

 University of Groningen

CentroidNetV2
Dijkstra, Klaas; van de Loosdrecht, Jaap; Atsma, Waatze A.; Schomaker, Lambert R. B.;
Wiering, Marco A.
Published in:
Neurocomputing

DOI:
10.1016/j.neucom.2020.10.075

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Dijkstra, K., van de Loosdrecht, J., Atsma, W. A., Schomaker, L. R. B., & Wiering, M. A. (2021).
CentroidNetV2: A hybrid deep neural network for small-object segmentation and counting.
Neurocomputing, 423, 490-505. https://doi.org/10.1016/j.neucom.2020.10.075

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-11-2022

https://doi.org/10.1016/j.neucom.2020.10.075
https://research.rug.nl/en/publications/7377f041-17ff-42d1-bd3b-699856ee2440
https://doi.org/10.1016/j.neucom.2020.10.075

Neurocomputing 423 (2021) 490–505
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
CentroidNetV2: A hybrid deep neural network for small-object
segmentation and counting
https://doi.org/10.1016/j.neucom.2020.10.075
0925-2312/� 2020 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: klaas.dijkstra@nhlstenden.com (K. Dijkstra).
Klaas Dijkstra a,c,⇑, Jaap van de Loosdrecht a, Waatze A. Atsma b, Lambert R.B. Schomaker c,
Marco A. Wiering c

a Professorship Computer Vision and Data Science, NHL Stenden University of Applied Sciences, P.O. Box 1080, 8900 CB Leeuwarden, The Netherlands
bVitens N.V., Snekertrekweg 61, 8912 AA Leeuwarden, The Netherlands
cBernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 December 2019
Revised 26 July 2020
Accepted 11 October 2020
Available online 5 November 2020
Communicated by Lei Zhang

2000 MSC:
68T10
68T45

Keywords:
Deep Learning
Computer Vision
Convolutional Neural Networks
Object Detection
Instance Segmentation
This paper presents CentroidNetV2, a novel hybrid Convolutional Neural Network (CNN) that has been
specifically designed to segment and count many small and connected object instances. This complete
redesign of the original CentroidNet uses a CNN backbone to regress a field of centroid-voting vectors
and border-voting vectors. The segmentation masks of the individual object instances are produced by
decoding centroid votes and border votes. A loss function that combines cross-entropy loss and
Euclidean-distance loss achieves high quality centroids and borders of object instances. Several back-
bones and loss functions are tested on three different datasets ranging from precision agriculture to
microbiology and pathology. CentroidNetV2 is compared to the state-of-the art networks You Only
Look Once Version 3 (YOLOv3) and Mask Recurrent Convolutional Neural Network (MRCNN). On two
out of three datasets CentroidNetV2 achieves the highest F1 score and on all three datasets
CentroidNetV2 achieves the highest recall. CentroidNetV2 demonstrates the best ability to detect small
objects although the best segmentation masks for larger objects are produced by MRCNN.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Counting many small and connected objects is an important
and challenging image analysis task [1,2]. Many applications for
counting objects exist ranging from microbiology [3] to precision
agriculture [4]. For example, to test the quality of drinking water
a sample of water is inoculated on a Petri-dish containing an agar.
This dish is then placed inside an incubator to promote bacterial
growth. The number of bacterial-colony clusters growing inside
the dish is an important indicator for the quality of the water. This
type of microbiological procedure usually involves counting many
small and connected circular colonies with a specific morphology
[5]. Automated approaches use either traditional computer vision
[6] or are based on deep learning [3]. Another example is in the
field of precision agriculture. The state of crops needs to be moni-
tored continuously and is an important indicator for predicting
crop yield is the number of crops and the size of the crops.
In previous research the use of deep learning was investigated
for counting and localizing crops in images produced by a camera
mounted on an Unmanned Aerial Vehicle (UAV). This paper shows
several improvements over the original CentroidNet algorithm [4]
and discusses additional results on other datasets as well as abla-
tion studies on the backbones, the loss functions and on
pretraining.

Deep neural networks have consistently been shown to produce
state-of-the-art results for many complex image analysis tasks for
which enough data is available. Due to the large variety in counting
tasks, this data-driven approach is promising for getting good
results. In deep learning a large set of annotated data is used to
train a specific model. Nowadays mainly Convolutional Neural Net-
works (CNNs) are used for a multitude of image analysis tasks like
classification, segmentation, object detection, instance segmenta-
tion, image data synthesis and resolution enhancement in hyper-
spectral images [7–12].

A typical method to count objects with a CNN is to train an
object detection model and subsequently count the number of
detected objects [13–15]. Because most object-detection neural

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.10.075&domain=pdf
https://doi.org/10.1016/j.neucom.2020.10.075
mailto:klaas.dijkstra@nhlstenden.com
https://doi.org/10.1016/j.neucom.2020.10.075
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
networks are designed to detect typical everyday objects, they
might provide inferior results on counting tasks where small and
connected objects are involved. An alternative method to count
objects is to regard counting as a regression task. In this case the
number of counted objects is directly estimated from images or
crops of images [16–19]. This is mostly used in congested scenes
when it is difficult to individually detect objects. An example of
this approach is estimating the number of people in crowds
[20–22]. Recent approaches combine object localization and object
detection with counting [4,23].

When counting objects in an image without regarding their
location there is a risk of unwanted count compensation. When
this happens an underestimate of the count in one part of the
image compensates the overestimation in another part of the
image. To correctly validate counting results the location of the
objects should also be taken into account. A suitable metric for
detection and counting is the F1 score which is the harmonic mean
between precision and recall that represents the optimal equilib-
rium between overestimating and underestimating the number
of objects. This paper will focus on models for object detection
and instance segmentation because these models can estimate
the location and dimensions of the counted objects simultane-
ously. In this paper a new hybrid deep learning architecture called
CentroidNetV2 is introduced.

1.1. Contributions and research questions

The original version of CentroidNet [4] is a Fully Convolutional
Network (FCN) that is trained using a standard Mean Squared Error
(MSE) loss function. A U-net backbone is used to regress a field of
2-d vectors. These vectors are trained to predict the location of the
centroid of the nearest object. CentroidNet is independent of image
size during training and during inference, because vectors only
encode relative positions and are not scaled by the image size. A
voting algorithm is used to produce the actual centroids of the
objects. Although demonstrating state-of-the-art results, the origi-
nal CentroidNet has some limitations: the size of the objects are
not estimated and the standard MSE loss does not specifically
penalize the segmentation and the voting mechanism incorporated
in the algorithm. Finally CentroidNet was only evaluated using the
U-net backbone.

In CentroidNetV2 several improvements are proposed, while
still maintaining the deep-learning and computer-vision hybrid
design and the majority voting mechanisms. Firstly, for each pixel,
an additional 2-d vector is predicted which represents the relative
location of the nearest border of the object with the nearest cen-
troid. This border information is used to predict the delineation
of objects. Therefore, in a computer vision context, CentroidNetV2
is regarded as a form of contour fitting [24] with properties similar
to the generalized Hough transform [25]. CentroidNetV2 produces
instance-segmentation masks by fitting a predefined geometric
shape through the border points. In a deep learning context Cen-
troidNetV2 is considered an instance segmentation model.

We compare CentroidNetV2 to other well-known state-of-the-
art networks that have comparable complexity and goals. The
ResNet backbones for Mask Recurrent Convolutional Neural Net-
work (MRCNN) and CentroidNetV2 give them comparable com-
plexity. A specific shared goal of CentroidNetV2 and You Only
Look Once Version 3 (YOLOv3) is small-object detection. In this
paper we aim to focus on the general applicability of the Cen-
troidNetV2 architecture for detecting and segmenting small
objects. Therefore we have chosen three datasets to cover a
broader range of applications. This also means that we do not focus
on solving any one specific application (for example, colony count-
ing or crop detection). Furthermore, and because of this broader
scope, we compare to well-known and general methods for object
491
detection and segmentation. Furthermore, we provide a compar-
ison between the properties of the original CentroidNet and
CentroidNetV2.

In addition to the architectural changes several ablation studies
are performed. The loss function is redesigned to contain two
Euclidean loss terms and a cross entropy term. The loss terms
are compared to the original MSE loss function. We aim to investi-
gate the effect of several architectural choices. In principle any
semantic segmentation network can serve as a backbone for Cen-
troidNetV2. In the experiments U-net and DeepLabV3 with three
backbones, ResNet50, ResNet101 and Xception, are evaluated as
representative backbones. Finally, we also investigate if transfer
learning improves the performance of CentroidNetV2.

This leads to the following research questions:

1. What is the performance of CentroidNetV2 for detecting and
counting many small objects?

2. How does the performance of CentroidNetV2 compare to well
known state-of-the-art models for object detection and
instance segmentation?

3. What backbones and loss functions are most suitable for
CentroidNetV2?

4. What is the effect of transfer learning on the performance of
CentroidNetV2?

In this paper we generally refer to a 1-d structure as a vector, a
2-d structure as a matrix and a 3-d structure as a tensor. A matrix
that contains vectors is referred to as a tensor where the name
indicates the type of vectors. For example: the target-centroid-
vectors tensor is a matrix containing target-centroid vectors.

The remainder of this paper is structured as follows. In Section 3
the formal design of CentroidNetV2 is discussed. Section 4 explains
the contents of the aerial-crops, cell-nuclei and bacterial-colonies
datasets that are used for this research. The method of training
and validation is discussed in Section 5 and the results are pre-
sented in Section 6. Finally, in Section 7 the conclusion and future
work are discussed.
2. Related work

CNNs [26–28] are applied to an increasing number of complex
image analysis tasks. One of the first break-through applications
of CNNs was the classification of images from the ImageNet chal-
lenge [7]. Classification models take an image as an input and pro-
duce a single prediction for the whole image. Image segmentation
using a CNN is performed by classifying each pixel into a one-hot
vector representing the class of that pixel. This results in a dense
segmentation mask of the entire image. Impressive performance
was achieved by U-net on biomedical image data [8] and by Dee-
pLabV3+ on segmenting everyday scenes [29]. A sparser detection
is achieved by object detection CNNs like YOLOv3 [30] and Retina-
Net [31]. These architectures directly estimate the bounding box
and class of individual object instances in images with everyday
objects. YOLOv3 focuses specifically on small-object detection.

Instance segmentation can be regarded as a combination of
object detection and segmentation. MRCNN is a widely used
state-of-the-art instance segmentation architecture that uses the
detected boxes, called region proposals, to predict a dense segmen-
tation mask of individual object instances [10] and this requires a
two-stage training process. A Recurrent Neural Network (RNN) for
instance segmentation is proposed [32], where recurrent attention
is used to alternate between producing bounding boxes and pro-
ducing segmentation masks for the objects within these boxes.

A proposal-free instance segmentation network is proposed
[33], where segments and boxes are directly regressed and a

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
traditional off-the-shelf clustering method is used to create indi-
vidual instances. This approach, where deep learning and tradi-
tional deterministic algorithms are combined, belongs to an
emerging class of hybrid algorithms. In DCAN individual dense-
object instances are produced by post processing the segmenta-
tion result using the probability map to estimate segment bound-
aries [34]. In a similar fashion a deterministic temporal
consistency algorithm is combined with a CNN to segment RGB
+ depth videos [35]. InstanceCut produces object instances by
deterministically combining two output modalities of the CNN:
a semantic segmentation mask and an instance boundary. An
alternative method to estimate boundaries is proposed by the
deep watershed transform, which is a deep-learning based
instance segmentation method inspired by a traditional water-
shed transform [36].

Other instance segmentation methods directly estimate decod-
able shape representations. In the straight-to-shapes approach the
embeddings produced by a CNN are decoded into shapes with var-
ious methods to produce delineations of instances [37]. The star-
convex polygon method uses radial distances to encode object
instances with a CNN [38].

Related to this are methods that predict the centroids of indi-
vidual object instances. These are proposed in [39] and in Cen-
troidNet [4]. Both of these methods use a traditional Hough-
transform inspired algorithm for determining centroids after
model inference. The former method uses the bounding boxes to
predict dense segments and the latter uses a fixed-size bounding
box and uses binning to produce sharper centroids. CentroidNet
has shown to produced state-of-the-art performance on a dataset
for counting potato crops. In that approach dense spatial-voting
vectors are predicted using a CNN and a majority voting algorithm
combined with a non-max-suppression is subsequently used to
produce centroid locations.

Conceptually, the integration of machine vision and deep learn-
ing can be viewed as embedding and exploiting prior knowledge in
the algorithm. For example, in CentroidNet, partially occluded and
connected objects still produce votes because patches of the
objects are assumed, by the algorithm, to have information about
the location of the centroid. For example, the leaves of a plant
and the grain of these leaves naturally point outward. This means
that implicit information about the location of the centroid of a
plant is contained in a small patch of the image. This way of
prior-knowledge embedding has been demonstrated to outper-
form non-hybrid approaches [4].
3. The CentroidNetV2 architecture

The main architecture of CentroidNetV2 is shown in Fig. 1.
The top part of the graph shows the inference pipeline to predict
instances and their corresponding class from input images. The
bottom part shows the pipeline for converting the annotations
to a suitable CentroidNet format for training. An image tensor
X serves as an input to the model indicated by f �ð Þ, which in
turn predicts an output tensor Y containing the centroid vectors,
border vectors and class logits (the score for each class). This
tensor is then decoded into instance ids, class ids and class prob-
abilities by the decoding function g �ð Þ. The ground-truth tensor Z
contains class ids and instance ids and is encoded into centroid
vectors, border vectors and class logits. This is done by the
inverse transform of g �ð Þ, indicated by g0 �ð Þ.1 Additionally the loss
function l �; �ð Þ calculates a loss between the output tensor Y and
the target tensor T.
1 The function g0 �ð Þ is the inverse transform of g �ð Þ if the class probability is
disregarded.

492
For convenience and without loss of generality the functions in
this section are defined using 3-d image-like tensors. However the
actual implementation uses mini batches of 3-d tensors. The three
main functions f �ð Þ;g �ð Þ and l �; �ð Þ are explained in sub-Section 3.1,
3.2 and 3.3 respectively.

3.1. Backbones

Function f �ð Þ in Fig. 1 is the backbone of CentroidNetV2 and
represents the trainable part. A multi-channel image serves as an
input. In our experiments this is an Red Green Blue (RGB) image.
The output tensor contains three separate types of predictions:
each spatial position of the first two planes contains the y and x
components of a relative vector that points to the nearest centroid
of an object. Each spatial position of the next two planes contains
the y and x components of the vectors pointing to the nearest bor-
der of the object with the nearest centroid. The final planes of the
output tensor contain the logits for the semantic segmentation of
all pixels. In this paper we only test binary classification which
means that this logits output consists of two planes (foreground/
background). The spatial dimensions of X and Y should be identical
and any semantic segmentation network can serve as backbone
f �ð Þ. In our experiments the depth of the input X is 3 (RGB) and
the depth of the output Y is 6 (a 2-d centroid vector, a 2-d border
vector and 2 logits). This is mathematically expressed by

Y ¼ f Xð Þ ð1Þ
Y ¼ YcjYbjYl½ �; ð2Þ
where X is the input tensor of the model, Y is the output tensor with
stacked tensors containing the centroid-vectors tensor Yc, border-
vectors tensor Yb and the logits tensor Yl.

Additionally the probabilities per logit are determined by divid-
ing each logit by the sum of all logits for that pixel:

Ypz;y;x ¼
Ylz;y;xP
z2 c½ �Ylz;y;x

; ð3Þ

where Yp contains the class probabilities and c is the number of
classes.

Some example centroid vectors and border vectors in Yc and Yb
are geometrically shown in Fig. 2, where pi; ci and bi represent the
pixel coordinate, the vector of the nearest centroid and its nearest
border, with three example pixels: i 2 1;2;3f g. An important detail
about border vectors is that for some coordinates, like p1, the near-
est border coordinate of the object with the nearest centroid is dif-
ferent from the nearest border coordinate. The nearest centroid to
p1 is of object B, but the nearest border coordinate of p1 is of object
A. In this case b1 is the correct border vector (which is not equal to
b01).

3.2. Loss functions

Function l �; �ð Þ in Fig. 1 calculates the loss between the output
tensor Y and the target tensor T. Depending on the loss function
we use the logits output Yl or the probability output Yp. The target
tensors are defined in a similar way as Eq. (2):

T ¼ TcjTbjTp½ �; ð4Þ
where T consists of the stacked tensors with target-centroid-vectors
tensor Tc, target-border-vectors tensor Tb and the target-
probability tensor Tp containing n planes. Note that the target prob-
ability for a certain class is always 0 or 1.

3.2.1. MSE loss
The original CentroidNet used the mean squared error (MSE)

loss defined as:

Fig. 1. The CentroidNetV2 architecture. The top part shows the inference pipeline and the bottom part shows the pipeline for encoding the ground-truth annotations. The
encoder function g0 �ð Þ is the inverse transform of decoder function g �ð Þ.

Fig. 2. Examples of centroid vectors (c1, c2, and c3) pointing from the pixel
coordinates (p1, p2 and p3) to the nearest centroids of object A and B. The border
vectors (b1, b2 and b3) point to the nearest border of the objects with the nearest
centroid.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
lmse Y;Tð Þ ¼ 1
c � h �w

X
z2 c½ �

X
y2 h½ �

X
x2 w½ �

Yz;y;x � Tz;y;x
� �2 ð5Þ
where Y and T are the output and target tensor with a size of
c � h�w. In our experiments the output tensor consists of five
planes and consequently z runs over 1 through 5.
493
A limitation of using the MSE loss is the fact that it ignores the
meaning of the specific planes in the output tensor Y and target
tensor T. For example, the first two planes contain the y and x com-
ponent of the centroid-voting vectors. For these two planes it
makes more sense to use an Euclidean distance as the loss function,
while the cross-entropy loss is more useful for the planes that con-
tain the classification logits per pixel. Therefore, in CentroidNetV2,
the loss function is decomposed into two different terms: vector
loss and segmentation loss. These are discussed in the remaining
part of this sub-section.

3.2.2. Vector loss
The Euclidean distance loss between the output-centroid vec-

tors and target-centroid vectors or the output-border vectors and
target-border vectors can be calculated by:

D2
y;x ¼

X
z2 c½ �

Yvz;y;x � Tvz;y;x
� �2

ld Yv;Tvð Þ ¼ 1
h�w

X
y2 h½ �

X
x2 w½ �

Dy;x;
ð6Þ

where Yv and Tv have size c � h�w and represent the output- and
target-vectors tensors. Because both the centroid vectors and bor-
der vectors are two dimensional, each vector has two components
(c ¼ 2). The size of the spatial dimensions h and w are the same
as the dimensions of input image.

The vector loss is calculated separately for the centroid vectors
and the border vectors using Eq. (6) and then the sum is calculated.

lvl Yc;Yb;Tc;Tbð Þ ¼ ld Yc;Tcð Þ þ ld Yb;Tbð Þ; ð7Þ
where Yc;Yb;Tc;Tb contain the output-centroid vectors, output-
border vectors, target-centroid vectors and target-border vectors
respectively.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
3.2.3. Segmentation loss
The second term, the per-pixel classification loss or segmenta-

tion loss, can be calculated in two ways. The cross entropy loss is
defined as:

CEy;x ¼ �
X
z2 c½ �

Tpz;y;x log Ypz;y;x

� �� �
lce Yp;Tpð Þ ¼ 1

h�w
X
y2 h½ �

X
x2 w½ �

CEy;x;
ð8Þ

where Yp;Tp are the output-probability tensor and the target-
probability tensor (with values of either one or zero), c is the num-
ber of classes and h and w are the spatial dimensions of the respec-
tive tensors.

The Intersection over Union (IoU) loss is defined as 1 minus the
intersection divided by the union of the class probabilities. IoU loss
has been shown to outperform the cross-entropy loss in [40,41]
and is defined by:

Iz ¼
X
y2 h½ �

X
x2 w½ �

Ypz;y;x � Tpz;y;x

Uz ¼
X
y2 h½ �

X
x2 w½ �

Ypz;y;x þ Tpz;y;x

� �� Ypz;y;x � Tpz;y;x

� �
liou Yp;Tpð Þ ¼ 1� 1

c

X
z2 c½ �

Iz
Uz

ð9Þ
2 In this context the term ‘absolute’ refers to the fact that all vectors are
ecalculated so that they have a common origin at the top-left of the image. It does
ot refer to the absolute value of the vector elements.
3.2.4. CentroidNetV2 loss
The individual terms of the loss functions are tested and their

performance is reported in the results section of this paper. Eq.
(10) combines vector loss and the cross entropy loss and Eq. (11)
combines the vector loss and the IoU loss.

lvl:ce Y;Tð Þ ¼ lvl Yc;Yb;Tc; Tbð Þ þ lce Yp;Tpð Þ ð10Þ
lvl:iou Y;Tð Þ ¼ lvl Yc;Yb;Tc;Tbð Þ þ liou Yp; Tpð Þ; ð11Þ

where Y is the output tensor containing output-centroid-vectors
tensor Yc, output-border-vectors tensor Yb and output-
probabilities tensor Yp, similarly T is the target tensor containing
target-centroid-vectors tensor Tc, target-border-vectors tensor Tb
and target-probabilities tensor Tp.

3.3. Coders

This sub-section discusses the decoder function g �ð Þ and the
encoder function g0 �ð Þ of Fig. 1. These functions represent the
deterministic parts of CentroidNetV2. During inference the deco-
der calculates the output tensor R from the output Y of the
model. The decoder is responsible for decoding centroid vectors,
border vectors and logits into instance ids, class ids and their
probabilities. The encoder generates the target tensor T given
the annotations. This can be regarded as preprocessing the
ground truth. The encoder is responsible for encoding instance
ids and class ids into centroid vectors, border vectors and class
logits.

3.3.1. Decoder
Individual object instances are calculated from the output of the

model using the centroid-vectors tensor Yc, border-vectors tensor
Yb and class-probabilities tensor Yp, defined in Eqs. (1)–(3).

Algorithm 1. Calculate the voting matrix given the output-voting-
vectors tensor
494
1: function vote Yv

2: h;w height; width of Yv

3: V zero-filled

matrix of size h;wð Þ

4: for y 1 to h do

5: for x 1 to w do

6: y0 yþ Yv1;y;x
 . Get the absolute y

component

7: x0 xþ Yv2;y;x
 . Get the absolute x

component

8: Vy0 ;x0 Vy0 ;x0 þ 1
 . Aggregate votes

9: end for

10: end for

11: return V

12: end function
Algorithm 2. Calculate the border coordinates of an instance with
respect to a given centroid.
1: function border(yc ; xcÞ;Yb;Yc

2: B ¼ fg

3: h;w height; width of Yc
 . Get spatial

dimensions of the
input
4: for y 1 to h do

5: for x 1 to w do

6: y0c yþ Ycy;x;1
 . Get absolute

centroid vector y

7: x0c xþ Ycy;x;2
 . Get absolute

centroid vector x

8: if y0c; x

0
c

� � ¼¼ yc; xcð Þ
 . Contributed to
centroid (yc; xc) then
9: y0b yþ Yby;x;1
 . Get absolute
border vector y
10: x0b xþ Yby;x;2
 . Get absolute
border vector x
11: B B [y0b; x
0
b

� �� �
.
 Add border

coordinate

12: end if

13: end for

14: end for

15: return B
 . Border

coordinates of object
with centroid (yc; xc)
16: end function
Initially the vote �ð Þ function in Algorithm 1 calculates the vot-
ing matrix. An output-voting-vectors tensor Yv serves as an input
(this can either be Yc or Yb). This tensor contains the relative 2-d
centroid vectors for every spatial location of the corresponding
input image. The absolute vectors y0 and x0 are calculated by adding
the image coordinate y and x to each vector component. In the vot-
ing map the votes, represented by these absolute2 voting vectors,
are summed.

The decoder then selects centroid locations which received a
high number of votes. The key idea of CentroidNetV2 is that the
image locations which provided the vectors for these selected cen-
r
n

Fig. 3. An example of the data of the decoder represented by images of potato
plants annotated with circles. From left to right and top to bottom: input image X,
magnitudes of the centroid vectors Yc, magnitudes of border vectors Yb, accumu-
lated centroid votes V , set of centroid coordinates C, set of border coordinates B,
color-coded instances I and per-pixel class ids C.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
troids might be in high-information areas in the image. The
hypothesis is that these high-information locations also provide a
good estimate for the border location.

In Algorithm 2 these border coordinates are calculated. A cen-
troid coordinate yc; xcð Þ, the border-vectors tensor and centroid-
vectors tensor serve as inputs to the algorithm. Using nested for-
loops the image locations which contributed to centroid yc; xc are
calculated (Line 8) and subsequently the absolute border coordi-
nate is added to a set of border coordinates B for that centroid (Line
11).

These border coordinates can be quite noisy, therefore a geo-
metric shape is fitted through this set of border coordinates. This
allows additional prior knowledge about the shape of the objects
to be embedded in the algorithm. For example: if the goal is to look
for elliptical objects, an ellipse is fitted through the border coordi-
nates. By fitting a convex-hull, arbitrary convex shapes can be
accommodated by CentroidNetV2.

Finally, the class ids and probabilities of each spatial coordinate
are calculated from the logits layers of the model output. The class
of an object instance is determined by determining the highest
class probability at the location of the centroid of that object.

The decoder is more formally defined in the following steps. The
intermediate images that support the explanation of the decoder
are shown in Fig. 3.

1. Calculate the centroid-vote matrix V ¼ vote Ycð Þ, where Yc is a
tensor containing the centroid vectors predicted by the model
and vote �ð Þ is the voting function defined in Algorithm 1.

2. Calculate the suppressed-voting matrix V̂ ¼ w Vð Þ. Function w �ð Þ
only keeps maximum values in a local window and is given by:
w Vy;x
� � ¼ Vy;x �

1; if Vy;x ¼¼ max
v;uð Þ2 0::n½ Þ� 0::m½ Þ

Vy�v;x�u

0; otherwise;

(

where y and x are spatial coordinates, and v and u are coordi-
nates inside an n�m window of the non-max suppression. In
our case plateaus of equal maxima are reduced to single points.

3. Select voting peaks by applying a threshold h to the suppressed-

voting matrix V̂ to generate the set of selected votes C given by:
C ¼ yc; xcð Þ 2 h½ � � w½ �jV̂yc ;xc P h
n o

; ð12Þ

where yc; xc are the peak coordinates and h and w are the dimen-

sions of matrix V̂ .
4. Select the set of border coordinates corresponding to a centroid.

The set of border coordinates for a centroid at coordinate
yc; xcð Þ 2 C is given by:
B ¼ border yc; xcð Þ 2 C;Yb; Ycð Þ;
where the function border �; �; �ð Þ calculates border coordinates
for a given centroid at yc; xcð Þ and is given by Algorithm 2, Yb
and Yc are tensors containing the border and centroid vectors
respectively.

5. Fit a geometric shape (e.g. circle, ellipse, convex hull, etc.)
through the set of border coordinates B for a given centroid
and draw the geometric shape with a unique value in the
instance-ids matrix I.

6. Calculate the class-ids matrix and probabilities matrix C and P
respectively by taking the argmax �ð Þ and max �ð Þ over class
probabilities:
Cy;x ¼ argmaxz2 c½ � Ypz;y;x

� �
Py;x ¼ maxz2 c½ � Ypz;y;x

� �
;

where c is the number of logits in the output-probabilities tensor
Yp. When the probability of an element in matrix P is above /, it
495
is accepted in the corresponding class-id matrix C, otherwise the
element is assigned to the background. In our experiments a
probability threshold of 0.2 gave the best results. The class of
an instance with centroid y; x is defined by the value of Cy;x.

7. Guarantee that for each element in instance-ids matrix I and
class-ids matrix C, both the instance id and the class id are
known. This means that if either the instance id or the class
id is background for a certain element, both the instance id
and class id for that element are set to background. Because
masking is performed per pixel, the final shape of object
instances can be different from the fitted shape.

The instance-ids matrix I, class-ids matrix C and class-
probabilities matrix P are the final outputs of CentroidNetV2.

3.3.2. Encoder
Encoding is a preprocessing step needed to convert the ground-

truth annotations to a format that can be used to train the model.
An annotation of an input image X consists of the target-class-ids
matrix C0 in which each element represents the class of a pixel in
the input image, and the target-instance-ids matrix I0 in which
each element represents the id of an individual object instance in
the input image. The encoder can be regarded as the inverse of
the decoder and therefore the input matrices are named the same
as the output matrices of the decoder, but are denoted by an addi-
tional apostrophe (0). The output of the encoder is the target-
centroid-vectors tensor Tc, the target-border-vectors tensor Tb
and the target-probabilities matrix Tp defined in Eq. (4).

The encoding process is defined in the remaining part of this
section and the intermediate images to support the explanation
are shown in Fig. 4. The black border around the objects in Tc
and Tb is caused by the clipping of voting vectors. This is set to
roughly twice the average radius of the target objects.

All unique instance ids in matrix I0 are represented by the set I .
A set of coordinates of an instance with id i is and given by:

O0i ¼ yo; xoð ÞjI0yo ;xo ¼¼ i 2 I
n o

;

where yo and xo represent the coordinates within the instance-ids
matrix I0.

The set of centroids for all objects are calculated by taking the
average y and x coordinate of each set of coordinates:

C0 ¼ O01;O02; . . . ;O0n
n o

;

Fig. 4. Data of the encoder represented by images. From left to right: input
image X, color-coded target-instance ids I0 , target-class ids C0 , magnitudes of the
target-centroid-vectors Tc and target-border-vectors Tb. Voting vectors with high
magnitudes are bright white and voting vectors with low magnitudes appear
darker.

3 https://www.kaggle.com/c/data-science-bowl-2018.
4 ISO 11731:2017, Water quality – Enumeration of Legionella

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
where C0 is the set of target centroids of the object instances, Oi is
the centroid of the spatial coordinates that belong to instance with
id i.

Subsequently the tensor with target-centroid vectors Tc is cal-
culated by taking the difference between a spatial coordinate of
Tc and the coordinate of the nearest centroid:

Tcy;x ¼ argmin yc ;xcð Þ2C0 jj yc;xcð Þ � y;xð Þjj � y;xð Þ;
where y; xð Þ is a spatial coordinate of the target-centroid-vectors
tensor Tc; yc; xcð Þ are the centroid coordinates from the set of cen-
troids C0. Note that Tc is a 3-d tensor where the third dimension
has size two and contains the relative vectors yc; xcð Þ 2 C0ð Þ � y; xð Þ
pointing to the nearest centroid. Also note that the argmin function
returns a vector yc; xcð Þ 2 C0.

The set of border coordinates for a certain instance i is given by
B0i. The target-border-vectors tensor is then calculated as follows:

Tby;x ¼ argmin yb ;xbð Þ2B0i jj yb;xbð Þ � y;xð Þjj � y;xð Þ;

where y; x are the spatial coordinates of the target-border-vectors
tensor Tb and yb; xbð Þ are border coordinates. Tb contains the relative
vectors yb; xbð Þ 2 B0i

� �� y; xð Þ pointing to the nearest border of the
object instance with the nearest centroid.

Finally, the target-probabilities matrix is given by:

Tpc;y;x ¼ 1 C0y;x ¼¼ c
� �

;

where Tp contains target logits, C0 is the target-class-ids matrix, y
and x are the spatial coordinates and c is the target-class id. The
indicator function 1 �ð Þ returns one if the condition is true and zero
otherwise.

The target-centroid-vectors tensor Tc, target-border-vectors
tensor Tb and target-probabilities matrix Tp are the outputs of
the decoder and are used as a target to train the model.

4. Datasets

In this research three datasets are used to test CentroidNetV2
and compare it to the other well-known models. These datasets
are discussed in this section.

4.1. Aerial crops

The aerial-crops dataset contains images of potato crops taken
with a low-cost drone which navigated over a potato field [4]. It
consists of 10 frames randomly sampled from a 24 fps video shot
at 10 meters altitude. The dataset contains a mix of small, con-
nected and distinct potato plants as well as background soil. The
resolution of each image is 1500 � 1800 pixels. The set contains
over 3000 annotated plants using circles to indicate the location
of the plants. See Fig. 5 for some examples. A 50%/50% training/val-
idation split of the dataset is used for validation.

This set is used to compare the individual models on a relatively
small amount of images, but a large amount of small objects per
496
image. This has proven to be a good dataset for investigating
how well the various networks handle a mix of small and large
objects as well as high connectedness between objects. For Cen-
troidNetV2 circles are fitted through the border coordinates to pro-
duce instances. For YOLOv3 and MRCNN the circles are calculated
from the predicted bounding boxes.
4.2. Cell nuclei

The cell-nuclei dataset was used for the Kaggle data science
bowl 2018.3 It contains annotated samples of cell-nuclei images
taken with a microscope. This dataset consists of 673 images and
has a total of 29,461 annotated nuclei. The images vary in resolution,
cell type, magnification and imaging modality. The annotations are
per-pixel masks indicating the individual instances of each cell
nucleus. See Fig. 6 for some examples. A 80%/20% training/validation
split of the dataset is used for validation.

This dataset is used to investigate how the models perform on
complex data with much variation. Also the dataset is ideal for
investigating how varying image resolutions are handled. For Cen-
troidNetV2 rotated ellipses are fitted through the predicted border
coordinates to produce instances. MRCNN predicts instances
directly as masks. YOLOv3 has not been tested on this set because
it is not able to produce instances of arbitrary shapes or rotated
ellipses.
4.3. Bacterial colonies

The bacterial-colonies dataset contains images of Petri dishes
with bacterial growth from water samples. In this study Legionella
colonies which were cultivated on Buffered Charcoal Yeast Agar
were used 4. The dataset has been created by a water company in
the Netherlands. A domain expert annotated colonies which have a
typical morphology for Legionella. Additional tests were used to con-
firm that the colonies are Legionella species. The dataset consists of
79 images with a total of 2541 annotated bacterial colonies. The
images have a resolution of 1024 � 1024 pixels. See Fig. 7 for some
examples. A 80%/20% training/validation split of the dataset is used
for validation.

This set is used to test the ability of the models to detect mul-
tiple connected objects with various sizes and to not detect colo-
nies which are not Legionella suspected (the yellow colonies). An
image of a dish typically contains many colonies which makes this
a good dataset for testing approaches to count many-small objects.
The most important reason to test various approaches on this set is
because colony counting is a real practical example of a counting
task which has not been sufficiently solved and, to date, still
requires manual labor.
4.4. Tiling

All of the datasets described in this section contain images
which are either too large or contain images of various sizes. This
means they cannot be used directly for training because a mini
batch should consist of multiple equally sized images. A common
approach to handle this problem is to resize all images to some
predefined size. However, this would not achieve the desired result
because small objects could be removed by this action. We employ
two strategies to handle this problem. For CentroidNetV2 and
MRCNN we randomly crop the image during training with 256 �
256 image crops.

Fig. 5. Example images from the aerial-crops dataset. The images show variations in the size of the crops and high connectedness between individual crops.

Fig. 6. Example images from the cell-nuclei dataset. The images show variations in resolution, cell type, magnification and imaging modality.

Fig. 7. Example images from the bacterial-colonies dataset. The images show variations in size, color and number of colonies per Petri dish.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
The best performing YOLOv3 should be trained with images of
608 � 608 pixels as described in the original paper [30]. To be able
to generate a dataset that can be used to train the original YOLOv3
in DarkNet, images are tiled with 50% overlap in both directions.
This overlap is used to prevent clipped objects at the edges of
the tiles. When recombining the results to get object locations in
the original images, only objects at the center of each tile are kept.
We observed that this approach works remarkably well for
YOLOv3 because the tiles are much larger than the objects in the
images. In Fig. 8 this tiling process is explained.
5. Training and validation

In this section the methods for training and validation of the
various models are discussed. Each model is trained using a train-
ing set and validated using a disjoint validation set. The split is ran-
domly determined.
497
5.1. Training

For CentroidNetV2 the input data is normalized using the the-
oretical range of the image data: subtracting 128 and dividing
each pixel by 255. Typically the data is normalized using the
statistics of the dataset or the statistics of the dataset that was
used to pretrain the model. However, in practice we did not
observe any significant loss in performance when using fixed nor-
malization coefficients for all datasets. Furthermore, Adam is used
to train CentroidNetV2 with a learning rate of 0.001 and a
momentum of 0.9. To avoid overfitting and to select the best
model during training, early stopping was applied [28]. In each
experiment it was observed that the trained model did not
improve significantly after 500 epochs.

MRCNN and YOLOv3 apply various methods to optimize perfor-
mance (augmentation, optimizers, normalization, etc.) The maxi-
mum amount of instances that MRCNN can produce has been

Fig. 8. Tiling process. The large rectangles (orange) represent four examples of the
actual tiles used for training. The smaller dashed tiles (blue) at the center of each
large tile represent the areas in which objects are kept during the recombination of
the instances that have been predicted within the tiles.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
increased to 2048 to accommodate the many objects found in the
aerial-crops dataset. Random resizing of input images has been
disabled for all networks because it does not seem appropriate
for counting many-small objects as it might result in the removal
of object details or remove small objects altogether.

5.2. Validation

Validation is done using a number of metrics for instance seg-
mentation and counting. Most important is the F1 score which
gives the equilibrium between overestimating and underestimat-
ing instance counts. For further analysis the precision and recall
are used. The true positives, false positives, false negatives and
counting results give an indication of the number of objects that
have been either correctly or incorrectly detected.

The validation of each method is based on the ability of the
model to provide instances at the correct locations. The output-
instances matrix I of a model and the target-instances matrix I0

are compared. Each element of these matrices contains a value
indicating the instance id that pixel belongs to. The apostrophe
(0) indicates that the symbol contains data from the ground truth.
If a model gives a perfect output the symbols with and without
an apostrophe are identical. The two sets of image coordinates rep-
resenting the object instances are defined by:

Oa ¼ y; xð Þ 2 h;w½ �jIy;x ¼¼ a
� �

O0b ¼ y0; x0ð Þ 2 h;w½ �jI0y0 ;x0 ¼¼ b
n o

;

where Oa is the set of output-object coordinates for object instance
a;O0b is the set of target-object coordinates for instance b, the height
and width are indicated by h andw, the spatial coordinates are indi-
cated by y; x; y0 and x0.

Result instances are matched against target instances based on
their respective overlap. The overlap between two objects is
defined by the IoU which is used to calculate a normalized output
between zero and one, where one means a perfect match and zero
means no match. IoU is defined by:
498
IoU O;O0ð Þ ¼ O \ O
0

O [O0 ;

Matching of object instances is based on a certain minimum IoU
threshold. The set of output-instance ids is given by A ¼ m½ � and
the set of target-instance ids is given by B ¼ n½ �, where m and n
are the number of output instances and target instances respec-
tively. A match between output-instance id b and all target-
instance ids in A is given by:

is match b 2 Bð Þ ¼max
a2A

IoU Oa;O0b
� �� �

> s

where s is the minimum IoU threshold, is match �ð Þ returns true
when a match is found. For counting tasks the IoU threshold can
be set to a low value because the goal is to know if an object is
roughly found in the correct location, therefore in our experiments
we set s ¼ 0:1.

If there is a match between an output-instance id a and a target-
instance id b, the matching ids are removed from both the set of
output ids A and from the set of target ids B. The matching ids
are then added to the set of matches by M¼M[a; bð Þf g. This
process of matching and removing is repeated for all output-
instance ids in B. If all objects have a match, both A and B will
be empty and M will contain all matching instance-id pairs, but
in practice this is almost never the case. From the number of items
in these sets the performance metrics are calculated:

TP ¼ jMj ð13Þ
FP ¼ jAj ð14Þ
FN ¼ jBj ð15Þ
P ¼ TP

TP þ FP
ð16Þ

R ¼ TP
TP þ FN

ð17Þ

F1 ¼ 2� P � R
P þ R

ð18Þ
Count ¼ TP þ FP; ð19Þ

where TP; FP; TN; P;R; F1 and Count are the true positives, false pos-
itives, true negatives, precision, recall, F1 score and object count
respectively. Theoretically these metrics can be calculated per indi-
vidual object class and, in that case, the metrics usually have prefix
mA, for ‘mean Average’, indicating the mean over classes and the
average over all images. In the experiments discussed in this paper
only two classes are used (background and foreground).
6. Experiments and results

In this section the results of the experiments are discussed. Each
sub-section shows the performance of the various models, loss
functions and backbones on each of the three datasets. The final
part of this section discusses common failure cases of all
approaches and also an analysis about the difference in perfor-
mance between CentroidNetV1 and CentroidNetV2 is given.

In summary, CentroidNetV2 achieves the best experimental
performance based on F1-score on the aerial crops dataset
(94.7%) and on the bacterial colonies dataset (92.6%). MRCNN
achieves the best F1 score on the cell nuclei dataset (92.3%). In gen-
eral, better, or on-par results for the various metrics are obtained
by our proposed algorithm. The remainder of this section gives a
more thorough analysis of the experimental results using the pro-
posed metrics.

Each table with results has the same basic structure. The model
name, backbone name and loss function used is shown in the first
three columns of the tables. The metrics given by Eqs. 13,19 are
reported in the remaining columns. The cursive text in the rows

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
of each table indicate the category of the experiment and is used to
group experiments in a logical manner.

Because the highest F1 score represents the best equilibrium
between overestimating and underestimating the number of
objects, the network threshold hyperparameter that determines
the trade off between precision and recall is optimized on the
training set by an exhaustive search. For CentroidNetV2 the integer
voting threshold h discussed in Eq. (12) is optimized, for MRCNN
and YOLOv3 the confidence threshold is optimized. After the
thresholds have been optimized the metrics are calculated on the
validation set and reported in the respective tables.

The naming of the loss functions in this section follows the
naming scheme introduced in Section 3. MSE loss is the standard
loss defined by Eq. (5). The Vector Loss (VL) is computed by the
Euclidean distance between the target-voting vectors and the
output-voting vectors and is defined by Eq. (7). The Cross Entropy
(CE) loss and IoU loss, defined in Eqs. 8 and 9, are calculated using
the output logits and the target logits. Finally the combined losses
used for the analysis in this section are MSE, VL-CE and VL-IoU,
defined in Eqs. 5, 10, 11 respectively.

An open-source reference implementation of OpenCentroidNet
written in Python, using PyTorch 1.0 [42] is published with this
paper. A fully annotated dataset containing images of potato crops
and a dataset containing annotated Legionella bacterial colonies
are also published together with this paper.

6.1. Results on aerial crops

The results of the performance on the aerial-crops dataset for
the different models are shown in Table 1.

The first part of Table 1 (Comparing to the state-of-the-art) shows
the comparison between CentroidNetV2 and the other models. The
overall best F1 score is achieved by CentroidNetV2 (94.7%). YOLOv3
achieves an F1 score of 94.3%. This shows that the tiling scheme
used for YOLOv3 is quite optimal. MRCNN achieves an F1 score
of 92.4%. Further analysis shows that MRCNN fails to detect small
crops. This automatically results in the highest precision for
MRCNN (97.7%) caused by the low amount of false positives (34
crops). When using MSE loss and a U-net backbone, a configuration
similar to the original CentroidNet, a lower F1 score of 93.5% is
achieved.

The visual differences between the individual models are
shown in Fig. 9. CentroidNetV2 shows the most correctly detected
crops in Fig. 9a. YOLOv3 seems to not find the right balance
between the false positives and false negatives indicated by the
false positive crop found in the left-bottom of Fig. 9b and the
two missed small crops. Fig. 9c shows that MRCNN failed to detect
two small potato-plant crop and also a misses a crop closely con-
nected to a bigger crop (shown in the left bottom of Fig. 9c).

The second part of Table 1 (Comparing loss functions) shows that
the MSE loss achieves the lowest F1 score (93.5%) compared to the
other loss functions and using the same backbone.

The third part of Table 1 (Comparing backbones) shows the per-
formance of the alternative backbones for CentroidNetV2. The
extra 51 layers of the ResNet101 backbone only achieve a 0.1%
higher F1 score compared to the ResNet50 backbone for Cen-
troidNetV2. The Xception backbone achieves a 4.4% lower F1 score.
Also the U-net backbone shows a lower F1 score (0.7% lower). From
this can be concluded that the overall best backbone for Cen-
troidNetV2 on the aerial-crops dataset is DeepLabV3 + _ResNet101.

6.2. Results on cell nuclei

The results of the performance on the cell-nuclei dataset for the
different models are shown in Table 2. The first part of the table
(Usage of pretraining with ResNet101 backbone) shows the perfor-
499
mance when using the ResNet101 backbone with and without pre-
training (indicated by the PT column). Also an experiment with the
alternative VL-IoU loss function has been included here. The
MRCNN model with a ResNet101 backbone pretrained on Ima-
geNet achieves the highest F1 score (92.3%). The runner up is a
pretrained CentroidNetV2 with a DeepLabV3 + _ResNet101 back-
bone (91.9% F1 score). Furthermore CentroidNetV2 shows the
highest recall (89.9%) which indicates that CentroidNetV2 tends
to detect more objects and achieves the lowest amount of false
negatives (583 nuclei) at its highest F1 score.

In Fig. 10 an example of the instances produced by MRCNN and
CentroidNetV2 is shown on a challenging image. It can be seen that
MRCNN gives more accurate instance segmentation masks which
explains the higher F1 score. The higher recall of CentroidNetV2
is explained by the fact that more small and low-contrast cell
nuclei are predicted.

From the literature is it well known that pretraining improves
the performance of models [43] and this is confirmed by the mea-
sured increase in F1 score for MRCNN. An interesting observation is
that this also holds for CentroidNetV2 which achieves a 1.3% higher
F1 score when using pretrained weights. This confirms that the
regression of centroid- and border-voting vectors also benefits
from a ResNet101 backbone pretrained on ImageNet and that pre-
trained convolutional filter weights are quite general in that they
can be repurposed for predicting voting vectors. The only case
where the pretrained backbone has a lower F1 score compared to
the non-pretrained model is when a ResNet50 backbone is used
with MRCNN. However, the pretrained version still achieves the
highest precision (96.3%) at its highest F1 score. Interestingly the
use of the VL-IoU with pretraining achieves the lowest F1 score
(90.3%).

The third part of Table 2 (Comparison to U-net backbone) shows
the performance of CentroidNetV2 using the original U-net back-
bone on the cell-nuclei dataset. That configuration is similar to
the original version of CentroidNet, which used MSE loss and a
U-net backbone, and has among the lowest F1 scores (90.6%). Using
the VL-CE loss function in conjunction with the U-net backbone
yields better results (91.1%). But still the conclusion holds that
the best CentroidNetV2 configuration uses a ResNet101 backbone
and the VL-CE loss function. CentroidNetV2 seems to have no obvi-
ous advantage when using the U-net backbone because the preci-
sion for CentroidNetV2 (93.3%) is lower compared to the original
CentroidNet (94.3%). This means that the improvements of both
the loss function and the backbone together yield a higher perfor-
mance on all metrics (91.7% F1 score, 94.3% precision and 89.3%
recall).

6.3. Results on bacterial colonies

On the bacterial-colonies dataset CentroidNetV2 achieves the
overall highest F1 score of 92.6% shown in Table 3. YOLOv3 is the
runner op with an F1 score of 92.3%. The U-net backbone of Cen-
troidNetV2 struggles to get good results and achieves only an F1
score of 87.1%. This confirms the added value of the ResNet101
backbone on this dataset. Also in this case CentroidNetV2 achieves
the highest recall (91.0%). MRCNN seems to miss objects and
achieves the highest precision of 95.4% at the cost of lower recall
(89.1%).

In Table 3 it is shown that the number of predicted objects in
the image (indicated by the ‘Count’ column) is not representative
for the actual number of correctly detected colonies. It seems that
YOLOv3 only counts one less colony compared to CentroidNetV2
(885 and 886). However, when looking at the difference in the
number of true positives (indicating colonies found at the right
location) it can be seen that YOLOv3 actually misses three colonies
(832 and 835). The two extra colonies in the ‘Count’ column are

Table 2
Results for counting nuclei with 5755 annotated validation samples. Performance of several configurations of CentroidNetV2 and MRCNN (in percentages). PT indicates if a model
is pretrained. The best precision, recall and F1 score are boldface.

Model Backbone Loss PT F1 P R TP FP FN Count

Usage of pretraining with ResNet101 backbone

CentroidNetV2 DLV3-RN101 VL-CE Yes 91.9 94.1 89.9 5172 323 583 5495
CentroidNetV2 DLV3-RN101 VL-CE No 90.6 93.8 87.7 5048 335 707 5383
CentroidNetV2 DLV3-RN101 VL-IoU Yes 90.3 94.0 86.8 4993 314 762 5307
MRCNN RN101 Default Yes 92.3 96.1 88.9 5116 210 639 5326
MRCNN RN101 Default No 91.5 95.3 87.9 5061 248 694 5309

Usage of pretraining with ResNet50 backbone

CentroidNetV2 DLV3-RN50 VL-CE Yes 91.7 94.3 89.3 5138 309 617 5447
CentroidNetV2 DLV3-RN50 VL-CE No 91.4 94.1 88.8 5112 318 643 5430
MRCNN RN50 Default Yes 91.0 96.3 86.3 4966 193 789 5159
MRCNN RN50 Default No 91.5 95.1 88.1 5072 260 683 5332

Comparison to U-net backbone

CentroidNetV2 U-net VL-CE No 91.1 93.3 88.9 5116 365 639 5481
CentroidNet U-net MSE No 90.6 94.3 87.2 5021 304 734 5325

Table 1
Results for counting crops with 1660 annotated validation samples. Performance of several configurations of CentroidNetV2 and comparison to YOLOv3 and MRCNN (in
percentages). The best precision, recall and F1 score are boldface.

Model Backbone Loss F1 P R TP FP FN Count

Comparing to the state-of-the-art

CentroidNetV2 DLV3-RN101 VL-CE 94.7 94.4 95.1 1578 94 82 1672
CentroidNet U-net MSE 93.5 92.2 94.8 1573 133 87 1706
YOLOv3 Default Default 94.3 93.7 94.9 1575 106 85 1681
MRCNN RN101 Default 92.4 97.7 87.7 1456 34 204 1490

Comparing loss functions

CentroidNetV2 DLV3-RN101 MSE 93.5 92.5 94.6 1570 127 90 1697
CentroidNetV2 DLV3-RN101 VL-IoU 94.3 93.9 94.6 1571 102 89 1673

Comparing backbones

CentroidNetV2 U-net VL-CE 94.0 92.3 95.7 1588 132 72 1720
CentroidNetV2 DLV3-XC VL-CE 90.3 86.6 94.3 1566 242 94 1808
CentroidNetV2 DLV3-RN50 VL-CE 94.6 94.7 94.5 1569 87 91 1656
MRCNN RN50 Default 93.4 97.3 89.8 1491 41 169 1532

Fig. 9. Red circles show the prediction of the three models and the annotations are shown in green. CentroidNetV2 detected most crops (one false negative), MRCNN has three
false negatives and YOLOv3 produced a false positive and two false negatives.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
caused by the two extra false positives found elsewhere in the
image. This is why we argue that for counting tasks the validation
should be based on F1 score rather than raw object-detection
count because it takes the location of the object into account.

The visual differences in performance between the models are
shown in Fig. 11. The thick red circles indicate the predictions
and the thin green circles indicate the annotations. In the top
row a cropped part of an image with bacterial colonies is shown.
Each model correctly ignores the yellow colony which is not Legio-
nella. In Fig. 11b YOLOv3 incorrectly detects the large colony that
has not been annotated as Legionella suspected. MRCNN fails to
detect the small colony near the right bottom of Fig. 11c. The bot-
tom row of Fig. 11 gives another interesting insight in the differ-
ences between the models. The large black-ish structure at the
500
left of each image is an air bubble adjacent to a colony. Air bubble
formation is a common problem for certain types of culturing
media. However, this exact visual appearance is rare in the training
set. In Fig. 11e it is shown that YOLOv3 fails to detect the colony,
probably because it has not seen something similar before. Both
CentroidNetV2 and MRCNN detect this colony correctly. For Cen-
troidNetV2 this is probably because the partial bacterial colony
still produces part of the votes (similar to when two colonies are
overlapping).

In this section our focus has been to compare the F1 score, Pre-
cision, Recall and Count metrics of the various approaches and
therefore did not include inference-time metrics. For an analysis
of the inference time of MRCNN and YOLOv3 we would like to refer
the reader to [44]. In that paper the authors provide an extensive

Table 3
Results for counting bacterial colonies with 918 annotated validation samples. Performance of CentroidNetV2 compared to YOLOv3 and MRCNN (in percentages). The best
precision, recall and F1 score are boldface.

Model Backbone Loss F1 P R TP FP FN Count

CentroidNetV2 DLV3-RN101 VL-CE 92.6 94.2 91.0 835 51 83 886
YOLOv3 Default Default 92.3 94.0 90.6 832 53 86 885
MRCNN RN101 Default 92.2 95.4 89.1 818 39 100 857
CentroidNetV2 U-net VL-CE 87.1 90.5 84.0 771 81 147 852

Fig. 11. Object detection results on an image of the bacteria-colonies dataset. The
thick red circles indicate the predicted colonies and thin green circles represent the
annotations. In this example CentroidNetV2 detects all colonies correctly, MRCNN
fails to detect a small colony and YOLOv3 produces a false positive in the top image
and a false negative in the bottom image.

Fig. 10. Instance segmentation results on an image of the cell-nuclei dataset. The input image and ground truth are shown on the left and the predicted output of the models
is shown on the right. MRCNN predicts more accurate segments. CentroidNetV2 detects small and low contrast objects that MRCNN fails to detect.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
comparison between the approaches (including the ResNet back-
bones that have been used by CentroidNetV2). The authors report
an inference time of 27 ms, 100 ms and 130 ms for YOLOv3,
MRCNN RN50 and MRCNN RN101 on the PASCAL VOC dataset.

Because of the additional decoding algorithm on top of the
backbone the run-time performance of CentroidNetV2 will most
likely be worse compared to the other methods. We did not focus
on optimizing the run-time efficiency of the decoding algorithm.
The current version that is implemented in Python is not represen-
tative for the potential inference time (the decoding process cur-
rently takes multiple seconds.).

6.4. Common failure cases

In previous subsections the quantitative performance differ-
ences between the models have been discussed. This subsection
501
will provide a more elaborate qualitative analysis of the common
failure cases of the three approaches, MRCNN, YOLOv3 and Cen-
troidNetV2. The failure cases are divided into three categories:
Detection of small objects, detection of low-contrast objects and
detection of connected objects. By analyzing details of the results
on individual images, interesting insights can be gained into the
properties of the algorithms, details that are not always apparent
from the reported quantitative metrics in the previous sections.

In Fig. 12, detailed parts of images are shown where the first
and the third row contain images from the bacterial-colony dataset
and the images in the middle row are from the aerial-crops dataset.
The red circles denote detections and the green circles show the
ground-truth. In Figs. 12c, f and i can be seen that MRCNN fails
to detect the smallest objects. Furthermore, Figs. 12b and e show
that YOLOv3 detects all objects but misses one colony in
Fig. 12h. CentroidNetV2 detects all objects in these images but
the position is slightly misaligned with the ground-truth.

In Fig. 13 the first two rows contain parts from the cell nuclei
and the bacterial-colonies datasets. In those images almost no
objects are visible due to the very low contrast in parts of the orig-
inal images. These images have deliberately not been enhanced to
show the real contrast. The red circles, which indicate detections,
show that all approaches have difficulty detecting all objects, but
in Fig. 13a and c CentroidNetV2 is able to detect more of the
objects. Fig. 13g shows that MRCNN did not detect the faint purple
nucleus and a small nucleus at the bottom edge, however, these are
detected by CentroidNetV2. But because these specific cases are
relatively rare in the dataset their effect in the F1 score is minimal.
As explained earlier, for the cell-nuclei dataset YOLOv3 was not a
suitable approach.

In Fig. 14, parts of some challenging images from the cell-nuclei
dataset are shown that contain densely connected objects. When
comparing Fig. 14a and b it can be seen that CentroidNetV2 is able
to distinguish more of the individual objects where MRCNN
wrongly detects the cluster of multiple objects as one (indicated
by the largest red circle in the Fig. 14b). Furthermore, Cen-
troidNetV2 detects the closely connected object in Fig. 14c, but
has difficulty determining the correct size and shape.

Fig. 12. Detection of small objects. The red circles show detections and the green
circles represent the ground truth. This shows that MRCNN detect fewer of the
small bacterial colonies and potato-plant crops.

Fig. 13. Detection of low-contrast objects. Images (c), (d) and (e) contain bacterial
colonies, the other images contain cell nuclei. The red circles show detections and
the green circles represent the ground truth. Images (a) through (e) seem to contain
no image information, however this is the true contrast in the image. Cen-
troidNetV2 is able to detect more low contrast objects.

Fig. 14. Detection of connected objects. The red circles show detections and the
green circles represent the ground truth. Images (a) through (d) show that
CentroidNetV2 detects more of the densely connected nuclei as individuals. In
image (f) YOLOv3 is the only approach that detects all bacterial colonies.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
6.5. Comparison of CentroidNetV1 and CentroidNetV2

In this final subsection we reflect on the differences in perfor-
mance between the original CentroidNet and CentroidNetV2. The
orignal CentroidNet is designed as an object localization algorithm
that only detects centroids of objects. CenroidNetV2 is an object
detection or instance segmentation approach that is designed to
also detect borders of objects. Therefore, it is difficult to make a
direct comparison. However, both approached have similarities
that can be used to compare them. Both approaches utilize a seg-
mentation backbone and an accompanying loss function. The orig-
inal CentroidNet utilizes a U-net backbone and an MSE loss
function. By choosing a comparable configuration for Cen-
troidNetV2 both approaches are compared.

In Tables 1 and 2 the model denoted CentroidNet with a U-net
backbone and an MSE loss function is as close as possible to the
original CentroidNet model that is still comparable to Cen-
troidNetV2. Therefore, that model will be referred to as Cen-
troidNetV1. The results on the potato-crops dataset in Table 1
show that CentroidNetV1 achieves an F1 score of 93.5% and that
CentroidNetV2 achieves a better F1 score of 94.7%. In Table 2 a sim-
ilar observation is made that CentroidNetV1 achieves an F1 score
of 90.6% and CentroidNetV2 shows a better F1 score of 91.9%.

Some voting images of the CentroidNets are shown in Fig. 15.
Overall, the votes appear brighter for CentroidNetV2 which indi-
cates that more votes appear on the same locations which, in turn,
results in more robust detections. Furthermore the two voting
502
maxima in the top image of Fig. 15c are farther apart. Generally
it is better for a counting model to detect an actual object at a
slightly wrong location than to not detect it at all.

Fig. 15. Voting matrices for CentroidNetV1 and CentroidNetV2. In this example the
ground-truth centroids are detected with both approaches. The improvements
made to CentroidNetV2 are shown to produce sharper votes.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
7. Discussion and conclusion

Experiments have been performed on three datasets with three
different models. The datasets and models can be divided in two
categories: object detection and instance segmentation. The mod-
els for instance segmentation: CentroidNetV2 and MRCNN have
been tested on all datasets. The object-detection model YOLOv3
has only been tested on the object-detection datasets: aerial-
crops and bacterial-colonies. This is because an instance-
segmentation model can be used for object detection but not vice
versa. The F1 score has been the main metric by which to evaluate
performance, because it indicates the best trade off between over-
estimation and underestimation of the number of counted object
instances. Precision and recall have been calculated at the point
of the highest F1 score determined by an exhaustive search on
the training set. All reported metrics are calculated using a disjoint
validation set.

CentroidNetV2 shows the best F1 score for the aerial-crops
dataset (94.7%) and the bacterial-colonies dataset (92.6%). The best
F1 score on the cell-nuclei dataset is achieved by MRCNN (92.3%).
For all datasets CentroidNetV2 consistently shows the highest
recall: 95.7%, 89.9% and 91.0% on the aerial-crops, cell-nuclei and
bacterial-colonies datasets respectively. MRCNN shows the highest
precision: 97.7%, 96.3% and 95.4% on the aerial-crops, cell-nuclei
and bacterial-colonies datasets respectively. MRCNN has the ten-
dency to miss small objects which results in a high precision at
the cost of recall. YOLOv3 generally achieves a high precision,
recall and F1 score but is always outperformed by either Cen-
troidNetV2 or MRCNN.

The measured differences among the best-performing models
are mostly small, but these differences are consistent over the var-
ious datasets. Each model has its own unique properties and the
choice ultimately depends on the application. If accurate counting
of objects is needed for a large number of small and connected
objects, CentroidNetV2 is preferable. When accurate masks of
objects should be determined with high recall then MRCNN is
preferable. YOLOv3 does a good job at detecting small objects
but it is only able to detect bounding boxes whereas Cen-
troidNetV2 produces a complete circumference of objects.

For CentroidNetV2 and MRCNN, images of various sizes are
handled in a similar fashion and has thus been made completely
transparent by using random image crops during training. How-
ever, CentroidNetV2 truly does not take into account image dimen-
sions because all voting vectors are relative. The original YOLOv3
implementation is defined for fixed-size images and therefore
requires tiling of the images prior to training and recombination
503
of tiles after inference to avoid scaling. The overlapped tiling
method did not seem to adversely affect the performance of
YOLOv3.

MRCNN needs to be trained in two stages while CentroidNetV2
and YOLOv3 can be trained in only one stage. YOLOv3 has the ben-
efit of being fully end-to-end trainable, but the decoding of voting
vectors and the choice of geometric output shape gives the ability
to configure CentroidNetV2 for a specific application. In this hybrid
approach, where deep learning is integrated with traditional com-
puter vision, the black-box nature of CNNs is mitigated and, at the
same time, performance is improved on certain tasks like counting
many small and connected objects.

The remainder of this section will reflect specifically on the
research questions.

1. What is the performance of CentroidNetV2 for detecting and count-
ing many small objects?
CentroidNetV2 is considered to be the preferable approach for
counting many small objects because the results show that it
either achieves the highest F1 score or achieves the best recall
and tends to detect more small objects.

2. How does the performance of CentroidNetV2 compare to well-
known state-of-the-art neural networks for object detection and
instance segmentation?
On two datasets CentroidNetV2 outperforms the well-known
state-of-the-art networks on object detection and instance seg-
mentation. Only on the cell-nuclei dataset does MRCNN pro-
duce a higher F1 score.

3. What backbone and loss function is best suitable for Cen-
troidNetV2?
The loss function combining vector loss and cross-entropy loss
gives sharper voting peaks and consistently achieves the best F1
score compared to the original MSE loss function. The
DeepLabV3 + _ResNet101 backbone generally obtains the best
performance.

4. What is the effect of transfer learning on the performance of Cen-
troidNetV2?
The results show that the vector-voting method of Cen-
troidNetV2 also benefits from a pretrained backbone of the
model. This means that pretrained feature maps of the CNNs
are general enough to have a beneficial impact on the F1 score.

7.1. Future work

CentroidNetV2 was compared to the popular and general archi-
tectures MRCNN and YOLOv3. Newer and more advanced CNN
architectures are introduced regularly. In the future CentroidNetV2
can be compared to recent advances in object detection and
segmentation.

The run-time performance of the decoding algorithm of Cen-
troidNetV2 can probably be further optimized by making use of
the GPU or by implementing the algorithm in a language that
allows for lower-level access to the CPU (for example C++).

Many applications exist for counting that are closely related to
the research discussed in this paper. Many different types of vege-
tation exist that need to be counted. This does not necessarily have
to be crops, but can also be trees or other types of large vegetation.
Also in the field of microbiology, many applications for colony
counting exist. CentroidNetV2 can be tested on other types of bac-
terial colonies and research into colony counting can be extended
to other microbiological fields like medical pathology. Other fields
unrelated to counting and more related to object detection and
instance segmentation can be investigated. For example, segmen-
tation of everyday objects like persons, cars, etc. CentroidNetV2
might be able to detect smaller everyday objects.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al. Neurocomputing 423 (2021) 490–505
This paper has shown that the results of CentroidNetV2
improved by changing the backbone and the loss function. In the
future new segmentation backbones can be integrated with Cen-
troidNetV2. Further investigation of other loss functions might also
improve the results.

In this research only classification between background and
foreground has been investigated. Future work might focus on
counting objects of multiple classes separately. Furthermore mul-
tichannel images can serve as an input to CentroidNetV2. Therefore
future work might include using hyperspectral imaging to count
objects. For this, additional image channels like fluorescent images
can be recorded. Even data outside of the visible spectrum can be
used like thermal or short-wave infrared images.

Architectural changes could be made to CentroidNetV2 to
reduce the number of hyperparameters and this should make the
decoding process more straightforward. Such new architectures
could be compared to other novel architectures of promising
object-detection and instance-segmentation networks.
CRediT authorship contribution statement

Klaas Dijkstra: Conceptualization, Methodology, Software,
Investigation, Writing - original draft. Jaap de Loosdrecht: Concep-
tualization, Writing - review & editing, Supervision. Waatze A.
Atsma: Writing - review & editing, Resources, Data curation.
Lambert R.B. Schomaker: Conceptualization, Writing - review &
editing, Supervision. Marco A. Wiering: Conceptualization,
Writing - review & editing, Supervision.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X Pascal GPU used for this research.
References

[1] J. Paul Cohen, G. Boucher, C.A. Glastonbury, H.Z. Lo, Y. Bengio, Count-ception:
counting by fully convolutional redundant counting, International Conference
on Computer Vision (2017) 18–26.

[2] M. Baygin, M. Karakose, A. Sarimaden, E. Akin, An image processing based
object counting approach for machine vision application, in: Conference on
Advances and Innovations in Engineering, 2018, pp. 966–970.

[3] A. Ferrari, S. Lombardi, A. Signoroni, Bacterial colony counting with
Convolutional Neural Networks, Conference of the IEEE Engineering in
Medicine and Biology Society (2015) 7458–7461.

[4] K. Dijkstra, J. van de Loosdrecht, L.R. Schomaker, M.A. Wiering, Centroidnet: a
deep neural network for joint object localization and counting, in: European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, 2018, pp. 585–601.

[5] A. Croxatto, K. Dijkstra, G. Prod’hom, G. Greub, Comparison of inoculation with
the InoqulA and WASP automated systems with manual inoculation, J. Clin.
Microbiol. 53 (7) (2015) 2298–2307.

[6] A.U.M. Khan, A. Torelli, I. Wolf, N. Gretz, AutoCellSeg: Robust automatic colony
forming unit (CFU)/cell analysis using adaptive image segmentation and easy-
to-use post-editing techniques, Nat. Sci. Rep. 8 (1) (2018) 2045–2322.

[7] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. (2012) 1097–
1105.

[8] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for
biomedical image segmentation, Conference on Medical Image Computing
and Computer-Assisted Intervention (2015) 234–241.

[9] A.R. Pathak, M. Pandey, S. Rautaray, Application of deep learning for object
detection, Procedia Comput. Sci. 132 (2018) 1706–1717.

[10] K. He, G. Gkioxari, P. Dollar, R. Girshick, R.-C.N.N. Mask, Conference on
Computer Vision and Pattern Recognition (2017) 2980–2988.
504
[11] T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative
adversarial networks, Conference on Computer Vision and Pattern Recognition
(2019) 4401–4410.

[12] K. Dijkstra, J. van de Loosdrecht, L.R. Schomaker, M.A. Wiering, Hyperspectral
demosaicking and crosstalk correction using deep learning, Mach. Vision Appl.
30 (1) (2018) 1–21.

[13] P. Ren, W. Fang, S. Djahel, A novel yolo-based real-time people counting
approach, in: 2017 International Smart Cities Conference (ISC2), IEEE, 2017,
pp. 1–2.

[14] A. Özlü, TensorFlow Object Counting API (2018), https://github.com/
ahmetozlu/tensorflow_object_counting_api.

[15] B. Chen, X. Miao, Distribution line pole detection and counting based on yolo
using uav inspection line video, J. Electr. Eng. Technol. (2019) 1–8.

[16] W. Xie, J.A. Noble, A. Zisserman, Microscopy cell counting and detection with
fully convolutional regression networks, Comput. Methods Biomech. Biomed.
Eng. Imag. Visualiz. 6 (3) (2018) 283–292.

[17] T. Stahl, S.L. Pintea, J.C. Van Gemert, Divide and count: generic object counting
by image divisions, IEEE Trans. Image Process. 28 (2019) 1035–1044.

[18] J. Wan, W. Luo, B. Wu, A.B. Chan, W. Liu, Residual regression with semantic
prior for crowd counting, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4036–4045.

[19] F. Dai, H. Liu, Y. Ma, J. Cao, Q. Zhao, Y. Zhang, Dense scale network for crowd
counting. arXiv preprint arXiv:1906.09707.

[20] Y. Li, X. Zhang, D. Chen, CSRNet: dilated convolutional neural networks for
understanding the highly congested scenes, Conference on Computer Vision
and Pattern Recognition (2018) 1092–1100.

[21] J. Gao, Q. Wang, X. Li, PCC net: perspective crowd counting via spatial
convolutional network, IEEE Trans. Circ. Syst. Video Technol.

[22] Q. Wang, M. Chen, F. Nie, X. Li, Detecting coherent groups in crowd scenes by
multiview clustering, IEEE Trans. Pattern Anal. Mach. Intell. 42 (1) (2020) 46–
58.

[23] M.R. Hsieh, Y.L. Lin, W.H. Hsu, Drone-based object counting by spatially
regularized regional proposal network, Conference on Computer Vision and
Pattern Recognition (2017) 4165–4173.

[24] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J.
Comput. Vision 1 (4) (1988) 321–331.

[25] D.H. Ballard, Generalizing the hough transform to detect arbitrary shapes,
Pattern Recogn. 13 (2) (1981) 111–122.

[26] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[27] J. Schmidhuber, Deep learning in neural networks: an overview, Neural

Networks 61 (2015) 85–117.
[28] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http://

www.deeplearningbook.org.
[29] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with

atrous separable convolution for semantic image segmentation, European
Conference on Computer Vision (2018) 801–818.

[30] J. Redmon, A. Farhadi, Yolov3: an incremental improvement, arXiv preprint
arXiv:1804.02767 (2018).

[31] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object
detection, in: Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 2980–2988.

[32] M. Ren, R.S. Zemel, End-to-end instance segmentation with recurrent
attention, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 6656–6664.

[33] X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, S. Yan, Proposal-free network for
instance-level object segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 40
(12) (2017) 2978–2991.

[34] H. Chen, X. Qi, L. Yu, P.-A. Heng, Dcan: deep contour-aware networks for
accurate gland segmentation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2487–2496.

[35] C. Couprie, C. Farabet, L. Najman, Y. Lecun, Convolutional nets and watershed
cuts for real-time semantic labeling of RGBD videos, J. Mach. Learn. Res. 15 (1)
(2014) 3489–3511.

[36] M. Bai, R. Urtasun, Deep watershed transform for instance segmentation,
Conference on Computer Vision and Pattern Recognition (2017) 2858–2866.

[37] S. Jetley, M. Sapienza, S. Golodetz, P.H. Torr, Straight to shapes: real-time
detection of encoded shapes, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 6550–6559.

[38] U. Schmidt, M. Weigert, C. Broaddus, G. Myers, Cell detection with star-convex
polygons, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2018, pp. 265–273.

[39] Z. Wu, C. Shen, A. v. d. Hengel, Bridging category-level and instance-level
semantic image segmentation. arXiv preprint arXiv:1605.06885.

[40] M.A. Rahman, Y. Wang, Optimizing intersection-over-union in deep neural
networks for image segmentation, in: International Symposium on Visual
Computing, 2016, pp. 234–244.

[41] F. van Beers, A. Lindstrom, E. Okafor, M.A. Wiering, Deep neural networks with
intersection over union loss for binary image segmentation, Conference on
Pattern Recognition Applications and Methods (2019) 438–445.

[42] A. Paszke, G. Chanan, Z. Lin, S. Gross, E. Yang, L. Antiga, Z. Devito, Automatic
differentiation in PyTorch, Neural Inf. Process. Syst.

[43] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why
does unsupervised pre-training help deep learning?, J. Mach. Learn. Res. 11
(2010) 625–660.

[44] N.-D. Nguyen, T. Do, T.D. Ngo, D.-D. Le, An evaluation of deep learning methods
for small object detection, J. Electr. Comput. Eng. (2020).

http://refhub.elsevier.com/S0925-2312(20)31664-7/h0005
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0005
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0005
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0015
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0015
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0015
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0020
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0020
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0020
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0020
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0020
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0025
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0025
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0025
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0030
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0030
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0030
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0035
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0035
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0035
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0040
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0040
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0040
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0045
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0045
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0050
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0050
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0055
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0055
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0055
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0060
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0060
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0060
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0070
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0070
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0075
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0075
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0080
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0080
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0080
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0085
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0085
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0090
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0090
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0090
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0090
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0100
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0100
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0100
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0110
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0110
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0110
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0115
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0115
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0115
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0120
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0120
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0125
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0125
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0130
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0135
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0135
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0140
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0140
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0140
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0145
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0145
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0145
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0155
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0155
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0155
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0155
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0160
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0160
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0160
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0160
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0165
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0165
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0165
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0170
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0170
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0170
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0170
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0175
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0175
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0175
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0180
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0180
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0185
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0185
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0185
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0185
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0190
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0190
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0190
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0190
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0205
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0205
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0205
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0215
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0215
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0215
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0220
http://refhub.elsevier.com/S0925-2312(20)31664-7/h0220

Neurocomputing 423 (2021) 490–505
Dr. Klaas Dijkstra is an associate professor in computer
vision and data science at NHL Stenden University of

Applied Sciences. His main research interests are in
computer vision, machine learning and hyperspectral
imaging. After completing his B.Eng. degree in technical
information science in 2005, he has been active in the
field of computer vision by doing applied research
projects in several domains. In 2013 he obtained his M.
Sc. degree from the Limerick Institute of Technology in
Ireland, on the application of evolutionary algorithms
and computer vision to the domain of microbiological
analysis. He obtained his Ph.D. degree in 2020 from the

University of Groningen on the topic of deep learning and hyperspectral imaging for
unmanned aerial vehicles.

K. Dijkstra, J. van de Loosdrecht, W.A. Atsma et al.
Jaap van de Loosdrecht is a professor in computer
vision and data scienceat the NHL Stenden University of
Applied Sciences. His main research interests are in
computer vision, deep learning and hyperspectral
imaging. In 1996 he has founded the professorship
Computer Vision and & Data Science. His staff,
researchers, teachers and students have carried out
more than 350 research projects for the business com-
munity in the field of Computer Vision & Data Science,
including the Raak-Award 2016 project ‘Smart Vision
for UAV’s’. He is Comenius Senior Fellow at KNAW
(Royal Dutch Academy of Sciences).
Waatze A. Atsma, received his engineering degree in
Biotechnology at the Noordelijke Hogeschool in
Leeuwarden in 2002 and has been working at the
drinking water laboratory Vitens N.V. as a principle
analyst and project leader since 2003. His specialty is
mainly in the field of drinking water diagnostics, in
particular the development and implementation of new
(molecular based) microbiological methods within the
Dutch drinking water laboratories. In addition, Atsma is
a member and chairman of various national working
groups in the field of implementation of rapid micro-
biological methods in the drinking water laboratories

and is closely involved in drawing up guidelines for drinking water-related,
microbiological methods, including for Legionella diagnostics. On behalf of the
505
Netherlands, Atsma is one of the delegation members for the ISO/TC147/SC4
microbiological parameters with the aim of drawing up or changing international
standards for water microbiology tests.

Prof. dr. Lambert Schomaker is professor in artificial
intelligence at the university of Groningen since 2001.
He is known for research in simulation and recognition
of handwriting, writer identification, style-based docu-
ment dating and other studies in pattern recognition,
machine learning and robotics. He has (co)authored
over 200 publications and was involved in the organi-
zation of many conferences in handwriting recognition
and document analysis. In recent years he and his team
have worked on the Monk system: an interactively
trainable search engine and e-Science service for his-
torical manuscripts. The availability of up to thousands

of training images for single classes of complex patterns has brought pattern
recognition and machine learning into the ballpark of big data. Other recent work is
in the area of robotics and industrial maintenance, in the EU ECSEL project Mantis.

In 2015, he became co-chair of the Data Science and Systems Complexity center at
the Faculty of Science and Engineering at the University of Groningen. In 2017, he
joined the CogniGron center for cognitive systems and materials in a largescale
seven-year project in neuromorphic computing. He is a member of the IAPR and
senior member of IEEE.

Dr. Marco Wiering is an assistant professor in the
department of artificial intelligence from the University
of Groningen, the Netherlands. He performed his PhD
research in the research institute IDSIA in Switzerland
and graduated in 1999 on the topic of reinforcement
learning. Before going to the University of Groningen, he
worked as an assistant professor at Utrecht University.
Dr. Wiering has co-authored more than 170 conference
or journal papers and has supervised or is supervising
12 PhD students and more than 110 Master student
graduation projects. His main research topics are rein-
forcement learning, deep learning, neural networks,
robotics, computer vision, game playing, timeseries
prediction and optimization.

	CentroidNetV2: A hybrid deep neural network for small-object segmentation and counting
	1 Introduction
	1.1 Contributions and research questions

	2 Related work
	3 The CentroidNetV2 architecture
	3.1 Backbones
	3.2 Loss functions
	3.2.1 MSE loss
	3.2.2 Vector loss
	3.2.3 Segmentation loss
	3.2.4 CentroidNetV2 loss

	3.3 Coders
	3.3.1 Decoder
	3.3.2 Encoder

	4 Datasets
	4.1 Aerial crops
	4.2 Cell nuclei
	4.3 Bacterial colonies
	4.4 Tiling

	5 Training and validation
	5.1 Training
	5.2 Validation

	6 Experiments and results
	6.1 Results on aerial crops
	6.2 Results on cell nuclei
	6.3 Results on bacterial colonies
	6.4 Common failure cases
	6.5 Comparison of CentroidNetV1 and CentroidNetV2

	7 Discussion and conclusion
	7.1 Future work

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

