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ABSTRACT

CYCLOIDAL-DRIVE JOINT DESIGN
FOR WEARABLE EXOSKELETONS

by
Abhi J. Rawal

This thesis's scope was to construct a highly back drivable and compact joint design that
can be used for wearable exoskeletons specifically designed to assist with rehabilitation. A
compact cycloidal gear transmission was designed to satisfy the compactness requirement
while ensuring the minimum torque is required for backdriving the mechanism. The joint
was designed based on the compact cycloidal drive specifications, and the backdrivability
test was performed to measure the minimum torque required (1.20 Nm) to backdrive. The
joint design incorporates various important features such as rotation lock feature to prevent
hyperextension, a housing design that offers the benefit of using the joint for the left and
right limb, a motor mount that securely holds a brushless DC motor, and a sensor bracket
that securely positions a control sensor over the motor for controlling the motor position
and speed. Successful evaluation of the 3D printed prototype validated the integrity of the

design.
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CHAPTER 1

INTRODUCTION

1.1 Objective
The scope of this thesis was to design and prototype a highly back drivable, stable, and
compact joint design using the cycloidal mechanism that can be used for wearable

exoskeletons designs specifically built for rehabilitation applications.

1.2 Background Information

Exoskeletons are wearable electro-mechanical device that allow human movements with
expanded strength. Exoskeletons are mainly deployed to assist with military operations,
rehabilitation applications, and to amplify the working capabilities of workers on factory
floors. Specifically, for rehabilitation applications, many exoskeletons have been
developed over the past decades by academic researchers and the U.S. government in
conjunction with industry giants using various mechanisms to provide assistance with
lower limb and upper limb.

In North America, Rehabilitation robotics first started in 1960 with the
development of an externally powered exoskeleton at Case Institute of Technology, Ohio
[10]. In 1985 the Clinical Robotics Laboratory was established as part of the joint U.S
Department of Veterans Affairs and Stanford University Robotics program in the Spinal
Cord Injury Center, VA for the development of a new generation of robots assisting people
in Activities of Daily Living (ADLs) [10].

The overall goal of the Rehabilitation robotics is to support patients with disorders

that affect movement and muscle tone so they can gain back the ability to perform activities
1



of daily living with ease and comfort. Therefore, any ideal wearable exoskeletons that are
designed to assist patients with musculoskeletal disorders must be stable and must fluently
respond to the user's movements. To achieve stability and user dominance, it is paramount
to have joints that are easily backdrivable and have a higher transmission ratio to control
the torque output. Also, it must be compact since it gets mounted on users' bodies.

User safety is the most crucial factor when it comes to wearable assistive
exoskeletons. To ensure user safety, the exoskeleton must be designed to prevent
hyperextension. Fluid backdrivability is the key to avert hyperextension; in other words, it
allows users to quickly and smoothly apply torque from the driven side of the actuator in
the opposite direction to overcome the opposite motion of the actuator caused by the
driving mechanism.

In recent years, many wearable assistive exoskeletons have been developed using
various mechanical joints such as Rolling joint [11], Rope (Capstan) drive [12], Two-stage
planetary mechanism with timing belt [13], and Harmonic drive [15]. However, these
mechanisms have several disadvantages that do not help in designing a stable, compact,
and highly backdrivable exoskeleton actuator.

The Rolling joint (Figure 1.1) consists of a pair of sectional gears meshed, and the
top sectional gear is connected to the actuator by an input pulley and a cable. As the actuator
drives the first sectional gear, it causes the meshed gear to rotate in a specific rotational
direction depending on the actuation direction. This joint design is inefficient when it
comes to maintaining compactness while having a greater transmission ratio. Even with
double stage reducer, the design uses two 64 mm diameter sectional gears and can only
offer a transmission ratio of 8.85 to 1. This itself proves the joint cannot offer compactness

if a user were to increase the transmission ratio for higher stability. It becomes
2



uncomfortable for users to wear a bulky joint. The joint also requires 3.33 Nm torque to

backdrive; this doesn't support smooth backdrivability [11].

Actuator

: / S1 Tensioner

S1 Input Pulley

1% Stage

Reducer (S1) Thigh Frame

S1 Output Pulley S2 Input Pulley

S2 Tensioner
2nd Stage

Sectional G
Reducer (S2) | ectional Gear

Effective Level

e =+
Arm: (Rytry)/2 Instantaneous

Center of Rotation

|\ Calf Frame

S2 Output Pulley

Figure 1.1 Rolling Joint: two-stage timing belt transmission system that provides a
transmission ratio of 8.85:1 and requires 3.33 Nm torque to backdrive.

Source: Wang, J., Li, X., Huang, T.-H., Yu, S., Li, Y., Chen, T., Carriero, A., Oh-Park, M., & Su, H. (2018).
Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton. IEEE Robotics and
Automation Letters, 3(4), 4265-4272. https://doi.org/10.1109/1ra.2018.2864352

The Capstan (Rope) drive (Figure 1.2) consists of a capstan pulley and a capstan
wheel. The capstan pulley is a small cylinder around which rope is wound and is directly
connected to a motor shaft, and the capstan wheel is driven by the rope connected to the
capstan pulley. The design offers a 10:1 transmission ratio with the Capstan wheel of 120
mm diameter [12]. A huge drawback with this mechanism is an increase in the transmission
ratio will demand an increase in the size of the capstan wheel. As the capstan wheel

increases in size, the center distance between the capstan wheel and the capstan pully will
3
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have to increase, ultimately compromising the compactness. The value of the current
diameter of the capstan wheel is already not the desired value if the transmission ratio is to

be set to 10:1.

! i Dieaspad
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Figure 1.2 Capstan drive system with the transmission ratio of 10:1 and the capstan wheel
diameter of 120 mm.

Source: Eib, Andrew (2018). Design of a Backdrivable Upper-Limb Exoskeleton for Use in Rehabilitation
Therapy of Stroke Patients. Master's thesis, Texas A&M University.
From http://hdl.handle.net /1969.1/173937

The two-stage planetary mechanism with a timing belt (Figure 1.3) uses a planetary
gears box in conjunction with a timing belt and sprocket connecting it with a motor. The
design offers a 24:1 transmission ratio and required 3 Nm torque to backdrive [13]. Even
though the design offers a great transmission ratio, it requires more than 1 Nm torque to
backdrive the mechanism. Higher torque required to backdrive will increase the possibility
of hyperextension if a user is unable to exert the required torque. Also, the design does not
have any safety mechanisms placed to prevent hyperextension. Also, the design is not

compact as multiple mechanisms are involved in amplifying the transmission ratio.


http://hdl.handle.net /1969.1/173937

Motor Motor Actuator Driven Ring
Encoder  Stator Driver Sprocket Gear

PMSM Housing Motor Rotor Sun Gear  Planetary

Figure 1.3 The two-stage planetary mechanism with timing belt offering the transmission
ratio of 24:1 and required 3 Nm torque to backdrive the joint design.

Source: Lv, G., Zhu, H., & Gregg, R. D. (2018). On the Design and Control of Highly Backdrivable Lower-
Limb Exoskeletons: A Discussion of Past and Ongoing Work. IEEE Control Systems, 38(6), 88-113.
https://doi.org/10.1109/mcs.2018.2866605

Harmonic drive (Figure 1.4) is composed of three components: elliptical wave
generator with roller bearing, circular spline, and flex-spline. The elliptical wave generator
with a roller bearing is inserted into the flex-spline, the flex-spline adopts the elliptical
shape of the elliptical wave generator, then gets assembled with the circular spline. The
external teeth on the flex-spline mesh with the internal teeth of the circular spline. As the
elliptical wave generator (input shaft) rotates, the flex-spline (output shaft) also rotates at
a different velocity based on the transmission ratio [14]. The Harmonic drives are not easily
backdrivable with a small amount of torque due to high stiction torque [15]. Its inability to
easily backdrive with lower torque makes this mechanism not suitable for the rehabilitation
robotics applications where backdrivability is a key feature.
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00 &

bearing circular spline

Figure 1.4 The exploded view of a harmonic drive assembly.

Source: J. W. Sensinger and J. H. Lipsey, Cycloid vs. harmonic drives for use in high ratio, single stage
robotic transmissions, 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN,
2012, pp. 4130-4135, doi: 10.1109/ICRA.2012.6224739

The cycloidal mechanism is an ideal solution that allows the design of a highly
backdrivable joint that is stable and compact. This thesis focuses on the development of a
joint design that utilizes a single-stage cycloidal drive to achieve a higher transmission

ratio (10:1) while maintaining the design compactness and backdrivability.



1.3 The Structure and Operating Principles of Cycloidal Drive

Cycloidal drives can be classified into four categories [16]:

=

Rotating ring gear epicycloid drive

N

Stationary ring gear epicycloid drive

w

Rotating ring gear hypocycloid drive

&

Stationary ring gear hypocycloid drive

The rotating ring gear epicycloid drive is designed as a part of this thesis to provide
a higher transmission ratio and design compactness while maintaining lower backdrivable

torque for the proposed joint design.

Input-Output axis
|
—

offset cam
-— W

bearing

—r g rollers
- o

cycloid disk
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Figure 1.5 The exploded view of a cycloidal drive assembly.

Source: J. W. Sensinger and J. H. Lipsey, Cycloid vs. harmonic drives for use in high ratio, single stage
robotic transmissions, 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN,
2012, pp. 4130-4135, doi: 10.1109/ICRA.2012.6224739



The cycloidal drive is generally designed using the following components: an
eccentric input shaft (offset cam), bearings, a cycloidal disk, rollers, and an output shaft,

as shown in Figure 1.5.

Cyclowdal Plate Gear - 1 - Roller Gear(Fixed)

X TRl PN Ralig

-\
f
Center of Cyclbid Réduger{Roller Gear) 3\

Y N . %

\  Center of Cycjoidal Plate Gear

Figure 1.6 Representation of the offset between the center axis of the roller gear and the
center axis of the cycloidal disk.

Source: Shin, J.-H., & Kwon, S.-M. (2006). On the lobe profile design in a cycloid reducer using instant
velocity center. Mechanism and Machine Theory, 41(5), 596-616.
https://doi.org/10.1016/j.mechmachtheory.2005.08.001

The complete assembly consists of the cycloidal disk mounted on the eccentric
input shaft with a bearing placed between to allow the cycloidal disk to rotate in eccentric
motion without much friction in the opposite direction of the rotating input shaft. The word
Eccentricity is defined as the offset between the center axis of the eccentric input shaft or
the roller gear and the center axis of the cycloidal disk as it is mounted on the eccentric
input shaft, as shown in Figure 1.6. Also, the output pins located on the output disk are
inserted into the holes located on the cycloidal disk. As the eccentric input shaft rotates, it
also forces the cycloidal disk to rotate in eccentric motion in the opposite direction,

ultimately pushing the cycloidal disk against the fixed rollers. As the cycloidal disk is


https://doi.org/10.1016/j.mechmachtheory.2005.08.001

rotating, it interacts with the fixed rollers and also the output pins of the output disk,
ultimately transferring torque to the output disk and causing it to rotate in the opposite
direction of the rotating eccentric input shaft.

The number of rollers is always one greater than the number of teeth on the
cycloidal disk. This difference in the number of rollers and the number of teeth determines
the transmission ratio of the mechanism. The higher transmission ratio will significantly
reduce the rotating velocity of the output shaft, and according to the law of conservation of
energy, it would amplify the output torque [17].

The main disadvantages of the earlier discussed mechanisms are their inability to
maintain compactness and provide smooth backdrivability when a higher transmission
ratio is required to obtain a higher output torque. The cycloidal drive is an ideal mechanism
that can offer a high transmission ratio while maintaining a thinner profile and lower
reflected inertia that allows torque less than 1 Nm to backdrive [15].

Despite offering a number of advantages over the earlier discussed mechanisms,
the cycloidal drives in comparison to harmonic drives have significant backlash. In a recent
comparison study [15], the cycloidal drives exhibited considerable backlash in comparison
to harmonic drives. The research concluded that cycloidal drives exhibited 1.4 degrees of
backlash with the transmission ratio set to 70:1, and as the ratio was increased the backlash
gradually decreased. On the other hand, the harmonic drives exhibited no backlash with an
even greater (100:1) transmission ratio. Regardless of the backlash, the fluid
backdrivability provided by the cycloidal drive outweighs the benefit of no backlash
provided by the harmonic drives. In robotics applications, backdrivability is paramount to

ensure user safety by eliminating possibilities of hyperextension.



Chapter 2 to 4 represents the design methodology of the proposed cycloidal drive
joint. Chapter 2 discusses the design of the moving arm assembly, including cycloidal
housing and rollers. Chapter 3 discusses the design of the cycloidal rotor and the eccentric
shaft. Chapter 4 discusses the design of the fixed arm assembly and the motor mount.

Chapter 4 also discusses the static backdrivability test and summarizes the results.
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CHAPTER 2

DESIGN OF THE CYCLOIDAL HOUSING AND ROLLERS

2.1 Transmission Ratio
The transmission ratio is the ratio between the rotational speeds of two meshing gears. In
the case of a cycloidal gearbox design, the transmission ratio is defined by the number of
rollers and the number of rotor teeth. Equation 2.1 [4] can be utilized to compute a

transmission ratio of a cycloidal gearbox system.

(2.1)

Transmission Ratio (i) =
N—n

n = Number of Rotor Teeth
N = Number of Rollers

Condition: N=1+n

For this specific design, the gear ratio is set to 10:1 based on stakeholder
requirements. The number of Rotor Teeth (n) is set to 10, and the Number of Rollers (N)

is set to 11.

2.2 Housing Circle Circumference and Roller Radius
Housing circle circumference defines the circular boundary on which rollers with radius
R, are fixed. To compute the Housing Circle Circumference, first, a designer must specify
the radius R of the rotor. Rotor Radius (R) is set to 26 mm for this design based on

stakeholder requirements.

11



Housing Circle Circumference = 2 xR * m (2.2)

Housing Circle Circumference can be computed using equation 2.2 [2] after the
Rotor Radius (R) is specified.

For the design, the Housing Circle Circumference is 561 mm. In other words,
rollers will be placed on the boundary of a 56 mm diameter circle profile.

Roller Radius (R,.) can be computed using equation 2.3 [2] once the Housing Circle

Circumference is computed.

Housing Circle Circumference (2.3)
4 xN

Roller Radius (R,) =

For this design, the roller radius (R,) is computed to be 4 mm based on the Housing

Circle Circumference and the Number of Rollers (N).

e ®®

Rollers with H@ ®
radius R, .

.. .\ Housing Circle
Diameter
e ©

Figure 2.1 Representation of rollers arranged on the housing circle.
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The height of the rollers can be defined according to the desired thickness of the cycloidal
rotor. In this case, the thickness of the rotor is set to 3 mm, so the height of the rollers was
chosen to be 10 mm. The selected roller height provides ample surface contact with circular
slots (see figure 2.3) on the rotating arm side plate to ensure design robustness. Having
ample surface contact between the rollers and the circular slots is vital since the rotor exerts

high torque on the rollers when it is in motion.

Figure 2.2 Roller design.

316 Stainless Steel Dowel Pin 8 mm Diameter, 10 mm Long. (2019). McMASTER-CARR.
https://www.mcmaster.com/93600A762/

13
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2.3 Design of Rotating Arm
The rotating arm was designed based on the Housing Circle Diameter and the Roller Radius
(R;). The rotating arm is designed such that rollers can be easily mounted into the circular
slots. In total, 11 circular slots have been created around the center axis to match the

number of rollers.

Roller Mount
(Circular Slots)

Housing Circle
Diameter/Boundary

Figure 2.3 Rotating arm-side plate.

Rotating arm assembly consists of two side plates and eleven rollers. Rollers are
simply inserted into circular slots and secured by two side plates. The side plates are
secured by a pair of the M4 hex nut and M4 hex screw; it keeps the assembly intact. As
mentioned in chapter 1, the design is based on the rotating ring gear epicycloid drive
concept, where the ring gear rotates or serves as the output shaft. The rollers here can be
viewed as the ring gear that is fixed with the side plates, ultimately rotating the assembly.
Appendix A includes manufacturing drawings of the components involved in the rotating

arm assembly.

14



Components involved in the rotating arm assembly:

Table 2.1 List of Components Involved in the Rotating Arm Assembly

Components Quantity

Rollers 11

Rotating Arm Side Plates

Rotating Arm Side Plates Connector
Washer 2
Hex Nut, M4 x 0.7 mm Thread

olo|r|lw| N R
Rl (NN

Hex Screw, M4 x 0.7 mm, 12 mm Long

Rotating Arm

Side Plates
M4 Hex Screw

Rotating Arm

Side Plates

Connector
Rollers with
radius R,

M4 Hex Nut

Washer 2-
on both sides

Figure 2.4 Exploded view of the rotating arm assembly.
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CHAPTER 3

DESIGN OF THE CYCLOIDAL ROTOR AND THE ECCENTRIC SHAFT

3.1 Shaft Eccentricity
Shaft eccentricity is defined as an offset between the center axis of rotation and the axis of
symmetry. For the cycloidal mechanism, the shaft eccentricity is the offset between the
center axis of the rotating shaft and the center axis of the cycloidal rotor mounted onto the
shaft at a specific offset. It is one of the requirements in defining the cycloidal rotor design.

Shaft eccentricity can be computed using equation 3.1 [2].

Eccentricity (E) = 0.5 * R, (3.1)

For this design, the shaft eccentricity (E) is 2 mm based on the roller radius (R;)
computed in chapter 2. The design of the eccentric shaft is discussed in detail in section

3.4.

Figure 3.1 Representation of eccentricity using cross section of the eccentric shaft.
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3.2 Parametric Equations Defining Cycloidal Rotor Profile
Once the Rotor Radius (R), Eccentricity (E), Roller Radius (R,), and the Number of
Rollers (N) is set, equations 3.2 [6], 3.3 [6], and 3.4 [6] can be used to generate cycloidal

rotor profile.

sin((1 — N)8)

@ = —tan™! ,(0°<08<360) (3.2)
(%) — cos((1—N)8)

X = Rcos® — R,.cos(0 — @) — Ecos(NO) (3.3)

Y = —Rsin(0) + R,sin(6 — @) + Esin(N0) (3.4)

@ is the contact angle between the cycloidal rotor teeth and the rollers. Equati
on 3.2 can be utilized to compute the contact angle using different 8 values ranging from 0
to 360 degrees. The precision of the rotor profile depends on the step value of the angle
6. The smaller the step is, the corresponding shape is more precise. In other words, the
meshing between rotor teeth and rollers will be precise, resulting in negligible backlash.

Equation 3.3 and Equation 3.4 provide the X-Y location (point) based on the contact
angle @, the corresponding angle 6, Rotor Radius (R), Eccentricity (E), Roller Radius
(R;), and Number of Rollers (N). Modeling of the cycloidal rotor was done using
Autodesk Fusion 360. A python script [2] was utilized to generate the rotor geometry in

Autodesk Fusion 360.

17



Figure 3.2 Modeling of the cycloidal rotor and rollers in Autodesk Fusion 360.

3.3 Pin-Hole Diameter (Dg)
To ensure a two-way motion transfer, from the motor shaft to the rotating arm assembly
and from the rotating arm assembly to the motor shaft, it is necessary to create the Pin-
Hole feature on the cycloidal rotor. Pins are mounted on the fixed arms and engage in these
holes created on the cycloidal rotor. Due to the eccentric motion, the cycloidal rotor rotates
around these pins and transfers gradual torque from the input shaft. Equation 3.5 [3][5] can

be utilized to compute the Pin-Hole diameter (Dy).

Dp = Pin Diamter

E = Eccentricity

18



Pin Diameter (Dp) can be chosen depending on the design requirements. For this
design, the Pin Diameter (Dp) is set to 2 mm and Pin-Hole Diameter (Dy) is computed to
be 6 mm. A bearing with an inner diameter of 6 mm was selected such that it serves as a
Pin-Hole and also helps make the design back drivable by reducing friction between the
pin and the rotor.

After the Pin-Hole Diameter (Dy) is computed, the Mounting Circle Diameter
(Dmount) Must be defined so the center of the Pin-Hole can be placed on it. Multiple Pin-
Holes can be created based on the requirements. For this design, there are a total of 4 Pin-

Holes, and the Mounting Circle Diameter (Dyount) IS Set to 31 mm.

Pin-Holes

Mounting
Circle

Figure 3.3 Representation of the pin-holes and the mounting circle.

The height of the pin can be selected based on the joint thickness or desired
design compactness. For this design, the pin height is set to 14 mm.

19



Figure 3.4 Representation of the pin with 2 mm diameter.

7804K111 Stainless
Steel Ball Bearing

4668K326_Stain
less Steel Ball

Figure 3.5 Interaction of rotor assembly with fixed pins.

20
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Components involved in the Rotor assembly.

Table 3.1 List of Components of the Cycloidal Rotor Assembly

Components Quantity
1 | Cycloidal Rotor 1
2 | 7804K111_Stainless Steel Ball Bearing 4
3 | 4668K326_Stainless Steel Ball Bearing 1

Figure 3.4 represents the cycloidal rotor assembly consisting of the cycloidal rotor
(n=10) and two types of bearings as labeled in the table above. The primary reason for
introducing the 4668K326 stainless steel bearings is to minimize a significant amount of
friction between the cycloidal rotor and the eccentric shaft. The cycloidal rotor rotates in
the opposite direction of the input shaft, and while it rotates a significant amount of friction

may get generated; therefore, introducing a bearing between them certainly makes the

friction negligible.

Also, as the cycloidal rotor rotates, it interacts with the fixed pins. In the absence
of bearing, the high friction prevents the rotor from smoothly tangentially rotating around
the fixed pins; thus, the system may degrade. However, introducing 7804K11 stainless

steel bearing significantly reduces the friction between the components, resulting in smooth

tangential rotation.
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3.4 Eccentric Shaft

v !

AN

Center Axis of The Rotating 4. L Center Axis of The
Shaft Driven by a Motor. Cycloidal Rotor.

Figure 3.6 Representation of center axis of the rotating shaft driven by the motor and the
center axis of the cycloidal rotor.

The eccentric shaft is designed based on the eccentricity computed in chapter 3, and the
rotor thickness of 3 mm. The shaft eccentricity is the offset between the center axis of the
rotating shaft driven by a motor and the center axis of the cycloidal rotor mounted onto the

shaft at a specific offset.
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Cycloidal
rotor mount

Rests on the walls

Input -connects with || of the fixed arm

(Square shape)

the motor shaft side plates

AN

Center axis of
the eccentric
shaft

Feature 1 Feature 4

Feature 2 Feature 3

Figure 3.7 Cross-section of the eccentric shaft.

The center axis of the eccentric shaft aligns with the center axis of the roller gear.
Feature 1, as shown in figure 4.2, serves as the primary interface between the cycloidal
gearbox and the motor. Feature 1 is designed using a square shape to ensure it stays intact
with the motor shaft. The square shape provides ample surface area in contact to ensure the
eccentric shaft does not slip. Having other shapes such as hexagon will have more chances
of slippage if not properly fabricated. Feature 2 and feature 4 can be viewed as simple
cylindrical shapes resting on the walls of the fixed arm side plates. Bearings have been
mounted on feature 2 and feature 4 to facilitate smooth rotation of the eccentric shaft while
resting on the fixed arm plate walls. Feature 3 is the cycloidal rotor mount and its center is
at an offset of 2 mm from the center of the eccentric shaft. The cycloidal rotor assembly
includes a bearing in the center hole that significantly eliminates the friction between the

eccentric shaft and the cycloidal rotor.
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3.5 Motor Shaft

M3 holes- around
the center

Interface with the
eccentric shaft

Figure 3.8 Representation of the motor shaft that will transfer torque from the motor to
the eccentric shaft.

The motor shaft is mainly designed based on the specification of the BLDC motor. It is
attached to the output side of the BLDC motor with four M3 screws. A square shape
interface has been designed in the center to securely connect with the eccentric shaft. This
ensures no slippage and successfully transfers motion from the motor to the eccentric shaft,

ultimately rotating the output ring gear.
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CHAPTER 4
DESIGN OF THE FIXED ARM ASSEMBLY

AND REPRESENTATION OF THE FINAL ASSEMBLY

4.1 Design of the Fixed Arm Side Plates

Fixed Arm Side
Plate —

Configuration 1

Fixed Arm Side
Plate —
Configuration 2

Figure 4.1 Fixed arm side plates.

The fixed arms assembly consists of two different fixed arm side plates. The side
plates are designed based on the Mounting Circle Diameter (Dyount) ON Which the pins are
fixed (figure 3.2). The design includes rotation lock features restricting the rotation of the
moving arm from 0 degrees to 135 degrees. The rotation lock features are vital in
preventing over-rotation of the rotating arm, ultimately reducing the chances of physical
injuries. The fixed arm side plates design allows users to mount the motor on either side,

allowing them to use the joint for the left and right limb.
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4.2 Design of the Motor Mount & Sensor Holding Bracket
The motor mount (Figure 4.2) is designed for securely mounting the motor to the fixed arm
side plates. The mount is compatible with both fixed arm side plates, which means it can
be mounted on either side of the joint. The design includes notches that engage with notches
on the side plates to prevent any unnecessary rotational displacement caused by the torque
exerted by the motor. The motor mount is designed based on the specifications of the
BLDC motor to ensure a safe and robust interface with the motor. The sensor holding
bracket was designed based on the design specification of the AS5147- magnetic rotary
position sensor board. The bracket is designed such that the rotary position sensor board

can be securely attached to the mount for controlling the motor speed and position.

Notches- 180
degrees apart.

Motor Mount

Sensor Bracket
and cover

Figure 4.2 Motor mount & sensor holding bracket assembly.
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4.3 Design of the Fixed Arm Assembly

Motor Arm
Connector

Fixed Arm

Connector Motor Mount

Washer 1 M6 Hex Nut

M6 Hex

Screw Sensor Bracket

& Cover

M2 Hex Screw

Arm
Cover

M2 Hex
Screw

M2 Hex Nut

4668K 114 Bearing

4668K 149 Bearing

Rotation Lock
Features

2 mm Fixed Pins

Figure 4.3 Exploded view of the fixed arm assembly.

Two 44 x 35 x 5 mm bearings are introduced to allow smooth rotation of the rotating
arm assembly. Also, the arm cover was designed to hide the rotating eccentric shaft. The

fixed arm connector is part of the fixed arm side plates but was designed as a separate

27



component to make the fabrication of the design cost friendly. A similar approach was
taken with the design of the motor mount; the motor arm connector is an integral part of
the motor mount but is designed as an individual component to save manufacturing costs.
The motor mount is securely connected to the fixed arm side plates by a single M6 bolt and
nut. The fixed arm side plates are securely intact by two M2 bolts and nuts.

Components involved in the fixed arm assembly:

Table 4.1 List of Components Involved in the Fixed Arm Assembly

Components Quantity
1 | Arm Cover 1
2 | Hex Screw, M2 x 0.4 mm Thread, 4 mm Long 2
3 | Hex Screw, M2 x 0.4 mm Thread, 20 mm Long 2
4 | Steel Thin Hex Nut, M2 x 0.4 mm Thread 2
5 | 4668K114 Stainless Steel Bearing 2
6 | Washer 1 2
7 | Fixed Arm Connector 1
8 | Motor Arm Connector 1
9 | Motor Mount 1
10 | Fixed Arm Side Plate- Configuration 1 1
11 | Fixed Arm Side Plate — Configuration 2 1
12 | 4668K149 Stainless Steel Bearing 2
13 | Head Screw, M6 x 1 mm Thread, 60 mm Long 1
14 | Steel Hex Nut, M6 x 1 mm Thread 1
15 | Dowel Pin, 2 mm Diameter, 14 mm Long 4
16 | Sensor Bracket and Cover 1
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Representation
of BLDC Motor

Figure 4.4 Complete assembly.

4.4 Complete Assembly

29

Fixed Arm
Assembly

Rotating Arm
Assembly




Figure 4.5 Internal mechanisms of the joint.

The operating principle of the proposed joint is as followed:

The eccentric shaft is connected to the motor shaft and is driven by the BLDC
motor. As the eccentric shaft rotates, it forces the cycloidal rotor to rotate in the opposite
direction. As the cycloidal rotor rotates, it interacts with the rollers fixed on the rotating
arm side plates, ultimately forcing the rotating arm assembly to rotate in the same direction
as the eccentric shaft. As mentioned in section 1.3, the proposed design is based on the
rotating ring gear epicycloid drive. The rotating arm assembly can be viewed as the rotating
ring gear in the proposed design. The proposed drive has a 10 to 1 transmission ratio; this

means there are 11 rollers and 10 teeth on the cycloidal rotor.
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Table 4.2 Step by Step Assembly Instructions

Step 1. Insert 2
mm dowel pins
(total 4) into a
fixed arm side
plate (any
configuration).

Step 2. Place
44x35x5 mm
bearing
(4668K149) and
5x11x3 mm
bearing
(4668K114) as
shown in the
image.

Step 3. Place the
rotating arm side
plate (circular slots
facing up as shown
in the image).

Note: Make sure
you have placed
the rotating arm
plate between the
rotation lock
features and not
outside.

Step 4. Insert
Rollers into the
circular slots.




Step 5. Prepare the
rotor assembly as
shown in the
image.

Components
required:

1. Cycloidal
Rotor

2. 6x10x3 mm
(7804K111)
bearings (4
total)

3. 10x15x3
mm
(4668K3260)
bearing

Step 5. Place the
rotor assembly as
shown in the
image.

Step 6. Place the
eccentric shaft as
shown in the
image. The square
end of the shaft
gets connected
with the motor
shaft, so depending
on the side you
choose to mount
the motor on, the
square end should
be facing on that
side.
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Step 7. Place the
fixed arm
connector (left)
and the rotating
arm connector
(right) in their
respective slots.

Step 8. Place the
rotating arm side
plate and 44x35x5
mm bearing as
shown in the
image.

Step 9. Place the
fixed arm
assembly side
plate (not the same
configuration as
taken in Step 1)
and 5x11x3 mm
bearing as shown
in the image.
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Step 10. Insert two
Hex Screw, M2 x
0.4 mm Thread, 20
mm Long and
secure them using
M2 hex nut on the
other side.

Step 11. Secure the
rotating arm
assembly by M4
hex screw and M4
hex nut as shown
in the image. You
will also need two
washers 2 to keep
the assembly
intact.
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Step 12. Assemble
the motor mount
and the motor arm
connector with the
fixed arm as
shown in the
image.

Components
required:

1. Motor
mount

2. Motor arm
Connector

3. Washer1
(one on
each side)

4. M6 hex
screw

5. M6 hex nut

Step 13. Assemble
the Arm cover as
shown in the
image below by
using M2 Screw.

This concludes the
assembly of the
joint.

Note: BLDC
Motor can be
assembled with the
joint using the
respective screw
size. The motor
shaft and sensor
holding bracket
can be attached to
the BLDC motor
using M3 screws.
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4.5 Backdrivability Test
Backdrivability test can be classified into two categories: static and dynamic. The static
backdrive torque is defined as the minimum torque required to overcome the static friction
of the joint's internal mechanisms to initiate the motion of the output shaft by applying
torque to the output shaft. For the proposed design, a static backdrivability torque test was

conducted using the Baseline push-pull mechanical force gauge (SN: 056671-4-0067).

Figure 4.6 Backdrivability test set up.
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- Rotating
Fixed Arm F Arm
Held Fixed

Figure 4.7 Backdrivability test set up diagram.

The joint was placed on a tabletop, and the fixed arm assembly was pressed against
a stable workbench by second personnel to eliminate the unwanted up-down motion of the
fixed arm. The force gauge was used to apply a perpendicular force downward on the
rotating arm, as shown in figure 4.7. The gauge reader was used to measure the force at the
time when the rotating arm started rotating. Equation 4.1 [31] was used to compute the

torque required to backdrive the joint, with the motor being an integral part of the joint.

T=rx*F *Sin0 (4.2)
T = 1.77 Inch * 6 lbs * sin 90°
T=0885ft—1b ~1.20 Nm
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Where r is the horizontal distance from the center axis of the eccentric shaft to the location
of the force applied. The r value is set to 1.77 inches. The F is the perpendicular force
applied to the rotating arm assembly (the output arm) at a specific distance from the center
axis of the eccentric shaft to initiate the motion of the output arm. The force value was
recorded to be 6 Ibs. And 6 is the angle in degrees at which the force is applied to the
rotating arm. @ is set to 90 degrees for calculating the torque since the force is applied at

90 degrees or is normal to the output arm.

This is the most simple test set up to obtain the static torque based on applying a
perpendicular force to the output arm using a force gauge. However, the same test can be
conducted using a better test set up if done in a lab or in a facility that has equipment like

Instron machines as they are known for their precision.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion
A highly backdrivable and compact joint was designed and prototyped. The joint design
includes various important features such as rotation lock features that help prevent
hyperextension, the motor mount that offers the benefit of using the joint for the left and
right limb. Also, the sensor holding bracket and cover were designed to securely mount the
AS5147- magnetic rotary position sensor board for controlling the motor speed and
position. In addition, highly backdrivable (1.20 Nm torque required to backdrive) cycloidal
transmission was designed with a thin cycloidal disk, amplifying the torque output of the
chosen brushless dc motor. The integrity of the design was validated based on the
successful testing of the 3D printed prototype. The design will be fabricated using 1018
Steel and 6061 Aluminum to increase the robustness in comparison to the 3D printed
plastic materials. Detailed manufacturing drawings have been included as part of Appendix
A. | look forward to see the proposed joint design being used for future rehabilitation

exoskeleton designs.

5.2 Future Work
In the future, further improvements can be made to the proposed design to obtain higher
output torque by increasing the transmission ratio. Equation 2.1 can be used to compute a
new transmission ratio.
Also, to increase the robustness of the design, a second cycloidal rotor can be

introduced. Introducing the second cycloidal rotor will offer more contact area between the
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rollers and the rotors teeth, as a result the stress will be distributed across the increased

contact region and will help prevent design failure due to fatigue stresses or if an extreme

amount of backdriving torque is suddenly experienced. To introduce an additional
cycloidal rotor, the following steps can be taken.

1. Redesign the eccentric shaft such that the second rotor can be mounted. Figure

5.1 includes the sketch that shows how to add the additional rotor mount. The

centers of the rotor mounts are located 2 mm away from the center of the shaft

in both directions.

©9.90

Center axis of the
shaft.

Additional
rotor mount

Figure 5.1 Sketch of the double rotor eccentric shaft.
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2. The length of the following housing components must be adjusted to
accommodate the addition of the second cycloidal rotor.
a. 2 mm Dowel pins fixed to the fixed arm assembly.
b. 8 mm Rollers attached to the rotating arm assembly.

c. The fixed arm connector and the rotating arm connector.

Length increase-Dowel pins

Length increase- Fixed
arm connector and the
rotating arm connector

Figure 5.2 Increase in length required for the pointed components.

In addition, the current roller bearings can be replaced by needle roller bearings to
make the design more compact and decrease friction in the mechanism. From the design
durability view, the needle roller bearing will allow an increase in shaft diameter due to its
compactness, and as a result the design will experience less stress. Also, needle roller
bearings can be cost-effective since they can be fabricated in house without much

fabrication resources.
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APPENDIX A

MANUFACTURING DRAWINGS

Figure A.1 to A.29 show manufacturing drawings of the designed components.
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Stainless Steel Ball Bearing Shielded, Trade No. 106-2Z, for 6 mm Shaft Diameter. (2017). McMASTER-CARR. https://www.mcmaster.com/7804K111/
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Figure A.13 Hex nut-90592A016.

Steel Hex Nut Medium-Strength, Class 8, M6 x 1 mm Thread. (2020). McMASTER-CARR. https://www.mcmaster.com/90592A016/
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Zinc-Plated Steel High Hex Nut Class 6, M4 x 0.7 mm Thread. (2015). McMASTER-CARR. https://www.mcmaster.com/90725A025/



https://www.mcmaster.com/90725A025/

LS

McMASTER-CARR | Giet: 91290A207
G 20 Wouasis car Sgpy Comgary | et Moy Sest

Figure A.15 Head cap screw-91290A207.
Black-Oxide Alloy Steel Socket Head Screw M6 x 1 mm Thread, 60 mm Long, Fully Threaded. (2014). McMASTER-CARR.
https://www.mcmaster.com/91290A207/
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Figure A.16 Head cap screw-91292A117.
18-8 Stainless Steel Socket Head Screw M4 x 0.7 mm Thread, 12 mm Long. (2014). McMASTER-CARR. https://www.mcmaster.com/91292A117/
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Figure A.17 Dowell pin-91595A030.

Dowel Pin 52100 Alloy Steel, 2 mm Diameter, 14 mm Long. (2012). McMASTER-CARR. https://www.mcmaster.com/91595A030/
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Figure A.18 Dowel pin- 93600A762.

316 Stainless Steel Dowel Pin 8 mm Diameter, 10 mm Long. (2019). McMASTER-CARR. https://www.mcmaster.com/93600A762/
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Figure A.24 Shaft cover.
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Figure A.27 Socket head cap screw-90125A176.

Zinc-Plated Alloy Steel Socket Head Screw M2 x 0.4 mm Thread, 4 mm Long. (2014). McMASTER-CARR. https://www.mcmaster.com/90128A176/



https://www.mcmaster.com/90128A176/

0.

f
,

1.2 mm

[o——

McMASTER-CARR.“* |55 90695A025

hittpu/fsaw. memasier.com
©2015 McMasiar-Cam Supply Company

Metric Thin Hex
Nut — DIMN 4398

Telormrion I B driwing 1 prowiced for seloercs only.

Figure A.28 Nut-90695A025.

Medium-Strength Steel Thin Hex Nut Class 04, Zinc-Plated, M2 x 0.4 mm Thread. (2015). McMASTER-CARR. https://www.mcmaster.com/90695A025/



https://www.mcmaster.com/90695A025/

T,

McMASTER-CARR. % | \Jie= 91290A049
B | T

Figure A.29 Socket head cap screw-91290A049.
Black-Oxide Alloy Steel Socket Head Screw M2 x 0.4 mm Thread, 20 mm Long. (2014). McMASTER-CARR. https://www.mcmaster.com/91290A049/
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APPENDIX B

BASELINE PUSH-PULL FORCE GAUGE

Appendix B includes an image of the Baseline push-pull force gauge used to apply and
measure the perpendicular force to the rotating (output) arm assembly.
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Figure B.1 BASELINE Push-Pull Guage.
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