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Cooperative Data-Driven Distributionally Robust Optimization
Ashish Cherukuri and Jorge Cortés

Abstract—We study a class of multiagent stochastic optimiza-
tion problems where the objective is to minimize the expected
value of a function which depends on a random variable. The
probability distribution of the random variable is unknown to the
agents. The agents aim to cooperatively find, using their collected
data, a solution with guaranteed out-of-sample performance. The
approach is to formulate a data-driven distributionally robust
optimization problem using Wasserstein ambiguity sets, which
turns out to be equivalent to a convex program. We reformulate
the latter as a distributed optimization problem and identify a
convex–concave augmented Lagrangian, whose saddle points
are in correspondence with the optimizers, provided a min–max
interchangeability criteria is met. Our distributed algorithm design,
then consists of the saddle-point dynamics associated to the
augmented Lagrangian. We formally establish that the trajectories
converge asymptotically to a saddle point and, hence, an optimizer
of the problem. Finally, we identify classes of functions that meet
the min–max interchangeability criteria.

Index Terms—Data-driven methods, distributed optimization,
distributionally robust optimization, multiagent systems.

I. INTRODUCTION

Stochastic optimization in the context of multiagent systems has
numerous applications, such as target tracking, distributed estimation,
and cooperative planning and learning. Due to the expectation operator,
solving these problems is computationally burdensome even when the
probability distribution of the random variable is known. To address
this intractability, researchers have studied numerous sample-based
methods. Such methods might be subject to overfitting, and hence a
major concern is obtaining out-of-sample performance guarantees. This
is particularly relevant when only a few samples are available, typically
in applications where acquiring samples is expensive due to the size and
complexity of the system or when decisions must be taken in real time.
Distributionally robust optimization (DRO) provides a regularization
framework that guarantees good out-of-sample performance even when
the data are disturbed and not sampled from the true distribution. We
consider here the task for a group of agents to collaboratively find a
data-driven solution for a stochastic optimization problem using the
DRO framework.
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A. Literature Review

To the large set of methods available to solve stochastic optimization
problems [2], a recent addition is data-driven DRO (see, e.g., [3]–[6] and
references therein). In this setup, the distribution of the random variable
is unknown and a worst-case optimization is carried over a set of distri-
butions, termed ambiguity set. This optimization provides probabilistic
performance bounds for the original problem [3], [7] and overcomes
the problem of overfitting. One way of designing the ambiguity sets is
to consider the set of distributions that are close (in some metric) to
some reference distribution constructed from the data. Popular metrics
are φ-divergence [8], Prohorov metric [9], and Wasserstein distance [3]
(adopted here). In [4], the ambiguity set is constructed with distributions
that pass a goodness-of-fit test. In addition to data-driven methods,
other works on DRO consider ambiguity sets defined using moment
constraints [10], [11] and the Kullback–Leibler (KL)-divergence dis-
tance [12]. Tractable reformulations for the data-driven DRO have been
well studied [3], [5], [13]. However, designing coordination algorithms
to solve them when the data are gathered in a distributed way by a group
of agents has not been investigated. This is the focus of this article.
Besides data-driven DRO, one can solve the stochastic optimization
problem considered here via other sampling-based methods, see [14].
Among these, sample average approximation (SAA) and stochastic
approximation (SA) yield simple implementations and finite-sample
guarantees independent of the dimension of the uncertainty (see, e.g., [2,
Ch. 5] and [15]). However, such guarantees may not hold when the
samples are corrupted and may require stricter assumptions on the cost
function and the feasibility set. In contrast, the sample guarantees of the
data-driven DRO method hold for more general settings (see, e.g., [3]
and [7]), but are more conservative and do not scale well with the size
of the uncertainty parameter. Additionally, the complexity of solving a
data-driven DRO is often worse than that of the SAA and SA methods.
Finally, our work also has connections with the growing body of liter-
ature on distributed optimization problems [16] and agreement-based
algorithms to solve them (see, e.g., [17] and references therein).

B. Statement of Contributions

Our starting point is a multiagent stochastic optimization problem
involving the minimization of the expected value of an objective func-
tion with a decision variable and a random variable as arguments. The
probability distribution of the random variable is unknown. Agents
collect a finite set of samples and wish to cooperatively solve a DRO
problem over ambiguity sets defined as neighborhoods of the empirical
distribution under the Wasserstein metric. Our first contribution is the
reformulation of the DRO problem to display a structure amenable to
distributed algorithm design. We achieve this by augmenting the deci-
sion variables to yield a convex optimization whose objective function
is the aggregate of individual objectives and whose constraints involve
consensus among neighboring agents. Building on an augmented ver-
sion of the Lagrangian, we identify a convex–concave function, under
a min–max interchangeability condition, whose saddle points are in
one-to-one correspondence with the optimizers of the reformulated
problem. Our second contribution is the design of the saddle-point
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dynamics for the identified convex–concave Lagrangian function. We
show that the proposed dynamics is distributed and provably correct
(its trajectories asymptotically converge to a solution of the original
problem). Our third contribution is the identification of two broad
classes of objective functions for which the min–max interchangeability
holds. The first class is the set of functions that are convex–concave in
the decision and the random variable, respectively. The second class is
where functions are convex–convex and have some additional structure:
they are either quadratic in the random variable or they correspond to
the loss function of the least-squares problem. For space reasons, some
proofs and additional material are available at [18].

II. DATA-DRIVEN STOCHASTIC OPTIMIZATION

This section1 sets the stage for the formulation of our approach to
deal with data-driven optimization in a distributed manner. The material
is taken from [3] and included here for a self-contained exposition.
The reader familiar with it can safely skip it. Let (Ω,F , P ) be a
probability space and ξ be a random variable mapping this space to
(Rm, Bσ(Rm)), where Bσ(Rm) is the Borel σ-algebra on Rm. Let
P and Ξ ⊆ Rm be the distribution and the support of the random
variable ξ. Consider the stochastic optimization problem

inf
x∈X

EP [f(x, ξ)] (1)

where X ⊆ Rn is a closed convex set, f : Rn × Rm → R is a contin-
uous function, and EP [ · ] is the expectation under P . Assume that
P is unknown and we are given N independently drawn samples
Ξ̂ := {ξ̂ k}Nk=1 ⊂ Ξ of ξ. Note that, until revealed, Ξ̂ is a random
object with distribution PN :=

∏N
i=1 P and support ΞN :=

∏N
i=1 Ξ.

The objective is to find a data-driven solution of (1), denoted x̂N ∈ X ,
constructed using the dataset Ξ̂, that has a finite-sample guarantee
given by

PN
(

EP [f(x̂N , ξ)] ≤ ĴN

)
≥ 1− β (2)

where ĴN might depend on Ξ̂ andβ ∈ (0, 1) is the parameter governing
x̂N and ĴN . The goal is to find x̂N with low ĴN and β. To do so, the

1We use the following notation. Let R, R≥0, and Z≥1 denote the set
of real, non-negative real, and positive integer numbers. The extended reals
are denoted as R = R ∪ {−∞,∞}. For n ∈ Z≥1, we let [n] := {1, . . . , n}.
We let ‖ · ‖ denote the 2-norm on Rn. Given x, y ∈ Rn, x ≤ y means
xi ≤ yi for i ∈ [n]. For u ∈ Rn and w ∈ Rm, (u;w) ∈ Rn+m is its
concatenation. We let 0n = (0, . . . , 0) ∈ Rn, 1n = (1, . . . , 1) ∈ Rn, and
In ∈ Rn×n be the identity matrix. For A ∈ Rn1×n2 and B ∈ Rm1×m2 ,
A⊗B ∈ Rn1m1×n2m2 is the Kronecker product. The Cartesian product of
{Si}ni=1 is

∏n

i=1
Si := S1 × · · · × Sn. The interior of S ⊂ Rn is int(S).

For f : Rn × Rm → R, (x, ξ) �→ f(x, ξ), we denote by ∇xf and ∇ξf the
partial derivatives of f with respect to its first and second arguments, re-
spectively. Given V : X → R≥0, we let V −1(≤ δ) := {x ∈ X | V (x) ≤ δ}.
The projection of y ∈ Rn onto a closed convex set K ⊂ Rn is projK(y) =
argminz∈K ‖z − y‖. The projection of v ∈ Rn at x ∈ K with respect to K is
ΠK(x, v) = limδ→0+

(
projK(x+ δv)− x

)
/δ. A vector ϕ ∈ Rn is normal

to a convex set C at x ∈ C if (y − x)�ϕ ≤ 0 for all y ∈ C. The set of all such
vectors is the normal coneNC(x) toC atx. A vector d is a direction of recession
of C if x+ αd ∈ C for all x ∈ C and α ≥ 0. A convex function f : Rn → R
is proper if there is x ∈ Rn such that f(x) < +∞ and f does not take the value
−∞ anywhere in Rn. The epigraph of f is epif := {(x, λ) ∈ (Rn × R) | λ ≥
f(x)}. A function f is closed if epif is closed. For a closed proper convex
function f , a vector d is a direction of recession of f if (d, 0) is a direction of
recession of the set epif . Iff(x) → +∞whenever‖x‖ → +∞, thenf does not
have a direction of recession. A functionF : X × Y → R is convex–concave if,
for any (x̃, ỹ) ∈ X × Y , x �→ F (x, ỹ) is convex and y �→ F (x̃, y) is concave.
When the space X × Y is clear from the context, we refer to it as F being
convex–concave in (x, y). A point (x∗, y∗) ∈ X × Y is a saddle point of F
over X × Y if F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗) for all x ∈ X and y ∈ Y .

strategy is to determine a set P̂N of probability distributions supported
on Ξ and minimize the worst-case cost over P̂N . The set P̂N is referred
to as the ambiguity set. Once such a set is designed, ĴN and x̂N are
defined as the optimal value and an optimizer, respectively, of the DRO
problem

ĴN := inf
x∈X

sup
Q∈P̂N

EQ[f(x, ξ)]. (3)

We consider ambiguity sets P̂N constructed using data. Formally,
the empirical distribution is P̂N := 1

N

∑N
k=1 δξ̂k , where δ

ξ̂k is the

unit point mass at ξ̂ k. Let M(Ξ) be the space of probability
distributions Q supported on Ξ with finite second moment, i.e.,
EQ[‖ξ‖2] = ∫

Ξ
‖ξ‖2Q(dξ) < +∞. The 2-Wasserstein metric dW2

:
M(Ξ)×M(Ξ) → R≥0 is

dW2
(Q1,Q2) =

(
inf

{∫
Ξ2

‖ξ1 − ξ2‖2Π(dξ1, dξ2)

∣∣∣∣∣
Π ∈ H(Q1,Q2)

})(1/2)

(4)

whereH(Q1,Q2) is the set of all distributions onΞ× Ξwith marginals
Q1 and Q2. Given ε ≥ 0, denote

Bε(P̂N ) := {Q ∈ M(Ξ) | dW2
(P̂N ,Q) ≤ ε}. (5)

For an appropriately chosen radius ε, the ambiguity set P̂N = Bε(P̂N ),
plugged in problem (3), results into a finite-sample guarantee (2). There
might be different ways of establishing this fact. For example, Esfahani
and Kuhn [3] provided a bound for ε under P being light-tailed. The
work [7] considers more general distributions and gives a different,
potentially tighter, finite-sample guarantee for f being either quadratic
or log-exponential loss function. The focus here is on the design of
distributed algorithms to solve (3) with Bε(P̂N ) as the ambiguity set.
To this end, the next reformulation is key.

Theorem II.1. (Reformulation of (3)): For N ∈ Z≥1, the optimal
value of (3) with the choice P̂N = Bε(P̂N ) is equal to the optimum of
the problem

infλ≥0,x∈X

{
λε2 + 1

N

N∑
k=1

max
ξ∈Ξ

(
f(x, ξ)− λ‖ξ − ξ̂ k‖2

)}
.

This problem is convex if x �→ f(x, ξ̃) is convex for all ξ̃ ∈ Ξ.
This result and its proof are similar to [3, Th. 4.2] and its corre-

sponding proof, respectively. While our metric is 2-Wasserstein, the
referred result’s is 1-Wasserstein. Theorem II.1 holds under weaker
set of conditions on f (see, e.g., [5] and [13]). We however avoid this
generality as it complicates the design and analysis of the distributed
algorithm.

III. PROBLEM STATEMENT

Consider n ∈ Z≥1 agents communicating over an undirected
weighted connected graph [19] G = (V, E ,A). The set of vertices
are enumerated as V := [n]. Each agent i ∈ [n] can send and re-
ceive information from its neighbors Ni = {j ∈ V | (i, j) ∈ E}. Let
f : Rd × Rm → R, (x, ξ) �→ f(x, ξ) be a continuously differentiable
objective function. Assume that for any ξ ∈ Rm, the map x �→ f(x, ξ)
is convex and that for anyx ∈ Rd, the map ξ �→ f(x, ξ) is either convex
or concave. Suppose that the set of ξ ∈ Rm for which 1n and −1n are
not a direction of recession for the convex functionx �→ f(x, ξ) is dense
in Rm. Assume that all agents knowf . Given a random variable ξ ∈ Rm

with support Rm and distribution P , the original objective for the agents
is to solve the stochastic optimization problem (1) over X = Rd (the
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proposed method can handle generalizations to a generic closed convex
set X by assuming that each agent knows a subset of Rd such that their
intersection is X ). We assume that each agent has a certain number
(at least one) of i.i.d realizations of the random variable ξ. We denote
the data available to agent i by Ξ̂i. Assume that Ξ̂i ∩ Ξ̂j = ∅ for all
i, j ∈ [n] and let Ξ̂ = ∪i=1Ξ̂i containing N samples be the available
dataset. To obtain a data-driven solution x̂N ∈ Rd that has guaranteed
performance bounds for the stochastic problem, using the framework
presented in Section II, the agents aim to solve, in a distributed manner,
the problem

inf
λ≥0,x

{
λε2+

1

N

N∑
k=1

max
ξ∈Rm

(
f(x, ξ)−λ‖ξ − ξ̂ k‖2

)}
. (6)

The following is assumed to hold throughout the paper.
Assumption III.1. (Nontrivial Feasibility and Existence of Finite

Optimizers of (6)): We assume that there exists a finite optimizer of (6)
and the subset of R≥0 × Rd where the objective function in (6) takes
finite values has a nonempty interior. •

The existence of finite optimizers is ensured if one of the sets of
conditions for such existence given in [20] are met. Each agent could
individually find a data-driven solution to (1) by using only its own data
in the convex formulation (6). However, such a solution, in general,
will have an inferior out-of-sample guarantee as compared to the one
obtained collectively. In the cooperative setting, agents aim to solve (6)
in a distributed manner, i.e., 1) each agent i has the information

Ii := {Ξ̂i, f, ε, n,N} (7)

where ε is the radius of the ambiguity set that agents agree upon be-
forehand, 2) each agent i can only communicate with its neighbors Ni,
3) each agent i does not share with its neighbors any element of its own
dataset Ξ̂i, and 4) there is no central coordinator that can communicate
with all agents.

Solving (6) in a distributed manner is challenging because the data
are distributed over the network and the optimizer x∗ depends on it
all. Moreover, the inner maximization can be a nonconvex problem, in
general. One way of solving (6) in a cooperative fashion is to let agents
share their data with everyone via some sort of flooding mechanism.
This violates 3) above. We specifically keep such methods out of scope
due to two reasons. First, the data would not be private anymore,
creating a possibility of adversarial action. Second, the communication
burden of such a strategy is higher than our proposed distributed strategy
when the size of the network and the dataset grows along the algorithm
execution.

Remark III.2. (Alternative Distributed Algorithmic Solutions): The
problem (6) can possibly be solved using other distributed methods.
For instance, (6) can be written as a semi-infinite program, and then
a distributed cutting-surface method can be designed following the
centralized algorithm in [6]. If f is piecewise affine in ξ, (6) takes the
form of a conic program (without the max operator in the objective),
which can potentially be solved via primal-dual distributed solvers.
Following [7] and [21], for certain f (linear form or objective of LASSO
or logistic regression), (6) is equivalent to minimizing the empirical cost
plus a regularizer. For such cases, primal-dual distributed solvers may
be a valid solution strategy. The advantage of our methodology is its
generality, not requiring to write different algorithms depending on the
form of f . •

IV. DISTRIBUTED PROBLEM FORMULATION

We study the structure of the optimization (6) with the ulterior
goal of facilitating the distributed algorithm design. Our first step is
a reformulation that, by augmenting the agents’ decision variables,

yields an optimization where the objective is the aggregate of individual
agent functions and constraints, which have a distributed structure.
Our second step identifies a convex–concave function whose saddle
points are the primal-dual optimizers of the reformulated problem
under suitable conditions on the objective function. The structure of
the original optimization makes this step particularly nontrivial.

A. Reformulation as Distributed Optimization Problem

We have each agent i ∈ [n] maintain a copy of λ and x, denoted
by λi ∈ R and xi ∈ Rd, respectively. Thus, the decision variables
for i are (xi, λi). For notational ease, let the concatenated vectors
be λv := (λ1; . . . ; λn), and xv := (x1; . . . ;xn). Let vk ∈ [n] be the
agent that holds the kth sample ξ̂ k of the dataset. Consider the convex
optimization

min
xv,λv≥0n

h(λv) +
1

N

N∑
k=1

max
ξ∈Rm

gk(x
vk , λvk , ξ) (8a)

subject to Lλv = 0n, (8b)

(L ⊗ Id)xv = 0nd, (8c)

where L ∈ Rn×n is the Laplacian of G2, we have used the shorthand

notation h : Rn → R for h(λv) :=
ε2(1�

nλv)
n

, and, for each k ∈ [N ],

gk : Rd × R × Rm → R for gk(x, λ, ξ) := f(x, ξ)− λ‖ξ − ξ̂ k‖2.
The next result establishes the correspondence between problems (6)

and (8). The proof uses connectivity of the graph and is available in [18].
Lemma IV.1. (One-to-One Correspondence Between Optimizers

of (6) and (8)): The following holds.
1) If (x∗, λ∗) is an optimizer of (6), then (1n ⊗ x∗, λ∗1n) is an

optimizer of (8).
2) If (x∗

v, λ
∗
v) is an optimizer of (8), then an optimizer (x∗, λ∗) of (6)

exists with x∗
v = 1n ⊗ x∗ and λ∗

v = λ∗1n.
Note that constraints (8b) and (8c) force agreement and that each of

their components is computable by an agent of the network using only
local information. Moreover, the objective function (8a) can be written
as
∑n

i=1 Ji(x
i, λi, Ξ̂i), where

Ji(x
i, λi, Ξ̂i) :=

ε2λi

n
+

1

N

∑
k:ξ̂k∈Ξ̂i

max
ξ∈Rm

gk(x
i, λi, ξ)

for all i ∈ [n]. Therefore, the problem (8) has the adequate structure
from a distributed optimization viewpoint: an aggregate objective func-
tion and locally computable constraints.

B. Augmented Lagrangian and Saddle Points

Our next step is to identify an appropriate variant of the Lagrangian
function of (8) such that 1) it does not consist of an inner maximization,
unlike the objective in (8a), and 2) the primal-dual optimizers of (8) are
saddle points of the newly introduced function. To proceed, we first
denote for convenience the objective function (8a) with F : Rnd ×
Rn

≥0 → R

F (xv, λv) := h(λv) +
1

N

N∑
k=1

max
ξ∈Rm

gk(x
vk , λvk , ξ). (9)

The Lagrangian of (8) is L : Rnd × Rn
≥0 × Rn × Rnd → R

L(xv, λv, ν, η) :=F (xv, λv) + ν�Lλv + η�(L ⊗ Id)xv, (10)

2The degree matrix D is diagonal with (D)ii =
∑n

j=1
aij , for i ∈ [n]. The

Laplacian matrix is L = D − A, where A is a weighted adjacency matrix of G.
Note L = L�. For connected G, zero is a simple eigenvalue of L.
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where ν ∈ Rn and η ∈ Rnd are dual variables corresponding to the
equality constraints (8b) and (8c), respectively. L is convex–concave in
((xv, λv), (ν, η)) on the domain λv ≥ 0n. The next result states that (8)
has zero duality gap, and follows from [22, Cor. 28.22 and Th. 28.3]
using Assumption III.1.

Lemma IV.2. (Min–Max Equality for L): The set of saddle points
of L over (Rnd × Rn

≥0)× (Rn × Rnd) is nonempty and

inf
xv,λv≥0n

sup
ν,η

L(xv, λv, ν, η) = sup
ν,η

inf
xv,λv≥0n

L(xv, λv, ν, η).

Furthermore, the following holds.
1) If (xv, λv, ν̄, η̄) is a saddle point of L over (Rnd × Rn

≥0)× (Rn ×
Rnd), then (xv, λv) is an optimizer of (8).

2) If (xv, λv) is an optimizer of (8), then there exists (ν̄, η̄) such that
(xv, λv, ν̄, η̄) is a saddle point of L over (Rnd × Rn

≥0)× (Rn ×
Rnd).

Based on this, one could write a saddle-point dynamics for the
LagrangianL as a distributed algorithm to find the optimizers. However,
without strict or strong convexity assumptions on the objective function,
the resulting dynamics is not guaranteed to converge (see, e.g., [23]). To
overcome this hurdle, we augment the Lagrangian with quadratic terms.
Let the augmented Lagrangian Laug : Rnd × Rn

≥0 × Rn × Rnd →
R be

Laug(xv, λv, ν, η)=L(xv, λv, ν, η)+
1

2
x�
v (L ⊗ Id)xv+

1

2
λ�
vLλv.

Note that Laug is also convex–concave in ((xv, λv), (ν, η)) on the
domain λv ≥ 0n. The next result guarantees that this augmentation
step does not change the saddle points.

Lemma IV.3. (Saddle points of L and Laug are the same): A point
is a saddle point of L over (Rnd × Rn

≥0)× (Rn × Rnd) if and only if
it is a saddle point of Laug over the same domain.

The proof follows by using the convexity property of the objective
function in [24, Th. 1.1]. The above result implies that finding the saddle
points of Laug would take us to the primal-dual optimizers of (8). A
final roadblock is writing a gradient-based dynamics for Laug, given
that this function involves a set of maximizations in its definition and so
the gradient of Laug with respect to xv is undefined for λv = 0. Thus,
our next task is to get rid of these internal optimization and identify a
function for which the saddle-point dynamics is well defined over the
feasible domain. Note

Laug(xv, λv, ν, η) = max
{ξk}

L̃aug(xv, λv, ν, η, {ξk}), (11a)

L̃aug(xv, λv, ν, η, {ξk}) := h(λv) +
1

N

N∑
k=1

gk(x
vk , λvk , ξk)

+ ν�Lλv+η�(L ⊗ Id)xv+
1

2
x�
v (L ⊗ Id)xv+

1

2
λ�
vLλv. (11b)

The next result shows that, under appropriate conditions, L̃aug is the
function we need. The proof is available in [18].

Proposition IV.4. (Saddle Points of L̃aug and Correspondence With
Optimizers of (8)): Let C ⊂ Rnd × Rn

≥0 with int(C) �= ∅ be a closed,
convex set such that
1) the saddle points of Laug over (Rnd × Rn

≥0)× (Rn × Rnd) are
contained in the set C × (Rn × Rnd);

2) L̃aug is convex–concave on C × (Rn × Rnd × RmN );
3) for any (ν, η)

min
(xv,λv)∈C

max
{ξk}

L̃aug(xv, λv, ν, η, {ξk})

= max
{ξk}

min
(xv,λv)∈C

L̃aug(xv, λv, ν, η, {ξk}). (12)

Then, the following holds.
1) The set of saddle points of L̃aug over C × (Rn × Rnd × RmN ) is

nonempty, convex, and closed.
2) If (xv, λv, ν̄, η̄, {(ξ̄)k}) is a saddle point of L̃aug over C × (Rn ×

Rnd × RmN ), (xv, λv) is an optimizer of (8).
3) If (xv, λv) ∈ C is an optimizer of (8), then there exists

(ν̄, η̄, {(ξ̄)k}) such that (xv, λv, ν̄, η̄, {(ξ̄)k}) is a saddle point of
L̃aug over C × (Rn × Rnd × RmN ).

Section VI identifies objective functions for which the hypotheses of
Proposition IV.4 are met. We have introduced the set C to increase the
level of generality in preparation for the exposition of our algorithm.
Specifically, since f is not necessarily convex–concave, L̃aug might
not be convex–concave over the entire (Rnd × Rn

≥0)× (Rn × Rnd ×
RmN ). For such cases, one can restrict the attention to C × (Rn ×
Rnd × RmN ) provided the hypotheses of the result are satisfied. We
show later that, if f is convex–concave, one can set C = Rnd × Rn

≥0.

V. DISTRIBUTED ALGORITHM DESIGN AND ANALYSIS

Here, we design and analyze our distributed algorithm to find the
solutions of (6). Given the results of Section IV, and specifically
Proposition IV.4, our algorithm seeks to find the saddle points of L̃aug

over C × (Rn × Rnd × RmN ). The dynamics consists of (projected)
gradient-descent of L̃aug in the convex variables and gradient-ascent
in the concave ones. This is popularly termed as the saddle-point
or the primal-dual dynamics [23], [25]. Given a closed, convex set
C ⊂ Rnd × Rn

≥0, the saddle-point dynamics for L̃aug is

[
dxv
dt
dλv
dt

]
= ΠC

(
(xv, λv),

[−∇xv L̃aug(xv, λv, ν, η, {ξk})
−∇λv L̃aug(xv, λv, ν, η, {ξk})

])
, (13a)

dν

dt
= ∇νL̃aug(xv, λv, ν, η, {ξk}), (13b)

dη

dt
= ∇ηL̃aug(xv, λv, ν, η, {ξk}), (13c)

dξk

dt
= ∇ξk L̃aug(xv, λv, ν, η, {ξk}) ∀k ∈ [N ], (13d)

where Π is the projection operator. For convenience, denote (13)
by Xsp : Rnd × Rn

≥0 × Rnd+n+mN → Rnd × Rn
≥0 × Rnd+n+mN ,

where the first, second, and third components correspond to the
dynamics of xv, λv, and (ν, η, {ξk}), respectively.

Remark V.1. (Distributed Implementation of (13)): To discuss the
distributed character of the dynamics (13), we rely on C being de-
composable into constraints on individual agent’s decision variables,
i.e., C := Πn

i=1Ci with Ci ⊂ Rd × R≥0. This allows agents to per-
form the projection in (13a) in a distributed way. Denote the com-
ponents of the dual variables η and ν by η = (η1; η2; . . . ; ηn) and
ν = (ν1; ν2; . . . ; νn), so that agent i ∈ [n] maintains ηi ∈ Rd and
νi ∈ R. Furthermore, let Ki ⊂ [N ] be the set of indices representing
the samples held by i (k ∈ Ki if and only if ξ̂ k ∈ Ξ̂i). For imple-
menting Xsp, we assume that each agent i maintains and updates the
variables (xi, λi, νi, ηi, {ξk}k∈Ki

). The collection of these variables
for all i ∈ [n] forms (xv, λv, ν, η, {ξk}). From (13), the dynamics of
variables maintained by i is computable by i using its variables and
information collected from its neighbors. Hence, Xsp can be imple-
mented in a distributed manner. Note that the number of variables in
{ξk} grows with the size of the data, whereas the size of all other
variables is independent of the number of samples. Furthermore, for
any agent i, {ξk}k∈Ki

is an internal state that is not communicated to its
neighbors. •
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Remark V.2. (Discretization and Implementation of (13)): The prac-
tical implementation of the dynamics (13) requires a proper discretiza-
tion. A first-order discretization with standard conditions on stepsizes,
as illustrated in [26], provides convergence guarantees for the run-
ning averages of the iterates. Alternatively, since our analysis rests
on Lyapunov arguments, one can use the decay of the certificate to
design a triggering mechanism, leading to discretizations with adaptive
stepsizes and guaranteed convergence rates (see, e.g., [27] and [28]).
Such discretization scheme can also be made robust against practical
challenges such as asynchronicity in updates, noisy communication,
and packet dropouts. This reasoning is the motivation to carry out the
analysis in continuous time. •

The next result establishes the convergence of the dynamics Xsp

to the saddle points of L̃aug. In previous work [23], [25], [28], we
have extensively analyzed the convergence properties of saddle-point
dynamics for convex–concave functions. However, those results do not
apply directly to infer convergence forXsp because projection operators
are involved in the algorithm definition, L̃aug is linear in some convex
(λv), and concave (ν, η) variables (thus, it is neither strictly/strongly
convex, nor strictly/strongly concave, ruling out the possibility of using
results that rely on either of these hypotheses) but is not linear in the
convex variable xv or in the concave one {ξk}.

Theorem V.3. (Convergence of Xsp to the Optimizers of (8)): Sup-
pose the hypotheses of Proposition IV.4 hold. Assume further that
there exists a saddle point (x∗

v, λ
∗
v, ν

∗, η∗, {(ξk)∗}) of L̃aug with
(x∗

v, λ
∗
v) ∈ int(C) such that ξ �→ gk((x

∗
v)

vk , (λ∗
v)

vk , ξ) is strongly
concave for all k ∈ [N ]. Then, the trajectories of (13) starting in
C × Rn × Rnd × RmN remain in this set and converge asymptotically
to a saddle point of L̃aug. As a consequence, the (xv, λv) component
of the trajectory converges to an optimizer of (8).

Proof: The trajectories of (13) are understood in the Caratheodory
sense [29]. By definition of the projection, any solution t �→
(xv(t), λv(t), ν(t), η(t), {ξk(t)}) starting with (xv(0), λv(0)) ∈ C
satisfies (xv(t), λv(t)) ∈ C for all t ≥ 0. LaSalle function. Let
(x∗

v, λ
∗
v, ν

∗, η∗, {(ξ∗)k}) be the equilibrium point of L̃aug satisfying
(x∗

v, λ
∗
v) ∈ int(C). Using the definition of equilibrium point in (13b)

and (13c), we get

(L ⊗ Id)x∗
v = 0nd and Lλ∗

v = 0n. (14)

Consider the function V : C × Rnd+n+Nm → R≥0

V (xv, λv, ζ) :=
1

2
(‖xv − x∗

v‖2 + ‖λv − λ∗
v‖2 + ‖ζ − ζ∗‖2),

where ζ := (ν, η, {ξk}) and, likewise, ζ∗ := (ν∗, η∗, {(ξ∗)k}). Writ-
ing the dynamics (13) as (−∇xv L̃aug;−∇λv L̃aug;∇ζL̃aug)−
(ϕxv ;ϕλv ;0nd+n+Nm), where (ϕxv , ϕλv ) is an element of the normal
cone NC(xv, λv) and following the steps of [25, Proof of Lemma 4.1],
we obtain that the Lie derivative of V

LXspV (xv, λv, ζ) ≤ L̃aug(x
∗
v, λ

∗
v, ζ)− L̃aug(x

∗
v, λ

∗
v, ζ

∗)

+ L̃aug(x
∗
v, λ

∗
v, ζ

∗)− L̃aug(xv, λv, ζ
∗). (15)

From the definition of saddle point, the sum of the first two terms of
the right-hand side are nonpositive and so is the sum of the last two.
Therefore, we conclude LXspV (xv, λv, ζ) ≤ 0.

Application of LaSalle Invariance Principle. Using the monotonic
evolution of V , we deduce two facts. First, given δ ≥ 0, any trajectory
of (13) starting in Sδ := V −1(≤ δ) ∩ (C × Rn+nd+mN ) remains in
Sδ . In particular, every equilibrium point is stable. Second, the omega-
limit set of each trajectory of (13) starting in Sδ is invariant under
the dynamics (see, e.g., [29] for relevant definitions). Thus, from the
invariance principle for discontinuous dynamical systems [30, Prop. 3],

any solution of (13) converges to the largest invariant set

M ⊂ {(xv, λv, ζ) | LXspV (xv, λv, ζ) = 0, (xv, λv) ∈ C}.
Properties of the Largest Invariant Set. Let (xv, λv, ζ) ∈ M. Then,
from LXspV (xv, λv, ζ) = 0 and (15), we get

L̃aug(x
∗
v, λ

∗
v, ζ)

(a)
= L̃aug(x

∗
v, λ

∗
v, ζ

∗)
(b)
= L̃aug(xv, λv, ζ

∗). (16)

Expanding the equality (a) and using (14), we obtain

N∑
k=1

gk((x
∗
v)

vk , (λ∗
v)

vk , ξk)

=

N∑
k=1

gk((x
∗
v)

vk , (λ∗
v)

vk , (ξ∗)k). (17)

From the saddle-point property, {(ξ∗)k} maximizes {ξk} �→∑N
k=1 gk((x

∗)vk , (λ∗)vk , ξk). This map is strongly concave by hy-
pothesis. Thus, (17) yields ξk = (ξ∗)k, for all k ∈ [N ]. Expanding the
equality (b) in (16) and using (14), we get

h(λ∗
v) +

1

N

N∑
k=1

gk(x
∗
v)

vk , (λ∗
v)

vk , (ξ∗)k) = h(λv)

+
1

N

N∑
k=1

gk(x
vk
v , λvk

v , (ξ∗)k) + (ν∗)�Lλv

+ (η∗)�(L ⊗ Id)xv +
1

2
x�
v (L ⊗ Id)xv +

1

2
λ�
vLλv. (18)

For ease of notation, let yv := (xv; λv), y∗
v := (x∗

v; λ
∗
v), and

G(yv) := h(λv) +
1

N

N∑
k=1

gk(x
vk
v , λvk

v , (ξ∗)k).

Then, the expression (18) can be written as

G(y∗
v) = G(yv) + (ν∗)�Lλv + (η∗)�(L ⊗ Id)xv

+
1

2
y�
v (L ⊗ Id+1)yv. (19)

From the definition of saddle point, (x∗
v, λ

∗
v) minimizes (xv, λv) �→

L̃aug(xv, λv, ζ
∗) over C. Moreover, by assumption (x∗

v, λ
∗
v) lies in the

interior of C. Thus

∇xv L̃aug(x
∗
v, λ

∗
v, ζ

∗) = 0nd, (20a)

∇λv L̃aug(x
∗
v, λ

∗
v, ζ

∗) = 0n. (20b)

Here, (20a) yields (L ⊗ Id)η∗ = −∇xvG(y∗
v). Plugging this equality

in (19) and rearranging terms gives

1

2
y�
v (L ⊗ Id+1)yv = G(y∗

v)−G(yv)

− (ν∗)�Lλv + x�
v∇xvG(y∗

v).

Note that (x∗
v)

�∇xvG(y∗
v) = (x∗

v)
�(∇xvG(y∗

v) + (L ⊗ Id)η∗ + (L ⊗
Id)x∗

v) = (x∗
v)

�∇xv L̃aug(x
∗
v, λ

∗
v, ζ

∗), where we have used (14). This,
in turn, equals 0 because of (20a). Thus

1

2
y�
v (L ⊗ Id+1)yv = G(y∗

v)−G(yv)

− (ν∗)�Lλv + (xv − x∗
v)

�∇xvG(y∗
v). (21)

Expanding (20b) gives

∇λvG(y∗
v) + Lν∗ +

1

2
Lλ∗

v = 0. (22)
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Premultiplying the above equation with (λ∗
v)

� and using (14), we get
(λ∗

v)
�∇λvG(y∗

v) = 0 and we can rewrite (21) as

1

2
y�
v (L ⊗ Id+1)yv = G(y∗

v)−G(yv)− (ν∗)�Lλv

+ (xv − x∗
v)

�∇xvG(y∗
v)− (λ∗

v)
�∇λvG(y∗

v). (23)

Using (14) in (22) yields ∇λvG(y∗
v) = −Lν∗. That is, λ�

v∇λvG(y∗
v) =

−λ�
vLν∗ which when replaced in (23) gives

1

2
y�
v (L ⊗ Id+1)yv = G(y∗

v)−G(yv) + (yv − y∗
v)

�∇yvG(y∗
v).

The first-order convexity condition for F takes the form

G(yv) ≥ G(y∗
v) + (yv − y∗

v)
�∇yvG(y∗

v).

Using the previous two expressions, we get y�v (L ⊗ Id+1)yv ≤ 0. This
is only possible if this expression is zero because L ⊗ Id+1 is positive
semidefinite. Equating it to zero, we get xv = 1n ⊗ x and λv = λ1n

for some (x, λ) and (xv, λv) ∈ C. So far, we have proved that if
(xv, λv, ζ) ∈ M, then

ξk = (ξ∗)k ∀k ∈ [N ], xv = 1n ⊗ x, (24a)

λv = λ1n, (xv, λv) ∈ C. (24b)

Identification of the Largest Invariant Set. Consider a trajectory t �→
(xv(t), λv(t), ζ(t)) of (13) starting and remaining in M. Then, it must
satisfy (24) for all t ≥ 0, i.e., there exists t �→ (x(t), λ(t)) such that

ξk(t) = (ξ∗)k ∀k ∈ [N ], xv(t) = 1n ⊗ x(t), (25a)

λv(t) = λ(t)1n, (xv(t), λv(t)) ∈ C (25b)

for all t ≥ 0. Plugging (25) in (13), we obtain that for all t ≥ 0, along
the considered trajectory, we have ν̇(t) = 0n, η̇(t) = 0nd, and ξ̇(t) =
0mN . This implies that, for all t ≥ 0[

dxv(t)
dt

dλv(t)
dt

]
=ΠC

(
(xv(t), λv(t)),

[
−∇xv L̃aug(xv(t), λv(t), ζ(0))

−∇λv L̃aug(xv(t), λv(t), ζ(0))

])

which is a gradient descent dynamics of the convex function
(xv, λv) �→ L̃aug(xv, λv, ζ(0)) projected over C. Thus, either t �→
L̃aug(xv(t), λv(t), ζ(0)) decreases at some t or the right-hand side
of the above dynamics is zero at all times. Note

L̃aug(xv(t), λv(t), ζ(0))
(a)
= L̃aug(1n ⊗ x(t), λ(t)1n, ζ(0))

(b)
= h(λ(t)1n) +

1
N

N∑
k=1

gk(1n ⊗ x(t), λ(t)1n, (ξ
∗)k)

(c)
= L̃aug(1n ⊗ x(t), λ(t)1n, ζ

∗)
(d)
= L̃aug(x

∗
v, λ

∗
v, ζ

∗)

for all t ≥ 0. Equalities (a), (b), and (c) follow from (25) and the
definition of L̃aug. Equality (d) follows from (16), which holds from
every point inM. The above implies that t �→ L̃aug(xv(t), λv(t), ζ(0))
is a constant map. Hence, (xv(0), λv(0), ζ(0)) is an equilibrium of (13).
Therefore, the set M is entirely composed of the equilibria of (13).
Convergence to an equilibrium in the set of saddle points follows from
this and the fact that each equilibrium point is stable. �

VI. OBJECTIVE FUNCTIONS THAT MEET THE ALGORITHM

CONVERGENCE CRITERIA

We identify two broad classes of objective functions f for which the
hypotheses of Proposition IV.4 hold. In both cases, we justify how (13)
serves as a distributed solver of (8).

A. Convex–Concave Functions

We focus on objective functions that are convex–concave in (x, ξ):
in addition to x �→ f(x, ξ) being convex for each ξ ∈ Rm, the function
ξ �→ f(x, ξ) is concave for each x ∈ Rd. We proceed to check the
hypotheses of Theorem V.3. To this end, let C = Rnd × Rn

≥0, which is
closed and convex with int(C) �= ∅. Note that L̃aug is convex–concave
on C × (Rn × Rnd × RmN ) as f is convex–concave.

Lemma VI.1. (Interchange of Min–Max Operators): Let f be
convex–concave in (x, ξ). Then, for any (ν, η) ∈ Rn × Rnd

min
xv,λv≥0n

max
{ξk}

L̃aug(xv, λv, ν, η, {ξk})

= max
{ξk}

min
xv,λv≥0n

L̃aug(xv, λv, ν, η, {ξk}). (26)

Proof: Given any (ν, η), denote (xv, λv, {ξk}) �→ L̃aug(xv, λv,

ν, η, {ξk}) by L̃
(ν,η)
aug . Since f is convex–concave, so is L̃

(ν,η)
aug in the

variables ((xv, λv), {ξk}). Consider an extension of L̃
(ν,η)
aug over the

entire (Rnd × Rn)× (RmN )

L
(ν,η)

aug (xv, λv, {ξk}) =
{
L̃

(ν,η)
aug (xv, λv, {ξk}), if λv ≥ 0n

+∞, otherwise.

One can see that L
(ν,η)

aug is closed, proper, and convex–concave. Fur-
thermore, following [22, Th. 36.3], (26) holds iff

min
xv,λv

max
{ξk}

L
(ν,η)

aug (xv, λv, {ξk})=max
{ξk}

min
xv,λv

L
(ν,η)

aug (xv, λv, {ξk}).

We establish this condition by checking the hypotheses of [22, Th.

37.3] for L
(ν,η)

aug . For this, we show that: 1) there exists {ξ k} ∈ RmN

for which (xv, λv) �→ L
(ν,η)

aug (xv, λv, {ξ k}) does not have a direction
of recession, and 2) there exists (xv, λv) ∈ Rnd × Rn

≥0 with λv > 0

such that {ξk} �→ −L
(ν,η)

aug (xv, λv, {ξk}) does not have a direction of
recession. For 1), by the assumptions onf , for eachk ∈ [N ], there exists

ξ
k ∈ BεN (β)

√
N/

√
2n(ξ̂

k) such that 1n and −1n are not directions

of recession for x �→ f(x, ξ
k
). Picking these values, ‖ξ k − ξ̂ k‖2 ≤

ε2N/2n for all k ∈ [N ]. Thus

L
(ν,η)

aug (xv, λv, {ξ k}) = ε2(ztλv)

n
+

1

N

N∑
k=1

f(xvk , ξ
k
)

+ ν�Lλv + η�(L ⊗ Id)xv +
1

2
x�
v (L ⊗ Id)xv +

1

2
λ�
vLλv,

where z ∈ Rn with zi > 0 for all i ∈ [n]. The right-hand side of the
above expression as a function of (xv, λv) does not have a direction
of recession, that is, 1) holds. Next, we check 2). To this end, pick
xv = 1nd and λv = 1n. Then

L
(ν,η)

aug (xv, λv, {ξk})=ε2+
1

N

N∑
k=1

f(1d, ξ
k)−‖ξk − ξ̂ k‖2.

Since ξ �→ f(x, ξ) is concave for any x ∈ Rd, we deduce L
(ν,η)

aug

(xv, λv, {ξk})→−∞ as ‖{ξk}‖→∞, and 2) holds. �
Hence, we conclude that the hypotheses of Proposition IV.4 hold for

the considered class of objective functions, and we can state, invoking
Theorem V.3, the next convergence result.

Corollary VI.2. (Convergence of Trajectories of Xsp for Convex–
Concave f ): Let f be convex–concave in (x, ξ) and C = Rnd × R≥0.
Assume there exists a saddle point (x∗

v, λ
∗
v, ν

∗, η∗, {(ξk)∗}) of L̃aug

satisfying λ∗
v > 0n. Then, the trajectories of (13) starting in C × Rn ×

Rnd × RmN remain in this set and converge asymptotically to a saddle
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point of L̃aug. As a consequence, the (xv, λv) component of the
trajectory converges to an optimizer of (8).

Note that C = Πi=1(Rd × R≥0) and, thus, (13) is implementable in
a distributed way, cf. Remark V.1.

B. Convex–Convex Function

Here, we focus on objective functions for which both x �→ f(x, ξ)
and ξ �→ f(x, ξ) are convex maps for all x ∈ Rd and ξ ∈ Rm. Note
that f need not be jointly convex in x and ξ. We further divide this
classification into two.

1) Quadratic Function in ξ: Assume f is of the form

f(x, ξ) := ξ�Qξ + x�Rξ + �(x), (27)

where Q ∈ Rm×m is positive definite, R ∈ Rd×m, and � is a con-
tinuously differentiable convex function. Our next result is useful in
identifying a domain that contains the saddle points of Laug over
(Rnd × Rn

≥0)× (Rn × Rnd).
Lemma VI.3. (Characterizing Where F is Finite): Assume f is of

the form (27). Then, the function F defined in (9) is finite-valued only
if λi ≥ λmax(Q) for all i ∈ [n].

Proof: Assume there exists ĩ ∈ [n] such that λĩ < λmax(Q). We
wish to show that F (xv, λv) = +∞ in this case. For any k such that
ξ̂ k ∈ Ξ̂ĩ, we have

gk(x
ĩ, λĩ, ξ) = ξ�(Q− λĩIm)ξ + (xĩ)�Rξ + 2λĩ(ξ̂ k)�ξ

+ �(xĩ)− λĩ‖ξ̂ k‖2.
Let wmax(Q) ∈ Rm be an eigenvector of Q corresponding to the
eigenvalue λmax(Q). Parameterizing ξ = αwmax(Q)

gk(x
ĩ, λĩ, αwmax(Q)) = α2(λmax(Q)− λĩ)‖wmax(Q)‖2

+ α
(
(xĩ)�R+ 2λĩ(ξ̂ k)�

)
wmax(Q) + �(xĩ)− λĩ‖ξ̂ k‖2.

Thus, we get maxα gk(x
ĩ, λĩ, αwmax(Q)) = +∞ and so maxξ

gk(x
ĩ, λĩ, ξ) = +∞. Also, note that for any i and k with ξ̂ k ∈

Ξ̂i, maxξ gk(x
i, λi, ξ) > −∞. This implies that

∑N
k=1 maxξ gk(x

vk ,
λvk , ξ)=+∞ and F (xv, λv)=+∞. �

The above result implies that the optimizers of (8) for objective
functions of the form (27) belong to the domain

C := Rnd × {λv ∈ Rn
≥0 | λv ≥ λmax(Q)1n}. (28)

Therefore, the saddle points ofLaug over (Rnd × Rn
≥0)× (Rn × Rnd)

are contained in C × (Rn × Rnd). Note that C is closed, convex with
a nonempty interior. Furthermore, following the proof of Lemma VI.3,
L̃aug is convex–concave on C × (Rn × Rnd × RmN ) (an easy way to
validate this fact is by noting that the Hessian of L̃aug with respect to the
convex (concave) variables is positive (negative) semidefinite). Finally,
repeating the proof of Lemma VI.1, we arrive at the equality (12). Using
these facts in Theorem V.3 yields the next result.

Corollary VI.4. (Convergence of Trajectories of Xsp for Quadratic
f ): Let f be of the form (27) and C be given in (28). Assume fur-
ther that there exists a saddle point (x∗

v, λ
∗
v, ν

∗, η∗, {(ξk)∗}) of L̃aug

satisfying λ∗
v > λmax(Q)1n. Then, the trajectories of (13) starting in

C × Rn × Rnd × RmN remain in this set and converge asymptotically
to a saddle point of L̃aug. As a consequence, the (xv, λv) component
of the trajectory converges to an optimizer of (8).

Note that C given in (28) can be written as C = Πn
i=1(R

d × {λ ∈
R≥0 | λ ≥ λmax(Q)}). Thus, following Remark V.1, the dynamics (13)
can be implemented in a distributed manner.

2) Least-Squares Problem: Let d = m and assume additionally that
the function f is of the form

f(x, ξ) := a(ξm − (ξ1:m−1; 1)
�x)2, (29)

where a > 0 and ξ1:m−1 denotes the vector ξ without the last com-
ponent ξm. Note that f corresponds to the objective function for a
least-squares problem and it cannot be written in the form (27). We first
characterize the set over which the objective function (9) takes finite
values. The proof [18] mimics the steps of the proof of Lemma VI.3.

Lemma VI.5. (Characterizing Where F is Finite): Assume f is of
the form (29). Then, the function F defined in (9) is finite-valued only
if λi ≥ a‖(xi

1:m−1; 1)‖2 for all i ∈ [n].
Guided by the above result, let

C :=Rnd×{λv ∈ Rn
≥0 |λi≥a‖(xi

1:m−1; 1)‖2 ∀i∈ [n]}. (30)

Owing to Lemma VI.5, the optimizers of (8) belong to C and so, the
saddle points of Laug over (Rnd × Rn

≥0)× (Rn × Rnd) are contained
in C × (Rn × Rnd). Furthermore, C is closed, convex with a nonempty
interior and L̃aug is convex–concave on C × (Rn × Rnd × RmN ).
Finally, one can show that (12) holds here. Using these facts in Theo-
rem V.3 yields the next result.

Corollary VI.6. (Convergence of Trajectories of Xsp for Least-
Squares Problem): Let f be of the form (29) and C be given in (30).
Assume there exists a saddle point (x∗

v, λ
∗
v, ν

∗, η∗, {(ξk)∗}) of L̃aug

satisfying (x∗
v, λ

∗
v) ∈ int(C). Then, the trajectories of (13) starting in

C × Rn × Rnd × RmN remain in this set and converge asymptotically
to a saddle point of L̃aug. As a consequence, the (xv, λv) component
of the trajectory converges to an optimizer of (8).

The saddle-point dynamics (13) is amenable to distributed imple-
mentation too, cf. Remark V.1, as one can write C = Πn

i=1{(x, λ) ∈
Rd × R≥0 | λ ≥ a‖(x1:m−1; 1)‖2}. We present in [18] an example
where this dynamics is employed to find a data-driven solution for a
regression problem with quadratic loss function and an affine predictor.

VII. CONCLUSION

We have studied a stochastic optimization problem, where a group
of agents rely on their individually collected data to jointly determine a
data-driven solution with guaranteed out-of-sample performance. Our
approach identifies an augmented Lagrangian whose saddle points
are in one-to-one correspondence with the primal-dual optimizers.
This characterization relies upon certain interchangeability properties,
which are satisfied by several classes of objective functions (convex–
concave, convex–convex quadratic in the data, and convex–convex
associated to least-squares problems). We have designed a provably
correct distributed saddle-point algorithm where agents share individual
solution estimates, not the collected data. Future work will explore the
characterization of the convergence rate, the design of strategies capable
of tracking the optimal solution with streaming data, and the analysis
of scenarios with network chance constraints.
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