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Abstract. Persistent homology analysis provides means to capture the
connectivity structure of data sets in various dimensions. On the mathe-
matical level, by defining a metric between the objects that persistence
attaches to data sets, we can stabilize invariants characterizing these
objects. We outline how so called contour functions induce relevant met-
rics for stabilizing the rank invariant. On the practical level, the stable
ranks are used as fingerprints for data. Different choices of contour lead
to different stable ranks and the topological learning is then the question
of finding the optimal contour. We outline our analysis pipeline and
show how it can enhance classification of physical activities data. As our
main application we study how stable ranks and contours provide robust
descriptors of spatial patterns of atmospheric cloud fields.

Keywords: Persistent homology · Topological learning · Stable rank ·
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1 Persistence pipeline

1.1 Modelling data spaces

Topological data analysis (TDA) and particularly its subfield persistent homology,
or persistence, aim at quantifying the global connectivity structure of data sets [1–
3]. Given a set of data points it is often possible to endow it with some reasonable
notion of relation between points, e.g. distance measure or correlation. Study
of the connectivity is facilitated by first combining points into larger entities
called simplices. A k-simplex is a declared subset of k+ 1 related points from the
data set. Collection of simplices makes up a simplicial complex C, namely it is a
collection of certain subsets of the data. Requirements are that if σ is a simplex
in C then any subset of σ is also a simplex in C and that the intersection of two
simplices is a simplex or the empty set. Above we have described an abstract
simplicial complex. Simplices can always be realized geometrically in some Rn as
convex hulls of their vertices: 0-simplices as points, 1-simplices as line segments,
2-simplices as filled triangles, 3-simplices as filled tetrahedra etc.

Simplicial complex is hence a model of the relational structure in the data.
Relational structure can be modelled by a graph but graphs only consider pairwise
relations between points. In many cases it makes sense to use higher-dimensional
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connectivity instead modelled with simplices. As a justification consider the
example explained in Fig. 1. More fundamental reason is that the simpicial
approach views data as spaces spanned by their points and enables the use of
powerful mathematical machinery of algebraic topology for the analysis of these
spaces, as will be outlined in the following section.
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Fig. 1: Simplicial model of social relations. To model relations between k+1 points
it is reasonable to use k-simplex for the purpose. Here the relations between
{Arya, Bran, Jon} is depicted by the 2-simplex represented by the purple triangle.
From the point of view of TDA the prominent feature of this data is the single
loop structure, whereas a graph would see two loops (the closed path (Arya,
Bran, Jon) spanning the other loop in this case).

For persistence analysis we define the relation to be a function R on the
data with values in R = [0,∞), i.e. R(x, y) 7→ t ∈ R for data points x and y.
Concretely we say that k + 1 data points xi create a k-simplex at scale t if the
points satisfy pairwise R(xi, xj) ≤ t. This construction is called the Vietoris-Rips
simplicial complex at scale t. At fixed scale we can then study the connectivity
structure. As a standard example, when data is endowed with a distance measure,
clustering at some fixed scale corresponds to the 0-dimensional connectivity by
only looking at the connected components of the simplicial complex. Simplicial
complexes can also contain 1-dimensional connectivity information in the form
of loops and holes (see Fig. 1), 2-dimensional information in the form of voids or
cavities, etc. These are collectively called topological features.

Persistence aims to quantify the topological features in a data set and use
this information for data analysis. Loop structure might signal about a recurrent
dynamics of the phenomenon behind the data. Various dimensional voids can
mark lack of information and connectivity or insufficient data collection. Finding
such voids in data sets has aroused interest in different areas of data analysis
community, see for example [4] and references therein. As noted in [4], voids can
also indicate non-allowed combinations of feature values of data vectors.

One immediate difficulty arises in the simplicial modelling above: what is
the appropriate scale of R to capture the connectivity in various dimensions of
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an arbitrary set of points? Persistence circumvents this by forming simplicial
complexes at all scales t ≥ 0 and capturing the evolution of topological features.
If a simplex is generated at scale t it is then present at any subsequent scale and
the simplicial complexes are connected by inclusions: · · · ⊆ Ca ⊆ Cb ⊆ Cc ⊆ · · ·
for · · · ≤ a ≤ b ≤ c ≤ . . . The end result of the modelling step is then a mapping
called filtration, (D,R)×R→ (Ct,⊆t)t∈R, where (D,R) denotes a data set with
real-valued relation and (Ct,⊆t)t∈R denotes an R-parameterized sequence of
simplicial complexes and inclusions.

1.2 Algebraic fingerprinting

Filtration contains all the information about the relations in the data set on
various scales. It is therefore very complicated object for infering the global
structure of data and simplification is thus necessary. TDA employs tools from
mathematical field of algebraic topology, essentially it uses homology of simplicial
complexes which transforms the geometric information into algebraic information.
We will outline the algorithm for computing homology to illustrate its very
implementable nature and to gain intuition on why we are interested in homology
in data analysis. For details into homology and its computation see [5–7]. For
simplicity we fix the field of coefficients to be F2, the field with two elements 0
and 1. Let C be a simplicial complex and denote by Ck its set of k-simplices.
Concretely, C0 consists of the points of the original data set.

1) Choose an ordering (starting from zero) on C0 and use it to order elements
in any simplex. If {Arya,Bran, Jon} is a 2-simplex in Fig. 1, fix the order in
which the points are listed and denote this ordered simplex by [Arya,Bran, Jon].

2) For natural numbers k and 0 ≤ i ≤ k and a simplex σ in Ck, define a
function di : Ck → Ck−1 such that di(σ) is a simplex in Ck−1 formed by removing
from σ its i-th element. The ordering on C0 was needed to specify the i-th element
in a simplex. For example, d1([Arya,Bran, Jon]) = [Arya, Jon].

3) For any natural number k, let ∆(C)k be the vector space over F2 with a
base given by all simplices in Ck. An element τ in ∆(C)k is then given by a linear
combination τ =

∑
σ∈Ck

tσσ, tσ ∈ F2. The base for ∆(C)2 of the simplicial
complex in Fig. 1 would be [Arya, Bran, Jon] whereas [Arya, Bran]+[Bran,
Jon]+[Arya, Jon] would be linear combination of three basis elements in ∆(C)1.

4) Define ∂k : ∆(C)k → ∆(C)k−1 to be the linear function assigning to a base

element given by a simplex σ in Ck the linear combination
∑k
i=0 di(σ) of k-1-

simplices. The map ∂k is called the boundary operator. Then ∂k([Arya,Bran, Jon])
= [Bran, Jon]+[Arya, Jon]+[Arya,Bran]. The boundary operator thus formalizes
the intuition that [Bran, Jon] + [Arya, Jon] + [Arya,Bran] forms the boundary
of [Arya,Bran, Jon]. Define ∆(C)−1 = 0 and ∆(C)k = 0 for k > m, where 0
denotes the zero vector space.

5) The boundary operators connect the various simplices of a simplicial
complex together. Computationally the matrices of boundary operators store the
global connectivity information in their elements, with coefficient field F2 these
are just binary matrices. Homology on degree k of a simplicial complex C (over
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coefficients F2) is then defined as a quotient vector space:

Hk(C) =
kernel of ∂k : ∆(C)k → ∆(C)k−1

image of ∂k+1 : ∆(C)k+1 → ∆(C)k
, for k ≥ 0.

As noted in step 4) above, some 1-simplices might form the boundary of a
2-simplex. Some 1-simplices on the other hand might form the boundary of an
actual hole in the simplicial complex as in Fig. 1. Similarly some k-1-simplices
might form the boundary of a k-simplex and some might form the boundary of a
k-dimensional hole. By its definition homology quotients out linear combinations
of simplices that are boundaries and we are left with those that actually represent
linearly independent k-dimensional holes in the complex. For k = 0, H0 measures
the number of linearly independent points that make up boundaries of 1-simplices,
effectively the number of connected components.

Homology thus gives us exactly the global connectivity information of the
relational structure of data that we seek. The full complexity of a filtration is
now simplified by applying homology on degree k. Each simplicial complex is
turned into a homology vector space and the inclusion functions are turned into
linear maps. The result is an R-parameterized sequence of vector spaces and
linear maps: · · · → Hk(Ca) → Hk(Cb) → Hk(Cc) → · · · . We will abbreviate
Hk(Ca) as Hk,a. In this parameterized sequence the dimensions of homology
vector spaces encode topological information: H0,t effectively measuring the
number of connected components, H1,t measuring the number of one-dimensional
holes and Hk,t those of k-dimensional voids at scale t.

This algebraic step gives a mapping (Ct,⊆t)t∈R → (Hk,t,→t)t∈R. The ob-
tained result is not an arbitrary R-parameterized vector space. The vector spaces
Hk,t are finite dimensional and there are finitely many numbers 0 < t0 < · · · < tn
in R such that the map Hk,a → Hk,b may not be an isomorphism only if
a < ti ≤ b, for i in {0, . . . , n}. These considerations follow from the fact that data
sets always contain only finite number of points so topological changes in the
relational structure can only occur in discrete steps. Such parameterized vector
spaces are called tame [8]. An essential result in persistence theory is that any
tame R-parameterized vector space decomposes into interval indecomposables
called bars and the collection of bars in such a decomposition is unique [9]. Bars
are enumerated by pairs of numbers b < d in R. The bar [b, d) at scale t is either
a 1-dimensional vector space, if b ≤ t < d, and the zero vector space otherwise.
The maps between any non-zero vector spaces in a bar are isomorphisms. For
a bar [b, d), some topological feature is understood to have appeared in the
simplicial complex at filtration value b. It is then present in the subsequent
simplicial complexes until filtration value d. For example, points in the data
might connect to create a 1-dimensional loop. This loop persists until at some
larger filtration value the points connect further to higher dimensional simplices
and the loop vanishes. The bar decomposition can be visualized in a stem plot
on a (b, d− b)-coordinate system as shown later in Fig. 3.
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2 Topological learning

The actual data analysis step in persistence pipeline is to infer information from
the R-parameterized sequence of homology vector spaces and linear maps obtained
from the map (D,R) × R → (Ct,⊆t)t∈R → (Hk,t,→t)t∈R constructed above.
To simplify notation we let R-Vec denote the space of tame R-parameterized
sequences of vector spaces V = · · · → Va → Vb → Vc → · · · . Our framework of
extracting information from objects in this space is through stabilizing a rank
invariant attached to them. Aim of the paper is on the practical data analysis
aspects and we only outline the theoretical backgound. For more details we refer
to [8, 14, 15].

2.1 Rank invariant

The rank, or the dimension, is the fundamental invariant characterizing vector
spaces. Similarly we want to assign rank for sequences of vector spaces in R-Vec.
Let V be in R-Vec. Due to tameness there is a sequence 0 < t0 < · · · < tk in R
such that Va → Vb is not an isomorphism only if a < ti ≤ b. Recall that for a
linear map f : X → Y its cokernel is the quotient vector space of Y by the image
of f : cokerf = Y/imf. We then define

β0(V ) = V0 ⊕ coker(V0 → Vt0)⊕ coker(Vt0 → Vt1) · · · ⊕ coker(Vtk−1
→ Vtk),

where V0 is the homology vector space in V at filtration value 0. Let us consider
what information β0(V ) carries. Since the maps Vti → Vti+1

are not isomorphisms
the cokernels may not be zero. The quotient by the image removes from the
homology vector space Vti+1

the generators, or basis elements, which come from
previous non-isomorphic homology vector space. β0 is thus a vector space of
the new homology generators that appear in the sequence of homology vector
spaces. In the context of filtrations of input data sets, this is a way of keeping
track of how topological features created by the relational structure evolve in the
simplicial complexes of the filtration.

For V in R-Vec, its rank is now defined to be a discrete invariant given by
the number

rank(V ) = dim(β0(V )) =

dim(V0) + dim(coker(V0 →Vt0)) + · · ·+ dim(coker(Vtk−1
→ Vtk)).

2.2 Hierarchical stabilization and contour metrics

The rank defined above is not a stable invariant. Effectively the number rank(V )
measures the smallest number of homology generators of V . A small perturbation
of input data can result in a number of non-essential homology generators. We
therefore seek to stabilize the rank invariant to deal with inherent noise in data.
Our approach is a general framework for stabilizing discrete invariants.
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Let T be a set of interesting objects and I the attached invariant. For us T is of
course a collection of R-parameterized vector spaces associated to data sets with
R-valued relation and I is the rank. The key in converting a discrete invariant
into a stable one is to choose a (pseudo)metric d on T . Once a metric is chosen,
we can define an ε-radius ball around X ∈ T , B(X, ε) = {Y | d(X,Y ) ≤ ε}, and

look at the function Îd(X) taking the minimum value of I on balls around X
with increasing radii ε:

Îd(X)(ε) = min{I(Y ) | Y ∈ B(X, ε)}.

Since we are minimizing the invariant in larger and larger balls around X, the
function Îd(X) is decreasing and piecewise constant, namely a simple function.
Due to being a decreasing function with non-negative values, there is some t
such that for all s ≥ t in R, Îd(X)(s) = Îd(X)(t). The function Îd(X) is thus

eventually constant with a limit, lim Îd(X).
The needed metrics in the stabilization can be shown [15] to arise from so

called contours. Contour is function C : R ×R → R satisfying the following
inequalities for all v, w, ε, τ in R:

1. v ≤ C(v, ε) ≤ C(w, τ), for v ≤ w and ε ≤ τ,
2. C(C(v, ε), τ) ≤ C(v, ε+ τ).

For example, C(v, ε) = v + ε, C(v, ε) = v + ε2 and C(v, ε) = rεv with a
positive number r are all examples of contours. The contour

C(v, ε) = v + ε (1)

is called the standard contour. There is a generic way of producing contours. Let
f : R→ (0,∞) be a function with strictly positive values which we refer to as
density. Then it can be shown that the function C(v, ε) given by

C(v, ε) = v +

∫ y+ε

y

f(x)dx,

where for v in R, we have taken the unique y in R such that v =
∫ y
0
f(x)dx. For

more background on contours we refer to [14].
It is also shown in [14] how the choice of a contour leads to a pseudometric

dC in R-Vec. The stabilization of the rank invariant with respect to the chosen
contour is then defined as

r̂ankCV (ε) = min {rank(W ) | W ∈ R-Vec and dC(V,W ) ≤ ε} . (2)

As noted above, the stable rank function r̂ankCV is decreasing and piecewise
constant and from R to R.

Our approach does not conceptually rely on the bar decomposition of V in
R-Vec. Computation of the decomposition is however standard procedure in
persistence analysis with various dedicated implementations [3] and when the
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decomposition is given, the stable rank can be computed algorithmically in a
very efficient way:

r̂ankCV (ε) = |{[bi, di) | C(bi, ε) < di}|. (3)

The stable rank of V at ε is thus the number of those bars in the decomposition
that satisfy the relation between the start and end points given by the contour.

In practical computations the limit of r̂ankCV is always zero, or can be set to
zero.

By fixing some values of ε the contour C(v, ε) reduces to a single variable
function and we can plot it. In Fig. 3 this is illustrated with few values of ε in the
stem plot of a bar decomposition. This visualization is helpful in understanding

how the contour affects the stable rank in Eq. 3: the value of stable rank r̂ankCV (ε)
at ε is the number of bars that reach over the function C(v, ε). If the function
C(v, ε) has lower values it therefore makes bars relatively longer and vice versa
with larger values. The contour can thus be seen as controlling pointwise with
respect to bi the length scale that we use to measure bars.

2.3 Topological learning with stable ranks

The stable rank attached to an input data set is a topological fingerprint of the
data. In the actual data analysis task these fingerprints are used in, for example,
classifying various data sets. Recall from the construction above that the stable
rank is derived by choosing a contour function C which induces a metric dC
needed for the stabilization in Eq. 2. Each choice of a contour gives a different
stable rank capturing different aspects of the data. The learning step in our
pipeline is then to choose an appropriate contour for the analysis at hand and
we explore this in Section 3.

As stable ranks are R-valued functions we have various choices of metrics for
comparing them. In particular we have standard Lp-metrics for p ≥ 1:

Lp(f, g) =

(∫ ∞
0

|f(t)− g(t)|pdt
)1/p

.

We can also define interleaving distance between functions f and g. We first define
the set of horizontal shifts of the functions satisfying the indicated inequalities:

S = {ε ∈ R | f(t) ≥ g(t+ ε) and g(t) ≥ f(t+ ε) for all t ∈ R}.

The interleaving distance d./ is then defined as the minimum of those shifts:

d./(f, g) =

{
inf(S) , if S is non-empty,

∞ , otherwise.

In Section 3 we use these constructions in demonstrating our approach with
concrete data analyses. We emphasize that our approach does not rely on any
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Fig. 2: Confusion matrices for the classification of ascending and descending stairs
activities with standard contour (left) and with contour visualized in Fig. 3.

algebraic decomposition of persistence and is thus applicable to multiparameter
persistence [16]. The initial theory behind our pipeline was indeed formulated for
multiparameter persistence in [8] and later specialized for 1-parameter persistence
in [14]. In the case of one parameter we obtain the convenient algorithm, Eq. 3,
for computing stable rank.

Traditional view in persistence analysis has been that long bars in the bar
decomposition are of importance and smaller bars are noise. This view, however, is
challenged by many recent studies showing that smaller features carry important
information: study of brain artery trees in [17], functional networks of [18],
analysis of protein structure in [19] and the relation of observed diffraction peaks
to small loops in atomic configurations of amorphous silica in [20]. With our
pipeline we can flexibly choose different contours to learn what are in fact the
essential features in the data. To produce the bar decompositions we used Ripser
software [22].

3 Applications

3.1 Classifying physical activities

We studied PAMAP2 data obtained from [10] to classify different physical
activities. The data consisted of seven persons performing different activities
such as walking, cycling or sitting. Test subjects were fitted with three Inertial
Measurements Units (IMUs) and a heart rate monitor. Measurements were
registered every 0.1 seconds. Each IMU measured 3D acceleration, 3D gyroscopic
and 3D magnetometer data. One data set thus consisted 28-dimensional data
points indexed by 0.1 second timesteps.

We looked at two activities which from the outset are very similar and expected
to be difficult to distinguish: ascending and descending stairs. For the analysis we
randomly sampled without replacement 100 points from each data set, repeated
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Fig. 3: Density function used for H1 stable rank in the activities classification
(left) and contour lines for few values of ε (right). Persistence bar stems are shown
for single data sets from each (subject,activity) class.

100 times. For each subject we thus obtained 100 resamplings from the activity
data and computed their stable ranks with respect to a chosen contour. Out of
these we computed the point-wise means of 40 stable ranks in H0 and H1. These
means were used as classifiers, denoted by P̂H0

and P̂H1
. Altogether we had 14

classifier pairs (P̂H0
, P̂H1

) corresponding to all (subject, activity) combinations.
Remaining 60 stable ranks in H0 and H1 were used as test data and denoted by
TH0

and TH1
. For a test pair (TH0

, TH1
) we found

min(L1(P̂H0
, TH0

) + L1(P̂H1
, TH1

))

by computing L1 distances between the test pair and all classifier pairs. The
classification is successful if the minimum is obtained with P̂• and T• belonging
to the same (subject, activity) class in both H0 and H1.

For cross validation we randomly sampled which of the stable ranks constitute
classifier and which are test data for the class. Result for 20-fold cross validation
is shown in the confusion matrix on the left in Fig. 2 for the standard contour
(defined in Eq. 1). Each cell of the confusion matrix is the number of classifications
in the corresponding classifier (columns) and test data (rows) pair relative to the
total number of test stable ranks which was 60. Correct classifications are on the
diagonal. Overall accuracy (mean over diagonal of the confusion matrix) with
standard contour was 60%.

We then repeated the above cross validation process but using a different
contour in computing H1 stable rank. Contour was obtained from the density
function on the left side of Fig. 3. Contour lines and the bars from persistence
computation are visualized on the right side of Fig. 3. This contour puts more
weight on topological features appearing with larger filtration scales. Cross-
validation results are shown on the right in Fig. 2. Overall accuracy increased to
65%. Note particularly increase in the accuracy of subject 4. Also noteworthy is
that ascendings mainly get confused with ascendings of different subjects and the
same for descendings. These (subject,activity) data thus exhibit different character
and changing the contour we could make this difference more pronounced.
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3.2 Cloud pattern characterization

We analysed the spatial distribution of shallow cumulus clouds. These clouds form
in fair-weather conditions due to the convective transport of heat and moisture
in the atmosphere. Convection is a classic example of a pattern-forming system
[12, 13]. Cloud formation is known to be influenced by diverse physical processes
across spatial scales ranging from molecular sizes to kilometers. Such spatial
scales and all their physical variables cannot be explicitly resolved in numerical
climate models, which calls for the development of cloud parametrization schemes.
Moreover, the spatial distribution of clouds influences their formation processes.
It is therefore important to include this distribution in parametrization schemes.
This problem has been studied from different perspectives, notably the influence
of land surface conditions on cloud formation [23]. Here we describe an approach
based on persistence and the use of stable ranks as descriptors of the spatial
distribution of clouds. See [11] for further results and references.

The data was produced by the Dutch Atmospheric Large-Eddy Simulation
model and covered the time period between 09:00h and 18:00h during one day,
saved for analysis at 15 minute intervals, with model setup similar to that in [24].
We simulated 10 days with different initial conditions. The data consists of large
amount of physical information from which cloud fields can be extracted. The
spatial simulation domain in x, y, z coordinates is 12.8× 12.8× 5 in kilometers
with horizontal resolution of 50 meters and vertical resolution of 40 meters.
The computation domain thus consists of cells. A homogeneous land surface
is prescribed and the lateral boundaries are periodic. The 3D cloud field from
the simulation domain was then flattened in the z-direction onto a 2D plane by
taking the maximum liquid water content, ql, values in the vertical direction.
The resulting cloud fields are then as visualized in Fig. 4(b).

An important issue in the study of cloud formation is the quantification of
spatial organization, or lack thereof, in a given cloud field. While methods to study
spatial distributions exist in the statistical literature for objects which can be
idealized as points, it is harder to work with objects that possess a spatial extent
(i.e. area or volume), as clouds do. This leads to the necessity of computing a
point representation for a cloud before being able to assess the spatial distribution
of the cloud field. Here we consider three different representations: assigning to
each cloud its geometric centroid, its point with maximum ql value, and a set of
its points chosen at random.

A common metric in the assessment of spatial organization is the Iorg in-
dex [21], defined as follows. For a two-dimensional cloud field, such as the one
shown in Fig. 4(b), index the connected components (the individual clouds) as ci,
and compute their geometric centroids, c̄i. We are interested in how the spatial
distribution of the c̄i compares to what we would expect under complete spatial
randomness (CSR), that is, if the centroids represent a realization of a homo-
geneous Poisson point process. To that end, we consider the nearest-neighbor
distances di, which are defined as di = min{d(c̄i, x) | x ∈ C̄ \ {c̄i}}, where C̄
represents the set of all centroids. The cumulative distribution function (CDF)



Metrics for Learning in Topological Persistence 11

0.0 2.5 5.0 7.5 10.0 12.5
West-East [km]

0

2

4

6

8

10

12

So
ut

h-
No

rth
 [k

m
]

a)

0 5 10
West-East [km]

b)

0 5 10
West-East [km]

c)

Fig. 4: a) Values of the vertical wind velocity w for a two-dimensional horizontal
slice at an altitude of 1.8 km. This corresponds to cloud base height (red – w > 0;
blue – w < 0). b) Column liquid water content ql (i. e. the maximum liquid water
value in the vertical direction). c) Point representation of the cloud field by the
local maxima of ql (only connected components formed by at least 3 cells are
considered), and 1-simplices of the Vietoris-Rips filtration using the distance
relation between the points, at a distance scale of 1.5 km.

of the di is
Gdi(r) = P [di ≤ r],

which in the case of a Poisson point process has the analytic expression

GCSR(r) = 1− exp (−λπ r2),

where λ is the Poisson intensity parameter. The value of Iorg is then defined to

be the area under the graph (GCSR(r), Ĝ(r)), where

Ĝ(r) =
#{c̄i ∈ C̄ | di ≤ r}

#{c̄i ∈ C̄}

is the empirical estimator of G(r). If Ĝ matches well with GCSR, the value of
Iorg will be close to 0.5. A value larger than this suggests spatial clustering, while
a smaller one suggests dispersion or regularity.

Let S∗i denote the stable rank of Hi with respect to the standard contour (Eq.
3), normalized by its value at 0. If we define the function GiPH(r) = 1− S∗i (r),
we note that it increases monotonically towards 1. In fact, since the normalized
stable rank at r is an indication of the relative amount of homological features
that persist beyond r, the function GiPH(r) can be understood as the empirical
CDF of homological persistence.

For n realizations of a Poisson point process with intensity parameter λ, we
find that their normalized stable ranks S∗i , and therefore also GiPH , oscillate
within a narrow band (see Fig. 5). At this point we do not have an analytic
expression for the stable rank functions obtained from a Poisson point process, but
we can define persistent homology analogues to the Iorg index via a Monte Carlo
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Fig. 5: Stable rank functions obtained from 100 realizations of a homogeneous
Poisson point process with λ = 100. Left: S∗0 . Right: S∗1 .

procedure by taking the area under the curves defined by (GiPH,CSR(r), GiPH(r)).
In the case of a point process in the plane we would then get two values IPH,0
and IPH,1. We define the index as their arithmetic mean,

IPH =
IPH,0 + IPH,1

2
. (4)

We tested the performance of the index IPH defined above, and compared it
to the corresponding values of Iorg in the dataset consisting of 360 distinct cloud
fields (36 per simulation day). The values of both indices are shown in Fig. 6.
Each panel shows the 360 values of each index for all cloud fields, computed
using 4 different point representations. Panel A shows the values obtained from
assigning to each connected component its point with maximum ql value (local
maxima); panel B shows the indices obtained when using the local maxima but
only of those components with size at least 3 grid cells (all smaller components
are ignored). Panel C shows the results of using the geometric centroid of each
connected component. Finally, for panel D the geometric centroids were used after
discarding the smaller components. These small components can be attributed
to numerical imprecision in the underlying model, and hence are not physically
meaningful.

As discussed above, if these indices have a value close to 0.5, it would indicate
that the point process that they are evaluated on is close to complete spatial
randomness, or a Poisson point process. In the simulations used here, we have
cause to expect spatially random behavior: the domain size is too small to allow
for deep convection and spatial organization to happen. Moreover, the lack of
land surface features or patterns means there are no forcings at different spatial
scales. Thus the spatial distribution of physical variables is dominated by the
characteristic patterns present in atmospheric turbulence, itself an essentially
random process. The values of the persistent homology index IPH strongly
support this hypothesis, while Iorg exhibits values in general larger than 0.5. This
can be attributed to the fact that it is based on nearest-neighbor distances only,
whereas the stable rank functions reflect the spatial relationships of the points



Metrics for Learning in Topological Persistence 13

0

2

4

6

8

10
De

ns
ity

A Iorg
IPH

B Iorg
IPH

0.4 0.6 0.8 1.0
0

2

4

6

8

10

De
ns

ity

C Iorg
IPH

0.4 0.6 0.8 1.0

D Iorg
IPH

Fig. 6: Density histograms of the Iorg index and IPH (Eq. 4) for 360 distinct
cloud fields. A: ql max, B: ql max removing cloud structures with size smaller
than 3 cells, C: Geometric centroids, D: Geometric centroids removing cloud
structures with size smaller than 3 cells.

throughout all spatial scales. This is confirmed by the fact that removing the
smaller structures in the fields (those less than 3 grid cells in size) brings the
values of Iorg closer to 0.5 on average, whereas the average for IPH is barely
affected. This highlights the fact that, by virtue of using all the spatial information
available, the persistent homology based method is inherently more robust than
any nearest-neighbor method.

This result has been arrived at by using the standard contour only, which
implies that spatial randomness in these cloud fields is obtained when all spatial
scales present in the data are given the same weight. It is possible to obtain
different morphological classifications of the same fields by using alternative con-
tours, which emphasize spatial features differently at varying scales, as presented
with the classification in Section 3.1. We used standard contour and contours
visualized in Fig. 7. These contours are referred to as contour 1, denoted C1, and
contour 2, denoted C2.

To reduce the effect of sampling, 10 random samples were drawn from each
of the 360 cloud fields, with sample rate 5% of cloud size. To each cloud field we
assign the mean stable rank of these 10 samples. Stable ranks were computed in
H1 with respect to standard contour, contour 1 and contour 2 and normalized to
give S∗1 function as explained above. After removing those cloud fields without
H1 features, we have 254 normalized stable ranks S∗1 for each class of contours.
Distance matrices using interleaving, L1- and L2-metrics (see Section 2.3) were
then computed for the three different classes of stable ranks. Dendrograms from
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Fig. 7: Contour 1 (left) and contour 2 (right) used in the analysis of cloud fields.
Stem plot is from one sampling of a cloud field at one time step.
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Fig. 8: Cloud fields which are classified into different clusters, according to the
methodology described in the text. We use theH1 stable ranks and the interleaving
metric to compute the distances between them. a) and b) are classified using
contour C1, and have Iorg values of 0.45 and 0.53 respectively. Cloud cover is
similar at 14% for both. c) and d) are classified with C2, and have Iorg values of
0.65 and 0.63 respectively, and cloud cover for both is 9.2%.
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the distance matrices were visually analyzed to decide on a number of clusters of
stable ranks. From these computations the interleaving distance gave the clearest
clustering results. With respect to contours, C1 and C2 gave better clustering
than standard contour.

An example of diverging morphological characteristics educed from the C1,2

clustering schemes is shown in Fig. 8: (a) and (b) are representatives of two
different clusters obtained by using contour C1, while (c) and (d) stem from
clusters in the C2 classification. As expected from the definition of the contours,
the classifications they induce are influenced by different spatial scales. Namely,
despite the fact that cloud fields a) and b) have identical cloud cover, and
their Iorg values are very similar, the large-scale distribution of the individual
clouds is significantly different for both. In similar fashion, both c) and d) are
indistinguishable in terms of cloud cover and Iorg, yet are distinguished by the
spatial pattern of smaller structures, even if the large-scale distribution is similar
in both. These kind of geometrical considerations can be used to determine an
appropriate contour for a specific task. With higher dimensional data, such as
with physical activities above, stem plots can guide in determining what features
to emphasize and what contour achieves this.

This study of cloud fields shows that the use of stable rank functions as
descriptors for spatial distributions can reveal morphological properties which
other methods cannot. Crucially, the possibility of changing the contour enriches
the scope for determining such properties. Future investigation in this direction
will address questions such as: what the optimal contour is for a given problem,
what these methods can reveal about the temporal evolution of cloud formation,
and how the homological properties thus discovered can be related to different
physical variables in the system. From general data analysis point of view,
particularly the automatic optimization of contours is crucial for making our
pipeline a full scale machine learning approach.
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mensional Persistence and Noise. Foundations of Computational Mathematics 17(6),
pp. 1367–1406 (2017)

9. Zomorodian, A., Carlsson, G.: Computing Persistent Homology. Discrete & Compu-
tational Geometry 33(2), pp. 249–274 (2005)

10. PAMAP, Physical Activity Monitoring for Aging People homepage,
http://www.pamap.org
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