
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

12-31-2020

Online fulfillment: f-warehouse order consolidation and bops store Online fulfillment: f-warehouse order consolidation and bops store

picking problems picking problems

Wen Zhu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Business Administration, Management, and Operations Commons, Industrial Engineering

Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Zhu, Wen, "Online fulfillment: f-warehouse order consolidation and bops store picking problems" (2020).
Dissertations. 1504.
https://digitalcommons.njit.edu/dissertations/1504

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1504&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1504&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1504?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1504&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ONLINE FULFILLMENT: F-WAREHOUSE ORDER

CONSOLIDATION AND BOPS STORE PICKING PROBLEMS

by

Wen Zhu

Fulfillment of online retail orders is a critical challenge for retailers since the legacy

infrastructure and control methods are ill suited for online retail. The primary

performance goal of online fulfillment is speed or fast fulfillment, requiring received

orders to be shipped or ready for pickup within a few hours. Several novel numerical

problems characterize fast fulfillment operations and this research solves two such

problems. Order fulfillment warehouses (F-Warehouses) are a critical component of

the physical internet behind online retail supply chains. Two key distinguishing

features of an F-Warehouse are (i) Explosive Storage Policy – A unique item can

be stored simultaneously in multiple bin locations dispersed through the warehouse,

and (ii) Commingled Bins – A bin can stock several different items simultaneously.

The inventory dispersion profile of an item is therefore temporal and non-repetitive.

The order arrival process is continuous, and each order consists of one or more items.

From the set of pending orders, efficient picking lists of 10-15 items are generated. A

picklist of items is collected in a tote, which is then transported to a packaging station,

where items belonging to the same order are consolidated into a shipment package.

There are multiple such stations.

This research formulates and solves the order consolidation problem. At any

time, a batch of totes are to be processed through several available order packaging

stations. Tote assignment to a station will determine whether an order will be shipped

in a single package or multiple packages. Reduced shipping costs are a key

operational goal of an online retailer, and the number of packages is a determining

factor. The decision variable is which station a tote should be assigned to, and the

performance objective is to minimize the number of packages and balance the

packaging station workload. This research first formulates the order consolidation

problem as a mixed integer programming model, and then develops two fast heuristics

(#1 and #2) plus two clustering algorithm derived solutions. For small problems, the

heuristic #2 is on average within 4.1% of the optimal solution. For larger problems

heuristic #2 outperforms all other algorithms. Performance behavior of heuristic #2 is

further studied as a function of several characteristics.

S-Strategy fulfillment is a store-based solution for fulfilling online customer

orders. The S-Strategy is driven by two key motivations, first, retailers have a network

of stores where the inventory is already dispersed, and second, the expectation is that

forward positioned inventory could be faster and more economical than a warehouse

based F-Strategy. Orders are picked from store inventory and then the customer picks

up from the store (BOPS). A BOPS store has two distinguishing features (i) In

addition to shelf stock, the layout includes a space constrained back stock of selected

items, and (ii) a set of dedicated pickers who are scheduled to fulfill orders. This

research solves two BOFS related problems: (i) Back stock strategy: Assignment of

items located in the back stock and (ii) Picker scheduling: Effect of numbers of picker

and work hours. A continuous flow of incoming orders is assumed for both problems

and the objective is fulfillment time and labor cost minimization. For the back-stock

problem an assignment rule based on order frequency, forward location and order

basket correlations achieves a 17.6% improvement over a no back-stock store, while

a rule based only on order frequency achieves a 12.4% improvement. Additional

experiments across a range of order baskets are reported.

ONLINE FULFILLMENT: F-WAREHOUSE ORDER

CONSOLIDATION AND BOPS STORE PICKING PROBLEMS

by

Wen Zhu

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Industrial Engineering

Department of Mechanical and Industrial Engineering

December 2020

Copyright © 2020 by Wen Zhu

ALL RIGHTS RESERVED

APPROVAL PAGE

ONLINE FULFILLMENT: F-WAREHOUSE ORDER

CONSOLIDATION AND BOPS STORE PICKING PROBLEMS

Wen Zhu

Dr. Sanchoy K. Das, Dissertation Advisor Date

Professor of Mechanical and Industrial Engineering, NJIT

Dr. Athanassios Bladikas, Committee Member Date

Associate Professor of Mechanical and Industrial Engineering, NJIT

Dr. Esra Buyuktahtakin-Toy, Committee Member Date

Associate Professor of Mechanical and Industrial Engineering, NJIT

Dr. Wenbo Cai, Committee Member Date

Associate Professor of Mechanical and Industrial Engineering, NJIT

Dr. Junmin Shi, Committee Member Date

Associate Professor of Supply Chain Management and Finance, Martin Tuchman

School of Management, NJIT

iv

BIOGRAPHICAL SKETCH

Author: Wen Zhu

Degree: Doctor of Philosophy

Date: December 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Industrial Engineering,

New Jersey Institute of Technology, Newark, NJ, 2020

Master of Science in Healthcare Systems Management,

New Jersey Institute of Technology, Newark, NJ, 2014

Bachelor of Medicine in Preventive Medicine,

Southwest Medical University, Luzhou, Sichuan, P.R. China, 2010

Major: Industrial Engineering

Presentations and Publications:

Zhu, W., and Das, S., Buy Online Fulfill from Store - Design and Control of Order

Picking Operations, Conference Presentation, Institute for Operations
Research and the Management Science Annual Conference Annual Meeting,
Seattle, WA, October 2019

Zhu, W., and Das, S., Dynamic Consolidation of Picked Orders in an Online Orders
Fulfillment Warehouse, Conference Presentation, Institute for Operations
Research and the Management Science Annual Conference Annual Meeting,
Seattle, WA, October 2019

Zhu, W., Helminsky, A., and Das, S., Buy Online, Fulfill from Store – Location
Assignment and Order Picking, Conference Presentation, Production and
Operations Management Society Annual Conference, Washington, D.C., May
2019

Zhu, W., and Das, S., Consolidation of Picked Orders in a Fulfillment Center with
Explosive Storage, Poster Presentation, Institute for Operations Research and
the Management Science Annual Conference Annual Meeting, Phoenix, AZ,
November 2018

•

•

v

This dissertation is dedicated to my beloved family:

my husband张敏

my father朱贵森

 my mother郭乃兰

for their endless and unconditional love.

vi

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my advisor Professor Sanchoy Das for the

continuous support of my Ph.D. study and related research, for his patience, motivation,

and immense knowledge. His guidance helped me in all the time of research and writing

of this dissertation. Without him I would not have been able to complete this research,

and without him I would not have made it through my Ph.D. study.

Besides my advisor, I would like to thank the rest of my dissertation committee:

Dr. Athanassios Bladikas, Dr. Wenbo Cai, Dr. Esra Buyuktahtakin-Toy, and Dr. Junmin

Shi, for their insightful comments and encouragement.

My sincere thanks to the Department of Mechanical & Industrial Engineering for

the financial support; and to my colleagues: Dr. Jingran Zhang and Dr. Sevilay Onal, for

all the support in my Ph.D. years.

Finally, I would like to thank my family: my husband, Min Zhang, my parents,

Guisen Zhu and Nailan Guo for all the endless and unconditional support.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ……………….………………………………………………. 1

 1.1 Research Background ……………………………….……………….…........ 1

 1.2 Online Order Fulfillment Warehouses ……………………………….……… 3

 1.3 Amazon Fulfillment Center ……………………………….………………… 3

 1.4 Online Order Fulfillment in a BOPS Retailer …………………………….…. 5

 1.5 Research Objectives and Accomplishments ………………………………… 6

 1.5.1 Formulate and Solve the Order Consolidation Problem as a MIP ……. 6

 1.5.2 Develop and Test Fast Heuristics for Solving the Order Consolidation

Problem ……………………………………………………………....... 8

 1.5.3 Evaluate the Performance Behavior of the Fast Heuristics as a

Function of Several Characteristics ……………………………….…... 9

 1.5.4 Back Stock Assignment and Picker Scheduling in a BOPS Store ……. 10

2 LITERATURE REVIEW ……………………………….………………………. 12

 2.1 Internet Fulfillment Warehouses ...………………………….………………. 12

 2.1.1 IFW Differentiators ...………………………….……………………… 14

 2.1.2 Fulfilment Time and Online Orders ...………………………………… 14

 2.1.3 Likelihood of an Online Purchase ...………………………….………. 16

 2.1.4 Logistics Efficiency and Fulfilment Time ...…………………………. 16

viii

TABLE OF CONTENTS

(Continued)

Chapter Page

 2.2 Packing Operations ……………………………….……………….…............ 18

 2.2.1 Operational Objectives ………………………………………………. 19

 2.2.2 Bin Packing Problem and Algorithms ………………………………… 21

 2.3 Clustering Algorithms in Order Fulfillment ………………………………… 23

 2.4 Optimization Platform ………………………………………………………. 25

 2.4.1 Modeling Language …………………………………………………… 25

 2.4.2 Solvers ………………………………………………………………… 26

 2.4.3 Network-Enabled Optimization System (NEOS) Server ……………... 27

 2.4.4 SolverStudio …………………………………………………………... 27

3 THE ORDER CONSOLIDATION PROBLEM ………………………………… 29

 3.1 The Order Picking and Consolidation Process …………………………….... 29

 3.2 The Tote Assignment Problem ……………………………………………… 31

 3.3 Problem Formulation ………………………………………………………... 32

 3.4 Fast Heuristic F#1 …………………………………………………………… 36

 3.4.1 Tote-Order Matrix and Dissimilarity Matrix …………………………. 37

 3.4.2 Transform the Tote-Order Binary Matrix into the Dissimilarity Matrix 38

ix

TABLE OF CONTENTS

(Continued)

Chapter Page

 3.4.3 Fast Heuristic F#1 ……………………………………………………. 39

 3.5 Clustering Methods in Data Mining ……………………………….………... 42

 3.5.1 Partitioning Methods …………………………………………………. 43

 3.5.2 Hierarchical Methods …………………………………………………. 47

 3.6 Numerical Study and Benchmark Evaluation ………………………………. 50

 3.6.1 Software and Solver …………………………………………………... 50

 3.6.2 Simulation Data Sets ………………………………………………… 51

 3.6.3 Results and Evaluation ………………………………………………. 52

 3.7 Fast Heuristic F#2 and Performance Evaluation ...…………………………. 54

 3.7.1 Fast Heuristic F#2 Development ……………………………………… 54

 3.7.2 Lemma Proof …………………………………………………………. 58

 3.7.3 Performance Evaluation ………………………………………………. 60

4 PERFORMANCE BEHAVIOR ANALYSIS OF FAST HEURISTICS ………... 65

 4.1 Size of Tote-Order Matrix …………………………………………………... 65

 4.2 Multi-Item Order Complexity of Tote-Order Matrix ………………………. 65

 4.3 Number of Consolidators …………………………………………………… 69

x

TABLE OF CONTENTS

(Continued)

Chapter Page

 4.4 Consolidation Tote Batch Window ……………………………….………… 74

 4.4.1 Dynamic Design of Tote-Order Matrix ………………………………. 74

 4.4.2 Experimental Design and Result Analysis ……………………………. 76

 4.5 Twinning Design – Future Research ………………………………………. 77

5 BUY ONLINE PICKUP FROM STORE (BOPS) ……………………………… 80

 5.1 Introduction …………………………………………………………………. 80

 5.1.1 Omnichannel Retailing ………………………………………………. 80

 5.1.2 The Store is the Fulfillment Center …………………………………… 81

 5.2 Online Order Fulfillment in a BOPS Retailer ...………………………….… 82

 5.2.1 BOPS Operational Elements …………………………………………. 82

 5.2.2 Online Order Fulfillment Problems …………………………………... 82

 5.3 BOPS Store Stocking Layout ………………………………………………. 84

 5.3.1 Forward Stock ………………………………………………………… 84

 5.3.2 Online Order Arrivals ………………………………………………… 86

 5.3.3 Arrange Store Inventory for Fast Fulfillment ………………………… 87

 5.4 BOPS Picker Scheduling …………………………………………………… 95

xi

TABLE OF CONTENTS

(Continued)

Chapter Page

 5.4.1 Fulfillment Objective …………………………………………………. 95

 5.4.2 Design of Experiments ………………………………………………... 96

 5.4.3 Performance Analysis of Simulation Results …………………………. 100

6 SUMMARY AND FUTURE RESEARCH ……………………………………... 106

 6.1 Summary ……………………………………………………………………. 106

 6.2 Future Research ...………………………….………………………………. 107

REFERENCES ……………………………………………………………………… 109

xii

LIST OF TABLES

Table Page

3.1 Problem Sizes with Number of Variables and Constrains ………………… 35

3.2 Problem Sizes with Computational Time (Seconds) ……………………… 35

3.3 Problem Sizes of Data Sets ………………………………………………... 51

3.4 Order Cases of Data Sets …………………………………………………. 51

3.5 CPLEX Solver Running Time (Minutes) ………………………………… 53

3.6 CPLEX Solver Results ……………………………………………………. 53

3.7 Summary of Small and Large Data Sets …………………………………... 61

3.8 Result Summary of 87 Small Data Sets …………………………………… 63

3.9 Result Summary of 66 Large Data Sets …………………………………… 64

4.1 Extra-Large Problem Size …………………………………………………. 65

4.2 Multi-Item Orders Quantity Percentage …………………………………… 66

4.3 Total Number of Items (I) …………………………………………………. 67

4.4 Results of 200×560 Tote-Order Matrix by 40 Consolidators ……………... 67

4.5 Results of 300×840 Tote-Order Matrix by 60 Consolidators ……………... 67

4.6 Results of 400×1120 Tote-Order Matrix by 80 Consolidators ……………. 68

4.7 Number of Consolidators Set for each size of Tote-Order Matrix ………... 69

4.8 Mean Number of Delivery Packages run by F#2 on 200×560 Tote-Order

Matrix with Different Number of Consolidators …………………………. 70

xiii

LIST OF TABLES

(Continued)

Table Page

4.9 Maxmin Ratio of 200×560 Tote-Order Matrix with Different Number of

Consolidators ……………………………………………………………............... 70

4.10 Mean Number of Delivery Packages run by F#2 on 300×840 Tote-Order Matrix

with Different Number of Consolidators …………………………………………. 71

4.11 Maxmin Ratio of 300×840 Tote-Order Matrix with Different Number of

Consolidators ……………………………………………………………............... 72

4.12 Mean Number of Delivery Packages run by F#2 on 400×1120 ToteOrder Matrix

with Different Number of Consolidators …………………………………………. 73

4.13 Maxmin Ratio of 400×1120 Tote-Order Matrix with Different Number of

Consolidators ……………………………………………………………............... 73

4.14 Size of 30 Tote-Order Matrices …………………………………………… 76

4.15 Mean Number of Delivery Packages run by F#2 with Different Batch …... 77

4.16 Maxmin Ratio of F#2 Results with Different Batch Sizes ………………... 77

4.17 Mean Number of Delivery Packages run by F#2 with Different Number of

Consolidators …………………………………………………………………. 78

4.18 Maxmin Ratio of F#2 Results with Different Number of Consolidators …. 78

5.1 Groups of SKU Items ……………………………………………………… 87

5.2 Item Frequency Design ……………………………………………………. 87

5.3 Back Stock Strategy Results of Design #1 ………………………………... 92

5.4 Paired Two Sample t-Test for Means ……………………………………... 92

5.5 Summary of Back Stock Strategy Results for 5 Designs …………………. 93

5.6 Summary of Back Stock Strategy #2 ……………………………………… 94

xiv

LIST OF TABLES

(Continued)

Table Page

5.7 ANOVA of Back Stock Strategy #2 ………………………………………. 94

5.8 Order Arrival Surge Design ………………………………………………. 97

5.9 Picker Schedule ……………………………………………………………. 99

5.10 BOPS Fulfillment Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ………………………. 101

5.11 Same-day Waiting Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ………………………. 101

5.12 Overnight Waiting Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ……………………… 101

5.13 Next-day Waiting Cost (𝐶𝑤
̃ = 0.4, 𝛾 = 2) – Design #1 ………………………. 102

5.14 Number of Next-day Fulfilled Orders – Design #1 ………………………. 104

xv

LIST OF FIGURES

Figure Page

2.1 Online purchase likelihood and fulfilment time …………………………. 17

2.2 Online fulfilment process and performance drivers ………………………. 18

3.1 Order picking and consolidation process ………………………………… 29

3.2 Tote assignment problem …………………………………………………. 32

3.3 Hierarchical cluster dendrogram …………………………………………. 48

3.4 Mean error gap of small data sets ………………………………………… 63

3.5 Mean algorithms results difference of large data sets ……………………. 64

4.1 Mean algorithms results difference of all extra-large data sets …………… 68

4.2 Maxmin ratio of 200 totes by 560 orders matrix with different number of

consolidators ………………………………………………………………. 69

4.3 Maxmin ratio of 300 totes by 840 orders matrix with different number of

consolidators ………………………………………………………………. 72

4.4 Maxmin ratio of 400 totes by 1120 orders matrix with different number of

consolidators ………………………………………………………………. 74

4.5 Example of tote-order matrix with dynamic design ……………………… 75

4.6 Maxmin ratio of F#2 results with different batch sizes …………….......... 77

4.7 Maxmin ratio of F#2 results with different number of consolidators ……. 79

5.1 Operational structure of a dual distribution strategy ………..................... 80

5.2 Physical configuration of the fulfillment problem ………………………… 82

5.3 Forward stock of SKU item ………………………………………………. 85

xvi

LIST OF FIGURES

(Continued)

Figure Page

5.4 Stocking location address of SKU item …………………………………... 85

5.5 Forward stocking location of SKU item …………………………………... 86

5.6 Back stock strategy ………………………………………………………. 88

5.7 Pick travel route of a multi-item order ……………………………………. 90

5.8 Box plot of back stock strategy 1 and 2 performance in 5 designs ……… 93

5.9 Order arrivals difference between the stocking and picking problem ……. 97

5.10 Histogram of 5-day orders arrival time …... 98

5.11 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight waiting

2 hours) – design #1……………….. 100

5.12 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight waiting 2

hours) in designs ………………………………………………………………. 103

5.13 BOPS fulfillment cost (overnight waiting 2 hours) of design #1…………. 104

5.14 BOPS fulfillment cost (overnight waiting 2 hours) of design #1…………. 105

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

Online and internet retail is dramatically changing the global retail industry.

Companies vested in traditional supply chains are being challenged by a new and

rapidly evolving breed of fulfillment centers that are focused exclusively on online or

internet retail. Das (2020) describes eight paradigm shifts that have driven the growth

of a fast fulfillment infrastructure. Three of these paradigms are of particular interest

in this dissertation: (i) Online Shopping, (ii) Point-of-Use Delivery and (iii) The

Warehouse is the Store. The consequence of these paradigms is that that customer

no longer visits the store. Picking up items from store or warehouse inventory and

then delivering it to the customer address is now the responsibility of the retailers.

Progressively, we have seen the remodeling and extension of traditional supply chains

to efficiently and economically perform these new functions. A central facility in online

retail is a fulfillment center, in purely online retailer this is usually a warehouse,

while for an Omni channel retailer this is frequently the store itself. The focus of

this research is on the development of operations models which are applied to these

fulfillment facilities.

Historically, fulfillment centers were developed for the mail order business, and

fulfillment times were measured in weeks. Internet retailers compete with brick and

mortar retailers on both the marketing side, where the goal is to sell a product

virtually, and on the fulfillment side, where the goal is to provide delivery within a few

days. The key infrastructure components of internet retail are a network of fulfillment

warehouses (F-Warehouses) or centers and a parcel delivery network. Amazon with

2

close to a 50% market share of all U.S. online sales is the most successful online

retailer, and they have built over a 100 new fulfillment centers.

The success of Amazon confirms that a single channel strategy, pure online,

can effectively meet the demand requirements of most customers. To expand into

the online channel, most traditional retailers have built and are operating an online

retail channel alongside their established physical stores. The largest U.S. retailers

(Walmart and Target) are designing and building a store based or S-Strategy supply

chain solution to fulfill online customer orders, this contrasts with the vast fulfillment

center network or F-Strategy solution built by Amazon. In effect they have converted

the store into a fulfillment center.

Then we have two key research questions. The first one is: are successful F-

Warehouses, such as those built by Amazon, operating with design and control

paradigms that are quite different from traditional warehouses? If so, what are these

F-Warehouses differences and what are the accompanying product flow processes,

storage strategies, material movements, and operations control models? Onal et

al. (2017) were one of the first to report on F-Warehouses and demonstrate the

fulfillment time performance advantages. Specifically, they identified and described

how explosive storage policies are being used by F-Warehouses to achieve faster

fulfillment. The second one is: Is an S-Strategy competitive? Some argue that S-

Strategy solutions are unlikely to provide the needed efficiency gains.

This research includes both F-Strategy and S-Strategy. Chapters 3 and 4

investigate new warehousing models that are unique to online order fulfillment

warehouses (F-Warehouses). These facilities process a very large number of customer

orders, each of which are for a few units of product. We focus on the process flows,

operational control models and decision optimization problems. Chapter 5 presents

the operational structure of the S-Strategy, and two decisions models that are integral

to this strategy.

3

1.2 Online Order Fulfillment Warehouses

Order fulfillment warehouses (F-Warehouses) are a critical component of the physical

internet behind online retail supply chains. The primary performance goal of an F-

Warehouse is fast fulfillment, requiring received orders to be shipped within a few

hours. Onal et al. (2017) identified six key differentiators between an F-Warehouse

and traditional warehouses or fulfillment centers. Together these differentiators

provide the platform for the most successful online retailers to achieve their fast

fulfillment objectives. These differentiators also show that a traditional warehouse

cannot be easily transformed to an F-Warehouse, and significant structural and

operational changes are required. The six differentiators are summarized here.

(i) Explosive Storage Policy – Incoming bulk inventory is exploded into a

large number of small lots which ate then dispersed to storage locations throughout

the warehouse, (ii) Very Large Number of Beehive Storage Locations – Storage is

organized into small bins (1-3 cubic feet) as opposed to large bulk holding spaces,

(iii) Bins with Commingled Items – One of the most radical differentiators, is that

multiple items are simultaneously stored in an unorganized way in the same bin,

(iv) Immediate Fulfillment Objective – Customer orders arrive continuously

throughout the day and the goal is for same day shipment, (v) Short Picking Routes

with Single Unit Picks – Most orders are only for only a single unit and the pick list

retrieves several different items within a short pick zone, (vi) High Transaction

Volumes with Total Digital Control – There is a much higher rate of store/pick

movements per unit shipment, and all movements are modelled and instructed by a

central controller.

1.3 Amazon Fulfillment Center

Amazon is the largest internet retailer in the world as measured by revenue and market

capitalization, is also known for developing and managing F-Warehouses successfully.

In 1997, Amazon launched its distribution network with two fulfillment centers in

4

Seattle and Delaware dealing directly with individual customer orders. This class

of warehouse has been first called “fulfillment center”. Currently, with total over a

110 Million square feet space of facilities and 250,000 employees, Amazon operates

over 250 distribution facilities around the world including fulfillment centers, returns

centers, specialty centers, and redistribution centers. The Amazon U.S. and Canada

fulfillment network consists of more than 100 fulfillment centers, and more than

125,000 full-time employees.

F-Warehouses have a high degree of conveying automation, and in this context

there are two types: (i) Man-to-Part: Similar to a classical configuration in that

storage racks are stationary and the worker moves to the bin location and (ii) Part- to-

Man: The storage racks move, usually by a robot swarm, and bring the bin to the

stationary worker. In a classical Part-to-Man, the pick occurs before the move,

whereas in an F-Warehouse the entire rack is moved, and the pick is done after the

move. Conveyance of product within the F-Warehouse occurs primarily in totes.

Outside of the receiving area there are no pallet movements. Totes are designed for

manual handling such that workers can easily lift a loaded tote. Totes have unique

identification numbers so that SKU items in totes can be easily tracked.

The models Onal et al. (2017) presented are the result of an observational study

of two Amazon fulfillment centers in the USA, one located in Indiana (1.2 Million sq.

ft.) and the other in Delaware (0.9 Million sq. ft.). Both were of the Man-to-Part

type and built in 2012, with approximately 2500 warehouse workers or associates.

In the newer fulfillment centers, items are stored on pods and brought to pickers by

robots (Kiva Systems). Author of this research visited a type Part-to-Man fulfillment

center, which is 1 Million sq. ft., opened in 2015, located in Baltimore, Maryland.

Currently, Amazon operates a variety of different types of fulfillment and

distribution centers in the United States including small sortable, large sortable,

large non-sortable, specialty apparel and footwear, specialty small parts, returns

5

processing centers, and 3PL outsourced facilities. This research focus on the small

sortable fulfillment centers, which generally house smaller items that can all fit in one

box/shipment (e.g., books, DVDs, watches, etc.). These products are best described

as being less than 18” and can be placed into a conveyable tote. The product

flows of fulfillment centers can be sequenced into three distinct process groups:

(i) receiving and stocking (ii) order picking and consolidation and (iii) truck

assignment and loading. While none of the processes are unique to F-Warehouses,

they are operationally different due to the explosive storage policy. The Kiva robots

are used in the stocking and picking process. This research focus on the consolidation

operational process.

1.4 Online Order Fulfillment in a BOPS Retailer

S-Strategy fulfillment is a store-based solution for fulfilling online customer orders.

The S-Strategy is driven by two key motivations, first, retailers have a network of

stores where the inventory is already dispersed, and second, the expectation is that

forward positioned inventory could be faster and more economical than a warehouse

based F-Strategy. The brick-and-mortar retailers’ expansion into an online channel

can be viewed as an extension or variation of omnichannel retail and is quite different

from store-ending channels. Most importantly, an online customer makes product

selections on a web catalog and in most cases will not visit a store. This requires

the retail supply chain to additionally execute an order fulfillment process. An

omnichannel retailer with physical stores receives online customer orders through

its website. Orders are then directed to a specific company store, where the ordered

items are picked from shelf inventory. Picked items are packaged and the package is

either (i) Shipped to the customer address – BOFS or (ii) Picked up from the store

by the customer – BOPS.

6

The first goal of the BOPS operation is immediate order fulfillment, allowing the

retailer to provide a faster service rate than Amazon. BOPS is an expensive activity,

requiring a picker to walk through the store inventory and fulfill a customer’s inline

order. The second goal is to minimize the order fulfillment cost.

1.5 Research Objectives and Accomplishments

Fulfillment of online retail orders is a critical challenge for retailers since the legacy

infrastructure and control methods are ill suited for online retail. The primary

performance goal of online fulfillment is speed or fast fulfillment, requiring received

orders to be shipped or ready for pickup within a few hours. Several novel numerical

problems characterize fast fulfillment operations and this research solves two such

problems.

1.5.1 Formulate and Solve the Order Consolidation Problem as a MIP

Online order fulfillment warehouses, similar to those used by Amazon, typically

operate with an explosive storage policy. That is, each item is stocked in multiple

random locations dispersed throughout the warehouse. Orders are then picked and

collected in totes which are assigned to one of many packaging stations. The order

arrival process is continuous, and each order consists of one or more items. From

the set of pending orders, efficient picking lists of 10-15 items are generated, which

is commonly referred to as the picklist assignment problem. A picklist of items is

collected in a tote, which is then transported to a packaging station, where items

belonging to the same order are consolidated into a shipment package. There are

multiple such stations.

There is a one-to-many relationship between customer orders and totes. This

research formulates and solves the order consolidation problem. At any time, a batch

of totes are to be processed through several available order packaging stations. Tote

7

assignment to a station will determine whether an order will be shipped in a single

package or multiple packages. Reduced shipping costs are a key operational goal of

an online retailer, and the number of packages is a determining factor. The decision

variable is which station a tote should be assigned to, and the performance objective

is to minimize the number of packages and balance the packaging station workload.

1.5.1.1 Formulate a Totes Consolidation Objective. In a high-volume F-

Warehouse, hundreds of picked totes are generated every hour and the conveying

system can direct a tote to any one of the available consolidators. The consolidator

is then instructed to pick SKU items from a specific tote to create a shipping box

for a customer order. In the ideal case all SKUs for the order are sent to the same

consolidator so that only one shipping box is generated per order. But since each

tote represents SKUs for many orders, plus the items in an order are likely to be in

multiple totes, a perfect assignment is not possible. The assignment objective then is

to minimize Ship Boxes/Order over the shift while balancing consolidator utilization.

1.5.1.2 Develop a Mixed Integer Programming (MIP) model. The optimization

model needs to make the decision on assigning picked totes to consolidators. Using the

picking list and customer order list, a binary matrix with rows as totes and columns

as orders is generated. The binary numbers in a tote-order matrix denote that if totes

have SKU items of orders. The totes have more orders in same are more correlated.

Our objective is to assign the correlated totes to the same consolidator, therefore,

the consolidator can pack the SKUs from same order into one package for delivery.

One of most important decision variables in this operation process is to decide which

tote should be assigned to which consolidator, we call this tote assignment list. To

avoid the situation that all totes in one planning horizon are assigned to one

consolidator, we bring in the tote quantity balance as the consolidator capacity

constraint. The first three research objectives relate to the Order Consolidation

8

Problem in fulfillment warehouses, while the fourth objective relates to Buy Online

fulfill from Store problem.

1.5.2 Develop and Test Fast Heuristics for Solving the Order Consolidation

Problem

The size of a MIP model, especially the binary variables and constraints, is the most

discussed factor of the difficulty of a MIP problem. As problem size and complexity

level of tote-order matrix increase, directly solving our MIP problem is not easy.

The required computation time to verify the optimal solution could often become

unbearable because of the enormous amount of integer variables involved.

1.5.2.1 Develop Fast Heuristics. The objective of the tote assignment list is to

move the associated totes to the same consolidator. Imagine that the capacity of a

small order consolidation zone is 20 totes and there are five consolidators working in

the zone. We would like to organize all the 20 totes into five groups so that each

group can be assigned to a different consolidator. Strategically, we would like that

the totes in each group are as similar as possible. Moreover, two given totes having

very different order patterns should not be placed in the same group. Our intention

behind this operation strategy is to pack as many as possible SKU items for an order

together and minimize the ship packages per order. We transform the tote assignment

problem into the tote consolidation/clustering problem and developed the heuristic

algorithm by using clustering techniques.

1.5.2.2 Implementation of the k-means and Hierarchical Clustering Methods.

During the process of developing the heuristic algorithm, we also applied the current

existing clustering techniques on our data set. Cluster analysis has been widely used

in many applications. Different clustering methods may generate different clusters on

the same data set. Clustering methods can differ with respect to the partitioning level,

9

whether or not clusters are mutually exclusive, the similarity measures used, etc. For

our tote-order data sets, we adopt exclusive cluster separation, that is, each tote must

assign to exactly one consolidator. And we use the distance-based similarity measures

since distance-based methods can often take advantage of optimization techniques.

Considering all aspects and requirements, we implement the k-means and hierarchical

clustering methods on our problem.

1.5.3 Evaluate the Performance Behavior of the Fast Heuristics as a

Function of Several Characteristics

The order consolidation is a dynamic process, items belong to different orders carrying

by different totes come to the consolidation station continuously. Performance

behavior of the heuristics is further studied as a function of following characteristics.

1.5.3.1 Size of Tote-Order Matrix. The size of the tote-order matrix is a critical

factor to the complexity of the consolidation problem. We expand the data sets size

to evaluate the robustness and performance of the fast heuristics with k-means and

hierarchical clustering methods.

1.5.3.2 Multi-Item Order Complexity of Tote-Order Matrix. The number

of items in orders contribute the complexity of the tote-order matrix. We design a

set of order complexity levels to test the effectiveness of the heuristics.

1.5.3.3 Number of Consolidators. A variety of data sets are tested with different

number of consolidators. A Maxmin ratio indexed in the range number of ordered

items minus number of orders was used as a surrogate for solution performance.

1.5.3.4 Consolidation Tote Batch Window. The size of the tote batch window

is a partitioning decision on the dynamic flow of totes. The tote-order matrix with

10

dynamic design are generated to simulate the tote flow, then divided into smaller tote

batches to apply the heuristics and analyze the results.

1.5.3.5 Twining Design. This is a preliminary design for the future research. The

twinning design is the order similarity percentage in the tote-order matrix.

1.5.4 Back Stock Assignment and Picker Scheduling in a BOPS Store

Many retailers, particularly in the grocery business, have built their online sales

strategy around a BOPS operation. This research solves two BOFS related problems:

(i) Back stock strategy: Assignment of items located in the back stock and (ii) Picker

scheduling: Effect of numbers of picker and work hours. For both problems, we

assume a continuous flow of incoming orders and the objective is fulfillment time

and labor cost minimization. We model the store inventory dispersion, order arrival

process and order picking process in a BOPS retailer. As online orders continuously

entering the system, an arrival time is stamped on each order. An order can consist of

one or more items. When the picker schedule starts, a picker goes to collect items of

one order from the online order pick pack area and come back after picking them all.

Then a fulfilled time is stamped to this order. The difference between these two

timestamps is the order fulfillment time, and it decided by the pick travel distance and

picker schedule. We formulate the following problems to, first, minimize the order

picking time and, second, minimize the order fulfillment cost. Simulation of online

grocery order picking is used to compare several decision methods.

1.5.4.1 BOPS Store Stocking Layout Problem. The pick travel distance is

determined by the stocking layout. The forward stock is the common retail section of

a physical store, this section is arranged for customers browsing displayed products

and cannot be physically rearranged. The back stock is the fast pick area but the

shelving space capacitated, only a limited number of SKUs are selectively located

11

here. The problem is which SKU items should be back stocked. We explicit the item

location model and back-stock decision strategy for this problem.

1.5.4.2 BOPS Picker Scheduling Problem. The picker labor cost is the primary

direct cost of BOP/FS. Long picker schedule will increase the labor cost, while short

picker schedule will increase the order waiting cost. The picker start time also decides

the order fulfilled time. In the picker scheduling problem, we develop the picker

schedule optimization model to minimize the BOFS fulfillment cost.

12

CHAPTER 2

LITERATURE REVIEW

2.1 Internet Fulfillment Warehouses

Internet Fulfillment Warehouses (IFWs) present a new operational model in the design

and control of warehouses. Structurally different, they are a key entity in transforming

the global retail economy (Onal et al., 2018). We focus the research literature on

the fulfillment side which focuses on the storage of products and their shipment to

customers once an order is submitted through the web store.

Agatz et al. (2008) review internet fulfillment and multi-channel distribution

and conclude that companies must embrace novel strategies to succeed. Commenting

on the warehousing differences of online retail fulfillment, Bakker et al. (2016)

highlight the much higher order frequency and the much smaller pick quantities. They

advise that this requires material handling considerations quite different from

traditional warehousing. Lee and Whang (2001) argue that fulfillment speed or

immediacy is critical to winning in online retail. Acimovic and Graves (2015) found

that quick fulfillment warehouses are unique to online retail, and involve picking,

packing, and shipping in rapid succession. Gong et al. (2010) and Gong and Koster

(2008) observe that order fulfillment is the most expensive and critical operation

for companies engaged in e-commerce and immediacy is the primary challenge in

building an efficient IFW. They analyzed the performance of a real-time picking and

sorting systems in a general parallel-aisle warehouse. They recommend the use of a

dynamic picking system in which a worker picks orders that arrive in real time during

the picking operations. Other researchers have investigated different aisle layout

strategies for faster fulfillment. Petersen and Aase (2017) examine a combination of

13

cross aisles and storage policies on order picking times. They found that if across-aisle

storage is used, then any cross-aisle configuration is sufficient to reduce picker travel.

Tarn et al. (2003) observe that IFWs operate in a dynamic environment in which

product and information are highly synchronized to achieve unprecedented levels of

customer service. They note that traditional distribution systems established for

retailers are not designed to accommodate the needs of individual customers with a

large variety of small orders. Gunasekaran and Ngai (2004) identify information

transparency as a key requirement of e-commerce supply chains, labelling it as

the logistics information network enterprise. Hubner et al. (2016) surveyed the

distribution operations of Omni-channel retailers, including internet fulfillment. They

identify optimizing modes of delivery, increasing delivery speed, and inventory

transparency as the key factors in achieving fulfillment excellence. Burns and Towers

(2014) use the fast-changing fashion industry to highlight the need for manufacturers’

to create new production planning and control systems if they are to succeed in

an Omni-channel environment. Li et al. (2016) analyzed the order pick function

of online retailers’ warehouse operations and found four optimization strategies:

warehouse layout, position allocation, order batching, and picker routing. Developing

a solution for any of these strategies, will require an understanding of the underlying

IFW operations, which this research provides.

Pan et al. (2017) and Montreuil (2017) introduced the novel concept of the

physical internet. They define it as a hyper connected logistics system which improves

by an order of magnitude, the efficiency by which physical objects are moved,

deployed, realized, supplied, designed, and used. At the center of this network they

identify a fulfillment center, where a digital customer order is converted into a physical

delivery package. This research provides a detailed view of a fulfillment center and

contributes to the knowledge of how the physical internet is being operationalized

and built. The flows and product arrangements presented here, show that traditional

14

warehousing methods, which are well documented in multiple textbooks (Bartholdi

and Hackman, 2014; Tompkins et al. 2010), are evolving into new physical designs and

operational control models that are better suited to meet fast fulfillment objectives.

2.1.1 IFW Differentiators

Onal et al. (2017) investigates the warehousing operations of internet retailers, based

on observational studies of internet IFW operations at a leading internet retailer. The

investigations find that traditional warehousing methods are being replaced by new

methods which better leverage information technology and efficiently serve the new

internet retail driven supply chain economy. They identified six key differentiators

between an IFW and traditional warehouses or fulfillment centers. Together these

differentiators provide the platform for the most successful online retailers to achieve

their fast fulfillment objectives. These differentiators also show that a traditional

warehouse cannot be easily transformed to an IFW, and significant structural and

operational changes are required. The six differentiators are summarized here:

(i) explosive storage policy (ii) very large number of beehive storage locations (iii)

bins with commingled SKUs (iv) immediate order fulfillment (v) short picking routes

with single unit picks and (vi) high transaction volumes with total digital control.

2.1.2 Fulfilment Time and Online Orders

The fundamental premise of this study is that faster fulfilment is a key driver in

motivating customers to switch from a physical store visit to an online delivery order.

Further, it is also a factor in selecting between online retailers. Several studies have

discussed this relationship and a recent survey (Wall Street Journal, 2016) found

that online shoppers want faster delivery with the maximum wait time dropping very

year. Griffis et al. (2012) found that excellent order fulfilment is instrumental in

generating referrals for the online retailer, even after factoring in product quality.

15

Several scales for evaluating service quality in electronic or online retailing have been

proposed (Blut, 2016; Stiakakis and Georgiadis, 2009) and these all include fulfilment

as a key factor. Though the emphasis in these scales is more on delivery reliability

against a promised date, and less on the fulfilment time length. In a survey of online

customers both Koufteros et al. (2014) and Jain et al. (2017) found that timeliness

positively influenced customer satisfaction. Dholakia and Zhao (2010) also studied

and compared customer evaluations of online purchases. They found that on-time

delivery dominates customer satisfaction. Further, they note that weak fulfilment

will not compensate for creative and vivid website designs. Meller (2015) quotes a

recent survey of online buyers, which found that 65% want next day delivery and 24

said same-day delivery was important to them. They propose that faster fulfilment

will allow retailers to expand their customer base by targeting the speed-sensitive

segment. Specifically, they identify the order processing window, or time it takes to

process an order in the fulfilment center, as a key determinant of success.

Bell et al. (2014) propose an information and fulfilment matrix to categorize

Omni channel retailers. They note that fulfilment through package delivery is disad-

vantaged from the customer perspective by waiting time and delayed gratification.

This then implies that the shorter the delivery fulfilment time then higher the

likelihood a customer will switch from a physical store purchase to online, assuming

equivalent pricing and quality. Further, when evaluating online retail choices, the

faster fulfilment will be selected. In a comparison of offline and online retail channels,

Lieber and Syverson (2012) describe fulfilment time as a delayed consumption which

can be penalized by a discounted utility function. They propose that this delay can

be quite significant when considering the interaction between a market’s online and

offline channels. Li et al. (2015) present a consumer utility model for online retailing,

which includes the discount component rt. In their model, r measures the consumer’s

patience such that a smaller r implies more patience, and t is the fulfilment time. As

16

the penalty increases, then as a consequence of the decreasing utility the consumer

may choose a different retail option.

2.1.3 Likelihood of an Online Purchase

When multiple retail options are available then each will have its unique t, and the

penalty function of Li et al. (2015) could be translated into the probability of a

consumer selecting a specific online retailer. Figure 2.1 proposes that this probability

be described by a non-linear decreasing function of t. In Figure 2.1, the function

assumes that for same day delivery a maximum likelihood for online purchase is

reached. Since a portion of customers will always demand immediate fulfilment, the

maximum likelihood will be less than one. For an online retailer to be successful,

it must therefore offer delivery times close to same day delivery. This is reflected

in Amazon’s progressively shorter fulfilment time targets: 2-day, next day, and now

same day. Depending on the nature of the product and the associated consumer

behavior, the waiting time disadvantage, indicated by r, could be steep or shallow as

shown in Figure 2.1. For products with a steep disadvantage curve, such as grocery

items, fulfilment must be within a day to ensure retail success. Bell et al. (2012) also

identify several disadvantages of a physical store purchase, which could be modelled

into a relationship describing the trade-off between physical and online purchase as

a function of fulfilment time. Interestingly, Harris et al. (2017) found that the desire

to avoid disadvantages maybe a stronger motivator for making the online or offline

purchase.

2.1.4 Logistics Efficiency and Fulfilment Time

This research investigates whether the new logistics designs and approaches imple-

mented by Amazon, lead to faster fulfilment times. Nguyen et al. (2016) presented

a framework linking order fulfilment aspects with online consumer buying. We apply

17

Figure 2.1 Online purchase likelihood and fulfilment time.

and extend their framework to present an expanded view (Figure 2.2) of the key

functions in online order fulfilment and the associated performance drivers. This is

based on facility visits and analytical reviews of Amazon fulfilment centers (Onal et al.

2017a), where the process flows, and facility design are radically different from that

of any other online retailer (Onal et al. 2017b). As shown in Figure 2.2 the process is

initiated by the receipt of a customer order, and a key performance driver is inventory

management. The majority of leading online retailers will only accept orders if there

is a fillable inventory and identify a stock out immediately to the customer. The order

reject rate due to stock outs is then determined by the inventory policy. In this study,

all the orders tracked were fillable, and the results therefore independent of inventory

stocking policy. Where the inventory is stocked, which warehouse and where in the

warehouse, though would be integral to the warehousing logistics function. The next

two steps, pick and pack, and ship and transport, represent the key competitive

advantage of Amazon. The performance driver here is warehousing logistics, which

18

allows Amazon to achieve its quick fulfilment goals. Figure 2.2 highlights several

innovative features in Amazon’s fulfilment infrastructure that differentiate it from

the competition. In particular, an explosive storage policy and bins with commingled

SKUs are unique features. Most other retailers have designed their online fulfilment

logistics, around existing warehouses and stores using more classical approaches.

Figure 2.2 Online fulfilment process and performance drivers.

Last mile delivery is also a key factor in faster fulfilment and many online

retailers have established fast delivery arrangements with third-party delivery services

such as FedEx, UPS, and the US Postal Service. This study is unable to differentiate

the efficiency advantages of warehousing logistics and last mile delivery. But a

reasonable assumption is that the efficiencies of third-party delivery services are

available to all online retailers. The primary research question then is to confirm

and quantify the online fulfilment time advantage that Amazon has achieved as a

result of its warehousing logistics infrastructure.

2.2 Packing Operations

Operations in Amazon can be divided into three sub-operations: (i) Inbound

shipment, (ii) Picking and Packing, and (iii) Outbound shipment.

19

Luna (2015) explores cycle time reductions and throughput adjustments

required to reduce the Service Level Agreement (SLA) at one of Amazon’s Fulfillment

Centers. The author goes into the details of the multiple activities for outbound

operations. The orders that contain only one item called singles, and the orders that

contain more than one item called multis. Based on order type, the totes are routed

to a singles packing area or to a multis sorting area. Totes that contains all the items

from the group of orders are called batches. The conveyor system routes all totes

in a batch to the same location. The next activity is called tote wrangling; and it

consists of associates with handheld scanners pulling totes from the conveyors and

placing them on batch carts, effectively regrouping all the items from all the orders

in one batch. A batch cart has numerous items from numerous orders on different

totes. The next activity is called rebin, the items from the different orders need to

be segregated from multiple totes into each individual order, and it consists of an

associate at a rebin computer station sorting items from the numerous totes into bins

on a cart.

In recent years, new types of facilities have also emerged, such as sortation

centers where items from different fulfillment centers are consolidated to reduce the

number of shipments. In general, sortation centers are smaller operations that can be

located besides, adjacent to, or nearby larger fulfilment centers. The primary role of

the sortation center is to aggregate shipments from one or more fulfilment centers for

delivery into a defined regional grouping of zip codes typically belonging to a nearby

set of populated urban areas (2014).

2.2.1 Operational Objectives

In online retailing, the main objective is optimizing the order fulfillment time while

minimizing the relative supply chain costs. The primary objective of the fulfillment

20

decision is to minimize the outbound shipping cost from fulfillment centers to

customer.

Chen (2017) studies the decisions of inventory placement and inventory

replenishment in online retail. The author used a mixed-integer program to formulate

placement decision and dynamic program to formulate replenishment decision for a

single item. The objective of the inventory placement modeling is to minimize the

sum of outbound shipping and fixed costs for all the items, while satisfying demand

and capacity constraints. The objective of the inventory replenishment modeling is

to minimize the long-term average of outbound shipping, stockout and holding costs.

Acimovic (2012) and Acimovic and Graves (2015) focus on how an online retailer

should choose the specific facilities from which to fulfill each order in order to minimize

average outbound shipping costs. The online retailer decides from where items will

ship, by what shipping method, and how or whether multiple-item orders will be

broken up into multiple shipments. Only outbound shipping costs are considered:

in general, it is more expensive to ship an item by air than by ground, and it is

more expensive to ship a multi-item order in multiple packages than to ship it in a

single package from a single fulfillment center. They develop a heuristic that makes

fulfillment decisions by minimizing the immediate outbound shipping cost plus an

estimate of future expected outbound shipping costs.

Xu (2005) and Xu et al. (2009) focus on the entire network of warehouses and

customers. When a customer places an order on an e-tailer’s website, the e-tailer

assigns the order to one or more warehouses mainly based on the transportation

cost of shipping the order from the warehouse(s) to the customer location and on

the current warehouse inventory availability. They show the real-time decision is

necessarily myopic because the e-tailer does not anticipate any future customer orders

or inventory replenishment. Reducing the number of shipments is a very good proxy

for minimizing the transportation costs in the e-tailing setting. The author construct

21

near-optimal heuristics for the re-assignment for a large set of customer orders with

the objective to minimize the total number of shipments.

2.2.2 Bin Packing Problem and Algorithms

The definition of the canonical bin packing problem is as follows: the weight capacity

of the bins is fixed, and the goal is to pack items into the weight-constrained bins with

the objective of minimizing the total number of bins. There are many variations of

this problem. They can be classified by different criteria. The number of dimensions

for the bins and items can be 1D, 2D or 3D. Depending on whether the algorithm

can see all the items beforehand, there are on-line and off-line bin packing problems.

The number of different candidate bin types divides the bin packing problems into

the single sized bin packing and the variable sized bin packing.

Hall et al. (1988) study the classic problem of bin packing in one dimension.

They adapt a variety of heuristic methods for generating feasible solutions, and the

results are then used to generate confidence intervals for the (in practice unknown)

value of the optimal solution. They selected ten bin packing heuristics which have

been commonly addressed in the literature, including on-line heuristics and off-line

heuristics. On-line heuristics pack items into bins as the items are generated. Off-line

heuristics require that the number of items and their sizes be known before packing

begins.

Modified bin-packing problem (Brusco et al. 1997; Rao and Iyengar 1994), is

modeled using a fixed number of bins with no weight capacity and the objective is to

pack items into the bins such that the sums of the item weights within each bin are

as evenly distributed as possible, they used a squared deviation from target as the

objective function. This is an especially important application in the psychometric

literature pertains to splitting of a set of test items to create distinct subtests,

each containing the same number of items, such that the maximum sum of item

22

weights across all bins is minimized. Brusco et al. (2012) present a mixed zero-one

integer linear programming (MZOILP) formulation of the one-dimensional minimax

bin-packing problem and develop an approximate procedure for its solution that is

based on the simulated annealing algorithm.

The other variant application of bin packing is efficient management of data

center resource. The efficient management of a data-center involves minimizing

energy costs while ensuring service quality. In one context, servers can be viewed

as bins and virtual machines as items. The assignment of virtual machines on servers

and how these servers are utilized has a huge impact on the energy consumption.

Cambazarda et al. (2015) focus on a bin packing problem where linear costs are

associated to the use of bins to model the energy consumption. They study lower

bounds based on linear programming and extend the bin packing global constraint

with cost information. Another strategy for reducing the energy consumption is

workload consolidation that usually achieved by allocating multiple tasks on the

same physical machine. Armant et al. (2017) leverage semi-online optimization

techniques in which workload allocations must be made without full knowledge of

future demands. They formalize the workload consolidation problem as a semi-online

bin-packing problem whereby each bin maps to a machine and each item maps to a

task.

Another paper introduces a deep learning approach to solve the 1D variable

sized bin packing problem (Mao et al. 2017). They first define the optimization

heuristics space for this particular bin packing problem. Then, they model a large

neural network to predict the optimal strategy for each bin packing instance.

23

2.3 Clustering Algorithms in Order Fulfillment

Cluster analysis or clustering is the task of grouping a set of objects in such a way

that objects in the same group (called a cluster) are more similar (in some sense) to

each other than to those in other groups (clusters).

Cluster analysis has been widely used in many applications such as business

intelligence, image pattern recognition, Web search, biology, and security. In business

intelligence, clustering can be used to organize a large number of customers into

groups, where customers within a group share strong similar characteristics. This

facilitates the development of business strategies for enhanced customer relationship

management.

In Vinod’s paper (1969), the author points out that the problem of grouping,

where a larger number of elements n are combined into m mutually exclusive groups

(m¡n) should be recognized as a problem in Integer Programming. He constructs two

mathematical formulations of the grouping problem. Both formulations are based

on integer variables that can take values 0 or 1 only. The first formulation uses

a constraint set similar to that of the warehouse location problems. The second

formulation discusses the problem of minimization of the within-group sum of squares.

Cluster analysis involves the problem of optimal partitioning of a given set of

entities into a pre-assigned number of mutually exclusive and exhaustive clusters. In

Rao’s paper (1971), this problem is formulated in two different ways with the distance

function (a) of minimizing the within groups sums of squares and (b) minimizing the

maximum distance within groups. When the entities can be represented as points

on the real line and the criterion is to minimize the within groups sums of squares,

an efficient dynamic programming algorithm was obtained. With the same criterion,

when the entities can be represented as points in a multidimensional Euclidian space,

an integer linear programming formulation was given.

24

The basic premise is to utilize a distance or dissimilarity matrix to group items

together based upon one or more attributes. The general methodology requires

(1) the determination of a distance matrix and (2) the clustering of items one

by one in a bottom-up approach or decomposing the entire set of items into two

groups successively in a top down approach. Klein (1991) formulate a mixed-integer

programming model for optimal clustering based upon scaled distance measures to

account for this total group interaction.

The purpose of Hansen and Jaumard’s paper (1997) is to review the mathe-

matical programming approach to cluster analysis. A survey is given from a

mathematical programming viewpoint. Steps of a clustering study, types of clustering

and criteria are discussed. Then algorithms for hierarchical, partitioning, sequential,

and additive clustering are studied. Emphasis is on solution methods, i.e., dynamic

programming, graph theoretical algorithms, branch-and bound, cutting planes,

column generation and heuristics.

One application of cluster analysis is in cellular manufacturing (CM). CM is

a special application of group technology (GT) which is used to cluster parts into

families and machines into cells for efficient production. Berardi et al. (1999)

investigate the effect of the alternative starting part family/machine cell clusters

on the solution of the mathematical programming model.

In graph theory, given a graph G = (V,E), where V is the vertex set and E is the

edge set, cluster analysis refers to finding a partition of V into disjoint groups called

clusters (or communities) such that vertices in the same cluster are densely connected

to each other and less connected to those in other clusters. In order to identify

clusters in a graph, clustering can be formulated in mathematical programming with

an objective function to optimize. With given nonnegative edge weights, Hassin,

R. and Rubinstein, S. (2006) describe an approximation algorithm for maximizing

the sum of weights of edges whose two ends belong to the same cluster. Another

25

clustering measure is modularity density, the optimization problem is Modularity

Density Maximization (MDM) problem. Costa et al. (2017) derive several exact

Mixed-Integer Linear Programming (MILP) reformulations of auxiliary binary NLP

problems, and obtain complete MILP formulations of MDM.

2.4 Optimization Platform

2.4.1 Modeling Language

Algebraic modeling languages are sophisticated software packages that provide a key

link between an analyst’s mathematical conception of an optimization model and the

complex algorithmic routines that seek out optimal solutions (Robert Fourer, 2013).

By allowing models to be described in the high-level, symbolic way that people think

of them, while automating the translation to and from the quite different low-level

forms required by algorithms, algebraic modeling languages greatly reduce the effort

and increase the reliability of formulation and analysis. They have thus played an

essential role in the spread of optimization to all aspects to OR/MS and to many

allied disciplines.

AMPL is a language for algebraic modeling and mathematical programming:

a computer-readable language for expressing optimization problems such as linear

programming in algebraic notation (Fourer, Robert and Brian W. Kernighan, 2002).

Optimization problems arise in many contexts (David M. Gay). Sometimes

finding a good formulation takes considerable effort. A modeling language, such

as AMPL, facilitates experimenting with formulations and simplifies using suitable

solvers to solve the resulting optimization problems. AMPL lets one use notation

close to familiar mathematical notation to state variables, objectives, and constraints

and the sets and parameters that may be involved. AMPL does some problem

transformations and makes relevant problem information available to solvers. The

AMPL command language permits computing and displaying information about

26

problem details and solutions returned by solvers. It also lets one modify problem

formulations and solve sequences of problems. AMPL addresses both continuous

and discrete optimization problems and offers some constraint programming facilities

for the latter. More generally, AMPL permits stating and solving problems with

complementarity constraints. For continuous problems, AMPL makes first and second

derivatives available via automatic differentiation. The freely available AMPL/solver

interface library (ASL) facilitates interfacing with solvers. This paper gives an

overview of AMPL and its interaction with solvers and discusses some problem

transformations and implementation techniques. It also looks forward to possible

enhancements to AMPL.

Practical large-scale mathematical programming involves more than just the

application of an algorithm to minimize or maximize an objective function (Robert

Fourer et al. 1990) Before any optimizing routine can be invoked, considerable effort

must be expended to formulate the underlying model and to generate the requisite

computational data structures. AMPL is a new language designed to make these steps

easier and less error prone. AMPL closely resembles the symbolic algebraic notation

that many modelers use to describe mathematical programs, yet it is regular and

formal enough to be processed by a computer system; it is particularly notable for

the generality of its syntax and for the variety of its indexing operations. We have

implemented a translator that takes as input a linear AMPL model and associated

data and produces output suitable for standard linear programming optimizers. Both

the language and the translator admit straightforward extensions to more general

mathematical programs that incorporate nonlinear expressions or discrete variables.

2.4.2 Solvers

AMPL Optimization also supports the free solver programs of CPLEX, Gurobi, and

Xpress for academic use. All academic versions allow full use of machine resources,

27

with problem sizes limited only by the memory, storage, and processors available. The

report of David M. Gay (1993) tells how to make solvers work with AMPL’s solve

command. It describes an interface library, amplsolver.a, whose source is available

from netlib as individual files, as gzip-compressed files, or in a single tar file. Examples

include programs for listing LPs, automatic conversion to the LP dual (shell-script

as solver), solvers for various nonlinear problems (with first and sometimes second

derivatives computed by automatic differentiation), and getting C or Fortran 77 for

non-linear constraints, objectives and their first derivatives. Drivers for various well

known linear, mixed-integer, and nonlinear solvers provide more examples.

2.4.3 Network-Enabled Optimization System (NEOS) Server

The NEOS Server is a free internet-based service for solving numerical optimization

problems. It provides access to more than 60 state-of-the-art solvers in more than

a dozen optimization categories and offers a variety of interfaces for accessing the

solvers to enable jobs run on distributed high-performance machines. Czyzyk, J. et

al. (1998) discusses the design and implementation of the NEOS Server. Dolan, E.

(2001) discusses the implementation of the server and its use in detail. Gropp, W. and

Moré, J. J. (1997) discusses the NEOS Server as a problem-solving environment that

simplifies the formulation of optimization problems and the access to computational

resources.

2.4.4 SolverStudio

SolverStudio is an add-in for Excel that allows you to build and solve optimization

models in Excel using many optimization modeling languages. SolverStudio allows

models built using AMPL to be solved using the NEOS server. Mason AJ (2013)

provides a basic introduction to SolverStudio. SolverStudio is written in VBA, and

C using Visual Studio 2010 Professional. It uses the Microsoft VSTO (Visual Studio

28

Tools for Office) system running on .Net 4 to manage the integration with Excel. It

includes IronPython as its embedded Python engine.

29

CHAPTER 3

THE ORDER CONSOLIDATION PROBLEM

3.1 The Order Picking and Consolidation Process

Figure 3.1 flowcharts the F-Warehouses order picking and consolidation process. The

order receipt process is data driven with orders arriving continuously, which are then

immediately updated to the customer order list. A customer order may contain more

than one SKU item, in which case each SKU generates a separate record with a

common order number. Whenever a picker becomes free the F-Warehouses control

logic uses the customer order list and the inventory state records to generate an order

picking list. The picker first links an empty tote to the assigned list, and then follows

the sequential picks to fill the tote.

Figure 3.1 Order picking and consolidation process.

30

At picking stage, one picker may work on multiple orders, and the items from

one order may be picked by one picker or by multiple pickers. Therefore, each item

in the order could be placed into different totes throughout different locations in the

F-Warehouses. In other words, there’s small probability that the items form one order

being picked simultaneously at the same location. This also can be explained by the

differentiators Onal et al. (2017) identified between an F-Warehouses and traditional

warehouses or fulfillment centers. Below listed the differentiators of them.

Explosive Storage Policy - An incoming bulk SKU is exploded into multiple

storage lots such that no lot contains more than 10% of the received quantity, the lots

are then stored in random locations anywhere in the warehouse without preset

restrictions.

Very Large Number of Beehive Storage Locations - Storage is organized into

small bins as opposed to large bulk holding spaces. The entire IFW is organized into

racks that are divided into many small bins in a sort of beehive pattern. A million

square-foot IFW could therefore have several million bins. A similar sized traditional

warehouse may have only 10,000 locations. This is the most apparent physical

difference of an IFW.

Bins with Commingled SKUs - One of the most radical differentiators of an IFW,

is that multiple SKUs are simultaneously stored in the same bin.

Short Picking Routes with Single Unit Picks - Order picking efficiency is a key

decision in warehouse operations, and the pick list decision problem is focused primarily

on travel time minimization. In an IFW most orders are for only a few units and in most

cases for only a single unit. A pick list therefore retrieves several different items within a

short pick zone. This is made possible by the explosive storage policy and beehive

storage.

Since a customer order may consist of more than one SKU, then ideally all

SKUs should be shipped together. But each SKU could be picked in a different zone

31

and be in a different tote. Consolidation is the inverse of explosion and the objective

of the assignment list is to move the associated totes to the same consolidator. Note

that there is no perfect solution and at the end of the day there will be more boxes

shipped than orders. Assignment is constrained by the tote composition, pick time

for each SKU and the processing capacity of each consolidator station. Using the

picking list and customer order list, the F-Warehouses control logic generates a tote

assignment list. Each consolidator station is manned by a single worker. Physically,

the worker is surrounded by racks of totes filled with picked products. During the pack

and consolidate activity, the consolidator follows the display instructions to setup an

order labelled shipment box and fills it with specific SKUs picked from one or more

totes. When done, the box is packed and forwarded to shipping.

3.2 The Tote Assignment Problem

In a high-volume F-Warehouse, hundreds of picked totes are generated every hour

and the conveying system can direct a tote to any one of the available consolidators.

The consolidator is then instructed to pick SKU items from a specific tote to create a

shipping box for a customer order. In the ideal case, all SKUs for the order are sent

to the same consolidator so that only one shipping box is generated per order. But

since each tote represents SKUs for many orders, plus the items in an order are likely

to be in multiple totes a perfect assignment is not possible. The assignment objective

then is to minimize Ship Boxes/Order over the shift while balancing consolidator

utilization. Then an optimization model would make the decision: picked tote is

assigned to which consolidator.

Figure 3.2 illustrates the problem and shows the case where a single order

generates three shipping boxes. Each consolidator station is also limited by the

number of totes staged for shipping. This would be a constraint in the assignment

problem, and an extended model would need to consider the tote queuing delays.

32

Figure 3.2 Tote assignment problem.

3.3 Problem Formulation

We develop a Mixed Integer Programming (MIP) model for the tote assignment

problem. Using the picking list and customer order list, a binary matrix with rows

as totes and columns as orders is generated. The binary numbers in this tote-order

matrix denote that if totes have SKUs from each order. The totes have more SKUs

from same orders are more correlated. Our objective is to assign the correlated

totes to same consolidator, therefore the consolidator can pack the SKUs from same

order into one package for delivery. One of most important decision variables in this

operation process is to decide which tote should be assigned to which consolidator,

we call this tote assignment list. In order to avoiding the situation that all totes in

one planning horizon are assigned to one consolidator, we bring in the tote quantity

balance as the consolidator capacity constraint.

Model Parameters:

K: Set of consolidators, consolidator c ∈ K = {1…k}.

M: Set of orders, order r ∈ M = {1…m}.

N: Set of totes, tote i ∈ N = {1…n}.

𝑎𝑖,𝑟: Binary value of the tote-order matrix, for all r ∈ M, i ∈ N, means tote i has

SKUs from order r if is 1, and 0 otherwise.

Decision Variable:

xi,c: Binary variable, xi,c = 1 if tote i is assigned to consolidator c, and xi,c = 0,

otherwise, for all i ∈ N, c ∈ K.

33

Auxiliary variables:

zc,r: Shipment packages that consolidator c packs for order r, for all c ∈ K, r ∈ M,

means consolidator c has SKUs from order r and pack them for shipment if is 1, and 0

otherwise.

bc: Tote quantity balance for number of totes are assigned to consolidator c, for all

c ∈ K.

The problem can now be formulated as the following mixed integer programming

(MIP) model.

Min ∑ ∑ 𝑧𝑐,𝑟
𝑚
𝑟=1

𝑘
𝑐=1 + 𝛽 ∑ 𝑏𝑐

𝑘
𝑐=1 (3.1)

s.t. ∑ 𝑥𝑖,𝑐
𝑘
𝑐=1 = 1 for all i ∈ N (3.2)

 𝑧𝑐,𝑟 ≥ 𝑥𝑖,𝑐𝑎𝑖,𝑟 for all r ∈ M, i ∈ N, c ∈ K (3.3)

 𝑏𝑐 ≥ ∑ 𝑥𝑖,𝑐
𝑛
𝑖=1 − 𝑛/𝑘 for all c ∈ K (3.4)

 𝑏𝑐 ≥ 𝑛 𝑘⁄ − ∑ 𝑥𝑖,𝑐
𝑛
𝑖=1 for all c ∈ K (3.5)

 𝑥𝑖,𝑐 ∈ {0,1}, 𝑧𝑐,𝑟 ≥ 0, 𝑏𝑐 ≥ 0 for all r ∈ M, i ∈ N, c ∈ K (3.6)

In this model, the objective function (3.1) is to minimize the shipped packages

with the tote quantity balance. There is an obvious solution that assign all totes

to one consolidator to get the minimal number of shipment package. The tote

quantity balance will bring the optimal value up to remove this extremely uneven

34

totes assignment solution. β is the balance coefficient, we set it as 1 by default, and

gradually increase it when tote quantity balance is insufficient to the extremely uneven

totes assignment solution. Constraints (3.2) ensure that each tote can be assigned

to only one consolidator. Constraints (3.3) ensure that if a tote i has order r, and

this tote i is assigned to a consolidator c, then the consolidator c has to prepare a

shipment package for the order r. Constraints (3.4) and (3.5) define the tote quantity

balance is the difference between the average totes can be assigned to consolidators

and the totes assigned to consolidators, where n is total number of totes, k is total

number of consolidators. Constraints (3.6) restricts the domains of decision variables.

Measuring the difficulty of a MIP problem is a very difficult question. It depends

on so many factors. The most discussed indicators of computational complexity for

generic MIP in our search are:

Size of the formulation - number of variables and constraints, intuitively the

number of binary variables, when solving the MIP through the branch-and-bound

algorithm.

Tightness of the formulation - the gap between integer optimal value and the

optimal value of linear relaxation.

The size of our MIP model depends on the numbers of consolidators, totes, and

orders. The number of binary variables and constraints in each case are shown in

Table 3.1.

For a given MIP problem, the knowledge of the polyhedral structure of the

problem is crucial. And the attempt to reduce the CPU time of solving a given model

has to be experimented empirically. Under different size of consolidators, totes, and

orders, we have also generated three levels of tote-order matrix (easy, medium, hard),

and have solved the models by using solver Gurobi. The CPU time in each case are

shown in Table 3.2.

35

Table 3.1 Problem Sizes with Number of Variables and Constrains

Consolidators Totes Orders Binary variables Total constraints

5 20 60 100 6030

6 30 80 180 14442

7 35 100 245 24549

10 50 140 500 70070

15 75 210 1125 236355

20 100 280 2000 560140

Table 3.2 Problem Sizes with Computational Time (Seconds)

Consolidators Totes Orders Easy Medium Hard

5 20 60 0 1 10

6 30 80 0 20 83

7 35 100 1 240 2532

36

We can see that as problem size and complexity level of tote-order matrix

increase, directly solving our MIP problem becomes more difficult. The required

computation time to verify the optimal solution could often become unbearable

because of the enormous amount of integer variables involved. In many problems,

adding variables helps strengthening the linear relaxations and hence, the bounds

used at each node of the branch and bound algorithm. However, in some cases,

adding valid inequalities just makes the model bigger and heavier at each node. We

also have found that, in some cases, providing a strong feasible initial solution to a

MIP has caused the solver to iterate endlessly trying to prove its optimality. The fact

that modern solvers, like CPLEX or Gurobi have a really large number of parameters,

heuristic presolvers and a gazillion things does not really help in the very least.

3.4 Fast Heuristic F#1

The objective of the tote assignment list is to move the associated totes to the same

consolidator. Imagine that the capacity of a small order picking and consolidation

zone is 20 totes, and we have five consolidators working in the zone. We would like

to organize all the 20 totes into five groups so that each group can be assigned to a

different consolidator. Strategically, we would like that the totes in each group are

as similar as possible. Moreover, two given totes having very different order patterns

should not be placed in the same group. Our intention behind this operation strategy

is to pack as many as possible SKU items for an order together and minimize the

ship packages per order. In order to accomplish this task, we transform the tote

assignment problem into the tote clustering problem and developed the fast heuristic

F#1 by using clustering techniques.

Clustering is the process of grouping a set of data objects into multiple groups

or clusters so that objects within a cluster have high similarity but are very dissimilar

37

to objects in other clusters. Dissimilarities and similarities are assessed based on the

attribute values describing the objects and often involve distance measures.

3.4.1 Tote-Order Matrix and Dissimilarity Matrix

Data matrix is a data structure that have n objects (e.g., totes in our case) described

by m attributes (orders in our case). The totes are 𝑎1 = (𝑎1,1, 𝑎1,2, … , 𝑎1,𝑚), 𝑎2 =

(𝑎2,1, 𝑎2,2, … , 𝑎2,𝑚), and so on, where 𝑎𝑖,𝑟 is the binary value for tote 𝑎𝑖 of the rth

order. For brevity, we hereafter refer to tote 𝑎𝑖 as tote i.

Tote-order matrix (tote-by-order structure): This structure stores the n totes

in the form of a relational table, or n-by-m matrix (n totes × m orders):

𝑎1,1 … 𝑎1,𝑟 … 𝑎1,𝑚

… … … … …

𝑎𝑖,1 … 𝑎𝑖,𝑟 … 𝑎𝑖,𝑚

… … … … …

𝑎𝑛,1 … 𝑎𝑛,𝑟 … 𝑎𝑛,𝑚

Each row corresponds to a tote. As part of our notation, we may use r to index

through the m orders. A numerical example of tote-order matrix with 5 totes by 10

orders is shown below, binary values indicate that tote i has SKUs of order r if the

matrix entry is 1, and 0 otherwise.

 1 0 0 0 1 0 1 0 0 1

 0 1 1 0 0 0 0 0 1 1

 0 1 0 1 0 0 0 1 1 0

 1 0 0 0 0 1 1 1 0 0

 0 0 1 1 1 1 0 0 0 0

Dissimilarity matrix (tote-by-tote structure): This structure stores a collection

of proximities that are available for all pairs of n totes. It is often represented by an n-

by-n table:

38

 0
 d(2, 1) 0
 d(3, 1) d(3, 2) 0

 … … …
 d(n, 1) d(n, 2) … … 0

where d(i, j) is the measured dissimilarity or “difference” between totes i and j.

In general, d(i, j) is a non-negative number that is close to 0 when totes i and j are

highly similar or “near” each other, and becomes larger the more they differ. Note

that d(i, i) = 0; that is, the difference between an object and itself is 0. Furthermore,

d(i, j) = d(j, i). (For readability, we do not show the d(j, i) entries; the matrix is

symmetric.) A numerical example of dissimilarity matrix transformed from the above

tote-order matrix example is shown below.

 0

 0.857 0

 1 0.667 0

 0.667 1 0.857 0

 0.857 0.857 0.857 0.857 0

Many clustering and nearest-neighbor algorithms operate on a dissimilarity

matrix. Data in the form of a data matrix can be transformed into a dissimilarity

matrix before applying such algorithms.

3.4.2 Transform the Tote-Order Binary Matrix into the Dissimilarity

Matrix

In the following 2 × 2 contingency table, where q is the number of orders that equal 1

for both totes i and j, u is the number of orders that equal 1 for tote i but equal 0 for

tote j, s is the number of orders that equal 0 for tote i but equal 1 for tote j, and t is

the number of orders that equal 0 for both tote i and j. The total number of orders

is p, where p = q + u + s + t.

39

 Tote j

 1 0 sum

Tote i
1 q u q + u

0 s t s + t

 sum q + s u + t p

 𝑑(𝑖, 𝑗) =
𝑢 + 𝑠

𝑞 + 𝑢 + 𝑠
 (3.7)

The coefficient d(i, j) is called the Jaccard coefficient and is popularly referenced

in the literature. In the following numerical example, we continue using the above

example of tote-order matrix and compute the Jaccard coefficient between tote 1 and

tote 2 (first and second row).

 Tote 1

 1 0 sum

Tote 2
1 1 3 4

0 3 3 6

 sum 4 6 10

𝑑(2,1) =
3 + 3

1 + 3 + 3
= 0.857

3.4.3 Fast Heuristic F#1

When an algorithm uses the minimum distance to measure the distance between

clusters, it is sometimes called a nearest-neighbor clustering algorithm. If we view

the totes as nodes of a graph, with edges forming a path between the totes in

a cluster, then the merging of two clusters, Ci and Cj, corresponds to adding an

edge between the nearest pair of totes in Ci and Cj. Because edges linking clusters

always go between distinct clusters, the resulting graph will generate a tree. Thus,

an agglomerative hierarchical clustering algorithm that uses the minimum distance

measure is also called a minimal spanning tree algorithm, where a spanning tree of a

graph is a tree that connects all totes, and a minimal spanning tree is the one with

the least sum of edge weights. In our application, we merge the two totes, ti and tj,

40

with the minimum distance into a new bigger tote which will have all of the orders

of the previous two totes, ti and tj, and set a boundary for tote quantity during the

clustering process. Then iterate this step based on merged tote-order matrix until all

of the original totes are assigned into clusters. The proposed algorithm is described

by the steps:

Step 1 – According to Equation (3.7), transform the tote-order matrix (tote-by-

order structure) into the dissimilarity matrix (tote-by-tote structure). As already

mentioned above, many clustering and nearest-neighbor algorithms operate on a

dissimilarity matrix. Data in the form of a data matrix can be transformed into

a dissimilarity matrix before applying such algorithms.

Step 2 – According to the nearest-neighbor clustering algorithm, select the

smallest dissimilarity value min{𝑑𝑖,𝑗} from the dissimilarity matrix (from step 1). The

smallest dissimilarity value min{𝑑𝑖,𝑗} indicate the nearest pair of totes i and j. If

there’s tie, break it arbitrarily.

Step 3 – Merge the nearest pair of totes i and j with the min{𝑑𝑖,𝑗} (from step 2)

into a new tote i’ and update the merged tote-order matrix for the next iteration. All

of the orders in the totes i and j go to the new tote i’ after the merging. The logic

can be formulated as shown below:

Min ∑ 𝑎𝑖′,𝑟
𝑚
𝑟=1

s.t. 𝑎𝑖′,𝑟 ≥ 𝑎𝑖,𝑟 for all r ∈ M

 𝑎𝑖′,𝑟 ≥ 𝑎𝑗,𝑟 for all r ∈ M

We still use the previous Example of Tote-Order Matrix and Dissimilarity

Matrix to compute the Merged Tote-Order Matrix as a numerical example, and shown

below:

41

 0

 0.857 0

 1 0.667 0

 0.667 1 0.857 0

 0.857 0.857 0.857 0.857 0

Example of Dissimilarity Matrix

 1 0 0 0 1 0 1 0 0 1

 0 1 1 0 0 0 0 0 1 1

 0 1 0 1 0 0 0 1 1 0

 1 0 0 0 0 1 1 1 0 0

 0 0 1 1 1 1 0 0 0 0

Example of Tote-Order Matrix

 1 0 0 0 1 1 1 1 0 1

 0 1 1 0 0 0 0 0 1 1

 0 1 0 1 0 0 0 1 1 0

 0 0 1 1 1 1 0 0 0 0

Merged Tote-Order Matrix

Step 4 – Repeat step 1, 2, and 3 until all totes are assigned into clusters.

Similar to tote quantity balance in the MIP formulation, we set n/k as the

boundary for number of totes in each cluster to avoid the situation that one cluster is

assigned much more totes than other clusters. In other words, if the number of totes

within a cluster is more than n/k, the fast heuristic F#1 will not put more totes into

this cluster in the following iterations.

42

3.5 Clustering Methods in Data Mining

During the process of developing the fast heuristic F#1, we also applied the current

existing clustering techniques on our data set. Cluster analysis is the process of

partitioning a set of data objects into subsets. Each subset is a cluster, such that

objects in a cluster are similar to one another, yet dissimilar to objects in other

clusters. Cluster analysis has been widely used in many applications. Different

clustering methods may generate different clusters on the same data set. Clustering

methods can differ with respect to the partitioning level, whether or not clusters are

mutually exclusive, the similarity measures used, etc. All these aspects with which

clustering methods can be compared in different applications are listed below:

The partitioning criteria: In some methods, all the objects are partitioned so

that no hierarchy exists among the clusters. Alternatively, other methods partition

data objects hierarchically, where clusters can be formed at different levels.

Separation of clusters: Some methods partition data objects into mutually

exclusive clusters. In some other situations, the clusters may not be exclusive, that

is, a data object may belong to more than one cluster.

Similarity measure: Some methods determine the similarity between two objects

by the distance between them. In other methods, the similarity may be defined by

connectivity based on density or contiguity and may not rely on the absolute distance

between two objects. Similarity measures play a fundamental role in the design of

clustering methods.

Also, clustering algorithms have several requirements, such as:

Capability of clustering high-dimensionality data: Most clustering algorithms

are good at handling low-dimensional data such as data sets involving only two or

three dimensions. Finding clusters of data objects in a high-dimensional space is

challenging, especially considering that such data can be very sparse

43

Constraint-based clustering: Real-world applications may need to perform

clustering under various kinds of constraints. A challenging task is to find data

groups with good clustering behavior that satisfy specified constraints.

Considering all above aspects and requirements, for our tote-order data sets,

we adopt exclusive cluster separation, that is, each tote must assign to exactly one

consolidator. And we use the distance-based similarity measures since distance-based

methods can often take advantage of optimization techniques.

3.5.1 Partitioning Methods

Given a set of n objects, a partitioning method constructs k partitions of the data,

where each partition represents a cluster and 𝑘 ≤ 𝑛, each cluster must contain at least

one object. The basic partitioning methods typically adopt exclusive cluster

separation, which means each object must belong to exactly one cluster. The number

of clusters k is also given as background knowledge. This parameter is the starting

point for partitioning methods. The partitioning method then uses an iterative

relocation technique to improve the partitioning by moving objects from one group to

another. Most partitioning methods are distance-based. The clusters are formed to

optimize an objective partitioning criterion, such as a dissimilarity function based on

distance, so that the objects within a cluster are “similar” to one another and

“dissimilar” to objects in other clusters in terms of the data set attributes (Jiawei Han,

Micheline Kamber, Jian Pei, Data Mining Concepts and Techniques).

Partitioning is the simplest and most fundamental version of cluster analysis,

however, achieving global optimality in partitioning-based clustering is often compu-

tationally prohibitive, potentially requiring an exhaustive enumeration of all the

possible partitions. Instead, most applications adopt popular heuristic methods,

such as greedy approaches like the k-means and the k-modes algorithms, which

progressively improve the clustering quality and approach a local optimum. In the

44

following, we apply these two most well-known and commonly used partitioning

methods on our tote assignment problem.

The k-means algorithm is a centroid-based partitioning technique that uses a

centroid to represent a cluster. Conceptually, the centroid of a cluster is its center

point. The centroid can be defined in various ways such as by the mean of the

objects assigned to the cluster (Jiawei Han, Micheline Kamber, Jian Pei, Data Mining

Concepts and Techniques). Given a set of objects and an integer number k (≤ 𝑛), the

k-means algorithm searches for a partition of A into k clusters that minimizes the

within groups sum of squared errors (WGSS).

In this application of k-means algorithm on our tote assignment problem, we

use same notation as in above MIP formulation and heuristic F#1 (3.3 & 3.4) to keep

unification. The tote-order data set A (n totes × m orders) can be considered as a set

of totes 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, and each tote 𝑎𝑖 = (𝑎𝑖,1, 𝑎𝑖,2, … , 𝑎𝑖,𝑚) has exactly m

attribute values to indicate if it contain item of an order. With the number of

consolidators k (≤ 𝑛), the k-means algorithm can be formulated as the following

mathematical program problem P:

Min 𝑃(𝑋, 𝑄) = ∑ ∑ 𝑥𝑖,𝑐 𝑑(𝑎𝑖 , 𝑞𝑐)𝑛
𝑖=1

𝑘
𝑐=1 (3.8)

s.t. ∑ 𝑥𝑖,𝑐 𝑘
𝑐=1 = 1 1 ≤ 𝑖 ≤ 𝑛 (3.9)

 𝑥𝑖,𝑐 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑐 ≤ 𝑘 (3.10)

where X is an n × k partition matrix, 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑘} is a set of cluster

means, Qc is the cluster of totes assigned to consolidator c, qc is the centroid of Qc.

The difference between a tote ai∈Qc and qc is measured by d(ai, qc), which is the

Euclidean distance between two objects.

The k-means procedure is summarized in the following.

45

Input:

k: the number of consolidators,

A: tote-order data set containing n totes.

Output: A set of k clusters.

Method:

1) arbitrarily choose k objects from A as the initial cluster centers;

2) repeat

3) (re)assign each object to the cluster to which the object is the most similar,

based on the mean value of the objects in the cluster;

4) update the cluster means, that is, calculate the mean value of the objects for

each cluster;

5) until no change;

The k-means method is not guaranteed to converge to the global optimum and

often terminates at a local optimum. The results may depend on the initial random

selection of cluster centers. To obtain good results in practice, it is common to run the

k-means algorithm multiple times with different initial cluster centers. The problem

of applying k-means algorithm on the tote-order data set is that every tote is binary

object because it only has binary values. The k-means method can be applied only

when the mean of a set of objects is defined. So we consider binary objects as numeric

and calculate the means when applying the k-means method. For data with nominal

attributes involved, most of the literatures introduce the k-mode algorithm to make

the formulation of problem P also valid.

46

The k-modes method is a variant of k-means, which extends the k-means

paradigm to cluster nominal data by replacing the means of clusters with modes. It

uses new dissimilarity measures to deal with nominal objects and a frequency-based

method to update modes of clusters (Jiawei Han, Micheline Kamber, Jian Pei, Data

Mining Concepts and Techniques). Huang (1998) made the following modification to

the k-means algorithm:

1. using a simple matching dissimilarity measure for categorical objects,

2. replacing means of clusters by modes, and

3. using a frequency-based method to find the modes

In our tote assignment problem, 𝑎𝑖 and 𝑎𝑗 are two totes described by m binary

attributes. The dissimilarity measure between 𝑎𝑖 and 𝑎𝑗 can be defined by the total

mismatches of the corresponding attribute categories of the two objects. The smaller

the number of mismatches is, the more similar the two totes. Formally,

𝑑(𝑎𝑖 , 𝑎𝑗) = ∑ 𝛿(𝑎𝑖,𝑟 , 𝑎𝑗,𝑟)𝑚
𝑟=1 (3.11)

Where

𝛿(𝑎𝑖,𝑟 , 𝑎𝑗,𝑟) = {
0 (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟)

1 (𝑎𝑖,𝑟 ≠ 𝑎𝑗,𝑟)
 (3.12)

The clustering process minimizes the following objective function,

𝑃(𝑋, 𝑄) = ∑ ∑ ∑ 𝑥𝑖,𝑐 𝛿(𝑎𝑖,𝑟 , 𝑞𝑐,𝑟)𝑚
𝑟=1

𝑛
𝑖=1

𝑘
𝑐=1 (3.13)

In k-modes clustering, the cluster centers are represented by the vectors of

modes of categorical attributes. However, the biggest problem of applying k-modes

algorithm in our tote-order data set is that each object (tote) using binary value to

47

represent if it has attribute (order) and attributes of 1 are sparse in the data set. In

this case, all of the cluster centers will be the vectors of 0, and the k-modes algorithm

cannot continue. For the completeness of this document, we still keep the k-modes

algorithm steps as following. To cluster a categorical data set into k clusters, Huang

(1998) summarize the k-modes clustering process consists of the steps:

1. Select k initial modes, one for each cluster.

2. Allocate an object to the cluster whose mode is the nearest to it according

to (3.11). Update the mode of the cluster after each allocation.

3. After all objects have been allocated to clusters, retest the dissimilarity of

objects against the current modes. If an object is found such that its nearest mode

belongs to another cluster rather than its current one, reallocate the object to that

cluster and update the modes of both clusters.

4. Repeat 3 until no object has changed clusters after a full cycle test of the

whole data set.

3.5.2 Hierarchical Methods

A hierarchical clustering method works by grouping data objects into a hierarchy or

“tree” of clusters. Even though we don’t need to partition our data points (totes) into

groups at different levels, the agglomerative process of a hierarchical method is very

similar to the heuristic F#1. A hierarchical method can be either agglomerative

or divisive, depending on whether the hierarchical decomposition is formed in a

bottom-up (merging) or top-down (splitting) fashion. An agglomerative hierarchical

clustering method uses a bottom-up strategy. It typically starts by letting each object

form its own cluster and iteratively merges clusters into larger and larger clusters, until

all the objects are in a single cluster or certain termination conditions are satisfied.

A tree structure called a dendrogram is commonly used to represent the

process of hierarchical clustering. It shows how objects are grouped together

48

(in an agglomerative method) or partitioned (in a divisive method) step-by-step.

The following Figure 3.3 is an example by applying the agglomerative hierarchical

clustering method on one of our 20-totes-data set. The vertical axis shows the

similarity scale between clusters.

Figure 3.3 Hierarchical cluster dendrogram.

The core need of a hierarchical method is to measure the distance between two

clusters, where each cluster is generally a set of objects. Four widely used measures

for distance between clusters are as follows, where 𝑑(𝑎𝑖, 𝑎𝑗) is the distance between

two objects (totes), 𝑎𝑖 and 𝑎𝑗; 𝑞𝑐 is the mean for cluster, Qc; and 𝑡𝑐 is the number of

objects in Qc. They are also known as linkage measures.

Minimum distance: 𝑑𝑖𝑠𝑡𝑚𝑖𝑛(𝑄𝑐1, 𝑄𝑐2) = min
𝑎𝑖∈𝑄𝑐1,𝑎𝑗∈𝑄𝑐2

{𝑑(𝑎𝑖 , 𝑎𝑗)} (3.14)

Maximum distance: 𝑑𝑖𝑠𝑡𝑚𝑎𝑥(𝑄𝑐1, 𝑄𝑐2) = max
𝑎𝑖∈𝑄𝑐1,𝑎𝑗∈𝑄𝑐2

{𝑑(𝑎𝑖 , 𝑎𝑗)} (3.15)

Mean distance: 𝑑𝑖𝑠𝑡𝑚𝑒𝑎𝑛(𝑄𝑐1, 𝑄𝑐2) = 𝑑(𝑞𝑐1, 𝑞𝑐2) (3.16)

Average distance: 𝑑𝑖𝑠𝑡𝑎𝑣𝑔(𝑄𝑐1, 𝑄𝑐2) =
1

𝑡𝑐1𝑡𝑐2
∑ 𝑑(𝑎𝑖 , 𝑎𝑗)𝑎𝑖∈𝑄𝑐1,𝑎𝑗∈𝑄𝑐2 (3.17)

49

When an algorithm uses the minimum distance (3.14) to measure the distance

between clusters, it is sometimes called a nearest-neighbor clustering algorithm.

Moreover, if the clustering process is terminated when the distance between nearest

clusters exceeds a user-defined threshold, it is called a single-linkage algorithm. If we

view the data points (totes) as nodes of a graph, with edges forming a path between

the nodes in a cluster, then the merging of two clusters, 𝑄𝑐1 and 𝑄𝑐2, corresponds to

adding an edge between the nearest pair of nodes in 𝑄𝑐1 and 𝑄𝑐2. Because edges

linking clusters always go between distinct clusters, the resulting graph will generate

a tree. Thus, an agglomerative hierarchical clustering algorithm that uses the

minimum distance measure is also called a minimal spanning tree algorithm.

When an algorithm uses maximum distance (3.15) to measure the distance

between clusters, it is sometimes called a farthest-neighbor clustering algorithm. If

the clustering process is terminated when the maximum distance between nearest

clusters exceeds a user-defined threshold, it is called a complete-linkage algorithm.

The distance between two clusters is determined by the most distant nodes (totes) in

the two clusters.

The previous minimum and maximum measures represent two extremes in

measuring the distance between clusters. They tend to be overly sensitive to outliers

or noisy data. The use of mean (3.16) or average distance (3.17) is a compromise

between the minimum and maximum distances and overcomes the outlier sensitivity

problem. And the average distance is advantageous in that it can handle categorical

as well as numeric data. In our case, after trying all these four measures, the average

distance gives the best results in clustering our tote-order data sets, so we use this

measures in our application of hierarchical method.

50

3.6 Numerical Study and Benchmark Evaluation

In this section, we evaluate the performance of the fast heuristic F#1 in solving

the tote assignment problem, compare the shipping boxes generated by F#1 with the

optimal values of MIP and the results of the other two clustering algorithms, k-means

and hierarchical methods.

3.6.1 Software and Solver

We use AMPL, a mathematical programming language, to build the integer

programming models in SolverStudio (Package Version 0.09.03) and run by CPLEX

solver on NEOS (Network-Enabled Optimization System) server. AMPL is an

algebraic modeling language to describe and solve high-complexity problems for

large-scale mathematical computing (i.e., large-scale optimization and scheduling-

type problems). It provides access to more than 60 state-of-the-art solvers in more

than a dozen optimization categories and offers a variety of interfaces for accessing the

solvers to enable jobs run on distributed high-performance machines. Many modern

solvers available on the NEOS Server accept AMPL input. According the NEOS

Server is a free internet-based service for solving numerical optimization problems.to

the NEOS statistics AMPL is the most popular format for representing mathematical

programming problems. Unlike the free student version of AMPL (this version is

limited to 500 variables and constraints for linear problems), AMPL on NEOS have

no problem size limitations, other than limits on the size of the model and data files

that are exchanged with NEOS. SolverStudio is an add-in for Excel that allows you to

build and solve optimization models in Excel using many optimization modeling

languages. SolverStudio allows models built using AMPL to be solved using the

NEOS server. We choose “AMPL on NEOS” as modelling language in SolverStudio,

then when we click Solve, SolverStudio will take the model and the associated data

from the present spreadsheet and send these off to the NEOS server at neos-server.org.

The NEOS server will then run the files. SolverStudio waits for NEOS to report that

51

the run has finished, then takes the model results and writes them back into the

spreadsheet.

The F#1 is coded in RStudio (Version 1.1.423). RStudio is a free and open-

source integrated development environment (IDE) for R, a programming language

and software environment for statistical computing and graphics. We also implement

k-means and hierarchical clustering algorithm in RStudio.

3.6.2 Simulation Data Sets

We randomly generate testing data sets based on the following parameter configu-

rations:

6 sizes of tote-order data set, with correlated number of consolidators.

Table 3.3 Problem Sizes of Data Sets

Consolidators Totes Orders

5 20 60

6 30 80

7 35 100

10 50 140

15 75 210

20 100 280

4 cases are considered for number of items in each order correlated with

∑ 𝑎𝑖,𝑟

𝑛

𝑖=1

= 2 𝑜𝑟 3

Table 3.4 Order Cases of Data Sets

Consolidators Totes Orders
3-item Order %

case #1 case #2 case #3 case #4

5 20 60 0% 33% 67% 100%

6 30 80 0% 25% 50% 100%

7 35 100 0% 25% 50% 100%

10 50 140 0% 25% 50% 100%

15 75 210 0% 33% 67% 100%

20 100 280 0% 25% 50% 100%

52

totes.

3 levels of totes correlated to each other in tote-order matrix are organized for

Easy: every two (or three) totes have same orders to make the whole matrix

highly correlated.

Medium: half of the matrix is highly correlated as easy level, the orders in the

other half of the matrix is randomly distributed.

Hard: orders in the whole matrix randomly distributed.

3.6.3 Results and Evaluation

Using the data sets described above, we numerically compared the performance of

the proposed fast heuristic F#1 with that of the CPLEX solver on NEOS server,

moreover, with that of the k-means and hierarchical clustering methods.

By default, jobs submitted to the NEOS Server are assigned as long jobs, which

means that they can run at most 8 hours. Jobs submitted to the NEOS Server are also

limited to 3 GB of Random-access memory (RAM). It is often MIP problems have

issues with memory. MIP solvers accumulate and store in memory information about

the branch-and-cut tree as they progress. At some point, the amount of memory

required for the tree information may exceed the amount of memory available. Jobs

will be terminated due to exceeding the allowable memory limit. We summarize

computational time of all test cases running as long jobs by CPLEX solver on NEOS

in the Table 3.5 below. For many test cases, CPLEX failed to find the optimal

solution within the allowable memory limit on the NEOS server (NA: exceed the

allowable memory limit). And for the cases that CPLEX are able to find the optimal

solution, the maximum running time reaches to 2.5 hours. In contrast, all instances

can be solved by heuristic F#1 within 1 minute of CPU time. In fast fulfillment

operations, we are often required to offer instant response, and we may not have the

time to wait for CPLEX to provide us with an optimal solution.

53

Table 3.5 CPLEX Solver Running Time (Miniutes)

Consolidators Totes Orders
case #1 case #2 case #3 case #4

e m h e m h e m h e m h

5 20 60 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 3 < 1 < 1 7

6 30 80 < 1 <1 4 < 1 < 1 21 < 1 < 1 NA <1 19 NA

7 35 100 < 1 2 59 < 1 4 NA < 1 7 NA <1 NA NA

10 50 140 < 1 145 NA 3 NA NA 7 NA NA NA NA NA

15 75 210 < 1 NA NA NA NA NA NA NA NA < 1 NA NA

20 100 280 < 1 NA NA NA NA NA NA NA NA NA NA NA

Jobs submitted to the NEOS Server can be assigned as short jobs, which means

that they can run at most 5 minutes. In our experiments, we run all 72 cases as

both long jobs and short jobs. For the cases that CPLEX are able to find the optimal

solution within the allowable memory limit, the solution quality provided by a long-job

run has no significant difference to a short-job run. For the cases that CPLEX failed

to find the optimal solution within the allowable memory limit, we used the best

feasible CPLEX solutions obtained within 5 minutes as a surrogate for the optimal

solution. Table 3.6 shows the results obtained using the CPLEX solver on NEOS

server.

Table 3.6 CPLEX Solver Results

Consolidators Totes Orders
case #1 case #2 case #3 case #4

e m h e m h e m h e m h

5 20 60 60 78 93 69 91 105 68 105 117 68 109 131

6 30 80 86 107 122 90 116 130 90 117 142 88 147 169

7 35 100 107 134 152 111 146 165 126 158 190 134 194 222

10 50 140 150 192 229 157 213 259 158 209 278 161 266 338

15 75 210 225 301 354 246 336 411 244 436 469 230 430 541

20 100 280 300 408 476 316 450 530 350 506 589 379 650 838

For each instance, we calculate the empirical error gap, and it defined as:

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑔𝑎𝑝 =
𝜁(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠)−𝜁(𝑂𝑃𝑇)

𝜁(𝑂𝑃𝑇)
 (3.18)

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 = {𝐹#1, ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙, 𝑘𝑚𝑒𝑎𝑛𝑠} (3.19)

54

Where 𝜁(𝑂𝑃𝑇) stands for the optimal results obtained using the CPLEX solver

to solve problem P defined by (3.1) - (3.6), and 𝜁(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠) stands for the results

obtained by the fast heuristic F#1, k-means and hierarchical clustering methods. The

value of error gap could be negative in case CPLEX didn’t get the optimal solution

within the allowable memory limit. Technically, the smaller the error gap the better,

which implies a better solution benchmarked against that of CPLEX.

The numerical study results demonstrate a strong performance of the fast

heuristic F#1 we developed in both accuracy and efficiency. We observe an overall

average error gap of 4.37% from the optimal or the surrogate of the optimal solution

over 72 test cases. Meanwhile, we also observed that the average error gap slightly

decreased as the size of problem instances increasing, mainly because CPLEX on

NEOS server often failed to find the optimal solutions. Our heuristic shows adequate

advantages over the CPLEX when the error gap and computational time are jointly

considered.

3.7 Fast Heuristic F#2 and Performance Evaluation

The performance objective of our order consolidation / tote assignment problem is to

minimize the number of packages and balance the packaging station workload. Some

uneven tote assignment solutions may have a smaller number of packages, but the

tote quantity balance will bring the objective results up. Therefore, when we applied

the k-means and the hierarchical clustering algorithm on the data sets, these existed

well-known clustering algorithms didn’t perform better than the F#1 heuristic. In

order to further improve the overall performance, we developed the fast heuristic

F#2. A numerical study is also conducted to demonstrate the performance of the

proposed heuristics.

3.7.1 Fast Heuristic F#2 Development

In light of the results reported in section 3.6, F#1 demonstrate a strong performance

55

in accuracy and efficiency. We followed the same structure to develop the F#2. In

each iteration, firstly calculate the Jaccard dissimilarity between totes, then select a

pair of totes according to the combined effects of Jaccard dissimilarity and the totes

quantity balance, assign this pair of totes into one cluster, merge the two totes into

one if the cluster hasn’t reach the limit and continue clustering with other totes,

repeat the procedure until all totes grouped into clusters. We use a small tote-order

matrix (n totes m orders) as the example and describe F#2 as follows.

Tote-Order Matrix ai,r

 Orders

 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

Totes

T1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0

T2 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0

T3 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1

T4 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0

T5 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0

T6 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1

T7 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0

T8 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

Step 1:

Calculate Jaccard dissimilarity 𝑑𝑖,𝑗 (Lemma 1) for all totes i, j∈{1…n}, i ≠ j in

the tote-order matrix (For readability, we do not show the 𝑑𝑗,𝑖 entries; the matrix is

symmetric.);

Jaccard Dissimilarity di,j

 Tote j

 T1 T2 T3 T4 T5 T6 T7 T8

Tote i

T1

T2 0.89

T3 0.75 1.00

T4 0.89 0.89 0.89

T5 0.89 0.57 1.00 0.57

T6 0.89 1.00 0.75 1.00 1.00

T7 0.75 0.89 0.89 0.89 1.00 0.75

T8 1.00 0.57 0.89 1.00 0.89 0.75 0.75

56

Also calculate the number of totes 𝑡𝑖,𝑗 if totes i and j are clustered, for all totes

i, j∈{1…n}, i ≠ j (For readability, we do not show the 𝑑𝑗,𝑖 entries; the matrix is

symmetric.);

Number of Totes ti,j if Tote i and j are Clustered

 Tote j

 T1 T2 T3 T4 T5 T6 T7 T8

Tote i

T1

T2 2

T3 2 2

T4 2 2 2

T5 2 2 2 2

T6 2 2 2 2 2

T7 2 2 2 2 2 2

T8 2 2 2 2 2 2 2

Step 2:

In order to minimize the number of packages and the tote quantity balance,

clustering totes with minimal dissimilarity and absolute difference from the clustered

number of totes to the even number of totes, 𝑚𝑖𝑛 {𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
)} (Lemma

2);

𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
) indicates the absolute difference between the number of totes within a

cluster and the even number of totes for each consolidator; Uneven tote quantity solutions

will be effectively decreased by minimizing this absolute difference in each iteration. n is

the number of totes (n = 8 in this example) and k is the number of consolidators (k = 3 in

this example); δ is a constant coefficient, since totes dissimilarity range is [0, 1], we set δ

= 0.1 to bring down the numerical digit of tote quantity balance;

57

di,j + δ * abs(ti,j - n/k), δ = 0.1

 Tote j

 T1 T2 T3 T4 T5 T6 T7 T8

Tote i

T1

T2 0.96

T3 0.82 1.07

T4 0.96 0.96 0.96

T5 0.96 0.64 1.07 0.64

T6 0.96 1.07 0.82 1.07 1.07

T7 0.82 0.96 0.96 0.96 1.07 0.82

T8 1.07 0.64 0.96 1.07 0.96 0.82 0.82

If there’s a tie for tote i, j, i', j', i≠j≠i'≠j',

{𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)}

Select either {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖′,𝑗 −
𝑛

𝑘
)} or {𝑑𝑖,𝑗′ + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗′ −

𝑛

𝑘
)} (Lemma 3);

From the above table, we can see if tote T2 and T5 are clustered in the earlier

iteration, we may lose the advance of both tote T2, T8 clustered together and tote T4, T5

clustered together in the later iterations.

Step 3:

Merge the clustered tote i and j with the 𝑚𝑖𝑛 {𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
)} (from step

2) into a new tote i', according to the logic:

𝐼𝑓 𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 0, 𝑡ℎ𝑒𝑛 𝑎𝑖′,𝑟 = 0

𝐸𝑙𝑠𝑒, 𝑎𝑖′,𝑟 = 1

For example, if tote T2, T8 clustered together in the previous step, they will be

merged into tote T2,8 as follows.

T2 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0

T8 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

T2,8 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1

58

Step 4:

If the number of totes within one cluster hasn’t reach the even number of totes for

each consolidator 𝑛/𝑘, add the merged tote i' to the tote-order matrix and remove the

original tote i and j; Else, remove the totes i and j from the tote-order matrix.

Tote-Order Matrix ai,r

 Orders

 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

Totes

T1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0

T3 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1

T4 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0

T5 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0

T6 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1

T7 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0

T2,8 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1

Number of Totes ti,j if Tote i and j are Clustered

 Tote j

 T1 T3 T4 T5 T6 T7 T2,8

Tote i

T1

T3 2

T4 2 2

T5 2 2 2

T6 2 2 2 2

T7 2 2 2 2 2

T2,8 3 3 3 3 3 3

Repeat above steps until all totes are assigned to consolidators.

3.7.2 Lemma Proof

Lemma 1: In each iteration, if 𝑑𝑖,𝑗 is minimal, then ∑ 𝑧𝑐,𝑟
𝑚
𝑟=1 is minimal for 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1.

Proof:

𝑑𝑖,𝑗 =
∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚

𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚
𝑟=1

∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚
𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1

𝑠𝑖𝑚(𝑖, 𝑗) = 1 − 𝑑𝑖,𝑗 =

=
∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1

∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚
𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1

59

For totes i, j, i',

If ∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) = ∑ (𝑎𝑖,𝑟 = 𝑎𝑖′,𝑟 = 1)𝑚
𝑟=1 = ∑ (𝑎𝑖′,𝑟 = 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1

And

∑ (𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑ (𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)𝑚
𝑟=1 + ∑ (𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)𝑚

𝑟=1
𝑚
𝑟=1

is minimal, then 𝑠𝑖𝑚(𝑖, 𝑗) is maximal, 𝑑𝑖,𝑗 is minimal.

For 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1,

∑ 𝑧𝑐,𝑟

𝑚

𝑟=1

= ∑(𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1) + ∑(𝑎𝑖,𝑟 = 1 & 𝑎𝑗,𝑟 = 0)

𝑚

𝑟=1

+ ∑(𝑎𝑖,𝑟 = 0 & 𝑎𝑗,𝑟 = 1)

𝑚

𝑟=1

𝑚

𝑟=1

is also minimal.

Lemma 2: In each iteration, if 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
) is minimal, then 𝑏𝑐 is minimal for

 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1.

Proof:

In each iteration, 𝑡𝑖,𝑗 is the number of totes if totes i and j are clustered, for all totes i,

j∈{1…n}, i ≠ j;

𝐹𝑜𝑟 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1, 𝑡𝑖,𝑗 = ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

min {𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)} = min {𝑎𝑏𝑠 (∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

−
𝑛

𝑘
)}

In the MIP model, we have constraints (3.4) and (3.5) as follows:

𝑏𝑐 ≥ ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

− 𝑛/𝑘

𝑏𝑐 ≥ 𝑛 𝑘⁄ − ∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

Enforce the following equation:

𝑏𝑐 = 𝑎𝑏𝑠(∑ 𝑥𝑖,𝑐

𝑛

𝑖=1

−
𝑛

𝑘
)

60

Then

min {𝑏𝑐} = min {𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)}

Lemma 3: In each iteration, if there’s a tie of minimum for tote i, j, i', j', and i≠j≠i'≠j',

{𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗 −
𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)} = {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖′,𝑗 −

𝑛

𝑘
)}

Select either {𝑑𝑖′,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖′,𝑗 −
𝑛

𝑘
)} or {𝑑𝑖,𝑗′ + 𝛿 ∗ 𝑎𝑏𝑠 (𝑡𝑖,𝑗′ −

𝑛

𝑘
)}.

Proof:

Select {𝑑𝑖,𝑗 + 𝛿 ∗ 𝑎𝑏𝑠(𝑡𝑖,𝑗 −
𝑛

𝑘
)} 𝑓𝑜𝑟 𝑥𝑖,𝑐 = 𝑥𝑗,𝑐 = 1, will lead to eliminate opportunities

for both 𝑥𝑖′,𝑐 = 𝑥𝑗,𝑐 = 1 𝑎𝑛𝑑 𝑥𝑖,𝑐 = 𝑥𝑗′,𝑐 = 1 in the following iterations.

3.7.3 Performance Evaluation

In this section, we regenerated test data sets to evaluate the fast heuristic F#2. For

the comparability and sufficiency of the results, we increased the test cases for each

size of the original data set.

3.7.3.1 Design of Experiments. The results from previous numerical study show

the optimal solutions are difficult to be found when the size of test data set increasing

to 10 consolidators, 50 totes, and 140 orders. Therefore, we defined the data set size

above this as large data sets and below this as small data sets. In the meanwhile,

the results from the Table 3.3 show during the 24 large data sets in the medium and

hard level, only one medium level test case is able to get the optimal solution within

the allowable memory limit and its running time is more than two hours. Therefore,

among the regenerated data sets, we only ran the small data sets by CPLEX solver on

NEOS server to get optimal solutions, and test F#1, F#2, hierarchical and k-means

algorithm on both small and large data sets. The summary of the data sets generation

shown in the following table.

61

Table 3.7 Summary of Small and Large Data Sets

Consolidators Totes Orders
Number
of Test
Cases

Optimal
Results

Availability

3-item Order
%

Matrix Complexity

Small
Data
Sets

5 20 60 42

YES
Progressive

Increasing by
5%

Medium Hard 6 30 80 28

7 35 100 17

Large
Data
Sets

10 50 140 22

NO
Progressive

Increasing by
10%

Medium Hard 15 75 210 22

20 100 280 22

3.7.3.2 Coefficient of Tote Quantity Balance. When solving the MIP model for

optimal results, we set the balance coefficient 𝛽 as 1 at the beginning, and increased it

as the data set size, 3-item order quantity, and matrix complexity increasing. In this

part, we developed an estimation function to calculate the balance coefficient for the

large data sets, since the optimal results are not available.

As we mentioned in the section 3.3, the tote quantity balance is to restrict

the extremely uneven totes assignment solution that all totes are assigned to one

consolidator. Therefore, the upper bound of the tote quantity balance can be

calculated by the following function:

𝑛

𝑘
(𝑘 − 1) + (𝑛 −

𝑛

𝑘
)

Equivalent to:

2𝑛(1 −
1

𝑘
)

Where n is total number of totes, k is total number of consolidators. The

optimal results 𝜁(𝑂𝑃𝑇) can be represented by a function related with the total

number of orders m and the upper bound of the tote quantity:

𝜁(𝑂𝑃𝑇) = 𝑚 + 𝛼𝛽2𝑛(1 −
1

𝑘
)

62

Then the coefficient and can be derived as:

𝛼 =
𝜁(𝑂𝑃𝑇) − 𝑚

𝛽2𝑛(1 −
1
𝑘

)

𝛽 =
𝜁(𝑂𝑃𝑇) − 𝑚

𝛼2𝑛(1 −
1
𝑘

)

We have two type of orders in the data sets, 2-item orders and 3-item orders.

According to the 3-item orders percentage of each data set, we can calculate the

total number of items in all of the orders as:

3𝑚π + 2m(1 − π)

The optimal results 𝜁(𝑂𝑃𝑇) also related to the total number of items with coefficient ε:

𝜁(𝑂𝑃𝑇) = ε[3𝑚π + 2m(1 − π)]

Combined with the function we derived above, the estimation function of balance

coefficient β is:

𝛽 =
ε[3𝑚π + 2m(1 − π)] − 𝑚

𝛼2𝑛(1 −
1
𝑘

)

After solved optimal results of all 87 small data sets, we calculated the coefficient α and

ε for every case. Then the weighted average value of them, α = 0.507 and ε = 0.644, are used

to derive the coefficient β for all 66 large data sets.

3.7.3.3 Results. We evaluated performances of the fast heuristic F#2, F#1,

hierarchical and k-means algorithm on both small and large data sets.

For the small data sets, we calculated the empirical error gap and performed

the one sample t-test. We used the same function as (3.18) to calculate the error gap

for results obtained by F#1, F#2, hierarchical and k-means.

63

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑔𝑎𝑝 =
𝜁(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠) − 𝜁(𝑂𝑃𝑇)

𝜁(𝑂𝑃𝑇)

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 = {𝐹#1, 𝐹#2, ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙, 𝑘𝑚𝑒𝑎𝑛𝑠}

From the small data set results Table 3.8, we can see the mean error gap of F#2

is 4.149% and one sample t-test show the true mean is significant below 5%. We also

performed the power analysis to validate the power of the t-test. In the meanwhile,

mean error gaps of the other methods results are all above 5%.

Table 3.8 Result Summary of 87 Small Data Sets

Mean of

Error
Gap

One Sample t-test t-test
Power

Calculation
Null

Hypothesis
Alternative
Hypothesis t df p-value Conclusion

F#2 4.149%

True Mean =
5%

True Mean < 5% -2.798

86

0.00318 Reject the Null
Hypothesis in
Favor of the
Alternative
Hypothesis

0.8709144

F#1 8.487% True Mean > 5% 5.412 < 0.00001 0.9999019

Hierarchical 6.729% True Mean > 5% 3.709 0.00018 0.9790506

k-means 11.618% True Mean > 5% 15.49 < 0.00001 1

Figure 3.4 Mean error gap of small data sets.

64

Since the optimal results for the large data sets are not available, we calculated

the results differences between F#2 and other methods, which show the results of

F#1, hierarchical and k-means are larger than F#2 by 7%, 6% and 10%. We also

performed the paired t-test to show the true differences are significant. The result

summery Table 3.9 as follows.

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝜁(𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) − 𝜁(𝐹#2)

𝜁(𝐹#2)

𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = {𝐹#1, 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙, 𝑘𝑚𝑒𝑎𝑛𝑠}

Table 3.9 Result Summary of 66 Large Data Sets

 Mean of
Differences

Paired t-test
t-test
Power

Calculation

Null
Hypothesis

Alternative
Hypothesis t df p-value Conclusion

F#1 - F#2
26.262

(7%) True
Difference
in Means is

0

True
Difference in

Means is
Greater Than

0

12.254

65
<

0.00001

Reject the Null
Hypothesis in
Favor of the
Alternative
Hypothesis

1
Hierarchical - F#2

25.157
(6%) 10.388

k-means - F#2
37.321
(10%) 12.575

Figure 3.5 Mean algorithms results difference of large data sets.

65

CHAPTER 4

PERFORMANCE BEHAVIOR ANALYSIS OF FAST HEURISTICS

The order consolidation is a dynamic process, items belong to different orders carrying

by different totes come to the consolidation station continuously. In this chapter,

performance behavior of the heuristics is further studied as a function of size of the

tote-order matrix, multi-item order complexity of the tote-order matrix, number of

consolidators and the consolidation batch window.

4.1 Size of Tote-Order Matrix

The size of the tote-order matrix is a critical factor to the complexity of the

consolidation problem. Given each three sizes tote-order matrix for both small and

large problems in the Chapter 3, we expand three extra-large sizes of tote-order

matrix in this chapter, which are shown in the Table 4.1. These three sizes of

problems combine with the following design of multi-item order complexity, we

generate a variety of data sets and perform experimental tests on them.

Table 4.1 Extra-Large Problem Size

Number of Totes (n) Number of Orders (m) Number of Consolidators (k)

200 560 40

300 840 60

400 1120 80

4.2 Multi-Item Order Complexity of Tote-Order Matrix

A tote-order matrix is a binary matrix with rows as totes and columns as orders. A

binary value in a tote-order matrix 𝑎𝑖,𝑟 = 1 means SKU item of order r picked in tote

i. The summation of each column ∑ 𝑎𝑖,𝑟
𝑛
𝑖=1 stands for SKU items of order r are in

how many totes. To simplify, we call orders have items in more than one totes as

multi-item order. For example, an order has items in three totes, ∑ 𝑎𝑖,𝑟
𝑛
𝑖=1 = 3, this

66

order is called 3-item order. The 3-item shows the order complexity in the tote-order

matrix, even though this order may have more than three items.

We include three kinds of multi-item orders, 2, 3 and 4-item orders, in experimental

deign of tote-order matrix. The quantity of each kind of multi-item orders take a certain

proportion out of the total number of orders (m). We design a set of quantity percentage

combination and list in the Table 4.2. The purpose of this design of experiments is to

gradually increase complexity of the tote-order matrix by increasing quantity of 4-item

orders.

Table 4.2 Multi-Item Orders Quantity Percentage

 Multi-Item Orders

 2-item 3-item 4-item

Case #0 100% 0% 0%

Case #1 65% 30% 5%

Case #2 55% 30% 15%

Case #3 45% 30% 25%

Case #4 35% 30% 35%

Case #5 25% 30% 45%

Case #6 15% 30% 55%

Case #7 5% 30% 65%

For each size of tote-order matrix, there are 8 cases of multi-item orders quantity

percentage combination. And for each case, we generate 10 random test cases. There

are total 240 test cases in 24 conditions. The Table 4.3 shows the total number of

items (I) and number of items per order (I/m).

We run the fast heuristic F#2, F#1, hierarchical and k-means algorithm on all

test cases. The following Table 4.4, 4.5, and 4.6 show the results of three problem

sizes by eight order complexity cases, each value is mean of 10 test cases results.

The fast heuristic F#2 performs better than the other three algorithms in all test

cases. And the optimal solutions for these extra-large problems are not available. We

calculate the results differences percentage to show the difference between the fast

heuristic F#2 and all other algorithms.

67

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝜁(𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) − 𝜁(𝐹#2)

𝜁(𝐹#2)

𝑂𝑡ℎ𝑒𝑟 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = {𝐹#1, 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙, 𝑘𝑚𝑒𝑎𝑛𝑠}

Table 4.3 Total Number of Items (I)

 Tote-Order Matrix Size Items per
Order (I/m) 200 × 560 300 × 840 400 × 1120

Case #0 1120 1680 2240 2

Case #1 1344 2016 2688 2.4

Case #2 1456 2184 2912 2.6

Case #3 1568 2352 3136 2.8

Case #4 1680 2520 3360 3

Case #5 1792 2688 3584 3.2

Case #6 1904 2856 3808 3.4

Case #7 2016 3024 4032 3.6

Table 4.4 Results of 200×560 Tote-Order Matrix by 40 Consolidators

 F#1 F#2 Hierarchical kmeans
(F#1-

F#2)/F#2
(Hierarchical-

F#2)/F#2
(kmeans-
F#2)/F#2

Case #0 1002 958 975 1022 4.67% 1.81% 6.74%
Case #1 1169 1146 1176 1187 1.95% 2.60% 3.56%
Case #2 1253 1231 1277 1311 1.74% 3.69% 6.51%
Case #3 1342 1320 1369 1364 1.67% 3.73% 3.35%
Case #4 1433 1412 1459 1485 1.47% 3.34% 5.20%
Case #5 1530 1506 1547 1542 1.57% 2.69% 2.39%
Case #6 1621 1603 1647 1664 1.15% 2.76% 3.80%
Case #7 1711 1698 1741 1777 0.74% 2.53% 4.66%

Table 4.5 Results of 300×840 Tote-Order Matrix by 60 Consolidators

 F#1 F#2 Hierarchical kmeans
(F#1-

F#2)/F#2
(Hierarchical-

F#2)/F#2
(kmeans-
F#2)/F#2

Case #0 1521 1443 1477 1542 5.40% 2.38% 6.87%
Case #1 1791 1740 1791 1816 2.92% 2.91% 4.36%
Case #2 1914 1870 1938 1996 2.38% 3.69% 6.76%
Case #3 2046 2011 2079 2085 1.76% 3.40% 3.71%
Case #4 2187 2146 2225 2266 1.91% 3.68% 5.59%
Case #5 2329 2296 2362 2360 1.47% 2.91% 2.78%
Case #6 2477 2436 2510 2544 1.65% 3.02% 4.40%
Case #7 2616 2586 2661 2722 1.16% 2.88% 5.24%

68

Table 4.6 Results of 400×1120 Tote-Order Matrix by 80 Consolidators

 F#1 F#2 Hierarchical kmeans
(F#1-

F#2)/F#2
(Hierarchical-

F#2)/F#2
(kmeans-
F#2)/F#2

Case #0 2046 1928 1979 2076 6.07% 2.62% 7.65%
Case #1 2418 2336 2401 2444 3.52% 2.80% 4.66%
Case #2 2583 2520 2606 2685 2.47% 3.40% 6.53%
Case #3 2767 2710 2809 2814 2.11% 3.65% 3.83%
Case #4 2949 2892 3007 3054 1.97% 3.98% 5.60%
Case #5 3145 3088 3195 3184 1.85% 3.47% 3.11%
Case #6 3341 3285 3386 3434 1.72% 3.08% 4.54%
Case #7 3529 3477 3588 3668 1.48% 3.19% 5.50%

The Figure 4.1 illustrate the mean algorithms results difference of all extra-large

data sets. Comparing to the large data sets results in the Chapter 3, the extra-large

size tote-order matrix with increased order complexity make the differences between

the fast heuristic F#2 and all other algorithms reduced. The performance of the k-

means still has the largest difference from the fast heuristic F#2. The general

performances of the two heuristics #1 and #2 are closer, especially when the order

complexity increased from the case #0 to case #7.

Figure 4.1 Mean algorithms results difference of all extra-large data sets.

69

4.3 Number of Consolidators

With the 240 tote-order matrices in the extra-large data sets, performance behavior of

heuristic F#2 is further studied by changing number of consolidators (k). As shown

in the Table 4.7, we run the heuristic F#2 on each size of the tote-order matrix with

a set of number of consolidators.

Table 4.7 Number of Consolidators Set for each size of Tote-Order Matrix

Number of Totes (n) Number of Orders (m) Number of Consolidators (k)

200 560 40 35 30 25 20 15 10 5

300 840 60 50 45 38 30 22 15 7

400 1120 80 70 60 50 40 30 20 10

Table 4.8 shows results run by F#2 on all 200×560 tote-order matrices with

different number of consolidators. In this table, each row has 10 random generated

tote-order matrices with the same order complexity, each value is the mean of the 10

results. The difference among values of each row shows the effect of different number

of consolidators. From forty consolidators to five consolidators, more totes will be

assigned to each consolidator, the number of delivery packages will be closer to the

optimal solution which is the number of orders (m).

For each tote-order matrix, total number of items (I) is the maximum or worst

result that a heuristic solution could get, while number of orders (m) is the minimum

or best result. We develop a Maxmin ratio as surrogate for the heuristic F#2 solution

performance.

𝑀𝑎𝑥𝑚𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝐼 − 𝜁(𝐹#2)

𝐼 − 𝑚

Table 4.9 shows the Maxmin ratio of F#2 results on 200 totes by 560 orders

data sets. They also are illustrated by Figure 4.2.

70

Table 4.8 Mean Number of Delivery Packages run by F#2 on 200×560 Tote-Order

Matrix with Different Number of Consolidators

 Number of Consolidators (k)

 40 35 30 25 20 15 10 5

Case #0 958 947 939 933 918 899 868 799

Case #1 1146 1130 1113 1105 1082 1049 1013 927

Case #2 1231 1213 1193 1183 1161 1126 1082 983

Case #3 1320 1301 1283 1269 1239 1204 1153 1043

Case #4 1412 1392 1370 1353 1328 1285 1232 1098

Case #5 1506 1481 1463 1444 1415 1362 1304 1148

Case #6 1603 1580 1557 1536 1500 1447 1378 1214

Case #7 1698 1670 1645 1623 1587 1526 1452 1271

Table 4.9 Maxmin Ratio of 200×560 Tote-Order Matrix with Different Number of

Consolidators

 Number of Consolidators (k)

 40 35 30 25 20 15 10 5

Case #0 29% 31% 32% 33% 36% 39% 45% 57%

Case #1 25% 27% 29% 31% 33% 38% 42% 53%

Case #2 25% 27% 29% 30% 33% 37% 42% 53%

Case #3 25% 27% 28% 30% 33% 36% 41% 52%

Case #4 24% 26% 28% 29% 31% 35% 40% 52%

Case #5 23% 25% 27% 28% 31% 35% 40% 52%

Case #6 22% 24% 26% 27% 30% 34% 39% 51%

Case #7 22% 24% 25% 27% 29% 34% 39% 51%

71

Figure 4.2 Maxmin ratio of 200 totes by 560 orders matrix with different number

of consolidators.

The detailed results of 300 totes by 840 orders data sets are shown in the Tables

4.10 and 4.11, illustrated by Figure 4.3.

Table 4.10 Mean Number of Delivery Packages run by F#2 on 300×840 Tote-Order

Matrix with Different Number of Consolidators

 Number of Consolidators (k)

 60 50 45 38 30 22 15 7

Case #0 1443 1430 1416 1408 1393 1368 1334 1239

Case #1 1740 1718 1697 1683 1653 1612 1565 1452

Case #2 1870 1846 1825 1806 1779 1728 1682 1546

Case #3 2011 1982 1959 1944 1910 1858 1795 1643

Case #4 2146 2116 2091 2073 2040 1987 1916 1737

Case #5 2296 2262 2236 2213 2175 2117 2038 1842

Case #6 2436 2402 2375 2352 2307 2240 2154 1936

Case #7 2586 2546 2518 2490 2444 2370 2281 2037

72

Table 4.11 Maxmin Ratio of 300×840 Tote-Order Matrix with Different Number of

Consolidators

 Number of Consolidators (k)

 60 50 45 38 30 22 15 7

Case #0 28% 30% 31% 32% 34% 37% 41% 53%

Case #1 23% 25% 27% 28% 31% 34% 38% 48%

Case #2 23% 25% 27% 28% 30% 34% 37% 47%

Case #3 23% 24% 26% 27% 29% 33% 37% 47%

Case #4 22% 24% 26% 27% 29% 32% 36% 47%

Case #5 21% 23% 24% 26% 28% 31% 35% 46%

Case #6 21% 23% 24% 25% 27% 31% 35% 46%

Case #7 20% 22% 23% 24% 27% 30% 34% 45%

Figure 4.3 Maxmin ratio of 300 totes by 840 orders matrix with different number

of consolidators.

The detailed results of 400 totes by 1120 orders data sets are shown in the Tables

4.12 and 4.13, illustrated by Figure 4.4.

73

Table 4.12 Mean Number of Delivery Packages run by F#2 on 400×1120 Tote-

Order Matrix with Different Number of Consolidators

 Number of Consolidators (k)

 80 70 60 50 40 30 20 10

Case #0 1928 1912 1901 1887 1870 1838 1805 1708

Case #1 2336 2308 2286 2267 2231 2181 2124 2008

Case #2 2520 2491 2465 2442 2397 2344 2289 2145

Case #3 2710 2676 2648 2619 2581 2520 2451 2298

Case #4 2892 2853 2825 2801 2757 2693 2619 2430

Case #5 3088 3048 3018 2991 2942 2873 2782 2580

Case #6 3285 3240 3206 3181 3128 3045 2956 2730

Case #7 3477 3432 3395 3367 3316 3227 3127 2871

Table 4.13 Maxmin Ratio of 400×1120 Tote-Order Matrix with Different Number

of Consolidators

 Number of Consolidators (k)

 80 70 60 50 40 30 20 10

Case #0 28% 29% 30% 32% 33% 36% 39% 48%

Case #1 22% 24% 26% 27% 29% 32% 36% 43%

Case #2 22% 24% 25% 26% 29% 32% 35% 43%

Case #3 21% 23% 24% 26% 28% 31% 34% 42%

Case #4 21% 23% 24% 25% 27% 30% 33% 42%

Case #5 20% 22% 23% 24% 26% 29% 33% 41%

Case #6 19% 21% 22% 23% 25% 28% 32% 40%

Case #7 19% 21% 22% 23% 25% 28% 31% 40%

74

Figure 4.4 Maxmin ratio of 400 totes by 1120 orders matrix with different number

of consolidators.

4.4 Consolidation Tote Batch Window

An F-Warehouse continuously generates picklist totes. At any time, a batch of totes

are to be processed through several available order packaging stations. In the above

sections of this chapter, we generate extra-large sizes of tote-order matrix and perform

tote consolidation to the whole matrix. When considering the waiting time for the

consolidation batch window, larger batch size leads longer waiting time. The size of

the tote batch window is a partitioning decision on the dynamic flow of totes. In

this section, we generate extra-large sizes of tote-order matrix to simulate the tote

flow, then divide the matrix into smaller tote batches to apply the heuristic F#2 and

analyze the results.

4.4.1 Dynamic Design of Tote-Order Matrix

In the previous tote-order matrix generation, there is no rule for items of same order

could be in which tote, they totally random distribute between the first tote and the

last tote of the matrix. In this section, we design the dynamic tote flow which has

two key features:

75

The range between two items of one order cannot exceed 50 totes.

The relationship of tote i out of n totes and order r out of m orders is:

𝑖/𝑛 = 𝑟/𝑚

We perform the following detailed steps to generate the extra-large tote-order

matrix, each order r has two different items located in tote i and j:

Step 1: assign the first item of each order r to tote i, which is a random tote

from the range between
𝑟

𝑚
∗ (𝑛 − 50) − 10 and

𝑟

𝑚
∗ (𝑛 − 50) + 10; make sure the

number of items in totes ∑ 𝑎𝑖,𝑟
𝑚
𝑟=1 not exceed the 2𝑚/𝑛.

Step 2: assign the first item of each order r to tote j, the distance between tote

i and j cannot exceed 50. If 𝑎𝑖,𝑟 = 𝑎𝑗,𝑟 = 1, |𝑖 − 𝑗| ≤ 50, for all r; make sure the

number of items in totes ∑ 𝑎𝑖,𝑟
𝑚
𝑟=1 not exceed the 2𝑚/𝑛.

Step 3: perform data cleaning, first merge totes only having one or two items

with other totes, then remove empty totes.

The Figure 4.5 shows a small portion of a tote-order matrix with the dynamic

tote flow design. For visualization purpose, the tote range between two items of one

order is set as 5 totes instead of 50 in this example.

Figure 4.5 Example of tote-order matrix with dynamic design.

We generate extra-large tote-order matrix in three sizes, 560, 840 and 1120

orders, 10 random matrices for each size. These 10 random matrices have different

number of totes due to the dynamic design and data cleaning step. The Table 4.14

76

below shows sizes of all 30 tote-order matrices.

Table 4.14 Size of 30 Tote-Order Matrices

Number of Orders (m) Number of Totes (n) for Each 10 Random Matrices Mean Number of Totes (n)

560 174 172 174 178 171 177 174 174 175 172 174

840 266 263 267 266 262 264 269 270 266 264 266

1120 360 362 363 361 356 360 361 358 360 363 360

4.4.2 Experimental Design and Result Analysis

In the previous sections, we increase the number of consolidators according to the

size of the tote-order matrix to test the heuristics performance of handling the

large problem size. In this part of design, we treat the extra-large data sets as the

continuous tote flow and fix the number of consolidation stations as 5. The decision

variable is the consolidation batch window size, how many totes as a batch that be

distributed to the 5 available consolidation stations.

For each extra-large size of tote-order matrix, we set the smallest batch window

as 30 totes and gradually increase 30 totes for each batch size until the batch size

cover the whole tote-order matrix. We apply the fast heuristic F2 to calculate the

number of delivery packages of each batch and add up all batches for the whole tote-

order matrix. Mean results of the 10 random tote-order matrices of each size for all

batch sizes are shown in the Table 4.15. As batch size increase, the number of

delivery packages decrease, which is expected since larger batch size means more

totes assigned to consolidators and more orders consolidated. But large batch size

leads more waiting time for each tote batch, and the consolidation station capability

also limit the tote batch size.

To further demonstrate the results trending and the solution performance, we

calculate the Maxmin ratio and show in the Table 4.16. Since each order has two

items, the total number of items I is two times of the number of orders m. The Figure

4.6 illustrate the Maxmin ratio results in all variations of batch size.

77

Table 4.15 Mean Number of Delivery Packages run by F#2 with Different Batch

Sizes

Number

of
Orders

(m)
Mean Number

of Totes (n)

Batch Size (Number of Totes)

30 60 90 120 150 180 210 240 270 300 330 360

560 174 1062 945 878 889 877 788
840 266 1557 1432 1322 1324 1252 1245 1225 1211 1125

1120 360 2046 1861 1763 1708 1698 1619 1610 1602 1583 1555 1530 1445

Table 4.16 Maxmin Ratio of F#2 Results with Different Batch Sizes

Number of
Orders (m)

Mean Number of
Totes (n)

Batch Size (Number of Totes)

30 60 90 120 150 180 210 240 270 300 330 360

560 174 10% 31% 43% 41% 43% 59%
840 266 15% 29% 43% 42% 51% 52% 54% 56% 66%

1120 360 17% 34% 43% 47% 48% 55% 56% 57% 59% 61% 63% 71%

Figure 4.6 Maxmin ratio of F#2 results with different batch sizes.

4.5 Twinning Design – Future Research

The twinning design is the order similarity percentage in the tote-order matrix.

In this section, we design two orders could have items in two same totes, which

called twinning orders. This is a preliminary design for the future research. The

78

experimental design only includes the data sets of 200×560 Tote-Order Matrix. The

percentage of twinning orders quantity out of total 560 orders is from 0%, 20%,

40%... to 100%. For each percentage of twinning orders quantity, 10 random tote-

order matrices are generated. The items of each order are in two totes. The total

number of items (I) is 1120. We use the same experimental design for number of

consolidators as section 4.3. The heuristic #2 is applied on the data sets of tote-order

matrix with the variety of number of consolidators.

For each twinning order percentage, mean number of delivery packages of the 10

random tote-order matrices for all consolidator numbers are shown in the Table

4.17. The following table 4.18 show the Maxmin ratio of the F#2 results. And the

Figure 4.7 illustrates the Maxmin ratio results for all twinning orders percentages.

Table 4.17 Mean Number of Delivery Packages run by F#2 with Different Number

of Consolidators

Twinning Orders

Percentage
Number of Consolidators (k)

40 35 30 25 20 15 10 5

100% 821 808 804 799 793 777 761 723

80% 835 821 813 807 799 784 767 727

60% 833 822 813 809 796 782 764 729

40% 870 858 851 845 835 814 793 752

20% 907 900 905 900 901 874 845 776

0% 958 947 939 933 918 899 868 799

Table 4.18 Maxmin Ratio of F#2 Results with Different Number of Consolidators

Twinning Orders

Percentage
Number of Consolidators (k)

40 35 30 25 20 15 10 5

100% 53% 56% 56% 57% 58% 61% 64% 71%

80% 51% 53% 55% 56% 57% 60% 63% 70%

60% 51% 53% 55% 56% 58% 60% 64% 70%

40% 45% 47% 48% 49% 51% 55% 58% 66%

20% 38% 39% 38% 39% 39% 44% 49% 61%

0% 29% 31% 32% 33% 36% 39% 45% 57%

79

Figure 4.7 Maxmin ratio of F2 results with different number of consolidators.

80

CHAPTER 5

BUY ONLINE PICKUP FROM STORE (BOPS)

5.1 Introduction

5.1.1 Omnichannel Retailing

The success of Amazon confirms that a singular channel strategy, pure online, can

effectively meet the demand requirements of most customers. To expand into the

online channel, retailers are increasingly pursing a dual distribution strategy: product

inventory is positioned both in stores shelves and in a fulfillment center.

Figure 5.1 Operational structure of a dual distribution strategy.

As the Figure 5.1 shows, the omnichannel distribution supply chain consists of

a central warehouse that stores large quantities of bulk inventory, several retail stores

each of which holds inventory for immediate customer sales, and a fulfillment center

which is designed for quick shipment of online orders.

DISTRIBUTION

CENTER
Bulk Stock

RETAIL STORES

FULFILLMENT

CENTER
Online Orders

STORE

FULFILLMENT
PICK/PACK

ONLINE CUSTOMER

ORDERS

1. INVENTORY

ALLOCATION MODEL
Positioning in stores and

fulfillment centers

CUSTOMER

DELIVERY

PICK/PACK/SHIP

2. ORDER

ASSIGNMENT MODEL
Fulfill from center or a

specific store

4. BOP/FS PICKER

SCHEDULING
Picker schedule and

order priority

3. BOP/FS STORE

STOCKING LAYOUT
Arrange store inventory

for fast fulfillment

5. LAST MILE

DELIVERY
Schedule group or

single package delivery

81

5.1.2 The Store is the Fulfillment Center

An omnichannel retailer with physical stores receives online customer orders through

its website. Orders are then directed to a specific company store, where the ordered

items are picked from shelf inventory. Picked items are packaged and the package is

either (i) Shipped to the customer address – BOFS or (ii) Picked up from the store

by the customer – BOPS. S-Strategy fulfillment is a store-based supply chain solution

to fulfill online customer orders. Success in online retailing requires a fast fulfillment

machine, a system that starts from SUBMIT ORDER and ends with parcel delivery.

In an S-Strategy the orders are picked from store inventory and then packaged for

customer delivery.

The most aggressive brick-and-mortar retailers, led by Walmart, are using a S-

Strategy or BOP/FS model to grow their online business. In effect they have

converted the store into a fulfillment center. The key advantage is that there are

no transshipments and last mile delivery occurs directly from the store. A second

advantage is the ability to offer same day delivery using a local last mile delivery

partner. Amazon is also pursuing a similar strategy with the acquisition of Whole

Foods.

BOPS and BOFS are the strategy of choice for many retailers, but Sheffi (2016)

argue that these solutions are unlikely to provide the needed efficiency gains. He

argues that they disrupt store workflow and add inefficient tasks to a site ill-designed

for order picking. The efficiency question is: Is an S-Strategy competitive?

This chapter first presents the operational structure of the buy online pickup

from store (BOPS) strategy, and second presents two decisions models that are

integral to this strategy: BOPS store stocking layout and BOPS picker scheduling.

82

5.2 Online Order Fulfillment in a BOPS Retailer

Many retailers, particularly in the grocery business, have built their online sales

strategy around a BOPS operation. BOPS is an expensive activity, requiring a picker

to walk through the store inventory and fulfill a customer’s inline order.

5.2.1 BOPS Operational Elements

Forward Stock – Items stocked on shelves in the retail section of the store. Stock is

arranged as per the stores product display strategy and area is always populated with

browsing customers. The forward stock cannot be physically rearranged, nor can the

stocking assignment changed to promote more efficient picking.

Back Stock – Fast pick area in the receiving or rear part of the store. Area is

not open to consumer retail. The shelving space is capacitated and only a limited

number of SKUs are selectively located here.

Picker Pool – Store employees assigned to online order picking. This is the

primary direct cost of BOPS.

Order Queue – Received online orders, time stamped and waiting for picking.

Orders will consist of one or more items.

Online Order Pick and Pack – Area where picked orders are packed and then

held for delivery.

5.2.2 Online Order Fulfillment Problems

Figure 5.2 illustrate the order picking process in a BOPS retailer. As online orders

continuously entering the system, an arrival time is stamped on each order. An order

can consist of one or more items. When the picker schedule starts, a picker goes

to collect items of one order from the online order pick pack area and come back

after picking them all. Then a fulfilled time is stamped to this order. The difference

between these two timestamps is the order fulfillment time, and it decided by the pick

travel distance and picker schedule.

83

Figure 5.2 Physical configuration of the fulfillment problem.

Store Stocking Layout Problem – The pick travel distance is determined by the

stocking layout. The forward stock is the common retail section of a physical store,

this section is arranged for customers browsing displayed products and cannot be

physically rearranged. The back stock is the fast pick area but the shelving space

capacitated, only a limited number of SKUs are selectively located here. The problem

is which SKU items should be back stocked. We explicit the item location model and

back-stock decision strategy for this problem.

Picker Scheduling Problem – The picker labor cost is the primary direct cost of

BOPS. Long picker schedule will increase the labor cost, while short picker schedule

will increase the order waiting cost. The picker start time also decides the order

fulfilled time. In the picker scheduling problem, we develop the picker schedule

optimization model to minimize the BOFS fulfillment cost.

The BOPS goals are, first, minimize the order picking time and, second,

minimize the order fulfillment cost. We model the order arrival process and the

84

store inventory dispersion to describe the fulfillment process. Simulation of online

order picking is used to compare several decision methods.

Model Notation:

k∊M Items stocked in the store {1 … m}

(i,j) Forward stocking location address of item k∊M, where i is the aisle-

direction number and j is the rack-direction number

d∊D Days in the simulation cycle

n∊Nd Order arriving during the active order period on day d

An,d Order arrival time

Qn,d Number of different items in an order

O{}n,d Set of different items included in order n

p∊P Available order pickers

5.3 BOPS Store Stocking Layout

5.3.1 Forward Stock

We simulated 100 SKU items k∊ {1 … 100} as a 10-by-10 shelves layout. As the

Figure 5.3 shown, the online order pick pack area is located at the back corner of the

store. The picker always starts from this area to pick items and comes back to drop

off items when picking finished.

Based on this starting point, each item k has a stocking location address (i,j),

where i is the aisle-direction number and j is the rack-direction number. The items

stocked on racks sharing a same aisle have the same aisle-direction number i.

Stocking location address of all 100 SKU items in the Figure 5.4.

From the single item aspect, we use the stocking location (𝐿𝑘, 𝑘 ∈ 𝑀) to

represent the pick travel distance from the start point to item k:

𝐿𝑘 = 2(𝑖𝑘 + 𝑗𝑘)

85

Figure 5.3 Forward stock of SKU item.

Figure 5.4 Stocking location address of SKU item.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 11 21 31 41 51 61 71 81 91

2 2 12 22 32 42 52 62 72 82 92

3 3 13 23 33 43 53 63 73 83 93

4 4 14 24 34 44 54 64 74 84 94

5 5 15 25 35 45 55 65 75 85 95

6 6 16 26 36 46 56 66 76 86 96

7 7 17 27 37 47 57 67 77 87 97

8 8 18 28 38 48 58 68 78 88 98

9 9 19 29 39 49 59 69 79 89 99

10 10 20 30 40 50 60 70 80 90 100

SKU Item - k

Rack-

direction

number j

Aisle

#1

Aisle

#2

Aisle

#3

Aisle

#4

Aisle

#5

Aisle-direction number i

1 2 3 4 5 6 7 8 9 10 11 12 13

1 (1,1) (1,1) (4,1) (4,1) (7,1) (7,1) (10,1) (10,1) (13,1) (13,1)

2 (1,2) (1,2) (4,2) (4,2) (7,2) (7,2) (10,2) (10,2) (13,2) (13,2)

3 (1,3) (1,3) (4,3) (4,3) (7,3) (7,3) (10,3) (10,3) (13,3) (13,3)

4 (1,4) (1,4) (4,4) (4,4) (7,4) (7,4) (10,4) (10,4) (13,4) (13,4)

5 (1,5) (1,5) (4,5) (4,5) (7,5) (7,5) (10,5) (10,5) (13,5) (13,5)

6 (1,6) (1,6) (4,6 (4,6 (7,6) (7,6) (10,6) (10,6) (13,6) (13,6)

7 (1,7) (1,7) (4,7) (4,7) (7,7) (7,7) (10,7) (10,7) (13,7) (13,7)

8 (1,8) (1,8) (4,8) (4,8) (7,8) (7,8) (10,8) (10,8) (13,8) (13,8)

9 (1,9) (1,9) (4,9) (4,9) (7,9) (7,9) (10,9) (10,9) (13,9) (13,9)

10 (1,10) (1,10) (4,10) (4,10) (7,10) (7,10) (10,10) (10,10) (13,10) (13,10)

Aisle

#5

Rack-

direction

number j

Aisle

#1

Aisle

#2

Aisle

#3

Aisle

#4

Stocking Location Address - (i,j)

Aisle-direction number i

86

Figure 5.5 Forward stocking location of SKU item.

5.3.2 Online Order Arrivals

The order arrivals follow the Poisson distribution, with the interarrival time (1/ λ) as

5 minutes. The daily active order period is 6 AM to 8 PM. Orders consist of one or

more items (𝑘 ∈ 𝑀). For each order, we first generate a random integer number

followed the uniform distribution on the interval from 1 to 5, which is the number of

different SKU items in an order, Qn,d. Then we generate a set of different items

included in order n on day d, O{}n,d.

Item Frequency Design – The item frequency design is to create order designs

with different item frequency and quantify the performance difference. We evenly

distribute the 100 SKU items into 4 groups. The item grouping is shown in the

table 5.1 below. To make sure there is no significant difference about the items pick

travel distance among these 4 groups, the summations of stocking location (∑ 𝐿𝑘) for

items in groups are close.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 4 4 10 10 16 16 22 22 28 28

2 6 6 12 12 18 18 24 24 30 30

3 8 8 14 14 20 20 26 26 32 32

4 10 10 16 16 22 22 28 28 34 34

5 12 12 18 18 24 24 30 30 36 36

6 14 14 20 20 26 26 32 32 38 38

7 16 16 22 22 28 28 34 34 40 40

8 18 18 24 24 30 30 36 36 42 42

9 20 20 26 26 32 32 38 38 44 44

10 22 22 28 28 34 34 40 40 46 46

Aisle-direction number i

Aisle

#5

Forward Stocking Location of Item k - L k

Rack-

direction

number j

Aisle

#1

Aisle

#2

Aisle

#3

Aisle

#4

87

Table 5.1 Problem Sizes with Number of Variables and Constrains

For different designs, we change the percentage of group items out of total

orders. Table 5.2 shows the 5 designs we created. In design #1, the 4 groups

percentage are same, which means the frequency of all 100 SKU items showing up

in total orders are evenly distributed. In the following designs, we gradually increase

the percentage of one group items. In design #5, the group #4 items constitute 70

percent of total orders, which makes them have the most frequency.

Table 5.2 Item Frequency Design

 Group #1 Group #2 Group #3 Group #4

Design #1 25% 25% 25% 25%

Design #2 20% 25% 25% 30%

Design #3 15% 20% 25% 40%

Design #4 10% 15% 20% 55%

Design #5 5% 10% 15% 70%

For each design, we generate 20 replications of 1-day order arrivals. There are

total 100 order arrival data sets for the stocking layout problem.

5.3.3 Arrange Store Inventory for Fast Fulfillment

The BOPS stocking problem is to select SKU items and stock a part inventory of

them in the fast pick area for quick pick, we also call this back-stock strategy. The

fast pick area locates in the back part of the store and close to the order pick pack

area. When orders have items that back stocked in this area, the picker could get

the item immediately instead of traveling around the store, so the item picking time

could be saved. The objective of the back-stock strategy is to minimize the order

picking time.

∑ Lk

Group #1 1 2 3 4 5 6 7 8 9 10 91 92 93 94 95 96 97 98 99 100 41 51 45 50 60 624

Group #2 11 12 13 14 15 16 17 18 19 20 81 82 83 84 85 86 87 88 89 90 42 52 55 49 59 624

Group #3 21 22 23 24 25 26 27 28 29 30 71 72 73 74 75 76 77 78 79 80 43 53 46 48 58 626

Group #4 31 32 33 34 35 36 37 38 39 40 61 62 63 64 65 66 67 68 69 70 44 54 56 47 57 626

SKU Items - k

88

Decision Variable:

k∊B Items in the back-stock area for quick pick, capacitated and limited by

the allocated back stock square footage, and the item inventory.

5.3.3.1 Back Stock Strategy. The space of fast pick area is capacitated and only

a limited number of SKU items are selectively located here. In the simulation model,

we set 10 SKU items (k∊B) can be back stocked out of the total 100 SKU items

(k∊M). As the Figure 5.6 shows, we test the following back-stock strategies by

running simulation experiments on 1-day orders, the data sets with 5 item frequency

designs by 20 replications.

Figure 5.6 Back stock strategy.

Strategy #0 – no item back stocked. This is the nominal case, online orders are

just forwarded to the store, B is null.

Strategy #1 – most frequent items in orders. The straightforward back-stock

strategy is to select the most frequent items based on the order history. From the

order arrivals data, the frequency 𝑓𝑘 of all 100 SKU items showing up in orders are

available, assign the 10 items with highest frequency to the fast pick area.

Strategy #2 – item frequency and forward stocking location. For each item, the

forward stocking location 𝐿𝑘 represents the pick travel distance between the item and

the order pack area. Considering items with a same frequency 𝑓𝑘 from order history,

89

the item with longer pick travel distance has higher priority to be selected into the

fast pick area. For all 100 SKU items, in order to normalize these two sets of value,

𝑓𝑘 and 𝐿𝑘, to the same scale [0, 1], divide them by the maximum value of each:

𝑓𝑘

max
𝑘∈𝑀

𝑓𝑘
+

𝐿𝑘

max
𝑘∈𝑀

𝐿𝑘

After the calculation for all items k∊M, 10 of them with the largest value are the

back stocked items k∊B.

5.3.3.2 Pick Travel Distance / Picking Time Estimation. As orders arrival

during the active order period, one picker is sending to collect them one by one. Each

order is a picklist for one time. The picker starts from the pick pack area, pick all

items for the order, come back, and drop the items off for packing.

Model Assumptions:

There is only one picker (P=1).

Orders are processed in the arrival sequence (FCFS).

All items in an order are picked in the same picklist.

Items in the back-stock area (k∊B) are skipped for pick travel distance

estimation.

For a single-item order, the pick travel distance is the stocking location of the

item:

𝑅𝑛,𝑑 = 𝐿𝑘|𝑘 ∈ 𝑂{}𝑛,𝑑 , 𝑘 ∉ 𝐵

The pick travel route of a multi-item order is as the figure 5.7 shown. For

example, an order n,d has 5 items, 𝑄𝑛,𝑑 = 5 , the stocking location address,

(𝑖𝑘 , 𝑗𝑘)|𝑘 ∈ 𝑂{}𝑛,𝑑 , are highlighted as the below shown. The picker traverses and

picks the items from the small number to large number in both aisle and rack

direction. The items having a same stocking location address in aisle direction i will

be picked when the picker go down the aisle. After finishing an aisle, the picker

90

needs to go back to the zero-level of the rack direction j and continues the following

aisles.

Figure 5.7 Pick travel route of a multi-item order.

Pick travel distance for order n,d:

𝑅𝑛,𝑑 = 2 [max
𝑘∈𝑂{}𝑛,𝑑,𝑘∉𝐵

𝑖𝑘 + ∑ max(𝑗𝑘|𝑖𝑘 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑣𝑎𝑙𝑢𝑒)

𝑘∈𝑂{}𝑛,𝑑,𝑘∉𝐵

]

The order picking time is time duration of traveling and picking items in an

order. Then for order n,d, it can be calculated by the pick travel distance 𝑅𝑛,𝑑 and the

number of different items in the order 𝑄𝑛,𝑑. With the following parameters:

α – Picker walking time of each unit

β – Picking and packing time of each item

Picking time for order n,d:

𝑇𝑛,𝑑 = 𝛼𝑅𝑛,𝑑 + 𝛽𝑄𝑛,𝑑

1 2 3 4 5 6 7 8 9 10 11 12 13

1 (1,1) (1,1) (4,1) (4,1) (7,1) (7,1) (10,1) (10,1) (13,1) (13,1)

2 (1,2) (1,2) (4,2) (4,2) (7,2) (7,2) (10,2) (10,2) (13,2) (13,2)

3 (1,3) (1,3) (4,3) (4,3) (7,3) (7,3) (10,3) (10,3) (13,3) (13,3)

4 (1,4) (1,4) (4,4) (4,4) (7,4) (7,4) (10,4) (10,4) (13,4) (13,4)

5 (1,5) (1,5) (4,5) (4,5) (7,5) (7,5) (10,5) (10,5) (13,5) (13,5)

6 (1,6) (1,6) (4,6 (4,6 (7,6) (7,6) (10,6) (10,6) (13,6) (13,6)

7 (1,7) (1,7) (4,7) (4,7) (7,7) (7,7) (10,7) (10,7) (13,7) (13,7)

8 (1,8) (1,8) (4,8) (4,8) (7,8) (7,8) (10,8) (10,8) (13,8) (13,8)

9 (1,9) (1,9) (4,9) (4,9) (7,9) (7,9) (10,9) (10,9) (13,9) (13,9)

10 (1,10) (1,10) (4,10) (4,10) (7,10) (7,10) (10,10) (10,10) (13,10) (13,10)

Pick Travel Route

Aisle-direction number i

Rack-

direction

number j

Aisle

#1

Aisle

#2

Aisle

#3

Aisle

#4

Aisle

#5

1

2

3

4

5

91

5.3.3.3 Performance Analysis of Back Stock Strategy. The objective of the back-

stock strategy is to minimize the order picking time. For each order, the picking time

is a rectilinear function of the pick travel distance. Since the simulation data sets are

1-day order arrivals, we minimize the summation of the whole day orders pick travel

distance.

min ∑ 𝑅𝑛,𝑑

𝑛∈𝑁𝑑

The strategy #0 is the nominal case with no item in the fast pick area, for each

replication, we use it as the base line to measure the performance of strategy #1 and

#2. The following equations of 𝛿1 and 𝛿2 calculate how much the strategy #1 and #2

perform better than the nominal case. They calculate the difference of the total pick

travel distance for all orders in day d between the strategy #1 (#2) and the strategy

#0.

𝛿1 =
∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑

|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0 − ∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #1

∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0

𝛿2 =
∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑

|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0 − ∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #2

∑ 𝑅𝑛,𝑑𝑛∈𝑁𝑑
|𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 #0

We generate 1-day order arrivals with 5 item frequency designs, and 20

replications for each design. We show the detailed simulation results of design #1 in

the Table 5.3 as an example.

In average of the 20 replications, the whole day orders pick travel distance can

be decreased 12.42% from the nominal case (strategy #0) by strategy #1, and 17.6%

by strategy #2. We are also interested in the performance differences between

strategy #1 and #2 (𝛿2 − 𝛿1). For design #1 orders, mean of the differences between

strategy #1 and #2 (𝛿2 − 𝛿1) is 5.18%. The following paired two sample t-Test

supports the differences is statistically significant [t=-10.45, p=2.58E-09]. The

strategy #2 performs better than the strategy #1 in design #1 orders.

92

Table 5.3 Back Stock Strategy Results of Design #1

Replication

∑ 𝑹𝒏,𝒅𝒏∈𝑵𝒅

δ1 δ2 δ2 - δ1 Strategy #0 Strategy #1 Strategy #2

1 7850 6586 6312 16.10% 19.59% 3.49%

2 7324 6384 6078 12.83% 17.01% 4.18%

3 8024 6882 6820 14.23% 15.00% 0.77%

4 7808 7020 6612 10.09% 15.32% 5.23%

5 7626 6736 6228 11.67% 18.33% 6.66%

6 8870 7822 7108 11.82% 19.86% 8.05%

7 8814 7512 7290 14.77% 17.29% 2.52%

8 7956 6862 6632 13.75% 16.64% 2.89%

9 8392 7544 6868 10.10% 18.16% 8.06%

10 7464 6320 6032 15.33% 19.19% 3.86%

11 7696 6802 6184 11.62% 19.65% 8.03%

12 7604 6596 6330 13.26% 16.75% 3.50%

13 8030 7142 6678 11.06% 16.84% 5.78%

14 8258 7580 6792 8.21% 17.75% 9.54%

15 8688 7750 7188 10.80% 17.27% 6.47%

16 8294 7300 6818 11.98% 17.80% 5.81%

17 7840 6806 6416 13.19% 18.16% 4.97%

18 8796 7646 7098 13.07% 19.30% 6.23%

19 8226 7080 6796 13.93% 17.38% 3.45%

20 7420 6642 6330 10.49% 14.69% 4.20%

Table 5.4 Paired Two Sample t-Test for Means

 δ1 δ2

Mean 0.124151 0.175997

Variance 0.000396 0.000227

Observations 20 20

Pearson Correlation 0.218399
Hypothesized Mean Difference 0
df 19
t Stat -10.4504
P(T<=t) one-tail 1.29E-09
t Critical one-tail 1.729133
P(T<=t) two-tail 2.58E-09
t Critical two-tail 2.093024

93

We summarize the results of all 5 designs in the Table 5.5. δ1
̅̅ ̅ and δ2

̅̅ ̅ are the

mean 𝛿1 and 𝛿2 of 20 replications. Means of the differences (δ2 − δ1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅) are

statistically significant for all 5 designs. The strategy #2 performs better than the

strategy #1 in all 5 designs of orders.

Table 5.5 Summary of Back Stock Strategy Results for 5 Designs

 𝜹𝟏
̅̅ ̅ 𝜹𝟐

̅̅ ̅ 𝜹𝟐 − 𝜹𝟏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ t Stat P(T<=t) two-tail

Design #1 12.42% 17.60% 5.18% -10.45 2.58E-09

Design #2 12.30% 16.90% 4.60% -15.23 4.20E-12

Design #3 13.73% 17.80% 4.07% -12.09 2.30E-10

Design #4 18.06% 22.40% 4.34% -11.20 8.24E-10

Design #5 22.87% 28.12% 5.25% -8.57 5.89E-08

We draw the following box plot to examine experimental results graphically.

The Figure 5.8 indicates that both strategy #1 (𝛿1) and #2 (𝛿2) perform better in

design #4 and design #5 than the other designs. The means of design #1, #2, and #3

do not differ.

Figure 5.8 Box plot of back stock strategy 1 and 2 performance in 5 designs.

94

We use the analysis of variance (ANOVA) to test if different order designs

affect the mean strategy #2 performance (δ2
̅̅ ̅). As the following Tables 5.6 and 5.7

shown, we have strong evidence to conclude that null hypothesis is not true. That is,

the order design affects the strategy #2 performance [F=154.9405, p=9.87E-41].

Table 5.6 Summary of Back Stock Strategy #2

Groups Count Sum Average Variance

Design #1 20 3.519949 0.175997 0.000227

Design #2 20 3.380074 0.169004 0.000136

Design #3 20 3.560724 0.178036 0.000138

Design #4 20 4.480331 0.224017 0.000435

Design #5 20 5.624685 0.281234 0.000522

Table 5.7 ANOVA of Back Stock Strategy #2

Source of Variation SS df MS F P-value F crit

Between Groups 0.180701 4 0.045175 154.9405 9.87E-41 2.467494

Within Groups 0.027699 95 0.000292

Total 0.2084 99

95

5.4 BOPS Picker Scheduling

5.4.1 Fulfillment Objective

The primary goal of BOPS picking operation is to minimize the order fulfillment

cost. In this section, we define the fulfillment cost objective function with the picker

scheduling decision variables and cost coefficients, perform 5-day simulation for the

order picking operation, then analyze the simulation results.

Decision Variables:

Sp, Ep Picker schedule – Start time and End Time

Fn,d Order fulfill time – Latest pick time of an item in O{}n,d

Xn,d Order picked on same day (Xn,d =0) or next day (Xn,d =1)

Back Stock Setup Cost: An S-Strategy attempts to leverage the existing store

stock to fulfill orders, but the layout is inherently inefficient for fast picking. Selected

inventory is back stocked for faster picking. This is fixed measure and not in the

objective function.

Delivery Tardiness (Waiting) Cost: Difference between the order arrival time

and the customer delivery time.

Picker Schedule Cost: The number of order pickers and their work hours.

The delivery tardiness (waiting) cost and the picker schedule cost are variable

measures, with the following cost coefficients, they form the objective function of

fulfillment cost:

Ch Picker hourly labor cost

Cw Waiting time cost coefficient, hourly delay

CO Overnight Waiting time cost coefficient

BOPS Fulfillment Cost (daily):

𝜓 = 𝐶ℎ ∑[𝐸𝑝 − 𝑆𝑝]

𝑝∈𝑃

+
𝐶𝑤

𝐷
∑ ∑ [𝐹𝑛,𝑑 − 𝐴𝑛,𝑑 |𝑋𝑛,𝑑 = 0]

𝑛∈𝑁𝑑𝑃𝑑∈𝐷

+
1

𝐷
∑ ∑ [𝐶𝑤(20 − 𝐴𝑛,𝑑) + 𝐶𝑤(𝐹𝑛,𝑑 − 6) + 𝐶𝑂|𝑋𝑛,𝑑 = 1]

𝑛∈𝑁𝑑𝑃𝑑∈𝐷

96

The first part of the objective function is the picker schedule cost, it depends on

the decision variables picker start time and end time (Sp, Ep). Since the daily order

active period is 6 AM to 8 PM, in the simulation experiments all picker schedules

𝑆𝑝 ≥ 6 and 𝐸𝑝 ≤ 20 (24-hour clock). There is only one picker (P=1).

The second part of the objective function is the delivery tardiness (waiting) cost

for the same-day fulfilled orders (𝑋𝑛,𝑑 = 0). The simulation cycle is 5 days (D=5).

Orders are processed in the arrival sequence (FCFS). For order 𝑛 ∈ 𝑁𝑑 , the order

fulfill time (𝐹𝑛,𝑑) is the time point of the latest pick time of an item in O{}n,d. It can

be calculated by the order picking time (𝑇𝑛,𝑑), order arrival time (𝐴𝑛,𝑑) and the

previous order fulfill time (𝐹𝑛−1,𝑑).

𝐹𝑛,𝑑 = 𝐴𝑛,𝑑 + 𝑇𝑛,𝑑 |𝐴𝑛,𝑑 ≥ 𝐹𝑛−1,𝑑

𝐹𝑛,𝑑 = 𝐹𝑛−1,𝑑 + 𝑇𝑛,𝑑 |𝐴𝑛,𝑑 < 𝐹𝑛−1,𝑑

The third part of the objective function is the delivery tardiness (waiting) cost

for the next-day fulfilled orders (𝑋𝑛,𝑑= 1). The orders left to the next day fulfilled

have three waiting segments. The same day waiting segment is from the order arrival

time (𝐴𝑛,𝑑) to the end of the order active period 8 PM (20). The next day waiting

segment is from the start of the order active period 6 AM to the order fulfill time

(𝐹𝑛,𝑑). The middle waiting segment in between is the overnight waiting.

5.4.2 Design of Experiments

The purpose of the experimental design in the picking operation is to investigate the

performance sensitivity to picker schedule and waiting cost coefficient. We apply the

back-stock strategy #2 since it has the best performance.

97

5.4.2.1 Order Arrival Process. For the picker scheduling experiments, we generate

order arrivals for 5-day planning period. Instead of a fixed arrival rate (λ) for the whole day

order arrivals, we create the order arrival surge design. The item frequency design also

applied on the 5-day orders. The Figure 5.9 summarizes the order arrivals difference

between the stocking and picking problem.

Figure 5.9 Order arrivals difference between the stocking and picking problem.

Order Arrival Surge Design – Instead of setting an arrival rate (λ) for the whole

day’s active order period, we separate the total 14 hours into 7 time-windows, 2

hours each, to create an order arrival surge during the noon. The Table 5.8 shows the

order interarrival time (1/ λ) of every time window in minutes. In the simulation

model, time is represented in minutes. For example, 6 AM is represented by 360 and

8 PM is 1200. In the Figure 5.10, we show the frequency of order arrival time in the

5-day simulation to visualize the surge.

Table 5.8 Order Arrival Surge Design

Time Window 6-8 8-10 10-12 12-2 2-4 4-6 6-8

Time Window in Minutes 360-480 480-600 600-720 720-840 840-960 960-1080 1080-1200

Order Interarrival Time 1/λ (Minutes) 7 5 4 2 3 4.5 6

AM PM

98

Figure 5.10 Histogram of 5-day orders arrival time.

5.4.2.2 Picker Scheduling. The experimental design of picker schedule involves

picker scheduled length or 𝐸𝑝 − 𝑆𝑝. The longest picker schedule is same as the daily

order active period, 14 hours, from 6 AM to 8 PM. We calculate the shortest picker

scheduled length by the daily picking time of total orders:

1

𝐷
∑ ∑ 𝑇𝑛,𝑑

𝑛∈𝑁𝑑𝑃𝑑∈𝐷

In the online order arrivals section, we generate the simulation data of 5-day

orders with 5 item frequency designs. After calculation, the average daily picking

time of the 5 designs is 7.315 hours. We set the shortest picker scheduled length as 8

hours. The Table 5.9 show the experimental design of picker schedule.

99

Table 5.9 Picker Schedule

Picker Start
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM

Daily
Picker

scheduled
Hours

(𝑬𝒑 − 𝑺𝒑)

8 6 AM - 2 PM 7 AM - 3 PM 8 AM - 4 PM 9 AM - 5 PM 10 AM - 6 PM 11 AM - 7 PM 12 PM - 8 PM

9 6 AM - 3 PM 7 AM - 4 PM 8 AM - 5 PM 9 AM - 6 PM 10 AM - 7 PM 11 AM - 8 PM

10 6 AM - 4 PM 7 AM - 5 PM 8 AM - 6 PM 9 AM - 7 PM 10 AM - 8 PM

11 6 AM - 5 PM 7 AM - 6 PM 8 AM - 7 PM 9 AM - 8 PM

12 6 AM - 6 PM 7 AM - 7 PM 8 AM - 8 PM

13 6 AM - 7 PM 7 AM - 8 PM

14 6 AM - 8 PM

5.4.2.3 Cost Coefficients. The hourly waiting time cost coefficient (𝐶𝑤) is an

indirect or welfare cost, and tricky to estimate. We take the extreme case of 14-hour

picker schedule (6 AM – 8 PM) from the above experimental design. This case gives

the maximum picker schedule hours and minimum delivery tardiness (waiting) time

without any order left to next day. This is the fastest fulfilment, then we think in this

case the delivery tardiness (waiting) cost is equivalent to the picker schedule cost.

With a given picker hourly labor cost, 𝐶ℎ = 30, an estimated waiting time cost (𝐶�̃�)

can be calculated by:

𝐶�̃� =
14𝐷𝐶ℎ

∑ ∑ [𝐹𝑛,𝑑 − 𝐴𝑛,𝑑]𝑛∈𝑁𝑑𝑃𝑑∈𝐷

We use minute as time unit in the simulation, this estimated waiting time cost

(𝐶�̃�) gives the waiting time cost per minute, then the hourly waiting time cost

coefficient (𝐶𝑤):

𝐶𝑤 = 60𝐶�̃� ∀ 𝐶�̃�𝜖{0.4, 0.3, 0.2, 0.1, 0.05}

With five sets of the 5-day orders, we run the simulation experiments and

calculate the average 𝐶�̃� is 0.344. Then we expend it to five values and investigate

the performance sensitivity to them.

100

Instead of using full duration from 8 PM to 6 AM as the overnight waiting

time, we develop a relationship between overnight waiting time cost coefficient (𝐶𝑂)

and hourly waiting time cost coefficient (𝐶𝑤) and use 𝛾 to stand for the overnight

waiting hours. We also test two value of 𝛾.

𝐶𝑂 = 𝛾𝐶𝑤 ∀ 𝛾𝜖{2, 1}

5.4.3 Performance Analysis of Simulation Results

5.4.3.1 Picker Scheduling. Based on each item frequency design in orders, we

have 5 sets of 5-day order arrivals. We perform the simulation of all experimental

picker schedules on each design of 5-day orders. Take the simulation results of design

#1 orders as an example, the Table 5.10 summarize the total fulfillment cost of 5-day

orders for all picker schedules. The results of the objective function are the summation

of picker schedule cost, same-day waiting cost, overnight waiting cost and next-day

waiting cost.

The order active period is from 6 AM to 8 PM. When the picker working to

the last order arrival (picker end time 𝐸𝑝 = 8 𝑃𝑀), almost no order left to the next

day, so the overnight and next-day waiting cost is zero. One exception is the 8-hour

schedule from 12 PM to 8 PM, with 5 orders left to the next day, the fulfillment cost

has a small portion of overnight and next-day waiting cost.

From the Figure 5.11, we can see the fulfillment objective is sensitive to both

the picker schedule length and the start time. A later start time is preferred, since

it reduce the risk of orders delayed overnight. As the start time continues pushing

back, the same-day waiting increases in the queuing model, the fulfillment cost goes

up. With 𝐶�̃� = 0.4 𝑎𝑛𝑑 𝛾 = 2, the optimal picker schedule is the 10-hour length

from 9 AM to 7 PM.

101

Table 5.10 BOPS Fulfillment Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1

Picker Start
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM

Daily
Labor

Scheduled
Hours

(𝑬𝒑 − 𝑺𝒑)

8 2844 2417 2114 2146 2110 2206 2387

9 2272 2031 1947 1895 1940 2104

10 2033 1945 1859 1815 1893

11 1988 1907 1852 1840

12 1988 1936 1908

13 2048 2017

14 2154

Table 5.11 Same-day Waiting Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1

Picker Start
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM

Daily
Labor

Scheduled
Hours

(𝑬𝒑 − 𝑺𝒑)

8 933 637 470 564 658 870 1170

9 497 333 302 338 484 754

10 275 214 191 227 393

11 169 127 131 190

12 96 81 108

13 61 67

14 54

Table 5.12 Overnight Waiting Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1

Picker Start
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM

Daily
Labor

Scheduled
Hours

(𝑬𝒑 − 𝑺𝒑)

8 380 271 182 134 78 38 4

9 261 179 126 76 34 0

10 179 126 76 34 0

11 126 76 34 0

12 76 34 0

13 34 0

14 0

102

Table 5.13 Next-day Waiting Cost (𝐶�̃� = 0.4, 𝛾 = 2) – Design #1

Picker Start
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM

Daily
Labor

Scheduled
Hours

(𝑬𝒑 − 𝑺𝒑)

8 331 309 263 247 174 98 12

9 165 169 168 130 72 0

10 80 105 92 54 0

11 42 54 37 0

12 16 20 0

13 3 0

14 0

Figure 5.11 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight

waiting 2 hours) – design #1.

5.4.3.2 Order Designs. We show the fulfillment cost of the other 4 designs of 5-

day orders with the same coefficients value 𝐶�̃� = 0.4 𝑎𝑛𝑑 𝛾 = 2 in the Figure 5.12

(the detailed simulation results of the 4 designs are in the appendix). These graphs have

the similar pattern as the design #1 graph, the optimal picker schedules of order design

#2, #3, and #4 are also from 9 AM to 7 PM.

The difference among the 5 design of orders is the item frequency of orders.

The simulation results of back-stock strategy show the back-stock strategy is more

effective on the orders with higher item frequency. As item frequency of orders higher,

103

the picking time for each order is less, which make the order waiting cost and the

fulfillment cost decrease in general. Due to the order waiting time decrease among

designs, the graphs show the fulfillment cost gaps among the picker schedule length

become smaller, and a tendency of later picker start time. In the design #5, the

optimal picker schedule moves to a 9-hour length from 10 AM to 7 PM. But the

fulfillment cost of the optimal schedule and schedule 9 AM to 7 PM or 10 AM to 8

PM is close, which means the high item frequency orders give more flexibility in the

picker scheduling.

Figure 5.12 BOPS fulfillment cost (waiting time cost coefficient 0.4, overnight

waiting 2 hours) in designs.

5.4.3.3 Cost Coefficients. The delivery tardiness (waiting) cost is balanced with

the picker schedule cost. We show the graphs of design #1 as the example, as the

waiting time cost coefficient (𝐶𝑤)̃ decreases, the picker schedule length dominates

the fulfillment cost. Comparing to 𝐶�̃� = 0.4, when 𝐶�̃� decreases to 0.2, the optimal

schedule shortens to the 9-hour with the same start time. As 𝐶�̃� continues decreasing

to 0.1 and 0.05, the 8-hour schedules give the minimum fulfillment cost.

104

Figure 5.13 BOPS fulfillment cost (overnight waiting 2 hours) of design #1.

For each set of 5-day orders, the order fulfill time (𝐹𝑛,𝑑) is decided by the picker

schedule. We still take the simulation results of design #1 orders as the example,

Table 5.14 shows the number of next-day fulfilled orders under each picker schedule.

The schedules end at 8 PM barely leave orders to the next day.

Table 5.14 Number of Next-day Fulfilled Orders – Design #1

Picker Start
Time (𝑺𝒑) 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM

Daily
Labor

Scheduled
Hours

(𝑬𝒑 − 𝑺𝒑)

8 475 339 227 168 98 47 5

9 326 224 158 95 43 0

10 224 158 95 43 0

11 158 95 43 0

12 95 43 0

13 43 0

14 0

105

When we change the overnight hours 𝛾 = 1, it only decreases the overnight waiting

cost of the next-day fulfilled orders. With the same waiting time cost coefficient (𝐶𝑤)̃, the

fulfillment cost of schedules having no next-day fulfilled orders stay same. Comparing to

the above graphs of 𝛾 = 2, the graphs below (𝛾 = 1) show the fulfillmnet cost decreases

from the left side. There is no change of the 14-hour full coverage schedule. For each

schedule length, the schedule with the lastest picker start time also stay same.

Figure 5.14 BOPS fulfillment cost (overnight waiting 2 hours) of design #1.

106

CHAPTER 6

SUMMARY AND FUTURE RESEARCH

Fulfillment of online retail orders is a critical challenge for retailers since the legacy

infrastructure and control methods are ill suited for online retail. The primary

performance goal of online fulfillment is speed or fast fulfillment, requiring received

orders to be shipped or ready for pickup within a few hours. Several novel numerical

problems characterize fast fulfillment operations and this research solves two such

problems, F-Warehouse order consolidation and BOPS store picking problems.

6.1 Summary

Order fulfillment warehouses (F-Warehouses) are a critical component of the physical

internet behind online retail supply chains, and typically operate with an explosive

storage policy. That is, each item is stocked in multiple random locations dispersed

throughout the warehouse. Orders are then picked and collected in totes which

are assigned to one of many packaging stations, where items belonging to the same

order are consolidated into a shipment package. There is a one-to-many relationship

between customer orders and totes. This research formulates and solves the order

consolidation problem. At any time, a batch of totes are to be processed through

several available order packaging stations. Tote assignment to a station will determine

whether an order will be shipped in a single package or multiple packages. Reduced

shipping costs are a key operational goal of an online retailer, and the number

of packages is a determining factor. The decision variable is which station a tote

should be assigned to, and the performance objective is to minimize the number of

packages and balance the packaging station workload. This research first formulates

the order consolidation problem as an MIP, and then develops two fast heuristics

(#1 and #2) plus two clustering algorithm derived solutions. For small problems,

107

the heuristic 2 were on average within 4.1% of the optimal solution, while the

heuristic 1, the hierarchical and K-Means clustering algorithms were within 8.5%,

6.7% and 11.6%. For larger problems heuristic #2 outperformed all other algorithms.

Performance behavior of heuristic #2 was further studied as a function of size of the

tote-order matrix, multi-item order complexity of the tote-order matrix, number of

consolidators and the consolidation batch window. A Maxmin ratio indexed in the

range number of ordered items minus number of orders was used as a surrogate for

solution performance.

S-Strategy fulfillment is a store-based solution for fulfilling online customer

orders. Orders are picked from store inventory and then customer picks up from

the store (BOPS). A BOPS store has two distinguishing features (i) In addition to

shelf stock, the layout includes a space constrained back stock of selected items,

and (ii) a set of dedicated pickers who are scheduled to fulfill orders. This research

solves two BOPS related problems: (i) Back stock strategy: Assignment of items

located in the back stock and (ii) Picker scheduling: Effect of numbers of picker

and work hours. For both problems we assume a continuous flow of incoming orders

and the objective is fulfillment time and labor cost minimization. We model the

store inventory dispersion, order arrival process and order picking process in a BOPS

retailer. For the back-stock problem an assignment rule based on order frequency,

forward location and order basket correlations achieved a 17.6% improvement over

a no back-stock store, while a rule based only on order frequency achieved a 12.4%

improvement.

6.2 Future Research

With time and resource limitations, the research on both problems are still with

plenty of future research opportunities.

As mentioned in Chapter 4, the twinning orders in a tote-order matrix is a

preliminary design for future research. The intention of this design is to link the order

108

consolidation problem with the picklist assignment problem, which is the efficient

picking lists generation from the set of pending orders. A picklist of items is

collected in a tote, which means the picklist decides which orders in a tote. And a

batch of totes form the tote-order matrix in the decision model. With the online order

fulfillment in F-Warehouses, the research team has established four decision models

with the operation work flows. As a future study, a combination of picking and

consolidation algorithms could achieve improvement in both fulfillment time and

cost minimization.

With the BOPS store picking problem, the current derivation of order delivery

waiting cost considers every order needs immediate fulfillment. In the future study,

orders with different due date/time priority could be assigned to different fulfillment

groups. For the picking scheduling problem, this research focus on the daily labor

hours and start time of one picker. When the model involves multiple pickers, the

number of pickers will be a critical decision variable. Combined with the order

priority, the picker scheduling problem will show more complexity.

109

REFERENCES

Acimovic, J., & Graves, S. C. (2015). Making Better Fulfillment Decisions on the Fly in

an Online Retail Environment. Manufacturing & Service Operations Management,

17(1), 34-51. doi:10.1287/msom.2014.0505

Acimovic, J. A. (2012). Lowering outbound shipping costs in an online retail

environment by making better fulfillment and replenishment decisions. Ph.D.

Thesis, Massachusetts Institute of Technology, Cambridge, MA.

http://hdl.handle.net/1721.1/77825

Armant, V., Cauwer, M. D., Brown, K. N., & O’Sullivan, B. (2018). Semi-online task

assignment policies for workload consolidation in cloud computing systems.

Future Generation Computer Systems, 82, 89-103.

doi:10.1016/j.future.2017.12.035

Berardi, V. L., Zhang, G., & Offodile, O. F. (1999). A mathematical programming

approach to evaluating alternative machine clusters in cellular manufacturing.

International Journal of Production Economics, 58(3), 253-264.

doi:10.1016/s0925-5273(98)00211-4

Brusco, M. J., Köhn, H. F., & Steinley, D. (2012). Exact and approximate methods for a

one-dimensional minimax bin-packing problem. Annals of Operations Research,

206(1), 611-626. doi:10.1007/s10479-012-1175-5

Brusco, M. J., Thompson, G. M., & Jacobs, L. W. (1997). A morph-based simulated

annealing heuristic for a modified bin-packing problem. Journal of the

Operational Research Society, 48(4), 433-439. doi:10.1038/sj.jors.2600356

Cambazard, H., Mehta, D., O’Sullivan, B., & Simonis, H. (2013). Bin Packing with

Linear Usage Costs – An Application to Energy Management in Data Centres.

Lecture Notes in Computer Science Principles and Practice of Constraint

Programming, 47-62. doi:10.1007/978-3-642-40627-0_7

Chen, A. (2017). Large-scale optimization in online-retail inventory management. Ph.D.

Thesis, Massachusetts Institute of Technology, Cambridge, MA.

http://hdl.handle.net/1721.1/111854

Coffman, E. G., Csirik, J., Galambos, G., Martello, S., & Vigo, D. (2013). Bin Packing

Approximation Algorithms: Survey and Classification. Handbook of

Combinatorial Optimization, 455-531. doi:10.1007/978-1-4419-7997-1_35

110

Costa, A., Ng, T., & Foo, L. (2017). Complete mixed integer linear programming

formulations for modularity density based clustering. Discrete Optimization, 25,

141-158. doi:10.1016/j.disopt.2017.03.002

Czyzyk, J., Mesnier, M., & More, J. (1998). The NEOS Server. IEEE Computational

Science and Engineering, 5(3), 68-75. doi:10.1109/99.714603

Dolan, E. D. (2001). NEOS server 4.0 administrative guide. doi:10.2172/822567

Fourer, R. (2013). Algebraic Modeling Languages for Optimization. Encyclopedia of

Operations Research and Management Science, 43-51. doi:10.1007/978-1-4419-

1153-7_25

Fourer, R., Gay, D. M., & Kernighan, B. W. (1990). A Modeling Language for

Mathematical Programming. Management Science, 36(5), 519-554.

doi:10.1287/mnsc.36.5.519

Friesen, D. K., & Langston, M. A. (1986). Variable Sized Bin Packing. SIAM Journal on

Computing, 15(1), 222-230. doi:10.1137/0215016

Gay, D. M. (2015). The AMPL Modeling Language: An Aid to Formulating and Solving

Optimization Problems. Numerical Analysis and Optimization Springer

Proceedings in Mathematics & Statistics, 95-116. doi:10.1007/978-3-319-17689-

5_5

Gropp, W. & Moré, J. J. 1997. Optimization Environments and the NEOS Server.

Approximation Theory and Optimization, 167-182.

Hall, N. G., Ghosh, S., Kankey, R. D., Narasimhan, S., & Rhee, W. T. (1988). Bin

packing problems in one dimension: Heuristic solutions and confidence intervals.

Computers & Operations Research, 15(2), 171-177. doi:10.1016/0305-

0548(88)90009-3

Hassin, R., & Rubinstein, S. (2006). An improved approximation algorithm for the metric

maximum clustering problem with given cluster sizes. Information Processing

Letters, 98(3), 92-95. doi:10.1016/j.ipl.2005.12.002

Huang, Z. (1998). Extensions to the k-Means Algorithm for Clustering Large Data Sets

with Categorical Values. Data Mining and Knowledge Discovery, 2(3), 283-304.

doi:10.1023/a:1009769707641

Klein, G., & Aronson, J. E. (1991). Optimal clustering: A model and method. Naval

Research Logistics, 38(3), 447-461. doi:10.1002/1520-6750(199106)38:33.0.co;2-

0

111

Luna, A. (2015). Characterizing and improving the service level agreement at Amazon.

Master Thesis, Massachusetts Institute of Technology, Cambridge, MA.

http://hdl.handle.net/1721.1/99011

Maiza, M., Labed, A., & Radjef, M. S. (2012). Efficient algorithms for the offline

variable sized bin-packing problem. Journal of Global Optimization, 57(3), 1025-

1038. doi:10.1007/s10898-012-9989-x

Mao, F., Blanco, E., Fu, M., Jain, R., Gupta, A., Mancel, S., Yuan, R., Guo, S., Kumar, S.,

Tian, Y (2017). Small Boxes Big Data: A Deep Learning Approach to Optimize

Variable Sized Bin Packing. 2017 IEEE Third International Conference on Big

Data Computing Service and Applications (BigDataService).

doi:10.1109/bigdataservice.2017.18

Mason, A. J. (2013). SolverStudio: A New Tool for Better Optimisation and Simulation

Modelling in Excel. INFORMS Transactions on Education, 14(1), 45-52.

doi:10.1287/ited.2013.0112

Onal, S., Zhang, J., & Das, S. (2017). Modelling and performance evaluation of explosive

storage policies in internet fulfilment warehouses. International Journal of

Production Research, 55(20), 5902-5915. doi:10.1080/00207543.2017.1304663

Onal, S., Zhang, J., & Das, S. (2018). Product flows and decision models in Internet

fulfillment warehouses. Production Planning & Control, 29(10), 791-801.

doi:10.1080/09537287.2018.1469800

Rao, M. (1971). Cluster Analysis and Mathematical Programming. Journal of the

American Statistical Association, 66(335), 622-626. doi:10.2307/2283542

Rao, R., & Iyengar, S. (1994). Bin-packing by simulated annealing. Computers &

Mathematics with Applications, 27(5), 71-82. doi:10.1016/0898-1221(94)90077-9

Song, W., Xiao, Z., Chen, Q., & Luo, H. (2014). Adaptive Resource Provisioning for the

Cloud Using Online Bin Packing. IEEE Transactions on Computers, 63(11),

2647-2660. doi:10.1109/tc.2013.148

Vinod, H. D. (1969). Integer Programming and the Theory of Grouping. Journal of the

American Statistical Association, 64(326), 506-519.

doi:10.1080/01621459.1969.10500990

Xu, P. J. (2005). Order fulfillment in online retailing: what goes where. Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA.

http://hdl.handle.net/1721.1/33672

112

Xu, P. J., Allgor, R., & Graves, S. C. (2009). Benefits of Reevaluating Real-Time Order

Fulfillment Decisions. Manufacturing & Service Operations Management, 11(2),

340-355. doi:10.1287/msom.1080.0222

	Online fulfillment: f-warehouse order consolidation and bops store picking problems
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographcial Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: The Order Consolidation Problem
	Chapter 4: Performance Behavior Analysis of Fast Heuristics
	Chapter 5: Buy Online Pickup From Store (BOPS)
	Chapter 6: Summary and Future Research
	References

	List of Tables (1 of 3)
	List of Tables (2 of 3)
	List of Tables (3 of 3)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

