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Abstract: This paper deals with the potential reuse of coal mine waste rocks (CMWR) as an
alternative material for road construction to conserve the natural resources and sustainable
management of mining waste. The investigation was conducted through the determination of
the chemical, mineralogical, geotechnical properties, and acid mine drainage formulation of CMWR
as well as economic feasibility. This waste was used either alone for embankments and mixed
with stabilizing agents fly ash (FA) and hydraulic road binder (HRB) for pavement applications.
The experimental results confirmed that weathered CMWR can be successfully used alone as a
sustainable alternative material for the embankment. Furthermore, the use of stabilizing agents in
the following ratio CMWR:FA:HRB = 80:20:5 allow the use of CMWR in road sub-base layers for
high-traffic pavements. Also, the environmental investigations showed that CMWR does not present
any potential contaminating risk on the surrounding environment and most of the pyrite particles
were already oxidized. Therefore, the environmental impact of acid mine drainage produced by
pyritic waste throughout its life cycle can be neglected. Finally, an economic case study confirmed the
workability of CMWR reuse in a radius of 29 km around their dumps by resulting in a lower cost
compared with conventional materials.

Keywords: coal mine waste management; coal gangue; acid-mine drainage; sustainability;
stabilization/solidification; road construction

1. Introduction

The coal mining industry was significantly developed as it was the key to global industrialization.
Worldwide coal production was estimated to be more than 7 billion tones in 2018 alone [1].
However, coal mining is always accompanied by the generation of large tonnages of mine wastes with
potential impacts on the environment [2]. These impacts could take the form of waste dump instability,
self-heating of residual coal and related accidents [3], acid mine drainage due to the oxidation of
sulphides [4], water pollution [5], air pollution [6], and many other impacts [7].

In the framework of the circular economy and sustainable development objectives, coal waste
rocks could be considered as alternative materials in the construction sector instead of pollution and
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risk sources. This solution will lead at once to the conservation of finite natural resources extensively
used in the construction field and to reduced environmental impacts related to these wastes.

Many examples have been developed to valorise, reuse, dispose, and recycle these solid wastes in
many fields including, construction and building materials. For example, Gruchot et al. [8] showed the
influence of compaction on the shear strength of unburnt and burnt coal wastes without/with fly ash (FA)
using triaxial compression tests. The tests and the stability calculations showed that the tested waste
materials are useful for earth construction purposes. It was found that the shear strength parameters
depend on compaction pressure. The highest values of the internal friction angle were obtained for the
burnt coal waste, slightly lower for the mix, and the lowest for the FA. Kuranchie et al. [9] valorized
mine tailings, waste rocks, fly ashes, and slags in construction material for highway and railway
embankments. It was concluded that mine tailings alone and mixed with fly ash mine wastes can be
favourably used as road embankment materials cost-effectively and sustainably. Also, the coal mine
waste rocks (CMWR) wastes were successfully interred for the production of eco-friendly fired bricks
at a laboratory scale [10,11], in the production of cement [12,13] and asphalt concrete products [14,15].

The present paper assesses the potential sustainable use of CMWR as an alternative material
for road construction. The feasibility of using CMWR alone in embankments was investigated, and
leaching and swelling properties were evaluated and discussed. For this purpose, toxicity characteristic
leaching procedure (TCLP) and oedometer tests were carried out. The influence of FA and hydraulic
road binder (HRB) addition on the behaviour of the designed mixes in terms of mechanical strength
for the proposition of its application as pavement materials was also assessed. To achieve this aim,
geotechnical, chemical, mineralogical and environmental tests were performed on raw CMWR, FA and
HRB samples, and the mixed materials at various proportions. Regarding the economic aspect,
the overall cost of using CMWR in embankments with a comparative study with conventional materials
was also performed.

2. Materials and Methods

2.1. Materials

Samples of CMWR were collected from an old weathered coal dump, located in Jerada city,
Morocco. Important amounts of coal mine wastes were landfilled in different dumps (Figure 1). One old
big dump extends on a surface of about 15 ha and presents a height of 95 m. Other recent dumps are
found in many places around the city [11]. The dump is the result of long exploitation of coal deposits
of the Jerada carboniferous basin of the Paleozoic massifs in the Horst Range.

Different samples were taken at a depth of 2 m from the top surface, middle and bottom of the
heap (Figure 2). The field-collected samples were then mixed and homogenized in the laboratory and
riffle-split into smaller sub-samples before further testing. FA samples were collected from the local
thermal power plant in Jerada. The specific gravity and specific surface area were 2.32 and 0.3 m2/g,
respectively. The hydraulic road binder (HRB) was provided by a local cement plant. Conforming to
NF EN 13,282 standard [16], the used HRB corresponded to class 4 binder based on its content in
the clinker.

2.2. Test Methods

2.2.1. Testing Protocol for Raw Materials Characterization

A series of laboratory tests were performed on CMWR, FA and HRB samples. As unconventional
materials with unknown applications in road techniques for Moroccan pavement design,
the geotechnical characterization of the CMWR samples were codified based on the [17] standard.
The particle size distribution was obtained by dry sieving method for an element with a diameter greater
than 80 µm while a granulometric test by using sedimentation approach was performed for size fraction
less than 80 µm following NF EN ISO 17892-4 standard [18]. The optimal moisture content (WOPN)
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and maximum dry unit weight (ρd OPN) of CMWR were determined using the Proctor test according
to NF P94-093 standard [19]. The specific gravity (Gs) was measured using a helium gas pycnometer.
The calcium carbonate (CaCO3) content measurements within CMWR sample were obtained based
on NF P94-048 standard [20]. The plasticity index (PI) of CMWR samples was achieved using the
Atterberg limits test. The liquid limit (WL) was measured using the Casagrande cup method while
the plastic limit (WP) was performed by a rolled thread method of NF EN ISO 17892-12 standard [21].
Regarding the methylene blue absorption test (MBV), the studied samples were sieved on 5 mm mesh
under NF P94-068 standard [22]. The specific surface area (Ss) of the fine fraction was determined by
using the Brunauer–Emmett–Teller (BET) method.Minerals 2020, 10, x FOR PEER REVIEW 3 of 17 
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The compressive/swelling behaviour of the CMWR sample was determined using the oedometer
test. This later was carried out on 0–20 mm size fraction at the optimal moisture content and the
maximum dry density conditions of the standard Proctor test. The saturated specimen was subjected
to axial stress levels ranging between 5 and 800 kPa, according to the XP P94-090-1 standard [23].
The swelling-shrinkage behaviour of clay fraction was assessed using many fundamental parameters
such as the total specific surface area (SST). The SST value can be calculated based on the methylene
blue absorbed value (Vb) by the clay fraction as expressed in Equation (1).

SST
(
m2/g

)
(0− 2 µm) = 20.93 Vb (0− 2 µm) (1)

Furthermore, the swelling potential (Sp %) related to the presence of expansive clayey materials
was estimated using Lautrin classification. Lautrin [24] proposed a classification of soil activity (ACB)
based on methylene blue adsorption value. The ACB is defined as the ratio of 100 MBV to the clay
fraction. However, the MBV value is obtained for the 0–5 mm fraction of the CMWR, including from
the granulometric point of view clays, silts and sands. It is then interesting to be able to obtain the
MBV on the clay fraction. To estimate the colloidal behaviour of CMWR, the methylene blue value is
calculated for 100 g of clay fraction as follows (Equation (2)):

Vb (0/2 µm) =
MBV(0/5)

% (0/2 µm)
(2)

To assess the sensitivity of CMWR material to fragmentation under mechanical stresses and
immersion-drying cycles, the fragmentability (FR) and degradability (DG) coefficients were determined
on the 10–20 mm aggregates fraction according to NF P94-066 [25] and NF P94-067 [26] standards,
respectively. The resistance of CMWR aggregates to degradation by abrasion and wear was evaluated
on 10–14 mm fraction using Los Angeles (LA) and Micro-Deval (MD) tests based on NF EN 1097-2 [27]
and NF EN 1097-1 [28] standards, respectively. The Californian bearing ratio (CBR) which measures
the resistance to punching and heavy machines traffic is a fundamental parameter to characterize the
strength in the empirical pavement design. The CBR tests namely, the CBR at 4 days of immersion
in water CBR(4i) and immediate bearing index (IBI) were determined conforming to NF P94-078
standard [29]. The IBI was determined for compacted specimens in the CBR mould at both modified
and normal Proctor efforts without any soaking in water or overloading. The two parameters CBR(4i)
and IBI reflect on the sensitivity to water and the immediate stability of the tested material, respectively.

A direct shear test was performed on a 0–5 mm size fraction of the CMWR material. The test
sample was consolidated under drained shear conditions at various confining pressures (50, 100,
and 200 kPa) according to NF-P94-071-1 standard [30]. The unconfined compressive strength (UCS)
and the direct tensile strength (Rt) tests were conducted according to NF EN 13286-41 [31] and NF
EN 13286-40 [32] standards, respectively. The cylindrical specimens were prepared at the optimum
of the standard Proctor references and stored under standardized conditions at room temperature or
subjected to water immersion at 20 ◦C before running tests at 28, 90 and 360 days.

On the other hand, the content of major and trace elements presented in the studied samples
were measured using X-ray fluorescence (Bruker, Tiger Model, Bruker, Billerica, MA, USA) and
inductively coupled plasma with atomic emission spectroscopy (ICP-AES) (Perkin Elmer Optima
3100 RL, Waltham, MA, USA). The crystalline phases were identified by the X-ray diffraction
measurements (Bruker, AXS Advance D8, Bruker, Billerica, MA, USA). The Diffrac Plus EVA and TOPAS
software programs (https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-
diffraction/xrd-software/eva.html) were used to identify and quantify mineral species and abundances,
respectively. The total sulfur (S) and total inorganic carbon (C) were determined by induction furnace
analysis (ELTRA CS-2000, ELTRA, Haan, Germany). Moreover, the toxicity characteristic leaching
procedure test (TCLP) EPA-1311 [33] was applied to determine the concentration of leached pollutants
from the CMWR sample. The samples were prepared by crushed CMWR to pass through a 9.5 mm sieve,

https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/eva.html
https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/eva.html
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while the solutions were separated from the solid phase by filtration through a 0.45 µm. The obtained
metal concentrations are then compared with the United States Environmental Protection Agency
(US-EPA) limits.

2.2.2. Mix Design

To keep the designed mixes sustainable and economically competitive compared with the
conventional materials, the performances of raw CMWR were enhanced by adding abandoned local
FA in combination with a moderate amount of HRB. The choice of HRB was primarily motivated by
the fact that it is suitable for the treatment of gravelly materials with fines (case of CMWR). It also has
the following specifications: low hydration heat (more controlled cracking) and a clear improvement
in the mechanical performance of mixtures.

Because a mix with content larger than 5 wt.% would not be economically feasible, the proportion
of HRB was limited to 5 wt.%. Additionally, two formulations were tested. The first one comprised
different proportions of CMWR and FA materials to achieve the target strength. The adopted process
required a higher amount of CMWR to make the road project construction economical. The mechanical
performances of the formulation tested in the laboratory with a proportion of FA lower than 15% were
considered insignificant. For the second formulation design, the optimal mix of the first formulation
tests was blended with different amounts of HRB ranging between 1 and 5 wt.% in order to improve
the strength and stability after water immersion. The compositions of the considered mixes are listed
in Table 1.

Table 1. Mix proportion of mixes design.

Use Mix Mix Proportion (wt.%)

Embankment M0:CMWR CMWR = 100

Road pavement layers

M1:CMWR:FA CMWR:FA = 85:15
M2:CMWR:FA CMWR:FA = 80:20
M3:CMWR:FA CMWR:FA = 75:25

M4:CMWR:FA:HRB CMWR:FA:HRB = 80:20:1
M5:CMWR:FA:HRB CMWR:FA:HRB = 80:20:2
M6:CMWR:FA:HRB CMWR:FA:HRB = 80:20:3
M7:CMWR:FA:HRB CMWR:FA:HRB = 80:20:5

2.2.3. Use of Coal Mine Waste Rocks (CMWR) as Embankment Material

The potential use of CMWR alone as embankment material requires evaluating the
specific geotechnical criteria as defined in local engineering guide. Maximum aggregate diameter,
evolutionary behaviour in terms of grain size distribution and plasticity properties, environmental
stability, swelling/compressibility behaviour and water sensitivity are the main recommended criteria
by the Moroccan guide regarding embankment applications (GMTR) [34]. All these aspects were
assessed using measurable parameters. Table 2 represents the design criteria with related parameters.

Table 2. Design criteria and quality monitoring parameters.

Criteria Measurable Parameters

Evolutionary behaviour Grain size distribution, MBV
Water sensitivity CBR (4i)

Swelling/compressibility Cc, Cs and σ′p
Environmental stability Leaching of heavy metal

2.2.4. Evaluation of the Designed Mixes for Pavement Applications

The specimens of solidified materials were prepared by blending 0–20 mm size fraction of CMWR
with FA, HRB and eventually water. The specific technical criteria should be checked for designing
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unconventional material in road paving use, among them, immediate stability, water sensitivity and
long-term mechanical performance. To evaluate the ability of the designed mixes for capping layer use,
the following requirements, as specified in the French technical guide [35], were adopted:

• CBR(4i) ≥ 20%
• CBR(4i) ≥ IBI

• Immersion resistance index (IR) ≥ 0.8 with, IR =
UCS (28+32i)

UCS (60)

where, UCS (28 + 32i) is the unconfined compressive strength (MPa) measured after 28 days in
standard conditions followed by soaking in water for 32 days at 20 ◦C, and UCS (60) is the unconfined
compressive strength measured after 60 days in standard curing conditions. Moreover, according to
the French guide, the pavement application requires the fulfilment of the following immediate stability
conditions: IBI > 50 for the base layer and IBI > 35 for the sub-base layer.

For the average daily traffic of heavy vehicles from T5 to T1 (traffic classes) for the case of the
foundation layers and from T5 to T2 for the base layers, the use of such material in pavement structure
is mainly conditioned by the elastic modulus and direct tensile strength measurements at 360 curing
days. It should be mentioned that the elastic modulus (E) test was not performed in this study, but it
was estimated at desired age using the following equation (Equation (3)) which was recommended by
ACI 318-95 [36] for normal weight concert:

E = 4.73 (UCS)0.5 (3)

where UCS is unconfined compressive strength (MPa) and E is the elastic modulus (GPa). This equation
is the most suitable to this particle case as it tends to evaluate the elastic modulus taking into
account the effect of coarse aggregate type on mechanical properties of CMWR (degradability).
The estimated results of E and the measured Rt (direct tensile strength) values at 90 days curing time
were reported in a specific abacus to predict the structural class of the designed mixes which must lead
at least to the mechanical performance of zone “5” (zone 5 is the minimum structural class required)
SETRA-LCPC [37]. Regarding the pavement layers application, the estimated results of E and the
measured Rt values at 360 days ageing were reported in a specific graph to predict the structural class
of the tested specimen which must lead at least to S2 class based on the NF P98-113 standard [38].
Table 3 gives the experimental plan for monitoring the proposed parameters.

Table 3. Design criteria and quality monitoring parameters for pavement applications.

Criteria
Monitored Parameter

Capping Layers Pavement Layers

Compaction Characteristics Proctor Test Parameters Proctor Test Parameters

Immediate stability IBI IBI
Water sensibility IR, CBR(4i) IR, CBR(4i)

Mechanical performances (long- term) (E,Rt) at 90 days ageing (E,Rt) at 360 days ageing

3. Results

3.1. Raw Materials Characterization

3.1.1. Chemical and Mineralogical Characterization

The physical, chemical and mineralogical composition of the studied materials is highlighted
in Table 4. Quartz (SiO2), muscovite (KAl2(AlSi3O10)(OH)2) and chlorite (Mg,Fe)3(Si,Al)4O10(OH)2,
are the major crystalline mineral phases contained in CMWR while albite (NaAlSi3O8), titanite (TiO2)
and pyrophyllite (Al2Si4O10(OH)2) are present as minor phases. A low proportion of pyrite (0.3 wt.%)
was also detected.
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Table 4. Physical, chemical and mineralogical composition of CMWR, FA, and HRB materials.

Physical Properties CMWR FA HRB

Specific gravity (Gs) 2.65 2.33 2.99
Specific surface area (BET) (m2/g) 13.77 0.3 0.34

pH 7.1 11.5 10.7

Chemical Composition (wt.%)

CaO 2.00 3.6 45
TiO2 0.76 -
SiO2 59.5 52.3 15
SO3 3

Al2O3 12.4 19.2 7
Fe2O3 4.3 7.4 4
MgO 1.34 3.1 1
Na2O 0.64 0.2 0.5
K2O 1.20 2.2 0.8

Inorganic carbon 7.2 1.1
Total organic carbon 2

Sulfur 0.47
Loss on ignition 8.2 8.5 20

Mineralogical composition (wt.%) Formula

Quartz SiO2 40.8 38.4 8
Muscovite KAl2(Si3Al)O10(OH,F)2 34

Calcite CaCO3 2.1 26
Aluminate (CaO)3 Al2O3 3

Alumino-ferrite (CaO)4 Al2O3 Fe2O3 7
Gypsum CaSO4-2H2O 3
Goethite FeO(OH) 3.2

Chlorite lib (Mg,Fe)3(Si,Al)4O10(OH)2 6.3
Albite NaAlSi3O8 3.7

Pyrophyllite Al2Si4O10(OH)2 7.7
Titanite TiO2 0.8

Alite (CaO)3(SiO2) 34
Belite (CaO)2(SiO2) 13
Pyrite FeS2 0.3

Mullite Al5SiO9 - 59.5 4

Concerning the characterizations of FA material, they are characterized by a high silica (SiO2)
content and low content of calcium oxide (CaO). Therefore, the class of the used FA is “F” fly ash based
on the specifications of the [39] standard.

The HRB consisting mainly of CaO, SiO2 and Al2O3 with the lesser amount by weight of SO3,

Fe2O3 MgO and Na2O. The mineralogical analysis shows that alite (CaO)3(SiO)2, calcite CaCO3 and
belite (CaO)2(SiO)2 are the main crystalline phases present in the HRB material.

3.1.2. Acid-Mine Drainage Effects

As the presence of pyrite could affect the durability of the suggested solution, the behaviour
of coal-derived pyrite surfaces was assessed using scanning optical microscopy (Figure 3).
The observations showed that pyrite particles are present in two forms: framboidal and automorphic.
The framboidal pyrite particles are highly reactive and could contribute to the formation of acid mine
drainage. Fortunately, it was observed that the majority (more than 80%) of the analyzed pyrite particles
are partially or completely oxidized giving rise to the formation of iron oxides in the form of goethite
mostly included in alumino-silicate or coal minerals. This observation was predicted as the CMWR
was altered and oxidized for more than 50 years. Consequently, the environmental impact of acid mine
drainage associated with pyritic waste can be neglected.
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Figure 3. Optical microscopy observations of CMWR sample.

3.1.3. Compressibility Properties

The swelling/compressibility characteristics of the CMWR sample are presented in Figure 4. It is
clearly shown that the settlement begins to appear just after a low loading strain and revealed an
accentuated slope to which corresponds a compression index Cc of 0.15, which is still relatively low
(Cc < 0.2). This result was expected since the dry density from which it prepared the specimen was
high (19 kN/m3), the proportion of organic matter was negligible (<2 wt.%) and the content of fine
elements was limited. However, the shape curve indicates an important swelling index Cs of 0.04 with
a pre-consolidation stress σ’p of 80 kPa.
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3.1.4. Geotechnical Characterization

The first step in investigating the CMWR characterizations was to identify the main geotechnical
properties. The size distribution curves of CMWR, FA, and HRB samples are given in Figure 5.
Regarding CMWR sample, the uniformity (Cu) and Curvature (Cc) coefficients were found equal to 255
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and 2.95, respectively. Therefore, the CMWR was a well-graded granular material. The average grain
size (D50) of CMRW samples was 1.5 mm and the largest diameter of grain (Dmax) was 50 mm. The clay
content and the percentage by weight of grain size less than 80 µm were 6.5 and 22.3 wt.%, respectively.
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For the granulometric composition of FA samples, it can be seen the average and maximum
grain size were respectively 15 µm and 80 µm. Furthermore, FA contained a low proportion of clayey
particles and 91 wt.% of passing through 40 µm mesh sieve. Concerning HRB, the largest particles size
and clay content were 0.1 m and 3 wt.%, respectively.

The influence of compaction energy on the CBR(4i) and compaction characteristics of reconstituted
CMWR material were examined. For this purpose, Proctor and CBR strength tests were conducted
under standard and modified energies. Based on the results given in Figure 6, it can be noted that
both CBR (4i) and maximum dry weight values under modified compaction energy are found to be
greater than the under standard effort. Additionally, under modified proctor effort, a slight decrease in
optimal moisture content was observed. This could be explained by the fact that increasing compaction
energy leads to the largest amount of fine fraction and consequently to the lowest air voids ratio.
The significant improvement (7.37%) in dry weight obtained by the modified Proctor energy and the
low abrasive wear performance highlighted by fragmentability (FR) and degradability (DG) coefficients
allowed us to conclude that the energy developed under the modified Proctor test is more appropriate
for embankment compaction of CMWR material.
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The field compaction behaviour was simulated in the laboratory using an automatic Proctor
machine under three controlled stress strains (0.6, 1.5 and 2.7 MPa). The particles size curves (Figure 7)
obtained under different energies reveal a sensitive granulometric evolution towards the fine fraction.
Nevertheless, this evolution reached an almost stable state when the compaction energy exceeds
1.5 MPa. Consequently, the energy developed by the standard Proctor test remains insufficient to
ensure the quality of compaction without any possible risk of production of fine particles during the
life of the road structure.
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The main geotechnical characteristics of the CMWR samples are summarized in Table 5.
The shear strength parameters, required for assessing the stability of the compacted CMWR

structures, were evaluated on a 0–5 mm size fraction (represent 61 wt.% of total masse) using the
consolidated drained shear test. The experimental results allow to identify an effective cohesion C’P of
13 kPa and an effective friction angle of ϕ’P = 30◦. The C’P value indicated a cohesive texture of the
CMWR material which can be attributed to cementing phenomenon of the clay fraction.

Regarding the plasticity, the fine particles of the CMWR samples could be described as plastic
clay, with important activity based on its clayey fraction (AC = 2.61). The methylene blue value of
0.89/100 g showed moderate sensitivity to water variations of studied samples. To simulate the particles
degradation under field conditions, the fragment ability and degradability tests were made on CMWR
aggregates. These tests assessed respectively the sensitivity to break up and resistance under the effect
of wetting–drying cycles. The FR and DG, that were respectively more than 7 and 20, indicated that the
CMWR is a fragmentable and very degradable aggregate material within the meaning of the Moroccan
technique guide [34].

LA and MD tests were carried out to evaluate the abrasion performance and friction properties
of CMWR aggregates, respectively. The results reported in Table 5 confirm that the studied CMWR
have both LA and MD results in more than 45%. They are therefore not suitable as pavement
materials for road construction. These granular materials are easily fragmented into smaller particles.
This causes an evolution in the grain size dimension inducing a change in their mechanical properties.
This granulometric evolution under dynamic fragmentation makes the use of CMWR as an embankment
material conditioned by sufficient compaction energy. This mechanical characteristic could be attributed
to low hardness abrasion of muscovite minerals which generates a large amount of fine fraction under
the action of mechanical stress. It can be concluded that the geotechnical and mechanical behaviour of
CMWR aggregates relates primarily to their mineralogical composition.

From the results reported in Table 5, the studied CMWR belongs to the “B52” category which
corresponds to very silty sand and gravel materials with medium hardness. Thus, these materials can
be used in the construction of road embankments following the compaction table as proposed by the
French roadwork guide.
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Table 5. Geotechnical properties of CMWR.

Standard Proctor Test

Optimal moisture content (WOPN), (%) 11.12
Maximum dry weight (ρdOPM), (kN/m3) 19

Modified Proctor Test

Optimal moisture content (WOPM) (%) 10.11
Maximum dry weight (ρdOPN), (kN/m3) 20.4

Shear Test

Friction angle (ϕ’P), (degree) 30
Cohesion (C’P), (kPa) 13

Bearing Ratio Test

CBR (4i), (%) 9
IBI, (%) 29

Atterberg Limits

Liquid limit (WL,), (%) 42
Plastic limit (WP), (%) 25

Plasticity index (PI), (%) 17
Clay activity, (Ac) 2.61

Methylene blue value (MBV) (g/100 g) (0/5 mm) 0.89
Methylene blue value (MBV) (g/100 g) (<2 µm) 13.69

Total specific surface (m2/g) (<2 µm) 286,53
Lautrin activity ACB (<2 µm) 210.61

Carbonate Content (%) 21

Oedometer Test

Compression index, (Cc) 0.15
Swelling index, (Cs) 0.04

Preconsolidation pressure (σ’p),(kPa) 80

Mechanical behaviour

Los Angeles, (LA), (%) 69
Micro Deval, (MD), (%) 77

Degradability coefficient, (DG) 18.7
Fragmentability coefficient, (FR) 11.4

Material classification (NF P 11-300) B52

3.1.5. Swelling Behaviour

The swelling behaviour was assessed using the Lautrin activity and the total specific surface
SST of the clay fraction. The ACB and SST parameters were equal to 210.61 and 286.53 m2/g,
respectively. The SST was close to that obtained by very swelling smectite. Consequently, the clay
fraction of CMWR can be considered as harmful clay based on Lautrin classifications. Furthermore,
the CMWR embankments were susceptible to swelling by hydration under pressure below 80 kPa
(pre-consolidation). The swelling behaviour could be related to the presence of oxidized sulphate
minerals (mainly gypsum) which are considered as an expansive mineral. The formation of sulphate
results from the oxidation of pyrite particles in the presence of air and water. It can be concluded
that the studied CMWR sample showed a slight compressive behaviour with significant potential
of swelling.

In light of the above, the significant degree of granulometric evolution under various stress strains
requires an intense compaction energy equivalent to that developed by the modified Proctor test.
The consideration of stability measures during the implementation phase is also necessary. In this
regard, to avoid disturbances in embankment undergoing drying-wetting cycles, it is advisable to
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provide containment with other selected materials as well as prescribing compaction at the near optimal
moisture content (or more precisely, avoid dry compaction). Full-scale field investigations are also
required to define the optimal compaction conditions.

3.1.6. Environmental Behaviour

The results of the toxicity characteristic leaching procedure (TCLP) test are summarized in
Table 6. The concentrations of leached heavy metals and metalloids were mostly low and below the
thresholds for granular wastes in landfill specifications [40]. Therefore, CMWR could be considered as
non-hazardous waste. Also, it was proven from the studies of Battioui et al. [41,42] that a negligible
amount of sulphate release was observed. The addition of fly ash as amendments led to substantial
reduction of the sulphate release.

Table 6. Leaching behaviour of CMWR sample.

As
(µg/L)

Ba
(µg/L)

Cd
(µg/L)

Cr
(µg/L)

Cu
(µg/L)

Mo
(µg/L)

Pb
(µg/L)

Zn
(µg/L)

CMWR 57 85 5 11 64 6.8 73 624
TCLP level limits 2000 1000 5000 - 5000 - 5000 2000

3.2. Evaluation of Designed Mixes for Road Pavement Use

3.2.1. Mechanical Properties

The effects of stabilization agents on the CMWR behaviour in terms of water sensitivity,
immediate stability, and strength properties are given in Table 7. It should be noted that the experimental
results reported in Table 7 correspond to the average values of three tested specimen and the calculated
standard deviation for all mechanical performance tests still lower than 3% which reflects the low
dispersion of the results. It is clear that the addition of 15 wt.% of fly ash increases slightly both IBI and
CBR(4i) of raw CMWR, but the increase in FA proportion from 15 to 20 wt.% leads to significant growth
in CBR ratios. For the mix M3, the addition of supplementary 5% FA does not influence the CBR ratios.

Table 7. Results of mechanical properties of designed mixes.

Mix
CBR Ratios

IR
UCS (MPa) Rt (MPa) E (GPa)

IBI (%) CBR (4i) (%) 90 360 90 360 90 360

M0 29 11 1.18 - - - - - -
M1 30 12 1.28 0.47 0.49 0.12 0.13 3.24 3.31
M2 35 17 1.31 0.5 0.54 0.16 0.17 3.34 3.48
M3 36 17 1.32 0.52 0.54 0.16 0.18 3.41 3.48

M4 39 31 1.48 1.59 1.61 0.21 0.23 5.96 6.00
M5 48 85 1.50 2.50 2.56 0.35 0.36 7.48 7.57
M6 53 189 1.52 4.26 4.4 0.44 0.46 9.76 9.92
M7 58 256 1.53 5.28 5.35 0.55 0.60 10.77 10.99

Generally, without HRB, the effect of FA remains below the requirements of the French guide
regarding immediate stability condition. This could be attributed to low free CaO content present in FA
material. All mechanical performances were found to be increased by raising the HRB concentration.
The CBR(4i) was increased from 16% for zero content to 31%, 85%, 189% and 256% at a proportion of 1,
2, 3 and 5 wt.% HBR, respectively. This improvement can be explained by the chemical transformation
and development of cement phases hydration due to the high amount of aluminosilicate minerals
present in the CMWR sample. The stronger trend of increase in terms of elastic modulus and direct
tensile strength was noted by increasing the HRB amount at different curing times.



Minerals 2020, 10, 851 13 of 17

3.2.2. Evaluation of Designed Mixes as Capping Layer Material

Figure 8 shows the predictive classification in terms of estimated elastic modulus E as a function
of the measured direct tensile strength Rt of the designed mixes at 90 curing time. The results indicate
that, among the four designed mixes, only the M4 mix does not belong to the minimum mechanical
performance required (zone 5). Therefore, the proportion of 1 wt.% HRB does not allow direct
use of CMWR:FA:HRB solidified material in capping layers. The M5, (CMWR:FA:HRB = 80:20:2),
M6 (CMWR:FA:HRB = 80:20:3) and M7 (CMWR:FA:HRB = 80:20:5) mixes are, respectively, classified in
the zone 4, 4 and 3 following the French technical guide specifications. Furthermore, the analysis of
the results showed that the aforementioned mixes meet the water sensitivity and immediate stability
requirements as described in Section 2.2.4. Consequently, mixes M5, M6 and M7 can all be used
successfully as materials for the construction of capping layers.
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3.2.3. Use in Pavement Layers

The results obtained from compression strength measurements and elastic modulus prediction at
360 days ageing are illustrated in Figure 9. It is observed that only M7 mix is classified in the S2 class.
Moreover, from Table 7 results, the M7 mix satisfies also the minimum requirements of immediate
stability conditions for the pavement applications. Based on the NF-P98-113 standard [38], only M7
can be used in both foundation and base pavement layers for high-traffic pavements.
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3.3. Preliminary Economic Evaluation

The objective of this preliminary economic investigation is to determine the radius (around the
Jerada city) profitability beyond which the CMWR will no longer be competitive given the average
prices of embankments made with conventional materials. In this study, the calculation of the overall
cost for CMWR embankment use generally requires taking into account the investment costs (COPEX)
and that of maintenance (OPEX) during the service life. The evaluation consists of analysing the main
costs related to the scenario based on using CMWR in the construction of road embankments and
to compare them with that of the conventional materials. Because maintenance and operating costs
are assumed to be almost the same, the approach will focus only on the construction costs life cycle
(Capital expenditures, CAPEX). The road embankment under a wet mixing process includes extraction,
loading, transportation, unloading, and implementation of materials. However, the most important
parameter affecting the overall costs is that of transport and, therefore, the distance from the supply
resources to the destination. Using a 15 m3 truck capacity in normal conditions, the calculation of the
total cost of transport requires taking into consideration the variable and the fixed costs. Table 8 lists
the different these costs for transporting road materials and the fundamental assumptions underlying
the calculation of the profitability radius.

Table 8. Variable and fixed costs for transporting road materials.

Variables Costs Fixed Costs

• Raw materials (fuel)
• Vehicle maintenance (emptying, repair, washing...)
• Tires wear

• Driver (salary, travel expenses...)
• Vehicle (cost related to financing, depreciation,

taxes, insurance, technical visits...)
• Operating costs (administrative costs, taxes...)

Assumptions

• Operating costs by a medium-sized company (road works)
• Vehicle maintenance (oil change...) every 10,000 km (as average)
• Changing a set of tires each 40,000 km (as average)
• The average consumption of a 15 m3 load truck on a flat to the hilly area is taken equal to 48 litres/100 km
• The calculation of the annual distance travelled assumes that an average of 240 km/day

The average prices per year in Morocco of different services planned for the execution of road
embankment are illustrated in Table 9. The various financial costs and prices mentioned below are
taken from a survey carried out between January 2018 and January 2019 from a dozen companies in
the oriental region specializing in road construction.

Table 10 gives a comparison study based on the details of the costs of foreseen tasks for the
realization of embankments with CMWR and conventional materials. The radius of profitability (R)
can be determined according to the following equation (Equation (4)):

(((P + R.I).Coe f f (exp)) + Σ (other prices)).Pro = Sp (4)

where P is the purchase of materials; R is the radius of profitability; T is the cost of transport; Coeff (exp)
is expansion coefficient; other prices are the price of implementation + extraction+ loading and
rehabilitation of the extraction zone; Pro is profit margin and Sp is the sale price.

Based on the reported results in Table 10 and Equation (4), the CMWR materials can be used as
embankment materials in a radius of 29 km around the Jerada mine, unlike conventional materials that
lose their profitability beyond 10 km. The calculation was done assuming that conventional resources
are available, otherwise, this radius of profitability will have to correct downward.
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Table 9. Annual costs related to the various services provided for the execution of an embankment.

Designation Costs (€)

Depreciation expense 2900
Expenses driving staff 7800
Insurance fees 1160
Dues and taxes 1015

Total Fixed Fees (€) 12,895

Fuel and lubricant 33,002
Pneumatic 2400
Maintenance and repair 2450

Total Variables Fees (€) 37,852

Operating costs 2500
Other 1000

Total structure fees (€) 3500

Total return price (€) 54,247

Average distance travelled per year (km) 7488

Cost price per kilometre rolled (€) 0.72

Cost price per m3 kilometre (€) 0.048

Table 10. Calculation of the radius of profitability.

(Average Costs Excluding Taxes) Unit CMWR Materials Conventional Materials

Cost of transport €.m3/km 0.048 0.048
Expansion coefficient 1.15 1.15

Profit margin % 15 15
Loading cost € 0.30 0.30

Cost of implementation € 0.85 0.80
Extraction cost € 0.10 0.30

Purchase of materials € 0.10 0.70
Cost of rehabilitation of the extraction zones € 0.10 0.30

The sale price of road embankment € 3.5 3.5
The radius of profitability (R) km 29 10

4. Conclusions

The feasibility of using coal mine waste rocks locally in road construction was assessed. After deep
characterizations of raw materials at the laboratory scale, a new method to recycle coal mine waste
rocks and abandoned fly ashes of Jerada city (Morocco) for road pavement application by using a
solidification process was provided. The laboratory study has revealed that the use of CMWR alone
should be limited to ordinary embankments outside of flood zones, engineering structures, and the top
part of the earthworks. Furthermore, the high granulometric evolution observed under mechanical
stress and the CBR (4i) strength results allowed us to conclude that the modified energy of the Proctor
test is more appropriate for embankment compaction of CMWR materials. Due to their sensitivity to
water and their low resistance to degradation by abrasion and wear, the CMWR aggregates were unable
alone to meet the pavement material specifications. The laboratory investigations of the mechanical
performances proved the ability of the CMWR:FA:HRB = 80:20:5 mix to be used as a foundation and as
a base-course material. From an environmental point of view, the concentrations of leached metals
from ground CMWR was under the limit requirements fixed by the US-EPA regulation. Furthermore,
the environmental impact of acid mine drainage associated with pyritic waste can be neglected.

Based on the economic case study, the CMWR can be utilized as embankment aggregates in a
radius of 29 km around the Jerada mine keeping a lower cost compared to conventional materials.

To examine the CMWR pavement structure under real conditions (evolutionary behaviour in terms
of grain size distribution and MBV properties, bearing capacity) and to verify the target densification
objective for the road embankment construction, field investigations are required. Further research
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is needed to confirm the predictive elastic modulus of this new material. The collaboration between
different concerned actors such as the thermal power plants of Jerada and stakeholder engagement is
highly recommended to encourage the use of both CMWR and FA by-products. This manner of doing
will lead to various benefits such as air emission reduction, and finite natural resources conservation.
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