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RESEARCH ARTICLE Open Access

Microbial environment shapes immune
function and cloacal microbiota dynamics
in zebra finches Taeniopygia guttata
H. Pieter J. van Veelen1,2* , Joana Falcão Salles1, Kevin D. Matson3, Marco van der Velde1 and B. Irene Tieleman1

Abstract

Background: The relevance of the host microbiota to host ecology and evolution is well acknowledged. However,
the effect of the microbial environment on host immune function and host microbiota dynamics is understudied in
terrestrial vertebrates. Using a novel experimental approach centered on the manipulation of the microbial
environment of zebra finches Taeniopygia guttata, we carried out a study to investigate effects of the host’s
microbial environment on: 1) constitutive immune function, 2) the resilience of the host cloacal microbiota; and 3)
the degree to which immune function and host microbiota covary in microbial environments that differ in diversity.

Results: We explored immune indices (hemagglutination, hemolysis, IgY levels and haptoglobin concentration) and
host-associated microbiota (diversity and composition) in birds exposed to two experimental microbial environments
differing in microbial diversity. According to our expectations, exposure to experimental microbial environments led to
differences related to specific antibodies: IgY levels were elevated in the high diversity treatment, whereas we found
no effects for the other immune indices. Furthermore, according to predictions, we found significantly increased
richness of dominant OTUs for cloacal microbiota of birds of the high diversity compared with the low diversity group.
In addition, cloacal microbiota of individual females approached their baseline state sooner in the low diversity
environment than females in the high diversity environment. This result supported a direct phenotypically plastic
response of host microbiota, and suggests that its resilience depends on environmental microbial diversity. Finally,
immune indices and cloacal microbiota composition tend to covary within treatment groups, while at the same time,
individuals exhibited consistent differences of immune indices and microbiota characteristics.

Conclusion: We show that microbes in the surroundings of terrestrial vertebrates can influence immune function and
host-associated microbiota dynamics over relatively short time scales. We suggest that covariation between immune
indices and cloacal microbiota, in addition to large and consistent differences among individuals, provides potential for
evolutionary adaptation. Ultimately, our study highlights that linking environmental and host microbiotas may help
unravelling immunological variation within and potentially among species, and together these efforts will advance the
integration of microbial ecology and ecological immunology.

Keywords: Ecological immunology, Microbial environment, Host-microbiota interactions, Microbiota dynamics, Avian
microbiota
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Background
Diverse microbial communities are ubiquitous components
of animals and the aquatic and terrestrial ecosystems that
they inhabit [1]. The immune systems of animals invariably
deal with numerous microbial organisms at any given place
and time, and have consequently evolved to prevent micro-
bial over-exploitation, infection and disease (i.e. parasitism)
and to allow beneficial (i.e. mutualism) and neutral host-
microbe interactions (i.e. commensalism). Studies in a rela-
tively new research domain, ecological immunology, have
begun to reveal some sources of immunological variation
across species [2–6], among individuals [7–9], and during life
cycles [10, 11]. However, a large part of this work has collect-
ively demonstrated that immunological variation is poorly
aligned with life history strategies among species (e.g. pace-
of-life) [e.g. 5, 6]. Likewise, immunological variation within
individuals frequently does not follow predictions based on
life-history trade-offs [7, 11, 12]. Instead, immunological vari-
ation often is better correlated with environmental variability
[3, 9, 13, 14], supporting ideas that animals optimize immune
defenses to fit their environment, on both evolutionary and
ecological time scales [14–16]. The pathogenic and non-
pathogenic effects of microbial life on wildlife health and
fitness and the origins, maintenance, and disturbance of
animal-microbe interactions represent major frontiers in
contemporary biology [17–19]. One important unresolved
issue is whether the environmental microbial communities
encountered by an animal affect the immune function, and
ultimately survival, of that animal [15, 16].
Another component of the interface between a host

and its environment is the host-associated microbiota,
the sum of the microbial communities residing in and
on an animal’s body. Like immune function, host-
associated microbiotas show tremendous variation
among species and individuals and through time and
space [20–24]. The status of host-associated microbiotas
is currently debated: some view the host-associated
microbiota as a phenotypic trait of its host; others see
the microbiota and the host as a meta-organism [25–
28]. Regardless, several fundamental questions in this
debate remain to be addressed, including whether the
host-associated microbiota is determined by inheritance
or by the environment, and whether the host’s micro-
biota acts as a phenotypically plastic trait for quickly
responding to versatile environments [15, 29]. Under-
standing the latter requires concomitant measurement
of host-associated and environmental microbial commu-
nities; however, this type of work is just beginning to be
carried out in terrestrial nonhuman vertebrates. Irre-
spective of whether the microbiota should be defined as
a host trait or not, the conceptual distinction between
an animal’s microbiota and its (microbial) environment
fades as a result of weak host-microbe partner fidelity
[28], common host-environment microbial exchange

[30, 31], or both. Ideally, testing effects of the microbial
environment on host-associated microbiota diversity,
composition and dynamics should be done while con-
trolling for factors known to shape animal microbiota
[29, 32–36], such as diet or sex [37, 38].
Individual animals routinely experience very different

environments within their lifetimes, for example when mi-
grating or when seasons change [reviewed in [39]. As a
prerequisite for investigating how microbial environments
shape host immunological phenotypes via host-associated
microbiota, quantifying the resilience of host-associated
microbiota to shifts in environmental microbial communi-
ties may prove vital. Tracking how the host-associated
microbiotas of individuals respond to novel microbial en-
vironments [e.g. 40] will offer insights into the individual-
ity, flexibility and resilience of microbiota traits, and into
the time span at which responses to novel microbial envi-
ronments occur. Earlier attempts at this type of tracking
did not control for important confounding factors, e.g.,
dietary effects on gut microbiota variation [41, 42]. Hence,
experimental approaches that subject animals to novel
microbial environments while limiting confounding effects
are needed, and need also consider the individuality of re-
sponses. Widely used indices of immune function can
fluctuate temporally within individuals; simultaneously, in-
dividuals can consistently differ, i.e., be repeatable [43, 44].
Host-associated microbiota can similarly show signs of in-
dividuality but see [45, 46]. Accordingly, questions about
individual-level connections between host immune func-
tion and host-associated microbiota have emerged [15,
16], and call for simultaneous assessment of immune
function and host-associated microbiota.
While not investigated in an ecological immunology

framework, studies of constitutive immunity in humans
and rodent models implicated that levels of specific anti-
bodies [47, 48], polyclonal natural antibodies [49], and
complement activity [50] were positively associated with
gut microbiota diversity. Here, we describe an experi-
ment in which we manipulated the microbial environ-
ment to test its influence on innate and adaptive aspects
of immune function and on the diversity and resilience
of host-associated microbiota of captive zebra finches
Taeniopygia guttata. 1) We explored temporal patterns
of immunity and cloacal microbiota characteristics over
8 weeks in birds that were continuously exposed to one
of two experimental environments that differed in mi-
crobial diversity and composition. Based on the litera-
ture, we predicted that, if constitutive levels of antigen-
specific IgY, natural antibodies and complement-like
factors are influenced by the diversity of environmental
microbial communities, their concentration would
increase in response to high environmental microbial di-
versity. In addition, if infection incidence increases with
microbial diversity, we predicted elevated levels of
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haptoglobin, a marker of inflammation [44], under high
environmental microbial diversity. We accordingly pre-
dicted decreasing or a lack of patterns under conditions
with low environmental microbial diversity. 2) We also
investigated whether microbial environments with differ-
ent diversities affected the diversity and resilience (i.e.
degree and time to recovery) of the cloacal microbiota.
We minimized dietary influences on the microbiota by
supplying sterilized food and water. We then predicted
that a more diverse microbial environment would in-
crease the diversity and slow the recovery of cloacal
microbiota. 3) Finally, we examined correlations between
immune indices and host-associated microbiota charac-
teristics, where correlations would suggest that verte-
brate immune function responds to environmental
microbiota within 8 weeks. Our longitudinal study de-
sign additionally allowed us to quantify repeatability of
immune indices and host-associated microbiota
characteristics.

Results
Microbial environment affects IgY concentration but not
innate immune indices
To experimentally test if microbial environments (Add-
itional file 1: Fig. 1) affect indices of immunity, we moved 53
adult females and 54 adult males from single-sex outdoor
aviaries to indoor cages (50 X 50X 40 cm), each of which
housed two birds of the same sex. We supplied all cages with
bedding materials comprising soils with bacterial communi-
ties of high (Shannon H′± SE= 5.6 ± 0.05) or low bacterial
diversity (3.9 ± 0.05) and different community compositions
(Additional file 1: Fig. 1). Each of the two replicate rooms per
experimental microbial environment contained 12 cages ar-
ranged in a 3 X 4 grid with alternating male and female
cages. Birds were randomly assigned to a room and a sex-
specific cage (see Additional file 1 for more details on experi-
mental procedure and housing conditions). We provided a
standardized diet of ad libitum gamma-irradiated seed mix-
ture and autoclave-sterilized water to all birds. The water
was supplemented with 4 g l− 1 of a micropore-filtered
multivitamin-amino acid solution (Omni-vit, Oropharma
N.V., Deinz, Belgium) to compensate potential irradiation-
induced vitamin degradation in seed. We measured indices
of innate (agglutination titer of natural antibodies,
complement-mediated lysis titer, and haptoglobin concentra-
tion [44, 51]) and adaptive immune function (total plasma
concentration of immunoglobulin Y (IgY), i.e. the avian
equivalent of IgG [52, 53]), in females at four time points: <
1 day before the experiment (i.e. baseline) and after weeks 2,
4 and 8 of the experiment. We analyzed only females be-
cause of practical limitations, and cloacal swabbing was im-
possible for males. We evaluated time effects using four
distinct sampling days, which we considered categorically in

order to determine within-individual changes between these
sampling moments.
Comparing treatment groups, IgY concentration was

significantly elevated in the high diversity compared with
the low diversity microbial environment (Fig. 1b). This
pattern remained when baseline values were excluded
(F1, 44 = 4.35, P = 0.04), which we tested separately as
baseline values differed between treatment groups
despite randomized allocation to treatments (χ2 = 4.21,
df = 1, P = 0.04). Agglutination titer, lysis titer and hapto-
globin concentration were unaffected (Fig. 1a, c and d;
Table 1). The effect on IgY was most strongly present
after eight weeks of exposure to the different experimen-
tal microbial conditions (Fig. 1b, Table 1). Using a multi-
variate distance-based redundancy analysis of the four
immune indices combined we found no significant
difference between treatment groups (F1, 39–43 < 1.20,
P > 0.26). The elevated IgY levels in the high diversity
microbial environment suggest that antigen-specific
antibodies had increased with environmental micro-
bial diversity, whereas agglutination, which is driven
primarily by polymeric natural antibodies (e.g. IgM)
with low specificity and low affinity, was not differ-
ent between high and low diversity microbial
environments.
We examined temporal shifts in the immune indices

to determine if microbial environments altered host im-
mune function. Absence of significant treatment by sam-
pling moment-interactions indicated that changes in
immune function between sampling moments were
largely independent from experimental microbial condi-
tions (Fig. 1; Table 1). Specifically, while agglutination
titers showed no differences between sampling moments
at all (Fig. 1a; Table 1), total antigen-specific IgY con-
centrations increased by 0.19 absorbance units between
sampling moments 2 and 4 (χ2 = 12.16, FDR q = 0.003;
Fig. 1b), and haptoglobin concentration increased by
0.16 mgml− 1 between sampling moments 2 and 3 (Fig.
1d). We observed complement-mediated lytic activity in
only a few individuals at the baseline measurement, and
the probability of lytic activity further declined after ex-
posure to experimental conditions (Fig. 1c; Table 1). IgY
concentrations tended to increase during the experiment
only in birds exposed to the high diversity microbial en-
vironment (Fig. 1b), but the interaction between treat-
ment and sampling moment was not significant (Table
1), also when baseline measures were excluded (F2, 87 =
1.53, P = 0.22).
To examine the amount of variance in immune in-

dices explained by differences among individuals, we
examined the repeated measures on individuals over
time, following [54], and revealed that immune func-
tion differed consistently among individuals (Fig. 1;
Table 1). The repeatability was highest for IgY
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concentration, and repeatabilities for agglutination
titer and haptoglobin concentration were lower, but
still significant (Table 2).

Microbial environment affects host-associated microbiota
structure and composition
To investigate the diversity and resilience of host-
associated microbiota traits in response to different mi-
crobial environments, we characterized the host-
associated microbiota using cloacal swabs that were col-
lected at the same four time points described above. We
extracted DNA from these swabs and characterized the
host-associated microbiota through 16S rRNA gene
amplicon sequencing (V4/V5 region) using Illumina

Miseq (see Additional file 1 for more detail on bioinfor-
matics procedures). Briefly, we assembled quality-filtered
sequences into operational taxonomic units (OTUs; 97%
ID; see Additional file 2) to analyze alpha and beta diver-
sity. Rarefaction curves indicated that Shannon diversity
but not OTU richness reached a plateau, which implied
that our sequencing effort was insufficient to docu-
ment rare OTUs (Additional file 1: Fig. 2). Accord-
ingly, we interpreted OTU richness as the richness of
dominant OTUs. Our dataset contained 1,084,107
quality-filtered reads clustered in 1393 OTUs (each
contributing > 0.001% of total abundance). Of these
OTUs, 81% were shared between the treatments
(Additional file 1: Fig. 3), and 168 and 97 OTUs were

Fig. 1 Experimental and temporal effects on host immune function. Relationships of population-level variation of (a) agglutination titer, (b) IgY
concentration, (c) lysis titer and (d) haptoglobin concentration across sampling moments, stratified by experimental treatment. Faded blue circles
(high diversity soil) and orange triangles (low diversity soil) represent individual measurements connected by a line per individual female (solid =
high diversity, dashed = low diversity). Boxplots show median and first and third quartile per group, with whiskers representing 1.5 · IQR. Treatment
groups were measured simultaneously but split along x-axis for visual clarity. Grey area highlights the baseline sampling moment. Experimental
treatment and temporal effects on lysis titer were analyzed as occurrence of lytic activity. Asterisks above plots denote pairwise contrasts among
sampling moments; * FDR-corrected q < 0.1, ** q < 0.01. Statistics are detailed in Table 1. The experimental effect on IgY concentration is also
significant after exclusion of baseline samples (F = 4.35, P < 0.05)
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detected only in birds on high diversity and low di-
versity soils, respectively. To evaluate host-associated
microbiota alpha diversity, we rarefied host-associated
microbiota data to 1273 reads per sample (i.e. upper
80% of coverage distribution) for comparability:
173855 reads binned in 1310 OTUs. Beta diversity
was calculated based on a non-rarefied and variance-
stabilized community table (see Methods).

The experimental microbial conditions led to modest
differences in alpha (Fig. 2a and b) and beta diversity of
host-associated microbiota (Fig. 2c). Linear mixed model
(LMM) analyses of alpha diversity (OTU richness and
Shannon diversity) revealed significantly higher richness
of dominant OTUs in the host-associated microbiota of
birds living on high diversity soils compared with low di-
versity soils (Fig. 2a, Table 3). We found no significant

Table 1 Statistics of longitudinal analysis of experimental and temporal effects on innate immune function

Response Predictor Df a F P

Agglutination (titer) Experimental treatment 1, 41 0.03 0.87

Sampling moment 3, 125 0.79 0.50

Interaction 3, 125 0.22 0.88

[IgY] (absorbance) Experimental treatment 1, 44 5.15 0.028

Sampling moment 3, 129 4.12 0.008

Interaction 3, 129 1.60 0.19

z P

Lytic activity (probability) b Experimental treatment 1 −0.71 0.48

Time (days) 1 −2.61 0.009

Interaction 1 1.80 0.07

F P

[Haptoglobin] (mgml−1) Experimental treatment 1, 44 0.19 0.66

Sampling moment 3, 127 6.20 < 0.001

Interaction 3, 127 0.40 0.76
aDenominator degrees of freedom based on Satterthwaite approximation
bNo detected lysis titers at sampling moment 3 and 4 inhibited evaluation of differences among sampling moment categories; a logit link GLMM with continuous
temporal predictor was fitted instead

Table 2 Repeatability of innate immune indices and cloacal microbiota characteristics of female zebra finches

Immune index Treatment Principal coordinate axis R SE 95% CI (lower, upper)b Pc

Agglutination (titer) 0.14 0.07 0.017, 0.301 0.033

[IgY] (absorbance) 0.80 0.05 0.65, 0.866 0.001

Lytic activity (probability)a 0.06 0.20 0, 0.894 0.198

[Haptoglobin] (mgml−1) 0.26 0.08 0.113, 0.423 0.001

Multivariate immune function High diversity axis 1 0.37 0.13 0.082, 0.584 0.004

axis 2 0.56 0.13 0.265, 0.75 0.001

Low diversity axis 1 0.08 0.11 0, 0.333 0.242

axis 2 0.74 0.11 0.437, 0.85 0.001

Cloacal microbiota

OTU richness 0.18 0.10 0.005, 0.394 0.019

Shannon’s diversity 0.23 0.09 0.064, 0.421 0.005

Cloacal taxon occurrence (unweighted UniFrac) High diversity axis 1 0.00 0.07 0, 0.223 1.000

axis 2 0.46 0.13 0.168, 0.662 0.001

Low diversity axis 1 0.00 0.00 0, 0 0.980

axis 2 0.28 0.14 0, 0.536 0.008
aNo detected lysis titres at sampling moment 3 and 4 inhibited evaluation of differences among sampling moment categories; a logit link GLMM with continuous
temporal predictor was fitted instead
bConfidence intervals based on 1000 parametric bootstraps
cP-values calculated based on 1000 permutations
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effect of microbial environment on Shannon diversity of
host-associated microbiota (Fig. 2b, Table 3). Principal
coordinates analysis (PCoA) of weighted UniFrac dis-
tances revealed that the phylogenetic composition of
host-associated microbiota differed significantly but
modestly (1.9%) between experimental groups (PERMA-
NOVA) (Fig. 2c, Table 3). We observed that the com-
position of pre-experiment samples was more distinct
from later sampling moments during exposure to experi-
mental microbial environments (i.e. 2 to 4) (Fig. 2c,
Table 3). The relative abundance of major taxonomic
groups in the cloacal microbiota of both experimental

groups showed similar patterns, with Epsilonproteobac-
teria, Firmicutes and Actinobacteria representing the
most abundant groups once under experimental condi-
tions (Additional file 1: Fig. 4). Transformed OTU
counts were modelled with a DESeq2 [55] negative-
binomial generalized linear model (GLMs) with treat-
ment and sampling moment as terms, which did not
identify differentially abundant taxa between birds on
high and low diversity microbial environments at OTU-
level (FDR-corrected q > 0.1).
To address the resilience of host-associated microbiota

in response to the novel environments, we evaluated the

Fig. 2 Experimental and temporal effects on cloacal microbiota alpha diversity and phylogenetic beta diversity. Relationships of population-level
variation (mean ± 95% CI whiskers) of (a) dominant OTU richness and (b) Shannon diversity for each experimental treatment and across sampling
moments. c PCoA of weighted UniFrac distances among cloacal microbiota samples; ordination of all samples including baseline samples shows
differential clustering of experimental treatment (closed circle = high diversity, open triangle = low diversity) and sampling moments (colors), as
well as a pattern of transitions (bicolored arrows) that first diverges from and later converges toward the baseline state. Group medians and IQR
are shown as large symbols and whiskers. a, b Faded blue closed circles (high diversity) and orange open triangles (low diversity) represent
individual measurements connected by a line per individual (faded solid blue = high diversity, faded dashed orange = low diversity). Experimental
treatments are taken simultaneously but split along x-axis for visual clarity. Grey area highlights the baseline sampling moment. Asterisks above
plots denote pairwise contrasts among sampling moments; P or FDR-corrected q < 0.1 *, 0.01 **, 0.001 ***. Statistics are detailed in Tables 3 and 4

Table 3 Statistical analysis of host-associated microbiota alpha diversity

Response Predictor df a F P

OTU richness (log-scale) Experimental treatment 1, 43 4.56 0.04

Sampling moment 3, 104 35.01 < 0.001

interaction 3, 104 1.42 0.24

F P

Shannon’s diversity (log-scale) Experimental treatment 1, 42 0.00 0.99

Sampling moment 3, 103 28.35 < 0.001

interaction 3, 103 2.43 0.07

Δ OTU richness (yt - yt-1) Experimental treatment 1, 76 0.75 0.39

Sampling interval 2, 76 22.42 < 0.001

interaction 2, 76 2.56 0.08

Δ Shannon’s diversity (yt - yt-1) Experimental treatment 1, 76 0.80 0.37

Sampling interval 2, 76 17.37 < 0.001

interaction 2, 76 1.98 0.14
aDenominator degrees of freedom based on Satterthwaite approximation
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change in host-associated microbiota characteristics
from outdoor aviary conditions to the indoor experi-
mental treatments (at sampling moment 2). We found
that alpha diversity declined (Fig. 2a and b) and beta-
diversity shifted in both treatment groups (Fig. 2c; Table
3). Non-significant interactions between treatment and
sampling moment indicated that these compositional
changes were independent of the experimental microbial
conditions (Table 3; Table 4). DESeq2 analysis revealed
that normalized OTU abundance changes were largely
caused by a (near) complete loss of some bacterial phyla
after first exposure to experimental microbial conditions
(e.g. loss of Bacteroidetes, Cyanobacteria and Fusobac-
teria). Subsequent analysis of changes of OTU abun-
dances in the host-associated microbiota during the
experiment (between sampling moments 2 and 4)
revealed abundance changes that were inferior to those
induced by outdoor-to-indoor translocation of birds
(Additional file 1: Figs. 4 and 5). Shifts were most evi-
dent for Proteobacteria classes, where Epsilonproteobac-
teria, which were not dominant in soils (Additional
file 1: Fig. 1e), became relatively more dominant in host-
associated microbiota at the expense of Alpha- and Beta-
proteobacteria (Additional file 1: Fig. 4). The detection
of Chloroflexi, Chlamydiae and Firmicutes in host-
associated microbiota was clearly associated with
acclimation to experimental conditions irrespective of
treatment group (Additional file 1: Fig. 1e). At the OTU
level, nine taxa assigned to genus Lactobacillus (n = 5),
genus Campylobacter (n = 2), family Enterobacteriaceae
(n = 1), and family Micrococcaceae (n = 1) significantly
changed in abundance with experimental duration

(Table 5), but none of these responses were treatment-
dependent (FDR-corrected q > 0.1).
To address the resilience of host-associated microbiota

in different experimental microbial environments, we
analyzed within-individual changes in alpha and beta di-
versity between consecutive sampling moments, and
then tested the experimental effect on these temporal
shifts. The decline in OTU richness of host-associated
microbiota stopped earlier in low than in high diversity
experimental microbial conditions (Fig. 3a). Shannon di-
versity showed a similar pattern but this was not signifi-
cant (χ2 = 2.61, FDR q = 0.32) (Fig. 3b). Moreover, after
host-associated microbiota composition moved away
from the baseline composition, temporal patterns indi-
cated that compositions returned in the direction of the
baseline (Fig. 3c): the composition at sampling moment
4 was more similar to the baseline than to the compos-
ition at sampling moment 2 or 3 (F1, 5034 > 6.47,
P < 0.016; Additional file 1: Fig. 6). Furthermore, the
shift away from the baseline was stronger in birds in the
high diversity than in the low diversity microbial envir-
onment (Fig. 2c; Additional file 1: Fig. 6). Similar to
OTU richness, a within-individual analysis of changes of
phylogenetic composition between consecutive sampling
moments revealed that host-associated microbiota in-
deed stabilized earlier in the low diversity microbial con-
ditions (i.e. higher turnover; Fig. 3c; Table 3; Additional
file 1: Fig. 7). In addition to the phenotypically plastic re-
sponses to environmental microbial conditions, analysis
of within-individual repeatabilities of host-associated
microbiota alpha and beta diversity indices demon-
strated that OTU richness, Shannon diversity, and the
second unweighted UniFrac PCoA axis were significantly
repeatable (Table 2), suggesting that host-related factors
also shaped the host-associated microbiota.

Immune function and host-associated microbiota
correlate at the individual level
Given consistent individual differences of immune indi-
ces and host-associated microbiota traits (Table 2), we
asked whether immune function and the host-associated
microbiota covaried at the individual level. To examine
these relationships, we performed Procrustes ordination
analysis, which revealed that the dissimilarity matrix
based on the immune indices (hereafter “multivariate
immune index”) correlated with the unweighted UniFrac
distance matrix representing taxon occurrence in host-
associated microbiota (Fig. 4a and b), with (nearly)
statistical support for both the high diversity (M2 = 0.26,
P = 0.02) and low diversity microbial environments
(M2 = 0.24, P = 0.06). In contrast, we found no significant
correlations between immune function and host-
associated microbiota structure based on weighted Uni-
Frac (high diversity: Procrustes M2 = 0.18, P = 0.33; low

Table 4 Adonis2 and linear mixed model statistics of experimental
and temporal effects on phylogenetic beta diversity

Phylogenetic beta diversity

Adonis(2)a R2 (%) df Pseudo-F P

Experimental treatment 1.86 1 3.87 0.01

Sampling moment 26.87 3 19.73 < 0.001

interaction 2.21 3 1.64 0.08

Within-individual weighted UniFrac distance (yt - yt-1)

ANOVA df F P

Experimental treatment 1, 95 3.51 0.06

Sampling interval 2, 95 17.05 < 0.001

interaction 2, 95 5.28 < 0.01

Contrasts (sampling interval) effect Df χ2 FDR q

High - Low diversity (1–2) −0.02 1 0.14 0.87

High - Low diversity (2–3) 0.17 1 13.21 < 0.001

High - Low diversity (3–4) − 0.01 1 0.03 0.87
aGroup dispersions are shown in Additional file 1: Fig. 8
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diversity: M2 = 0.18, P = 0.23). Furthermore, for each ex-
perimental group, LMMs (that included individual iden-
tity and replicate room as random effects) resulted in
significantly positive correlations between the PCo 1
scores for immune function and the PCo 1 scores for
taxon occurrence in host-associated microbiota

(unweighted UniFrac; Fig. 4c and d). These models also
revealed repeatability of the multivariate immune index
and taxon occurrence in host-associated microbiota PCo
scores along the first and second axes (unweighted Uni-
Frac, Table 2). We also used LMMs to examine relation-
ships between each separate immune index and OTU

Table 5 Log2 fold change and taxonomic affiliation of temporally changing OTUs in cloacal microbiota

Log2 fold change with experimental duration per day

OTU ID Mean of normalized counts log2FoldChange SE Wald statistic FDR q

OTU828667 1.26 0.07 0.012 5.71 0.000

OTU221299 4.06 −0.02 0.006 −3.79 0.018

OTU1107027 0.78 −0.05 0.013 −3.67 0.019

OTU955052 2.40 −0.03 0.008 −3.57 0.021

OTU333178 0.53 −0.04 0.015 −2.91 0.094

New.ReferenceOTU128 1.17 −0.04 0.012 −3.23 0.044

OTU922761 0.44 0.06 0.019 3.22 0.044

New.ReferenceOTU261 1.95 0.02 0.006 3.33 0.041

New.ReferenceOTU434 1.17 0.03 0.009 3.03 0.072

Taxonomic affiliation

OTU ID Phylum Class Order Family Genus

OTU828667 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae unassigned

OTU221299 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus

OTU1107027 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus

OTU955052 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus

OTU333178 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus

New.ReferenceOTU128 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus

OTU922761 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae unassigned

New.ReferenceOTU261 Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter

New.ReferenceOTU434 Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter

Fig. 3 Temporal shifts in host-associated microbiota characteristics across experimental treatment and sampling moments. Average within-
individual differences (± 95% CI whiskers) of (a) OTU richness, (b) Shannon’s diversity and (c) weighted UniFrac distance between consecutive
sampling moments, presented for each temporal shift (bicolored arrows) and stratified by experimental treatment (closed circle = high diversity,
open triangle = low diversity). Associated statistics are detailed in Tables 3 and 4
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richness and Shannon diversity of the host-associated
microbiota. Neither OTU richness nor Shannon’s diversity
accounted for significant variation in any of the individual

immune indices (all LMM fixed effects: P > 0.11; Add-
itional file 1: Fig. 9). In contrast, PCo 1 scores of taxon oc-
currence in host-associated microbiota (unweighted

Fig. 4 Procrustes analysis of immune function and cloacal microbiota states. a, b Procrustean superimposition of two multivariate data sets for
birds exposed to (a) high diversity and (b) low diversity soils: multivariate immune index based on four immune indices (agglutination titer, IgY
concentration, lysis titer, haptoglobin concentration) (open symbol) and taxon occurrence in cloacal microbiota based on unweighted UniFrac
(closed symbol). Procrustes analysis scaled and rotated both ordinations to the best Procrustean fit (M2) and protest statistics are shown in each
plot. c, d PCoA scores of immune function of birds exposed to (c) high diversity and (d) low diversity soils predicted by PCoA scores for
phylogenetic taxon occurrence of cloacal microbiota. The line depicts the predicted relationship and the shaded area depicts the 95% CI of the
predictions. c, d Linear mixed-model inferences are controlled using subject identity and replicate room as random effects
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Fig. 5 Relationships between individual immune indices and cloacal microbiota PCoA scores. Model predictions (mean=blue line) for (a, b) Agglutination titer,
(c, d) IgY concentration, (e, f) Lytic activity and (g, h) haptoglobin along the first (PCo 1) and second (PCo 2) axis of unweighted UniFrac, respectively. Black dots
are individual plasma samples. g LMM statistics are shown in each plot
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UniFrac) were negatively associated with the probability of
lytic activity (Fig. 5e) and positively with haptoglobin con-
centration (Fig. 5g). Microbiota PCo 2 scores positively as-
sociated with both IgY concentration (Fig. 5d) and the
probability of lytic activity (Fig. 5f), but neither relation-
ship was significant. Both PCo axes were unrelated to ag-
glutination (Fig. 5a and b).

Discussion
Exposure to distinct experimental microbial environ-
ments led to differences in adaptive immune function
and in the composition, richness and dynamics of the
cloacal microbiota in zebra finches. Importantly, at the
individual level, immune function and the cloacal bacter-
ial taxon occurrence covaried significantly, while individ-
uals differed consistently for both immunological and
microbiota variables. Indices of immune function
changed over the time course of the experiment, but the
temporal patterns were not different between experi-
mental microbial environments. In contrast, the manipu-
lated microbial environments did impact alpha and beta
diversity, and cloacal microbiota resilience: the micro-
biota of zebra finches exposed to the low diversity mi-
crobial environment stabilized sooner, and microbiota
returned in the direction of the baseline compositional
state while maintaining individual differences. In the
context of ecological immunology, our results suggest
that adaptive immune function plastically responds to
microbial communities in the surrounding environment,
and that innate and adaptive immune function collect-
ively correlate with host-associated microbiota variation
at the level of the individual. With the inherent com-
plexity of microbial communities in the wider environ-
ment, its impact on the physiological condition and
evolutionary fitness of animals is likely more complex
vis-à-vis classic ecological interactions like parasitism. A
more thorough understanding of the impact of environ-
mental microbes on animal immunity requires a better
picture of within-individual flexibility of immune func-
tion and the host-associated microbiota.
The premise that environmental microbial communi-

ties may determine the immune defenses of animals un-
derlies the increasing integration of microbial ecology
research into ecological immunology [1, 15, 16, 19]. We
hypothesized that animals may flexibly adjust immune
defenses to the microbial environment at a given place
and time. Our results suggest that different microbial
environments can affect acquired antibody levels (IgY
concentration) in captive zebra finches (Fig. 1). Caution
is warranted for drawing firm conclusions, as IgY con-
centration slightly differed between the two experimen-
tal groups at baseline. Given the substantial differences
among individuals, longer time series and larger sample
sizes could help to affirm the observed pattern. The lack

of distinction in agglutination titers in the face of differ-
ent microbial environments is consistent with the unim-
portance of exogenous antibody stimulation to the
production of natural antibodies [56]. This highlights
that differences in the antigenic universe (sensu [16]),
here as result of different environmental microbial com-
munities, do not affect all immune defenses equally.
Complement-like lysis was low in our zebra finches. This
could be a feature of zebra finches [51]. The observed
lack of experimental treatment effect corresponds with
earlier findings of lysis titers in zebra finches that did
not change after manipulation of nest bacterial loads
[57]. The concentration of the acute phase protein
haptoglobin signals inflammatory status [44, 58]. Ac-
cordingly, the lack of any experimental effect on hapto-
globin concentration suggests that the experimental
microbial environments did not differentially induce
inflammation in the birds. These patterns collectively
suggest that, over a period of 8 weeks, acquired immun-
ity was more influenced by environmental microbial
communities than innate immunity. Indeed, constitutive
innate immunity is expected to fit evolutionary re-
sponses to different environments [15, 59], but other
studies have demonstrated that innate immunity can
also be flexibly adjusted to environmental differences
(not specifically related to microbes) [10, 11, 13]. We did
not find patterns implicating environmental microbial
community features and innate immunity. This suggests
certain rigor of the measured innate immune indices, at
least at the time scale of this experimental study.
If the microbial environment affects animal immune

function over short time scales, such as during several
weeks, we expected to find changes in immune function
to emerge over the course of 8 weeks of experimental
treatment. Life history theory predicts that nutritional
and energetic reallocation between costly immune de-
fenses and other efforts, such as reproduction, molting,
migration and thermoregulation [56, 59] invoke im-
munological variation between seasons or annual cycle
stages [10, 11, 60]. Because such trade-offs were unlikely
to be present here during 8 weeks of non-breeding
under controlled ambient conditions with unlimited ac-
cess to sterilized food, this could explain why our zebra
finches showed no adjustment of constitutive innate im-
munity. Yet, we documented adjusted adaptive (IgY con-
centration) and induced (haptoglobin concentration)
immune responses within individuals independent of
treatment (Fig. 1). While these temporal shifts coincided
most prominently with the radical shift from outdoor
aviaries to indoor cages, both indices also showed signifi-
cant increments during the experimental phase. These
patterns suggest that adaptive and induced immune re-
sponses can adjust to novel microbial environments over
relatively short time scales. We propose that the
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microbial environment may represent an important con-
tributor to immunological variation, which should be
considered in ecological immunology. Variation of im-
mune function has been associated with variable envir-
onmental conditions in wild animals (e.g. variation
imposed by long-distance migration or seasonality [10,
11, 14, 61, 62]). Our results suggest that such effects
could be (partially) due to variable environmental micro-
bial conditions, in addition to well-documented factors
driving nutritional and energetic tradeoffs.
In addition to these phenotypically plastic immune re-

sponses to changing microbial environments, our evi-
dence for significant repeatability of immune indices,
within the context of the imposed experimental condi-
tions, indicates that immunity is a characteristic property
of an individual (Table 2). If this individuality has a her-
itable component, it may be of importance for microevo-
lution to changing (microbial) environments [15, 43].
Devising host selection lines on different microbial con-
ditions, and subsequent testing whether immune func-
tion upon exposure to high and low diversity microbial
environments is different between animals of different
lineages could greatly advance our understanding of the
role of environmental microbes on evolution of animal
immune systems.
Experimental microbial environments also impacted

the richness, composition and stability of the cloacal
microbiota of zebra finches (Figs. 2 and 3). Our detec-
tion of more OTUs in the microbiota of birds on high
diversity soil, and experimental effects on beta diversity
suggest that environmental bacteria shaped the host-
associated microbiota and highlight that animal micro-
biota to some extent may reflect the microbial environ-
ment that its host experiences. Furthermore, this
suggests that invasion and recruitment of environmental
microbes into the animal microbiota was not fully coun-
teracted by the host’s regulatory systems during 8 weeks
of exposure. We note that our sequence data were inad-
equate to capture the full cloacal microbiota diversity.
This likely underestimated the true effect of environ-
mental microbes on host microbiota since less dominant
taxa were likely harder to detect. Despite that caveat,
our data provides further support a role of environment
on host-associated microbiota, which has become in-
creasingly recognized [31, 63–65], and sheds new light
on the rarely addressed direct relationship between en-
vironmental microbes and microbiota of terrestrial
vertebrates.
Nonetheless, several other studies suggested that ani-

mals also regulate their microbiota and implied import-
ance of host genetic factors, e.g., [38, 66]. We previously
reported finding no interspecific differences in cloacal,
skin and feather microbiota of sympatric passerine spe-
cies, and weak associations between cloacal and nest-

environmental communities at the individual level [31].
This suggested importance of a shared metacommunity
but also some extent of host regulation. In the current
study, the pattern that zebra finch microbiota seemed to
return into the direction of their baseline state also sug-
gests that environmental bacteria might be transient ra-
ther than establishing in the cloacal microbiota over a
period of 8 weeks, potentially due to host regulation.
Moreover, the significance of host factors in shaping
host-associated microbiota is also reflected by significant
repeatability of host-associated microbiota characteris-
tics. However, the compositional differences remained
after 8 weeks of experimental treatment and longer time
series are thus required to determine if host-associated
microbiota remain distinct over longer periods.
Collectively, these results illuminate the presence and
simultaneous influences of hosts intrinsic factors and en-
vironmental microbes on animal microbiota structure
but leave open whether the microbial environment also
influences the ability of hosts to regulate its microbiota.
Recent work on healthy humans showed for the first
time evidence for a mechanistic pathway linking micro-
biota and adaptive immunity [47]. Systemic IgG reper-
toires are produced in response to various symbiotic gut
commensals. The authors further postulate a protective
role for anticommensal IgGs, and IgG production ap-
peared microbiota diversity dependent as well. This
evidence suggests a potential underlying mechanism for
microbiota-driven adaptive immune investment.
Whether such connections between microbiota and IgG
(and avian IgY) production are universal across verte-
brates remains to be studied. Yet, whether such antibody
responses to gut microbiota can be shaped by the micro-
bial environment should remain a topic of investigation.
Effects of environmental microbial communities on

animal gut microbiota dynamics, as shown here (Fig. 3),
have to our knowledge not been documented before
[33]. Specifically, host-associated microbiota stabilized
sooner in less diverse environments, indicating direct in-
fluence of the microbial environment on host-associated
microbiota dynamics. This could be due to the differ-
ences in the taxonomic breadth of environmental micro-
bial communities between the treatments in which case,
when assuming no dispersal limitations, more diverse
communities (high diversity treatment) may lead to
more diverse immigration and hence increased stochas-
ticity and longer turnover rates in host-associated micro-
biota (i.e. reduced resilience) [67, 68]. A fruitful avenue
to test this could be to expose individual animals repeti-
tively to a random sequence of high or low diversity mi-
crobial environments, with equal acclimation periods
and simultaneous longitudinal monitoring to quantify
microbiota resilience after each particular environmental
transition.
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Immune function significantly correlated with bacterial
taxon occurrence in host-associated microbiota (Figs. 4
and 5), suggesting that immune defenses respond to
host-associated microbes, or vice versa, and most
dependent on occurrence rather than abundance of taxa.
While immune systems have evolved to cope with
microbes and other antigenic compounds, our results
suggest that individuals may flexibly respond immuno-
logically to regulate their own microbiota (Fig. 4). Since
birds were translocated from group living in outdoor
aviaries to indoor cages in pairs, inevitably, changes to-
ward a sterilized diet, a different temperature regime,
and altered social and microbial environments all likely
contributed to the observed shift between sampling mo-
ment 1 and 2. Because of the correlative nature of these
findings, experimental manipulation of immunocompe-
tence and host-associated microbiota are necessary to
establish causal relations underlying the observed associ-
ation. Yet, the correlation supports results from a field
study that showed links between immune function and
bird-associated culturable bacterial load, but not to air-
borne bacterial load [62]. Although we did not explicitly
consider bacterial load (total soil bacterial counts did
not differ between experimental treatments, unpublished
data), which has been shown previously to relate to fit-
ness in birds [69], this work documented an individual-
level relationship between immune function and host-
associated microbiota while simultaneously controlling
for differences in diet and other environmental microbial
factors.

Conclusions
We show that antibody-mediated immunity and the
composition, richness, and dynamics of the cloacal
microbiota in zebra finches varied in response to experi-
mental microbial environments. The lack of associations
between single immune indices and single host micro-
biota alpha-diversity measurements combined with the
correlated multivariate summaries of the immune system
and the microbiota underscore the complexity inherent
in these systems and emphasize the challenge of inter-
preting immune function variation at different levels in
eco-evolutionary contexts (reviewed in [15]). Yet, in a
broader perspective, links between a host’s immune
system and microbiota highlight the importance of in-
corporating microbiota analyses into studies of eco-
logical immunology. Doing so is expected, at least
partially, to provide evidence about the immunogenic
agents in an organism’s environment with which an im-
mune system must cope [15, 19, 59]. Consequently, we
strongly encourage further experimental studies of the
direct relationships between environmental and host-
associated microbiota (e.g., [40, 70]). Ecological immun-
ology may benefit from future investigations covering a

wide range of animals, particularly when accompanied
by measures of fitness. Such efforts, though challenging,
are expected to make major contributions to a more
mechanistic understanding of host-associated microbiota
community dynamics and the microbiota’s influence on
health of wild animals.

Methods
Experimental soils
We divided 2.5 m3 soil in two equal fractions and applied
3 cycles of 25 kGy gamma irradiation (Synergy Health Ede
B. V, the Netherlands) to one fraction to generate a highly
reduced microbial environment (‘low diversity’ soil; Add-
itional file 1: Fig. 1). The remaining fraction constituted a
high diversity microbial environment (‘high diversity’ soil).
We applied in all cages either low or high diversity soil as
a ~ 2-cm deep bedding layer, which we replaced every 2
weeks (mean ± SEM: 15 ± 1 days, n = 4). High diversity
soils were stored at 4 °C enabling soil respiration while
limiting bacterial activity to reduce temporal variation.
Low diversity soils remained sealed and were stored under
outdoor storage conditions: mean (± SEM) of 4.7 ± 0.41 °C.
We maintained soil moisture content by spraying ~ 30ml
autoclaved water per cage per day. We monitored the
temporal stability of soil communities by sampling soils
every 3rd (n = 20), 10th (n = 20) and 14th (n = 18) day after
soil was (re) placed in the cages. Soil samples were stored
immediately at − 20 °C. Nine additional samples (high di-
versity n = 5, low diversity n = 4) were collected from
stored bags to monitor changes during storage. A detailed
description is provided in Additional file 1.

Zebra finch husbandry
Experiments were approved by the Animal Experimenta-
tion committee of the University of Groningen (license
DEC61314A), in accordance with the Dutch Law on
Animal Experimentation, and standard protocols. Indoor
ambient temperature was kept constant at 20 °C ± 1,
relative humidity at 55% ± 15 with a 12:12 h light-dark
(L:D) cycle. In the current experiment we restricted our-
selves to sampling of females for practical considerations
regarding sampling schemes (see Additional file 1: Table
1 for a summary of collected samples per female). De-
tails on handling, sample processing and storage are pro-
vided as Additional file 1.

Laboratory analysis of immune function
Non-specific antibody titers and complement-like lytic
activity of blood plasma was assessed using the
hemolysis-hemagglutination assay and rabbit erythrocyte
antigens (Envigo, Leicester, UK) [51]. Total plasma IgY
concentration was quantified in duplicate using enzyme-
linked immunosorbent assays (ELISAs) with rabbit anti-
chicken IgG antigens (Sigma-Aldrich, St Louis, MO,
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USA) (adjusted from 46, 47; detailed protocol is pro-
vided as Additional file 1). Haptoglobin concentration
was quantified using a commercial haem-binding assay
(Tri-delta Diagnostics Inc., Morris Plains, NJ, USA) [44].

DNA extraction, 16S rRNA gene sequencing
DNA was extracted from 250mg of homogenized soil
samples and cloacal swabs. Swab fibers were aseptically
peeled from swab stalks, placed in MoBio PowerSoil
DNA extraction vials (MoBio laboratories, Carlsbad, CA,
USA) and DNA was isolated following the manufac-
turer’s protocol with addition of 0.25 g of 0.1 mm zirco-
nia beads (BioSpec Products, Bartlesville, OK, USA) to
improve cell disruption during 3 cycles of 60 s bead beat-
ing (Mini-bead beater, BioSpec Products, Bartlesville,
OK, USA). Samples were characterized by (triplicate)
PCR of 16S rRNA gene (V4/V5) using 515F and 926R
primers, library preparation of pooled triplicates and
250 bp paired-end sequencing on an Illumina MiSeq
(V2) at Argonne National Laboratory, IL, USA, following
Earth Microbiota Project protocols (http://press.igsb.anl.
gov/earthmicrobiota/protocols-and-standards/16s/) [71].
Seven no-sample technical negative controls for each
batch of DNA extraction were included. None of the
negative controls detectably produced reads in the
quality-filtered sequence data set.

Bioinformatic processing of sequence reads
Sequence reads were quality filtered and assembled
using QIIME (1.9.1 [72];) retaining reads lengths ranging
368–382 bp and discarding reads (~ 267 bp) identified as
zebra finch 12S rRNA gene (99% identity) using BLAST.
A final 4.2 million high quality sequences were obtained
(51% of raw data). OTUs were defined by 97% sequence
identity with an open-reference strategy using UCLUST
[73] and the Greengenes reference set (13.8 [74];). After
removal of singletons, taxonomy was assigned to repre-
sentative sequences based on the Greengenes reference
set (97% identity). Representative sequences were then
aligned using PyNast [75] and chimeric sequences were
removed using UCHIME from the USEARCH81 toolkit
[76] before construction of a phylogenetic tree using
FastTree [77]. OTUs originating from Archaea, Chloro-
plast and Mitochondria were filtered from the data and
the OTU table was offset to retain only OTUs that ac-
count for >0.001% of the total abundance. The QIIME
pipeline is accessible as Additional file 2.

Statistical analysis of immune function
Linear mixed-effects models (LMMs) to analyze immune
indices included fixed effects for experimental group and
sampling moment (0, 2, 4 and 8 weeks), as well as their
interaction, and individual identity and replicate room as
random effects. The probability of lytic activity was

modelled using a generalized linear mixed-effects model
(GLMM) with a logit link function and the same set of
independent variables. ANOVA was then performed
using LmerTest [78] with a two-tailed test. Distance-
based redundancy analysis (db-RDA) in vegan [79] was
used as a multivariate approach to test for immuno-
logical segregation of treatment groups. Repeatability R
was calculated with a two-tailed test controlling for fixed
effects using (G) LMM models with rptR package [54].
Confidence intervals for R were estimated by parametric
bootstrapping and significance was inferred from two-
tailed permutation tests. A detailed description is pro-
vided in Additional file 1.

Statistical analysis of soil communities
To analyze bacterial community characteristics, vegan
[79], phyloseq [80], and lme4 [81] for R Statistical Software
[82] were used. We rarefied soil samples to 1115 reads for
alpha diversity estimation and then examined variation in
OTU richness and Shannon diversity using LMMs with
experimental treatment and time point (3, 10 and 14 days;
categorical) as fixed predictors and replicate room as
random effect in all models [83]. Treatment by time-
interactions were not significant and removed before par-
ameter estimation with REML. ANOVA was used with
lmerTest [78] to estimate marginal effects (two-tailed),
and P-values were adjusted for multiple comparisons
using multcomp [84]. Variance-stabilizing transformation
based on the fitted mean-variance relationship was applied
to coverage-normalized counts [85] was performed on a
non-rarefied OTU table of soil communities [55, 86],
which was then used for PCoA based on the weighted
UniFrac distance metric. We tested experimental treat-
ment and temporal effects using unconstrained ordination
and marginal effect estimation using two-tailed adonis
and adonis2 [87, 88], respectively, with permutations
stratified by replicate room and 999 permutations. A de-
tailed description is provided in Additional file 1.

Statistical analysis of host-associated microbiota
Cloacal microbiota were analyzed similar to soil commu-
nities. Based on rarefaction curves of Shannon diversity
(Additional file 1: Fig. 2), a minimum of ~ 1200 reads per
sample was decided as sufficient to analyze within-sample
diversity. The lack of plateau for OTU richness implied
that rare OTUs were missed at the reached sampling
depths. We therefore interpreted OTU richness as the
dominant fraction of the microbiota. The OTU table was
subset to retain the upper 80% of the coverage distribution
(min: 1240 reads per sample, n = 145), as some cloacal
samples had a low coverage (median: 3214, range: 52–88,
999 reads per sample). Alpha diversity metrics were log-
transformed to fulfil normality assumptions. LMMs were
used to estimate effects of experimental treatment and
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sampling moment and included individual identity and
replicate room as random effects. Pairwise contrasts of the
experimental treatment factor at each sampling moment
were calculated (two-tailed) using phia [89], and FDR-
corrected q-values (critical q-value = 0.1) were reported.
Temporal shifts were examined by calculating the differ-
ence of OTU richness and Shannon diversity between
sampling moment ti and ti-1 within each individual. LMMs
were used to test (two-tailed) treatment and temporal shift
effects. Beta diversity was calculated similarly to soil com-
munities on a subset comprising the upper 90% of the
coverage distribution of cloacal samples (n = 204; mini-
mum coverage: 545 reads per sample). Within-individual
shifts in the phylogenetic composition were calculated
from the weighted UniFrac distance matrix and analyzed
using LMM including bird identity and room as random
effects and evaluated using post hoc contrasts. Negative
binomial GLMs implemented in DESeq2 [55] were used
to identify differentially abundant taxa [86, 90] across
sampling moments during the experiment. A detailed de-
scription is provided in Additional file 1.

Statistical analysis of associations between immune
function and microbiota
PCoA of a Bray-Curtis distance matrix of all immune indi-
ces and of (unweighted and weighted) UniFrac distance
matrices of the cloacal microbiota were created using
cmdscale function of stats [82]. A Procrustes superimpos-
ition was then applied to test whether immune function
covaried with host-associated microbiota composition
[91]. The protest function [91] was subsequently used to
test (two-tailed) the significance of the Procrustean fit M2

with 10,000 permutations. Univariate regression (LMM)
was applied to test associations between the first Procrus-
tean axes of immune function and the microbiota, includ-
ing sampling moment, individual identity and replicate
room as random terms. Additional (G) LMMs were used
to test relationships between each immune index and
OTU richness, Shannon diversity, taxon occurrence (un-
weighted UniFrac; PCoA axis 1 and 2). A detailed descrip-
tion is provided in Additional file 1.
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