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ABSTRACT 

 
ONLINE FULFILLMENT: F-WAREHOUSE ORDER 

CONSOLIDATION AND BOPS STORE PICKING PROBLEMS 

 
by 

Wen Zhu 

 

Fulfillment of online retail orders is a critical challenge for retailers since the legacy 

infrastructure and control methods are ill suited for online retail. The primary 

performance goal of online fulfillment is speed or fast fulfillment, requiring received 

orders to be shipped or ready for pickup within a few hours. Several novel numerical 

problems characterize fast fulfillment operations and this research solves two such 

problems.  Order fulfillment warehouses (F-Warehouses) are a critical component of 

the physical internet behind online retail supply chains. Two key distinguishing 

features of an F-Warehouse are (i) Explosive Storage Policy – A unique item can    

be stored simultaneously in multiple bin locations dispersed through the warehouse, 

and (ii) Commingled Bins – A bin can stock several different items simultaneously. 

The inventory dispersion profile of an item is therefore temporal and non-repetitive. 

The order arrival process is continuous, and each order consists of one or more items. 

From the set of pending orders, efficient picking lists of 10-15 items are generated. A 

picklist of items is collected in a tote, which is then transported to a packaging station, 

where items belonging to the same order are consolidated into a shipment package. 

There are multiple such stations. 

This research formulates and solves the order consolidation problem. At any 

time, a batch of totes are to be processed through several available order packaging 

stations. Tote assignment to a station will determine whether an order will be shipped 

in a single package or multiple packages. Reduced shipping costs are a key 

operational goal of an online retailer, and the number of packages is a determining 

factor. The decision variable is which station a tote should be assigned to, and the 



performance objective is to minimize the number of packages and balance the 

packaging station workload. This research first formulates the order consolidation 

problem as a mixed integer programming model, and then develops two fast heuristics 

(#1 and #2) plus two clustering algorithm derived solutions. For small problems, the 

heuristic #2 is on average within 4.1% of the optimal solution. For larger problems 

heuristic #2 outperforms all other algorithms. Performance behavior of heuristic #2 is 

further studied as a function of several characteristics.  

S-Strategy fulfillment is a store-based solution for fulfilling online customer 

orders. The S-Strategy is driven by two key motivations, first, retailers have a network 

of stores where the inventory is already dispersed, and second, the expectation is that 

forward positioned inventory could be faster and more economical than a warehouse 

based F-Strategy. Orders are picked from store inventory and then the customer picks 

up from the store (BOPS). A BOPS store has two distinguishing features (i) In 

addition to shelf stock, the layout includes a space constrained back stock of selected 

items, and (ii) a set of dedicated pickers who are scheduled to fulfill orders. This 

research solves two BOFS related problems: (i) Back stock strategy: Assignment of 

items located in the back stock and (ii) Picker scheduling: Effect of numbers of picker 

and work hours. A continuous flow of incoming orders is assumed for both problems 

and the objective is fulfillment time and labor cost minimization. For the back-stock 

problem an assignment rule based on order frequency, forward location and order 

basket correlations achieves a 17.6% improvement over a no back-stock store, while 

a rule based only on order frequency achieves a 12.4% improvement. Additional 

experiments across a range of order baskets are reported. 



ONLINE FULFILLMENT: F-WAREHOUSE ORDER 

CONSOLIDATION AND BOPS STORE PICKING PROBLEMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

Wen Zhu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A Dissertation 

Submitted to the Faculty of 

New Jersey Institute of Technology 

in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Industrial Engineering 

 
Department of Mechanical and Industrial Engineering 

December 2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 by Wen Zhu 

 

ALL RIGHTS RESERVED 



APPROVAL PAGE 

 
ONLINE FULFILLMENT: F-WAREHOUSE ORDER 

CONSOLIDATION AND BOPS STORE PICKING PROBLEMS 

 
Wen Zhu 

 

 

 

 

 
 

Dr. Sanchoy K. Das, Dissertation Advisor Date 

Professor of Mechanical and Industrial Engineering, NJIT 
 

 

 

 
 

Dr. Athanassios Bladikas, Committee Member Date 

Associate Professor of Mechanical and Industrial Engineering, NJIT 
 

 

 

 
 

Dr. Esra Buyuktahtakin-Toy, Committee Member Date 

Associate Professor of Mechanical and Industrial Engineering, NJIT 
 

 

 

 
 

Dr. Wenbo Cai, Committee Member Date 

Associate Professor of Mechanical and Industrial Engineering, NJIT 
 

 

 

 
 

Dr. Junmin Shi, Committee Member Date 

Associate Professor of Supply Chain Management and Finance, Martin Tuchman 

School of Management, NJIT 



iv  

BIOGRAPHICAL SKETCH 

 

Author: Wen Zhu 

Degree: Doctor of Philosophy 

Date: December 2020 

 

 

 

 

Undergraduate and Graduate Education: 

 
• Doctor of Philosophy in Industrial Engineering, 

New Jersey Institute of Technology, Newark, NJ, 2020 
 

Master of Science in Healthcare Systems Management, 

New Jersey Institute of Technology, Newark, NJ, 2014 

Bachelor of Medicine in Preventive Medicine, 

Southwest Medical University, Luzhou, Sichuan, P.R. China, 2010 

 

Major: Industrial Engineering 

 

Presentations and Publications: 

 
Zhu, W., and Das, S., Buy Online Fulfill from Store - Design and Control of Order 

Picking Operations, Conference Presentation, Institute for Operations 
Research and the Management Science Annual Conference Annual Meeting, 
Seattle, WA, October 2019 

 

Zhu, W., and Das, S., Dynamic Consolidation of Picked Orders in an Online Orders 
Fulfillment Warehouse, Conference Presentation, Institute for Operations 
Research and the Management Science Annual Conference Annual Meeting, 
Seattle, WA, October 2019 

 

Zhu, W., Helminsky, A., and Das, S., Buy Online, Fulfill from Store – Location 
Assignment and Order Picking, Conference Presentation, Production and 
Operations Management Society Annual Conference, Washington, D.C., May 
2019 

Zhu, W., and Das, S., Consolidation of Picked Orders in a Fulfillment Center with 
Explosive Storage, Poster Presentation, Institute for Operations Research and 
the Management Science Annual Conference Annual Meeting, Phoenix, AZ, 
November 2018 

• 

• 



v  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my beloved family: 

my husband张敏 

my father朱贵森 

  my mother郭乃兰 

for their endless and unconditional love. 



vi  

ACKNOWLEDGMENT 

I would like to express my sincere gratitude to my advisor Professor Sanchoy Das for the 

continuous support of my Ph.D. study and related research, for his patience, motivation, 

and immense knowledge. His guidance helped me in all the time of research and writing 

of this dissertation. Without him I would not have been able to complete this research, 

and without him I would not have made it through my Ph.D. study. 

Besides my advisor, I would like to thank the rest of my dissertation committee: 

Dr. Athanassios Bladikas, Dr. Wenbo Cai, Dr. Esra Buyuktahtakin-Toy, and Dr. Junmin 

Shi, for their insightful comments and encouragement.  

My sincere thanks to the Department of Mechanical & Industrial Engineering for 

the financial support; and to my colleagues: Dr. Jingran Zhang and Dr. Sevilay Onal, for 

all the support in my Ph.D. years. 

Finally, I would like to thank my family: my husband, Min Zhang, my parents, 

Guisen Zhu and Nailan Guo for all the endless and unconditional support. 

 



vii 
 

TABLE OF CONTENTS 
 

Chapter Page 

1 INTRODUCTION ……………….………………………………………………. 1 

 1.1 Research Background ……………………………….……………….…........ 1 

 1.2 Online Order Fulfillment Warehouses ……………………………….……… 3 

 1.3 Amazon Fulfillment Center ……………………………….………………… 3 

 1.4 Online Order Fulfillment in a BOPS Retailer …………………………….…. 5 

 1.5    Research Objectives and Accomplishments ………………………………… 6 

  1.5.1 Formulate and Solve the Order Consolidation Problem as a MIP ……. 6 

  1.5.2 Develop and Test Fast Heuristics for Solving the Order Consolidation 

Problem ……………………………………………………………....... 8 

  1.5.3 Evaluate the Performance Behavior of the Fast Heuristics as a 

Function of Several Characteristics ……………………………….…... 9 

  1.5.4 Back Stock Assignment and Picker Scheduling in a BOPS Store ……. 10 

2 LITERATURE REVIEW ……………………………….………………………. 12 

 2.1 Internet Fulfillment Warehouses ...………………………….………………. 12 

  2.1.1 IFW Differentiators ...………………………….……………………… 14 

  2.1.2 Fulfilment Time and Online Orders ...………………………………… 14 

  2.1.3 Likelihood of an Online Purchase ...………………………….………. 16 

  2.1.4 Logistics Efficiency and Fulfilment Time ...…………………………. 16 



viii 
 

TABLE OF CONTENTS 

(Continued) 
 

Chapter Page 

 2.2 Packing Operations ……………………………….……………….…............ 18 

  2.2.1 Operational Objectives ………………………………………………. 19 

  2.2.2 Bin Packing Problem and Algorithms ………………………………… 21 

 2.3    Clustering Algorithms in Order Fulfillment ………………………………… 23 

 2.4 Optimization Platform ………………………………………………………. 25 

  2.4.1 Modeling Language …………………………………………………… 25 

  2.4.2 Solvers ………………………………………………………………… 26 

  2.4.3 Network-Enabled Optimization System (NEOS) Server ……………... 27 

  2.4.4 SolverStudio …………………………………………………………... 27 

3 THE ORDER CONSOLIDATION PROBLEM ………………………………… 29 

 3.1 The Order Picking and Consolidation Process …………………………….... 29 

 3.2 The Tote Assignment Problem ……………………………………………… 31 

 3.3 Problem Formulation ………………………………………………………... 32 

 3.4 Fast Heuristic F#1 …………………………………………………………… 36 

  3.4.1  Tote-Order Matrix and Dissimilarity Matrix …………………………. 37 

  3.4.2  Transform the Tote-Order Binary Matrix into the Dissimilarity Matrix 38 



ix 
 

TABLE OF CONTENTS 

(Continued) 
 

Chapter Page 

  3.4.3 Fast Heuristic F#1 ……………………………………………………. 39 

 3.5    Clustering Methods in Data Mining ……………………………….………... 42 

  3.5.1 Partitioning Methods …………………………………………………. 43 

  3.5.2 Hierarchical Methods …………………………………………………. 47 

 3.6 Numerical Study and Benchmark Evaluation ………………………………. 50 

  3.6.1 Software and Solver …………………………………………………... 50 

  3.6.2 Simulation Data Sets ………………………………………………… 51 

  3.6.3 Results and Evaluation ………………………………………………. 52 

 3.7 Fast Heuristic F#2 and Performance Evaluation ...…………………………. 54 

  3.7.1 Fast Heuristic F#2 Development ……………………………………… 54 

  3.7.2 Lemma Proof …………………………………………………………. 58 

  3.7.3 Performance Evaluation ………………………………………………. 60 

4 PERFORMANCE BEHAVIOR ANALYSIS OF FAST HEURISTICS ………... 65 

 4.1 Size of Tote-Order Matrix …………………………………………………... 65 

 4.2 Multi-Item Order Complexity of Tote-Order Matrix ………………………. 65 

 4.3 Number of Consolidators …………………………………………………… 69 



x 
 

TABLE OF CONTENTS 

(Continued) 
 

Chapter Page 

 4.4    Consolidation Tote Batch Window ……………………………….………… 74 

  4.4.1 Dynamic Design of Tote-Order Matrix ………………………………. 74 

  4.4.2 Experimental Design and Result Analysis ……………………………. 76 

 4.5 Twinning Design – Future Research ………………………………………. 77 

5 BUY ONLINE PICKUP FROM STORE (BOPS) ……………………………… 80 

 5.1 Introduction …………………………………………………………………. 80 

  5.1.1 Omnichannel Retailing ………………………………………………. 80 

  5.1.2 The Store is the Fulfillment Center …………………………………… 81 

 5.2 Online Order Fulfillment in a BOPS Retailer ...………………………….… 82 

  5.2.1 BOPS Operational Elements …………………………………………. 82 

  5.2.2 Online Order Fulfillment Problems …………………………………... 82 

 5.3 BOPS Store Stocking Layout ………………………………………………. 84 

  5.3.1 Forward Stock ………………………………………………………… 84 

  5.3.2 Online Order Arrivals ………………………………………………… 86 

  5.3.3 Arrange Store Inventory for Fast Fulfillment ………………………… 87 

 5.4 BOPS Picker Scheduling …………………………………………………… 95 



xi 
 

TABLE OF CONTENTS 

(Continued) 
 

Chapter Page 

  5.4.1 Fulfillment Objective …………………………………………………. 95 

  5.4.2 Design of Experiments ………………………………………………... 96 

  5.4.3 Performance Analysis of Simulation Results …………………………. 100 

6 SUMMARY AND FUTURE RESEARCH ……………………………………... 106 

 6.1 Summary ……………………………………………………………………. 106 

 6.2 Future Research ...………………………….………………………………. 107 

REFERENCES ……………………………………………………………………… 109 

  



xii 
 

LIST OF TABLES 
 

Table Page 

3.1 Problem Sizes with Number of Variables and Constrains ………………… 35 

3.2 Problem Sizes with Computational Time (Seconds) ……………………… 35 

3.3 Problem Sizes of Data Sets ………………………………………………... 51 

3.4 Order Cases of Data Sets …………………………………………………. 51 

3.5 CPLEX Solver Running Time (Minutes) ………………………………… 53 

3.6 CPLEX Solver Results ……………………………………………………. 53 

3.7 Summary of Small and Large Data Sets …………………………………... 61 

3.8 Result Summary of 87 Small Data Sets …………………………………… 63 

3.9 Result Summary of 66 Large Data Sets …………………………………… 64 

4.1 Extra-Large Problem Size …………………………………………………. 65 

4.2 Multi-Item Orders Quantity Percentage …………………………………… 66 

4.3 Total Number of Items (I) …………………………………………………. 67 

4.4 Results of 200×560 Tote-Order Matrix by 40 Consolidators ……………... 67 

4.5 Results of 300×840 Tote-Order Matrix by 60 Consolidators ……………... 67 

4.6 Results of 400×1120 Tote-Order Matrix by 80 Consolidators ……………. 68 

4.7 Number of Consolidators Set for each size of Tote-Order Matrix ………... 69 

4.8 Mean Number of Delivery Packages run by F#2 on 200×560 Tote-Order           

Matrix with Different Number of Consolidators …………………………. 70 



xiii 
 

LIST OF TABLES 

(Continued) 
 

Table Page 

4.9 Maxmin Ratio of 200×560 Tote-Order Matrix with Different Number of 

Consolidators ……………………………………………………………............... 70 

4.10 Mean Number of Delivery Packages run by F#2 on 300×840 Tote-Order Matrix 

with Different Number of Consolidators …………………………………………. 71 

4.11 Maxmin Ratio of 300×840 Tote-Order Matrix with Different Number of 

Consolidators ……………………………………………………………............... 72 

4.12 Mean Number of Delivery Packages run by F#2 on 400×1120 ToteOrder Matrix 

with Different Number of Consolidators …………………………………………. 73 

4.13 Maxmin Ratio of 400×1120 Tote-Order Matrix with Different Number of 

Consolidators ……………………………………………………………............... 73 

4.14 Size of 30 Tote-Order Matrices …………………………………………… 76 

4.15 Mean Number of Delivery Packages run by F#2 with Different Batch …... 77 

4.16 Maxmin Ratio of F#2 Results with Different Batch Sizes ………………... 77 

4.17 Mean Number of Delivery Packages run by F#2 with Different Number of 

Consolidators …………………………………………………………………. 78 

4.18 Maxmin Ratio of F#2 Results with Different Number of Consolidators …. 78 

5.1 Groups of SKU Items ……………………………………………………… 87 

5.2 Item Frequency Design ……………………………………………………. 87 

5.3 Back Stock Strategy Results of Design #1 ………………………………... 92 

5.4 Paired Two Sample t-Test for Means ……………………………………... 92 

5.5 Summary of Back Stock Strategy Results for 5 Designs …………………. 93 

5.6 Summary of Back Stock Strategy #2 ……………………………………… 94 



xiv 
 

LIST OF TABLES 

(Continued) 
 

Table Page 

5.7 ANOVA of Back Stock Strategy #2 ………………………………………. 94 

5.8 Order Arrival Surge Design ………………………………………………. 97 

5.9 Picker Schedule ……………………………………………………………. 99 

5.10 BOPS Fulfillment Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ………………………. 101 

5.11 Same-day Waiting Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ………………………. 101 

5.12 Overnight Waiting Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ……………………… 101 

5.13 Next-day Waiting Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ………………………. 102 

5.14 Number of Next-day Fulfilled Orders – Design #1 ………………………. 104 

 

  



xv 
 

LIST OF FIGURES 
 

Figure Page 

2.1 Online purchase likelihood and fulfilment time …………………………. 17 

2.2 Online fulfilment process and performance drivers ………………………. 18 

3.1 Order picking and consolidation process ………………………………… 29 

3.2 Tote assignment problem …………………………………………………. 32 

3.3 Hierarchical cluster dendrogram …………………………………………. 48 

3.4 Mean error gap of small data sets ………………………………………… 63 

3.5 Mean algorithms results difference of large data sets ……………………. 64 

4.1 Mean algorithms results difference of all extra-large data sets …………… 68 

4.2 Maxmin ratio of 200 totes by 560 orders matrix with different number of 

consolidators ………………………………………………………………. 69 

4.3 Maxmin ratio of 300 totes by 840 orders matrix with different number of 

consolidators ………………………………………………………………. 72 

4.4 Maxmin ratio of 400 totes by 1120 orders matrix with different number of 

consolidators ………………………………………………………………. 74 

4.5 Example of tote-order matrix with dynamic design ……………………… 75 

4.6 Maxmin ratio of F#2 results with different batch sizes …………….......... 77 

4.7 Maxmin ratio of F#2 results with different number of consolidators ……. 79 

5.1 Operational structure of a dual distribution strategy ………..................... 80 

5.2 Physical configuration of the fulfillment problem ………………………… 82 

5.3 Forward stock of SKU item ………………………………………………. 85 



xvi 
 

LIST OF FIGURES 

(Continued) 
 

Figure Page 

5.4 Stocking location address of SKU item …………………………………... 85 

5.5 Forward stocking location of SKU item …………………………………... 86 

5.6 Back stock strategy ………………………………………………………. 88 

5.7 Pick travel route of a multi-item order ……………………………………. 90 

5.8 Box plot of back stock strategy 1 and 2 performance in 5 designs ……… 93 

5.9 Order arrivals difference between the stocking and picking problem ……. 97 

5.10 Histogram of 5-day orders arrival time …................................................... 98 

5.11 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight waiting 

2 hours) – design #1……………….............................................................. 100 

5.12 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight waiting 2 

hours) in designs ………………………………………………………………. 103 

5.13 BOPS fulfillment cost (overnight waiting 2 hours) of design #1…………. 104 

5.14 BOPS fulfillment cost (overnight waiting 2 hours) of design #1…………. 105 

 

  



1  

CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

Online and internet retail is dramatically changing the global retail industry. 

Companies vested in traditional supply chains are being challenged by a new and 

rapidly evolving breed of fulfillment centers that are focused exclusively on online or 

internet retail. Das (2020) describes eight paradigm shifts that have driven the growth 

of a fast fulfillment infrastructure. Three of these paradigms are of particular interest 

in this dissertation: (i) Online Shopping, (ii) Point-of-Use Delivery and (iii) The 

Warehouse is the Store.  The consequence of these paradigms is that that customer  

no longer visits the store. Picking up items from store or warehouse inventory and 

then delivering it to the customer address is now the responsibility of the retailers. 

Progressively, we have seen the remodeling and extension of traditional supply chains 

to efficiently and economically perform these new functions. A central facility in online 

retail is a fulfillment center, in purely online retailer this is usually a warehouse, 

while for an Omni channel retailer this is frequently the store itself.  The focus of  

this research is on the development of operations models which are applied to these 

fulfillment facilities. 

Historically, fulfillment centers were developed for the mail order business, and 

fulfillment times were measured in weeks. Internet retailers compete with brick and 

mortar retailers on both the marketing side, where the goal is to sell a product 

virtually, and on the fulfillment side, where the goal is to provide delivery within a few 

days. The key infrastructure components of internet retail are a network of fulfillment 

warehouses (F-Warehouses) or centers and a parcel delivery network. Amazon with 
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close to a 50% market share of all U.S. online sales is the most successful online 

retailer, and they have built over a 100 new fulfillment centers. 

The success of Amazon confirms that a single channel strategy, pure online,  

can effectively meet the demand requirements of most customers. To  expand into  

the online channel, most traditional retailers have built and are operating an online 

retail channel alongside their established physical stores. The largest U.S. retailers 

(Walmart and Target) are designing and building a store based or S-Strategy supply 

chain solution to fulfill online customer orders, this contrasts with the vast fulfillment 

center network or F-Strategy solution built by Amazon. In effect they have converted 

the store into a fulfillment center. 

Then we have two key research questions. The first one is: are successful F-

Warehouses, such as those built by Amazon, operating with design and control 

paradigms that are quite different from traditional warehouses? If so, what are these 

F-Warehouses differences and what are the accompanying product flow processes, 

storage strategies, material movements,  and  operations  control  models?  Onal  et 

al. (2017) were one of the first to report on F-Warehouses and demonstrate the 

fulfillment time performance advantages. Specifically, they identified and described 

how explosive storage policies are being used by F-Warehouses to achieve faster 

fulfillment. The second one is: Is an S-Strategy competitive? Some argue that S-

Strategy solutions are unlikely to provide the needed efficiency gains. 

This research includes both F-Strategy and S-Strategy. Chapters 3 and 4 

investigate new warehousing models that are unique to online order fulfillment 

warehouses (F-Warehouses). These facilities process a very large number of customer 

orders, each of which are for a few units of product. We focus on the process flows, 

operational control models and decision optimization problems. Chapter 5 presents 

the operational structure of the S-Strategy, and two decisions models that are integral 

to this strategy. 
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1.2 Online Order Fulfillment Warehouses 

Order fulfillment warehouses (F-Warehouses) are a critical component of the physical 

internet behind online retail supply chains. The primary performance goal of an F-

Warehouse is fast fulfillment, requiring received orders to be shipped within a few 

hours. Onal et al. (2017) identified six key differentiators between an F-Warehouse 

and traditional warehouses or fulfillment centers. Together these differentiators 

provide the platform for the most successful online retailers to achieve their fast 

fulfillment objectives. These differentiators also show that a traditional warehouse 

cannot be easily transformed to an F-Warehouse, and significant structural and 

operational changes are required. The six differentiators are summarized here. 

(i) Explosive Storage Policy – Incoming bulk inventory is exploded into a  

large number of small lots which ate then dispersed to storage locations throughout 

the warehouse, (ii) Very Large Number of Beehive Storage Locations – Storage is 

organized into small bins (1-3 cubic feet) as opposed to large bulk holding spaces, 

(iii) Bins with Commingled Items – One of the most radical differentiators, is that 

multiple items are simultaneously stored in an unorganized way in the same bin,   

(iv) Immediate Fulfillment Objective – Customer orders arrive continuously 

throughout the day and the goal is for same day shipment, (v) Short Picking Routes 

with Single Unit Picks – Most orders are only for only a single unit and the pick list 

retrieves several different items within a short pick zone, (vi) High Transaction 

Volumes with Total Digital Control – There is a much higher rate of store/pick 

movements per unit shipment, and all movements are modelled and instructed by a 

central controller. 

 

1.3 Amazon Fulfillment Center 

Amazon is the largest internet retailer in the world as measured by revenue and market 

capitalization, is also known for developing and managing F-Warehouses successfully. 

In 1997, Amazon launched its distribution network with two fulfillment centers in 
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Seattle and Delaware dealing directly with individual customer orders.   This class   

of warehouse has been first called “fulfillment center”. Currently, with total over a 

110 Million square feet space of facilities and 250,000 employees, Amazon operates 

over 250 distribution facilities around the world including fulfillment centers, returns 

centers, specialty centers, and redistribution centers. The Amazon U.S. and Canada 

fulfillment network consists of more than 100 fulfillment centers, and more than 

125,000 full-time employees. 

F-Warehouses have a high degree of conveying automation, and in this context 

there are two types: (i) Man-to-Part: Similar to a classical configuration in that 

storage racks are stationary and the worker moves to the bin location and (ii) Part- to-

Man:  The storage racks move,  usually by  a robot swarm,  and bring the bin to  the 

stationary worker. In a classical Part-to-Man, the pick occurs before the move, 

whereas in an F-Warehouse the entire rack is moved, and the pick is done after the 

move. Conveyance of product within the F-Warehouse occurs primarily in totes. 

Outside of the receiving area there are no pallet movements. Totes are designed for 

manual handling such that workers can easily lift a loaded tote. Totes have unique 

identification numbers so that SKU items in totes can be easily tracked. 

The models Onal et al. (2017) presented are the result of an observational study 

of two Amazon fulfillment centers in the USA, one located in Indiana (1.2 Million sq. 

ft.) and the other in Delaware (0.9 Million sq. ft.).  Both were of the Man-to-Part  

type and built in 2012,  with approximately 2500 warehouse workers or associates.  

In the newer fulfillment centers, items are stored on pods and brought to pickers by 

robots (Kiva Systems). Author of this research visited a type Part-to-Man fulfillment 

center, which is 1 Million sq. ft., opened in 2015, located in Baltimore, Maryland. 

Currently, Amazon operates a variety of different types of fulfillment and 

distribution centers in the United States including small sortable,  large sortable, 

large non-sortable, specialty apparel and footwear, specialty small parts, returns 
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processing centers, and 3PL outsourced facilities. This research focus on the small 

sortable fulfillment centers, which generally house smaller items that can all fit in one 

box/shipment (e.g., books, DVDs, watches, etc.). These products are best described 

as being less than 18” and can be  placed  into  a  conveyable  tote.  The  product 

flows of fulfillment centers can be sequenced into three distinct process groups:      

(i) receiving and stocking (ii) order picking and consolidation and (iii) truck 

assignment and loading. While none of the processes are unique to F-Warehouses, 

they are operationally different due to the explosive storage policy. The Kiva robots 

are used in the stocking and picking process. This research focus on the consolidation 

operational process. 

 

1.4 Online Order Fulfillment in a BOPS Retailer 

S-Strategy fulfillment is a store-based solution for fulfilling online customer orders. 

The S-Strategy is driven by two key motivations, first, retailers have a network of 

stores where the inventory is already dispersed, and second, the expectation is that 

forward positioned inventory could be faster and more economical than a warehouse 

based F-Strategy. The brick-and-mortar retailers’ expansion into an online channel 

can be viewed as an extension or variation of omnichannel retail and is quite different 

from store-ending channels. Most importantly, an online customer makes product 

selections on a web  catalog and in most cases will not visit a store.  This requires  

the retail supply chain to additionally execute an order fulfillment process. An 

omnichannel retailer with physical stores receives online customer orders through   

its website. Orders are then directed to a specific company store, where the ordered 

items are picked from shelf inventory. Picked items are packaged and the package is 

either (i) Shipped to the customer address – BOFS or (ii) Picked  up from the store  

by the customer – BOPS. 
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The first goal of the BOPS operation is immediate order fulfillment, allowing the 

retailer to provide a faster service rate than Amazon. BOPS is an expensive activity, 

requiring a picker to walk through the store inventory and fulfill a customer’s inline 

order. The second goal is to minimize the order fulfillment cost. 

 

1.5 Research Objectives and Accomplishments 

Fulfillment of online retail orders is a critical challenge for retailers since the legacy 

infrastructure and control methods are ill suited for online retail. The primary 

performance goal of online fulfillment is speed or fast fulfillment, requiring received 

orders to be shipped or ready for pickup within a few hours. Several novel numerical 

problems characterize fast fulfillment operations and this research solves two such 

problems. 

 

1.5.1 Formulate and Solve the Order Consolidation Problem  as  a  MIP 

Online order fulfillment warehouses, similar to those used by Amazon, typically 

operate with an explosive storage policy. That is, each item is stocked in multiple 

random locations dispersed throughout the warehouse. Orders are then picked and 

collected in totes which are assigned to one of many packaging stations. The order 

arrival process is continuous, and each order consists of one or more items.  From  

the set of pending orders, efficient picking lists of 10-15 items are generated, which 

is commonly referred to as the picklist assignment problem. A picklist of items is 

collected in a tote, which is then transported to a packaging station, where items 

belonging to the same order are consolidated into a shipment package. There are 

multiple such stations. 

There is a one-to-many relationship between customer orders and totes. This 

research formulates and solves the order consolidation problem. At any time, a batch 

of totes are to be processed through several available order packaging stations. Tote 



7  

assignment to a station will determine whether an order will be shipped in a single 

package or multiple packages. Reduced shipping costs are a key operational goal of 

an online retailer, and the number of packages is a determining factor. The decision 

variable is which station a tote should be assigned to, and the performance objective 

is to minimize the number of packages and balance the packaging station workload. 

 
1.5.1.1 Formulate a Totes Consolidation Objective. In a high-volume F- 

Warehouse, hundreds of picked totes are generated every hour and the conveying 

system can direct a tote to any one of the available  consolidators.  The consolidator  

is then instructed to pick SKU items from a specific tote to create a shipping box    

for a customer order. In the ideal case all SKUs for the order are sent to the same 

consolidator so that only one shipping box is generated per order.  But since each  

tote represents SKUs for many orders, plus the items in an order are likely to be in 

multiple totes, a perfect assignment is not possible. The assignment objective then is 

to minimize Ship Boxes/Order over the shift while balancing consolidator utilization. 

 
1.5.1.2 Develop  a  Mixed  Integer  Programming  (MIP)  model. The optimization 

model needs to make the decision on assigning picked totes to consolidators. Using the 

picking list and customer order list, a binary matrix with rows as totes and columns 

as orders is generated. The binary numbers in a tote-order matrix denote that if totes 

have SKU items of orders. The totes have more orders in same are more correlated. 

Our objective is to assign the correlated totes to the same consolidator,  therefore,   

the consolidator can pack the SKUs from same order into one package for delivery. 

One of most important decision variables in this operation process is to decide which 

tote should be assigned to which consolidator, we call this tote assignment list. To 

avoid the situation that all totes in one planning horizon are assigned to one 

consolidator, we bring in the tote quantity balance as the consolidator capacity 

constraint.    The  first  three  research  objectives  relate  to  the  Order Consolidation 



8  

Problem in fulfillment warehouses, while the fourth objective relates to Buy Online 

fulfill from Store problem. 

 
1.5.2 Develop and Test Fast Heuristics for Solving the Order Consolidation 

Problem 

The size of a MIP model, especially the binary variables and constraints, is the most 

discussed factor of the difficulty of a MIP problem. As problem size and complexity 

level of tote-order matrix increase,  directly solving our MIP problem is not easy.  

The required computation time to verify the optimal solution could often become 

unbearable because of the enormous amount of integer variables involved. 

 
1.5.2.1 Develop Fast Heuristics. The objective of the tote assignment list is to  

move the associated totes to the same consolidator. Imagine that the capacity of a 

small order consolidation zone is 20 totes and there are five consolidators working in 

the zone. We would like to organize all the 20 totes into five groups so that each 

group can be assigned to a different consolidator. Strategically, we would like that 

the totes in each group are as similar as possible. Moreover, two given totes having 

very different order patterns should not be placed in the same group. Our intention 

behind this operation strategy is to pack as many as possible SKU items for an order 

together and minimize the ship packages per order. We transform the tote assignment 

problem into the tote consolidation/clustering problem and developed the heuristic 

algorithm by using clustering techniques. 

 
1.5.2.2 Implementation of the k-means and Hierarchical Clustering Methods. 

During the process of developing the heuristic algorithm, we also applied the current 

existing clustering techniques on our data set.  Cluster analysis has been widely used  

in many applications. Different clustering methods may generate different clusters on 

the same data set. Clustering methods can differ with respect to the partitioning level, 
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whether or not clusters are mutually exclusive, the similarity measures used, etc. For 

our tote-order data sets, we adopt exclusive cluster separation, that is, each tote must 

assign to exactly one consolidator. And we use the distance-based similarity measures 

since distance-based methods can often take advantage of optimization techniques. 

Considering all aspects and requirements, we implement the k-means and hierarchical 

clustering methods on our problem. 

 

1.5.3 Evaluate the Performance Behavior of the Fast Heuristics as a 

Function of Several Characteristics 

The order consolidation is a dynamic process, items belong to different orders carrying 

by different totes come to the consolidation station continuously. Performance 

behavior of the heuristics is further studied as a function of following characteristics. 

 
1.5.3.1 Size of Tote-Order Matrix. The size of the tote-order matrix is a critical 

factor to the complexity of the consolidation problem. We expand the data sets size  

to evaluate the robustness and performance of the fast heuristics with k-means and 

hierarchical clustering methods. 

 
1.5.3.2 Multi-Item  Order  Complexity  of  Tote-Order   Matrix.    The  number 

of items in orders contribute the complexity of the tote-order matrix. We  design a  

set of order complexity levels to test the effectiveness of the heuristics. 

 
1.5.3.3 Number of Consolidators. A variety of data sets are tested with different 

number of consolidators. A Maxmin ratio indexed in the range number of ordered 

items minus number of orders was used as a surrogate for solution performance. 

 
1.5.3.4 Consolidation  Tote  Batch  Window.   The size of the tote batch window  

is a partitioning decision on the dynamic flow of totes. The tote-order matrix with 
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dynamic design are generated to simulate the tote flow, then divided into smaller tote 

batches to apply the heuristics and analyze the results. 

 
1.5.3.5 Twining   Design. This is a preliminary design for the future research. The 

twinning design is the order similarity percentage in the tote-order matrix. 

 

1.5.4 Back Stock Assignment and  Picker  Scheduling  in  a  BOPS  Store 

Many retailers, particularly in the grocery business, have built their online sales 

strategy around a BOPS operation. This research solves two BOFS related problems: 

(i) Back stock strategy: Assignment of items located in the back stock and (ii) Picker 

scheduling: Effect of numbers of picker and work hours. For both problems, we 

assume a continuous flow of incoming orders and the objective is fulfillment time 

and labor cost minimization. We model the store inventory dispersion, order arrival 

process and order picking process in a BOPS retailer. As online orders continuously 

entering the system, an arrival time is stamped on each order. An order can consist of 

one or more items. When the picker schedule starts, a picker goes to collect items of 

one order from the online order pick pack area and come back after picking them all. 

Then a fulfilled time is stamped to this order. The difference between these two 

timestamps is the order fulfillment time, and it decided by the pick travel distance and 

picker schedule. We formulate the following problems to, first, minimize the order 

picking time and, second, minimize the order fulfillment cost. Simulation of online 

grocery order picking is used to compare several decision methods. 

 
1.5.4.1 BOPS Store Stocking Layout Problem. The pick travel distance is 

determined by the stocking layout. The forward stock is the common retail section of 

a physical store, this section is arranged for customers browsing displayed products 

and cannot be physically rearranged. The back stock is the fast pick area but the 

shelving space capacitated, only a limited number of SKUs are selectively located 
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here. The problem is which SKU items should be back stocked. We explicit the item 

location model and back-stock decision strategy for this problem. 

 
1.5.4.2 BOPS Picker Scheduling Problem. The picker labor cost is the primary 

direct cost of BOP/FS. Long picker schedule will increase the labor cost, while short 

picker schedule will increase the order waiting cost. The picker start time also decides 

the order fulfilled time. In the picker scheduling problem, we develop the picker 

schedule optimization model to minimize the BOFS fulfillment cost. 



12  

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Internet Fulfillment Warehouses 

Internet Fulfillment Warehouses (IFWs) present a new operational model in the design 

and control of warehouses. Structurally different, they are a key entity in transforming 

the global retail economy (Onal et al.,  2018).  We  focus the research literature on  

the fulfillment side which focuses on the storage of products and their shipment to 

customers once an order is submitted through the web store. 

Agatz et al. (2008) review internet fulfillment and multi-channel distribution 

and conclude that companies must embrace novel strategies to succeed. Commenting 

on the warehousing differences of online retail fulfillment, Bakker et al. (2016) 

highlight the much higher order frequency and the much smaller pick quantities. They 

advise that this requires material handling considerations quite different from 

traditional warehousing. Lee and Whang (2001) argue that fulfillment speed or 

immediacy is critical to winning in online retail. Acimovic and Graves (2015) found 

that quick fulfillment warehouses are unique to online retail, and involve picking, 

packing, and shipping in rapid succession. Gong et al. (2010) and Gong and Koster 

(2008) observe that order fulfillment is the most expensive and critical operation    

for companies engaged in e-commerce and immediacy is the primary challenge in 

building an efficient IFW. They analyzed the performance of a real-time picking and 

sorting systems in a general parallel-aisle warehouse. They recommend the use of a 

dynamic picking system in which a worker picks orders that arrive in real time during 

the picking operations. Other researchers have investigated different aisle layout 

strategies for faster fulfillment. Petersen and Aase (2017) examine a combination of 
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cross aisles and storage policies on order picking times. They found that if across-aisle 

storage is used, then any cross-aisle configuration is sufficient to reduce picker travel. 

Tarn et al. (2003) observe that IFWs operate in a dynamic environment in which 

product and information are highly synchronized to achieve unprecedented levels of 

customer service. They note that traditional distribution systems established for 

retailers are not designed to accommodate the needs of individual customers with a 

large  variety  of small orders. Gunasekaran and Ngai (2004) identify information 

transparency as a key requirement  of  e-commerce  supply  chains,  labelling it as 

the  logistics  information network enterprise. Hubner et al. (2016) surveyed the 

distribution operations of Omni-channel retailers, including internet fulfillment. They 

identify optimizing modes of delivery, increasing delivery speed, and inventory 

transparency as the key factors in achieving fulfillment excellence. Burns and Towers 

(2014) use the fast-changing fashion industry to highlight the need for manufacturers’ 

to create new production planning and control systems if they are to succeed in 

an Omni-channel environment. Li et al. (2016) analyzed the order pick function 

of online retailers’ warehouse operations and found four optimization strategies: 

warehouse layout, position allocation, order batching, and picker routing. Developing 

a solution for any of these strategies, will require an understanding of the underlying 

IFW operations, which this research provides. 

Pan et al. (2017) and Montreuil (2017) introduced the novel concept of the 

physical internet. They define it as a hyper connected logistics system which improves 

by an order of magnitude, the efficiency by which physical objects are moved, 

deployed, realized, supplied, designed, and used. At the center of this network they 

identify a fulfillment center, where a digital customer order is converted into a physical 

delivery package. This research provides a detailed view of a fulfillment center and 

contributes to the knowledge of how the physical internet is being operationalized 

and built. The flows and product arrangements presented here, show that traditional 
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warehousing methods, which are well documented in multiple textbooks (Bartholdi 

and Hackman, 2014; Tompkins et al. 2010), are evolving into new physical designs and 

operational control models that are better suited to meet fast fulfillment objectives. 

 

2.1.1 IFW Differentiators 

Onal et al. (2017) investigates the warehousing operations of internet retailers, based 

on observational studies of internet IFW operations at a leading internet retailer. The 

investigations find that traditional warehousing methods are being replaced by new 

methods which better leverage information technology and efficiently serve the new 

internet retail driven supply chain economy. They identified six key differentiators 

between an IFW and traditional warehouses or fulfillment centers. Together these 

differentiators provide the platform for the most successful online retailers to achieve 

their fast fulfillment objectives. These differentiators also show that a traditional 

warehouse cannot be easily transformed to an IFW, and significant structural and 

operational changes are required. The six differentiators are summarized here:         

(i) explosive storage policy (ii) very large number of beehive storage locations (iii) 

bins with commingled SKUs (iv) immediate order fulfillment (v) short picking routes 

with single unit picks and (vi) high transaction volumes with total digital control. 

 

2.1.2 Fulfilment Time and Online Orders 

The fundamental premise of this study is that faster fulfilment is a key driver in 

motivating customers to switch from a physical store visit to an online delivery order. 

Further, it is also a factor in selecting between online retailers. Several studies have 

discussed this relationship and a recent survey (Wall Street Journal,  2016) found  

that online shoppers want faster delivery with the maximum wait time dropping very 

year. Griffis et al. (2012) found that excellent order fulfilment is instrumental in 

generating referrals for the online retailer, even after factoring in product quality. 
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Several scales for evaluating service quality in electronic or online retailing have been 

proposed (Blut, 2016; Stiakakis and Georgiadis, 2009) and these all include fulfilment 

as a key factor. Though the emphasis in these scales is more on delivery reliability 

against a promised date, and less on the fulfilment time length. In a survey of online 

customers both Koufteros et al. (2014) and Jain et al. (2017) found that timeliness 

positively influenced customer satisfaction. Dholakia and Zhao (2010) also studied 

and compared customer evaluations of online purchases. They found that on-time 

delivery dominates customer satisfaction. Further, they note  that weak fulfilment  

will not compensate for creative and vivid website designs. Meller (2015) quotes a 

recent survey of online buyers, which found that 65% want next day delivery and 24 

said same-day delivery was important to them. They propose that faster fulfilment 

will allow retailers to expand their customer base by targeting the speed-sensitive 

segment. Specifically, they identify the order processing window, or time it takes to 

process an order in the fulfilment center, as a key determinant of success. 

Bell et al. (2014) propose an information and fulfilment matrix to categorize 

Omni channel retailers. They note that fulfilment through package delivery is disad- 

vantaged from the customer perspective by waiting time and delayed gratification. 

This then implies that the shorter the delivery fulfilment time then higher the 

likelihood a customer will switch from a physical store purchase to online, assuming 

equivalent pricing and quality. Further, when evaluating online retail choices, the 

faster fulfilment will be selected. In a comparison of offline and online retail channels, 

Lieber and Syverson (2012) describe fulfilment time as a delayed consumption which 

can be penalized by a discounted utility function. They propose that this delay can  

be quite significant when considering the interaction between a market’s online and 

offline channels. Li et al. (2015) present a consumer utility model for online retailing, 

which includes the discount component rt. In their model, r measures the consumer’s 

patience such that a smaller r implies more patience, and t is the fulfilment time. As 
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the penalty increases, then as a consequence of the decreasing utility the consumer 

may choose a different retail option. 

 
2.1.3 Likelihood of an Online Purchase 

When multiple retail options are available then each will have its unique t, and the 

penalty function of Li et al. (2015) could be translated into the probability of a 

consumer selecting a specific online retailer. Figure 2.1 proposes that this probability 

be described by a non-linear decreasing function of t. In Figure 2.1, the function 

assumes that for same day delivery a maximum likelihood for online purchase is 

reached. Since a portion of customers will always demand immediate fulfilment, the 

maximum likelihood will be less than one.   For  an online retailer to be successful,    

it must therefore offer delivery times close to same day  delivery.  This is reflected   

in Amazon’s progressively shorter fulfilment time targets: 2-day, next day, and now 

same day. Depending on the nature of the product and the associated consumer 

behavior, the waiting time disadvantage, indicated by r, could be steep or shallow as 

shown in Figure 2.1. For products with a steep disadvantage curve, such as grocery 

items, fulfilment must be within a day to ensure retail success. Bell et al. (2012) also 

identify several disadvantages of a physical store purchase, which could be modelled 

into a relationship describing the trade-off between physical and online purchase as   

a function of fulfilment time. Interestingly, Harris et al. (2017) found that the desire 

to avoid disadvantages maybe a stronger motivator for making the online or offline 

purchase. 

 

2.1.4 Logistics Efficiency and Fulfilment Time 

This research investigates whether the new logistics designs and approaches imple- 

mented by Amazon, lead to faster fulfilment times.  Nguyen et al.  (2016) presented  

a framework linking order fulfilment aspects with online consumer buying. We apply 



17  

 

 

 

Figure 2.1 Online purchase likelihood and fulfilment time. 

 
and extend their framework to present an expanded view (Figure 2.2) of the key 

functions in online order fulfilment and the associated performance drivers. This is 

based on facility visits and analytical reviews of Amazon fulfilment centers (Onal et al. 

2017a), where the process flows, and facility design are radically different from that 

of any other online retailer (Onal et al. 2017b). As shown in Figure 2.2 the process is 

initiated by the receipt of a customer order, and a key performance driver is inventory 

management. The majority of leading online retailers will only accept orders if there 

is a fillable inventory and identify a stock out immediately to the customer. The order 

reject rate due to stock outs is then determined by the inventory policy. In this study, 

all the orders tracked were fillable, and the results therefore independent of inventory 

stocking policy. Where the inventory is stocked, which warehouse and where in the 

warehouse, though would be integral to the warehousing logistics function. The next 

two steps, pick and pack, and ship and transport, represent the key competitive 

advantage of Amazon. The performance driver here is warehousing logistics, which 
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allows Amazon to achieve its quick fulfilment goals. Figure 2.2 highlights several 

innovative features in Amazon’s fulfilment infrastructure that differentiate it from  

the competition. In particular, an explosive storage policy and bins with commingled 

SKUs are unique features. Most other retailers have designed their online fulfilment 

logistics, around existing warehouses and stores using more classical approaches. 

 
Figure 2.2 Online fulfilment process and performance drivers. 

 

Last mile delivery is also a key factor in faster fulfilment and many online 

retailers have established fast delivery arrangements with third-party delivery services 

such as FedEx, UPS, and the US Postal Service. This study is unable to differentiate 

the efficiency advantages of warehousing logistics and last mile delivery. But a 

reasonable assumption is that the efficiencies of third-party delivery services are 

available to all online retailers. The primary research question then is to confirm 

and quantify the online fulfilment time advantage that Amazon has achieved as a 

result of its warehousing logistics infrastructure. 

 

2.2 Packing Operations 

Operations in Amazon can be divided into three sub-operations: (i) Inbound 

shipment, (ii) Picking and Packing, and (iii) Outbound shipment. 
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Luna (2015) explores cycle time reductions and throughput adjustments 

required to reduce the Service Level Agreement (SLA) at one of Amazon’s Fulfillment 

Centers. The author goes into the details of the multiple activities for outbound 

operations. The orders that contain only one item called singles, and the orders that 

contain more than one item called multis.  Based on order type, the totes are routed  

to a singles packing area or to a multis sorting area. Totes that contains all the items 

from the group of orders are called batches.   The conveyor  system routes all totes   

in a batch to the same location. The next activity is called tote wrangling; and it 

consists of associates with handheld scanners pulling totes from the conveyors and 

placing them on batch carts, effectively regrouping all the items from all the orders  

in one batch. A batch cart has numerous items from numerous orders on different 

totes.  The next activity is called rebin, the items from the different orders need to   

be segregated from multiple totes into each individual order, and it consists of an 

associate at a rebin computer station sorting items from the numerous totes into bins 

on a cart. 

In recent years, new types of facilities have also emerged, such as sortation 

centers where items from different fulfillment centers are consolidated to reduce the 

number of shipments. In general, sortation centers are smaller operations that can be 

located besides, adjacent to, or nearby larger fulfilment centers. The primary role of 

the sortation center is to aggregate shipments from one or more fulfilment centers for 

delivery into a defined regional grouping of zip codes typically belonging to a nearby 

set of populated urban areas (2014). 

 

2.2.1 Operational Objectives 

In online retailing, the main objective is optimizing the order fulfillment time while 

minimizing the relative supply chain costs. The primary objective of the fulfillment 
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decision is to minimize the outbound shipping cost from fulfillment centers to 

customer. 

Chen (2017) studies the decisions of inventory placement and inventory 

replenishment in online retail. The author used a mixed-integer program to formulate 

placement decision and dynamic program to formulate replenishment decision for a 

single item. The objective of the inventory placement modeling is to minimize the 

sum of outbound shipping and fixed costs for all the items, while satisfying demand 

and capacity constraints. The objective of the inventory replenishment modeling is 

to minimize the long-term average of outbound shipping, stockout and holding costs. 

Acimovic (2012) and Acimovic and Graves (2015) focus on how an online retailer 

should choose the specific facilities from which to fulfill each order in order to minimize 

average outbound shipping costs. The online retailer decides from where items will 

ship, by what shipping method, and how or whether multiple-item orders will be 

broken up into multiple shipments. Only outbound shipping costs are considered: 

in general, it is more expensive to ship an item by air than by ground, and it is 

more expensive to ship a multi-item order in multiple packages than to ship it in a 

single package from a single fulfillment center. They develop a heuristic that makes 

fulfillment decisions by minimizing the immediate outbound shipping cost plus an 

estimate of future expected outbound shipping costs. 

Xu (2005) and Xu et al. (2009) focus on the entire network of warehouses and 

customers. When a customer places an order on an e-tailer’s website, the e-tailer 

assigns the order to one or more warehouses mainly based on the transportation    

cost of shipping the order from the warehouse(s) to the customer location and on    

the current warehouse inventory availability. They show the real-time decision is 

necessarily myopic because the e-tailer does not anticipate any future customer orders 

or inventory replenishment. Reducing the number of shipments is a very good proxy 

for minimizing the transportation costs in the e-tailing setting. The author construct 
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near-optimal heuristics for the re-assignment for a large set of customer orders with 

the objective to minimize the total number of shipments. 

 
2.2.2 Bin Packing Problem and Algorithms 

The definition of the canonical bin packing problem is as follows: the weight capacity 

of the bins is fixed, and the goal is to pack items into the weight-constrained bins with 

the objective of minimizing the total number of bins. There are many variations of 

this problem. They can be classified by different criteria. The number of dimensions 

for the bins and items can be 1D, 2D or 3D. Depending on whether the algorithm  

can see all the items beforehand, there are on-line and off-line bin packing problems. 

The number of different candidate bin types divides the bin packing problems into 

the single sized bin packing and the variable sized bin packing. 

Hall et al. (1988) study the classic problem of bin packing in one dimension. 

They adapt a variety of heuristic methods for generating feasible solutions, and the 

results are then used to generate confidence intervals for the (in practice unknown) 

value of the optimal solution. They selected ten bin packing heuristics which have 

been commonly addressed in the literature, including on-line heuristics and off-line 

heuristics. On-line heuristics pack items into bins as the items are generated. Off-line 

heuristics require that the number of items and their sizes be known before packing 

begins. 

Modified bin-packing problem (Brusco et al. 1997; Rao and Iyengar 1994), is 

modeled using a fixed number of bins with no weight capacity and the objective is to 

pack items into the bins such that the sums of the item weights within each bin are   

as evenly distributed as possible, they used a squared deviation from target as the 

objective function. This is an especially important application in the psychometric 

literature pertains to splitting of a set  of  test  items  to  create  distinct  subtests,  

each containing the same number of items, such that the maximum sum of item 
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weights across all bins is minimized. Brusco et al. (2012) present a mixed zero-one 

integer linear programming (MZOILP) formulation of the one-dimensional minimax 

bin-packing problem and develop an approximate procedure for its solution that is 

based on the simulated annealing algorithm. 

The other variant application of bin packing is efficient management of data 

center resource. The efficient management of a data-center involves minimizing 

energy costs while ensuring service quality.  In one context,  servers can be viewed  

as bins and virtual machines as items. The assignment of virtual machines on servers 

and how these servers are utilized has a huge impact on the energy consumption. 

Cambazarda et al. (2015) focus on a bin packing problem where linear costs are 

associated to the use of bins to model the energy consumption. They study lower 

bounds based on linear programming and extend the bin packing global constraint 

with cost information. Another strategy for reducing the energy consumption is 

workload consolidation that usually achieved by allocating multiple tasks on the 

same physical machine. Armant et al. (2017) leverage semi-online optimization 

techniques in which workload allocations must be made without full knowledge of 

future demands. They formalize the workload consolidation problem as a semi-online 

bin-packing problem whereby each bin maps to a machine and each item maps to a 

task. 

Another paper introduces a deep learning approach to solve the 1D variable 

sized bin packing problem (Mao et al. 2017). They first define the optimization 

heuristics space for this particular bin packing problem. Then, they model a large 

neural network to predict the optimal strategy for each bin packing instance. 
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2.3 Clustering Algorithms in Order Fulfillment 

Cluster analysis or clustering is the task of grouping a set of objects in such a way 

that objects in the same group (called a cluster) are more similar (in some sense) to 

each other than to those in other groups (clusters). 

Cluster analysis has been widely used in many applications such as business 

intelligence, image pattern recognition, Web search, biology, and security. In business 

intelligence, clustering can be used to organize a large number of customers into 

groups, where customers within a group share strong similar characteristics. This 

facilitates the development of business strategies for enhanced customer relationship 

management. 

In Vinod’s paper (1969), the author points out that the problem of grouping, 

where a larger number of elements n are combined into m mutually exclusive groups 

(m¡n) should be recognized as a problem in Integer Programming. He constructs two 

mathematical formulations of the grouping problem. Both formulations are based 

on integer variables that can take values 0 or 1 only. The first formulation uses 

a  constraint  set  similar  to  that  of  the  warehouse location problems. The second 

formulation discusses the problem of minimization of the within-group sum of squares. 

Cluster analysis involves the problem of optimal partitioning of a given set of 

entities into a pre-assigned number of mutually exclusive and exhaustive clusters. In 

Rao’s paper (1971), this problem is formulated in two different ways with the distance 

function (a) of minimizing the within groups sums of squares and (b) minimizing the 

maximum distance within groups. When the entities can be represented as points 

on the real line and the criterion is to minimize the within groups sums of squares, 

an efficient dynamic programming algorithm was obtained. With the same criterion, 

when the entities can be represented as points in a multidimensional Euclidian space, 

an integer linear programming formulation was given. 
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The basic premise is to utilize a distance or dissimilarity matrix to group items 

together based upon one or more attributes. The general methodology requires 

(1) the determination of  a  distance  matrix  and  (2)  the  clustering  of  items  one  

by one in a bottom-up approach or decomposing the entire set of items into two 

groups successively in a top down approach. Klein (1991) formulate a mixed-integer 

programming model for optimal clustering based upon scaled distance measures to 

account for this total group interaction. 

The purpose of Hansen and Jaumard’s paper (1997) is to review the mathe- 

matical programming approach to cluster analysis. A survey is given from a 

mathematical programming viewpoint. Steps of a clustering study, types of clustering 

and criteria are discussed. Then algorithms for hierarchical, partitioning, sequential, 

and additive clustering are studied. Emphasis is on solution methods, i.e., dynamic 

programming, graph theoretical algorithms, branch-and bound, cutting planes, 

column generation and heuristics. 

One application of cluster analysis is in cellular manufacturing (CM). CM is     

a special application of group technology (GT) which is used to cluster parts into 

families and machines into cells for efficient production. Berardi et al. (1999) 

investigate the effect of the alternative starting part family/machine cell clusters      

on the solution of the mathematical programming model. 

In graph theory, given a graph G = (V,E), where V is the vertex set and E is the 

edge set, cluster analysis refers to finding a partition of V into disjoint groups called 

clusters (or communities) such that vertices in the same cluster are densely connected 

to each other and less connected to those in other clusters. In order to identify 

clusters in a graph, clustering can be formulated in mathematical programming with 

an objective function to optimize.  With given nonnegative edge weights, Hassin, 

R. and Rubinstein, S. (2006) describe an approximation algorithm for maximizing 

the sum of weights of edges whose two ends belong to the same cluster.  Another 
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clustering measure is modularity density, the optimization problem is Modularity 

Density Maximization (MDM) problem. Costa et al. (2017) derive several exact 

Mixed-Integer Linear Programming (MILP) reformulations of auxiliary binary NLP 

problems, and obtain complete MILP formulations of MDM. 

 

2.4 Optimization Platform 

2.4.1 Modeling Language 

Algebraic modeling languages are sophisticated software packages that provide a key 

link between an analyst’s mathematical conception of an optimization model and the 

complex algorithmic routines that seek out optimal solutions (Robert Fourer, 2013). 

By allowing models to be described in the high-level, symbolic way that people think 

of them, while automating the translation to and from the quite different low-level 

forms required by algorithms, algebraic modeling languages greatly reduce the effort 

and increase the reliability of formulation and analysis. They have thus played an 

essential role in the spread of optimization to all aspects to OR/MS and to many 

allied disciplines. 

AMPL is a language for algebraic modeling and mathematical programming: 

a computer-readable language for expressing optimization problems such as linear 

programming in algebraic notation (Fourer, Robert and Brian W. Kernighan, 2002). 

Optimization problems arise in many contexts (David M. Gay). Sometimes 

finding  a  good formulation  takes considerable effort. A modeling language, such 

as AMPL, facilitates experimenting with formulations and simplifies using suitable 

solvers to solve the resulting optimization problems. AMPL lets one use notation 

close to familiar mathematical notation to state variables, objectives, and constraints 

and  the  sets  and  parameters  that  may  be involved. AMPL does some problem 

transformations and makes relevant problem information available to solvers. The 

AMPL command language permits computing and displaying information about



26  

problem details and solutions returned by solvers. It also lets one modify problem 

formulations and solve sequences of problems. AMPL addresses both continuous  

and discrete optimization problems and offers some constraint programming facilities 

for the latter. More generally, AMPL permits stating and solving problems with 

complementarity constraints. For continuous problems, AMPL makes first and second 

derivatives available via automatic differentiation. The freely available AMPL/solver 

interface library (ASL) facilitates interfacing with solvers. This paper gives an 

overview of AMPL and its interaction with solvers and discusses some problem 

transformations and implementation techniques. It also looks forward to possible 

enhancements to AMPL. 

Practical large-scale mathematical programming involves more than just the 

application of an algorithm to minimize or maximize an objective function (Robert 

Fourer et al. 1990) Before any optimizing routine can be invoked, considerable effort 

must be expended to formulate the underlying model and to generate the requisite 

computational data structures. AMPL is a new language designed to make these steps 

easier and less error prone. AMPL closely resembles the symbolic algebraic notation 

that many modelers use to describe mathematical programs, yet it is regular and 

formal enough to be processed by a computer system; it is particularly notable for  

the generality of its syntax and for the variety of its indexing operations. We have 

implemented a translator that takes as input a linear AMPL model and associated 

data and produces output suitable for standard linear programming optimizers. Both 

the language and the translator admit straightforward extensions to more general 

mathematical programs that incorporate nonlinear expressions or discrete variables. 

 

2.4.2 Solvers 

AMPL Optimization also supports the free solver programs of CPLEX, Gurobi, and 

Xpress for academic use. All academic versions allow full use of machine resources, 
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with problem sizes limited only by the memory, storage, and processors available. The 

report of David M. Gay (1993) tells how to make solvers work with AMPL’s solve 

command. It describes an interface library, amplsolver.a, whose source is available 

from netlib as individual files, as gzip-compressed files, or in a single tar file. Examples 

include programs for listing LPs,  automatic conversion to the LP dual (shell-script  

as solver), solvers for various nonlinear problems (with first and sometimes second 

derivatives computed by automatic differentiation), and getting C or Fortran 77 for 

non-linear constraints, objectives and their first derivatives. Drivers for various well 

known linear, mixed-integer, and nonlinear solvers provide more examples. 

 

2.4.3 Network-Enabled Optimization System (NEOS) Server 

The NEOS Server is a free internet-based service for solving numerical optimization 

problems.  It provides access to more than 60 state-of-the-art solvers in more than     

a dozen optimization categories and offers a variety of interfaces for accessing the 

solvers to enable jobs run on distributed high-performance machines. Czyzyk, J. et 

al. (1998) discusses the design and implementation of the NEOS Server. Dolan, E. 

(2001) discusses the implementation of the server and its use in detail. Gropp, W. and 

Moré, J. J. (1997) discusses the NEOS Server as a problem-solving environment that 

simplifies the formulation of optimization problems and the access to computational 

resources. 

 

2.4.4 SolverStudio 

SolverStudio is an add-in for Excel that allows you to build and solve optimization 

models in Excel using many optimization modeling languages. SolverStudio allows 

models built using AMPL to be solved using the NEOS server. Mason AJ (2013) 

provides a basic introduction to SolverStudio. SolverStudio is written in VBA, and  

C using Visual Studio 2010 Professional. It uses the Microsoft VSTO (Visual Studio 
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Tools for Office) system running on .Net 4 to manage the integration with Excel. It 

includes IronPython as its embedded Python engine. 
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CHAPTER 3 

 

THE ORDER CONSOLIDATION PROBLEM 

 

 

 
3.1 The Order Picking and Consolidation Process 

Figure 3.1 flowcharts the F-Warehouses order picking and consolidation process. The 

order receipt process is data driven with orders arriving continuously, which are then 

immediately updated to the customer order list. A customer order may contain more 

than one SKU item, in which case each SKU generates a separate record with a 

common order number. Whenever a picker becomes free the F-Warehouses control 

logic uses the customer order list and the inventory state records to generate an order 

picking list. The picker first links an empty tote to the assigned list, and then follows 

the sequential picks to fill the tote. 

 
Figure 3.1 Order picking and consolidation process. 
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At picking stage, one picker may work on multiple orders, and the items from 

one order may be picked by one picker or by multiple pickers.  Therefore, each item  

in the order could be placed into different totes throughout different locations in the 

F-Warehouses. In other words, there’s small probability that the items form one order 

being picked simultaneously at the same location. This also can be explained by the 

differentiators Onal et al. (2017) identified between an F-Warehouses and traditional 

warehouses or fulfillment centers. Below listed the differentiators of them. 

Explosive Storage Policy - An incoming bulk SKU is exploded into multiple 

storage lots such that no lot contains more than 10% of the received quantity,  the  lots 

are then stored in random locations anywhere in the warehouse without preset 

restrictions. 

Very Large Number of Beehive Storage Locations - Storage is organized into 

small bins as opposed to large bulk holding spaces. The entire IFW is organized into 

racks that are divided into many small bins in a sort of beehive pattern. A  million 

square-foot IFW could therefore have several million bins. A similar sized traditional 

warehouse may have only 10,000 locations. This is the most apparent physical 

difference of an IFW. 

Bins with Commingled SKUs - One of the most radical differentiators of an IFW, 

is that multiple SKUs are simultaneously stored in the same bin. 

Short Picking Routes with Single Unit Picks - Order picking efficiency is  a key 

decision in warehouse operations, and the pick list decision problem is focused primarily 

on travel time minimization. In an IFW most orders are for only a few units and in most 

cases for only a single unit. A pick list therefore retrieves several different items within a 

short pick zone. This is made possible by the explosive storage policy and beehive 

storage. 

Since a customer order may consist of more than one SKU, then ideally all 

SKUs should be shipped together. But each SKU could be picked in a different zone 
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and be in a different tote. Consolidation is the inverse of explosion and the objective 

of the assignment list is to move the associated totes to the same consolidator. Note 

that there is no perfect solution and at the end of the day there will be more boxes 

shipped than orders. Assignment is constrained by the tote composition, pick time  

for each SKU and the processing capacity of each consolidator station. Using the 

picking list and customer order list, the F-Warehouses control logic generates a tote 

assignment list. Each consolidator station is manned by a single worker. Physically, 

the worker is surrounded by racks of totes filled with picked products. During the pack 

and consolidate activity, the consolidator follows the display instructions to setup an 

order labelled shipment box and fills it with specific SKUs picked from one or more 

totes. When done, the box is packed and forwarded to shipping. 

 

3.2 The Tote Assignment Problem 

In a high-volume F-Warehouse, hundreds of picked totes are generated every hour 

and the conveying system can direct a tote to any one of the available consolidators. 

The consolidator is then instructed to pick SKU items from a specific tote to create a 

shipping box for a customer order. In the ideal case, all SKUs for the order are sent  

to the same consolidator so that only one shipping box is generated per order. But 

since each tote represents SKUs for many orders, plus the items in an order are likely 

to be in multiple totes a perfect assignment is not possible. The assignment objective 

then is to minimize Ship Boxes/Order over the shift while balancing consolidator 

utilization. Then an optimization model would make the decision: picked tote is 

assigned to which consolidator. 

Figure 3.2 illustrates the problem and shows the case where a single order 

generates three shipping boxes. Each consolidator station is also limited by the 

number of totes staged for shipping. This would be a constraint in the assignment 

problem, and an extended model would need to consider the tote queuing delays. 
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Figure 3.2 Tote assignment problem. 

 
3.3 Problem Formulation 

We develop a Mixed Integer Programming (MIP) model for the tote assignment 

problem.  Using the picking list and customer order list,  a binary matrix with rows  

as totes and columns as orders is generated. The binary numbers in this tote-order 

matrix denote that if totes have SKUs from each order. The totes have more SKUs 

from same orders are more correlated.   Our objective is to assign the correlated   

totes to same consolidator, therefore the consolidator can pack the SKUs from same 

order into one package for delivery. One of most important decision variables in this 

operation process is to decide which tote should be assigned to which consolidator, 

we call this tote assignment list.  In order to avoiding the situation that all totes in  

one planning horizon are assigned to one consolidator, we bring in the tote quantity 

balance as the consolidator capacity constraint. 

Model Parameters: 

K: Set of consolidators, consolidator c ∈ K = {1…k}.    

M: Set of orders, order r ∈ M = {1…m}.    

N: Set of totes, tote i ∈ N = {1…n}.      

𝑎𝑖,𝑟: Binary value of the tote-order matrix, for all r ∈ M, i ∈ N, means tote i has 

SKUs from order r if is 1, and 0 otherwise.   

Decision Variable: 

xi,c: Binary variable, xi,c = 1 if tote i is assigned to consolidator c, and xi,c = 0, 

otherwise, for all i ∈ N, c ∈ K.                
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Auxiliary variables: 

zc,r: Shipment packages that consolidator c packs for order r, for all c ∈ K, r ∈ M, 

means consolidator c has SKUs from order r and pack them for shipment if is 1, and 0 

otherwise. 

bc: Tote quantity balance for number of totes are assigned to consolidator c, for all 

c ∈ K. 

The problem can now be formulated as the following mixed integer programming 

(MIP) model. 

Min  ∑ ∑ 𝑧𝑐,𝑟
𝑚
𝑟=1

𝑘
𝑐=1  + 𝛽 ∑ 𝑏𝑐

𝑘
𝑐=1                                                                           (3.1) 

s.t.    ∑ 𝑥𝑖,𝑐
𝑘
𝑐=1  = 1    for all i ∈ N                                                                          (3.2) 

         𝑧𝑐,𝑟 ≥  𝑥𝑖,𝑐𝑎𝑖,𝑟    for all r ∈ M, i ∈ N, c ∈ K                                                 (3.3)            

         𝑏𝑐 ≥  ∑ 𝑥𝑖,𝑐
𝑛
𝑖=1 − 𝑛/𝑘    for all c ∈ K                                                          (3.4) 

         𝑏𝑐 ≥  𝑛 𝑘⁄ − ∑ 𝑥𝑖,𝑐
𝑛
𝑖=1     for all c ∈ K                                                          (3.5) 

         𝑥𝑖,𝑐 ∈ {0,1}, 𝑧𝑐,𝑟 ≥ 0, 𝑏𝑐 ≥  0   for all r ∈ M, i ∈ N, c ∈ K                        (3.6) 

In this model, the objective function (3.1) is to minimize the shipped packages 

with the tote quantity balance.   There is an obvious solution that assign all totes      

to one consolidator to get the minimal number of shipment package. The  tote 

quantity balance will bring the optimal value up to remove this extremely uneven 
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totes assignment solution. β is the balance coefficient, we set it as 1 by default, and 

gradually increase it when tote quantity balance is insufficient to the extremely uneven 

totes assignment solution. Constraints (3.2) ensure that each tote can be assigned 

to only one consolidator. Constraints (3.3) ensure that if a tote i has order r, and 

this tote i is assigned to a consolidator c, then the consolidator c has to prepare a 

shipment package for the order r. Constraints (3.4) and (3.5) define the tote quantity 

balance is the difference between the average totes can be assigned to consolidators 

and the totes assigned to consolidators, where n is total number of totes, k is total 

number of consolidators. Constraints (3.6) restricts the domains of decision variables. 

Measuring the difficulty of a MIP problem is a very difficult question. It depends 

on so many factors. The most discussed indicators of computational complexity for 

generic MIP in our search are: 

Size of the formulation - number of variables and constraints, intuitively the 

number of binary variables, when solving the MIP through the branch-and-bound 

algorithm. 

Tightness of the formulation - the gap between integer optimal value and the 

optimal value of linear relaxation. 

The size of our MIP model depends on the numbers of consolidators, totes, and 

orders. The number of binary variables and constraints in each case are shown in 

Table 3.1. 

For a given MIP problem, the knowledge of the polyhedral structure of the 

problem is crucial. And the attempt to reduce the CPU time of solving a given model 

has to be experimented empirically. Under different size of consolidators, totes, and 

orders, we have also generated three levels of tote-order matrix (easy, medium, hard), 

and have solved the models by using solver Gurobi. The CPU time in each case are 

shown in Table 3.2. 

 

 

 



35  

 

Table  3.1  Problem Sizes with Number of Variables  and  Constrains 

 

Consolidators Totes Orders Binary variables Total constraints 

5 20 60 100 6030 

6 30 80 180 14442 

7 35 100 245 24549 

10 50 140 500 70070 

15 75 210 1125 236355 

20 100 280 2000 560140 

 

 
Table  3.2  Problem Sizes with Computational Time (Seconds) 

 

Consolidators Totes Orders Easy Medium Hard 

5 20 60 0 1 10 

6 30 80 0 20 83 

7 35 100 1 240 2532 
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We can see that as problem size and complexity level of tote-order matrix 

increase, directly solving our MIP problem becomes more difficult. The required 

computation time to verify the optimal solution could often become unbearable 

because of the enormous amount of integer variables involved. In many problems, 

adding variables helps strengthening the linear relaxations and hence, the bounds 

used at each node of the branch and bound algorithm. However, in some cases, 

adding valid inequalities just makes the model bigger and heavier at each node. We 

also have found that, in some cases, providing a strong feasible initial solution to a 

MIP has caused the solver to iterate endlessly trying to prove its optimality. The fact 

that modern solvers, like CPLEX or Gurobi have a really large number of parameters, 

heuristic presolvers and a gazillion things does not really help in the very least. 

 
3.4 Fast Heuristic F#1 

The objective of the tote assignment list is to move the associated totes to the same 

consolidator. Imagine that the capacity of a small order picking and consolidation 

zone is 20 totes, and we have five consolidators working in the zone. We would like 

to organize all the 20 totes into five groups so that each group can be assigned to a 

different consolidator. Strategically, we  would like that the totes in each group are  

as similar as possible. Moreover, two given totes having very different order patterns 

should not be placed in the same group. Our intention behind this operation strategy 

is to pack as many as possible SKU items for an order together and minimize the  

ship packages per order. In order to accomplish this task, we transform the tote 

assignment problem into the tote clustering problem and developed the fast heuristic 

F#1 by using clustering techniques. 

Clustering is the process of grouping a set of data objects into multiple groups 

or clusters so that objects within a cluster have high similarity but are very dissimilar 
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to objects in other clusters. Dissimilarities and similarities are assessed based on the 

attribute values describing the objects and often involve distance measures. 

 
3.4.1 Tote-Order Matrix and Dissimilarity Matrix 

Data matrix is a data structure that have n objects (e.g., totes in our case) described  

by m attributes (orders in our case). The totes are 𝑎1 = ( 𝑎1,1, 𝑎1,2, … , 𝑎1,𝑚), 𝑎2 =

( 𝑎2,1, 𝑎2,2, … , 𝑎2,𝑚), and so on, where 𝑎𝑖,𝑟 is the binary value for tote 𝑎𝑖 of the rth 

order. For brevity, we hereafter refer to tote 𝑎𝑖 as tote i.  

Tote-order matrix (tote-by-order structure):  This structure stores the n totes    

in the form of a relational table, or n-by-m matrix (n totes ×  m orders): 

𝑎1,1 … 𝑎1,𝑟  … 𝑎1,𝑚 

…   …   …   …   … 

𝑎𝑖,1 … 𝑎𝑖,𝑟  … 𝑎𝑖,𝑚 

…   …   …   …   … 

𝑎𝑛,1 … 𝑎𝑛,𝑟  … 𝑎𝑛,𝑚 

Each row corresponds to a tote. As part of our notation, we may use r to index 

through the m orders. A numerical example of tote-order matrix with 5 totes by 10 

orders is shown below, binary values indicate that tote i has SKUs of order r if the 

matrix entry is 1, and 0 otherwise. 

 

  1 0 0 0 1 0 1 0 0 1   

  0 1 1 0 0 0 0 0 1 1   

  0 1 0 1 0 0 0 1 1 0   

  1 0 0 0 0 1 1 1 0 0   

  0 0 1 1 1 1 0 0 0 0   

 

Dissimilarity matrix (tote-by-tote structure): This structure stores a collection  

of proximities that are available for all pairs of n totes. It is often represented by an n-

by-n table: 
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  0       
  d(2, 1) 0      
  d(3, 1) d(3, 2) 0     

  … … …     
  d(n, 1) d(n, 2) … … 0   

 

where d(i, j) is the measured dissimilarity or “difference” between totes i and j. 

In general, d(i, j) is a non-negative number that is close to 0 when totes i and j are 

highly similar or “near” each other, and becomes larger the more they differ. Note 

that d(i, i) = 0; that is, the difference between an object and itself is 0. Furthermore, 

d(i, j) = d(j, i). (For readability, we do not show the d(j, i) entries; the matrix is 

symmetric.) A numerical example of dissimilarity matrix transformed from the above 

tote-order matrix example is shown below. 

 

  0       

  0.857 0      

  1 0.667 0     

  0.667 1 0.857 0    

  0.857 0.857 0.857 0.857 0   

 

Many clustering and nearest-neighbor algorithms operate on a dissimilarity 

matrix. Data in the form of a data matrix can be transformed into a dissimilarity 

matrix before applying such algorithms. 

 

3.4.2 Transform the Tote-Order Binary Matrix into the Dissimilarity 

Matrix 

In the following 2 × 2 contingency table, where q is the number of orders that equal 1 

for both totes i and j, u is the number of orders that equal 1 for tote i but equal 0 for 

tote j, s is the number of orders that equal 0 for tote i but equal 1 for tote j, and t is 

the number of orders that equal 0 for both tote i and j.  The total number of orders    

is p, where p = q + u + s + t. 
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   Tote j   

  1 0 sum 

Tote i 
1 q u q + u 

0 s t s + t 

  sum q + s u + t p 

 

                                                               𝑑(𝑖, 𝑗) =
𝑢 + 𝑠

𝑞 + 𝑢 + 𝑠
                                    (3.7) 

The coefficient d(i, j) is called the Jaccard coefficient and is popularly referenced 

in the literature. In the following numerical example, we continue using the above 

example of tote-order matrix and compute the Jaccard coefficient between tote 1 and 

tote 2 (first and second row). 

    Tote 1   

  1 0 sum 

Tote 2 
1 1 3 4 

0 3 3 6 

  sum 4 6 10 

 

𝑑(2,1) =
3 +  3

1 +  3 +  3
= 0.857 

 
3.4.3 Fast Heuristic F#1 

When an algorithm uses the minimum distance to measure the distance between 

clusters, it is sometimes called a nearest-neighbor clustering algorithm. If we view 

the totes as  nodes  of  a  graph,  with  edges  forming  a  path  between  the  totes  in 

a cluster, then the merging of two clusters,  Ci and Cj,  corresponds to adding an  

edge between the nearest pair of totes in Ci and Cj. Because edges linking clusters 

always go between distinct clusters, the resulting graph will generate a tree.  Thus,  

an agglomerative hierarchical clustering algorithm that uses the minimum distance 

measure is also called a minimal spanning tree algorithm, where a spanning tree of a 

graph is a tree that connects all totes,  and a minimal spanning tree is the one with  

the least sum of edge weights. In our application, we merge the two totes, ti and tj, 
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with the minimum distance into a new bigger tote which will have  all of the orders  

of the previous two totes, ti and tj, and set a boundary for tote quantity during the 

clustering process. Then iterate this step based on merged tote-order matrix until all 

of the original totes are assigned into clusters. The proposed algorithm is described 

by the steps: 

Step 1 – According to Equation (3.7), transform the tote-order matrix (tote-by- 

order structure) into the dissimilarity matrix (tote-by-tote structure). As already 

mentioned above, many clustering and nearest-neighbor algorithms operate on a 

dissimilarity matrix.   Data in the form of a data matrix can be transformed into         

a dissimilarity matrix before applying such algorithms. 

Step 2 – According to the nearest-neighbor clustering algorithm, select the 

smallest dissimilarity value min{𝑑𝑖,𝑗} from the dissimilarity matrix (from step 1). The 

smallest dissimilarity value min{𝑑𝑖,𝑗} indicate the nearest pair of totes i and j. If 

there’s tie, break it arbitrarily. 

Step 3 – Merge the nearest pair of totes i and j with the min{𝑑𝑖,𝑗} (from step 2) 

into a new tote i’ and update the merged tote-order matrix for the next iteration.  All 

of    the orders in the totes i and j go to the new tote i’ after the merging.  The logic 

can  be formulated as shown below: 

 

Min  ∑ 𝑎𝑖′,𝑟
𝑚
𝑟=1  

s.t.  𝑎𝑖′,𝑟 ≥  𝑎𝑖,𝑟    for all r ∈ M 

       𝑎𝑖′,𝑟 ≥  𝑎𝑗,𝑟    for all r ∈ M 

 

We still use the previous Example of Tote-Order Matrix and Dissimilarity 

Matrix to compute the Merged Tote-Order Matrix as a numerical example, and shown 

below: 
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  0       

  0.857 0      

  1 0.667 0     

  0.667 1 0.857 0    

  0.857 0.857 0.857 0.857 0   

Example of Dissimilarity Matrix 

 

  1 0 0 0 1 0 1 0 0 1   

  0 1 1 0 0 0 0 0 1 1   

  0 1 0 1 0 0 0 1 1 0   

  1 0 0 0 0 1 1 1 0 0   

  0 0 1 1 1 1 0 0 0 0   

Example of Tote-Order Matrix  

 

  1 0 0 0 1 1 1 1 0 1   

  0 1 1 0 0 0 0 0 1 1   

  0 1 0 1 0 0 0 1 1 0   

  0 0 1 1 1 1 0 0 0 0   

Merged Tote-Order Matrix  

 

Step 4 – Repeat step 1, 2, and 3 until all totes are assigned into clusters. 

 

Similar to tote quantity balance in the MIP formulation, we set n/k as the 

boundary for number of totes in each cluster to avoid the situation that one cluster is 

assigned much more totes than other clusters. In other words, if the number of totes 

within a cluster is more than n/k,  the fast heuristic F#1 will not put more totes into   

this cluster in the following iterations. 
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3.5 Clustering Methods in Data Mining 

During the process of developing the fast heuristic F#1, we also applied the current 

existing clustering techniques on our data set. Cluster analysis is the process of 

partitioning a set of data objects into subsets. Each subset is a cluster, such that 

objects in a cluster are similar to one another, yet dissimilar to objects in other 

clusters. Cluster analysis has been widely used in many applications. Different 

clustering methods may generate different clusters on the same data set. Clustering 

methods can differ with respect to the partitioning level, whether or not clusters are 

mutually exclusive, the similarity measures used, etc. All these aspects with which 

clustering methods can be compared in different applications are listed below: 

The partitioning criteria: In some methods, all the objects are partitioned so  

that no hierarchy exists among the clusters. Alternatively, other methods partition 

data objects hierarchically, where clusters can be formed at different levels. 

Separation of clusters: Some methods partition data objects into mutually 

exclusive clusters. In some other situations, the clusters may  not be exclusive, that  

is, a data object may belong to more than one cluster. 

Similarity measure: Some methods determine the similarity between two objects 

by the distance between them. In other methods, the similarity may be defined by 

connectivity based on density or contiguity and may not rely on the absolute distance 

between two objects. Similarity measures play a fundamental role in the design of 

clustering methods. 

Also, clustering algorithms have several requirements, such as: 

Capability of clustering high-dimensionality data: Most clustering algorithms 

are good at handling low-dimensional data such as data sets involving only two or 

three dimensions. Finding clusters of data objects in a high-dimensional space is 

challenging, especially considering that such data can be very sparse 
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Constraint-based clustering: Real-world applications may need to perform 

clustering under various kinds of constraints. A challenging task is to find data 

groups with good clustering behavior that satisfy specified constraints. 

Considering all above aspects and requirements,  for our tote-order data sets,  

we adopt exclusive cluster separation, that is, each tote must assign to exactly one 

consolidator. And we use the distance-based similarity measures since distance-based 

methods can often take advantage of optimization techniques. 

 
3.5.1 Partitioning Methods 

Given a set of n objects, a partitioning method constructs k partitions of the data, 

where each partition represents a cluster and 𝑘 ≤ 𝑛, each cluster must contain at least 

one object. The basic partitioning methods typically adopt exclusive cluster 

separation, which means each object must belong to exactly one cluster. The number 

of clusters k is also given as background knowledge. This parameter is the starting 

point for partitioning methods. The partitioning method then uses an iterative 

relocation technique to improve the partitioning by moving objects from one group to 

another. Most partitioning methods are distance-based. The clusters are formed to 

optimize  an objective partitioning criterion, such as a dissimilarity function based on 

distance, so that the objects within a cluster are “similar” to one another and 

“dissimilar” to objects in other clusters in terms of the data set attributes (Jiawei Han, 

Micheline Kamber, Jian Pei, Data Mining Concepts and Techniques). 

Partitioning is the simplest and most fundamental version of cluster analysis, 

however, achieving global optimality in partitioning-based clustering is often compu- 

tationally prohibitive, potentially requiring an exhaustive enumeration of all the 

possible partitions. Instead, most applications adopt  popular  heuristic  methods, 

such as greedy approaches like the k-means and the k-modes algorithms, which 

progressively improve the clustering quality and approach a local optimum. In the 



44  

following, we apply these two most well-known and commonly used partitioning 

methods on our tote assignment problem. 

The k-means algorithm is a centroid-based partitioning technique that  uses a 

centroid to represent a cluster. Conceptually, the centroid of a cluster is its center 

point. The centroid can be defined in various ways  such as by  the mean of  the 

objects assigned to the cluster (Jiawei Han, Micheline Kamber, Jian Pei, Data Mining 

Concepts and Techniques). Given a set of objects and an integer number k (≤ 𝑛), the 

k-means algorithm searches for a partition of A into k clusters that minimizes the 

within groups sum of squared errors (WGSS). 

In this application of k-means algorithm on our tote assignment problem, we 

use same notation as in above MIP formulation and heuristic F#1 (3.3 & 3.4) to keep 

unification. The tote-order data set A (n totes × m orders) can be considered as a set 

of totes 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, and each tote 𝑎𝑖 = ( 𝑎𝑖,1, 𝑎𝑖,2, … , 𝑎𝑖,𝑚) has exactly m 

attribute values to indicate if it contain item of an order. With the number of 

consolidators k (≤ 𝑛), the k-means algorithm can be formulated as the following 

mathematical program problem P: 

 

Min  𝑃(𝑋, 𝑄) =  ∑ ∑ 𝑥𝑖,𝑐  𝑑(𝑎𝑖 , 𝑞𝑐)𝑛
𝑖=1

𝑘
𝑐=1                                                             (3.8) 

s.t.    ∑ 𝑥𝑖,𝑐  𝑘
𝑐=1 = 1    1 ≤ 𝑖 ≤ 𝑛                                                                             (3.9) 

         𝑥𝑖,𝑐 ∈ {0,1}     1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑐 ≤ 𝑘                                                         (3.10) 

 

where X is an n × k partition matrix, 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑘} is a set of cluster 

means, Qc is the cluster of totes assigned to consolidator c, qc is the centroid of Qc. 

The difference between a tote ai∈Qc and qc is measured by d(ai, qc), which is the 

Euclidean distance between two objects. 

The k-means procedure is summarized in the following.  
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Input: 

k: the number of consolidators, 

A: tote-order data set containing n totes. 

Output: A set of k clusters. 

Method: 

1) arbitrarily choose k objects from A as the initial cluster centers; 

2) repeat 

3) (re)assign each object to the cluster to which the object is the most similar, 

based on the mean value of the objects in the cluster; 

4) update the cluster means, that is, calculate the mean value of the objects for 

each cluster; 

5) until no change; 

 

The k-means method is not guaranteed to converge to the global optimum and 

often terminates at a local optimum. The results may depend on the initial random 

selection of cluster centers. To obtain good results in practice, it is common to run the 

k-means algorithm multiple times with different initial cluster centers. The problem 

of applying k-means algorithm on the tote-order data set is that every tote is binary 

object because it only has binary values. The k-means method can be applied only 

when the mean of a set of objects is defined. So we consider binary objects as numeric 

and calculate the means when applying the k-means method. For data with nominal 

attributes involved, most of the literatures introduce the k-mode algorithm to make 

the formulation of problem P also valid. 
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The k-modes method is a variant of k-means, which extends the k-means 

paradigm to cluster nominal data by replacing the means of clusters with modes. It 

uses new dissimilarity measures to deal with nominal objects and a frequency-based 

method to update modes of clusters (Jiawei Han, Micheline Kamber, Jian Pei, Data 

Mining Concepts and Techniques). Huang (1998) made the following modification to 

the k-means algorithm: 

1. using a simple matching dissimilarity measure for categorical objects, 

2. replacing means of clusters by modes, and 

3. using a frequency-based method to find the modes 

In our tote assignment problem, 𝑎𝑖 and 𝑎𝑗 are two totes described by m binary 

attributes. The dissimilarity measure between 𝑎𝑖 and 𝑎𝑗 can be defined by the total 

mismatches of the corresponding attribute categories of the two objects. The smaller 

the number of mismatches is, the more similar the two totes. Formally, 

𝑑(𝑎𝑖 , 𝑎𝑗) =  ∑ 𝛿(𝑎𝑖,𝑟 , 𝑎𝑗,𝑟)𝑚
𝑟=1                                                                              (3.11) 

Where 

𝛿(𝑎𝑖,𝑟 , 𝑎𝑗,𝑟) = {
0          (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟)

1          (𝑎𝑖,𝑟 ≠ 𝑎𝑗,𝑟)
                                                                    (3.12) 

The clustering process minimizes the following objective function, 

𝑃(𝑋, 𝑄) =  ∑ ∑ ∑ 𝑥𝑖,𝑐  𝛿(𝑎𝑖,𝑟 , 𝑞𝑐,𝑟)𝑚
𝑟=1

𝑛
𝑖=1

𝑘
𝑐=1                                                       (3.13) 

 

In k-modes clustering, the cluster centers are represented by the vectors of 

modes of categorical attributes. However, the biggest problem of applying k-modes 

algorithm in our tote-order data set is that each object (tote) using binary value to 
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represent if it has attribute (order) and attributes of 1 are sparse in the data set.  In  

this case, all of the cluster centers will be the vectors of 0, and the k-modes algorithm 

cannot continue. For the completeness of this document, we still keep the k-modes 

algorithm steps as following. To cluster a categorical data set into k clusters, Huang 

(1998) summarize the k-modes clustering process consists of the steps: 

1. Select k initial modes, one for each cluster. 

2. Allocate an object to the cluster whose mode is the nearest to it according  

to (3.11). Update the mode of the cluster after each allocation. 

3. After all objects have been allocated to clusters, retest the dissimilarity of 

objects against the current modes. If an object is found such that its nearest mode 

belongs to another cluster rather than its current one, reallocate the object to that 

cluster and update the modes of both clusters. 

4. Repeat 3 until no object has changed clusters after a full cycle test of the 

whole data set. 

 
3.5.2 Hierarchical Methods 

A hierarchical clustering method works by grouping data objects into a hierarchy or 

“tree” of clusters. Even though we don’t need to partition our data points (totes) into 

groups at different levels, the agglomerative process of a hierarchical method is very 

similar to the heuristic F#1.   A hierarchical method can be either agglomerative      

or divisive, depending on whether the hierarchical decomposition is formed in a 

bottom-up (merging) or top-down (splitting) fashion. An agglomerative hierarchical 

clustering method uses a bottom-up strategy. It typically starts by letting each object 

form its own cluster and iteratively merges clusters into larger and larger clusters, until 

all the objects are in a single cluster or certain termination conditions are satisfied. 

A tree structure called a dendrogram is commonly used to represent  the  

process of hierarchical clustering. It shows how objects are grouped together 
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(in an agglomerative method) or partitioned (in a divisive method) step-by-step.    

The following Figure 3.3 is an example by applying the agglomerative hierarchical 

clustering method on one of our 20-totes-data set. The vertical axis shows the 

similarity scale between clusters. 

 

 

Figure 3.3 Hierarchical cluster dendrogram. 

 

The core need of a hierarchical method is to measure the distance between two 

clusters, where each cluster is generally a set of objects. Four widely used measures 

for distance between clusters are as follows, where 𝑑(𝑎𝑖, 𝑎𝑗) is the distance between 

two objects (totes), 𝑎𝑖 and 𝑎𝑗; 𝑞𝑐 is the mean for cluster, Qc; and 𝑡𝑐 is the number of 

objects in Qc. They are also known as linkage measures. 

Minimum distance: 𝑑𝑖𝑠𝑡𝑚𝑖𝑛(𝑄𝑐1, 𝑄𝑐2) = min
𝑎𝑖∈𝑄𝑐1,𝑎𝑗∈𝑄𝑐2

{𝑑(𝑎𝑖 , 𝑎𝑗)}                   (3.14) 

Maximum distance: 𝑑𝑖𝑠𝑡𝑚𝑎𝑥(𝑄𝑐1, 𝑄𝑐2) = max
𝑎𝑖∈𝑄𝑐1,𝑎𝑗∈𝑄𝑐2

{𝑑(𝑎𝑖 , 𝑎𝑗)}                  (3.15) 

Mean distance: 𝑑𝑖𝑠𝑡𝑚𝑒𝑎𝑛(𝑄𝑐1, 𝑄𝑐2) = 𝑑(𝑞𝑐1, 𝑞𝑐2)                                           (3.16) 

Average distance: 𝑑𝑖𝑠𝑡𝑎𝑣𝑔(𝑄𝑐1, 𝑄𝑐2) =
1

𝑡𝑐1𝑡𝑐2
∑ 𝑑(𝑎𝑖 , 𝑎𝑗)𝑎𝑖∈𝑄𝑐1,𝑎𝑗∈𝑄𝑐2              (3.17) 
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When an algorithm uses the minimum distance (3.14) to measure the distance 

between clusters, it is sometimes called a nearest-neighbor clustering algorithm. 

Moreover, if the clustering process is terminated when the distance between nearest 

clusters exceeds a user-defined threshold, it is called a single-linkage algorithm. If we 

view the data points (totes) as nodes of a graph, with edges forming a path between 

the nodes in a cluster, then the merging of two clusters, 𝑄𝑐1 and 𝑄𝑐2, corresponds to 

adding an edge between the nearest pair of nodes in 𝑄𝑐1 and 𝑄𝑐2. Because edges 

linking clusters always go between distinct clusters, the resulting graph will generate 

a tree.  Thus,  an agglomerative hierarchical clustering algorithm that uses the 

minimum distance measure is also called a minimal spanning tree algorithm. 

When an algorithm uses maximum distance (3.15) to measure the distance 

between clusters, it is sometimes called a farthest-neighbor clustering algorithm. If 

the clustering process is terminated when the maximum distance between nearest 

clusters exceeds a user-defined threshold, it is called a complete-linkage algorithm. 

The distance between two clusters is determined by the most distant nodes (totes) in 

the two clusters. 

The previous minimum and maximum measures represent two extremes in 

measuring the distance between clusters. They tend to be overly sensitive to outliers 

or noisy data. The use of mean (3.16) or average distance (3.17) is a compromise 

between the minimum and maximum distances and overcomes the outlier sensitivity 

problem. And the average distance is advantageous in that it can handle categorical 

as well as numeric data. In our case, after trying all these four measures, the average 

distance gives the best results in clustering our tote-order data sets, so we use this 

measures in our application of hierarchical method. 
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3.6 Numerical Study and Benchmark Evaluation 

In this section,  we  evaluate the performance of the fast heuristic F#1 in solving     

the tote assignment problem, compare the shipping boxes generated by F#1 with the 

optimal values of MIP and the results of the other two clustering algorithms, k-means 

and hierarchical methods. 

 
3.6.1 Software and Solver 

We use AMPL, a mathematical programming language, to build the integer 

programming models in SolverStudio (Package Version 0.09.03) and run by CPLEX 

solver on NEOS (Network-Enabled Optimization System) server. AMPL is an 

algebraic modeling language to describe and solve high-complexity problems for 

large-scale mathematical computing (i.e., large-scale optimization and scheduling- 

type problems). It provides access to more than 60 state-of-the-art solvers in more 

than a dozen optimization categories and offers a variety of interfaces for accessing the 

solvers to enable jobs run on distributed high-performance machines. Many modern 

solvers available on the NEOS Server accept AMPL input. According the NEOS 

Server is a free internet-based service for solving numerical optimization problems.to 

the NEOS statistics AMPL is the most popular format for representing mathematical 

programming problems. Unlike the free student version of AMPL (this version is 

limited to 500 variables and constraints for linear problems), AMPL on NEOS have 

no problem size limitations, other than limits on the size of the model and data files 

that are exchanged with NEOS. SolverStudio is an add-in for Excel that allows you to 

build and solve optimization models in Excel using many optimization modeling 

languages. SolverStudio allows models built using AMPL to be solved using the 

NEOS server. We choose “AMPL on NEOS” as modelling language in SolverStudio, 

then when we click Solve, SolverStudio will take the model and the associated data 

from the present spreadsheet and send these off to the NEOS server at neos-server.org. 

The NEOS server will then run the files. SolverStudio waits for NEOS to report that  
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the run has finished, then takes the model results and writes them back into the 

spreadsheet. 

The F#1 is coded in RStudio (Version 1.1.423). RStudio is a free and open- 

source integrated development environment (IDE) for R, a programming language 

and software environment for statistical computing and graphics. We also implement 

k-means and hierarchical clustering algorithm in RStudio. 

 
3.6.2 Simulation Data Sets 

We randomly generate testing data sets based on the following parameter configu- 

rations: 

6 sizes of tote-order data set, with correlated number of consolidators. 

 

Table  3.3  Problem Sizes of Data Sets 

 
Consolidators Totes Orders 

5 20 60 

6 30 80 

7 35 100 

10 50 140 

15 75 210 

20 100 280 

 

4 cases are considered for number of items in each order correlated with  

∑ 𝑎𝑖,𝑟

𝑛

𝑖=1

= 2 𝑜𝑟 3 

 

Table  3.4  Order Cases of Data Sets 

 

Consolidators Totes Orders 
3-item Order % 

case #1 case #2 case #3 case #4 

5 20 60 0% 33% 67% 100% 

6 30 80 0% 25% 50% 100% 

7 35 100 0% 25% 50% 100% 

10 50 140 0% 25% 50% 100% 

15 75 210 0% 33% 67% 100% 

20 100 280 0% 25% 50% 100% 
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totes. 

3 levels of totes correlated to each other in tote-order matrix are organized for 

 

 
Easy:  every two (or three) totes have same orders to make the whole matrix 

 

highly correlated. 

Medium: half of the matrix is highly correlated as easy level, the orders in the 

other half of the matrix is randomly distributed. 

Hard: orders in the whole matrix randomly distributed. 

 
 

3.6.3 Results and Evaluation 

Using the data sets described above, we numerically compared the performance of 

the proposed fast heuristic F#1 with that of the CPLEX solver on NEOS server, 

moreover, with that of the k-means and hierarchical clustering methods. 

By default, jobs submitted to the NEOS Server are assigned as long jobs, which 

means that they can run at most 8 hours. Jobs submitted to the NEOS Server are also 

limited to 3 GB of Random-access memory (RAM). It is often MIP problems have 

issues with memory. MIP solvers accumulate and store in memory information about 

the branch-and-cut tree as they progress. At some point, the amount of memory 

required for the tree information may exceed the amount of memory available. Jobs 

will be terminated due to exceeding the allowable memory limit. We summarize 

computational time of all test cases running as long jobs by CPLEX solver on NEOS 

in the Table 3.5 below. For many test cases, CPLEX failed to find the optimal 

solution within the allowable memory limit on the NEOS server (NA: exceed the 

allowable memory limit). And for the cases that CPLEX are able to find the optimal 

solution, the maximum running time reaches to 2.5 hours. In contrast, all instances 

can be solved by heuristic F#1 within 1 minute  of CPU time. In fast fulfillment 

operations, we are often required to offer instant response, and we may not have the 

time to wait for CPLEX to provide us with an optimal solution. 
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Table 3.5 CPLEX Solver Running Time (Miniutes) 

 

Consolidators Totes Orders 
case #1 case #2 case #3 case #4 

e m h e m h e m h e m h 

5 20 60 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 3 < 1 < 1 7 

6 30 80 < 1 <1 4 < 1 < 1 21 < 1 < 1 NA <1 19 NA 

7 35 100 < 1 2 59 < 1 4 NA < 1 7 NA <1 NA NA 

10 50 140 < 1 145 NA 3 NA NA 7 NA NA NA NA NA 

15 75 210 < 1 NA NA NA NA NA NA NA NA < 1 NA NA 

20 100 280 < 1 NA NA NA NA NA NA NA NA NA NA NA 

 

Jobs submitted to the NEOS Server can be assigned as short jobs, which means 

that they can run at most 5 minutes.  In our experiments,  we  run all 72 cases as   

both long jobs and short jobs. For the cases that CPLEX are able to find the optimal 

solution within the allowable memory limit, the solution quality provided by a long-job 

run has no significant difference to a short-job run. For the cases that CPLEX failed 

to find the optimal solution within the allowable memory limit, we used the best 

feasible CPLEX solutions obtained within 5 minutes as a surrogate for the optimal 

solution. Table 3.6 shows the results obtained using the CPLEX solver on NEOS 

server. 

Table 3.6 CPLEX Solver Results 

 

Consolidators Totes Orders 
case #1 case #2 case #3 case #4 

e m h e m h e m h e m h 

5 20 60 60 78 93 69 91 105 68 105 117 68 109 131 

6 30 80 86 107 122 90 116 130 90 117 142 88 147 169 

7 35 100 107 134 152 111 146 165 126 158 190 134 194 222 

10 50 140 150 192 229 157 213 259 158 209 278 161 266 338 

15 75 210 225 301 354 246 336 411 244 436 469 230 430 541 

20 100 280 300 408 476 316 450 530 350 506 589 379 650 838 

 

For each instance, we calculate the empirical error gap, and it defined as: 

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑔𝑎𝑝 =
𝜁(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠)−𝜁(𝑂𝑃𝑇)

𝜁(𝑂𝑃𝑇)
                                               (3.18) 

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 = {𝐹#1,  ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙,  𝑘𝑚𝑒𝑎𝑛𝑠}                                           (3.19) 
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Where 𝜁(𝑂𝑃𝑇) stands for the optimal results obtained using the CPLEX solver 

to solve problem P defined by (3.1) - (3.6), and 𝜁(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠) stands for the results 

obtained by the fast heuristic F#1, k-means and hierarchical clustering methods. The 

value of error gap could be negative in case CPLEX didn’t get the optimal solution 

within the allowable memory limit. Technically, the smaller the error gap  the better, 

which implies a better solution benchmarked against that of CPLEX. 

The numerical study results demonstrate a strong performance of the fast 

heuristic F#1 we developed in both accuracy and efficiency. We observe an overall 

average error gap of 4.37% from the optimal or the surrogate of the optimal solution 

over 72 test cases. Meanwhile, we also observed that the average error gap slightly 

decreased as the size of problem instances increasing, mainly because CPLEX on 

NEOS server often failed to find the optimal solutions. Our heuristic shows adequate 

advantages over the CPLEX when the error gap and computational time are jointly 

considered. 

 
3.7 Fast Heuristic F#2 and Performance Evaluation 

The performance objective of our order consolidation / tote assignment problem is to 

minimize the number of packages and balance the packaging station workload. Some 

uneven tote assignment solutions may have a smaller number of packages, but the  

tote quantity balance will bring the objective results up. Therefore, when we applied 

the k-means and the hierarchical clustering algorithm on the data sets, these existed 

well-known clustering algorithms didn’t perform better than the F#1 heuristic. In 

order to further improve the overall performance, we developed the fast heuristic 

F#2. A numerical study is also conducted to demonstrate the performance of the 

proposed heuristics. 

 
3.7.1 Fast Heuristic F#2 Development 

In light of the results reported in section 3.6, F#1 demonstrate a strong performance 
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in accuracy and efficiency. We followed the same structure to develop the F#2. In 

each iteration, firstly calculate the Jaccard dissimilarity between totes, then select a 

pair of totes according to the combined effects of Jaccard dissimilarity and the totes 

quantity balance, assign this pair of totes into one cluster, merge the two totes into 

one if the cluster hasn’t reach the limit and continue clustering with other totes, 

repeat the procedure until all totes grouped into clusters. We use a small tote-order 

matrix (n totes m orders) as the example and describe F#2 as follows. 

 

Tote-Order Matrix ai,r 

   Orders 

    O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 

Totes 

T1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 

T2 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 

T3 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 

T4 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

T5 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 

T6 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 

T7 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 

T8 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 

 

Step 1: 

Calculate Jaccard dissimilarity 𝑑𝑖,𝑗 (Lemma 1) for all totes i, j∈{1…n}, i ≠ j in 

the tote-order matrix (For readability, we do not show the 𝑑𝑗,𝑖 entries; the matrix is 

symmetric.); 

Jaccard Dissimilarity di,j 

   Tote j 

   T1 T2 T3 T4 T5 T6 T7 T8 

Tote i 

T1                 

T2 0.89        

T3 0.75 1.00       

T4 0.89 0.89 0.89      

T5 0.89 0.57 1.00 0.57     

T6 0.89 1.00 0.75 1.00 1.00    

T7 0.75 0.89 0.89 0.89 1.00 0.75   

T8 1.00 0.57 0.89 1.00 0.89 0.75 0.75   
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Also calculate the number of totes 𝑡𝑖,𝑗 if totes i and j are clustered, for all totes 

i, j∈{1…n}, i ≠ j (For readability, we do not show the 𝑑𝑗,𝑖  entries; the matrix is 

symmetric.); 

Number of Totes ti,j if Tote i and j are Clustered 

   Tote j 

   T1 T2 T3 T4 T5 T6 T7 T8 

Tote i 

T1                 

T2 2        

T3 2 2       

T4 2 2 2      

T5 2 2 2 2     

T6 2 2 2 2 2    

T7 2 2 2 2 2 2   

T8 2 2 2 2 2 2 2   

 

Step 2: 

In order to minimize the number of packages and the tote quantity balance, 

clustering totes with minimal dissimilarity and absolute difference from the clustered 

number of totes to the even number of totes, 𝑚𝑖𝑛 {𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
)} (Lemma 

2); 

𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
) indicates the absolute difference between the number of totes within a 

cluster and the even number of totes for each consolidator; Uneven tote quantity solutions 

will be effectively decreased by minimizing this absolute difference in each iteration. n is 

the number of totes (n = 8 in this example) and k is the number of consolidators (k = 3 in 

this example); δ is a constant coefficient, since totes dissimilarity range is [0, 1], we set δ 

= 0.1 to bring down the numerical digit of tote quantity balance;  
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di,j + δ * abs(ti,j - n/k), δ = 0.1 

   Tote j 

   T1 T2 T3 T4 T5 T6 T7 T8 

Tote i 

T1                 

T2 0.96        

T3 0.82 1.07       

T4 0.96 0.96 0.96      

T5 0.96 0.64 1.07 0.64     

T6 0.96 1.07 0.82 1.07 1.07    

T7 0.82 0.96 0.96 0.96 1.07 0.82   

T8 1.07 0.64 0.96 1.07 0.96 0.82 0.82   

 

If there’s a tie for tote i, j, i', j', i≠j≠i'≠j',  

{𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)} 

Select either {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖′,𝑗 −
𝑛

𝑘
)} or {𝑑𝑖,𝑗′ + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗′ −

𝑛

𝑘
)} (Lemma 3); 

From the above table, we can see if tote T2 and T5 are clustered in the earlier 

iteration, we may lose the advance of both tote T2, T8 clustered together and tote T4, T5 

clustered together in the later iterations.  

Step 3: 

Merge the clustered tote i and j with the 𝑚𝑖𝑛 {𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
)} (from step 

2) into a new tote i', according to the logic:  

𝐼𝑓 𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 0, 𝑡ℎ𝑒𝑛 𝑎𝑖′,𝑟 = 0 

𝐸𝑙𝑠𝑒, 𝑎𝑖′,𝑟 = 1 

For example, if tote T2, T8 clustered together in the previous step, they will be 

merged into tote T2,8 as follows. 

T2 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 

T8 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 

 

T2,8 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 
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Step 4: 

If the number of totes within one cluster hasn’t reach the even number of totes for 

each consolidator 𝑛/𝑘, add the merged tote i' to the tote-order matrix and remove the 

original tote i and j; Else, remove the totes i and j from the tote-order matrix. 

Tote-Order Matrix ai,r 

   Orders 

    O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 

Totes 

T1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 

T3 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 

T4 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

T5 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 

T6 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 

T7 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 

T2,8 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 

 

Number of Totes ti,j if Tote i and j are Clustered 

   Tote j 

   T1 T3 T4 T5 T6 T7 T2,8 

Tote i 

T1        

T3 2       

T4 2 2      

T5 2 2 2     

T6 2 2 2 2    

T7 2 2 2 2 2   

T2,8 3 3 3 3 3 3   

 

Repeat above steps until all totes are assigned to consolidators. 

 

3.7.2 Lemma Proof 

Lemma 1: In each iteration, if 𝑑𝑖,𝑗 is minimal, then ∑ 𝑧𝑐,𝑟
𝑚
𝑟=1  is minimal for 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1. 

Proof: 

𝑑𝑖,𝑗 =
∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚

𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚
𝑟=1

∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚
𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1

 

𝑠𝑖𝑚(𝑖, 𝑗) = 1 − 𝑑𝑖,𝑗 =

=
∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1

∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚
𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1

 

 



59  

For totes i, j, i', 

If  ∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) = ∑ (𝑎𝑖,𝑟 = 𝑎𝑖′,𝑟 = 1)𝑚
𝑟=1 = ∑ (𝑎𝑖′,𝑟 = 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1  

And  

∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚
𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1   

is minimal, then 𝑠𝑖𝑚(𝑖, 𝑗) is maximal, 𝑑𝑖,𝑗 is minimal. 

For 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1, 

∑ 𝑧𝑐,𝑟

𝑚

𝑟=1

= ∑(𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑(𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)

𝑚

𝑟=1

+ ∑(𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)

𝑚

𝑟=1

𝑚

𝑟=1

 

is also minimal. 

Lemma 2: In each iteration, if 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
) is minimal, then 𝑏𝑐 is minimal for 

 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1. 

Proof: 

In each iteration, 𝑡𝑖,𝑗 is the number of totes if totes i and j are clustered, for all totes i, 

j∈{1…n}, i ≠ j; 

𝐹𝑜𝑟 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1, 𝑡𝑖,𝑗 = ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

 

min {𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)} = min {𝑎𝑏𝑠 ( ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

−
𝑛

𝑘
)} 

In the MIP model, we have constraints (3.4) and (3.5) as follows: 

𝑏𝑐 ≥  ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

− 𝑛/𝑘 

𝑏𝑐 ≥  𝑛 𝑘⁄ − ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

 

Enforce the following equation: 

𝑏𝑐 = 𝑎𝑏𝑠( ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

−
𝑛

𝑘
) 
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Then 

min {𝑏𝑐} = min {𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)} 

Lemma 3: In each iteration, if there’s a tie of minimum for tote i, j, i', j', and i≠j≠i'≠j',  

{𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)} 

Select either {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖′,𝑗 −
𝑛

𝑘
)} or {𝑑𝑖,𝑗′ + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗′ −

𝑛

𝑘
)}. 

Proof: 

Select {𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
)} 𝑓𝑜𝑟 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1, will lead to eliminate opportunities  

for both 𝑥𝑖′,𝑐 = 𝑥𝑗,𝑐 = 1 𝑎𝑛𝑑 𝑥𝑖,𝑐 = 𝑥𝑗′,𝑐 = 1 in the following iterations. 

 
3.7.3 Performance Evaluation 

In this section, we regenerated test data sets to evaluate the fast heuristic F#2.  For 

the comparability and sufficiency of the results, we increased the test cases for each 

size of the original data set. 

 
3.7.3.1 Design of Experiments. The results from previous numerical study show  

the optimal solutions are difficult to be found when the size of test data set increasing 

to 10 consolidators, 50 totes, and 140 orders. Therefore, we defined the data set size 

above this as large data sets and below this as small data sets.  In the meanwhile,    

the results from the Table 3.3 show during the 24 large data sets in the medium and 

hard level, only one medium level test case is able to get the optimal solution within 

the allowable memory limit and its running time is more than two hours. Therefore, 

among the regenerated data sets, we only ran the small data sets by CPLEX solver on 

NEOS server to get optimal solutions, and test F#1, F#2, hierarchical and k-means 

algorithm on both small and large data sets. The summary of the data sets generation 

shown in the following table. 
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Table 3.7 Summary of Small and Large Data Sets 

 

  

Consolidators Totes Orders 
Number 
of Test 
Cases 

Optimal 
Results 

Availability 

3-item Order 
% 

Matrix Complexity 

Small 
Data 
Sets 

5 20 60 42 

YES 
Progressive 

Increasing by 
5% 

Medium Hard 6 30 80 28 

7 35 100 17 

Large 
Data 
Sets 

10 50 140 22 

NO 
Progressive 

Increasing by 
10% 

Medium Hard 15 75 210 22 

20 100 280 22 

 

 
3.7.3.2 Coefficient of Tote Quantity Balance. When solving the MIP model for 

optimal results, we set the balance coefficient 𝛽 as 1 at the beginning, and increased it 

as the data set size, 3-item order quantity, and matrix complexity increasing. In this 

part, we developed an estimation function to calculate the balance coefficient for the 

large data sets, since the optimal results are not available. 

As we  mentioned in the section 3.3,  the tote quantity balance is to restrict     

the extremely uneven totes assignment solution that all totes are assigned to one 

consolidator. Therefore, the upper bound of the tote quantity balance can be 

calculated by the following function: 

𝑛

𝑘
(𝑘 − 1) + (𝑛 −

𝑛

𝑘
) 

Equivalent to: 

2𝑛(1 −
1

𝑘
) 

Where n is total number of totes, k is total number of consolidators. The 

optimal results 𝜁(𝑂𝑃𝑇)  can be represented by a function related with the total 

number of orders m and the upper bound of the tote quantity: 

𝜁(𝑂𝑃𝑇) = 𝑚 + 𝛼𝛽2𝑛(1 −
1

𝑘
) 
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Then the coefficient and can be derived as: 

 

𝛼 =
𝜁(𝑂𝑃𝑇) − 𝑚

𝛽2𝑛(1 −
1
𝑘

)
 

𝛽 =
𝜁(𝑂𝑃𝑇) − 𝑚

𝛼2𝑛(1 −
1
𝑘

)
 

We have two type of orders in the data sets, 2-item orders and 3-item orders. 

According to the 3-item orders percentage of each data set, we  can calculate the  

total number of items in all of the orders as: 

3𝑚π + 2m(1 − π ) 

The optimal results 𝜁(𝑂𝑃𝑇) also related to the total number of items with coefficient ε:  

𝜁(𝑂𝑃𝑇) = ε[3𝑚π + 2m(1 − π )] 

Combined with the function we derived above, the estimation function of balance 

coefficient β is: 

𝛽 =
ε[3𝑚π + 2m(1 − π )] − 𝑚

𝛼2𝑛(1 −
1
𝑘

)
 

After solved optimal results of all 87 small data sets, we calculated the coefficient α and 

ε for every case. Then the weighted average value of them, α = 0.507 and ε = 0.644, are used 

to derive the coefficient β for all 66 large data sets. 

 
3.7.3.3 Results. We evaluated performances of the fast heuristic F#2, F#1, 

hierarchical and k-means algorithm on both small and large data sets. 

For the small data sets, we  calculated the empirical error gap and performed  

the one sample t-test. We used the same function as (3.18) to calculate the error gap 

for results obtained by F#1, F#2, hierarchical and k-means. 
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𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑔𝑎𝑝 =
𝜁(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠) − 𝜁(𝑂𝑃𝑇)

𝜁(𝑂𝑃𝑇)
 

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 = {𝐹#1,  𝐹#2,  ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙,  𝑘𝑚𝑒𝑎𝑛𝑠} 

 

From the small data set results Table 3.8, we can see the mean error gap of F#2 

is 4.149% and one sample t-test show the true mean is significant below 5%. We also 

performed the power analysis to validate the power of the t-test. In the meanwhile, 

mean error gaps of the other methods results are all above 5%.  

 

Table 3.8 Result Summary of 87 Small Data Sets 

 

 
Mean of 

Error 
Gap 

One Sample t-test t-test 
Power 

Calculation   
Null 

Hypothesis 
Alternative 
Hypothesis t df p-value Conclusion 

F#2 4.149% 

True Mean = 
5% 

True Mean < 5% -2.798 

86 

0.00318 Reject the Null 
Hypothesis in 
Favor of the 
Alternative 
Hypothesis 

0.8709144 

F#1 8.487% True Mean > 5% 5.412 < 0.00001 0.9999019 

Hierarchical 6.729% True Mean > 5% 3.709 0.00018 0.9790506 

k-means 11.618% True Mean > 5% 15.49 < 0.00001 1 

 

 

 

Figure 3.4 Mean error gap of small data sets. 
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Since the optimal results for the large data sets are not available, we calculated 

the results differences between F#2 and other methods, which show the results of 

F#1, hierarchical and k-means are larger than F#2 by 7%, 6% and 10%. We also 

performed the paired t-test to show the true differences are significant. The result 

summery Table 3.9 as follows. 

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝜁(𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) − 𝜁( 𝐹#2)

𝜁( 𝐹#2)
 

𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = {𝐹#1,  𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙,  𝑘𝑚𝑒𝑎𝑛𝑠} 

 

Table 3.9 Result Summary of 66 Large Data Sets 

 

 Mean of 
Differences 

Paired t-test 
t-test 
Power 

Calculation 
  

Null 
Hypothesis 

Alternative 
Hypothesis t df p-value Conclusion 

F#1 - F#2 
26.262 

(7%) True 
Difference 
in Means is 

0 

True 
Difference in 

Means is 
Greater Than 

0 

12.254 

65 
< 

0.00001 

Reject the Null 
Hypothesis in 
Favor of the 
Alternative 
Hypothesis 

1 
Hierarchical - F#2 

25.157 
(6%) 10.388 

k-means - F#2 
37.321 
(10%) 12.575 

 

 
 

Figure 3.5 Mean algorithms results difference of large data sets. 
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CHAPTER 4 

 
PERFORMANCE BEHAVIOR ANALYSIS OF FAST HEURISTICS 

 

 

 
The order consolidation is a dynamic process, items belong to different orders carrying 

by different totes come to the consolidation station continuously. In this chapter, 

performance behavior of the heuristics is further studied as a function of size of the 

tote-order matrix, multi-item order complexity of the tote-order matrix, number of 

consolidators and the consolidation batch window. 

 
4.1 Size of Tote-Order Matrix 

The size of the tote-order matrix is a critical factor to the complexity of the 

consolidation problem. Given each three sizes tote-order matrix for both small and 

large problems in the Chapter 3, we expand three extra-large sizes of tote-order 

matrix in this chapter, which are shown in the Table 4.1. These three sizes of 

problems combine with the following design of multi-item order complexity, we 

generate a variety of data sets and perform experimental tests on them. 

Table 4.1 Extra-Large Problem Size 

 
Number of Totes (n) Number of Orders (m) Number of Consolidators (k) 

200 560 40 

300 840 60 

400 1120 80 

 

 
4.2 Multi-Item Order Complexity of Tote-Order Matrix 

A tote-order matrix is a binary matrix with rows as totes and columns as orders. A 

binary value in a tote-order matrix 𝑎𝑖,𝑟 = 1 means SKU item of order r picked in tote 

i. The summation of each column ∑ 𝑎𝑖,𝑟
𝑛
𝑖=1  stands for SKU items of order r are in 

how many totes. To simplify, we call orders have items in more than one totes as 

multi-item order. For example, an order has items in three totes, ∑ 𝑎𝑖,𝑟
𝑛
𝑖=1 = 3, this 
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order is called 3-item order. The 3-item shows the order complexity in the tote-order 

matrix, even though this order may have more than three items. 

We include three kinds of multi-item orders, 2, 3 and 4-item orders, in experimental 

deign of tote-order matrix. The quantity of each kind of multi-item orders take a certain 

proportion out of the total number of orders (m). We design a  set of quantity percentage 

combination and list in the Table 4.2. The purpose of this design of experiments is to 

gradually increase complexity of the tote-order matrix by increasing quantity of 4-item 

orders. 

Table  4.2  Multi-Item Orders Quantity Percentage 

 
 Multi-Item Orders 

 2-item 3-item 4-item 

Case #0 100% 0% 0% 

Case #1 65% 30% 5% 

Case #2 55% 30% 15% 

Case #3 45% 30% 25% 

Case #4 35% 30% 35% 

Case #5 25% 30% 45% 

Case #6 15% 30% 55% 

Case #7 5% 30% 65% 

 

For each size of tote-order matrix, there are 8 cases of multi-item orders quantity 

percentage combination. And for each case, we generate 10 random test cases. There 

are total 240 test cases in 24 conditions. The Table 4.3 shows the total number of 

items (I) and number of items per order (I/m). 

We run the fast heuristic F#2, F#1, hierarchical and k-means algorithm on all 

test cases. The following Table 4.4, 4.5, and 4.6 show the results of three problem 

sizes by eight order complexity cases, each value is mean of 10 test cases results.  

The fast heuristic F#2 performs better than the other three algorithms in all test  

cases. And the optimal solutions for these extra-large problems are not available. We 

calculate the results differences percentage to show the difference between the fast 

heuristic F#2 and all other algorithms. 
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𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝜁(𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) − 𝜁( 𝐹#2)

𝜁( 𝐹#2)
 

𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = {𝐹#1,  𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙,  𝑘𝑚𝑒𝑎𝑛𝑠} 

 

Table  4.3  Total Number of Items (I) 

 

 Tote-Order Matrix Size Items per 
Order (I/m)   200 × 560 300 × 840 400 × 1120 

Case #0 1120 1680 2240 2 

Case #1 1344 2016 2688 2.4 

Case #2 1456 2184 2912 2.6 

Case #3 1568 2352 3136 2.8 

Case #4 1680 2520 3360 3 

Case #5 1792 2688 3584 3.2 

Case #6 1904 2856 3808 3.4 

Case #7 2016 3024 4032 3.6 

 

Table  4.4  Results of 200×560 Tote-Order Matrix by 40 Consolidators 

 

 F#1 F#2 Hierarchical kmeans 
(F#1-

F#2)/F#2 
(Hierarchical-

F#2)/F#2 
(kmeans-
F#2)/F#2 

Case #0 1002 958 975 1022 4.67% 1.81% 6.74% 
Case #1 1169 1146 1176 1187 1.95% 2.60% 3.56% 
Case #2 1253 1231 1277 1311 1.74% 3.69% 6.51% 
Case #3 1342 1320 1369 1364 1.67% 3.73% 3.35% 
Case #4 1433 1412 1459 1485 1.47% 3.34% 5.20% 
Case #5 1530 1506 1547 1542 1.57% 2.69% 2.39% 
Case #6 1621 1603 1647 1664 1.15% 2.76% 3.80% 
Case #7 1711 1698 1741 1777 0.74% 2.53% 4.66% 

 

 
Table  4.5  Results of 300×840 Tote-Order Matrix by 60 Consolidators 

 

 F#1 F#2 Hierarchical kmeans 
(F#1-

F#2)/F#2 
(Hierarchical-

F#2)/F#2 
(kmeans-
F#2)/F#2 

Case #0 1521 1443 1477 1542 5.40% 2.38% 6.87% 
Case #1 1791 1740 1791 1816 2.92% 2.91% 4.36% 
Case #2 1914 1870 1938 1996 2.38% 3.69% 6.76% 
Case #3 2046 2011 2079 2085 1.76% 3.40% 3.71% 
Case #4 2187 2146 2225 2266 1.91% 3.68% 5.59% 
Case #5 2329 2296 2362 2360 1.47% 2.91% 2.78% 
Case #6 2477 2436 2510 2544 1.65% 3.02% 4.40% 
Case #7 2616 2586 2661 2722 1.16% 2.88% 5.24% 
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Table 4.6 Results of 400×1120 Tote-Order Matrix by 80 Consolidators 

 

 F#1 F#2 Hierarchical kmeans 
(F#1-

F#2)/F#2 
(Hierarchical-

F#2)/F#2 
(kmeans-
F#2)/F#2 

Case #0 2046 1928 1979 2076 6.07% 2.62% 7.65% 
Case #1 2418 2336 2401 2444 3.52% 2.80% 4.66% 
Case #2 2583 2520 2606 2685 2.47% 3.40% 6.53% 
Case #3 2767 2710 2809 2814 2.11% 3.65% 3.83% 
Case #4 2949 2892 3007 3054 1.97% 3.98% 5.60% 
Case #5 3145 3088 3195 3184 1.85% 3.47% 3.11% 
Case #6 3341 3285 3386 3434 1.72% 3.08% 4.54% 
Case #7 3529 3477 3588 3668 1.48% 3.19% 5.50% 

 

The Figure 4.1 illustrate the mean algorithms results difference of all extra-large 

data sets. Comparing to the large data sets results in the Chapter 3, the extra-large 

size tote-order matrix with increased order complexity make the differences between 

the fast heuristic F#2 and all other algorithms reduced. The performance of the k-

means still has the largest difference from the fast heuristic F#2. The general 

performances of the two heuristics #1 and #2 are closer, especially when the order 

complexity increased from the case #0 to case #7. 

 

 
 

Figure 4.1 Mean algorithms results difference of all extra-large data sets. 
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4.3 Number of Consolidators 

With the 240 tote-order matrices in the extra-large data sets, performance behavior of 

heuristic F#2 is further studied by changing number of consolidators (k). As shown  

in the Table 4.7, we  run the heuristic F#2 on each size of the tote-order matrix with  

a set of number of consolidators. 

 

Table 4.7 Number of Consolidators Set for each size of Tote-Order Matrix 

 
Number of Totes (n) Number of Orders (m) Number of Consolidators (k) 

200 560 40 35 30 25 20 15 10 5 

300 840 60 50 45 38 30 22 15 7 

400 1120 80 70 60 50 40 30 20 10 

 

Table 4.8 shows results run by F#2 on all 200×560 tote-order matrices with 

different number of consolidators. In this table, each row has 10 random generated 

tote-order matrices with the same order complexity, each value is the mean of the 10 

results. The difference among values of each row shows the effect of different number 

of consolidators. From forty consolidators to five consolidators, more totes will be 

assigned to each consolidator, the number of delivery packages will be closer to the 

optimal solution which is the number of orders (m). 

For each tote-order matrix, total number of items (I) is the maximum or worst 

result that a heuristic solution could get, while number of orders (m) is the minimum 

or best result. We develop a Maxmin ratio as surrogate for the heuristic F#2 solution 

performance. 

𝑀𝑎𝑥𝑚𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝐼 − 𝜁( 𝐹#2)

𝐼 − 𝑚
 

 

Table 4.9 shows the Maxmin ratio of F#2 results on 200 totes by 560 orders 

data sets. They also are illustrated by Figure 4.2. 
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Table 4.8 Mean Number of Delivery Packages run by F#2 on 200×560 Tote-Order 

Matrix with Different Number of Consolidators 

 
  Number of Consolidators (k) 

  40 35 30 25 20 15 10 5 

Case #0 958 947 939 933 918 899 868 799 

Case #1 1146 1130 1113 1105 1082 1049 1013 927 

Case #2 1231 1213 1193 1183 1161 1126 1082 983 

Case #3 1320 1301 1283 1269 1239 1204 1153 1043 

Case #4 1412 1392 1370 1353 1328 1285 1232 1098 

Case #5 1506 1481 1463 1444 1415 1362 1304 1148 

Case #6 1603 1580 1557 1536 1500 1447 1378 1214 

Case #7 1698 1670 1645 1623 1587 1526 1452 1271 

 

 

Table 4.9 Maxmin Ratio of 200×560 Tote-Order Matrix with Different Number of 

Consolidators 

 
  Number of Consolidators (k) 

 40 35 30 25 20 15 10 5 

Case #0 29% 31% 32% 33% 36% 39% 45% 57% 

Case #1 25% 27% 29% 31% 33% 38% 42% 53% 

Case #2 25% 27% 29% 30% 33% 37% 42% 53% 

Case #3 25% 27% 28% 30% 33% 36% 41% 52% 

Case #4 24% 26% 28% 29% 31% 35% 40% 52% 

Case #5 23% 25% 27% 28% 31% 35% 40% 52% 

Case #6 22% 24% 26% 27% 30% 34% 39% 51% 

Case #7 22% 24% 25% 27% 29% 34% 39% 51% 
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Figure 4.2 Maxmin ratio of 200 totes by 560 orders matrix with different number 

of consolidators. 

 

The detailed results of 300 totes by 840 orders data sets are shown in the Tables 

4.10 and 4.11, illustrated by Figure 4.3. 
 

Table 4.10 Mean Number of Delivery Packages run by F#2 on 300×840 Tote-Order 

Matrix with Different Number of Consolidators 

 
  Number of Consolidators (k) 

  60 50 45 38 30 22 15 7 

Case #0 1443 1430 1416 1408 1393 1368 1334 1239 

Case #1 1740 1718 1697 1683 1653 1612 1565 1452 

Case #2 1870 1846 1825 1806 1779 1728 1682 1546 

Case #3 2011 1982 1959 1944 1910 1858 1795 1643 

Case #4 2146 2116 2091 2073 2040 1987 1916 1737 

Case #5 2296 2262 2236 2213 2175 2117 2038 1842 

Case #6 2436 2402 2375 2352 2307 2240 2154 1936 

Case #7 2586 2546 2518 2490 2444 2370 2281 2037 
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Table 4.11 Maxmin Ratio of 300×840 Tote-Order Matrix with Different Number of 

Consolidators  

 
  Number of Consolidators (k) 

  60 50 45 38 30 22 15 7 

Case #0 28% 30% 31% 32% 34% 37% 41% 53% 

Case #1 23% 25% 27% 28% 31% 34% 38% 48% 

Case #2 23% 25% 27% 28% 30% 34% 37% 47% 

Case #3 23% 24% 26% 27% 29% 33% 37% 47% 

Case #4 22% 24% 26% 27% 29% 32% 36% 47% 

Case #5 21% 23% 24% 26% 28% 31% 35% 46% 

Case #6 21% 23% 24% 25% 27% 31% 35% 46% 

Case #7 20% 22% 23% 24% 27% 30% 34% 45% 

 
 

 

Figure 4.3 Maxmin ratio of 300 totes by 840 orders matrix with different number 

of consolidators. 

 
The detailed results of 400 totes by 1120 orders data sets are shown in the Tables 

4.12 and 4.13, illustrated by Figure 4.4. 
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Table 4.12  Mean Number of Delivery Packages run by F#2 on 400×1120 Tote-

Order Matrix with Different Number of Consolidators 

 
  Number of Consolidators (k) 

  80 70 60 50 40 30 20 10 

Case #0 1928 1912 1901 1887 1870 1838 1805 1708 

Case #1 2336 2308 2286 2267 2231 2181 2124 2008 

Case #2 2520 2491 2465 2442 2397 2344 2289 2145 

Case #3 2710 2676 2648 2619 2581 2520 2451 2298 

Case #4 2892 2853 2825 2801 2757 2693 2619 2430 

Case #5 3088 3048 3018 2991 2942 2873 2782 2580 

Case #6 3285 3240 3206 3181 3128 3045 2956 2730 

Case #7 3477 3432 3395 3367 3316 3227 3127 2871 

 

 
Table 4.13  Maxmin Ratio of 400×1120 Tote-Order Matrix with Different Number 

of Consolidators 

 
  Number of Consolidators (k) 

  80 70 60 50 40 30 20 10 

Case #0 28% 29% 30% 32% 33% 36% 39% 48% 

Case #1 22% 24% 26% 27% 29% 32% 36% 43% 

Case #2 22% 24% 25% 26% 29% 32% 35% 43% 

Case #3 21% 23% 24% 26% 28% 31% 34% 42% 

Case #4 21% 23% 24% 25% 27% 30% 33% 42% 

Case #5 20% 22% 23% 24% 26% 29% 33% 41% 

Case #6 19% 21% 22% 23% 25% 28% 32% 40% 

Case #7 19% 21% 22% 23% 25% 28% 31% 40% 
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Figure 4.4  Maxmin ratio of 400 totes by 1120 orders matrix with different number 

of consolidators. 

 

4.4 Consolidation Tote Batch Window 

An F-Warehouse continuously generates picklist totes. At any time, a batch of totes 

are to be processed through several available order packaging stations. In the above 

sections of this chapter, we generate extra-large sizes of tote-order matrix and perform 

tote consolidation to the whole matrix. When considering the waiting time for the 

consolidation batch window, larger batch size leads longer waiting time. The size of 

the tote batch window is a partitioning decision on the dynamic flow of totes.  In   

this section, we generate extra-large sizes of tote-order matrix to simulate the tote 

flow, then divide the matrix into smaller tote batches to apply the heuristic F#2 and 

analyze the results. 

 
4.4.1 Dynamic Design of Tote-Order Matrix 

In the previous tote-order matrix generation, there is no rule for items of same order 

could be in which tote, they totally random distribute between the first tote and the 

last tote of the matrix. In this section, we design the dynamic tote flow which has  

two key features: 
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The range between two  items of one order cannot exceed 50 totes.   

The relationship of tote i out of n totes and order r out of m orders is: 

𝑖/𝑛 = 𝑟/𝑚 

We perform the following detailed steps to generate the extra-large tote-order 

matrix, each order r has two different items located in tote i and j: 

Step 1: assign the first item of each order r to tote i, which is a random tote 

from the range between 
𝑟

𝑚
∗ (𝑛 − 50) − 10 and 

𝑟

𝑚
∗ (𝑛 − 50) + 10; make sure the 

number of items in totes ∑ 𝑎𝑖,𝑟
𝑚
𝑟=1  not exceed the 2𝑚/𝑛. 

Step 2:  assign the first item of each order r to tote j, the distance between tote 

i and j cannot exceed 50. If 𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1, |𝑖 − 𝑗| ≤ 50, for all r; make sure the 

number of items in totes ∑ 𝑎𝑖,𝑟
𝑚
𝑟=1  not exceed the 2𝑚/𝑛. 

Step 3: perform data cleaning, first merge totes only having one or two items 

with other totes, then remove empty totes. 

The Figure 4.5 shows a small portion of a tote-order matrix with the dynamic 

tote flow design. For visualization purpose, the tote range between two items of one 

order is set as 5 totes instead of 50 in this example. 

 

Figure 4.5 Example of tote-order matrix with dynamic design. 

 

We generate extra-large tote-order matrix in three sizes, 560, 840 and 1120 

orders, 10 random matrices for each size. These 10 random matrices have different 

number of totes due to the dynamic design and data cleaning step. The Table 4.14 
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below shows sizes of all 30 tote-order matrices. 

Table 4.14 Size of 30 Tote-Order Matrices 

 
Number of Orders (m) Number of Totes (n) for Each 10 Random Matrices Mean Number of Totes (n) 

560 174 172 174 178 171 177 174 174 175 172 174 

840 266 263 267 266 262 264 269 270 266 264 266 

1120 360 362 363 361 356 360 361 358 360 363 360 

 

 

4.4.2 Experimental Design and Result Analysis 

In the previous sections, we increase the number of consolidators according to the 

size of the tote-order matrix to test the  heuristics  performance  of  handling  the 

large problem size. In this part of design, we treat the extra-large data sets as the 

continuous tote flow and fix the number of consolidation stations as 5. The decision 

variable is the consolidation batch window size, how many totes as a batch that be 

distributed to the 5 available consolidation stations. 

For each extra-large size of tote-order matrix, we set the smallest batch window 

as 30 totes and gradually increase 30 totes for each batch size until the batch size 

cover the whole tote-order matrix. We apply the fast heuristic F2 to calculate the 

number of delivery packages of each batch and add up all batches for the whole tote-

order matrix.  Mean results of the 10 random tote-order matrices of each size   for all 

batch sizes are shown in the Table 4.15.  As batch size increase,  the number  of 

delivery packages decrease, which is expected since larger batch size means more 

totes assigned to consolidators and more orders consolidated. But large batch size 

leads more waiting time for each tote batch, and the consolidation station capability 

also limit the tote batch size. 

To further demonstrate the results trending and the solution performance, we 

calculate the Maxmin ratio and show in the Table 4.16. Since each order has two 

items, the total number of items I is two times of the number of orders m. The Figure 

4.6 illustrate the Maxmin ratio results in all variations of batch size. 



77  

 

Table 4.15  Mean Number of Delivery Packages run by F#2 with Different Batch 

Sizes 

 
Number 

of 
Orders 

(m) 
Mean Number 

of Totes (n) 

Batch Size (Number of Totes) 

30 60 90 120 150 180 210 240 270 300 330 360 

560 174 1062 945 878 889 877 788       
840 266 1557 1432 1322 1324 1252 1245 1225 1211 1125    

1120 360 2046 1861 1763 1708 1698 1619 1610 1602 1583 1555 1530 1445 

 

 
Table 4.16  Maxmin Ratio of F#2 Results with Different Batch Sizes 

 

Number of 
Orders (m) 

Mean Number of 
Totes (n) 

Batch Size (Number of Totes) 

30 60 90 120 150 180 210 240 270 300 330 360 

560 174 10% 31% 43% 41% 43% 59%       
840 266 15% 29% 43% 42% 51% 52% 54% 56% 66%    

1120 360 17% 34% 43% 47% 48% 55% 56% 57% 59% 61% 63% 71% 

 

 

 

 
 

Figure 4.6 Maxmin ratio of F#2 results with different batch sizes. 
 

 
4.5 Twinning Design – Future Research 

The twinning design is  the  order  similarity  percentage  in  the  tote-order  matrix. 

In this section, we design two orders could have items in two same totes, which  

called twinning orders. This is a preliminary design for the future research. The 
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experimental design only includes the data sets of 200×560 Tote-Order Matrix. The 

percentage of twinning orders quantity out of total 560 orders is from 0%, 20%, 

40%... to 100%. For each percentage of twinning orders quantity, 10 random tote-

order matrices are generated. The items of each order are in two totes. The total 

number of items (I) is 1120. We use the same experimental design for number of 

consolidators as section 4.3. The heuristic #2 is applied on the data sets of tote-order 

matrix with the variety of number of consolidators.  

For each twinning order percentage, mean number of delivery packages of the 10 

random tote-order matrices for all consolidator numbers are shown in the Table 

4.17. The following table 4.18 show the Maxmin ratio of the F#2 results. And the 

Figure 4.7 illustrates the Maxmin ratio results for all twinning orders percentages. 

 

Table 4.17 Mean Number of Delivery Packages run by F#2 with Different Number 

of Consolidators 

 
Twinning Orders 

Percentage 
Number of Consolidators (k) 

40 35 30 25 20 15 10 5 

100% 821 808 804 799 793 777 761 723 

80% 835 821 813 807 799 784 767 727 

60% 833 822 813 809 796 782 764 729 

40% 870 858 851 845 835 814 793 752 

20% 907 900 905 900 901 874 845 776 

0% 958 947 939 933 918 899 868 799 

 

 
Table 4.18 Maxmin Ratio of F#2 Results with Different Number of Consolidators 

 
Twinning Orders 

Percentage 
Number of Consolidators (k) 

40 35 30 25 20 15 10 5 

100% 53% 56% 56% 57% 58% 61% 64% 71% 

80% 51% 53% 55% 56% 57% 60% 63% 70% 

60% 51% 53% 55% 56% 58% 60% 64% 70% 

40% 45% 47% 48% 49% 51% 55% 58% 66% 

20% 38% 39% 38% 39% 39% 44% 49% 61% 

0% 29% 31% 32% 33% 36% 39% 45% 57% 
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Figure 4.7 Maxmin ratio of F2 results with different number of consolidators. 
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CHAPTER 5 

 
BUY ONLINE PICKUP FROM STORE (BOPS) 

 

 
 

5.1 Introduction 

5.1.1 Omnichannel Retailing 

The success of Amazon confirms that a singular channel strategy, pure online, can 

effectively meet the demand requirements of most customers. To expand into the 

online channel, retailers are increasingly pursing a dual distribution strategy: product 

inventory is positioned both in stores shelves and in a fulfillment center. 

 

 

Figure 5.1 Operational structure of a dual distribution strategy. 

 

As the Figure 5.1 shows, the omnichannel distribution supply chain consists of 

a central warehouse that stores large quantities of bulk inventory, several retail stores 

each of which holds inventory for immediate customer sales, and a fulfillment center 

which is designed for quick shipment of online orders. 
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5.1.2 The Store is the Fulfillment Center 

An omnichannel retailer with physical stores receives online customer orders through 

its website. Orders are then directed to a specific company store, where the ordered 

items are picked from shelf inventory. Picked items are packaged and the package is 

either (i) Shipped to the customer address – BOFS or (ii) Picked  up from the store  

by the customer – BOPS. S-Strategy fulfillment is a store-based supply chain solution 

to fulfill online customer orders. Success in online retailing requires a fast fulfillment 

machine, a system that starts from SUBMIT ORDER and ends with parcel delivery. 

In an S-Strategy the orders are picked from store inventory and then packaged for 

customer delivery. 

The most aggressive brick-and-mortar retailers, led by Walmart, are using a S-

Strategy or BOP/FS model to grow their online business. In effect they have 

converted the store into a fulfillment center.   The key  advantage  is that there are   

no transshipments and last mile delivery occurs directly from the store. A second 

advantage is the ability to offer same day delivery using a local last mile delivery 

partner. Amazon is also pursuing a similar strategy with the acquisition of Whole 

Foods. 

BOPS and BOFS are the strategy of choice for many retailers, but Sheffi (2016) 

argue that these solutions are unlikely to provide the needed efficiency gains. He 

argues that they disrupt store workflow and add inefficient tasks to a site ill-designed 

for order picking. The efficiency question is: Is an S-Strategy competitive? 

This chapter first presents the operational structure of the buy online pickup 

from store (BOPS) strategy, and second presents two decisions models that are 

integral to this strategy: BOPS store stocking layout and BOPS picker scheduling. 
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5.2 Online Order Fulfillment in a BOPS Retailer 

Many retailers, particularly in the grocery business, have built their online sales 

strategy around a BOPS operation. BOPS is an expensive activity, requiring a picker 

to walk through the store inventory and fulfill a customer’s inline order. 

 
5.2.1 BOPS Operational Elements 

Forward Stock – Items stocked on shelves in the retail section of the store. Stock is 

arranged as per the stores product display strategy and area is always populated with 

browsing customers. The forward stock cannot be physically rearranged, nor can the 

stocking assignment changed to promote more efficient picking. 

Back Stock – Fast pick area in the receiving or rear part of the store. Area is  

not open to consumer retail. The shelving space is capacitated and only a limited 

number of SKUs are selectively located here. 

Picker Pool – Store employees assigned to online order picking. This  is  the 

primary direct cost of BOPS. 

Order Queue – Received online orders, time stamped and waiting for picking. 

Orders will consist of one or more items. 

Online Order Pick and Pack – Area where picked orders are packed and then 

held for delivery. 

 
5.2.2 Online Order Fulfillment Problems 

Figure 5.2 illustrate the order picking process in a BOPS retailer. As online orders 

continuously entering the system, an arrival time is stamped on each order. An order 

can consist of one or more items.  When the picker  schedule starts,  a picker  goes   

to collect items of one order from the online order pick pack area and come back 

after picking them all. Then a fulfilled time is stamped to this order. The difference 

between these two timestamps is the order fulfillment time, and it decided by the pick 

travel distance and picker schedule. 
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Figure 5.2 Physical configuration of the fulfillment problem. 

 
Store Stocking Layout Problem – The pick travel distance is determined by the 

stocking layout. The forward stock is the common retail section of a physical store, 

this section is arranged for customers browsing displayed products and cannot be 

physically rearranged. The back stock is the fast pick area but the shelving space 

capacitated, only a limited number of SKUs are selectively located here. The problem 

is which SKU items should be back stocked. We explicit the item location model and 

back-stock decision strategy for this problem. 

Picker Scheduling Problem – The picker labor cost is the primary direct cost of 

BOPS. Long picker schedule will increase the labor cost, while short picker schedule 

will increase the order waiting cost. The picker start time also decides the order 

fulfilled time. In the picker scheduling problem, we develop the picker schedule 

optimization model to minimize the BOFS fulfillment cost. 

The BOPS goals are, first, minimize the order picking time and, second, 

minimize the order fulfillment cost. We model the order arrival process and the 
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store inventory dispersion to describe the fulfillment process. Simulation of online 

order picking is used to compare several decision methods. 

Model Notation: 

k∊M Items stocked in the store {1 … m} 

(i,j)             Forward stocking location address of item k∊M, where i is the aisle-

direction number and j is the rack-direction number 

d∊D Days in the simulation cycle 

n∊Nd Order arriving during the active order period on day d 

An,d             Order arrival time 

Qn,d  Number of different items in an order 

O{}n,d Set of different items included in order n 

p∊P Available order pickers 

 
 

5.3 BOPS Store Stocking Layout 

5.3.1 Forward Stock 

We simulated 100 SKU items k∊ {1 … 100} as a 10-by-10 shelves layout. As the 

Figure 5.3 shown, the online order pick pack area is located at the back corner of the 

store. The picker always starts from this area to pick items and comes back to drop 

off items when picking finished. 

Based on this starting point, each item k has a stocking location address (i,j), 

where i is the aisle-direction number and j is the rack-direction number. The items 

stocked on racks sharing a same aisle have the same aisle-direction number i. 

Stocking location address of all 100 SKU items in the Figure 5.4. 

From the single item aspect, we use the stocking location (𝐿𝑘, 𝑘 ∈ 𝑀 ) to 

represent the pick travel distance from the start point to item k: 

𝐿𝑘 = 2(𝑖𝑘 + 𝑗𝑘) 
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Figure 5.3 Forward stock of SKU item. 

 
 

 

 

 
 

 

 

 
 

Figure 5.4 Stocking location address of SKU item. 
 

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 11 21 31 41 51 61 71 81 91

2 2 12 22 32 42 52 62 72 82 92

3 3 13 23 33 43 53 63 73 83 93

4 4 14 24 34 44 54 64 74 84 94

5 5 15 25 35 45 55 65 75 85 95

6 6 16 26 36 46 56 66 76 86 96

7 7 17 27 37 47 57 67 77 87 97

8 8 18 28 38 48 58 68 78 88 98

9 9 19 29 39 49 59 69 79 89 99

10 10 20 30 40 50 60 70 80 90 100
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10 (1,10) (1,10) (4,10) (4,10) (7,10) (7,10) (10,10) (10,10) (13,10) (13,10)

Aisle 

#5

Rack-

direction 

number j

Aisle 

#1

Aisle 

#2

Aisle 

#3

Aisle 

#4

Stocking Location Address - (i,j)

Aisle-direction number i
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Figure 5.5 Forward stocking location of SKU item. 

 
5.3.2 Online Order Arrivals 

The order arrivals follow the Poisson distribution, with the interarrival time (1/ λ) as 

5 minutes. The daily active order period is 6 AM to 8 PM. Orders consist of one or 

more items (𝑘 ∈ 𝑀). For each order, we first generate a random integer number 

followed the uniform distribution on the interval from 1 to 5, which is the number of 

different SKU items in an order, Qn,d. Then we generate a set of different items 

included in order n on day d, O{}n,d.  

Item Frequency Design – The item frequency design is to create order designs 

with different item frequency and quantify the performance difference. We evenly 

distribute the 100 SKU items into 4 groups.  The item grouping is shown in the   

table 5.1 below. To make sure there is no significant difference about the items pick 

travel distance among these 4 groups, the summations of stocking location (∑ 𝐿𝑘) for 

items in groups are close. 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

1 4 4 10 10 16 16 22 22 28 28

2 6 6 12 12 18 18 24 24 30 30

3 8 8 14 14 20 20 26 26 32 32

4 10 10 16 16 22 22 28 28 34 34

5 12 12 18 18 24 24 30 30 36 36

6 14 14 20 20 26 26 32 32 38 38

7 16 16 22 22 28 28 34 34 40 40

8 18 18 24 24 30 30 36 36 42 42

9 20 20 26 26 32 32 38 38 44 44

10 22 22 28 28 34 34 40 40 46 46

Aisle-direction number i

Aisle 

#5

Forward Stocking Location of Item k - L k

Rack-

direction 

number j

Aisle 

#1

Aisle 

#2

Aisle 

#3

Aisle 

#4
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Table 5.1 Problem Sizes with Number of Variables and Constrains 

 

 
 

 

For different designs, we change the percentage of group items out of total 

orders. Table 5.2 shows the 5 designs we created. In design #1, the 4 groups 

percentage are same, which means the frequency of all 100 SKU items showing up  

in total orders are evenly distributed. In the following designs, we gradually increase 

the percentage of one group items. In design #5, the group #4 items constitute 70 

percent of total orders, which makes them have the most frequency. 

Table 5.2 Item Frequency Design  

 
  Group #1 Group #2 Group #3 Group #4 

Design #1 25% 25% 25% 25% 

Design #2 20% 25% 25% 30% 

Design #3 15% 20% 25% 40% 

Design #4 10% 15% 20% 55% 

Design #5 5% 10% 15% 70% 

 
 

For each design, we generate 20 replications of 1-day order arrivals. There are 

total 100 order arrival data sets for the stocking layout problem. 

 
5.3.3 Arrange Store Inventory for Fast Fulfillment 

The BOPS stocking problem is to select SKU items and stock a part inventory of 

them in the fast pick area for quick pick, we also call this back-stock strategy. The 

fast pick area locates in the back part of the store and close to the order pick pack 

area. When orders have  items that back stocked in this area,  the picker  could get  

the item immediately instead of traveling around the store, so the item picking time 

could be saved. The objective of the back-stock strategy is to minimize the order 

picking time. 

∑ Lk

Group #1 1 2 3 4 5 6 7 8 9 10 91 92 93 94 95 96 97 98 99 100 41 51 45 50 60 624

Group #2 11 12 13 14 15 16 17 18 19 20 81 82 83 84 85 86 87 88 89 90 42 52 55 49 59 624

Group #3 21 22 23 24 25 26 27 28 29 30 71 72 73 74 75 76 77 78 79 80 43 53 46 48 58 626

Group #4 31 32 33 34 35 36 37 38 39 40 61 62 63 64 65 66 67 68 69 70 44 54 56 47 57 626

SKU Items - k
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Decision Variable: 

k∊B      Items in the back-stock area for quick pick, capacitated and limited by 

the allocated back stock square footage, and the item inventory. 

 

5.3.3.1 Back  Stock  Strategy.   The space of fast pick area is capacitated and only  

a limited number of SKU items are selectively located here. In the simulation model, 

we set 10 SKU items (k∊B) can be back stocked out of the total 100 SKU items 

(k∊M). As the Figure 5.6 shows, we test the following back-stock strategies by 

running simulation experiments on 1-day orders, the data sets with 5 item frequency 

designs by 20 replications. 

 

Figure 5.6 Back stock strategy. 

 

Strategy #0 – no item back stocked. This is the nominal case, online orders are 

just forwarded to the store, B is null. 

Strategy #1 – most frequent items in orders. The straightforward back-stock 

strategy is to select the most frequent items based on the order history. From the  

order arrivals data, the frequency 𝑓𝑘 of all 100 SKU items showing up in orders are 

available, assign the 10 items with highest frequency to the fast pick area. 

Strategy #2 – item frequency and forward stocking location. For each item, the 

forward stocking location 𝐿𝑘 represents the pick travel distance between the item and 

the order pack area. Considering items with a same frequency 𝑓𝑘 from order history, 
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the item with longer pick travel distance has higher priority to be selected into the 

fast pick area. For all 100 SKU items, in order to normalize these two sets of value,  

𝑓𝑘 and 𝐿𝑘, to the same scale [0, 1], divide them by the maximum value of each: 

𝑓𝑘

max
𝑘∈𝑀

𝑓𝑘
+

𝐿𝑘

max
𝑘∈𝑀

𝐿𝑘
 

After the calculation for all items k∊M, 10 of them with the largest value are the 

back stocked items k∊B. 

 

5.3.3.2 Pick Travel Distance / Picking Time Estimation. As orders arrival 

during the active order period, one picker is sending to collect them one by one. Each 

order is a picklist for one time. The picker starts from the pick pack area, pick all 

items for the order, come back, and drop the items off for packing. 

Model Assumptions: 

There is only one picker (P=1). 

Orders are processed in the arrival sequence (FCFS). 

All items in an order are picked in the same picklist. 

Items in the back-stock area (k∊B) are skipped for pick travel distance 

estimation.  

For a single-item order, the pick travel distance is the stocking location of the 

item: 

𝑅𝑛,𝑑 = 𝐿𝑘|𝑘 ∈ 𝑂{}𝑛,𝑑 , 𝑘 ∉ 𝐵 

 

The pick travel route of a multi-item order is as the figure 5.7 shown. For 

example, an order n,d has 5 items, 𝑄𝑛,𝑑 = 5 , the stocking location address, 

(𝑖𝑘 , 𝑗𝑘)|𝑘 ∈ 𝑂{}𝑛,𝑑 , are highlighted as the below shown. The picker traverses and 

picks the items from the small number to large number in both aisle and rack 

direction. The items having a same stocking location address in aisle direction i will 

be picked when the picker go down the aisle. After finishing an aisle, the picker 
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needs to go back to the zero-level of the rack direction j and continues the following 

aisles.  

 

 

Figure 5.7 Pick travel route of a multi-item order. 

 

Pick travel distance for order n,d: 

𝑅𝑛,𝑑 = 2 [ max
𝑘∈𝑂{}𝑛,𝑑,𝑘∉𝐵

𝑖𝑘 + ∑ max(𝑗𝑘|𝑖𝑘 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑣𝑎𝑙𝑢𝑒)

𝑘∈𝑂{}𝑛,𝑑,𝑘∉𝐵

] 

The order picking time is time duration of traveling and picking items in an 

order. Then for order n,d, it can be calculated by the pick travel distance 𝑅𝑛,𝑑 and  the 

number of different items in the order 𝑄𝑛,𝑑. With the following parameters: 

α – Picker walking time of each unit 

β – Picking and packing time of each item 

Picking time for order n,d: 

𝑇𝑛,𝑑 = 𝛼𝑅𝑛,𝑑 + 𝛽𝑄𝑛,𝑑 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

1 (1,1) (1,1) (4,1) (4,1) (7,1) (7,1) (10,1) (10,1) (13,1) (13,1)

2 (1,2) (1,2) (4,2) (4,2) (7,2) (7,2) (10,2) (10,2) (13,2) (13,2)

3 (1,3) (1,3) (4,3) (4,3) (7,3) (7,3) (10,3) (10,3) (13,3) (13,3)

4 (1,4) (1,4) (4,4) (4,4) (7,4) (7,4) (10,4) (10,4) (13,4) (13,4)

5 (1,5) (1,5) (4,5) (4,5) (7,5) (7,5) (10,5) (10,5) (13,5) (13,5)

6 (1,6) (1,6) (4,6 (4,6 (7,6) (7,6) (10,6) (10,6) (13,6) (13,6)

7 (1,7) (1,7) (4,7) (4,7) (7,7) (7,7) (10,7) (10,7) (13,7) (13,7)

8 (1,8) (1,8) (4,8) (4,8) (7,8) (7,8) (10,8) (10,8) (13,8) (13,8)

9 (1,9) (1,9) (4,9) (4,9) (7,9) (7,9) (10,9) (10,9) (13,9) (13,9)

10 (1,10) (1,10) (4,10) (4,10) (7,10) (7,10) (10,10) (10,10) (13,10) (13,10)

Pick Travel Route

Aisle-direction number i

Rack-

direction 

number j

Aisle 

#1

Aisle 

#2

Aisle 

#3

Aisle 

#4

Aisle 

#5

1

2

3

4

5
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5.3.3.3 Performance Analysis of Back Stock Strategy. The objective of the back-

stock strategy is to minimize the order picking time. For each order, the picking time 

is a rectilinear function of the pick travel distance. Since the simulation data  sets are 

1-day order arrivals, we minimize the summation of the whole day orders pick travel 

distance. 

min ∑ 𝑅𝑛,𝑑

𝑛∈𝑁𝑑

 

The strategy #0 is the nominal case with no item in the fast pick area, for each 

replication, we use it as the base line to measure the performance of strategy #1 and 

#2. The following equations of 𝛿1 and 𝛿2 calculate how much the strategy #1 and #2 

perform better than the nominal case. They calculate the difference of the total pick 

travel distance for all orders in day d between the strategy #1 (#2) and the strategy 

#0. 

𝛿1 =
∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑

|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0 − ∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #1

∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0

 

𝛿2 =
∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑

|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0 − ∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #2

∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0

 

We generate 1-day order arrivals with 5 item frequency designs, and 20 

replications for each design. We show the detailed simulation results of design #1 in 

the Table 5.3 as an example.  

In average of the 20 replications, the whole day orders pick travel distance can 

be decreased 12.42% from the nominal case (strategy #0) by strategy #1, and 17.6% 

by strategy #2. We are also interested in the performance differences between 

strategy #1 and #2 (𝛿2 − 𝛿1). For design #1 orders, mean of the differences between 

strategy #1 and #2 (𝛿2 − 𝛿1)  is 5.18%. The following paired two sample t-Test 

supports the differences is statistically significant [t=-10.45, p=2.58E-09]. The 

strategy #2 performs better than the strategy #1 in design #1 orders.  
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Table  5.3  Back Stock Strategy Results of Design #1 

 

Replication 

∑ 𝑹𝒏,𝒅𝒏∈𝑵𝒅
  

δ1 δ2 δ2 - δ1 Strategy #0  Strategy #1 Strategy #2 

1 7850 6586 6312 16.10% 19.59% 3.49% 

2 7324 6384 6078 12.83% 17.01% 4.18% 

3 8024 6882 6820 14.23% 15.00% 0.77% 

4 7808 7020 6612 10.09% 15.32% 5.23% 

5 7626 6736 6228 11.67% 18.33% 6.66% 

6 8870 7822 7108 11.82% 19.86% 8.05% 

7 8814 7512 7290 14.77% 17.29% 2.52% 

8 7956 6862 6632 13.75% 16.64% 2.89% 

9 8392 7544 6868 10.10% 18.16% 8.06% 

10 7464 6320 6032 15.33% 19.19% 3.86% 

11 7696 6802 6184 11.62% 19.65% 8.03% 

12 7604 6596 6330 13.26% 16.75% 3.50% 

13 8030 7142 6678 11.06% 16.84% 5.78% 

14 8258 7580 6792 8.21% 17.75% 9.54% 

15 8688 7750 7188 10.80% 17.27% 6.47% 

16 8294 7300 6818 11.98% 17.80% 5.81% 

17 7840 6806 6416 13.19% 18.16% 4.97% 

18 8796 7646 7098 13.07% 19.30% 6.23% 

19 8226 7080 6796 13.93% 17.38% 3.45% 

20 7420 6642 6330 10.49% 14.69% 4.20% 

 

 
Table  5.4  Paired Two Sample t-Test for Means 

 
  δ1 δ2 

Mean 0.124151 0.175997 

Variance 0.000396 0.000227 

Observations 20 20 

Pearson Correlation 0.218399  
Hypothesized Mean Difference 0  
df 19  
t Stat -10.4504  
P(T<=t) one-tail 1.29E-09  
t Critical one-tail 1.729133  
P(T<=t) two-tail 2.58E-09  
t Critical two-tail 2.093024   
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We summarize the results of all 5 designs in the Table 5.5. δ1
̅̅ ̅ and δ2

̅̅ ̅ are the 

mean 𝛿1  and 𝛿2  of 20 replications. Means of the differences (δ2 − δ1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  are 

statistically significant for all 5 designs. The strategy #2 performs better than the 

strategy #1 in all 5 designs of orders.  

 

Table 5.5 Summary of Back Stock Strategy Results for 5 Designs 

 

 𝜹𝟏
̅̅ ̅ 𝜹𝟐

̅̅ ̅ 𝜹𝟐 − 𝜹𝟏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  t Stat P(T<=t) two-tail 

Design #1 12.42% 17.60% 5.18% -10.45 2.58E-09 

Design #2 12.30% 16.90% 4.60% -15.23 4.20E-12 

Design #3 13.73% 17.80% 4.07% -12.09 2.30E-10 

Design #4 18.06% 22.40% 4.34% -11.20 8.24E-10 

Design #5 22.87% 28.12% 5.25% -8.57 5.89E-08 

 

We draw the following box plot to examine experimental results graphically. 

The Figure 5.8 indicates that both strategy #1 (𝛿1) and #2 (𝛿2) perform better in 

design #4 and design #5 than the other designs. The means of design #1, #2, and #3 

do not differ. 

 
 

 

 

Figure 5.8 Box plot of back stock strategy 1 and 2 performance in 5 designs. 
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We use the analysis of variance (ANOVA) to test if different order designs 

affect the mean strategy #2 performance (δ2
̅̅ ̅). As the following Tables 5.6 and 5.7 

shown, we have strong evidence to conclude that null hypothesis is not true. That is, 

the order design affects the strategy #2 performance [F=154.9405, p=9.87E-41]. 

 

Table 5.6 Summary of Back Stock Strategy #2 

 
Groups Count Sum Average Variance 

Design #1 20 3.519949 0.175997 0.000227 

Design #2 20 3.380074 0.169004 0.000136 

Design #3 20 3.560724 0.178036 0.000138 

Design #4 20 4.480331 0.224017 0.000435 

Design #5 20 5.624685 0.281234 0.000522 

 

Table 5.7 ANOVA of Back Stock Strategy #2 

 
Source of Variation SS df MS F P-value F crit 

Between Groups 0.180701 4 0.045175 154.9405 9.87E-41 2.467494 

Within Groups 0.027699 95 0.000292    

       

Total 0.2084 99         
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5.4 BOPS Picker Scheduling 

5.4.1 Fulfillment Objective 

The primary goal of BOPS picking operation is to minimize the order fulfillment 

cost. In this section, we define the fulfillment cost objective function with the picker 

scheduling decision variables and cost coefficients, perform 5-day simulation for the 

order picking operation, then analyze the simulation results. 

Decision Variables: 

Sp, Ep Picker schedule – Start time and End Time 

Fn,d            Order fulfill time – Latest pick time of an item in O{}n,d  

Xn,d            Order picked on same day (Xn,d =0) or next day (Xn,d =1) 

Back Stock Setup Cost: An S-Strategy attempts to leverage the existing store 

stock to fulfill orders, but the layout is inherently inefficient for fast picking. Selected 

inventory is back stocked for faster picking. This is fixed measure and not in the 

objective function. 

Delivery Tardiness (Waiting) Cost: Difference between the order arrival time 

and the customer delivery time. 

Picker Schedule Cost: The number of order pickers and their work hours. 

The delivery tardiness (waiting) cost and the picker schedule cost are variable 

measures, with the following cost coefficients, they form the objective function of 

fulfillment cost: 

Ch Picker hourly labor cost 

Cw Waiting time cost coefficient, hourly delay 

CO Overnight Waiting time cost coefficient 

BOPS Fulfillment Cost (daily): 

𝜓 =  𝐶ℎ ∑[𝐸𝑝 − 𝑆𝑝]

𝑝∈𝑃

+  
𝐶𝑤

𝐷
∑ ∑ [𝐹𝑛,𝑑 − 𝐴𝑛,𝑑 |𝑋𝑛,𝑑 = 0]

𝑛∈𝑁𝑑𝑃𝑑∈𝐷

 

+ 
1

𝐷
∑ ∑ [𝐶𝑤(20 − 𝐴𝑛,𝑑 ) + 𝐶𝑤(𝐹𝑛,𝑑 − 6) + 𝐶𝑂|𝑋𝑛,𝑑 = 1]

𝑛∈𝑁𝑑𝑃𝑑∈𝐷
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The first part of the objective function is the picker schedule cost, it depends on 

the decision variables picker start time and end time (Sp, Ep). Since the daily order 

active period is 6 AM to 8 PM, in the simulation experiments all picker schedules 

𝑆𝑝 ≥ 6 and 𝐸𝑝 ≤ 20 (24-hour clock). There is only one picker (P=1). 

The second part of the objective function is the delivery tardiness (waiting) cost 

for the same-day fulfilled orders (𝑋𝑛,𝑑 = 0). The simulation cycle is 5 days (D=5). 

Orders are processed in the arrival sequence (FCFS). For order 𝑛 ∈ 𝑁𝑑 , the order 

fulfill time (𝐹𝑛,𝑑) is the time point of the latest pick time of an item in O{}n,d. It can 

be calculated by the order picking time (𝑇𝑛,𝑑 ), order arrival time (𝐴𝑛,𝑑 ) and the 

previous order fulfill time (𝐹𝑛−1,𝑑). 

𝐹𝑛,𝑑 = 𝐴𝑛,𝑑 + 𝑇𝑛,𝑑 |𝐴𝑛,𝑑 ≥ 𝐹𝑛−1,𝑑 

𝐹𝑛,𝑑 = 𝐹𝑛−1,𝑑 + 𝑇𝑛,𝑑 |𝐴𝑛,𝑑 < 𝐹𝑛−1,𝑑 

The third part of the objective function is the delivery tardiness (waiting) cost 

for the next-day fulfilled orders (𝑋𝑛,𝑑= 1). The orders left to the next day fulfilled 

have three waiting segments. The same day waiting segment is from the order arrival 

time (𝐴𝑛,𝑑) to the end of the order active period 8 PM (20). The next day waiting 

segment is from the start of the order active period 6 AM to the order fulfill time 

(𝐹𝑛,𝑑). The middle waiting segment in between is the overnight waiting. 

 
5.4.2 Design of Experiments 

The purpose of the experimental design in the picking operation is to investigate the 

performance sensitivity to picker schedule and waiting cost coefficient. We apply the 

back-stock strategy #2 since it has the best performance. 
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5.4.2.1 Order Arrival Process. For the picker scheduling experiments, we generate 

order arrivals for 5-day planning period. Instead of a fixed arrival rate (λ) for the whole day 

order arrivals, we create the order arrival surge design. The item frequency design also 

applied on the 5-day orders. The Figure 5.9 summarizes the order arrivals difference 

between the stocking and picking problem. 

 

Figure 5.9 Order arrivals difference between the stocking and picking problem. 

 

Order Arrival Surge Design – Instead of setting an arrival rate (λ) for the whole 

day’s active order period, we separate the total 14 hours into 7 time-windows, 2 

hours each, to create an order arrival surge during the noon. The Table 5.8 shows the 

order interarrival time (1/ λ) of every time window in minutes. In the simulation 

model, time is represented in minutes. For example, 6 AM is represented by 360 and 

8 PM is 1200. In the Figure 5.10, we show the frequency of order arrival time in the 

5-day simulation to visualize the surge. 

 
 

Table 5.8 Order Arrival Surge Design 

 

 
 

 

 

 

Time Window 6-8 8-10 10-12 12-2 2-4 4-6 6-8

Time Window in Minutes 360-480 480-600 600-720 720-840 840-960 960-1080 1080-1200

Order Interarrival Time 1/λ (Minutes) 7 5 4 2 3 4.5 6

AM PM
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Figure 5.10 Histogram of 5-day orders arrival time. 

 

5.4.2.2 Picker Scheduling. The experimental design of picker schedule involves 

picker scheduled length or 𝐸𝑝 − 𝑆𝑝. The longest picker schedule is same as the daily 

order active period, 14 hours, from 6 AM to 8 PM. We calculate the shortest picker 

scheduled length by the daily picking time of total orders: 

1

𝐷
∑ ∑ 𝑇𝑛,𝑑

𝑛∈𝑁𝑑𝑃𝑑∈𝐷

 

In the online order arrivals section, we generate the simulation data of 5-day 

orders with 5 item frequency designs. After calculation, the average daily picking 

time of the 5 designs is 7.315 hours. We set the shortest picker scheduled length as 8 

hours. The Table 5.9 show the experimental design of picker schedule. 
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Table 5.9 Picker Schedule 

 
Picker Start 
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 

Daily 
Picker 

scheduled 
Hours 

(𝑬𝒑 − 𝑺𝒑) 

8 6 AM - 2 PM 7 AM - 3 PM 8 AM - 4 PM 9 AM - 5 PM 10 AM - 6 PM 11 AM - 7 PM 12 PM - 8 PM 

9 6 AM - 3 PM 7 AM - 4 PM 8 AM - 5 PM 9 AM - 6 PM 10 AM - 7 PM 11 AM - 8 PM  

10  6 AM - 4 PM   7 AM - 5 PM   8 AM - 6 PM   9 AM - 7 PM   10 AM - 8 PM    

11  6 AM - 5 PM   7 AM - 6 PM   8 AM - 7 PM   9 AM - 8 PM     

12  6 AM - 6 PM   7 AM - 7 PM   8 AM - 8 PM      

13  6 AM - 7 PM   7 AM - 8 PM       

14  6 AM - 8 PM              

 

5.4.2.3 Cost Coefficients. The hourly waiting time cost coefficient ( 𝐶𝑤 ) is an 

indirect or welfare cost, and tricky to estimate. We take the extreme case of 14-hour 

picker schedule (6 AM – 8 PM) from the above experimental design. This case gives 

the maximum picker schedule hours and minimum delivery tardiness (waiting) time 

without any order left to next day. This is the fastest fulfilment, then we think in this 

case the delivery tardiness (waiting) cost is equivalent to the picker schedule cost. 

With a given picker hourly labor cost, 𝐶ℎ = 30, an estimated waiting time cost (𝐶�̃�) 

can be calculated by: 

𝐶�̃� =
14𝐷𝐶ℎ

∑ ∑ [𝐹𝑛,𝑑 − 𝐴𝑛,𝑑]𝑛∈𝑁𝑑𝑃𝑑∈𝐷

 

We use minute as time unit in the simulation, this estimated waiting time cost 

(𝐶�̃� ) gives the waiting time cost per minute, then the hourly waiting time cost 

coefficient (𝐶𝑤): 

𝐶𝑤 = 60𝐶�̃� ∀ 𝐶�̃�𝜖{0.4, 0.3, 0.2, 0.1, 0.05} 

With five sets of the 5-day orders, we run the simulation experiments and 

calculate the average 𝐶�̃� is 0.344. Then we expend it to five values and investigate 

the performance sensitivity to them. 
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Instead of using full duration from 8 PM to 6 AM as the overnight waiting 

time, we develop a relationship between overnight waiting time cost coefficient (𝐶𝑂) 

and hourly waiting time cost coefficient (𝐶𝑤) and use 𝛾 to stand for the overnight 

waiting hours. We also test two value of 𝛾. 

𝐶𝑂 = 𝛾𝐶𝑤 ∀ 𝛾𝜖{2, 1} 

 

5.4.3 Performance Analysis of Simulation Results 

5.4.3.1 Picker Scheduling. Based on each item frequency design in orders,  we  

have 5 sets of 5-day order arrivals. We perform the simulation of all experimental 

picker schedules on each design of 5-day orders. Take the simulation results of design 

#1 orders as an example, the Table 5.10 summarize the total fulfillment cost of 5-day 

orders for all picker schedules. The results of the objective function are the summation 

of picker schedule cost, same-day waiting cost, overnight waiting cost and next-day 

waiting cost. 

The order active period is from 6 AM to 8 PM. When the picker  working to  

the last order arrival (picker end time 𝐸𝑝 = 8 𝑃𝑀), almost no order left to the next 

day, so the overnight and next-day waiting cost is zero. One exception is the 8-hour 

schedule from 12 PM to 8 PM, with 5 orders left to the next day, the fulfillment cost 

has a small portion of overnight and next-day waiting cost. 

From the Figure 5.11, we can see the fulfillment objective is sensitive to both 

the picker  schedule length and the start time.  A later start time is preferred, since     

it reduce the risk of orders delayed overnight. As the start time continues pushing 

back, the same-day waiting increases in the queuing model, the fulfillment cost goes 

up. With 𝐶�̃� = 0.4 𝑎𝑛𝑑 𝛾 = 2, the optimal picker schedule is the 10-hour length 

from 9 AM to 7 PM. 
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Table  5.10  BOPS Fulfillment Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1 

 
Picker Start 
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 

Daily 
Labor 

Scheduled 
Hours 

(𝑬𝒑 − 𝑺𝒑) 

8 2844 2417 2114 2146 2110 2206 2387 

9 2272 2031 1947 1895 1940 2104  

10 2033 1945 1859 1815 1893   

11 1988 1907 1852 1840    

12 1988 1936 1908     

13 2048 2017      

14 2154             

 

 
Table  5.11  Same-day Waiting Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1 

 
Picker Start 
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 

Daily 
Labor 

Scheduled 
Hours 

(𝑬𝒑 − 𝑺𝒑) 

8 933 637 470 564 658 870 1170 

9 497 333 302 338 484 754  

10 275 214 191 227 393   

11 169 127 131 190    

12 96 81 108     

13 61 67      

14 54             

 

 
Table  5.12  Overnight Waiting Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1 

 
Picker Start 
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 

Daily 
Labor 

Scheduled 
Hours 

(𝑬𝒑 − 𝑺𝒑) 

8 380 271 182 134 78 38 4 

9 261 179 126 76 34 0  

10 179 126 76 34 0   

11 126 76 34 0    

12 76 34 0     

13 34 0      

14 0             
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Table  5.13  Next-day Waiting Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1 

 
Picker Start 
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 

Daily 
Labor 

Scheduled 
Hours 

(𝑬𝒑 − 𝑺𝒑) 

8 331 309 263 247 174 98 12 

9 165 169 168 130 72 0  

10 80 105 92 54 0   

11 42 54 37 0    

12 16 20 0     

13 3 0      

14 0             

 

 

 
 

Figure  5.11 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight 

waiting 2 hours) – design #1. 
 

 
5.4.3.2 Order Designs. We show the fulfillment cost of the other 4 designs of  5-

day orders with the same coefficients value 𝐶�̃� = 0.4 𝑎𝑛𝑑 𝛾 = 2 in the Figure 5.12 

(the detailed simulation results of the 4 designs are in the appendix). These graphs have 

the similar pattern as the design #1 graph, the optimal picker schedules of order design 

#2, #3, and #4 are also from 9 AM to 7 PM. 

The difference among the 5 design of orders is the item frequency of orders. 

The simulation results of back-stock strategy show the back-stock strategy is more 

effective on the orders with higher item frequency. As item frequency of orders higher,  
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the picking time for each order is less, which make the order waiting cost and the 

fulfillment cost decrease in general. Due to the order waiting time decrease among 

designs, the graphs show the fulfillment cost gaps among the picker schedule length 

become smaller, and a tendency of later picker start time. In the design #5, the 

optimal picker schedule moves to a 9-hour length from 10 AM to 7 PM. But the 

fulfillment cost of the optimal schedule and schedule 9 AM to 7 PM or 10 AM to 8 

PM is close, which means the high item frequency orders give more flexibility in the 

picker scheduling. 

 

 
 

Figure  5.12 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight 

waiting 2 hours) in designs. 

 

5.4.3.3 Cost Coefficients.  The delivery tardiness (waiting) cost is balanced with  

the picker schedule cost. We show the graphs of design #1 as the example, as the 

waiting time cost coefficient (𝐶𝑤)̃ decreases, the picker schedule length dominates 

the fulfillment cost. Comparing to 𝐶�̃� = 0.4, when 𝐶�̃� decreases to 0.2, the optimal 

schedule shortens to the 9-hour with the same start time. As 𝐶�̃� continues decreasing 

to 0.1 and 0.05, the 8-hour schedules give the minimum fulfillment cost. 
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Figure 5.13 BOPS fulfillment cost (overnight waiting 2 hours) of design #1. 

 

For each set of 5-day orders, the order fulfill time (𝐹𝑛,𝑑) is decided by the picker 

schedule. We still take the simulation results of design #1 orders as the example, 

Table 5.14 shows the number of next-day fulfilled orders under each picker schedule. 

The schedules end at 8 PM barely leave orders to the next day. 

 

Table 5.14 Number of Next-day Fulfilled Orders – Design #1 

 
Picker Start 
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 

Daily 
Labor 

Scheduled 
Hours 

(𝑬𝒑 − 𝑺𝒑) 

8 475 339 227 168 98 47 5 

9 326 224 158 95 43 0  

10 224 158 95 43 0   

11 158 95 43 0    

12 95 43 0     

13 43 0      

14 0             
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When we change the overnight hours 𝛾 = 1, it only decreases the overnight waiting 

cost of the next-day fulfilled orders. With the same waiting time cost coefficient (𝐶𝑤)̃, the 

fulfillment cost of schedules having no next-day fulfilled orders stay same. Comparing to 

the above graphs of 𝛾 = 2, the graphs below (𝛾 = 1) show the fulfillmnet cost decreases 

from the left side. There is no change of the 14-hour full coverage schedule. For each 

schedule length, the schedule with the lastest picker start time also stay same. 

 
 

 
 

Figure 5.14 BOPS fulfillment cost (overnight waiting 2 hours) of design #1. 
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CHAPTER 6 

 
SUMMARY AND FUTURE RESEARCH 

 

 

 
Fulfillment of online retail orders is a critical challenge for retailers since the legacy 

infrastructure and control methods are ill suited for online retail. The primary 

performance goal of online fulfillment is speed or fast fulfillment, requiring received 

orders to be shipped or ready for pickup within a few hours. Several novel numerical 

problems characterize fast fulfillment operations and this research solves two such 

problems, F-Warehouse order consolidation and BOPS store picking problems. 

 
6.1 Summary 

Order fulfillment warehouses (F-Warehouses) are a critical component of the physical 

internet behind online retail supply chains, and typically operate with an explosive 

storage policy. That is, each item is stocked in multiple random locations dispersed 

throughout the warehouse. Orders are  then  picked  and  collected  in  totes  which 

are assigned to one of many packaging stations, where items belonging to the same 

order are consolidated into a shipment package. There is a one-to-many relationship 

between customer orders and totes. This research formulates and solves the order 

consolidation problem. At any time, a batch of totes are to be processed through 

several available order packaging stations. Tote assignment to a station will determine 

whether an order will be shipped in a single package or multiple packages. Reduced 

shipping costs are a  key  operational  goal  of  an  online  retailer,  and  the number 

of packages is a determining factor. The decision variable is which station a tote 

should be assigned to, and the performance objective is to minimize the number of 

packages and balance the packaging station workload. This research first formulates 

the order consolidation problem as an MIP,  and then develops two  fast heuristics  

(#1 and #2) plus two clustering algorithm derived solutions. For small problems, 
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the heuristic 2 were on average within 4.1% of the optimal solution, while the 

heuristic 1, the hierarchical and K-Means clustering algorithms were within 8.5%, 

6.7% and 11.6%. For larger problems heuristic #2 outperformed all other algorithms. 

Performance behavior of heuristic #2 was further studied as a function of size of the 

tote-order matrix, multi-item order complexity of the tote-order matrix, number of 

consolidators and the consolidation batch window. A Maxmin ratio indexed in the 

range number of ordered items minus number of orders was used as a surrogate for 

solution performance. 

S-Strategy fulfillment is a store-based solution for fulfilling online customer 

orders.  Orders are picked  from store inventory and then customer picks up from  

the store (BOPS). A BOPS store has two distinguishing features (i) In addition to 

shelf stock,  the layout  includes a space constrained back stock of selected items,  

and (ii) a set of dedicated pickers who are scheduled to fulfill orders. This research 

solves two BOPS related problems: (i) Back stock strategy: Assignment of items 

located in the back stock and (ii) Picker  scheduling:  Effect of numbers of picker   

and work hours. For both problems we assume a continuous flow of incoming orders 

and the objective is fulfillment time and labor cost minimization. We  model the  

store inventory dispersion, order arrival process and order picking process in a BOPS 

retailer. For the back-stock problem an assignment rule based on order frequency, 

forward location and order basket correlations achieved a 17.6% improvement over   

a no back-stock store, while a rule based only on order frequency achieved a 12.4% 

improvement. 

 
6.2 Future Research 

With time and resource limitations, the research on both problems are still with 

plenty of future research opportunities. 

As mentioned in Chapter 4, the twinning orders in a tote-order matrix is a 

preliminary design for future research. The intention of this design is to link the order  
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consolidation problem with the picklist assignment problem, which is the efficient 

picking lists generation from the set of pending orders. A picklist of items is 

collected in a tote, which means the picklist decides which orders in a tote. And a 

batch of totes form the tote-order matrix in the decision model. With the online order 

fulfillment in F-Warehouses, the research team has established four decision models 

with the operation work flows. As a future study, a combination of picking and 

consolidation algorithms could achieve improvement in both fulfillment time and 

cost minimization.  

With the BOPS store picking problem, the current derivation of order delivery 

waiting cost considers every order needs immediate fulfillment. In the future study, 

orders with different due date/time priority could be assigned to different fulfillment 

groups. For the picking scheduling problem, this research focus on the daily labor 

hours and start time of one picker. When the model involves multiple pickers, the 

number of pickers will be a critical decision variable. Combined with the order 

priority, the picker scheduling problem will show more complexity. 
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