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Abstract

A gossip protocol is a procedure for sharing secrets in a network. The basic ac-
tion in a gossip protocol is a telephone call wherein the calling agents exchange
all the secrets they know. An agent who knows all secrets is an expert. The
usual termination condition is that all agents are experts. Instead, we explore
protocols wherein the termination condition is that all agents know that all
agents are experts. We call such agents super experts. Additionally, we model
that agents who are super experts do not make and do not answer calls. Such
agents are called engaged agents. We also model that such gossip protocols are
common knowledge among the agents. We investigate conditions under which
protocols terminate, both in the synchronous case, where there is a global clock,
and in the asynchronous case, where there is not. We show that a commonly
known protocol with engaged agents may terminate faster than the same pro-
tocol without engaged agents.

1. Introduction

The gossip problem addresses how to spread secrets among a group of agents
by pairwise message exchanges: telephone calls. We assume that each agent
holds a single secret, and that when calling each other the agents exchange all
the secrets they know. An agent may call another agent if it has that agent’s
telephone number. It is typically assumed that the goal of the information dis-
semination is that all agents know all secrets. The situation can be represented
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by a graph or network where the nodes are the agents and where, when two
nodes are linked, the agents can call each other.

There are many variations of the problem. It goes back to the early 1970s
[1, 2, 3, 4, 5]. In this ‘classical’ setting (for an overview, see [6]) only secrets
are exchanged, and the focus is on minimum execution length of protocols ex-
ecuted by a central scheduler. Later publications assume that the scheduling
is distributed [7, 8]. Fairly recent developments focus on gossip protocols with
epistemic preconditions for calls [9, 10, 11, 12, 13, 14]. For example, agents
may only call another agent once, or only if they do not know the other agent’s
secret, etc.

In dynamic gossip [15, 16] the agents do not only exchange all the secrets
they know but also all the telephone numbers they know. This results in net-
work expansion: not only the secret relation but also the number relation is
expanded after a call. The network is then dynamic, which explains the term.
However, if the number relation is a complete digraph (the universal relation),
i.e., when all agents know all telephone numbers, then the dynamic and classical
gossip problem coincide. Here we will assume complete digraphs and thus not
investigate dynamic gossip.

Another way to load the messages beyond merely exchanging secrets is to
exchange knowledge about secrets. This approach is taken in [17]. Primarily,
in a call the two agents may exchange all the secrets they know. But once
this is done, they may also exchange the information ‘everyone knows all the
secrets’. This requires that the number of agents is known. And once that is
done, they may exchange the information ‘everyone knows that everyone knows
all the secrets’, and so on. They thus achieve higher-order shared knowledge of
all secrets (all the agents know that all the agents know, etc.).

In this contribution we investigate gossip protocols with the epistemic goal
that all agents know that all agents know all secrets. Clearly, this assumes that
the agents know how many (other) agents there are.

e The protocol terminates when everyone knows that everyone knows all
secrets.

However, we continue to assume that agents only exchange the same basic infor-
mation as in the classical gossip problem, i.e. only secrets. So, unlike [17] we do
not achieve the epistemic goal by loading the messages with epistemic features.
The agents may also have knowledge of the protocol, or of the behaviour of
other agents. We consider various such modifications, and will investigate how
making such assumptions affect properties such as termination and execution
length.

e Agents know what gossip protocol is used by all agents.
e Agents who know that everyone knows all secrets no longer make calls.

e Agents who know that everyone knows all secrets no longer answer calls.



a b ¢ d
ab ab C d

ab ab cd cd
abcd ab abed cd

abcd abed abcd abced
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Table 1: Results of the call sequence ab; cd; ac; bd.

An agent who knows all secrets is called an expert, as usual. We call an agent
who knows that everyone is an expert a super expert. So our epistemic goal is
for all agents to become super experts, where we will also investigate the effect
of additional assumptions such as knowledge of the protocol and that super
experts no longer make and answer calls.

In the remainder of this introductory section we give examples to motivate
our approach and we outline our results.

Let there be four agents a, b, ¢, d. Each agent holds a single secret to share.
Consider the call sequence ab;cd;ac;bd. In a call, agents exchange all secrets
they know. After the call ab, agents a and b both know two secrets, and similarly
after the call cd, agents ¢ and d both know two secrets. Therefore, after the
subsequent call ac, agents a and ¢ both know all four secrets: they are experts.
Similarly, after the final call bd, b and d are experts. So, after ab; cd;ac;bd, all
agents are experts. See Table 1.

In fact, the agents know a bit more than that. After call ac agent a is not
only herself an expert but she also knows that agent ¢ is an expert, and agent
¢ also knows that agent a is an expert. (We typically use female pronouns to
refer to a, male pronouns to refer to b, female pronouns to refer to ¢, and so
on.) Similarly, after call bd, agent b also knows that d is an expert, and d also
knows that b is an expert. Can the agents continue calling each other until they
all know that they are all experts, i.e., until they all know that they all know
all secrets? Yes, they can.

Let us first consider agent a. In order to get to know that everyone knows all
secrets, a has to make two further calls: ab and ad. Let us suppose these calls are
made, and in that order, i.e. consider the whole sequence ab; cd; ac; bd; ab; ad.
First, note that before and after those calls the agents involved are already
experts, so no factual information is exchanged. However, the agents still learn
about each other that they are experts. Hence, after ab, agent a knows that b
is an expert and after ad she knows that d is an expert. As she also knows this
from herself, a therefore now knows that everyone is an expert. She has become
a super expert.

Let us now consider agent b. In call bd he learnt that d is an expert, and
in the additional call ab he learnt that a is an expert. And again he obviously
knows from himself that he is an expert. Therefore, in order to get to know
that everyone is an expert, b only needs to make one additional call, bc, and b
then is a super expert.



We now consider agent c. Similarly, after yet another call cd, ¢ is a super
expert, which can be observed by highlighting the calls wherein ¢ learns that
another agent is an expert, as follows: ab; cd; ac; bd; ab; ad; be; ed. We caught two
birds in one throw, because after that final call cd also agent d knows that all
agents are experts: ab; cd; ac; bd; ab; ad; be; ed.

Therefore, all agents are super experts after the call sequence

ab; cd; ac; bd; ab; ad; be; cd.

This contribution is about gossip protocols with the termination condition
that everyone knows that everyone knows all secrets. To our knowledge this
setting has not been studied in detail before. In particular it differs from [17]
because we do not allow agents to exchange more information than merely their
secrets.

We now motivate our modifications of the usual call rules in gossip. As a first
idea, suppose any agent who is an expert no longer makes calls and no longer
answers calls. We call such agents engaged and a call that is not answered we
name a missed call. Given this new rule, can everyone still become an expert?
Yes. For example, after the already mentioned call sequence ab;cd; ac; bd all
agents are experts, and all calls were answered. However, now consider the
sequence ab;ac;ad. After this, agents a and d are experts. Agents b and ¢
can now no longer become experts: if either were to call a or d, this would be
a missed call. Note that agents do not learn any secrets from a missed call.
Hence in this case b and ¢ can never learn the secret of d: they can still call
each other, and after additional call bc or cb agents b and ¢ would both know
three secrets but not all four secrets, hence they are not experts. The protocol
cannot terminate.

We could additionally assume common knowledge among the agents that
a missed call means that the agent not answering the call is an expert. But
that does not make a big difference. After a missed call as above agents b and
¢ would thus know that a and d are experts. But, for example, that agent b
knows that a knows the secret of d, does not make b himself know the secret
of d. They cannot use that knowledge to become experts themselves. With the
classical gossip goal wherein all agents become experts the presence of engaged
agents prevents termination even for very simple protocols. We conclude that
this first idea of a condition for missed calls is not very satisfactory.

In this contribution we therefore employ the idea of missed calls in a different
way. Let us now suppose that the goal of the protocol is for all agents to become
super experts, and that an agent who is a super expert no longer makes calls and
no longer answers calls. This requirement is harder to fulfil than the previous
requirement that an agent who is an expert stops making and answering calls.

We can already satisfy the stronger termination requirement that all are
super experts without such missed calls, for example, with the above sequence
ab; cd; ac; bd; ab; ad; be; ed. This is not entirely obvious. However, observe that
after the subsequence ab; cd; ac; bd; ab; ad only agent a knows that everyone is
an expert, and in the subsequent call bc only agent b learns that, and only in



the final call cd agents ¢ and d simultaneously learn that. No call is made to a
super expert. Therefore, there are no missed calls.

However, now consider the call sequence ab; cd; ac; bd; ab; ad; ba; ca; da with
this missed call semantics. All final three calls are missed calls, because a
already knows that everyone is an expert. What do b, ¢, and d respectively
learn from these calls? Well, nothing whatsoever, as just like above we did not
make any assumptions so far about the meaning of a missed call in this new
context. Therefore, after those calls we can still make the additional calls be; cd
in order to satisfy that everyone knows that everyone is an expert.

Let us now, as above, additionally assume that it is common knowledge
among the agents that a missed call means that the agent not answering the
call is a super expert. Now, unlike above, that makes a big difference. Given
the sequence ab; cd; ac; bd; ab; ad; ba; ca; da, in the three final missed calls ba, ca,
and da, respectively, agents b, ¢, d then learn from a that all agents are experts,
so that after the entire sequence all agents know that all agents are experts.
Again, we are done.

Before we continue, let us make three more observations. Firstly, if the three
missed calls had been ordinary calls, the termination condition would not yet
have been met. For example, agent d would then not know that agent ¢ knows
all secrets. Additional calls would have been needed. Secondly, although the
sequence with three missed calls is one call longer than the previous sequence
that also realizes the knowledge objective, in general there are terminating se-
quences with missed calls that are shorter than any other terminating sequence
without missed calls, as we will prove later. Thirdly, as in a missed call the
agent calling must already be an expert (otherwise the agent called cannot be
a super expert), no factual information would have been exchanged if that call
had been an ordinary call. So the presence of missed calls does not prevent
agents from becoming experts in the first place, which would have wrecked our
chances to reach the protocol goal.

The modelling solution for missed calls, that is novel, is similar to a mod-
elling solution for making protocols common knowledge, presented in [18]. We
incorporated both in this contribution. This also allows us to investigate how
we can achieve that all agents are super experts with the constraints of some
protocols known from the literature, such as the protocol CMO wherein you are
only allowed once to be involved in a call (as the agent making or receiving the
call) [16].

For example, consider again the sequence ab; ac; ad after which agents a and d
are experts. Agent a may no longer be involved in any subsequent call according
to CMO. It is therefore impossible for her to get to know that everyone is an
expert. So, common knowledge of a protocol comes with additional constraints.
It may also come with additional advantages: in this case we can sometimes
achieve common knowledge of termination under synchronous conditions, i.e., if
all agents know how many calls have been made, even if they were not involved
themselves in all those calls. We will report some such cases, in particular for
CMO: for example, after an extension of ab;ac;ad with three more calls, all
agents including a are super experts. Unfortunately, if we also allow missed



calls this may no longer be the case, namely when an agent who already is a
super expert must call another agent in order for all agents to become super
experts. Such an extra complication can be overcome if agents have a notion of
time, and if we allow a so-called skip action that merely stands for a tick of the
clock. We will carefully distinguish all such modelling aspects.

To find out what agents know, we need to consider all call sequences they con-
sider possible. Such reasoning about call sequences is a non-trivial exercise. To
automatically find and verify such protocol executions we used the model checker
GoMoChe for gossip protocols available at https://github.com/m41lvin/GoMoChe.
Assuming synchrony, this means reasoning about finite sets of call sequences,
which is sufficient to verify knowledge. Assuming asynchrony, this means reason-
ing about infinite sets of call sequences of arbitrary finite length, which cannot
be done with a model checker. However, it is often sufficient to verify ignorance,
i.e., lack of knowledge, namely by producing two ‘witness’ call sequences with
opposite properties. Such witnesses can already be found for call sequences of
‘small’ length, by reasoning about finite sets of call sequences, namely of a cer-
tain maximal length. We also used the model checker GoMoChe for that, to
great effect.!

Outline. Section 2 presents a logical language and semantics for gossip protocols
with the epistemic goal that all agents know that all agents know all secrets. A
protocol is super-successful if all executions terminate satisfying this condition.
We also recall four gossip protocols from the literature: ANY, PIG, CMO, and
LNS. We obtain various results for the protocols ANY and PIG, mainly that
they are (fairly) super-successful (both for the synchronous and asynchronous
versions). Section 3 refines the logic in order to model common knowledge
of gossip protocols. We then show that synchronous known CMO is super-
successful. Section 4 further refines the semantics with the feature that super
experts do not make calls and do not answer calls. We then show that, if this
is known, super-successful protocol executions can be shorter. However, under
these conditions CMO is no longer super-successful. Section 5 presents an even
further refinement of the semantics by adding the feature of skip calls following
terminal protocol-permitted sequences, that allow us to regain a super-successful

CMO.

2. Gossip protocols for super experts

2.1. Syntaz and semantics

Suppose a finite set of agents A = {a,b,¢,...} is given. We assume that
two agents can always call each other, i.e., a complete network connects all the

11t should be possible in principle to have an asynchronous model checker of knowledge as
well, namely using the notion of redundant call as in [14], that bounds the maximal length of
a call sequence without redundant (non-informative) calls, and that therefore also makes the
sets of indistinguishable call sequences (and the length of individual sequences) finite again.
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agents. Let S C A? be a binary relation such that we read S,y (for (z,y) € S)
as “agent z knows the secret of agent y,” and where S,, stands for {y € A | S,y}.
For the identity relation S = {(x,z) | x € A} we write I.

The agents communicate with each other through telephone calls. During a
call between two agents x and y, they exchange all the secrets that they knew
before the call. So if a call takes place the binary relation S may grow.

A call or telephone call is a pair (z,y) of agents z,y € A for which we write
xy. Agent x is the caller and agent y is the callee. Given call xy, call yx is
the dual call. An agent x is involved in a call yz iff y = x or z = . A call
sequence is defined by induction: the empty sequence € is a call sequence. If o
is a call sequence and xy is a call, then o;xy is a call sequence. Let S be the
secret relation between agents and o a call sequence. The result of applying o
to S is defined recursively as:

5= 5; and ST = 57U ({(2,y), (y,2)} © 57).

We write |o| to denote the length of a call sequence, o[é] for the ith call of the
sequence, oli for the first ¢ calls of the sequence, and o, for the subsequence of
o that only contains calls involving z.

For a given set of agents A, a gossip state is a pair (S, o), where S is a secret
relation and o a call sequence. A gossip state is initial if S = I and o = e.
In this contribution we only consider gossip states of the form (7, o), in which
case we omit I. Hence e stands for the initial state (I, €), and ab; cd stands for
(I,ab;cd), etcetera.

Definition 1 (Language). For a given finite set of agents A the language L of
protocol conditions is given by the following BN F':

¢ = T[Sab|Cab|=¢|(pAe) | Kap][n]e
m = lp|ab|(mmn) | (rUm)| 7"

where a,b range over A. We have the usual abbreviations for implication, dis-
junction and for dual modalities, and often omit parentheses.

The atomic formula S,b reads as ‘agent a has the secret of b’. The atomic
formula C'ab means that agent a has called agent b (in the past). The formula
K, reads ‘agent a knows that ¢ is true’. Expression [r]p reads as ‘after execut-
ing the program m, ¢ is true’. We also define the abbreviation E@ := A, .4 Ka
and read it as ‘everyone knows ¢’ (Ey is also known as shared knowledge or
mutual knowledge of ). Program iteration is defined as: 7° :=?T, and for
n >0, 7"t =7

Agent a is an expert if she knows all the secrets, formally A, ., S.b, abbre-
viated as Exp,. Everyone is an expert is represented by the formula Ezp 4 :=
Naca Npca Sab. Agent a is a super expert if she knows that everyone is an
expert, formally K, FEzp 4.

Definition 2 (Protocol). A protocol P is a program defined by

P := (?-EFEzxp 4; U (?Pap; ab))*; TEExp 4
a#beA



where Pqy, € L is the protocol condition for call ab of protocol P.

The difference with the usual definition of gossip protocol as in, e.g., [18], is
that goal Exp 4 is replaced by goal EFzp 4. In other words, instead of “while
not everyone is an expert, select two agents to make a call” we have “while not
everyone is a super expert, select two agents to make a call.”

Definition 3 (Epistemic relation). Let a € A. The synchronous epistemic
relation =, is the smallest equivalence relation between call sequences such that:

e cry, €

o ifor, T and a ¢ {b,c,d, e}, then o;bc =, T;de
o ifor, T and I =1, then o;ab ~, T;ab

o ifo~, T and I = I, then o;ba =, T;ba

The asynchronous epistemic relation ~, between call sequences is defined as the
relation =, except that the second clause is replaced by

o ifo~yT,ad {bc}, then o;bc ~, 7.

Informally, the synchronous accessibility relation encodes that agents not
involved in a call are still aware that a call has taken place, as considered in
[9, 10]. This also implies that all agents know how many calls have taken place,
i.e., there is a global clock. The asynchronous accessibility relation does not
make any such assumption. Then, agents are only aware of the calls in which
they are involved. Any information on other calls has to be deduced from the
secrets they obtain from their calling partners.

Both epistemic relations assume that the callers not only learn what the
union is of the sets of secrets they each held before the call, but also learn
what set of secrets the other agent held before the call. This is known as the
“inspect-then-merge” form of observation [19].

Note that for any agent a, ~, C ~,. This is fairly obvious, because for any
call sequences o and 7 and b, ¢,d, e # a: 0 ~, T implies o; bc ~, 7, which implies
o;bc ~, T;de. The latter copies the clause o;bc ~, T;de for the synchronous
case.

Definition 4 (Semantics). Let call sequence o and formula ¢ € L be given. We
define o |= ¢ by induction on p.

cET iff true

ol=Sh  iff I7ab

o=Cab iff abeo

clE-p iff o

cEeANY iff cEpandoEY

ocE Koo iff T @ forall T such that o 4 T
okE=rle iff T forall T such that o[r]T



where
al?e]T iff oEpandTr=0
olab]r iff T=o;ab
olm, @]t iff there is p such that o[r]p and p[n']T
ol Ut iff olx]r or o]
olr*]r iff there is n € N such that o[r" |7

The inductive clause for Kgp above is for the synchronous setting. For the
asynchronous setting we replace o =, T by 0 ~, 7 in that clause. For simplicity
we do not use a separate symbol for the asynchronous semantics — it will always
be clear from the context what =’ stands for. A formula ¢ is valid, notation
E o, iff for all call sequences o we have o = .

We assume that all our protocols are symmetric, which means that for all
a#be Aand c #d e A, simultaneously replacing a by ¢ and b by d in the
protocol condition P, yields P.q. Intuitively, a symmetric protocol gives the
same instructions and does not assign any special roles to individual agents.
Moreover, we only consider protocols that are epistemic, which means that
Pap — K P4y is valid. This means that agents always know which calls they
are allowed to make (see [18, page 170]).

If in call ab agent a or b becomes an expert, then the other agent simulta-
neously becomes an expert, whereas if in a call ab agent a or agent b becomes a
super expert, then the other agent need not also become a super expert.

We continue with terminology on protocol termination. In some of this sub-
sequent terminology we informally consider infinite call sequences. We denote
a potentially infinite call sequence as 0.

If o = Poy we say that call ab is P-permitted after 0. A P-permitted call
sequence is a call sequence consisting of P-permitted calls. An infinite call
sequence oo, is P-permitted if for any i € N prefix o |i is P-permitted.

A P-permitted sequence o is P-fair iff either o is finite or for all z # y €
A, if for all ¢ there is j > i such that zy is P-permitted in o|j then for all ¢
there is j > i such that o [j] = zy. Intuitively, fairness means that eventually
all calls are made arbitrarily often as long as they are permitted.

A call sequence o is super-successful if after o all the agents are super experts.
A sequence o is P-mazimal (or P-terminal, or terminating) iff it is P-permitted
and for any z,y € A, o;xy is not P-permitted. An infinite call sequence o, is
P-maximal iff any prefix o |i is P-permitted. A protocol P is super-successful
iff all P-maximal sequences are super-successful (and thus finite). A protocol
P is fairly super-successful iff all fair P-maximal sequences are super-successful.
The notion of fairness is needed because already very simply protocols allow
infinite call sequences.

Finally, a call sequence o is successful iff after o all the agents are experts.
Also analogously to the previous terminology involving super-successful, we de-
fine successful protocol and fairly successful protocol.



2.2. Gossip protocols ANY, CMO, PIG and LNS

Four gossip protocols feature in this contribution. The protocol conditions
are for any a,b € A with a # b.

e ANY with protocol condition ANY g4 := T;

e CMO with protocol condition CMOQOg;, := —~Cab A ~Cba;

PIG with protocol condition PIGgy := K, Ve a((SacA=Sye)V(=SacASye));
e LNS with protocol condition LNS,;, := —.S,b.

The acronym ANY stands for make ANY call and is the standard (unin-
formed) protocol in the gossip literature [7] (not necessarily with the epistemic
interpretation in our work). In any infinite fair ANY-sequence any call occurs
arbitrarily often.

The acronym PIG stands for Possible Information Growth. Intuitively, the
call ab is permitted if a considers it possible that: a will learn a secret ¢ that b
knows but not a, or that: b will learn a secret ¢ that a knows but not b. It has
been investigated in [10, 15]. Both ANY and PIG permit infinite call sequences.

The acronym CMO stands for Call Me Once. You are allowed to call an
agent if you have not yet been involved in a call with that agent. This protocol
was introduced in [16] and is reminiscent of [20]. As any two out of n agents
are only( allc;wed to have a call once, the maximum number of calls in CMO is

n n(n—1
(2) The aQCronym LNS stands for Learn New Secrets. A call ab is LNS-permitted
iff agent a does not know the secret of agent b [10, 15, 16]. This protocol is
traditionally known as NOHO, for No One Hears Own [6]. Both CMO and LNS
only permit finite call sequences.

If we identify a protocol P with its extension (the set of P-permitted call
sequences), we note that LNS ¢ CMO C ANY and that PIG C ANY. For the
expert goal we additionally have CMO C PIG [15, Prop. 53]. We will see later
(Corollary 37) that this no longer holds for the super expert goal.

Already with a merely strengthened epistemic goal and without the more
involved semantics in subsequent sections we can obtain novel results for gossip
protocols, on which we will now report: ANY and PIG are fairly super-successful.
CMO and LNS are not super-successful, and for those protocols we only have
interesting results with more involved semantics. We will therefore only report
on results for these protocols later.

2.8. Results for the protocol ANY
The first result is fairly obvious, but proved for good measure.
Proposition 5. ANY is fairly super-successful.

Proof. As long as EFEzp, does not hold, any call zy is ANY-permitted. The
argument is therefore as usual for fair executions.

10



Let 0o be a (possibly infinite) fair maximal ANY-permitted sequence. To-
wards a contradiction suppose we do not have EExp 4 after any finite prefix of
0. Consider the following two cases.

e The sequence o, is finite. Let x be an agent who is not a super expert
after 0. Then there must be an agent y # x such that x is uncertain
whether y is an expert. The call xy is ANY-permitted after o.,. This
contradicts the maximality of oo.

e The sequence o, is infinite. Then there is a finite prefix 7 C o0, such
that for all sequences T C p C 0 no further secrets are learned after 7,
i.e. I = I”. Consider the following two cases.

— I™ # A% Then there are 7,y € A such that y € A\ I7. So the
call zy is ANY-permitted after 7 but it is not executed in 0. This
contradicts the fairness assumption.

— I™ = A2, Then there are x,y € A such that after every prefix of
0o, agent = does not know that y is expert. This means for any
sequence p with 7 C p C 0 there is a sequence 7 such that p
is indistinguishable from 7 for agent x (either p ~, 7 or p ~, =)
and A2 = [P = IT # I7. As call zy is ANY-permitted after both
(indistinguishable sequences) p and 7 but is never executed, again
this contradicts the fairness assumption. |

Example 6. Let A = {a,b,c}, and let the protocol be asynchronous ANY. We
show that after call sequence ab;ac; ab;cb it holds that EExp 4.

o After the prefix ab;ac, agents a and c are experts.

o After the prefix ab; ac; ab, agents a and b are super experts.

Agent a already knew that c is an expert and in call ab also learns that b
now is an expert. Therefore, she is a super expert: ab;ac;ab |= Ko Exp 4.

In the third call, ab, agent b learns that a is an expert. Because in the
first call ab agent a did not know the secret of ¢ yet, but now gives it to b,
agent b can infer that the call ac must have taken place between the two
ab calls. As in that call ac agent ¢ became an expert, agent b also knows
that agent c is an expert. Therefore also agent b is a super expert.

e Now consider the entire sequence ab;ac;ab;ch. In final call cb, agent c
becomes a super expert. After the second call, ac, agent a is an expert,
hence ¢ knows this. After the last call cb agent b is an expert, hence c also
knows this. Therefore agent ¢ knows that all agents are experts.

Example 7. Let now A = {a,b,c,d}, let the protocol be aynchronous ANY. A
super-successfully terminating sequence ab; cd; ac; bd; ab; ad; be; cd consisting of
eight calls was already given in the introductory Section 1.

It is easy to see that for n agents after 2n — 3 calls an agent can be a super
expert, both in the synchronous and in the asynchronous case.
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Example 8. Let again A = {a,b,c,d}. We show that after the five call sequence
ab; cd; ac; bd; ba agent b is a super expert.

After prefix ab; cd; ac;bd agent b is an expert. Agent b does not know what
the second and third calls were, but he knows that no call between a and d took
place. However, he is uncertain whether agent a is an expert. For example, an
alternative sequence considered possible by b is ab; cd; cd; bd. This uncertainty is
resolved in the fifth call.

Now consider the sequence ab;cd;ac;bd;ab. This reveals to b that a must
have been involved in the second or third call of the sequence. As in the fourth
call bd agent b learns that d has been involved in a call but did not yet know the
secret of a, b learns that this cannot have been the second call. As a is already an
expert in the call ab, this reveals that the third call must have been between a and
c. Agent b now only consider possible the sequence ab;cd;ac;bd;ab (where the
calls mot involving him could also have been in the other direction). Therefore,
agent b knows that all agents are experts.

There is however a far more straightforward way to become a super expert.

Example 9. Let there be n agents. Let an agent call other agents in succession.
(These are n — 1 calls.) Let that agent call all other agents again in succession
except the last one. (These are n — 2 calls.) Then this agent is now a super
expert. (Altogether, these are (n — 1)+ (n —2) = 2n — 3 calls.) An example for
4 agents is the 5 call sequence ab; ac; ad; ab; ac. The call ad is not needed for the
second time, as in call ad agent d already became an expert.

Conjecture 10. For n agents, the minimum number of calls for an agent to
become a super expert is 2n — 3.

The basis for this conjecture is that merely one less call, 2n — 4, is the
minimum number of calls for all agents to become experts [2]. Given that, a
natural question to ask is whether, independently from minima, an agent can
become an expert and a super expert in the same call, which seems unlikely.
But in fact this is possible, at least for synchronous ANY. We do not know if it
is possible for asynchronous ANY.

Example 11. Consider 4 agents, synchronous ANY and ab; ac; cd; ab; be; ab. In
the final call, agent a becomes an expert and a super expert. See Table 2. This
sequence was found after an exhaustive search with the model checker GoMoChe.

Proposition 12. Synchronous ANY permits shorter super-successful sequences
than asynchronous ANY.

Proof. We have not proved that for any n > 3 a shorter super-successful se-
quence exists. However, for a given ‘small’ number of agents it is straightforward
to come up with such a shorter execution sequence by model checking.

First, consider 3 agents a, b, ¢ and recall the minimal super-successful asyn-
chronous call sequence ab; ac; ab; cb of Example 6. The prefix ab; ac; ab is already
synchronously super-successful. Agent c¢ is not involved in the third call, and
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a b ¢ d initial state

2| ab ab c d

2| abe ab abe d

| abe ab abed CD | abed CD

% 1 abc  CD | abe abed CD | abed CD

% | abc  CD | abed BCD | abed BCD | abed  CD

2% | abed ABCD | abed ABCD | abed BCD | abed €D | a is expert and

super expert

Table 2: Results of ab; ac; cd; ab; be; ab. Each column describes what an agent knows: a lower
case y in the column of z means Syy; an upper case Y means K Ezp,. Therefore, “abcd”
denotes an expert and “ABCD” denotes a super expert.

this is common knowledge to all agents. In fact, all three agents only consider
this sequence ab; ac; ab possible.

Let there now be 4 agents a,b, ¢, d, as in the introductory Section 1 where
we discussed an 8 call super-successful sequence ab; cd; ac; bd; ab; ad; be; cd. We
can reach EEzp 4 in only seven calls, namely with sequence:

ab; cd; ac; ad; be; ba; bd

The reasoning was validated by the model checker GoMoChe, and what agents
learn in these calls is shown in Table 3. Let us sketch the justification of these
results.

After prefix ab; cd; ac; ad we have three experts a, ¢ and d. In the fifth call be
agent b becomes an expert (similarly to Example 8), and as usual b and ¢ learn
about each other that they are experts. In addition, and somewhat surprisingly,
c also learns in that call that d is an expert. This is due to synchrony and can
be checked as follows: ¢ knows that between the third call ac and the fifth call
bc there must have been a call which must have between between a and d or
between a and b. But in the fifth call bc agent b only knows the secrets of a and
b, hence this fourth call did not involve b. Therefore, it must have involved d,
which implies that d is an expert. (See Table 3).

Note that agent c only became a super expert in call bc because of synchrony,
and that c¢ is not involved in calls after that, and therefore asynchronously
considers it possible that bc was the last call. Therefore, this seven-call sequence
is not super-successful asynchronously.

Of course, there could be other call sequences of at most 7 calls that are

asynchronously super-successful. This has been ruled out by exhaustive search
in the model checker GoMoChe. O

2.4. Results for the protocol PIG

The PIG protocol has infinite executions for four or more agents [15]. Se-
quence ab; ab; ab; . . . is asynchronous PIG-permitted. Call ab is indistinguishable
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a b ¢ d initial state
a—b> ab ab C d
El> ab ab cd cd
2| abed A C ab abed A C cd
“ | abed A CD | ab abcd A C | abed A CD
% | abcd A CD | abed BC | abed ABCD | abed A CD | K Exp,
b4 1 abed ABCD | abed ABC | abed ABCD | abed A CD
4 | abed ABCD | abed ABCD | abed ABCD | abed ABCD | EEzp ,

Table 3: Results of ab; cd; ac; ad; be; ba; bd.

for agent a from call sequence ab; be, after which agent b has learnt something
new. Thus, after first call ab, the same call ab is again PIG-permitted. Similarly,
ab; ab ~, ab; ab; be, thus ab is again PlG-permitted after ab; ab, and so on. Some-
what similarly, under synchronous conditions, the sequence ab; cd; ab; cd; ab; cd; . . .
is PIG-permitted, as after any even number of calls agent a considers it possi-
ble that agent b was involved in the previous call and would thus have learnt
a new secret in that call. Therefore, each odd call can again be call ab. Ter-
mination results for the PIG protocol are therefore restricted to fair call se-
quences. These results are not as obvious as for ANY, given the protocol condi-
tion PlGay := Ky \/ e 4((Sac A =Spe) V (=Sac A Spe)).

Lemma 13. \/, . 4 PIGuy <> ~EExp 4 is valid.

Proof. Assume va,beA PIGgy. If an agent a considers it possible that there is
a secret that is not known by another agent b or by herself, then she considers
it possible that that other agent or herself is not an expert: —K,——Ezxp, V
—K,——Ezp,. Either way, she then does not know that all agents are experts,
- KqFzrp 4, and therefore ~EFzp 4. The other direction is similar. (]

Lemma 13 might seem to suggest that ANY and PIG have the same extension.
But this is false. Not all ANY permitted call sequences are PIG permitted (and
this does not depend on whether the goal is for all to become expert or for all to
become super expert). Let in call sequence 7;ab agents a and b become expert
in that final call ab, then ab is not PIG permitted in any extension of 7;ab,
whereas ab remains ANY permitted. However, for a certain strengthening of the
semantics to be presented in Section 4, this difference in extension disappears
(Proposition 35).

Proposition 14. PIG is fairly super-successful.

Proof. The proof of this proposition is the same that of Proposition 5, because
as long as FExp 4, does not hold, any call zy is not only ANY-permitted but also
PIG-permitted. This follows from Lemma 13. We therefore omit proof details.

O
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Example 15. The call sequence o = ab; cd; ac; bd; ab; ad; cb; cd from introduc-
tory Section 1 is also PIG-permitted. We can adapt o to get a successful ANY -
permitted sequence that is not PIG-permitted: in o, repeat penultimate call cb be-

fore final call cd, i.e., with the additional call in bold, ab; cd; ac; bd; ab; ad; cb; eb; cd.

3. Common knowledge of gossip protocols

8.1. Syntax and semantics — known protocols

We now enrich the framework by modelling common knowledge of protocols.
This requires that we replace the knowledge modality by a knowledge modality
depending on a given protocol, and that we replace the epistemic relations by
more restricted relations incorporating common knowledge of the protocols (it is
a restriction as this reduces the uncertainty about call sequences). The resulting
semantic framework is more complex, because these definitions require mutual
recursion both in the syntax and in the semantics. In the syntax, because
what an agent knows now depends on a given protocol, whereas the protocol is
defined with respect to a protocol condition, that could be a knowledge formula,
that needs to be evaluated in the semantics. Similarly, in the semantics, the
epistemic relation (that interprets a knowledge modality) depends on a given
protocol, and thus on the interpretation of the protocol conditions: formulas,
so we are back in the syntax. We adapt the framework presented in [18] to our
needs.

Definition 16 (Language and Protocol — known protocols). In the BNF of
the language L we replace the inductive clause K,¢ by an inductive clause K.
For A\ KPy we write EP¢. Then, a protocol P is a now a program defined

by

a€A

P .= (?ﬂEPEpr; U (?7Pap; ab))™; 7EPE:L’pA
a#beA

Formula KF ¢y means that agent a knows ¢ given (common knowledge be-
tween all agents of) protocol P. So, EPExzp, means that everyone is a super
expert given protocol P. We call KF¢ protocol dependent knowledge (of ¢).

We now define ~" and ~F simultaneously with the satisfaction relation
. The only change for the known protocol version with respect to the prior
Definition 4 of |=, is that we replace K, by K& everywhere and ~, by ~F
everywhere (and similarly for ~,). Ounly the knowledge clause of the semantics

is therefore given.

Definition 17 (Epistemic relations and semantics — known protocols).
Let a € A. The synchronous accessibility relation ~F between call sequences is
the smallest symmetric and transitive relation such that:

P

~
.6~a

€,

e ifo~h T, a¢{bcde}, o=Py and T |= Py then o;be =5 75 de

o ifoxl I =1, 0 =Py and 7 |E Py, then o;ab ~F 7;ab
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o iforf 7, IT =1I, 0 |E Py, and 7 |= Pyq, then o;ba =% 7;ba

The asynchronous accessibility relation ~7 between call sequences is the same

as the relation ~F except that the second clause is replaced by

o ifoc~P 7 a¢g{bc}, and o |= Py, then o;bc ~F 7
Finally, in the inductive definition of |= we replace the clause for K, by:
o= KPo iff T ¢ forall T such that o ~F T

On the set of P-permitted call sequences the relations ~F and ~F are equiv-
alence relations, but not on the set of all call sequences: see below and see also
[18].

For KANY » we write K ¢, for ~2NY we write =, and for ~
This is not ambiguous, because if for all a,b € A, Py, = T, we regain the syntax
and semantics of the previous Section 2.

In Definition 16 of the version of the language and the protocols assuming
commonly known protocols, formula K¢ contains as parameter a protocol P,
and vice versa a protocol P contains protocol conditions P, that are formu-
las. This is well-defined, once we see K" as K,(X,¢) where X is the list of
formulas P, for x # y € A, in other words, as a modality with not a single ar-
gument @, but with (I‘;‘I) +1 arguments.? For formal precision, in the Appendix
(page 32) we give the well-founded preorder demonstrating that the semantics
is well-defined. As also discussed at length in [18], this excludes self-referential
protocols.

Protocol P with the syntax and semantics for common knowledge of protocols
is referred to as known P.

We list some elementary properties of the semantics below, but refer to [18]
for further discussion and proofs. Here, a,b € A, protocols P, P/, and ¢ € L are
all arbitrary.

o = KPp — KPKPp, and = -KPp — KP=KPp. Intuitively, K has two
of the standard properties of knowledge, namely positive and negative
introspection.

NY ANY :
o we write ~.

e £ KPo — ¢. Whenever o is not P-permitted, then o = KF L. In other
words, if you are in violation of the protocol, anything goes. However,
whenever o is P-permitted, then o = KPp — ¢.

e =Py — P/, implies = Ko — KPop;as KANYp = Ko, for all a,b € A,
ANY., = T and ¢ — T is valid for all ¢, a corollary is that E K,p —
KPo.

o = S5,b< KPS,band = —S,b <+ KP=S,b. Whether a knows the secret of
b can be determined from the call sequence and independently from the
protocol.

280, despite its notation, we should not see KF ¢ as constructed from P and ¢. One should
rather see P as shorthand for a function P : A x A — £, where image P(A x A) is the list X.
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8.2. Results for the protocol CMO and minor other results

Common knowledge of the protocol ANY does not make any difference, as
the previous syntax and semantics is the special case for P, = T for all agents
x # y € A. Minor results for PIG, LNS will be discussed in relation to results
for CMO, that we will therefore present first. We recall that PIG is slightly more
restrictive than ANY.

For the protocol CMO, whether the agents know that CMO is executed makes
a big difference. It is the difference between being super-successful or not.

Proposition 18. Synchronous (not commonly known) CMO is not super-successful.

Proof. There are counterexamples whenever |A| > 4.

Given A = {aj,as,...,a,}, let p be a maximal CMO-permitted sequence
between agents {ai,az,...,a,—1}. From [16] it follows that after p all agents
ai,asg,...,a,—1 know all their secrets. So they are all experts except that none

knows the secret of a,,. Now define the call sequence ¢ by having agent a,, call
all other agents after p:

0 1= P;Ana1;anA2;. . .5 Gpln—1

We note that o is again a maximal CMO sequence, as (”;1) +(n—-1)=(3).
After o, all agents are experts, and agent a, is the only super expert. Let
i,j < mnand i # j. Now consider the following call sequence 7 where a,, only

calls a; (many times) and a; (once, at the same moment as in o):

i—1 times n—i—1 times

T 1= P;Apaj; Anayj; . . . Apajs Ap i GnQj; Gndj . . . Apl;j

We then have that o &,, 7 and that 7 & Ezp 4. Therefore, o | =K, Fxp 4. As
o is maximal and not super-successful, CMO is not super-successful. O

Proposition 19. Asynchronous CMO is not super-successful.

Proof. There are counterexamples whenever |A| > 4.

Consider again the call sequence p and ¢ from the proof of Theorem 18.
The sequence p; ana; is CMO-permitted, and o ~g, p;ana;. After p;ana;, only
agents a, and a; are experts but none of the remaining agents. Therefore,
ol Ko, Exp 4, so o = EExp 4. As o is maximal and not super-successful, CMO
is not super-successful.

It does not matter whether CMO is known, as we also have o ~SMO

i

P An Q.

O

Example 20. Consider the semantics without protocol knowledge. Let A =
{a,b,c,d} and consider the sequence o := ab;ac; be; ad; db; de. This sequence is
CMO-permitted, CMO-mazximal, and satisfies Exp 4.

Observe that o = ab;ac;be; ad; db; ad, where in the call sequence on the
right side we replaced the final call dc in o by ad. This sequence is not CMO-
permitted, as call ad occurs twice. After ab;ac;be;ad; db;ad, agent ¢ does not
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know the secret of d, therefore ab; ac; be; ad; db; ad = Exp 4. From that and o =
ab; ac; be; ad; db; ad then follows that o = KyExp 4, and therefore o & EExp 4,

so that o is not super-successful.

Example 21. Consider again call sequence o from the previous Example 20.
Now assume asynchrony. Consider the prefiz ab;ac;be;ad of o. Note that o ~,
ab;ac;be;ad, as a is not involved in the final two calls. Observe that after
ab; ac; be; ad agents b and ¢ do not know the secret of d (ab; ac; be; ad = —Spd A
=Scd), so that ab;ac;bc;ad W= Exp,. From that and ab;ac;be;ad;db;de ~,
ab; ac;be; ad it follows that o (= K, FErp 4, which implies o = EExp 4, so that
again o is not super-successful.

We only used CMO-permitted call sequences in the argument. It therefore
also demonstrates that known CMO is not super-successful (as reported in Propo-
sition 19).

We will now show that known CMO is super-successful.
Theorem 22. Synchronous known CMO is super-successful.

Proof. The extension of CMO consists of finite call sequences of length at most
(). Consider a maximal CMO call sequence o. If |[o| < (}), then it satis-
fies EMO Exp 4 (otherwise it would not be maximal, as there are still CMO-
permitted calls) so it is super-successful. Otherwise |o| = (3). We now use that
CMO is successful, i.e., for goal Fzp, [16]. As there are no call sequences of
length greater than (g), and as CMO is successful, all sequences of length (g)
satisfy Exp . As the setting is synchronous, given o, all agents only consider
call sequences of that length. Therefore, regardless of the epistemic relations,
they only consider call sequences satisfying Exp 4. Therefore E*MOExp ,: o is

super-successful. O

Example 23. This example features synchronous known CMO. The results in
this example have been validated with the model checker GoMoChe. They are
displayed in Tables 4 and 5, and in Figure 1.

Given four agents a, b, c,d, we always reach E“MOExp , in five calls when the
first two calls have no overlap, as in ab;cd. The only CMO-permitted call that
has then not yet been made is ad.

Given synchrony it is not always obvious how agents not involved in a call
learn that agents become super experts in that call. We will therefore justify in
detail how this may come to pass for some agents.

For example, in third call bd agent c learns that d becomes a super expert.
This is because in the second call cd, agent c learns that the first call was ab, and
as ¢ is not involved in the third call, this must be one of ab,ad,bd (or the dual
call). As ¢ knows that ab has already taken place, the third call must therefore
have been between a and d or between b and d. This always involves d, and d
then always becomes an expert. Therefore, ¢ knows that d is an expert.

Similarly, in the fifth call bc, agent d becomes a super expert (and in par-
ticular learns that a is an expert), because d knows that the two remaining
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ab
v
ab.ab.c.d
cd
be
v
ab.ab.cd.cd ab.abc.abc.d
ac
bd cd
v
~CMO
ab.abcd.cd.abed ab.abc.abcd.abed 7'\: b
.BD .D.BD .CD.CD
ac ad
' ' ~CMO
abced .abced. abed .abed abcd.abc.abed.abed 7":b7 o
ABCD.ABD.ABCD.BCD AD . . CD .ACD
be bd
v
~CMO
abed . abed . abed . abed abced .abed. abed . abed 7?’97 B
ABCD.ABCD.ABCD.ABCD ABCD. BD .ABCD.ABCD
acC
v
~CMO
abcd . abed . abed . abed b

a.b.c.d

ABCD.ABCD.ABCD.ABCD

abc.abc.abc.d

ad

abcd.abc.abc.abed
AD. .D.AD

bd

abcd.abed. abe .abed
AD . BD .ABD.ABD

cd

abed . abed . abed . abed
ABCD.ABCD.ABCD.ABCD

Figure 1: A partial view of the CMO execution tree for four agents. If the first two calls are
disjoint, termination is (always) after five calls. Otherwise, it is (always) after six calls. Two
other branches are suggested at depths 0 and 1 of the tree, but most other branches are not
depicted. In particular, after ab;bc call bd (or db) can be made, so that the same agent, b,
occurs in the first three calls. Such a sequence therefore also terminates after six calls.
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CMO-permitted calls were be and ad. As d was not involved, d knows

call was be.
a b c d
% ab ab c d
4 ab ab cd cd
1 ab abed B D| o D|abed B D
% | abed ABCD | abecd AB D | abecd ABCD | abed BCD
% | abed ABCD | abed ABCD | abed ABCD | abed ABCD

Table 4: The results of ab; cd; bd; ac; be.

that the

However, if we start with overlapping calls ab;bc, then ECMOE:L’pA is only
reached after 6 calls. For example, consider the sequence ab;bc;cd; ad;bd; ca.

After this sequence everyone is a super expert.

sequence in Table 5.

a b c d
% ab ab c d
21 ab abc abc d
4 | ab abc abcd  CD | abed  CD
“ | abcd A D | abc abecd  CD | abed A CD
% | abed ABCD | abed B D | abed ABCD | abed ABCD
% | abed ABCD | abed ABCD | abed ABCD | abed ABCD

We show the results of this

Table 5: The results of ab; be; cd; ad; bd; ac.

After the five calls ab; be; cd; ad; bd agent b considers ab; be; ac; ad; bd possible,
after which c is not an expert. But b has already been in a call with each other
agent, and hence b is no longer CMO-permitted to make calls. However, call
ac has not yet been made. Although agent a is a super expert, call ac is CMO-
permitted, after which the protocol terminates super-successfully.

There is more to observe from the CMO-permitted final call ac in the se-
quence ab; be; cd; ad; bd; ac in Example 23. Final call ac is not LNS-permitted,
as agent a is an expert (and ca is also not LNS-permitted). The sequence
ab; be; ed; ad; bd without that final ac is LNS-maximal and not super-successful.
This is because ab; be; cd; ad; bd ml';NS ab; be; ac; ad; bd. Therefore, agent b con-
siders ab; bc; ac; ad; bd possible after which c¢ is not an expert.

Corollary 24. Synchronous known LNS is not super-successful.
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4. Agents not answering or making calls

4.1. Syntax and semantics — engaged agents

In the first place we now model that agents who are super experts do not
make calls. We do this by changing the definition of gossip protocol and the
epistemic relation. The condition that needs to be satisfied for an agent to be
permitted to call is now that the agent is not a super expert.

In the second place we also model that agents who are super experts do not
answer calls. We do that by changing the definition of the epistemic relation.
A call sequence cannot be extended with a call made by an agent who already
is a super expert.

Agents who neither make nor answer calls are called engaged agents (as in
‘engaged in other activities’ for the former and as in ‘the line is engaged’ for the
latter). A call that is not answered is a missed call.

Definition 25 (Protocol — engaged agents). A protocol P is a program defined
by
P:=( |J (2~KFBrp, APay);ab))*; ?E Exp
a#be A

where for alla #b € A, Py, € L is the protocol condition for call ab of protocol
P.

This protocol definition is different from the previous Definitions 2 and 16
but also different from the usual definition (e.g., [18]):

(?=EBxpa; | (PPa;ab)) s ?Eap 4
aF#beA

As our termination condition is stronger, we already replaced “while not every-
one is an expert” by “while not everyone is a super expert” and the protocol
becomes Definition 25:

(?-EPBapy; | (PPasiab)) s ?EPErp,
aF#beA

Then, as we do not want super experts to make calls, we strengthen the protocol
condition by adding ~KF Ezp 4 to it:

(?-EPBapu; | (A~KE Bap s APay);ab)) ' 2B Eap 4
a#be A

Finally, as A,c4 K PExp, is EPEzp 4, it is not hard to see that the same call
sequences are allowed when we remove the first test on ~EFEzp 4, which leads
to the above Definition 16.

We continue with the changed epistemic relations. The definition of the
semantic relation = remains the same.
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Definition 26 (Epistemic relation — engaged agents).
Let a € A. The synchronous accessibility relation =% between call sequences is
the smallest symmetric and transitive relation such that:

P
[ ] 6%(16;

e ifo~l 7, a¢ {bede}, o= ~KSEwpy APy and 7 = ~K§ Exp 4 APy
then o;be ~F 7:de

o ifo =P 7, If =17, 0 ~KPExp, ANPu, 7 = =KV Exp, A Py, and

a

(0 ): KEEpr iﬁT ): KZ?Epr)7 then o;ab %Z T;ab
©ifo g, Iy =17, 0 = ﬁKl?Epr A Pre, T = ﬁKEEpr A Ppa, and

a

(0= KPExp, iff 7 = KPExp 4 ), then o;ba ~F 75 ba

The asynchronous accessibility relation ~F between gossip states is as the rela-

tion ~F except that the second clause is replaced by

o ifo~F 1 a¢{bec}, and o | —~K] Exp, APy, then o;be ~F 7

In the first place, the above definitions incorporate that agents no longer
make calls once they are super experts. This is the part ~K" Exp, in the
definition of protocol, and the parts =K Ezp , and K. l': Exp 4 in respectively
the third and fourth item of Definition 26 of the epistemic relation.

In the second place, the extra conditions “o |= K} Exp, iff T = K} Exp,”
and “oc = KPExp, iff 7 = KPExp,” in the third and fourth items of the
definition of the epistemic relation model that agents b and a, respectively, no
longer answer calls once they are super experts. For example, in the third item
it has the effect that after a missed call ab, any state 7 after which ab is not a
missed call (b answers the call) is no longer considered possible by agent a. In
other words, we then have that o;ab %, 7; ab.

The properties of protocol-dependent knowledge KF listed in the previous
section also hold for the semantics extended with the feature of engaged agents.
In particular, on the set of all call sequences that are P-permitted and such
that super experts do not make calls, the relations ~F and ~F are equivalence
relations.

A special feature of the semantics with engaged calls is that calling a super
expert will also make the callee a super expert:

Lemma 27. In the semantics with engaged calls, = K Exp , — [ab]KF Exp 4.

Proof. We give the proof for the asynchronous epistemic relation. The proof
is similar for the synchronous relation. Let o = K} Ezp, and assume o =
~KPExp 4 A Pay. Let 7 be such that o;ab ~, 7. Given the definition of the
epistemic relation, 7/ = 7; ab, and from o; ab ~F 7;ab we also obtain o ~F 7. As
o= KP Exp 4 and 0 ~F 7, from the definition of the epistemic relation we obtain
T E K[ Exp,, and thus also 75ab = K[ Ezp,. As knowledge is correct after
P-permitted sequences (Section 3), also 7;ab |= Ezp 4. And as 7 was arbitrary
such that o;ab ~F 7;ab, we obtain o;ab |= KF Exp 4, and thus o |= [ab] K Exp 4
as desired. O
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The dual effect of this semantics for missed calls is, that when after o agent
b answers a call from a, any state 7 wherein agent b would have been a super
expert is no longer considered possible by a. In particular, even when a learns
that b already knew all secrets before the call ab, she learns that b was not yet

a super expert after 0. Of course, b may have become a super expert in the call
ab.

4.2. Results for the protocols ANY, PIG and CMO

Consider asynchrony. We will show that with n agents, super-succesful ter-
mination is reached in n — 2 + (3) calls, which is of O(n?) complexity, whereas
with engaged agents super-successful termination is reached in 3n — 4 calls,
which is of O(n) complexity. We conjecture that these n — 2+ (5) and 3n — 4
are minimal. These conjectures are for asynchronous ANY. We recall that
synchronous protocols typically take fewer calls until super success than their
asynchronous versions (Section 2.3), whereas asynchronous protocols other than

ANY typically take more calls until super success.

Proposition 28. Given n > 4 agents, super-successful asynchronous ANY ter-
mination without engaged agents can be achieved in n — 2 + (g) calls.

Proof. Consider n agents, select 4 agents a, b, c,d among these n and 1 agent a
among these 4. First, let a call all the agents except b, c,d. These are (n — 4)
calls. Then, let a,b, c,d execute the sequence ab;cd; ac;bd. These are 4 calls.
Note that in the final two calls ac and bd these agents become experts. Apart
from ac and bd, we now let all remaining pairs of agents also call each other.
There are (%) pairs of agents (and these include ac and bd). Altogether these
are (n —4) +4 -2+ (3) =n—2+ (}) calls. When after a call both agents
are experts, they know this from one another. Therefore, after the (") calls, all

2
agents know that all agents are experts: EFEzp 4 holds. O

Proposition 29. Given n agents, super-successful asynchronous ANY termi-
nation with engaged agents can be achieved in 3n — 4 calls.

Proof. Select an agent a among the n agents. First, agent a calls all other
agents. These are n — 1 calls. Then, agent a calls all agents again in the same
order, except the last one that was called in the first round. These are n — 2
calls. Finally, all other agents call a. These are n — 1 calls. Altogether these
are 3n — 4 calls. The final n — 1 calls are all missed calls. After a missed call
the calling agent is also a super expert (Lemma 27). All agents are then super
experts: EExp 4 holds. o

We conjecture that these bounds are hard.

Conjecture 30. Given n agents, super-successful asynchronous ANY termina-
tion without engaged agents requires at least n — 2 + (72’) calls.

Conjecture 31. Given n agents, super-successful asynchronous ANY termina-
tion with engaged agents requires at least 3n — 4 calls.
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Given that n —2+ (3) is O(n?) and that 3n — 4 is O(n), we also conjecture
that these complexity bounds are hard.

Towards proving the minimality of n — 2 + (g), observe that in the proof
of Proposition 28 the first call in which two agents become experts is call n —
1. This is the minimum, as n — 1 links are need to connect n points in a
graph. So no agents are experts in the first n — 2 calls. Also observe that
in all subsequent (g) calls, agents x and y become expert when calling each
other or learn from each other that they already were experts when calling each
other. This suggests that the only way in which an agent asynchronously can
get to know that another agent is an expert (before or after the call) is by
calling that agent. Not surprisingly, for synchrony we did not expect this (see
Section 2.3 for multiple counterexamples). But, maybe somewhat surprisingly,
also for asynchrony this is false, as the next example demonstrates. This does
not disprove the conjecture, but unfortunately it rules out an easy proof.

Example 32. Consider o = ac; ad; ac; be; ac. After the sequence ac; ad; ac these
three agents share their secrets. In call ad agent a learns that d has not been
tnvolved in a call with b and in the second call ac agent a learns that ¢ has not
been involved in a call with b after the first call ac. Therefore a knows that
whomever b makes his first call with, he will become expert. In the third call
ac of o agent a learns that ¢ knows the secret of b, so there should have been
a call between b and ¢ or between b and d. (If between b and d, that call could
could have taken place between call ad and the second call ac, but not if between
b and c.) Either way, b then would be an expert. So a knows that b is an expert.
However, there has been no prior call between a and b wherein they both became
or already were experts.

On the other hand, this is not an efficient way to make a know that b is an
expert.

First, let us show that we cannot extend o with two more calls to be super-
successful, from which follows that at least three more calls are needed, which is
the conjectured minimum of (4 — 2) + (3) = 8 calls:

After o, nobody is a super expert, because d is not even an expert. Now at
most the two calling agents can become a super expert in a call. So the only
way for a two call extension of o to be super-successful is that the next two calls
are disjoint. Therefore, only one of these calls involves agent d. Because of
asynchrony, the order of these disjoint calls does not matter, so it suffices to
consider a single extra call involving d. In that call agent d should then become
an expert and a super expert at the same time. This call can be ad, bd, or cd (or
possibly the dual of any of these). It is easy to see that extending the five-call
sequence with ad, bd, or cd makes d an expert but not a super expert.

ac;ad; ac; be;ac;ad  ~g  ac;ad; ab;ad on the right, c is not an expert
ac; ad; ac; be;ac;bd  ~4  ac;ad; ab; bd on the right, c is not an expert
ac; ad; ac; be;ac;ed  ~g  ac;ad; be; ed on the right, a is not an expert

Therefore, no extension of less than eight calls is super-successful.
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In fact, the model checker GoMoChe not only confirms that no super-successful
seven-call sequence exists, but even establishes that no super-successful eight-call
sequence exists. So, this prefix 0 = ac;ad;ac; be; ac is not an efficient start in
order to get super-successful termination.

We continue with some results for asynchronous ANY demonstrating how
the feature of engaged agents affects termination.

Example 33. Consider again Example 6 for three agents a,b,c and super-
successful call sequence ab;ac;ab;cb. With engaged agents, final call cb is a
missed call. The sequence remains super-successful (but we need that final call).

Example 34. Given are siz agents a, b, c,d, e, f. We first assume asynchronous
ANY without engaged agents. We enact the procedure also used in the proof of
Proposition 28. A standard solution to obtain Exp 4 is ae;af;ab; cd; ac; bd; ae; af.
It consists of eight calls. After any of the final four calls ac;bd;ae;af, the in-
volved agents are experts. The agents can continue to verify that all other agents
are experts in subsequent calls. Altogether this requires each pair of agents to
make a call after which they both are (or remain) experts. For 6 agents we need
8+ 15 —4 =19 calls. (This is also the conjectured minimum.) An example
executing with all calls in lexicographic order is as follows.

ae; af;ab; cd; ac; bd; ae; af;ab; ad; be; be; bf; cd; ce; cf ; df ; ed; e f

With engaged agents, a simpler sequence with 15 instead of 19 calls is already
super-successful:

ae; af;ab;cd; ac; bd; ae; af; ab; ad; ba; ca; da; ea; fa

In this sequence first a becomes a super expert, in call ad. Then all other agents
call agent a. These are the final five calls ba; ca; da; ea; fa, These are therefore
all missed calls in which b to f also become super experts.

Howewver, this is not the conjectured minimum of 3n—4 = 3-6—4 = 14. This
is because agent a only becomes a super expert in the tenth call, and not in the
ninth, the known minimum. If so, extending the sequence from such a ninth call
with missed calls results in 14 calls instead. The method also used in Fxample 8
constructs a 14-call sequence that is super-successful. All calls involve a. First,
a calls everyone else, then a calls everyone else except the last agent f, finally
everyone else calls a, all of which are missed calls. We obtain:

ab;ac;ad;ae;af; ab;ac;ad;ae; ba;ca;da;ea; fa
We continue with a minor result involving PIG.

Proposition 35. Protocols ANY and PIG have the same extension in the en-
gaged agents semantics.

Proof. This follows directly from Lemma 13 that Va,be 4 PIGgy <+ —EEzp 4 is
valid. Any call ab can only be executed if a is not a superexpert, i.e., if she
considers it possible that some agent does not know some secret. O
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So far, all the news involving engaged agents seems good: speedier termina-
tion. We close with a bit of bad news. When engaged agents withdraw from the
conversation this can impede dissemination of information, and even prevent
that execution terminate super-successfully. We recall Theorem 22 that syn-
chronous known CMO is super-successful. Unfortunately, with engaged agents
it is no longer super-successful.

Theorem 36. Synchronous known CMO with engaged agents is not super-
successful.

Proof. The proof is by counterexamle. Consider again Example 23 and Table 4.
Consider (prefix) sequence ab; be; cd; ad; bd. After this sequence everyone but b
is a super expert.

Agent b considers ab; be; ac; ad; bd possible (see again Figure 1) after which
¢ is not an expert. But b has already been in a call with each other agent, and
hence b is no longer permitted to make calls. On the other hand, agents a and ¢
have not been in a call yet, so ac and ca are CMO-permitted, but they are both
super experts (see Table 4) and will therefore not make a call. The protocol
terminates unsuccessfully. o

If only agent b had the assurance that after the possible though not actual
sequence ab; be; ac; ad; bd the final call cd would be made . . . Although we assume
synchrony, nothing is known about the interval between calls, so b does not have
such assurance. Therefore, b cannot become a super expert.

In the next section we will show that by another extension of the semantics
modelling ‘clock ticks’ explicitly (in skip programs) we can still make CMO
super-successful.

For now, however, let us harvest one more result from Example 23. The
final call ac of sequence ab;bc; cd; ad; bd; ac of Example 23 is CMO-permitted
(without engaged agents), because a has not yet been involved in a call with
c. So even though a is a super expert, she will make that call. But the call
ac is not PIG-permitted, as agent a is a super expert (Lemma 13). Therefore,
although for the expert goal it was known that CMO C PIG [15, Prop. 53] (the
extension of CMO is contained in the extension of PIG), this no longer holds for
the super expert goal, with known protocols and engaged agents.

Corollary 37. With synchronous known protocols and engaged agents: CMO ¢
PIG.

5. Adding skip calls

5.1. Syntax and semantics — skip

In this section we investigate how adding a skip program to the language
and semantics makes a difference in the termination of gossip protocols. We
assume all prior enrichments of the semantics: known protocols and engaged
agents. We will later see that our skip is different from the PDL-skip program
defined as the test program ?T [21]. It rather is the skip featuring in some other
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publications on epistemic gossip [9, 10], that should be seen as an explicit tick of
the clock, during which no call is made. Given that it means absence of a call,
such a skip program should not be named a skip call. However, as we wish to
continue to name call sequences to which skip programs have been added ‘call
sequences’, we stick to the term skip call.

We first change the program part of the BNF of the logical language to also
take into account skip calls. The relevant part of Definition 1 was

m = Tplab| (mm) | (rUT) |7
and the new definition is:

Definition 38 (Programs — skip).

*

m = Tp|skip|ab| (mm) | (rUm)|w
where a,b range over A.

To allow skip calls, we change the crucial Definition 2 of protocol. Let us
recall the original definition:

P:=( | (?(~KFEap, APu):ab) s ?E Erp
a#beA

The new definition is as follows.

Definition 39 (Protocol — skip).

P = (Ua;ébeA(?(_‘KgEpr APap);ab))’;
7= \/a;ébeA(ﬁKt';EmpA A Pap);
(Ua;ébeA(?(_‘KzEEpr A =Pap); skip))*;
?EPEpr

where for all a #b € A, Pay € L is the protocol condition for call ab of protocol
P.

Formula - \/a#beA(—'KsEpr A Pgp) is the stop condition for the first arbi-
trary iteration. It is equivalent to the more intuitive /\a#eA(Pab — KPEap ),
which we will use further below. Given its position in the program, we could
replace the second arbitrary iteration (Ua#beA(?(ﬂKgE:rpA A =Pgy); skip))” by

the shorter (e (?—KE Exp 4; skip))” without changing the meaning of the
protocol: the stop condition in the middle enforces that any agent satisfying
-K 5 Exp 4 also satisfies =Pg,. We left the condition =P, in place for intuitive
clarity.

The second arbitrary iteration only fires if anyone satisfying the protocol
condition is already a super expert, but when there still are agents who are not
super experts (so that the protocol has not terminated super-successfully) but
who do not satisfy the protocol condition.

We continue with the epistemic relations. Just as for the engaged agents se-
mantics, the semantic relation = remains unchanged (Definition 17), we merely
need to define the interpretation of program skip.
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Definition 40 (Epistemic relations and semantics of programs — skip).

Let a € A. The synchronous accessibility relation =% between call sequences
is the smallest symmetric and transitive relation satisfying all the clauses of
Definition 3 plus the following two inductive clauses involving skip.

o ifoxl 7 ad¢ {bc) o Neraca(Pea = KPErp,) and 7 | =K Exp, A
Pyc, then o; skip zfl’ T; be

o ifox T, a¢d {bec), o= /\#deA(Pcd — KPExp,) and 1 = /\c;&deA(Pcd —
KFPExp ), then o; skip =¥ 1; skip

The asynchronous epistemic relation ~F is defined similarly, by adding the single
clause:

o ifo~Prando = Neraca(Pea = KPExp,) then o;skip ~F 1
To the semantics of programs (Definition 4) we add the interpretation of skip:
olskip]t iff T = o;skip
where 173%® .= [,

Note that skip calls can only occur at the postfix of a permitted call sequence.
In other words, all call sequences o that are executions of protocols according
to the skip semantics have shape o1; 0o where o1 only contains calls ab for some
a,b € A, whereas o9 only contains skip calls. This also holds for infinite call
sequences, i.e., an infinite call sequence may consist of calls ab only, or of a finite
prefix of such calls followed by an infinite postfix of skip calls.

Recalling the semantics of programs (Definition 4) we see that the PDL-skip
defined as 7T is defined as

o?T)r iff 7=o0.

Note that this does not extend the call sequence, unlike our ‘clock tick’ skip.

Skip calls do not have factual consequences (changes of the value of atomic
propositions): atoms S,b do not change because 7% := [° and atoms Cab
do not change as skip is not a call. However, they may have other informative
consequences.

In the asynchronous semantics, skip calls do not have informative conse-
quences.They go, so to speak, unnoticed. This is expressed by the following
proposition.

Proposition 41. Assume asynchrony. Let call sequence o be given such that
ocE /\#deA(Pcd — KPExp ). Then o |= KPp < [skip] KP o

Proof. First note that for any ¢ and o: o |= [skip]y, iff 7 = ¢ for all 7 such
that ofskip]r, iff o; skip E .

Let now ¢ € £ and call sequence o such that o = A_gc4(Pea — KPExp )
be given. Then: o = KFop, iff 7 = ¢ for all 7 ~F o, iff (*) 7 |= ¢ for all 7 ~F

a

o; skip, iff o; skip = K2, iff o |= [skip] K7 ¢. Therefore o = KP¢ < [skip] KF¢.

In (*) we use that if o = A ,,4e 4(Pea — KPEzp ), then from Definition 40
it follows that 7 ~F o iff 7 ~F o; skip. O

28



If skip calls can take place any time we even have = ¢ + [skip|p, as sug-
gested by Wiebe van der Hoek in the context of [9, 10]. However, for our
semantics only permitting skip when all agents are super experts this is false.
For example, given a super-successful sequence o for a protocol P, we have that
o |= [skip] KP L, as skip is not permitted after termination. On the other hand,
evidently, o = KP 1. So, o = KP L « [skip]KP L.

In the synchronous semantics, skip calls may have informative consequences,
as we will now see. Because the agents become aware of time, this may result
in knowledge gain.

5.2. Results for the protocol CMO
Theorem 42. Synchronous known CMO with engaged agents and skip is super-
successful.

Proof. Let o be a maximal CMO-permitted sequence. Since CMO is successful,
after executing o all agents are experts: Exp 4 holds. If E*MOEzp , now also
holds, we are done. If EMO Exp , does not hold, then, since o is maximal, any
agent who has not yet been involved in a call with some other agent, is already
a super expert: /\,_.c ,(CMOpe — KMOExp 4). Also, since o is maximal but
not super-successful, there is an agent a who is not a super expert but who has
been involved in a call with all other agents ~KSMO Ezp , A Noca "CMOqp.

Because a is not a super expert, there is a call sequence 7 such that o ~, 7
and 7 & Ezpy, ie., there are b,c € A such that 7 = Spe. Therefore 7 (= Cbe
and 7 £ Ceb, so that 7 | CMOyp.. Protocol dependent knowledge is truthful
after the CMO-permitted sequence 7, therefore, from 7 (= FExp 4 it also follows
that 7 £ K Ezp 4.

From all this it therefore follows that o; skip ~, 7;bc. If we now have that
o; skip = E“MOExp ,, we are done. Otherwise, we repeat the procedure until
the maximum number (g) of CMO-permitted calls has been reached. After that,
EMO Egp , is a property of that horizon. O

If in the above proof the horizon of (g) calls has been reached, it is even
common knowledge that all agents are experts, and thus it is common knowledge
that they are super experts (common knowledge is an infinitary epistemic notion
proposed in, for example, [22, 23, 24]). However, if termination is earlier, we
are uncertain if such common knowledge is then reached. We conjecture that it
is.

Example 43. We recall Figure 1, Example 23, and Theorem 36. Synchronous
known CMO 1is super-successful, however with engaged agents it is not.

Reconsider o = ab;bc;cd;da;bd and ™ = ab;bc;ac;ad;bd, and recall that
o =y 1. After o all agents are experts. Agent b does not know that, because b
considers T possible. Call ac is not CMO-permitted after o, because a is a super
expert. After T agent ¢ does not know the secret of d and so cd is CMO-permitted.
We now have that o; skip ~, 7;cd and o; skip = EMO Eap ,.

Again, as in Example 23, common knowledge that all agents are experts is
now obtained; but as observed above, it is unclear whether this is always the
case.
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6. Conclusion and further research

We explored gossip protocols wherein the termination condition is that all
agents are super experts: all agents know that all agents know all secrets. For
such protocols with super expert epistemic goals we also modelled engaged
agents: agents who are super experts do not make and do not answer calls. For
our results it matters whether gossip protocols are common knowledge among
the agents.

We investigated conditions under which such gossip protocols terminate,
both in the synchronous case, where there is a global clock, and in the asyn-
chronous case, where there is not. We show that with engaged agents, and where
the meaning of not answering calls is common knowledge among the agents, pro-
tocols can terminate faster than without engaged agents. We proved that the
protocol CMO wherein agents may only be involved once in a call with another
agent, is super-successful (always terminates for the super expert goal) in the
presence of a global clock.

Our results appear to generalize to protocols with common knowledge ter-
mination conditions, which we wish to investigate in future research. It may
also be of interest to investigate gossip protocols with very different epistemic
calling conditions.
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Appendix

We show that protocol dependent knowledge KF¢ is well-defined. Define a
relation < as follows. For any call sequences o, 7, formulas ¢,1 and agents
a,b, c
1. ) if ¢ is a subformula of ¢
< (1, KPp) where a # b
T, ) where ¢ is not an atom
< (1,¢) where ¢ is not an atom

(0,Cab) < (7,¢) where ¢ is not an atom and a # b

e N

The relation < is a well-founded partial order, with pairs (any call sequence,
any atom) at the bottom. Recalling that K" can be interpreted as K, (X, ¢)
where X = {Py. | b # ¢ € A}, clause 2. that (0,Pu,) < (7, KF¢) is already
subsumed by clause 1., as P,y is then a subformula of KF .

We now show that the satisfaction relation |= is well-defined using that
relation < is well-founded. We do this for the engaged agents semantics, without
that it is even simpler. The proof is by structural induction. All clauses are
trivial except knowledge.

In order to determine o = K¢, we need to determine for all 7 such that
7 ~F o (where 7 may be o) that 7 |= ¢, as well as (for the engaged agents
semantics) 7 = K Exp 4 or 7 |= =K} Exp 4 for agents b possibly different from
a.

e Concerning 7 |= ¢, from clause 1. we obtain (7, ¢) < (o, KF ).

e Concerning 7 = K} Ezp 4, this can be determined by checking that p =
Ezp 4 for any p ~§ 7. Determining p ~! 7 introduces another obligation
that will be honoured below. Now p = FEzp, means that p E S.d for
any ¢,d € A (not necessarily different from a or b). We then obtain from
clause 4. that (p,S.d) < (0, KF¢). The case 7 = ~K} Exp, is treated
similarly, first using that (7, K} Exp 4) < (1, ~K} Ezp 4), by clause 1.
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e Concerning 7 ~F o, this requires to establish 7/ |= P4 for ¢,d € A (where
c or d may be a) and prefixes 7/ of 7. We now use clause 2. that (77, P.q) <
(0, K5 o).

Similarly, concerning the novel obligation p NE 7 we need to establish
p |E Pcaq for prefixes p’ of p. Again, we use clause 2. to get (p/,Peq) <
(0, K5 0).

Note that it plays no role whether 7 or p are ~, or ~; related to o or even
by some chain of such indistinguishability links.

Further note that 7 and p may in length largely exceed o (and even may
have o as a prefix themselves) given asynchrony. But this does not matter, the
length of sequences does not play a role in the order (it is of some importance
to observe this).

A particular case of clause 1. is when ¢ = [r]p, such that for any program
7 that is a call sequence, (0; 7, ¢) < (0, [T]p).
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