" (C1) 8 27 10 6
‘‘Might be required" (C2) 3 3 4 6
‘‘Optional" (C3) 14 5 14 17
‘‘Might be optional" (C4) 3 2 2 2
‘‘Not required" (C5) 12 3 10 9
t
e
—

most significant difference is between the limits of 0.1− 0.2 and
.2−0.5. In addition, for all types of precautions but HEPA vacuum
leaner, the marginal value assigned to performances at least 0.2
s close to zero.
13
The marginal value function for quantity (u6) indicates that
he production of small quantities of nanomaterial is consid-
red less risky. In contrast, for the mass production above 1kg
the marginal values are close to zero. The production of a
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Fig. 7. Marginal value functions for criteria g7 – g10 for four decision attributes.
t
p

v
c
f
f
f
a
f
t
s

mall amount of nanomaterial reduces the chance of exposure.
t higher manufacturing loads, the chances of accidental or un-
esired contact are higher. In the context of fume hood, g6 has
o significant impact on the comprehensive value, and for each
uantity produced, this precaution is required.
The marginal value functions for the engineering controls (u7)

ndicate that the closed systems are safer than open ones, par-
icularly those with the negative pressure. The most desired
onfiguration depends on the decision attribute. Fume hood is
ore required in the closed system, and for the remaining types
f precautions, an open system with negative pressure is the
ost needed. The non-decreasing component (und

7 ) is prevailing,
mplying high marginal values for the closed systems, whereas
14
he non-increasing component (uni
7 ) assigns low values to all

ossible configurations of the engineering controls.
The marginal functions for the number of employees (u8) re-

eal a slightly different shape for each decision attribute. We
an observe two main peaks corresponding to 3–10 employees
or respirator and HEPA vacuum cleaner or 51–100-employees
or respirator, HEPA vacuum cleaner and fume hood with HEPA
ilter. The performances with the least assigned marginal value
re 11–50 employees for respirator, HEPA vacuum cleaner, and
ume hood with HEPA filter or 101–500 employees for respira-
or, fume hood, and fume hood with HEPA filter. For all deci-
ion attributes, the values assigned to 101–500 employees are
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T
C

able 9
lass assignments provided by the experts for reference alternatives and their comprehensive values for four decision attributes.

i / j C
Dj
DM (ai) UDj (ai) i / j C

Dj
DM (ai) UDj (ai)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

a1 3 2 2 3 0.4539 0.2134 0.5800 0.5502 a21 3 2 3 3 0.4874 0.3970 0.4894 0.4773
a2 2 1 2 2 0.4039 0.3493 0.4207 0.3707 a22 1 1 1 1 0.3445 0.3742 0.3493 0.2993
a3 1 1 2 2 0.3445 0.0668 0.4207 0.3707 a23 3 1 3 3 0.4607 0.3742 0.4922 0.4773
a4 1 1 1 3 0.2296 0.0835 0.2772 0.3779 a24 3 1 1 1 0.4231 0.3037 0.3476 0.2588
a5 1 1 1 1 0.1954 0.0382 0.1881 0.2330 a25 5 1 5 5 0.5659 0.3742 0.5708 0.5559
a6 3 1 3 3 0.4231 0.3742 0.4312 0.3779 a26 5 1 5 5 0.7060 0.3742 0.7145 0.5559
a7 3 1 3 3 0.4231 0.3742 0.4279 0.3779 a27 5 1 5 5 0.5659 0.1814 0.5708 0.5639
a8 3 1 3 3 0.4874 0.3742 0.4922 0.4773 a28 4 4 4 4 0.5772 0.5255 0.4300 0.3405
a9 3 1 5 3 0.4231 0.3628 0.5708 0.3779 a29 4 4 4 4 0.5551 0.5245 0.5598 0.4845
a10 1 1 1 3 0.3445 0.2464 0.2929 0.3779 a30 3 3 3 2 0.4500 0.5171 0.4417 0.3548
a11 1 1 1 1 0.1639 0.2534 0.2019 0.2420 a31 5 1 3 3 0.6738 0.3742 0.4279 0.4773
a12 5 5 5 5 0.5659 0.5957 0.5877 0.5867 a32 5 5 5 5 0.5659 0.6721 0.5708 0.5559
a13 5 1 3 3 0.5659 0.0783 0.4279 0.4411 a33 4 1 3 3 0.4988 0.2745 0.4574 0.4773
a14 5 3 5 5 0.5659 0.4622 0.5708 0.5559 a34 3 1 3 3 0.4874 0.3742 0.4922 0.4640
a15 3 1 3 3 0.4874 0.3742 0.4922 0.4773 a35 2 1 1 2 0.4159 0.3199 0.3493 0.3707
a16 5 3 5 5 0.5659 0.4619 0.5708 0.5559 a36 2 1 1 2 0.3975 0.2850 0.2609 0.3064
a17 5 3 5 5 0.6526 0.5171 0.5815 0.6206 a37 5 1 3 3 0.6244 0.2875 0.4279 0.4773
a18 3 1 3 3 0.4231 0.1845 0.4442 0.4773 a38 3 1 3 3 0.4589 0.1570 0.4854 0.4114
a19 5 3 5 5 0.7145 0.4794 0.6035 0.5948 a39 1 1 1 1 0.3290 0.3591 0.3493 0.2993
a20 3 2 2 2 0.7145 0.6815 0.7145 0.6801 a40 1 5 1 1 0.3445 0.5957 0.3331 0.2993
Table 10
The maximal shares of the individual criteria in the comprehensive values (in %) for four decision attributes.
Criterion Respirator (D1) Fume hood (D2) Fume hood with HEPA vacuum

HEPA filter (D3) cleaner (D4)

Particle size (g1) 10.22% 20.6% 7.32% 6.18%
Toxicity (g2) 3.58% 0.79% 12.04% 9.97%
Airborne capacity (g3) 17.5% 18.15% 21.82% 16.44%
Detection limit (g4) 15.27% 0.44% 8.87% 12.58%
Exposure limit (g5) 12.24% 11.91% 9.5% 20.57%
Quantity (g6) 3.56% 0.59% 12.88% 6.09%
Engineering controls (g7) 9.4% 16.26% 5.73% 7.7%
Number of employees (g8) 7.93% 14.65% 4.22% 10.22%
Duration of exposure (g9) 11.66% 14.21% 4.29% 2.58%
Multiple exposure (g10) 8.58% 2.35% 13.28% 7.63%
Table 11
Values of bias for each non-monotonic criterion for all decision attributes.
Criterion Respirator (D1) Fume hood (D2) Fume hood with HEPA vacuum

HEPA filter (D3) cleaner (D4)

Particle size (g1) 0.10 0.03 0.07 0.04
Engineering controls (g7) 0.01 0.01 0.01 0.01
Number of employees (g8) 0.09 0.11 0.06 0.11
smaller than those associated with 51–100 employees. The non-
increasing (uni

8 ) and non-decreasing (und
8 ) components explain

why the resulting marginal functions differ across various de-
cisions. For respirator, the non-decreasing component increases
only between 3–10 and 11–50 employees, whereas the functions
for the remaining decisions in this performance area are stable.
In turn, they increase for the number of employees between 1–3
and 3–10 and between 11–50 and 51–100.

The duration of exposure (u9) is particularly important in the
context of respirator and fume hood. When the time exceeds one
hour, there is a greater safety concern, and thus all precautions
are more required. A short duration of exposure can motivate the
reduction of safety requirements.

The analysis of marginal functions for the number of exposures
(u10) indicates that if the exposures are non-existing, the marginal
value is high, hence leading to the assignment to a less risky class
for all decision attributes. In case there is at least one exposure,
the respirator is more required. The precautions involving the
HEPA filter are required when three exposures are exceeded.
In turn, fume hood is equally necessary for all values when the
number of exposures is known, and the marginal functions attain
zero when the value of this criterion cannot be determined.
15
In general, the marginal value functions for the decision at-
tributes concerning the use of the HEPA filter are similar for
the airborne capacity, detection limit, quantity, engineering con-
trols, duration of exposure, and number of exposures. In turn, the
marginal functions corresponding to the two fume hoods differ
on all criteria. This may suggest that these two precautions are
complementary, and depending on the conditions, one should
choose the fume hood either with the filter or without it. Finally,
the functions for the respirator are more similar to those derived
from the analysis for the HEPA vacuum cleaner and fume hood with
HEPA filter than for the fume hood.

4.4.2. Class assignments for the reference alternatives
The comprehensive values and class assignments for the forty

reference alternatives with respect to the four decision attributes
are provided in Table 9. The constructed model reproduced the
desired assignments for all reference exposure scenarios but a1,
a20, and a28. These alternatives form the minimal subset that
had to be removed to impose the consistency of the experts’
judgments with an assumed preference model. The comparison
of desired and resulting assignments for these three exposure

scenarios is given in Table 12. For example, the inferred model
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able 12
lass assignments derived with the constructed preference model for the
eference alternatives, not aligning with the ones desired by the experts.

i / j C
Dj
DM (ai) CDj (ai)

1 2 3 4 1 2 3 4

a1 3 2 2 3 3 1 5 4
a20 3 2 2 2 5 5 5 5
a28 4 4 4 4 5 4 3 2

Table 13
Class thresholds separating the five preference-ordered classes for four decision
attributes.

Dj b
Dj
1 b

Dj
2 b

Dj
3 b

Dj
4

D1 0.3480 0.4195 0.4909 0.5624
D2 0.3778 0.4492 0.5207 0.5921
D3 0.3529 0.4243 0.4958 0.5672
D4 0.3028 0.3743 0.4809 0.5524

evaluated alternative a20 as ‘‘not required" (C5) for all decision
lasses, while the experts indicated that it should be ‘‘optional"
nd ‘‘might be required". This was implied by the most preferred
r nearly the best performances on the monotonic criteria g2, g3,

g5, g6 and g10, as well as the performances on the non-monotonic
criteria g1 and g7 that were assigned the greatest marginal values
according to the constructed model.

The thresholds separating the decision classes on a scale of a
comprehensive value for all decisions are given in Table 13. Let
us remind that the range delimited by these thresholds in which
a comprehensive value of a given alternative falls determines
its assignment to the respective class. For example, UD1 (a2) =

0.4039 is not lesser than bD1
1 = 0.3480 and lesser than bD1

2 =

0.4195, which allows to reproduce the assignment of a2 to C2
provided by the experts. Although these thresholds have similar
values for various decision attributes, we can observe that, e.g., on
D4, they are by 0.04 − 0.07 lower than on D2.

4.4.3. Inter-decision relationships
Let us focus on the inter-decision relationships implied by the

specificity of the considered multi-decision sorting problem. The
impact of the individual criteria on the comprehensive values as
well as the relations between the latter ones for different deci-
sion attributes are demonstrated in Fig. 8 for the four reference
alternatives (a9, a3, a13, and a33).

For example, a9 was assigned to C5 for D3, to C3 for D1 and
D4, and to C1 for D2. This information can be interpreted in
such a way that when considering different types of precautions
in the context of a9, their ranking is the following: fume hood
with HEPA filter (D3), respirator (D1) and HEPA vacuum cleaner
(D4), fume hood (D2). Such a ranking is reflected in the compre-
hensive values on the respective decision attributes: UD3 (a9) >

UD1 (a9),UD4 (a9) > UD2 (a9). The analysis of marginal values
for a9 indicates that, depending on the decision context, the
same performance can yield very different contributions to the
comprehensive values. This, in turn, may result in the extreme as-
signments for various decision attributes (e.g., the most preferred
class on D3 and the least preferred class on D2). The compre-
hensive value of a9 for fume hood with HEPA filter (D3) is equal
to 0.5707. Such a great value is implied mainly by the following
high contributions from the individual criteria: uD3

2 (a9) = 0.1065,
uD3
3 (a9) = 0.1956, uD3

4 (a9) = 0.0767, and uD3
10 (a9) = 0.0928. In

turn, for fume hood, despite a slightly higher value for uD2
8 (a9) =

0.1406, the marginal value of a9 derived from uD2
5 (a9), u

D2
6 (a9), and

uD2
9 (a9) are nearly zero. As a result, comprehensive value is lower

(0.3627) than for other decision attributes.
16
The desired assignments of a3 were either C2 on D3 and D4
or to C1 on D1 and D2. Consequently, its comprehensive values
on all decision attributes are relatively low, while being slightly
higher for the fume hood with HEPA filter and HEPA vacuum
cleaner than for the respirator or fume hood. The assignments
to classes representing more risky scenarios are mainly due to
the low marginal values from the following criteria: airborne
capacity (u3), exposure limit (u5), engineering controls (u7), number
of employees (u8), and duration of exposure (u9). The differences
n the assignments on D1 and D3 can be explained, e.g., with
espect to toxicity (uD1

2 = 0.0344 and uD3
2 = 0.1065) and quantity

uD1
6 = 0.0356 and uD3

6 = 0.1155), making the respirator ‘‘re-
uired" with a comprehensive value of 0.3444 and fume hood with
EPA filter – ‘‘might be required" with a greater comprehensive
alue of 0.4207. When it comes to fume hood, a3 attained very
ow values on all criteria, making it ‘‘required". In case of HEPA
acuum cleaner, a higher value justifying an assignment to C2
s implied by the significant contributions from the following
riteria: toxicity, airborne capacity, detection limit, exposure limit,
umber of employees, and multiple exposure.
The difference in marginal values assigned to the same per-

ormances for various decision attributes as well as the inter-
ecision relationships between comprehensive values implied by
he experts’ assignments can be also observed for a13 and a33 (see
ig. 8). On the one hand, the comprehensive values of a13 range
rom 0.0783 for D2 to 0.5659 for D1. On the other hand, the large
ifferences in marginal values assigned to a33 on various decision
ttributes for toxicity, detection limit, number of employees, and
uration of exposure imply that it can be assigned to classes

ranging from C1 for D2 to C4 for D1. As a result, the ranking of
precautions associated with a33 in terms of safety requirements
(starting from the least required) reproduced by the constructed
model is as follows: respirator, fume with HEPA filter and HEPA
vacuum cleaner, fume hood.

4.4.4. Intra-decision relationships
To justify the assignments of alternatives to the respective

classes, in Fig. 9, we demonstrate the comprehensive values of
selected exposure scenarios and class thresholds. For each deci-
sion attribute, we depicted a single alternative assigned to each
class. The comprehensive values of exposure scenarios assigned
to better classes are greater than for the alternatives assigned to
the classes associated with greater risk. For example, the follow-
ing relations between comprehensive values on D1: UD1 (a37) >

UD1 (a33) > UD1 (a7) > UD1 (a2) > UD1 (a4) reflect the expert
judgments. Let us explain a few example assignments in terms
of marginal values attained on the respective criteria and the
comparison of comprehensive values with the class thresholds.

When it comes to the evaluation of a2 in terms of respirator
(D1), it attains the greatest marginal values for airborne capac-
ity (uD1

3 (a2) = 0.1750) and number of employees (uD1
8 (a2) =

0.0793). However, its negligible marginal values derived from
detection limit (uD1

4 (a2) = 0), quantity (uD1
6 (a2) = 0.0014),

duration of exposure (uD1
9 (a2) = 0.0048), and multiple exposure

(uD1
10 (a2) = 0.0065) imply a relatively small comprehensive value.

Since bD1
1 = 0.3480 ≤ UD1 (a2) = 0.4039 < bD1

2 = 0.4195, a2
is assigned to C2 on D1. As far as a4 is concerned, it attained zero
marginal values on a few criteria and very low values on other cri-
teria (uD1

3 (a4) = 0, uD1
5 (a4) = 0.0028, uD1

6 (a4) = 0.0014, uD1
7 (a4) =

0, and uD1
10 (a4) = 0.0014). Therefore, despite high values for

toxicity (uD1
2 (a4) = 0.0358) and detection limit (uD1

4 (a4) = 0.1495),
it is assigned to C1 due to UD1 (a4) = 0.2296 < bD1

4 = 0.3480.
When comparing the assignments of a14 and a40 in terms of

fume hood (D ), these alternatives perform similarly on g , g ,
2 1 2
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Fig. 8. Marginal and comprehensive values and class assignments demonstrating the inter-decision relationships for four reference exposure scenarios in terms
of four decision attributes (Respirator – D1 , Fume hood – D2 , Fume hood with HEPA filter – D3 , and HEPA vacuum cleaner – D4).
g3, and g8 (e.g., uD2
1 (a14) = 0.1976 and uD2

1 (a40) = 0.1976 or
D2
2 (a14) = 0.0076 and uD2

2 (a40) = 0.0062). However, the more
dvantageous performances of a40 on g5, g7, and g10 imply that
t is assigned to C5 as compared to C3 for a14. Even though a2
ttains comparable marginal values to a40 on six criteria (g2, g3,
4, g5, g6, and g7), it is significantly less preferred on g1 and g8
e.g., uD2

1 (a2) = 0.0182 < uD2
1 (a40) = 0.1976). As a result, a2 has a

ery low comprehensive value (UD2 (a2) = 0.3492), justifying the
assignment to the least preferred class C1.

4.5. Classification of the non-reference alternatives

The model inferred from the analysis of reference alternatives
can be used to classify other exposure scenarios. Thus, we first
used expert knowledge to build a preference model. The latter is
subsequently applied to evaluate other alternatives in a way that
is consistent with the experts’ value system and hence could be
accepted by them. In this way, the proposed method can support
nanomaterials’ exposure management, suggesting the reasons for
concern regarding some nanomanufacturing tasks performed by
the workers [47,55].

For this purpose, let us consider five non-reference alterna-
tives presented in Table 7. Their comprehensive values and the
17
Table 14
Comprehensive values and class assignments for the non-references alternatives
for the four decision attributes.
ai / Dj CDj (ai) UDj (ai)

1 2 3 4 1 2 3 4

a41 3 2 1 3 0.4701 0.4202 0.2204 0.3781
a42 4 1 3 3 0.5168 0.2631 0.4892 0.4362
a43 5 3 3 5 0.6445 0.5061 0.4890 0.5936
a44 1 1 1 1 0.2470 0.1031 0.3468 0.2763
a45 2 1 2 3 0.3878 0.2019 0.4150 0.3893

respective class assignments are given in Table 14. Since the
comprehensive values attained by these alternatives differ vastly
from one decision attribute to another, the suggested classes
differ too. For example, a42 is assigned to C1 on D2, to C3 on D3
and D4, and to C4 on D1, whereas the classes for a43 range from
C3 on D2 and D3 to C5 on D1 and D4. Note, however, that although
the comprehensive values of a44 differ with respect to various
precaution types, they are all very low, justifying the assignment
to C1 on all decision attributes.

For the five non-reference alternatives, the contribution of
the individual criteria in the comprehensive values, as well as
the assignments derived from the comparison of comprehensive
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Fig. 9. Marginal and comprehensive values and class assignments demonstrating the intra-decision relationships for five reference exposure scenarios in terms of four
decision attributes.
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values with class thresholds, are presented in Fig. 10. Let us
justify the assignments obtained for two selected non-reference
exposure scenarios (a43 and a45).

When it comes to a43, it is assigned to C3 on D2 and D3 and
o C5 on D1 and D4. This alternative attains the extreme values
n different criteria. However, it performs relatively well on the
riteria with a significant impact on the classification, i.e., g3, g4
nd g5, which justifies its relatively high comprehensive values.
hey are slightly lower for fume hood (D2) and fume hood with
EPA filter (D3) mainly due to either zero (uD2

8 (a43) = 0) or
egligible (uD3

8 (a43) = 0.0027) contribution of the number of
mployees (g8). This criterion forms an example of the direction in
hich the health managers should work to verify if any of them
an be improved to increase a comprehensive value and justify
he assignment to a less risky class for all decision attributes.

As far as the evaluation of a45 is concerned, it attains high or
oderate marginal values on g2, g3, g4, g7, and g8 when assessed

n terms of D1, D3, and D4. This allows exceeding the lower
hreshold of class C2 for these decision attributes. When it comes
o D2, the significant contribution to the overall quality of a45 is
ffered only by g8, implying the assignment to the least preferred
lass C1. A comprehensive evaluation of a45 as ‘‘optional" given
18
EPA vacuum cleaner (D4) is justified mainly by the value added
y quantity (g5). Nevertheless, the indication of class at most C3
or all decision attributes can be perceived as a ‘‘safety warning
lag", suggesting that this exposure scenario should be prioritized.
n general, the greater risk associated with the respective class,
he greater attention should be paid to its further investigation.
he marginal value functions for which the alternative attains
ery low values should be analyzed to identify the performance
odifications offering a significant increase of the comprehensive
alue.
In the e-Appendix (supplementary material available online),

e compare the method introduced in this paper with the one
e proposed in [31]. We also collate the outcomes obtained

or the case study with both methods. This required a suitable
ethodological extension of the approach presented in [31] to
multi-decision setting considered in this work.

. Conclusions and future work

We considered and formalized a new problem of multi-
ecision sorting in Multiple Criteria Decision Analysis. In this
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Fig. 10. Marginal and comprehensive values for the five non-reference protocols in terms of four decision attributes.
problem, besides performances on multiple criteria, each alterna-
tive gets evaluated in terms of multiple decision attributes involv-
ing pre-defined preference-ordered classes. To solve such a prob-
lem, one needs to construct a set of individual sorting models, one
for each decision attribute. They should reflect both intra-decision
dependencies between the assignments of different alternatives
and inter-decision dependencies between the classes desired for
the same alternative on various decision attributes.

We have proposed a preference disaggregation method for
dealing with the multi-decision sorting. In this approach, the DM
is expected to assign a subset of reference alternatives to a single
class for each decision attribute by indicating the quality or risk
level on the pre-defined scale for all decision attributes. Such
indirect preference information is used to learn a set of inter-
related models composed of an additive value function and class
thresholds separating the decision classes on a comprehensive
value scale. The preference modeling involves intra- and inter-
decision constraints intending to reproduce the assignments of
as many reference alternatives as possible.

The proposed framework has been extended with a novel pro-
posal for dealing with criteria for which the preference direction
cannot be specified a priori. Explicitly, a marginal value function
for each non-monotonic criterion is represented as a sum of
19
non-decreasing and non-increasing components. In this way, the
resulting marginal function can take any arbitrary shape. Hence
it can represent local monotonicity relationships in different re-
gions of the performance scale. The interpretability of the model
is enhanced by the monotonicity of non-decreasing and non-
increasing components, as well as normalization imposed by the
subtraction of biases, guaranteeing that an anti-ideal alternative
would attain a zero comprehensive value.

The introduction of a new type of multiple criteria problem
and the dedicated methodology have been motivated by the pe-
culiarity of nanomaterials’ exposure management. In this context,
each exposure scenario is described in terms of various character-
istics of a given nanomaterial and working conditions related to
its production. However, it is also evaluated in terms of different
safety measures corresponding to various types of precautions.
Each precaution can be modeled as a decision attribute capturing
the potential level of concern related to a nanomanufacturing
scenario. We have considered four inter-related precautions rep-
resenting personal protective equipment, engineering controls,
and work practices.

The analysis of desired assignments provided by the health
and safety managers for forty exposure scenarios allowed us to
construct four inter-related classification models. These models
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aptured some patterns and regularities from experts’ judgments
or risk management in nanomanufacturing. In particular, the
ighest maximal share in the comprehensive values of alterna-
ives was attributed to airborne capacity, detection limit, and
xposure limit. Furthermore, the high variability of marginal val-
es assigned to different performances on the same criterion
ndicated the directions for analysis of nanomanufacturing pro-
esses to reduce the risk level by vastly increasing the marginal
alue with a small modification of performance. For example,
e can consider changing the toxicity from high to moderate,
ecreasing the airborne capacity from high to moderate or low,
ecreasing the exposure limit to less than 0.1 fiber/cc, reducing
he quantity to less than 1kg, or nullifying multiple exposures.
ven though the shapes of marginal value functions related to
arious decision attributes were similar for most criteria, some
ifferences revealed the peculiarities of the risk management
n the context of incorporating the respirator, fume hood with
nd without the HEPA filter, or HEPA vacuum cleaner. For ex-
mple, the marginal functions for the precautions involving the
EPA filter were very similar, which is probably related to the
otable reliance on this type of filter to reduce the potential
oncern during the production processes. On the contrary, the
unctions for fume hood with or without the HEPA filter were
ather different, confirming their complementarity. We have also
emonstrated that the constructed model can support decision-
aking by applying it to the classification of five non-reference
xposure scenarios with unknown risk levels. These sorting mod-
ls could thus be used to provide decision recommendations
n multiple risk management measures – corresponding to var-
ous types of precautions – for nanomanufacturing processes,
specially those where there is still high uncertainty in the opera-
ional conditions as well as the physicochemical and toxicological
haracteristics of the nanomaterials.
The potential extensions of the proposed method are four-

old. The motivation for the first development comes from a large
umber of constraints imposed by the intra- and inter-decision
elationships and the use of binary variables that are needed to
ind the largest subset of reference alternatives for which an as-
umed model can reproduce the expert judgments. These factors
mply that the proposed method, requiring a mathematical pro-
ramming solver, cannot be applied in problems with thousands
f alternatives and hundreds of decision attributes. An adaptation
o such a setting would require the development of heuristic
lgorithms incorporating the machine learning techniques. As
pposed to the proposed framework, they should not attempt to
ind an accurate, optimal solution, searching instead for a highly
atisfactory model in an approximate way.
Secondly, the marginal functions for which the monotonic-

ty direction cannot be pre-defined can be modeled differently
ithout incorporating the non-decreasing and non-increasing
omponents. In particular, the proposed methodology remains
alid when the functions for potentially non-monotonic criteria
re inferred to minimize either the number of changes in mono-
onicity [31] (see e-Appendix) or the sum of changes in slopes [30,
6]. Similarly, the framework remains valid with threshold-based
orting procedures incorporating other preference models to com-
ute alternatives’ scores than an additive value function (e.g., the
hoquet integral [57,58]).
Thirdly, the proposed method can be extended with the ro-

ustness analysis framework [4,23,58]. In this approach, one
hould account for all compatible multi-decision sorting mod-
ls instead of a single representative one. Then, one should
apture the potential variability of assignments for the non-
eference alternatives given the multiplicity of analyzed models
onsistent with the DM’s judgments. Such an approach can be
20
extended to analyze all maximal subsets of reference alterna-
tives for which the provided assignments are consistent with an
assumed model [59].

Finally, the idea of evaluating each alternative with a set of
inter-related preference models can be adjusted to other problem
types. For example, various value functions can be used to assess
the suitability of a given alternative to be assigned to the groups
of alternatives exhibiting different characteristics and being sim-
ilar in terms of the DM’s preferences. Then, it should be placed
in a group for which the attained comprehensive value is the
greatest. Such an approach could provide a novel way of dealing
with multiple criteria nominal classification [60].
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