
 

 

 University of Groningen

Machine Learning in Robotic Navigation
Shantia, Amir

DOI:
10.33612/diss.157435654

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Shantia, A. (2021). Machine Learning in Robotic Navigation: Deep Visual Localization and Adaptive
Control. University of Groningen. https://doi.org/10.33612/diss.157435654

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-11-2022

https://doi.org/10.33612/diss.157435654
https://research.rug.nl/en/publications/5602af0e-2ab3-4206-bf61-a93ad8c4ffb0
https://doi.org/10.33612/diss.157435654


Machine Learning in Robotic Navigation
Deep Visual Localization and Adaptive Control

Amirhossein Shantia



© 2021 by Amirhossein Shantia
Printed by - GVO drukkers & vormgevers B.V.



Machine Learning in Robotic 
Navigation 

Deep Visual Localization and Adaptive Control 

PhD thesis

to obtain the degree of PhD at the 
University of Groningen 
on the authority of the 

Rector Magnificus Prof. C. Wijmenga 
and in accordance with 

the decision by the College of Deans. 

This thesis will be defended in public on 

 Friday 19 February 2021 at 9.00 hours 

by 

Amirhossein Shantia 

born on 9 August 1986 
in Tehran, Iran 



Supervisor 
Prof. L.R.B. Schomaker 

Co-supervisor 
Dr. M.A. Wiering 

Assessment Committee 
Prof. R. Babuska
Prof. M. Cao 
Prof. P. G. Plöger



Acronyms

A2C Advantage Actor-Critic

ADAS Advanced Driver Assistant Systems

AMCL Adaptive Monte Carlo Localization

BRIEF Binary Robust Independent Elementary Features

BVLC Berkeley Vision and Learning Center

CNN Convolutional Neural Networks

CUDA Compute Unified Device Architecture

CVPR Computer Vision and Pattern Recognition

DA Denoising Autoencoder

DARPA Defense Advanced Research Projects Agency

DQN Deep Q-Network

DWA Dynamic Window Approach

FA Function Approximator

FANN Fast Artificial Neural Network Library

FAST Features from Accelerated Segment Test

GAN Generative adversarial networks

GPS Global Positioning System

GPU Graphical Processing Unit

HOG Histogram of Oriented Gradients

ICP Iterative Closest Point



Acronyms Acronyms

ILSVRC ImageNet large scale visual recognition competition

LSTM Long Short Term Memory

MLP Multilayer Perceptron

MPC Model Predictive Control

ORB Oriented FAST and Rotated BRIEF

RBM Restricted Boltzmann Machine

RC Remote Control

RL Reinforcement Learning

SDA Stacked Denoising Autoencoder

SHOT Unique Signatures of Histograms

SIFT Scale Invariance Feature Transform

SUN Scene Understanding

TRP Trajectory Rollout Planner

URDF Unified Robot Description Format



Glossary

A Average Image of cost maps belonging to a cluster

at Action at time t

b, b
′

Neural network layer bias

Ci Set of points belonging to cluster i

c, ĉ Number of clusters

D Normalized distance function

Ix Cost map image of data point x

i, î, j, ĵ Image coordinates

L Loss Function

m Robot’s map

N Number of data points in a cluster

O Output of the neural network layer with corrupted input Ω̃

QD Corruption Function

Qk Q-value at step k

rt Reward at time t

st State at time t

T Bolztmann temperature

TDerr Temporal Difference Error

t Time

ut Robot’s motion command at time t



Glossary Glossary

v Robot velocity

W,W
′

Weight Matrix

X The X direction in the robot’s Cartesian reference frame

x The x coordinate in the robot’s Cartesian reference frame

xt The robot position at time t

Y The Y direction in the robot’s Cartesian reference frame

y The y coordinate in the robot’s Cartesian reference frame

zt Sensors observation at time t

α Learning Rate

γ Discount Factor

ε The randomness probability value of ε-greedy method

η Normalizing factor

θ The robot’s angle in the Cartesian reference frame

gθ′ , fθ Reconstruction and Forward Function

ς Non-linear activation function

Ω Neural network input vector

Ω̃ Corrupted neural network input vector

Ω̄ Reconstructed input vector using corrupted vector Ω̃

ω The robot’s angular velocity



Contents

Acronyms

Glossary

1 Introduction 1
1.1 Robotics and Automation . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Robotic Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Artificial Neural Networks and Learning . . . . . . . . . . . . . . . . 7
1.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Scope of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Dynamic Parameter Update using Unsupervised Situational Analysis 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Unsupervised Environmental Situation Analysis . . . . . . . . 17
2.3.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Parameter Update . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Base Parameter Selection . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Real Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Contents

3 Localization using Stacked Denoising Auto Encoders 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Feature Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Denoising Autoencoder Training . . . . . . . . . . . . . . . . . 37

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 3D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Computational Performance and Costs . . . . . . . . . . . . . 47

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal
Reinforcement Learning 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Multi-Goal Reinforcement Learning . . . . . . . . . . . . . . . 55
4.3.2 Position-Estimator Networks . . . . . . . . . . . . . . . . . . . 62

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 Data Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Deep Networks and Localization . . . . . . . . . . . . . . . . . 65
4.4.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 67
4.4.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Discussion 85

Bibliography 93

Publications of Author 107

Summary 109

Samenvatting 114

Acknowledgements 119



Chapter 1

Introduction

We, humans, are often considered to be the apex of the evolution of life on earth,
and perhaps, a large number of neighboring solar systems around us. Our abilities
to recognize intricate patterns, explore and navigate the surroundings, share expe-
riences with others, and learn from our mistakes seem to be the building blocks of
our success. The learning process of living beings such as humans can be catego-
rized into three fields. The foremost is evolutionary or reinforcement learning (RL),
where living beings fight for their survival based on the environment’s feedback. An
early example is perhaps the emergence of proteorhodopsin protein in early ocean
bacteria to react to sunlight for better survival (Gómez-Consarnau et al. 2007). The
second is unsupervised learning, which can be attributed to how individuals react
to various sensory readings during their lifetime. For example, when a human child
plays with a color ring sorting toy, he looks at similarities between the objects and
creates a mental model without any supervision. We make decisions based on the
observations that we take from the world we live in rather than being told what to
do at each step (LeCun et al. 2015). However, the importance of supervised learning
should not be ignored. An individual’s experience is limited throughout his life-
time, and it will die with the individual if it is not transferred to the community by
supervised learning.
In the field of artificial intelligence, we have been trying to understand human abil-
ities in learning, movement, manipulation, and communication, in order to recreate
them in robots so they can help us in our daily lives, assist us in manufacturing and
accompany us in space exploration in the future. While we have achieved significant
progress in industrial robotics, commercial robot home cleaners, autonomous vehi-
cles, biped and four-legged robot movement control, and space exploration robots,
there is still a large gap between our current progress and the capability of an an-
imal. The same applies to robot navigation. Robots have reached adequate move-
ment control for either wheel-based or leg-based systems, but any operation outside
of a confined environment can be problematic. In addition to sensory and physical
limitations, the models that robots use to solve these problems are usually fixed and
have strict boundary conditions. Using learning makes it possible to improve the
current state-of-the-art methods and design models that can learn and adapt over



2 1. Introduction

time.
In this thesis, we focus on robotic navigation as a whole and propose multiple meth-
ods to address some of the known problems through the use of machine learning
techniques.

1.1 Robotics and Automation

The first semi-intelligent robot, Shakey, was developed by researchers from the Stan-
ford research institute (Nilsson 1984). Shakey could dissect written commands into
a list of required actions, plan paths and move around in a controlled environ-
ment without collision, and push objects. In 1989, Kuperstein and Rubinstein pub-
lished their work on an adaptive neural controller for sensory-motor coordination
(Kuperstein and Rubinstein 1989). Their experiments consisted of a stereo camera,
a 5 degree of freedom arm, and an elongated object. Without any supervision or
knowledge of the underlying mechanics of the arm, the system learned to move the
end effector to grasp this object and was resistant to hardware faults and object po-
sition, length, and radius change. This was an important step toward continuous
learning in robotics. While the use of industrial and laboratory robots increased,
their operation domain remained confined to fixed assembly lines or controlled lab-
oratory environments. The main reason was that the used methods to model the
environment, such as the surroundings, objects, and robot movement was quite
simplistic and would not hold in more complex and always changing settings. It
was not until this decade that perception started to have an active role in robots that
operate in complex environments. The combination of machine learning and accu-
rate models for motion, navigation, and manipulation have allowed us to develop
robots that perform complicated tasks in very complex, but still limited, environ-
ments. Google’s research on robotics manipulation (Gu et al. 2017), Waymo and
Tesla’s autonomous vehicles, and Boston Dynamic’s humanoid Atlas robot (Feng
et al. 2015) are examples of such achievements. Although many of the more recent
examples of (industrial) robots are impressive, essential components of the behav-
ioral repertoire are hard coded. The scientific community is yet to provide solutions
for robust performance, high-level understanding, resource awareness, and task-
driven inference for robotic navigation. In brief, autonomous navigation is a key
skill and the reason that it is the center of attention of this thesis.



1.2. Robotic Navigation 3

Figure 1.1: The developed robotic platforms by the Borg team of the University
of Groningen from 2011 to 2015 (van Elteren et al. 2013, Shantia, Mulder, Wolf,
Timmers, van der Mark, Sandor, Knigge, van der Struijk, Vienken, Bidoia and
Luneburg 2015).

1.2 Robotic Navigation

Navigation is the process or activity of accurately ascertaining one’s position and
planning and following a route. Therefore, we can define a robotic navigation task
by answering the following questions:

• Where should the robot go?

• How should the robot move?

• Where is the robot?

Where should the robot go? The answer to this question relies on the higher-
level task at hand, which is true both for living organisms and machines. If the
environment is unknown, exploration becomes essential. This thesis, was part of a
larger research project focusing on developing service and assistive robot technol-
ogy. As part of this project, we developed several service robotic platforms (Figure
1.1) and participated in Robocup@Home competitions (Wisspeintner et al. 2009). In
this competition, a set of benchmark tests is used to evaluate the robots’ abilities
and performance in a realistic non-standardized home environment setting with



4 1. Introduction

Y

X

Odometry
Origin

Rotation
Axis

Y

θ

X

Map
Origin

Y
X

Figure 1.2: The robot’s various frames of reference.

the focus on topics such as Human-Robot-Interaction and Cooperation, Navigation
and Mapping in dynamic environments, Computer Vision and Object Recognition
under natural light conditions, Object Manipulation, Adaptive Behaviors, Behavior
Integration, Ambient Intelligence, Standardization and System Integration. Since
navigation is the initial building block of our service robots, we investigate how
machine learning, especially neural networks and reinforcement learning (Sutton
and Barto 1998), can help us to improve the navigation of indoor robots in this thesis.

How should the robot move? In animals, muscular cells, joints, and skeletal
structures enable the movement. They move by controlling their muscles through
contraction and extension. For ground mobile robots, wheels are the dominant lo-
comotion form while there has been significant research on biped or four-legged
robots. This thesis focuses on wheel-based differential drive (non-holonomic) robots
where the robot moves by setting a longitudinal and angular velocity.
The motion of a differential drive is constrained in a way that the translational ve-
locity v always drives the robot in the direction of θ (Figure 1.2). Considering dis-
cretized time interval and constant velocity, the goal is to solve the general Equations
1.1 and 1.2:



1.2. Robotic Navigation 5

x(tn) = x(t0) +

n−1∑
i=0

(F ix(ti + 1))

where

F ix =

{
vi
ωi

(sin θ(ti)− sin (θ(ti) + ωi · (t− ti))), ωi 6= 0

vi cos (θ(ti)) · t, ωi = 0

(1.1)

y(tn) = y(t0) +

n−1∑
i=0

(F iy(ti + 1))

where

F iy =

{
− vi
ωi

(cos θ(ti)− cos (θ(ti) + ωi · (t− ti))), ωi 6= 0

vi sin (θ(ti)) · t, ωi = 0

(1.2)

where x and y are the robot coordinates, ti is the discretized time, and vi and ωi
are the translational and angular velocities.

The controller should generate velocities that satisfy criteria such as smooth
acceleration, absence of oscillation, and collision avoidance. This can be achieved
through reactive methods such as the dynamic window approach (Fox et al. 1997),
potential fields (Khatib 1986), and velocity obstacle (Alonso-Mora et al. 2018) or
model predictive control (MPC) approaches (Maciejowski 2002) such as active
steering (Borrelli et al. 2005) and model predictive contouring (Lam et al. 2010). The
above requirements result in the importance of the connection between perception
and motion of a system. A system with a lower level of input noise due to oscilla-
tion of the visual system or the inertial measuring unit can allocate a process to the
task at hand rather than correcting the input noise. Just imagine reading a book in
a bumpy car. The same applies to a robot.

Where is the robot? Humans have an excellent notion of their current surround-
ings. Even if somebody kidnaps us and puts us in an unknown location, we can
describe the characteristics of this new place without much effort. Our knowledge
and experience of our world allow us to identify shapes, geometry, and objects that
are around us. Besides, we can correctly connect a series of observations from our
senses to build a spatial map. We are so good at it that even without vision, and with
some training, we can move around a block and find our starting position. We do
get lost, but usually, with a hint of a landmark, a passerby, or our phone’s GPS, we
adjust our estimated location. We can program robots to partially perform the local-
ization and mapping tasks by using a variety of sensors such as cameras and range



6 1. Introduction

finders through detecting robust features in the image or obtained range informa-
tion such as sharp edges, stable landmarks, and the topology of the place. The chal-
lenge becomes difficult when the robot moves. The robot movement is erroneous
(same as us, close your eyes and try to reach the door of your apartment without
touching anything), and this error adds up over time. We need to have an accurate
movement model of the robot that we can associate with the robot’s perception to
build this spatial map. The sensor noise also plays a significant role here. There is
a strong relationship between the interpretation of measurements from sensors and
the movement of the robot, which makes the measurements statistically dependent.
The robot should also be able to recognize the place where it traversed before for
the correct creation of the map. This is called the correspondence test.
Therefore, the robot localization is formulated by Markov localization (a variant of
Bayes Filter) in Equation 1.3 to track the position of the robot based on the sensory
reading and robot movement:

P (xt|z1:t, u1:t) = α · p(zt|xt,m) ·
∫
P (xt|ut, xt−1) · P (xt−1)dxt−1 (1.3)

where z1:t is the sensory reading vector, u1:t is the robot control vector, x1:t is
the robot trajectory, and m is a given occupancy or landmark map. If the map is
not given, then the robot has to create the spatial map online through simultaneous
localization and mapping (SLAM) techniques, which are generally formulated by
Equation 1.4

P (x1:t,m|z1:t, u1:t) (1.4)

that can be factorized to Equation 1.5 if we separate the trajectory estimation and
the mapping steps.

P (x1:t,m|z1:t, u1:t) = P (m|x1:t, z1:t) · P (x1:t|z1:t, u1:t−1) (1.5)

The created map can represent the environment in a metric or semantic way. For
metric map models, either landmarks and distinctive features (Torr and Zisserman
1999) , (Mur-Artal and Tardós 2017) are extracted from the sensors to create the
map, or the raw dense sensor information (Lu and Milios 1997), (Nüchter 2009) is
utilized for map creation. One main drawback of metric maps is the abundance of
information that is not used but consumes memory. We humans do not remem-
ber all the exact details of an environment. Depending on the task at hand, we
use semantic cues, and we decide the importance of objects during our navigation.



1.3. Artificial Neural Networks and Learning 7

We can quickly move through a hallway or drive on the road without calculating
each point’s exact distance. This is perhaps why semantic maps are becoming more
popular (Salas-Moreno et al. 2013), where the robot associates semantic concepts
to geometrical entities in its surroundings. For a detailed overview, we encourage
reading the survey papers by Cadena et al. (Cadena et al. 2016) and Saputra et al.
(Saputra et al. 2018). In this thesis, we rely on metric maps and propose two neural
network-based localization methods for indoor localization.

1.3 Artificial Neural Networks and Learning

The artificial neural network research is rooted in the early works by Donald Hebb
(Hebb 1949), Frank Rosenblatt (Rosenblatt 1958), and Misky et al. (Minsky and
Papert 1969). However, it did not grow until the maturation and implementation of
Rumelhart, Hinton, and Williams’s backpropagation algorithm in 1986 (Rumelhart
et al. 1986). One drawback of multilayer perceptrons (MLP) is that its input is al-
ways a vector and that all the neurons are fully connected, which produces two
problems. First is the sheer amount of parameters in the network that need to be
trained for large input vectors (the curse of dimensionality). The second is the loss
of topological information for inputs such as images or sound spectrums. It was not
until 1990 when LeCun introduced the first convolutional neural network (CNN)
for character recognition (LeCun et al. 1990) (Figure 1.3) that these problems were
(partially) solved.

This architecture, however, still had two main problems for solving complex
tasks; Increasing the number of filters would lead to overfitting, while an increase
in the number of layers would cause the error not to reach the weights in the first
layers (vanishing gradients). In 2010, Nair and Hinton curbed the vanishing gradi-
ent problem by introducing a new piecewise linear activation function (Nair and
Hinton 2010). Shortly after, Hinton et al. proposed a dropout scheme to avoid
overfitting (Hinton et al. 2012). With a considerable increase in parallel comput-
ing capability on graphical processing units (GPU) and the removal of obstacles in
CNN learning, Krizhevsky et al. were able to demonstrate the learning capabil-
ity of CNNs for the ImageNet large scale visual recognition competition (ILSVRC)
(Krizhevsky et al. 2012). The next important invention was Google’s Inception ar-
chitecture (Szegedy et al. 2015). This network applies convolution filters of variable
sizes in inception layers (1x1, 3x3, and 5x5). The 1x1 filter reduces dimensionality
while the other filters learn to extract useful features in variable resolutions (Figure
1.4).



8 1. Introduction

6

32

16

14

12
0

84 10

Figure 1.3: Lecun’s seven layer CNN architecture for character recognition. The input
topology is retained by using a set of convolution kernels (trainable filters) that re-
paint the image from the previous layer into a ’feature map’, which is subsequently
sub sampled and filtered again, until a final strand of traditional, fully connected
MLP layers.

The next innovation for deep learning came with the design of ResNets, with
hundreds of layers, by He et al. (He et al. 2016). To avoid the problem of vanish-
ing gradients for very deep networks, he suggested the concept of skip connections
where the output of particular layers in the network is copied and used later in the
upper layers. The network can then learn a residual mapping in which it decides
what part of the feature maps should be processed and skipped. In parallel, there
has been numerous research that expands artifical neural networks’ learning capa-
bilities to better support unsupervised learning (Kingma and Welling 2014), capture
the relation of neighboring pixels (Chen et al. 2018), facilitate high-resolution image
training (Wang et al. 2020), and support data augmentation (Goodfellow et al. 2014).
The performance of CNNs in object detection and recognition, lane detection, and



1.4. Reinforcement Learning 9

50

1x1

1x1

1x1

3x3
pool

3x3

5x5

1x1

50

concat

Figure 1.4: The inception part of the GoogLeNet architecture. The depth-wise 1x1
filters significantly reduce dimensions by combining feature maps. The 3x3 and 5x5
filters capture information with different spatial resolutions.

depth perception opened a path toward extensive commercial use such as medical
image analysis, advanced driver assistance systems, and face recognition.
It is due to this exciting progress that we chose to apply artificial neural networks as
the primary learning method in this thesis for robot localization.

1.4 Reinforcement Learning

Reinforcement learning is the process of optimizing the policy of an agent by trying
out a different set of actions through exploration and map the agent’s observations
to its actions to maximize an expected reward (Sutton and Barto 1998). This opti-
mization goal becomes very challenging when dealing with highly complex real-
world problems such as robotic navigation where the robot’s sensor (e.g., cameras
or range finders) describes the current state of the robots and its wheel movements
describe the possible set of actions. We categorize the challenges in robot RL as
follow ((Kober and Peters 2014)):

Curse of dimensionality: The readings from the robot’s sensors and its actua-
tors’ movement represents a high dimensional space. Without a compressed state
representation and an adequate level of granularity in the action space, the robot



10 1. Introduction

would need to explore endlessly to find meaningful relations between the state-
action pairs (Bellman 1957). Function approximation (Sutton and Barto 1998) and
macro-action (Barto and Mahadevan 2003), or options (Hart and Grupen 2011) are
examples of remedies used to solve this problem in robot RL applications, such
as state-action discretization in one degree of freedom (DoF) ball-in-a-cup (Nemec
et al. 2010) and deep neural network function approximator in robotic manipulation
(Levine et al. 2016).

Curse of real-world samples: Reinforcement learning requires a large of num-
ber of trials to converge. In the real world, this is time consuming and can also affect
the robot’s performance over time since the actuators and sensors of the robots are
subject to wear and tear. One approach to reducing the cost of real-world interac-
tion is using simulation to bootstrap the learning process. In theory, it should be
possible for the agent to learn the behavior in simulation and transfer it to the real
world. However, based on the state space representation, the simulation needs to
represent the real world accurately. Otherwise, these modeling errors can accumu-
late, and the simulated robot can diverge from the real-world setting (Atkeson 1994).

Difficulty of goal and reward specification: The desired behavior of a reinforce-
ment learning algorithm relies heavily on the reward function in addition to the
state representation and possible set of actions. While it is possible to have a binary
reward upon task achievement, a robot may rarely attain such a reward in a real-
world scenario. Therefore, it is often necessary to include intermediate rewards in
the reward function to speed up the learning process. This process is known as re-
ward shaping (Laud 2004). Learning co-operative micromanagement in a real-time
strategy game (Shantia et al. 2011), ball-in-a-cup through demonstration (Peters and
Schaal 2008), and robot manipulation through reward shaping (Vecerik et al. 2017)
are examples of this approach.

The application of reinforcement learning in real-world scenarios is not straight-
forward. Albeit its challenges, however, reinforcement learning offers powerful
methods to solve complex problems with minimum supervision. In this thesis, we
apply reinforcement learning to the robot navigation problem and demonstrate the
benefit of transfer and simultaneous goal learning.



1.5. Scope of this Thesis 11

1.5 Scope of this Thesis

The fascinating challenges of robotic navigation and perception were the inspiration
for writing this thesis. Therefore, we start by revisiting the required components for
autonomous navigation and describing the challenges and the current state of the
art solutions.

We would like to find out which part of an existing and established navigation
system can be optimized by using on-the-shelf learning algorithms with minimum
supervision effort. This leads to the following research question:
”Is it possible to improve an established navigation system using an available learn-
ing method?”
Therefore, in Chapter 2, we propose a method for dynamic parameter selection for
a robot by analyzing the surrounding environment in a semi-supervised manner.

Our next step was to address perhaps the most crucial part of a navigation sys-
tem, localization. The current models used for localization create a partially reli-
able spatial map of the environment, but the generalizability and their resistance to
change is limited. Therefore, we investigated whether it is possible to use artificial
neural networks to solve the localization problem. This leads to the research ques-
tion:
”Can artificial neural networks be used to solve the localization problem in naviga-
tion?”
In Chapter 3, we present our research regarding the capability of stacked denoising
autoencoders in retaining localization information in a 3D simulated environment.

Then, we turned our attention toward the scalability of our approach and in-
cluded exploration and goal selection of a navigation system to examine whether it
is possible to use a self-learning approach to navigate in an environment. This leads
to the following research questions:
”Are convolutional neural networks better than stacked denoising autoencoders in
solving the localization problem in larger environments, and are they scalable?”
”How can reinforcement learning be improved to let a robot learn to navigate to
many goal positions?”
In Chapter 4 , we first compare the scalability and accuracy of the stacked denoising
autoencoders with convolution neural networks in different 3D simulation envi-
ronments. Then, we propose a reinforcement learning technique that can learn to
navigate to multiple goals at the same time while using a goal selection technique
based on temporal difference errors.

We finally summarize the findings of this thesis in Chapter 5 and discuss the
possible future outlook.





Chapter 2

Dynamic Parameter Update using
Unsupervised Situational Analysis

Abstract

A robot’s local navigation is often done through forward simulation of robot velocities
and measuring the possible trajectories against safety, distance to the final goal and the
generated path of a global path planner. Then, the computed velocities vector for the
winning trajectory is executed on the robot. This process is done continuously through
the whole navigation process and requires an extensive amount of processing. This only
allows for a very limited sampling space. In this chapter, we propose a novel approach to
automatically detect the type of surrounding environment based on navigation complex-
ity using unsupervised clustering, and limit the local controller’s sampling space. The
experimental results in 3D simulation and using a real mobile robot show that we can
increase the navigation performance by at least thirty percent while reducing the number
of failures due to collision or lack of sampling.



14 2. Dynamic Parameter Update using Unsupervised Situational Analysis

2.1 Introduction

The use of autonomous robots in our daily lives are on the rise. From autonomous
drones delivering packages (Floreano and Wood 2015), mobile security robots
(Everett and Gage 1999), autonomous vehicles (Levinson et al. 2011) to domestic
robots that monitor elderly and help them in their activity of daily living (SILVER
project 2016). The first and foremost responsibility of all these robotic systems is to
navigate safely and efficiently in their environments. The navigation stack usually
consists of a global localization module and path planner, a local base controller, and
a set of sensor processing systems. The global localization is usually done through
a mapping and localization process (Thrun et al. 2002). When a map is made, these
robots estimate their position based on the erroneous movement of the base and
precise sensory readings using probabilistic methods such as adaptive Monte Carlo
localization (AMCL) (Fox et al. 1999). At this point, the only remaining task is to
calculate a set of velocities to make sure that the robot reaches its goal safely. For
this process, generally a two or three dimensional cost map is made. In the case of
three dimensions, all sensor readings, such as rotating lasers, infrared devices, and
sonars are added to a three dimensional pointcloud structure called voxel/octo map
(Hornung et al. 2013). For a two dimensional cost map, all sensors information is
projected down into a two dimensional array. In each control cycle, the system has
to mark or clear these cells using ray tracing techniques (Glassner 1989). Finally, the
robot searches for the best local trajectory, taking into account all the obstacles on
the way and the robot’s footprint and shape. This process is accomplished through
either reactive collision avoidance methods such as the dynamic window approach
(Fox et al. 1997), potential fields (Khatib 1986), and velocity obstacle (Alonso-Mora
et al. 2018) or methods that rely on model predictive control (Maciejowski 2002)
such as contouring in dynamic environments (Brito et al. 2019). This process is
done multiple times a second to achieve a required control frequency for the robot.
This requirement can be different depending on the type and application of the
robot. All parts of the navigation stack have parameters to be tuned: Precision of
the cost maps, number of the particles in AMCL, velocity sample rate, simulation
time, scoring parameters, etc. It is important to note that these parameters have
significant effects on the processing load. Therefore, one can conclude that it is hard
to select one set of parameters for all navigation tasks that may differ in complexity.
For example, in cluttered environments, tight corners, or doors, a higher resolution
cost map and velocity sample rate will help the robot to navigate more safely and
efficiently, while in larger hallways, the system can use faster speeds and a lower
number of samples.



2.1. Introduction 15

Move Base

Global 

Planner

Global 

Costmap

Local 

Planner

Local 

Costmap

Recovery

AMCL

Sensor 

Transform

Odometry 

Source

Base Controller

Map Server

Sensor Sources

Odometry

Goal Position

Figure 2.1: The structure of the navigation system.

Contributions: In this chapter, we propose a novel approach to automatically
identify the complexity of scenes by extracting a customized histogram of oriented
gradients (HoG) (Dalal and Triggs 2005) from a two dimensional projection of three
and two dimensional sensory readings (cost maps) and clustering them using mul-
tiple unsupervised methods such as K-means and agglomerative clustering. In ad-
dition, we identify a tuned set of parameters for each of these clusters. Our exper-
iments show that the clustering methods successfully separate the situations into
meaningful and human-understandable clusters. Therefore, our contributions can
be summarized as follows:

• Automatic navigational complexity classification

• Dynamic parameter update for the local navigation system and the cost maps

• Performance increase of the navigation system

Structure of the chapter: In Section 2.2 we describe the full navigation system
in detail. In Section 2.3 we present the customized HoG feature extractor, the used
clustering methods, and our approach to extract the best possible parameters for
the navigation system. We describe the experiments and the results in Section 2.4.
Finally, we conclude the chapter in Section 2.5 and discuss possible future work.



16 2. Dynamic Parameter Update using Unsupervised Situational Analysis

2.2 Preliminaries

Before continuing with the methodology section, we would like to depict the nav-
igational structure that we use in detail. The used navigational stack is based on
the work by David Lu (Lu 2014). This work was implemented as a package for the
Robot Operating System (ROS) (Quigley et al. 2009). The general structure of the
navigation stack is depicted in Figure 2.1. This stack requires certain inputs to be
able to function correctly. The inputs outside the rectangle in Figure 2.1 require:

• A pre-generated 2D map of the environment.

• A localization method, in our case AMCL.

• Odometry information

• Base velocity control

• Sensor sources

• A complete transformation function to relate all the robot links in real-time.

Having a pre-generated map, we can use the AMCL method to localize and track
the position of the robot. When a destination goal is sent to move base, the global
planner will attempt to find a path towards the selected goal using either the A? (N.
J. Nilsson and B. Raphael 1968), or Dijkstra’s shortest path (Misa and Frana 2010)
algorithm. The calculated path is then sent to the local planner that will use the pro-
jected cost map to find the best set of velocities to approximately follow the global
trajectory to reach the goal. In case of failures due to incorrect sensor readings or
possible deadlocks, the system can initiate recovery behaviours. Our optimization
is done using the dynamic window approach local planner (Fox et al. 1997).

Dynamic Window Approach

We selected the dynamic window approach (DWA) because it performs well on
robots with good acceleration rates (Figure 2.2). However, recent model predictive
control and reactive methods such as (Brito et al. 2019) and (Kapitanyuk et al. 2017)
have shown better performance than the traditional DWA. Nevertheless, this chap-
ter’s objective is to limit the search space of any control algorithm through situa-
tional analysis, and therefore, can be applied to new algorithms.



2.3. Methodology 17

The DWA needs the local cost map, a window section of the calculated global
path, the projected footprint of the robot, robot base capabilities, and a set of sim-
ulation parameters. The robot base capabilities are the achievable acceleration and
velocities in X , Y , and θ directions (Figure 2.3). In Table 2.1, the important simula-
tion parameters are described. We omitted parameters with low importance and the
ones that we do not optimize1. If all the above requirements are fulfilled, the robot
navigates safely and reliably. However, different environmental circumstances re-
quire different parameters for optimal performance. Simulating unnecessary veloc-
ity trajectories in an empty hallway is a waste of resources, and lack of this sampling
can be dangerous in crowded and narrow hallways. In Section 2.3, we explain how
we solve this problem by applying an unsupervised situation detector.

2.3 Methodology

In this section we present our novel approach for autonomous situation analysis of
the environment and a method to select suitable parameters for each situation.

2.3.1 Unsupervised Environmental Situation Analysis

The cost map is a representation of the surrounding environment of the robot.
Therefore, we believe that we can find certain patterns in these costmaps and clas-
sify different situations on this basis. The first step is to collect data points. This is
done through moving the robot through the environment several times. The next
step is to come up with a feature set that can help us in the classification procedure.

Customized Histograms of Oriented Gradients

The Histogram of oriented gradients (HoG) (Dalal and Triggs 2005) is a suitable
method to represent the structure in images. It has been used extensively in both
two and three dimensional data. The three dimensional case is called the unique
signatures of histograms (SHOT) (Tombari et al. 2010). The two dimensional case
(HoG) has been applied to human detection (Dalal and Triggs 2005), indoor localiza-
tion (Shantia, Timmers, Schomaker and Wiering 2015), object recognition (Tombari
et al. 2010), and many other applications. Therefore, we believe that it is also a
suitable method for our application. The local cost map is centered on the robot.
However, this cost map is in the odometry coordinate system and is invariant to
the robot rotation. We need the cost map in the robot’s coordinate system. There-
fore, we calculate a combined rotation and translation matrix M to transfer the cost

1The full list of parameters can be found in http://wiki.ros.org/dwa_local_planner.

http://wiki.ros.org/dwa_local_planner


18 2. Dynamic Parameter Update using Unsupervised Situational Analysis

Figure 2.2: The robot used for the experiments. The laser in the front of the robot
is used for localization and obstacle avoidance. The two 3D sensors on both ends
of the top bar are for 3D obstacle avoidance. The front sensor rotates based on the
current speed of the robot to better detect obstacles.

map from the odometry coordinate system to the robot’s coordinate system using
equation 2.1.

M =

«

α β (1− α) · center.x− β · center.y
−β α β · center.x+ (1− α) · center.y

ff

(2.1)

where center.y and center.x are the center of the cost map and rotation axis of the
robot, and

α = cos(θ)

β = sin(θ)



2.3. Methodology 19

Y

X

Odometry
Origin

Rotation
Axis

Y

θ

X

Map
Origin

Y
X

Figure 2.3: Various frames of reference in robotic Navigation. The robot’s velocity in
X , Y , and θ direction represents forward, sideward, and angular movement in the
robot base frame.

where θ is the rotation angle of the robot in the odometry coordinate system (Figure
2.3).

Then, we multiply each image pixel (i, j) of the cost map with theM matrix. The
result is the new cost map image with pixels calculated by equation 2.2.

«

î

ĵ

ff

= M ×

»

—

—

–

i

j

1

fi

ffi

ffi

fl

(2.2)

We lose a part of the image during these operations, but since this information
lies on the corners of the cost map, the effect is minimal and can be neglected. Note
that the center of the image is not necessarily the center of the robot. It is the main
rotation axis of the robot. In addition, we also altered the windowing mechanism of
the HoG feature set. We changed the window approach to emphasize this charac-
teristic. Figure 2.4 shows the new window selection.



20 2. Dynamic Parameter Update using Unsupervised Situational Analysis

Category Parameter Description

Robot
Configuration

Acceleration
Limits

Rotational and translational acceleration
in m

s2 .

Velocity
Limits

Rotational and translational speed in m
s .

Goal
Tolerance

Yaw
Tolerance

Yaw threshold for the goal in radians.

X-Y
Tolerance

X and Y distance threshold to the goal in
meters.

Latch X-Y
Only rotation will be checked after posi-
tion is reached.

Forward
Simulation

Time &
Granularity

Simulation resolution (meters) and length
of time (seconds).

Sampling rates
(X-Y-θ)

The number of velocity samples for simu-
lation.

Controller
Frequency

Planner’s desired loop for driving

Trajectory
Scoring

Path Distance
Higher score if the simulated path is close
to global path.

Goal Distance
Higher score if the simulated path is closer
to the local goal.

Collision Distance
Lower score if the simulated path is close
to obstacles.

Table 2.1: DWA parameter structure.

Clustering and Center Selection

We use K-means clustering (MacQueen 1967) to separate the data into multiple
clusters. The problem is to select a good value for the number of clusters. There
are various methods to tackle cluster validity. Theodoridis et al. (Theodoridis and
Koutroumbas 2009) categorized these methods into three classes. The First is based
on external criteria, where class labels are required to assess the methods’ perfor-
mance. The second approach is based on internal criteria, which focuses on the
clustering algorithm itself to evaluate the results. The third approach is based on



2.3. Methodology 21

Figure 2.4: The window structure of the HoG. The underlying picture is a sample
projected cost map. The middle rectangle is the robot footprint, and its rotational
axis point is the middle of the image. The white pixels in the background are free
space, the black pixels are obstacles, and the gray pixels are the inflation of obsta-
cles where the robot may have difficulty navigating. The dotted and dashed lines
emphasize the separation of HoG windows. Each rectangular section is used to cal-
culate the HoG features. This way, the resulting descriptors are more suitable for
our problem.

relative criteria, where the same algorithm is run with different parameters (e.g., the
number of clusters) to find the valid number of clusters. We focus on the latter and
perform agglomerative hierarchical clustering using the single linkage (Gower and
Ross 1969) method to find the best number of clusters (Algorithm 2.1).

We set the cluster number c to one to extract the dendrogram based on the sin-
gle linkage result, shown in Figure 2.5. Finally, we analyze the similarity values
and select a cluster number where we detect a large similarity gap between layers.



22 2. Dynamic Parameter Update using Unsupervised Situational Analysis

1: begin initialize c, ĉ← n,Ci ← xi, i = 1, . . . , n

2: repeat
3: ĉ← ĉ− 1

4: Find nearest clusters, Ci and Cj
5: Use dmin(Ci, Cj) = minx∈Ci,x′∈Cj‖x− x′‖
6: Merge Ci, and Cj
7: until c = ĉ

8: end
Algorithm 2.1: Agglomerative Hierarchical Clustering using Single Linkage,
where ĉ is the current number of clusters to obtain in each iteration, c is the
desired number of clusters (with c = 1, we extract the dendrogram), and Ci and
Cj are set of points belonging to a cluster where the distance measure is used to
merge them.

However, since this step requires human observation, it is best to test different clus-
ter numbers and compare the final experiment results. Due to the large required
number of experiments, we only observed the members of each cluster for cluster
numbers between 3 to 6. With five clusters, the results were most intuitive, which
can be seen in Figure 2.6. It is also notable that the current dendrogram uses a binary
approach to separate clusters. However, a study by Louis Vuurpijl et al. (Vuurpijl
and Schomaker 1997) shows that the underlying data structure can hinder the effec-
tiveness of a binary approach. Instead, they propose an N-ary approach by compar-
ing the distance of the child clusters to the parent cluster considering the standard
deviation between all the child clusters and their respective parent. Malika et al.
(Malika et al. 2014) further investigated the cluster validity problem and created a
tool to mix several methods to enhance the results. We left the analysis of these
methods for future work.

2.3.2 Parameter Selection

When the clustering is finished, we can analyze the results by means of an average
image for each cluster using equation 2.3:

A =
1

N

N∑
x

Ix ×
1

1 +DIx

(2.3)

where A is the average image for each cluster, N is the number data points in
each cluster, I is a cost map image, x is the index of the data point, and DIx is the
normalized distance of the xth data point to the cluster center.



2.3. Methodology 23

Figure 2.5: The dendogram constructed from the single linkage algorithm. There is
a large similarity gap for all the joint clusters between c = 6 and c = 5, and also
another gap between c = 4, and c = 3. By inspecting the average image of each
cluster number, we found out that five clusters are the most intuitive number for
the k-means clustering.

The procedure is to compare the distance between each recorded cost map image
to the center of the cluster. Using a non-linear function, we give higher weights to
the closer points, and lower weights to the points far from the center. The final re-
sult is an average image which describes the surrounding environment (Figure 2.6).
Using these images, we arrange the clusters based on danger level. This parameter
selection, however, is dependent on the type of the robot used. The requirement is
to have one safe parameter setting with a low maximum speed and high simulation
sampling, and a fast parameter set with a higher maximum speed and lower sam-
pling rate of velocities. From these two parameters, we can extrapolate the rest of
the parameters for clusters based on their danger level.

2.3.3 Parameter Update

Every time the cost map is updated, our algorithm analyses and determines the
environmental situation. Before proceeding to update the optimal navigation pa-
rameters, we make sure that the analysis is correct and coherent. This is done by
accepting only results which are coherent over three consecutive cost map updates.
This also prevents continuous parameter updates due to outliers which leads to
latency in the navigation control loop. For the actual update of the navigation pa-
rameters, the method sends the chosen parameters to the navigation stack by calling



24 2. Dynamic Parameter Update using Unsupervised Situational Analysis

(a) Open area (b) Approach Corridor (c) Doors

(d) Corner on the left (e) Hallway

Figure 2.6: The weighted average image of all the clusters. Black pixels mean free
space, white pixels means obstacles. The intensity level of white pixels show how
close they are to the cluster center. (a) shows low congested areas and open spaces,
(b) shows that the robot is approaching corridors, (c) shows very dense areas such as
doors, (d) shows close proximity to corners, specially on the left side, and (e) shows
hallways.

a specific ROS service. This service updates the parameters in the interval between
the navigation control loops. This generates a latency that could lead to the control
loop missing the desired control frequency, causing the robot to stop.



2.4. Experiments 25

(a) Gazebo Environment (b) Real Environment

Figure 2.7: The map of the environment in Gazebo (a) and for the real experiments
(b). The robot starts from checkpoint A, and continues through all the checkpoints.
The robot collects the time data when it reaches checkpoint E. If a failure or colli-
sion occurs, a penalty of one thousand seconds is recorded, and the experiment is
restarted.

2.4 Experiments

For the experiments, we use both a 3D simulator and a real robot. The 3D sim-
ulator used is an open source program called Gazebo (Koenig and Howard 2004)
which simulates physics and allows us to have access to sensors, actuators, etc.
This simulator is selected because of its wide spread use in robotics, such as the
DARPA robotic challenges2. The robot is controlled through the robot operating
system (ROS) framework (Quigley et al. 2009). The environment used for the sim-
ulation and real life can be seen in Figure 2.7. We use OpenCV, MATLAB and
Numpy libraries for feature extraction and clustering (Bradski 2000), (MATLAB
2014), (Dubois et al. 1996).

2http://www.darpa.mil/program/darpa-robotics-challenge

http://www.darpa.mil/program/darpa-robotics-challenge


26 2. Dynamic Parameter Update using Unsupervised Situational Analysis

The robot in Figure 2.2 is used for our experiments. The robot uses a differential
drive base, and a frame which carries the manipulator, two RGB and depth sen-
sors, and a laser range finder. We modeled this robot in Gazebo using the Unified
Robot Description Format (URDF), which is an XML format for representing a robot
model. Our goal is to find a suitable number of clusters and select adequate control
parameters for each cluster respectively in simulation, and apply it to a simulated
and real-world navigation experiment without any further changes.

2.4.1 Clustering Results

We gathered nine thousand cost map data points by driving the robot through the
simulated environment (Figure 2.7a) and calculated the customized HoG features.
A single linkage was done on this set, and we extracted a dendrogram based on the
distance values (Figure 2.5) and visually analyzed the result for 5 and 6 clusters. We
selected 5 clusters since the similarity distance is considerable between this level and
the previous one, and the visual analysis showed that one more cluster does not add
additional information. We used this number for our K-means clustering method,
and Figure 2.6 shows the average images of these clusters. Hallways, doors, and the
situation when approaching doors are evident in these images. When a cluster is
detected, the navigation parameters will be changed on the fly.

2.4.2 Base Parameter Selection

In order to select the best base parameters, we first hand tuned the values to match
the robot’s differential drive base capabilities. Then, we sampled exploration values
for each of the DWA parameters in Table 2.1. We calculated all possible combina-
tions of these values, and compared the time it took to reach a point. The timeout to
reach a point is 200 seconds, if the robot collides with an object or cannot reach the
goal in time, it receives a penalty of 1000 and the trial is reset. For each combination,
we simulate 100 rounds. The best selected base parameters are depicted in Table 2.2.

2.4.3 Simulation

In order to test the performance of our method, we made sure that the navigation
environment has different varieties such as narrow hallways, open space, doors,
etc. which can be seen in Figure 2.7a. The robot starts from point A, and continues
through all checkpoints until it reaches point E. We measure the time between each
pair, and average the results for comparison. We performed 500 trials for each of
the best static settings (safe setting), fast parameter and our dynamic parameter set-
ting. If the robot was not able to reach a point, we added it to the number of failures



2.4. Experiments 27

Category Parameter Value

Acceleration X-θ 1.0 m
s2 , 1.0 rad

s2

Robot Config Velocity X-θ 0.4 m
s , 1.0 rad

s

Simulation granularity, time 0.05 m, 3.5 s

Forward Simula-
tion

Sampling rate X-θ 15, 45

Controller Frequency 5 Hz

Path Distance 0.2 m

Trajectory Goal Distance 0.3 m

Collision Distance 0.05 m

Table 2.2: Best calculated parameters for the DWA method.

Param Type Mean
(w/o Penalty)

Standard
Dev.

Failures

Dynamic 56.32 (37.37) s 19.22 s 10

Best Static (Safe) 85.08 (60.76) s 30.36 s 13

Fast 89.29 (61.44) s 28 s 15

Table 2.3: The simulation results. On average the dynamic parameter sets perform
33.8% better than the best static parameter, and a high speed set. In addition, the
number of failures is also lower than that of the rest.

and marked that trial length as one thousand seconds. We then calculated the av-
erage time without penalty, and calculated the standard deviation not considering
the failures. Table 2.3 shows the time average, standard deviation and the number
of failures due to collision or lack of sampling in the simulated environment. It is
evident that our dynamic situation analysis performs superior to a single parameter
set. The reasoning is straightforward, the clustering method correctly detects the
majority of situations, and sets the best parameters. For example, close to the doors,
the system uses the safest approach. With a limited velocity space, the system can
simulate enough velocity points to find the best path in a congested area. On the
other hand, in an open space, the system can use a lower number of sample points
and reach higher speeds without reliability and safety issues.



28 2. Dynamic Parameter Update using Unsupervised Situational Analysis

A to B

Parameter
Type

Mean
(w/o Penalty)

Standard Dev. Failures

Dynamic 137.71 (26.5) s 16.9 s 2

Best (Safe) 120.59 (22.9) s 5.3 s 2

Fast 372.96 (35.44) s 26.22 s 8

B to C

Parameter
Type

Mean
(w/o Penalty)

Standard Dev. Failures

Dynamic 90.51 (42.51) s 5.14 s 1

Best (Safe) 111.52 (64.27) s 7.0 s 1

Fast 144.58 (43.9) s 7.31 s 2

C to E Full Path

Parameter
Type

Mean
(w/o Penalty)

Standard
Dev.

Failures Mean
(w/o Penalty)

Dynamic 94.64 (47.0) s 23.32 s 1
326.06

(116.01) s

Best (Safe) 196.73 (55.0) s 11.57 s 3
893.151

(118.82) s

Fast 375.63 (39.4) s 7.18 s 8
428.38

(142.13) s

Table 2.4: The real experiment results. On average the dynamic parameter sets per-
form 18% better than the best static set of parameters, and a high speed set. In
addition, the number of failures is significantly lower than that of the rest.

2.4.4 Real Experiments

We used a similar approach to that of Section 2.4.3. The selected path included nar-
row and large hallways, congested areas, and doors which can be seen in Figure
2.7b. We performed 20 trials for each of the base, fast, and our dynamic parameters
for A-B, B-C, and C-D-E points. Table 2.4 shows the average time, standard devia-
tion, and the number of failures for each method and their respective pair of points.



2.5. Conclusion 29

There were some complications during the real experiments. Unlike the simulator,
after online parameter changes of the navigation system, the sensor buffers were
frozen for approximately one second which resulted in a full stop of the robot. De-
pending on the complexity of the scene, the number of parameter change operation
varied. However, our dynamic method is still superior (18% faster than the safest
method) in comparison to the fast and safest set of parameters with the total time of
116.01s without considering collision penalty. We estimate that this number will be
closer to that of our simulation results if this sensor buffer failure did not occur. If
we take a look at point to point results, we see that the best static method is perform-
ing better than our dynamic approach between point A and B. The main reason here
was indeed the sensor buffer freezing problem because of high number of parameter
changes. In the rest of the path, however, the dynamic parameter system performs
better. It is notable that the fast parameter set is very unreliable in crowded areas
with 18 total collisions, some of which actually damaged one of our sensors. We can
conclude that using our approach, we can achieve a safer, faster, and more reliable
navigation.

2.5 Conclusion

In this chapter, we introduced a novel approach to automatically analyze a robot’s
surrounding environmental situation using HoG features and unsupervised clus-
tering. The feature extraction and clustering were done on an obstacle matrix (cost
map) which is a two dimensional projection of realtime sensory readings. We first
extracted the best safe and fast parameter sets without using our dynamic approach.
Then, using our method, we determined the congestion and danger level of these
clusters by calculating a scaled average image for each cluster. Finally, we tuned
multiple parameters for the local planning module of the robot in order to navi-
gate with a higher performance and reliability. Using the clusters and danger level
scores, we extrapolated new parameters and performed simulation experiments. In
simulation, we had a performance increase of 33%, and a reliability increase of 28%
in terms of navigation failure. We then performed the experiments on a real mobile
robot with the same cluster centers that were learned during the simulation exper-
iments. The performance and reliability increase were 18%, and 30% respectively.
We can conclude that by understanding the surrounding environment, we can dy-
namically change navigational parameters to allow for a faster and more reliable
movement.



30 2. Dynamic Parameter Update using Unsupervised Situational Analysis

Future Work: There are several improvements that can be done to further en-
hance the reliability and performance of the system. Currently, the number of clus-
ters and the danger levels are calculated by manually observing the dendrogram
and average images of the clusters. This procedure can be automated by calculating
similarity values between cluster levels (Figure 2.5), and assigning scores to differ-
ent sections of our windowing approach (Figure 2.4). In addition, in this research,
we only optimize the parameters for the dynamic window approach. However, we
can apply this method to other types of dynamic controllers such as the guiding
vector field (Kapitanyuk et al. 2017) and model predictive contouring control (Brito
et al. 2019) in cluttered environments to assess how well the dynamic parameter
tuning can increase the performance. Finally, we can use reinforcement learning or
other optimization algorithms applied to robot navigation and manipulation path
planning, such as the proposed automatic parametrization of path planning meth-
ods by Burger et al. (Burger et al. 2017) to tune the parameters for each of the de-
tected environments.



Chapter 3

Localization using Stacked Denoising Auto
Encoders

Abstract

Robotic mapping and localization methods are mostly dominated by using a combination
of spatial alignment of sensory inputs, loop closure detection, and a global fine-tuning
step. This requires either expensive depth sensing systems, or fast computational hard-
ware at run-time to produce a 2D or 3D map of the environment. In a similar context,
deep neural networks are used extensively in scene recognition applications, but are not
yet applied to localization and mapping problems. In this chapter, we adopt a novel
approach by using denoising autoencoders and image information for tackling robot lo-
calization problems. We use semi-supervised learning with location values that are pro-
vided by traditional mapping methods. After training, our method requires much less
run-time computations, and therefore can perform real-time localization on normal pro-
cessing units. We compare the effects of different feature vectors such as plain images,
the scale invariant feature transform and histograms of oriented gradients on the local-
ization precision. The best system can localize with an average positional error of ten
centimeters and an angular error of four degrees in 3D simulation.



32 3. Localization using Stacked Denoising Auto Encoders

3.1 Introduction

The commercial availability of robots is currently limited to small service robots
such as vacuum cleaners, lawn mowers, and experimental robots for developers.
Recently, however, there is a clear rise of consumer interest in home robotics. One
example is the development of service robots that operate in home and office en-
vironments. These robots must be priced congruent with their abilities. In this
chapter, we join the current trend of focusing more on smart software solutions
combined with low-cost hardware requirements to facilitate the process of creating
cheaper robots with reliable functionalities. With this goal in mind, we focus on a
very basic functionality of a sophisticated robot, localization. Currently, the most
well-known and commonly used approaches for solving the localization problem
are through a precise process of mapping the environment using 2D or 3D sensory
data and their required algorithms. These methods generally consist of three major
parts, spatial alignment of data frames, loop closure detection, and a global fine-
tuning step (Thrun et al. 2002, Grisetti et al. 2007). The hardware requirements for
these methods, however, are quite expensive.
For example, the cheapest 2D laser range finder roughly costs several hundreds of
Euros, and the price exponentially increases when more precision and robustness
are added to the system. There has been valuable research done on this topic in
the recent years, especially by using the fairly inexpensive Primesense sensor 1

found on Microsoft Kinect devices. Henry et al. (Henry et al. 2012), introduced a
3D indoor mapping method using a combination of RGB feature-based methods
and depth images to connect the frames and close the loops. The results of this
work are a very good approximation of challenging environments visualized in a
3D map. The calculations however, took approximately half a second per frame
to compute using their more precise combined RGB-D and iterative closest point
(ICP) algorithm, and three hundred milliseconds using their two-stage RGB-D ICP
optimization. Whelan et al. (Whelan et al. 2013), on the other hand, promised a real
time delivery of mapping and localization by the use of high performance GPUs
and expensive hardware.

Another issue that has not yet been addressed by researchers is the effect of lumi-
nance from outside sources to the process of mapping. In (Khoshelham and Elberink
2012), the authors mention that the lighting condition influences the correlation and
measurement of disparities. The laser speckles appear in low contrast in the infrared
image in the presence of strong light. Sun light through windows, behind a cloud,
or its reflection through the walls and the floor can introduce non-existing pixel

1Primesense Ltd. Patent No.US7433024 (Garcia and Zalevsky 2008)



3.1. Introduction 33

patches or gaps to the depth image. Therefore, additional research is required to
measure these effects, and perhaps to introduce new methods that require less com-
putational power at run-time which are robust to external sources and changes to
the environment. In a similar context, there has been significant research on image
classification and scene recognition using deep neural networks in the recent years
(Hinton 2006, Vincent et al. 2010, Krizhevsky et al. 2012, Schmidhuber 2015). This
has allowed the community to achieve high classification performance in character,
scene and object recognition challenges (Krizhevsky 2009, Deng et al. 2009, Quattoni
and Torralba 2009).

In this chapter, we adopt a novel approach to the localization problem by using
denoising autoencoders (DA)(Vincent et al. 2008) with HSV information. We use a
semi-supervised approach to learn the location values provided by traditional map-
ping and localization methods such as Adaptive Monte Carlo localization (AMCL),
and Grid Mapping (Fox et al. 1999, Grisetti et al. 2007). This approach has a sig-
nificant run-time advantage over the traditional ones due to low computational re-
quirement of a feed-forward neural network. It is only the initial training of the
network that requires a significant amount of computation which can be done of-
fline and delegated to other sources such as cloud computing centers (e.g. Amazon
Web Services). Another benefit is the general ability of neural networks to cope
with sensor noise, and changes in the environment. We combine multiple feature
vectors with the DA and compare them to other scene recognition methods such as
histograms of oriented gradients (HoG) (Dalal and Triggs 2005). In a commercial
scenario, the manufacturer can temporarily install a depth sensor during the prod-
uct delivery/installation and perform a traditional mapping to record the approxi-
mate ground truth for each captured image. The robot will then start the training of
the network, and the depth sensor can be removed. Finally, the robot can continue
localizing with acceptable error rate.

In short, our method:

• is a novel approach for localization using denoising autoencoders with semi-
supervised learning

• has low run-time computation requirements

• has inexpensive hardware requirements

We also compare the effect of different feature vectors on localization precision
and conclude that the positional and angular errors can compete with those of tra-
ditional methods.



34 3. Localization using Stacked Denoising Auto Encoders

In Section 3.2, we explain the features, the networks, and the training methods
in detail. We discuss our experimental setup and the achieved results in Section 3.3,
and finally conclude the chapter in Section 3.4 and discuss future work in Section
3.5.

3.2 Methodology

In this section we first discuss the different feature vectors used for training with
denoising autoencoders (DA), and the reasons for selecting them for localization
purposes. Next, we continue with an explanation of the pre-training of the DA
network, and a second layer neural network that is used for learning the metric
location values. A block diagram of the complete pipeline is depicted in Figure 3.1.

3.2.1 Feature Sets

Indoor localization requirements are slightly different compared to those for normal
scene recognition where the goal is to distinguish totally different types of scenes
from each other. For example, in the SUN (Xiao et al. 2010) and indoor CVPR
(Quattoni and Torralba 2009) databases, there are different types of scenes such as
offices, trees, zoos, etc. In each of these classes the details in the scenery are dif-
ferent, but they share a set of similar objects or landscapes (Figure 3.2). For robot
navigation in indoor environments, however, the robot needs to distinguish similar
scenes with different scale and rotation from each other. In some cases (Figure 3.3),
moving forward for a couple of meters does not change the scenery, or there are
views that look the same, but are in fact, taken from different locations. In order to
select a good feature set, we use some established feature vectors and carry out the
experiments using them.

Sub-sampled Plain Image

The original raw image contains a lot of information about the scene. Due to large
size of images, applying machine learning techniques become difficult on the ba-
sis of the curse of dimensionality theory (Bellman 1961). However, it is possible
to extract a sub-sample of the original image, which results in a much smaller fea-
ture vector. The downside of this method is that we may lose fine grained cues
that are present in the original image. Krizhevsky et al. in (Krizhevsky et al. 2012),
and (Krizhevsky and Hinton 2011), demonstrated the learning ability of deep neural
networks using plain images. In (Krizhevsky et al. 2012), the authors used a com-
bination of convolutional neural networks (CNN) (LeCun and Bengio 1995) and



3.2. Methodology 35

 Image & Position 

Storage 

Image Resizing 

SDA Training 

Localization 

Network 

Training 

Location 

Estimating 

Figure 3.1: The block diagram of required steps for training and testing the proposed
approach.

traditional neural networks to solve a one thousand class problem with more than
a million training images (Deng et al. 2009). In (Krizhevsky and Hinton 2011), the
authors used a very deep autoencoder with plain images to retrieve a set of im-
ages from the CIFAR (Krizhevsky 2009) database. Since their experiments showed
promising results using only plain images, we also use a sub-sampled plain image
in our feature set.

On this basis, we use a flattened gray-scale and HSV image with a fixed size of
28 × 28. We perform the re-sampling using pixel area relation, which is a preferred
method for image decimation. This results in 784 input dimensions for the gray scale



36 3. Localization using Stacked Denoising Auto Encoders

Figure 3.2: Samples from the ICVPR dataset. The office environments share the same
characteristics, but are from different environments.

Figure 3.3: Sample images from our robotics laboratory. The pictures taken show the
same scenery, but the robot was positioned in different locations.

image and 2352 input dimensions for the HSV image. The HSV coloring system is
preferred to RGB because of its resistance to lighting changes. We will use the sub-
sampled plain image feature as a baseline for our comparisons.



3.2. Methodology 37

Sub-sampled image with top SIFT keypoints

On the one hand, sampling down the camera image has the advantage of retain-
ing the scene structure, and also reducing noise. It also allows the system to cope
better with color and light variations. On the other hand, it has a disadvantage of
losing fine, high resolution sections of the image which can be essential in detailed
scene recognition and localization. For example, a key switch in the kitchen, or a
prominent door handle can give hints to the robot about its actual location. In or-
der to scale down this effect, we decided to use a combination of sub-sampled plain
images, and prominent SIFT features (Lowe 2004) extracted from each image. For
each image, we calculate the SIFT features for the original high-resolution image.
The top four keypoints are selected from each image based on their SIFT response
value, and their descriptors are added to the plain image feature set. This approach
may help the system to retain prominent edge structure while learning from general
information of the sub-sampled image.

Histograms of Oriented Gradients

We decided to use yet another method while bypassing the autoencoder to com-
pare the possible computation performance gain in comparison with the other two
proposed methods. We used the idea of histogram of oriented gradients which was
previously applied to human detection (Dalal and Triggs 2005), and for indoor lo-
calization (Kosecka et al. 2003). We, however, decided to calculate the HoG of addi-
tional cells with varying sizes to capture both general and detailed edge information
of the scene. The image is divided into separate cells of 8× 8, 4× 4, and 2× 2. The
gradients for all of the cells and the image itself are then calculated. This results in
680 values for the feature vector.

3.2.2 Denoising Autoencoder Training

We decided to perform indoor scenery recognition using the denoising autoencoder
(Vincent et al. 2008) because of the simplicity of the training procedure compared to
CNNs. Stacked formation of DAs and its strong learning ability and low error rate
compared to support vector machines, the restricted Boltzmann machine (RBM),
and traditional autoencoders (Vincent et al. 2010), (Vincent et al. 2008), (Tan and
Eswaran 2008), are other reason for selecting this approach.



38 3. Localization using Stacked Denoising Auto Encoders

Pre-training

Pre-training is the part that distinguishes a denoising autoencoder from a traditional
autoencoder. The input of the network is corrupted by either random masking, salt
and pepper, Gaussian noise, etc. (eq. 3.1).

Ω −→ Ω̃ ∼ qD(Ω̃|Ω) (3.1)

Then, the corrupted input is fed through a matrix product with the first layer of
weights, and the bias vector is added to the hidden layer neuron activations. Finally
the results go through a sigmoid function (eq. 3.2).

O = fθ(Ω̃) = ς(WΩ̃ + b) (3.2)

In the next step, the network attempts to reconstruct the original input vector
(eq. 3.3).

Ω̄ = gθ′(O) = ς(W′O + b′) (3.3)

The cost function used is the reconstruction cross-entropy depicted in equation
3.4:

L(Ω, Ω̄) = −
d∑
k=1

[Ωk log Ω̄k + (1− Ωk) log(1− Ω̄k)] (3.4)

In which Ω is the original input which is normalized between 0 and 1, Ω̄ is the
reconstructed output from the corrupted input, and k denotes the index of the input
vector. By using this equation, the error and the updates of one stochastic gradient
descent can be calculated. After sufficient epochs, the training of the first layer is
stopped. Figure 3.4a shows this process.

The training of a stacked denoising autoencoder (SDA) is similar to that of a DA,
but with a small difference in the higher layers. Consider that the network is trained
up to layer n−1, and we want to train the final layer n. For input Ω, output fθ of the
layer n − 1 is extracted using traditional feed-forward neural network algorithms.
Then, this output vector is corrupted using qD(Ω̃|Ω), and after that the output of
the nth layer is calculated. An attempt is made to reconstruct the original nth layer
output using the corrupted nth layer input (Figure 3.4b). The type, and amount of
the corruption has a large effect on the result of pre-training. Parameters used in
our experiments will be discussed further in section 3.3.



3.2. Methodology 39

qD

Fϴ 
Gϴ 

LH(    ,    )
O

Ω ―Ω  Ω~

Ω Ω―  

(a)

qD

Fϴ
(2)

Gϴ 

LH(    ,    )
O

Ω

Fϴ 

Layer n-1

Ω  ―Ω  ~

―Ω  Fϴ 

(b)

Figure 3.4: (a) The input Ω is corrupted using the qD function. Then the result is
fed forward to the next layer using the fθ of equation 3.2. Finally, a reconstruction
attempt to the original input is made using the gθ of equation 3.3. For the stacked
version (b), the non-corrupted input is fed forward up to level n of the network
before applying the corruption.

Semi-supervised Location Estimation using Ground Truth

In order to associate the ground truth location values to the encoded result of the
neural network, we connect a secondary two layer feed forward neural network to
the learned encoding of the input. In our experiments, we record the ground truth
data using the perfect robot odometry in 3D simulation.

The relation between the scenes and the odometry readings is a non-linear func-
tion, and we can learn this by using a feed forward neural network with non-linear
activation functions. In order to achieve this goal, the following procedure is fol-
lowed. After the pre-training phase of the SDA is completed, we add a separate



40 3. Localization using Stacked Denoising Auto Encoders

neural network with one hidden layer on top of the denoising autoencoder. The
hidden layer activation function is a sigmoid, and the output layer has a linear
activation. The outputs of the neural network consist of normalized metric X and
Y values, and the sin(θ) and cos(θ) with θ being the robot angle in radians. Reasons
for selecting sine and cosine of the radian are that first the values are bounded and
between [−1, 1], and can be easily normalized to [0, 1], and we want to give a hint
to the neural network that the angular input is not continuous, but has a periodic
property. The network can learn this by observing the 3rd and 4th output. The nor-
malization factors of X and Y come from the ground truth map available through
the simulation.

Fine-tuning layers in classification problems such as in (Vincent et al. 2008,
Krizhevsky et al. 2012, Krizhevsky and Hinton 2011), have a one layer network
where their outputs were either the class label or the softmax probability of each
class. Our problem, however, is of the regression type, and a hidden layer is re-
quired to non-linearly map the encoded outputs to the position and angular values.
In addition, in those papers, the class labels are used to further reduce the recon-
struction error of the network. In our case, however, we merely aim at associating
location values to the encoded outputs. Therefore, we do not propagate the er-
ror through the whole network. Consequently, using the mean squared error as our
error function, the back propagation rule is used to train the weights of the network.

3.3 Experiments

We carried out our experiments using the Gazebo (v3.0) 3D physics simulator
(Koenig and Howard 2004), and used the ROS framework to develop our software
(Quigley et al. 2009). We used Gazebo with the Bullet 3D physics engine which
allows for the use of GPUs to facilitate a real-time simulation and high frame rates
for all the robot sensory inputs using an ordinary PC. Environments used for the
experiments can be seen in Figure 3.52. We used FANN, OpenCV, and Theano li-
braries to perform the SDA, and location estimation neural network training phases,
(Nissen 2003), (Bergstra et al. 2010), (Bradski 2000). Theano uses multiple cores and
a GPU to perform the SDA training steps.

The simulated robot, which can be seen in Figure 3.6 is used for our experiments.
The robot consists of a moving base with differential drive, and a top frame which
carries its essential depth and RGB sensors, a laser range finder, manipulator and an
interface for human robot interaction. We modeled our laboratory robot in Gazebo

2https://3dwarehouse.sketchup.com.



3.3. Experiments 41

Figure 3.5: The 3D model of the environment. The model is a modified version of the
Cherry Kitchen model in Google’s 3D warehouse.

using Unified Robot Description Format (URDF), which is an XML format for rep-
resenting a robot model. The model shapes and meshes used in simulation were
partly generated by the vendors and partly designed by ourselves.

All the neural network training simulations are repeated 10 times with differ-
ent initializations of the network. The baseline, which is the sub-sample plain im-
age, is not given to the SDA for high level feature extraction. The HoG features
are also not processed by the SDA because these features are already a representa-
tion/compression of the full image. After the autoencoder training is finished, train-
ing of the location estimation neural network starts. We only update the weights of
the location estimation neural networks without propagating it back to the SDA
network. We explored multiple network and training configurations in the 3D sim-
ulation and selected the best ones based on localization performance and computa-
tional requirements.

We found out that the number of required neurons in each layer can be one
third of the number of inputs. The results would increase slightly if the number of
neurons increases. However, the speed of calculation decreases during training and
prediction phases which is not suitable for a real-time robot. Therefore, we decided
to limit the number of neurons as much as possible. The denoising autoencoder
network with gray scale input images uses 256 hidden neurons, and the networks
with HSV and HSV+SIFT input images use 750 hidden neurons per layer. For sub-
sampled plain image with top SIFT keypoints, we kept the number of neurons in
each layer to make sure the comparison is valid. The HoG feature vector, however,



42 3. Localization using Stacked Denoising Auto Encoders

Figure 3.6: 3D model of the robot used for the experiments.

does not require the autoencoder so it is left out of this part of training. The learning
rate for training the SDA was set to 0.001.

The neural network used for estimation of the location of the robot is a single
hidden layer neural network with sigmoid functions in the hidden layer and linear
activation functions in the output layer. There are hundred neurons in the hidden
layer and four outputs which represent X,Y, sin(θ), cos(θ) respectively. Finally, for
the sub-sampled plain image vectors, the encoding of the images are processed and
then fed to the localizing neural network. The HoG feature vector is directly fed to
the localizing neural network. The training of the localizing neural network is done
by traditional back propagation with the learning rate of 0.001 and 10, 000 epochs
with no stopping criteria. However, we record the network every hundred epochs
and only use the network with highest validation performance for the final exper-
iment with the test dataset. This will allow us to avoid over-fitting of the neural
network during the training process.



3.3. Experiments 43

3.3.1 3D Simulation

The simulation environment is a kitchen with a dimension of 5×7 meters. It contains
both detailed and coarse objects. The lighting is provided by a unified directional
beam (simulated sun), and two additional light bulbs. Only walls and object shad-
ows are visible, because the current texture properties of the environment do not
include light reflection properties.

The data gathering is done through automatic and manual processes to collect
training, validation, and test data. In the automatic method, the robot takes random
discrete actions. Before performing an action, the robot saves the current ground
truth location by using odometry in simulation. It then starts to take pictures while
rotating from minus to plus five degrees around that point. This is to make sure
that the robot has similar training data for the approximate same location in the
environment. The robot is equipped with an obstacle avoidance system, and will
change trajectory if it is close to an obstacle. In order to make sure that all loca-
tions are traversed, we let the robot operate for several hours and take a data set
with 150 thousand training pictures. These pictures are used to train the denoising
autoencoder.

For training the location estimation layer, we gather a more structured data set
of 10 thousand training, and 2 thousand validation and testing pictures. A human
operator controls the robot, and takes steps of 0.5−1.5 meter. After each step he/she
will rotate the robot in a full circle to capture the surroundings. This operation is
repeated until the environment is covered. Since the lighting effects are incomplete
in the 3D simulation, we avoid taking pictures of only walls. One side of the kitchen
has continuous walls with the same texture, and no lighting changes. We make sure
that another part of the kitchen is also in the view. Otherwise, it would be impossible
for the robot to correctly estimate its position. For the validation and testing set,
however, the operator will move the robot in a path for which the overlap with the
previous run is minimal.

3.3.2 Results

We first discuss the results of different network architectures and training configura-
tions. Next, we elaborate the final performance of these networks using the features
mentioned in section 3.2.1. We tested a 1 layer DA with gray scale images, and
different SDA architectures (1-3 layers) with HSV images using multiple training
epochs in 3D simulation. The binomial corruption levels were started at 0.1. For
each additional layer, the corruption level was also increased by 0.1. We selected
the corruption levels similar to other applications of SDA for scene and character
recognition in (Vincent et al. 2008). Figure 3.7a, and 3.7b show that the HSV results



44 3. Localization using Stacked Denoising Auto Encoders

are significantly superior in comparison to the gray-scale. The reason is that the
HSV images contain more information about the scene.

 

 

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 30 40 50 60

Er
ro

r (
m

)

SDA Training Epochs

Positional Error - SDA Layers vs. Training Epochs

HSV - 1 Layer HSV - 2 Layer HSV - 3 Layer Gray Scale - 1 Layer

0

0.05

0.1

0.15

0.2

0.25

20 30 40 50 60

Er
ro

r (
ra

d)

SDA Training Epochs

Angular Error - SDA Layers vs. Training Epochs

HSV - 1 Layer HSV - 2 Layer HSV - 3 Layer Gray Scale - 1 Layer

(a)

 

 

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 30 40 50 60

Er
ro

r (
m

)

SDA Training Epochs

Positional Error - SDA Layers vs. Training Epochs

HSV - 1 Layer HSV - 2 Layer HSV - 3 Layer Gray Scale - 1 Layer

0

0.05

0.1

0.15

0.2

0.25

20 30 40 50 60

Er
ro

r (
ra

d)

SDA Training Epochs

Angular Error - SDA Layers vs. Training Epochs

HSV - 1 Layer HSV - 2 Layer HSV - 3 Layer Gray Scale - 1 Layer

(b)

Figure 3.7: The positional and angular localization error for HSV feature vectors with
1-3 denoising autoencoder layers. We also included the gray scale image with a 1
layer denoising autoencoder. The one layer network with HSV images is the best
considering computational requirements and the localization error.



3.3. Experiments 45

The three layer HSV network performs worse in comparison to the two and one
layer networks. It is possible that the type and amount of corruption is not suited
for this number of layers in the SDA and our application. The two layer network
performs better using a smaller number of epochs, but the one layer DA network
catches up when more training is done on the denoising network. However, com-
putationally the one layer network is superior because it takes much less time to
train the network. Since the positional and angular errors of two and one layer
network are similar, we decided to select the one layer networks for the rest of the
experiments. In addition to the localization results, a reconstruction attempt of the
scenes is depicted in Figure 3.8.

Figure 3.8: The pictures on the left are original images from the camera, and the right
side pictures are the reconstructions from a one layer denoising autoencoder. The
number of pictures used for training this network is 150 thousand.

We compared the final location performance of all network configurations with
their respected features. The sub-sampled plain HSV images which were not given
to the DA networks are selected as our baseline. The HoG features were also directly
connected to the location estimating feed forward MLP. The HSV image features



46 3. Localization using Stacked Denoising Auto Encoders

Error Baseline HoG

X(m) 1.5× 10−1±2.0× 10−1 1.0±8.0× 10−1

Y(m) 1.5× 10−1±1.2× 10−1 4.0× 10−1±2.0× 10−1

cos(θ) 9× 10−2±1.3× 10−1 5.6× 10−1±3.0× 10−1

sin(θ) 9× 10−2±1.1× 10−1 7.4× 10−1±3.0× 10−1

Error DA-HSV DA-HSV+SIFT

X(m) 9× 10−2±1.0× 10−1 8× 10−2±1.0× 10−1

Y(m) 6× 10−2±6× 10−2 8× 10−2±1.0× 10−1

cos(θ) 6× 10−2±7× 10−2 8× 10−2±1.0× 10−1

sin(θ) 6× 10−2±7× 10−2 8× 10−2±1.0× 10−1

Table 3.1: The metric and angular errors (with standard deviations) of all the feature
vectors in 3D simulation. The number of training examples for the autoencoder is
150 thousand images, and for the location estimation layer we used the training set
of 10 thousand images, and 2 thousand for validation and test.

that were given to the DA networks are named DA-HSV. The HSV image features
including the top four prominent SIFT features are named DS-HSV+SIFT. Table 3.1
shows the results of all the methods against each other in 3D simulation. As can be
seen, the lowest performance is for the HoG feature. It seems that the compressed
information about the gradients in the scene is not unique enough to approximate
metric position of the robot. The baseline clearly outperforms the HoG feature, but
it fails to reach the performance of features with the DA network with a large mar-
gin. The sub-sampled HSV image average error on X and Y is less than 10cm, with
negligible error on θ which corresponds to approximately 4 degrees. Surprisingly,
the results of the sub-sampled HSV image plus the prominent SIFT keypoints per-
forms worse than the normal HSV. This is because the keypoints are resilient against
rotation and scale, and therefore they can be present in multiple views of the same
scene. Perhaps, including the location of the keypoint in the image would help re-
ducing the error of the system. The run-time performance of our neural network is
on average 120Hz.



3.4. Conclusion 47

3.3.3 Computational Performance and Costs

We used a standard desktop PC running Ubuntu 12.04 with an Intel Core i7-4790
CPU at 3.60 GHz, 8 GB of RAM, and an nVidia GeForce 980GTX GPU with 4GB of
memory with the price of 1500 Euros. The GPU was only used for training of the
SDA networks using the Theano library, and we only used one CPU core to test the
final trained network. The average training time for SDAs was about 2.5 hours for
150,000 images. Training of the localizing network took on average 1 day for 10,000
epochs using the FANN library. The runtime speed of the complete pipeline on one
CPU core is on average 0.008 seconds.

On the other hand, Whelan et al. (Whelan et al. 2013) achieved a run-time speed
of 0.03 seconds using CUDA implementation of visuo odometry for dense RGBD
mapping on an Intel Core i7-3960X CPU at 3.30 GHz, and an nVidia 680GTX with the
approximate price of 1800 Euros. Our approach has the advantage of higher speed
and requires minimal hardware during runtime. The computational disadvantage
of our method is the long training procedure which can be neglected since it is only
done once, and can be delegated to cloud services to reduce the hardware costs.

3.4 Conclusion

In this chapter, we adopted a novel approach to tackle the robotic localization prob-
lem by using denoising autoencoders with image information and assistance of tra-
ditional mapping methods. We first experimented with multiple network architec-
tures and training configurations. Next, we trained the autoencoders in 3D simu-
lation using multiple feature vectors. We finally compared the localization error by
attaching a two layer neural network, and associating ground truth values to the
compressed autoencoder output. Our experiments showed very promising autoen-
coder reconstruction results in addition to low localization error. The error rates
were approximately 10 centimeters and 4 degrees for 3D simulation using a one
layer denoising autoencoder with sub-sampled HSV images. We can conclude that
denoising neural networks perform well in retaining image structure, and can be
used to both compress the image and associate location values to the compressed
results. In addition, the network run-time computational requirements are so low
that we were able to achieve 120Hz on a conventional processing unit.



48 3. Localization using Stacked Denoising Auto Encoders

3.5 Future Work

Despite the SDA results in unsupervised reconstruction of the scene and supervised
location estimation through regularization of the latent space through denoising,
variational autoencoders (VAE) (Kingma and Welling 2014) surpassed SDA’s capa-
bility and performance in compression capability, robust latent space representation,
and convolutional structure support in the encoding and decoding part (Kulkarni
et al. 2015). VAEs have been applied in classification and robotics contexts such as
Semi-supervised learning scenarios for image classification (Pu et al. 2016), genera-
tive zero-shot transfer in reinforcement learning (Higgins et al. 2017), and learning
sampling distribution in robotic motion planning (Ichter et al. 2018). It is possible
to replace the SDA with a VAE using a CNN back-bone to increase the location esti-
mation precision and reduce the number of required labeled images.

In the context of increasing the performance of the current network, we can first
examine the error propagation of the location estimation layer to the full network.
This can be done after the initial training of the location estimation layer to avoid
disrupting the SDA pre-trained weights. In addition, the relation between the size
of the environment and the performance of the network is still unknown. Therefore,
we plan to first carry out extensive tests on bigger simulated environments, and then
move the experiments to real scenes and report the performance and requirements
of the network. Although the results on the SIFT features were not promising, it
is also clear that a part of the location information may come from sharp details of
landmark objects, in addition to the overall scene appearance provided by the HSV
full image. To incorporate the spatial layout of SIFT keypoints of relevant landmark
objects, it will be conducive to explore the method of attentional patches (Sriman
and Schomaker 2015) in future work. We also did not use the informative depth
features such as the images given by an RGB-D sensor. It may further reduce the
localization errors. We plan to reconstruct the scenes from the estimated positions
using the full network, and attempt to build a 3D representation of the memory of
the system. Finally, we are trying to combine the odometry of the robot and the
neural network estimations by using an extended Kalman filter in order to increase
the localization performance and exclude outliers.



Chapter 4

Two-Stage
Visual Navigation by Deep Neural Networks
and Multi-Goal Reinforcement Learning

Abstract

In this chapter, we propose a two-stage learning framework for visual navigation in
which the experience of the agent during exploration of one goal is shared to learn to nav-
igate to other goals. We train a deep neural network for estimating the robot’s position
in the environment using ground truth information provided by a classical localization
and mapping approach. The second simpler multi-goal Q-function learns to traverse the
environment by using the provided discretized map. Transfer learning is applied to the
multi-goal Q-function from a maze structure to a 2D simulator and is finally deployed in
a 3D simulator where the robot uses the estimated locations from the position estimator
deep network. In the experiments, we first compare different architectures to select the
best deep network for location estimation, and then compare the effects of the multi-goal
reinforcement learning method to traditional reinforcement learning. The results show a
significant improvement when multi-goal reinforcement learning is used. Furthermore,
the results of the location estimator show that a deep network can learn and generalize
in different environments using camera images with high accuracy in both position and
orientation.

4.1 Introduction

Learning by reward and punishment is one of the fundamental learning methods in
nature. This learning process is intrinsic in most of the species living on Earth, espe-
cially the ones with higher levels of cognitive abilities such as humans (Shteingart
and Loewenstein 2014). This type of learning, reinforcement learning (Sutton and
Barto 1998), has been a subject of research for a long time. Its modern form, which is
highly based on Markov decision processes, started to emerge in the 1980s (Witten
1977), and became popular in the second half of the ’90s (Sutton and Barto 1998),
(Bertsekas and Tsitsiklis 1995).



50 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

There are two main learning methods in reinforcement learning (RL): model-
based and model-free. The model-based approach requires a deep knowledge of the
environment which allows us to build decision processes that connect the states with
consequences of actions (Howard 1960), (Bellman 1957). However, the model grows
substantially when the number of states and actions increases. In addition, it is often
very complex to learn a model of the tasks that the agent needs to solve. Model-free
RL plays an important role by allowing the exploration of unknown state spaces
and using function approximators (FA) (Wiering 1999), (Reynolds 2002), (Busoniu
et al. 2010). These approximators estimate values of actions in a state through a lin-
ear or non-linear mapping. The linear FAs are proven to converge, but they lack
the ability to map complex states (e.g. camera images as input) into meaningful
value estimates for actions. This is the reason that non-linear FAs are often used
to tackle complex problems. One suitable and frequently used non-linear FA is an
artificial neural network. The main problem with neural networks and other non-
linear FAs is that they can diverge from the optimal solution due to forgetting past
experiences or instabilities in the learning process (Wiering 1999). Therefore, careful
thinking should be done during the design of the system. Types of feature inputs,
the rewarding mechanism, and the propagation of these rewards are some of the
important topics to consider. Due to these problems, the use of model-free RL meth-
ods was for a long time restricted to reasonably small sized problems such as robot
gait control (Kohl and Stone 2004), unit control in games such as StarCraft (Shantia
et al. 2011), etc. However, with the recent progress in training deep neural networks,
the prospects have changed for RL. Google’s DeepMind Research on Atari games
(Mnih et al. 2013) was, perhaps, a substantial landmark and more influential than
TD-Gammon (Tesauro 1995) towards a large scale RL deployment that can solve
difficult tasks that matches or surpasses human performance. Later, in 2014, with
Google’s DeepMind research on the complex board game Go (Silver et al. 2016), we
saw yet another hurdle being removed from the world of non-linear approaches in
RL. The trend has not stopped there; we have seen many RL publications ranging
from completing objectives in 2D games such as Doom (Kempka et al. 2016), besting
top tier players at StarCraft II (Vinyals et al. 2017) to more real-world applications
such as the Google research on robotic manipulation (Gu et al. 2017).

All the above applications have one thing in common, the need for hundreds
of thousands of epochs which translates to significant training time. This can, how-
ever, be reduced by using a combination of simulation, transfer learning, or multiple
agents. For example, in order to learn to avoid obstacles in the environment with
a robot, one can first train it in a simulator, and then use the same network to con-
tinue the training in real life (Kahn et al. 2018). However, avoiding obstacles using
a camera requires learning the optical flow. While it is possible to partially learn



4.1. Introduction 51

optical flow in simulation and later complete the learning on a real robot, the same
does not apply to place recognition, which is necessary for navigation. Neverthe-
less, it is possible to use simulations to speed up parts of the learning process. For
this reason, we propose a method that can tackle robotic navigation tasks using a
deep neural network architecture and model-free RL benefiting from simplified and
complex simulations.

In this chapter, we propose a novel two-stage approach to alter the common
end-to-end RL scheme and reduce the required time to learn to navigate in the en-
vironment. In the first stage, we train a deep neural network to localize the robot
in the environment using supervised learning, and in the second stage, a multi-
goal RL method is used which uses the estimated positions given by the deep net-
work to drive the robot towards the given goals. In stage one, we use a traditional
grid-mapping algorithm (GMapping) to extract the geometrical topology of the en-
vironment for the supervised training section of our approach (Grisetti et al. 2007),
(Grisetti et al. 2005). A set of images is recorded during the data gathering phase
that are tagged with the estimated location from the GMapping algorithm. In our
previous research (Shantia, Timmers, Schomaker and Wiering 2015), we showed
that a stacked denoising autoencoder (SDA) can learn the geometrical relation be-
tween the images and the robot location in a small 3D simulated environment. In
this paper, we use deep convolutional neural networks (CNNs) (LeCun et al. 1998)
to test the scalability and precision of this approach and compare the results to that
of SDAs in order to select the best type of network architecture. In parallel, we
use a grid-based approach to train our second stage multi-goal RL method. In the
first step, we extract a maze from the given map, and train a multi-goal Q-function.
When the training is finished, we continue the training of the same Q-function in a
2D simulator using the same map. Finally, we combine the position estimator net-
work, which provides the global location, and the multi-goal Q-function, which was
trained in the maze and 2D simulator, to navigate the robot to different destinations
in the 3D simulated environment.

We summarize our contributions as follows:

• Proposing a novel framework for robot navigation.

• Testing the scalability and localization performance of convolutional deep
neural networks that learn to map camera images to positions.

• Proposing a multi-goal reinforcement learning framework to learn to navigate
to several different goals at once.

• Transfer learning from maze to the 2D, and 3D physics simulator.



52 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

• Comparison of the results of the proposed multi-goal framework with tradi-
tional reinforcement learning.

In Section 4.2, we further investigate the state of the art in robotic localization
and the advances in deep RL. In Section 4.3, we describe the different methods used
in this chapter for position estimation and multi-goal RL. In Section 4.4, we portray
in detail the experiments done in which different types of position estimator neural
networks are compared, and further elaborate on the environments that are used
to carry out the tests. We continue the section by demonstrating the results for the
multi-goal RL method. Finally, we discuss the benefits and shortcomings of our
proposed method and conclude the chapter in Section 4.5.

4.2 Previous Work

Extensive research has been done on robot navigation, from indoor mobile robots
(Thrun et al. 2002), to drones (Bristeau et al. 2011), and vehicles (Levinson et al.
2011). Most of the research is focused on creating a map and localizing the robot in
this map using a variety of sensors, such as 2D/3D LIDARs (Hornung et al. 2013),
(Bristeau et al. 2011), cameras (Bonin-Font et al. 2008), or a combination of both
(Whelan et al. 2013). Often these maps are created based on the notion of grid cells.
These methods extract geometrical information from the scene and stitch them to-
gether by combining the robot motion model and the information that comes from
the sensors using probabilistic approaches (Thrun 2002). In the end, the robot has to
be able to plan a path (e.g. A∗, or Dijkstra’s algorithm, (Misa and Frana 2010)) and
avoid static and dynamic obstacles to maintain safe and reliable trajectories. This is
done mostly through different control algorithms which often, in a predictive man-
ner, forward simulate the movement of the robot and check the sampled path versus
a variety of criteria (e.g., proximity to obstacles, distance to global path, oscillation,
etc.) (Fox et al. 1997), (Gerkey and Konolige 2008). The performance and scalability
of these methods, however, is directly related to the precision of the sensors, and the
available computational power. This is one of the reasons that most mobile robots or
vehicles use dedicated 3D sensors such as laser range finders or time-of-flight cam-
eras to map and navigate in the environment. This, however, comes with a price,
the range finders are very expensive.

There have been attempts to solve this problem by using cheaper sensors such
as cameras to map and navigate the environment(Visual SLAM). In these meth-
ods, either feature extraction and matching are used to find correspondences be-
tween multiple images using corner detectors (Torr and Zisserman 1999), (Nister
et al. 2004), SIFT descriptor (Schonberger and Frahm 2016), ORB descriptor (Mur-



4.2. Previous Work 53

Artal and Tardós 2017), or featureless approaches are used that generate a global
map using direct image alignment, and probabilistic depth maps (Engel et al. 2015).
By applying geometric and motion constraints, theses algorithms separate static and
moving features from one another to localize the robot and build a map. A recent
survey paper by Saputra et al. (Saputra et al. 2018) gives a comprehensive view of
these methods.

With the popularity of deep neural networks (Schmidhuber 2015), different ap-
proaches were made to tackle the navigation problem using deep neural networks.
Previously, we transferred the knowledge from a traditional map to a stacked de-
noising autoencoder (SDA) in which the robot used grid mapping for training data,
and could localize its position using a camera after training in a small environment
(Shantia, Timmers, Schomaker and Wiering 2015). Bidoia et al. (Bidoia et al. 2018),
used a semi-supervised approach to create a graph map using deep CNNs. QR
codes were scattered in the environment while the robot randomly moved through-
out the environment. Later, using these codes, several graph nodes were created
which allowed the network to predict its location. Moving through the graph was
done by remembering the geometrical distance between the nodes.

Wang et al. (Wang et al. 2017), proposed a deep visual odometry method using
a recurrent convolutional neural network architecture that receives a pair of images
in each forward pass and outputs the poses. In this architecture, the CNN learns to
extract features from pairs of images while a long short-term memory (LSTM) block
learns the motion model and movement in the environment. Zhou et al. (Zhou
et al. 2017), presented an unsupervised learning framework for monocular depth
and camera motion estimation from unstructured video sequences. While the re-
sults are promising and have comparable performance to supervised methods, the
current framework requires intrinsic camera parameters and has difficulties with
dynamic scenes. In our approach, we evaluate how well our architecture can learn
positions using only one image before applying additional recursion complexity. In
addition, our proposed architecture tackles the kidnapped robot problem.

Researchers have also used end-to-end learning schemes to solve this problem.
Kemkpa et al. (Kempka et al. 2016) used RL to solve different sub-tasks in the game
of Doom. Although this research lacks the constraints of a mobile robot due to an
unconstrained movement in the virtual world, it shows how well the deep networks
can condense information in the form of images and make decisions to reach certain
goals. Kulhánek et al. (Kulhanek et al. 2019) used a long short term memory (LSTM)
as part of their CNN network in combination with a modified batched advantage
actor-critic (A2C) algorithm (Wu et al. 2017) to solve end-to-end visual navigation.
The LSTM part of the network was added to solve the partial observability of the
navigation task. In addition, the CNN network predicted the depth map and image



54 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

segmentation of the current observation and the goal image to enhance the train-
ing process and increase the generalizability of the network. Kahn et al. (Kahn
et al. 2018) developed a generalized computational graph using deep recurrent neu-
ral networks to navigate a remote control (RC) robot in a hallway. The focus of this
research was mainly to train the local control mechanism of the robot to perform
movements without hitting obstacles using a fixed longitudinal and a controllable
angular velocity. The researchers showed that by pretraining their model in simula-
tion, they can achieve faster convergence and better results in the real world.
There is one main issue regarding these end-to-end approaches, and that is the dif-
ficulty of extracting meaningful and human understandable data from the system.
It would be very difficult to tell the RC robot to go to a certain place (e.g. next
to the kitchen counter), or extract information from the system where it thinks it is.
Therefore, the training procedure has a hit-miss characteristic. One may never know
whether the system will converge, nor which problems are causing the divergence.

Our focus is to make the navigation process goal oriented and explainable. We
would like to know in which location the robot has difficulties reaching or localizing
itself, and why. In addition, we would like to make the robot learn multiple objec-
tives at the same time while exploring the space for the current objective. If the robot
is traversing a home environment looking for the kitchen, it may gain knowledge
about reaching the bedroom as well, or by using reverse logic, it can know which
new places it has to explore.

There has been prominent research in the past years regarding the utilization of
experiences and exploration, but the initial idea has been around for a long time (Lin
1993). The main drive to use the past experiences is to avoid spending a lot of time
searching for different goals repeatedly while avoiding that the neural networks
forget the old experiences. From this perspective, any attempt to reuse experiences
is an advantage. The more recent reuse of this idea combined with deep neural
networks was done by Mnih et al. (Mnih et al. 2016) which allowed multiple agents
to share their experiences while a single server computes the gradients and sends the
newest neural network function approximator back to the agents. As we mentioned
before, neural networks as function approximators have problems with forgetting
past experience. Therefore, in DQN (Mnih et al. 2013) the agent uses a replay buffer
as well. Every now and then, this buffer is sampled from, and the state-action pairs
are used to train the system.

While using neural networks as function approximators, one can wonder how to
create one network that remembers all the Q-values for different goals. The univer-
sal value function approximator (Schaul et al. 2015) showed that this can be done
by augmenting the feature input with the position of the goal. This way, the net-
work will not have any problem remembering and assigning different Q-values to



4.3. Methodology 55

different goals.
Although this approach allows us to use one function approximator for multiple

goals, it solely relies on the generalizability of the FA for providing correct Q-values
for unseen goals. However, every action results in reaching a new state which can
become a goal in the future. For example, if we are driving for the first time to the
supermarket, we may also see the gas station on the way. Next time, if we want to go
to the gas station, we do not have to search for it. This is the idea behind hindsight
experience replay (Andrychowicz et al. 2017).

Veeriah et al. (Veeriah et al. 2018) continued this trend to apply multi-goal RL
using an unsupervised mastery in scenarios where there are no apparent goals. For
example, in most of the Atari games, the goal is to increase the reward intake, and
therefore, no specific single goal can be set.

Our research focuses on the specific navigation problem with obstacles and en-
vironmental boundaries in place. The simulated robot should be able to keep track
of certain fixed goals and be able to use the experiences to learn to navigate to a
new goal. In addition, due to the two-stage training style of the proposed approach,
our method does not have to use the universal value function approximator and
includes goals in the input. Instead, look-up tables are used in our architecture in
which each goal has a separate Q-function.

4.3 Methodology

In this section, we address in detail the methodology that we used to design and test
the robot navigation pipeline. First, we elaborate on how we solve the exploration
and path finding problem through our proposed multi-goal RL method, and then
explain our position estimator network.

4.3.1 Multi-Goal Reinforcement Learning

The first step of our algorithm is to learn the correlation between the estimated po-
sition of the robot and the robot’s utilities of different actions in different states. In
end-to-end deep RL, the system learns to optimize (state, action) pair Q-values us-
ing an image as input. This approach has several drawbacks. The most prominent
is the required number of trials for a complex task such as navigation. In order to
learn to navigate in the environment, one would need a deep network to be able to
extract meaningful information from raw images. In the case of model-free methods
such as Q-learning (Watkins 1989), (Watkins and Dayan 1992) and Sarsa (Rummery
and Niranjan 1994), (Sutton 1996), exploration of possible new states adds to the



56 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Single-Frame 
Position Estimator

Network

Model-Free 
Multi-Goal RL

Robot-Controller

Camera Input

Maze 
Approximation

Traditional Map

Image Dataset
Single-Frame 

Position Estimator
Network Training

Model-Free 
Multi-Goal RL

2D Environment

3D Environment

Model-Free 
Multi-Goal RL Robot-Controller

Step 1.

Step 2.

Step 3.

Figure 4.1: The complete proposed framework in a nutshell. In the first step, the
position estimator is trained with positions extracted from a traditional mapping
method while the model-free RL agent learns the environment using an approxi-
mated maze extracted from the map. In the second step, the RL agent continues
to learn the effects of the robot controller on its actions in a 2D simulated environ-
ment. Finally, in the 3D environment, the agent uses position estimation from the
porposed CNN and continues learning.

difficulty of the task at hand. Parallelizing the experiences in deep RL and multi-
objective approaches, however, has allowed to reduce this number significantly in
applications such as robot manipulation (Levine et al. 2016). Our proposed method



4.3. Methodology 57

focuses on the idea of sharing the experiences between multiple goals and using a
goal selection technique that gives us the most useful information from exploration
throughout the trials.

In robotic navigation, the state space has six dimensions with three position and
three orientation axes. Most robots, apart from drones and robots that operate in
uneven terrain navigate only in three dimensions (X , Y , and θ). One can define this
state space as a discrete set of blocks or a continuous set of numbers. In practice,
low level control of the robot base is done in a continuous space while the location
estimation and general path planning use a discrete approach.

We use a discrete separation of locations with fixed resolution. While the selected
action of the robot is decided through the multi-goal RL method, the movement of
the robot between the cells is done using the dynamic window approach (DWA)
(Fox et al. 1997). We only use the X and Y dimensions in order to reduce the size
of the state space. Our localization method, as described in section 4.3.2, accurately
estimates the orientation of the robot which allows the local controller to reach the
desired orientation. Figure 4.2 shows a discrete and down-sampled maze extracted
from a higher resolution 2D map.

We consider that the agent’s knowledge of the environment is incomplete and re-
quires exploration. Therefore, we select a model-free RL approach. In the model-free
domain, we can either select on-policy or off-policy RL. On-policy RL algorithms,
such as Sarsa are suitable when we want to evaluate the policy that also gener-
ated the current outcome of the agent’s actions. Off-policy RL methods such as Q-
learning, on the other hand, allow to train policies that did not generate the current
data. This is the main reason why RL methods that share experiences with one an-
other should always use off-policy RL. Google’s DeepMind DQN (Mnih et al. 2013),
and a promising robotic manipulation system (Levine et al. 2016) are examples of
such approaches. Our proposed approach uses a model-free multi-goal off-policy
RL algorithm. For example, in Figure 4.2b, the agent can use the experiences during
exploration of goal 1 and use it later to reach goal 4.

Q-Learning

Q-learning requires a way to store Q-values for each state-action pair (st, at). These
values estimate how good the given action is to reach the goal. The Q-values are
updated based on rewards that are given to the agent when it reaches a goal or
rewards that are given during the navigation phase. Equation 4.1 shows the general



58 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Figure 4.2: Figure 4.2a is the 2D generated map of the big apartment using the Rao-
Blackwellized grid mapping method with 5cm resolution. Figure 4.2b shows the
down-sampled approximated maze of the map with 40cm resolution, which needs
to be learned by the RL algorithm. The red squares show the initial positions, and
the yellow squares show the goals for the RL experiments.

update rule for the Q-learning method (Watkins 1989).

Qk+1(st, at) = Qk(st, at) + α

ˆ

rt + γmax
a

Qk(st+1, a)−Qk(st, at)

˙

(4.1)

After each action, the agent moves and receives a reward rt. The Q-value of
the previously selected action is updated based on the reward of the current state,



4.3. Methodology 59

the performed action, and the prospect of the next state based on its highest Q-value
estimation. The γ parameter is the discount factor which determines the importance
of future rewards versus immediate rewards and α is the learning rate. The function
that approximates the Q values from each state-action pair can either be linear or
non-linear. For our problem, since the position estimation network provides the
location of the robot, the state space of the RL can be a grid, hence we use a look-up
table. For problems in which the state space and the connection to actions are not
trivial, a more complex non-linear approximator is required. Considering the grid
state space, the available actions to perform in each state are up, down, left, and
right movements. We discard the rotation dimension to reduce the size of the state
space. This is again possible because the position estimation network gives global
coordinates, and before the robot needs to go to the next position, it can rotate to the
desired angle.

Due to exploration with Q-learning and the required time to move a robot, the
convergence to the optimal solution takes a considerable amount of time. We speed
up the convergence by using previous experiences of the agent in the environ-
ment. We accumulate all the state, action, reward, and next state experience tuples
(st, at, rt, st+1) in a replay buffer. After a certain number of online updates, we re-
calculate target values. Then, we shuffle the buffer to remove correlations between
data points that are next to each other in time. We take a mini batch from the dataset
and train the Q-function. This process is continued until all the past experiences in
the replay buffer are used.

Using the above approach, we can initialize a separate lookup table for each goal.
After the Q-function for the first goal is optimized, we go to the next one until all
the goals can be found. The downside is that for each Q-function, we must reset the
values to the initial ones since these Q-values are optimized for one goal.

Multi-Goal Q-learning with Experience Replay

Using the Q-learning method allows us to train multiple policies at once. This means
that while the agent is searching for one goal, it can learn about reaching other goals
at the same time. To this end, the first step is to update the Q-values for all the goal
Q-functions at the same time. In the worst-case scenario, none of the other goals will
be traversed during the exploration of the current goal. However, the Q-functions
for all the other goals can learn from all the negative results due to obstacles in the
state space. In the best case, some of the other goals will be traversed during the
exploration phase of the first goal, and therefore, the robot can learn to optimize
its path toward them. With multi-goal Q-learning, multiple Q-functions are trained
each time step which all have their own reward function that emits a reward rgt



60 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

(Equation 4.2):

Qgk+1(st, at) = Qgk(st, at) + α

ˆ

rgt + γmax
a

Qgk(st+1, a)−Qgk(st, at)

˙

(4.2)

The selection of which policy to use or on which goal to train is an important
factor and determines the total time of convergence. We use the notion of temporal
difference (TD) errors to measure how many times a secondary goal was traversed.
The TD error is the squared difference between the new target of a Q-value of a
state-action pair, and its previous value (Equation 4.3).

TDg
err = (rgt + γmax

a
Qg(st+1, a)−Qg(st, at))2 (4.3)

When the TD error is high for some Q-function, it shows that the specified goal
location has not been fully learned by the policy. When the TD value is low, it means
that the robot has visited this state several times, and the Q-values are converging
to an optimal value. We set up a TD-error matrix for each of the Q-functions with
a high initial value and we update the elements of the matrix that the agent passes
through. We only keep the last value of the TD-error. After reaching and meeting the
convergence criteria for the current goal, we select the new goal with the highest TD
error by averaging over all the actions for the next possible goal position. This makes
sure that the robot traverses the environment in an efficient way and increases the
chances of reaching other goals on the way.

Robot Movements and Transfer Learning

We discussed our approach toward solving a maze navigation problem using the
multi-goal approach. However, learning to solve a maze is straightforward com-
pared to a robot moving in an environment. A robot has a footprint which is a
projected polygon of the 3D shape of the robot on the 2D floor plan. For easier
calculations, all the concave footprints are often changed to a convex version. The
robot also has an axis of rotation which is often on the center of the robot. Move-
ments of the robot are given through a velocity vector. In a 2D navigation scenario
this velocity consists of a positional speed in X , Y , and a rotational speed in θ. If
the robot has a differential drive base, the positional speed in X direction, and rota-
tional speed in θ can be used, while an omni-directional robot can freely move in all
directions. The robot base program will translate these velocities to wheel speeds.
In order to have a safe navigation system, we need to apply the speeds given to
the robot and change the position and orientation of the footprint. Using obstacle



4.3. Methodology 61

detection sensors, such as infrared, sonar, or laser, the robot can identify its position
in relation to these obstacles and processes the movement commands in such a way
that the edges of its footprint polygon never touch the obstacles on the way. We use
the dynamic window approach (DWA) method to control the robot locally. In this
method, the robot has a global path to the sub-goal, the location of the sub-goal, and
a cost-map that shows the surrounding obstacles and the current footprint of the
robot. The global path in our case is very short because the actions just move the
robot from one cell to another neighboring cell (sub-goal). The location of the set
sub-goal is therefore one step away from the robot in either X or Y direction. The
cost-map is a matrix with a selectable resolution. Based on the sensor, if a certain cell
is occupied, it will be marked. Multiple sensors can mark and clear cells in the cost
maps. DWA will sample velocities in the available dimensions based on the type
of robot. Then, it will forward simulate the robot movements for a short amount of
time based on these samples. In the end, a trajectory will be selected which causes
no collision, and keeps the robot close to the designated path with a safe distance
from obstacles. This accomplishes having the robot move to neighboring cells.

In order to connect the maze navigation results to a more realistic setting, we
must adapt the continuous movement of the robot in the 3D simulated environment,
so it matches the cell centers in the maze. To this end, our first step is to move from
the approximated maze to a 2D simulator. The 2D simulator has a simpler physical
model and does not require any rendering, allowing us to speed up the simulation
by a factor of ten in comparison to the 3D simulator. In the 2D simulator, we use the
map that was made from the 3D simulation.

The actions in the simulator do not necessarily have the same results as in the
maze due to the higher resolution of the map, and the nature of the DWA method.
Actions can fail, especially in corners, and the RL method needs to be able to cope
with it. We use the trained Q-function from the maze, and continue learning in
the 2D simulator. It is notable that the robot position in the 2D simulator is always
correct. Therefore, the robot is exactly at the location that it thinks it is. However, in
the 3D simulator this is not the case, because the position is inferred from a camera
image and this brings us to our next challenge, dealing with approximation errors.

Each robot has an odometry error model. There are 5 different noise types that
affect the odometry of the robot. Three of which are the direct deviations in X , Y ,
and θ dimension. The other two are co-dependent errors across these dimensions.
When the robot moves forward, it can slightly rotate, or when the robot rotates,
the position of the robot can also change due to wheel skid. These 5 error types
make a fully functional navigation based on odometry impossible. This problem
is solved by estimating the global position of the robot using a variety of sensors
and combining it with the odometry model through filtering. Non-linear Kalman



62 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

filters (e.g. extended (Jazwinski 1970), and Unscented Kalman Filter (Wan and Van
Der Merwe 2000)), and particle filters (Gordon et al. 1993) are the mostly used meth-
ods. The idea is to predict the new position of the robot after a series of motion
commands (Equation 4.4) and update this belief with the estimation of the position
from any sensor (Equation 4.5).

b̂el(xt) =

∫
p(xt|xt−1, ut)bel(xt−1)dxt−1 (4.4)

bel(xt) = ηp(zt|xt)b̂el(xt) (4.5)

Where xt is the state vector (e.g. X,Y , and θ), ut is the given motion command, and
zt is the sensor reading of the robot at time t. η is a normalization factor since the
multiplications of the beliefs of the robot at time t by the probability p(zt|xt) may
integrate to a value unequal to one. By knowing the noise model of the robot move-
ment, and the probability of being in the current location by the position estimator,
one can keep a good track of the location of the robot for small movement steps,
such as used in our methods.

For the final step of transfer learning, the trained Q-functions in the 2D simulator
for all the goals will be further trained in a 3D simulator. In the 3D simulator, the
position estimator networks give the estimated position of the robot, while the RL
method must deal with wrong location estimations. Since the position estimation
of the neural networks is accurate and the distance between the cells are small, the
odometry error can be ignored. Therefore, we leave out Equation 4.4, and use the
global estimation from the network to determine the grid-cell of the robot’s position.
We are curious to see whether the RL method is able to handle the measurement
errors of the network without the use of motion prediction and learns to navigate
the robot to all goals along the shortest path.

4.3.2 Position-Estimator Networks

In our previous research, we have shown that SDA can map images to positions
in a small 3D simulated environment with adequate generalizability (Shantia, Tim-
mers, Schomaker and Wiering 2015). However, the question is how well the network
scales with the size of the environment. SDAs have shown promising results since
their introduction in academia in 2009 (Vincent et al. 2010). Due to the fully con-
nected architecture of the network, the number of weights to train increases signif-
icantly when the input vector is large. Each additional layer will increase the num-
ber of weights significantly which requires a large amount of training data in order
to learn a good position estimator. In addition, by flattening the two-dimensional



4.3. Methodology 63

image into a one-dimensional vector, we lose topological information of the pix-
els, which is crucial in the process of learning. Perhaps, these are the main reasons
that SDAs were outdated quickly with the advent of faster learning and more accu-
rate CNNs. The CNN was first proposed by LeCun et al. (LeCun et al. 1990) but
they became widely popular after Alex Krizhevsky et al. (Krizhevsky et al. 2012)
bested the ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2012.
Combining the processing power of GPUs with the new ReLU activation function,
dropout (Hinton et al. 2012), and contrast normalization of the images in the CNN
architecture allowed them to perform much better than all other approaches in the
object recognition field. Since then, researchers have been working to find ways to
optimize the training and design of the networks — creating deeper and deeper net-
works — such as the Google Inception architecture (Szegedy et al. 2015), (Szegedy
et al. 2017) while others focused on broadening the application of CNNs in differ-
ent fields such as object detection (Ren et al. 2015) and semantic segmentation of
the scene (Long et al. 2015). By changing parts of the CNN architecture, we use its
potential for scalability and generalizability, and compare the results of CNNs and
SDAs to select the best network to estimate the position of the robot in the environ-
ment.

Convolutional Neural Networks

When we talk about CNN architectures, it is important to see what type of problem
we are trying to solve. CNNs are used extensively in the area of object recognition,
where one would like to recognize the main object that can be displayed in different
parts of the image. Therefore, one would like the networks to have scale and transla-
tion invariance. This is where the pooling layers play an important role. The pooling
layers not only reduce the size of the feature map of a hidden unit, they also carry
either the maximum or the average response over the input window. When applied
in multiple layers, it works as a scale, and shift invariant feature for the network.
This property, although useful for object recognition, is detrimental for precise loca-
tion estimation (Bidoia et al. 2018). We would like the network to observe exactly
where an edge was in the image and with what size, since this is important for lo-
calizing the agent. Therefore, we do not use pooling layers in our architecture. This
has a drawback as well, the input resolution should be limited, because the number
of parameters to optimize are greatly higher than that of networks with pooling lay-
ers. We experimented with different depths of the network, and single or multiple
kernel sizes in the same layer which we will explain in detail in the next section.



64 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Figure 4.3: Small kitchen room of size 7× 5 meters.

Figure 4.4: Big apartment of size 14× 9 meters.

4.4 Experiments and Results

In this section, we describe the experiments for the position estimator networks, and
the reinforcement learning algorithms in the maze, 2D, and 3D simulation. For the
environments, we use one maze simulator, the 2D Stage simulator (Vaughan 2008),
and the 3D Gazebo physics simulator (Koenig and Howard 2004). We used the robot
operating system (ROS) framework (Quigley et al. 2009) to develop our software.
The environments for the experiments are shown in Figures 4.3 and 4.4. We used
OpenCV, Theano, and Tensorflow to extract images and train the SDA and CNNs
(Bradski 2000), (Bergstra et al. 2010), (Abadi et al. 2016).



4.4. Experiments and Results 65

4.4.1 Data Gathering

We first extract the map of the 3D simulated environment (see Figure 4.3 & 4.4) using
the Rao-Blackwellized grid mapping approach (Grisetti et al. 2007). In this method,
the map-building process starts from the first laser reading. When the robot moves,
the position of the robot is updated by using scan matching of the new laser reading
with the old one. If this scan matching fails, the odometry model of the robot is used
to update the location and merge the laser reading from the existing map with the
previous map. This process led to the map shown in Figure 4.2.

We divide the map in 25-centimeter cells. The center of each cell is a location that
the robot should traverse in order to gather the training and test data. In order to
do this in an automatic manner, we use Dijkstra’s shortest-path algorithm to plan a
path to the center of the cell (Misa and Frana 2010). We consider the footprint of the
robot in order to make sure that it fits in the destination cell. The unknown locations,
occupied locations, and locations where the robot does not fit are ignored. Finally,
we send the robot to each of these positions, and record images and corresponding
positions given by the grid mapping method while rotating the camera 1 degree at
a time in each position.

After data gathering, we create a test, validation, and training set. We split the
images from each location into thirty-six sections (using 10-degree steps). For each
section, half of the positions and rotations together with the images are assigned
to the training set. For the remaining five images, two go to the validation set,
and three to the test set. Therefore, 50% of the data is used for training, 20% for
validation, and 30% for testing. The total data set size for the small kitchen and the
big apartment are 24,000 and 195,000 images, respectively.

4.4.2 Deep Networks and Localization

We performed a set of experiments to find the best architecture for the position esti-
mator network. As mentioned in section 4.3, we use SDAs and CNNs to estimate the
position and orientation of the robot. We want to find out which of these networks
has the best global localization performance in the environment and how well they
scale with the size of the room.



66 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Layers Units per Layer Corruption per Layer

1 [4000] [0.2, 0.2]

1 [1500] [0.2, 0.2]

2 [4000, 4000] [0.2, 0.2]

2 [1500, 1500] [0.2, 0.2]

3 [4000, 4000, 4000] [0.2, 0.2, 0.2]

3 [1500, 1500, 1500] [0.2, 0.2, 0.2]

Table 4.1: SDA Architectures for Experiments

Stacked Denoising Autoencoder Architecture

For the SDAs, we selected a number of architectures that can be seen in table 4.1.
The number of SDA layers, the number of neurons in each layer, and the size of the
position estimator multi-layer perceptron (MLP) on top of the SDA layers are the
subject of our tests. We train each network for 10,000 epochs, and save the valida-
tion results. The network with the lowest validation error for each architecture is
used for testing. In our previous research, we did experiments in a room very simi-
lar to the small kitchen in Figure 4.3. However, there are two main differences in the
setup of the localization experiment of this paper in comparison to the previous one.
In our previous paper, we had a large pre-training data set of 150,000 unlabeled im-
ages. However, since we want to compare the results of SDAs to CNNs, we decided
to use the pre-training phase on the smaller labeled data set. We estimate that the
performance of the network will drop due to the importance of the unsupervised
phase of SDA training. In addition, the environment used in our previous research
had a large number of texture-less walls, which forced us to reduce the data gath-
ering locations to positions with some textures in the field of view of the camera.
In this paper, however, we added paintings to the walls to allow for complete data
gathering of the environment, since the agent has access to meaningful information
of the whole environment to localize itself.

The input size of the images for the SDA network are HSV color images of size
36× 36 which led to the best results in our previous paper. Due to full connectivity
of the layers, increasing the image size results in very high testing errors.



4.4. Experiments and Results 67

Layers Convolution Type Kernel

7 Convolution - No Pooling 5× 5

7 Inception Convolution - Pooling 5× 5, 3× 3, and 1× 1

9 Convolution - No Pooling 5× 5

9 Inception Convolution - No Pooling 5× 5, 3× 3, and 1× 1

9 Inception Convolution - Pooling 5× 5, 3× 3, and 1× 1

Table 4.2: CNN Architectures for Experiments. The dense layer size of all networks
have 512 neurons, and the optimizer used for all the networks is Adam optimizer.

Convolutional Neural Networks

The same procedure applies to training the CNNs. Table 4.2 shows the CNN ar-
chitectures that were trained and evaluated. For the CNNs, presence and absence
of pooling layers, the depth of the network, and Convolution type (Inception vs.
Normal) were selected as the main criteria for testing different architectures. We use
strides in networks without pooling layers to reduce the number of parameters. We
compare the use of RGB and HSV images to train and validate the CNNs on the date
from the small kitchen, and will train the best performing network on the data from
the big apartment. The input size for the CNNs are images of size 84 × 84 × 3. The
detailed design of the third architecture from Table 4.1 is shown in Figure 4.5.

4.4.3 Reinforcement Learning

We first compare the normal and multi-goal Q-learning approach on random mazes.
The mazes are grids of size 10× 10 surrounded by walls. The randomization of the
maze is as follows. The (0, 0) cell is empty, and we call it the starting point. For
each column, there is a thirty percent chance to have obstacles inside. When the
column has obstacles, a random number will generate how long the obstacles will
be. Another random number selects the position of the obstacles in the column. The
length of the obstacle cannot exceed more than half of the maze. This procedure is
repeated for all columns, and we also repeat it for all the rows. After this operation,
there may exist obstacles with hollow cells inside. From the starting point, we per-
form connected component analysis, to find out all the cells that are reachable from
this point. We fill the non-blocked remaining cells inside with obstacles. Then, we
generateX = 10 random goals, the distance of these goals to the starting point (0, 0)

should be more than 7 steps. If the random agent cannot find these goals after sev-
eral iterations, we reject the maze and start over. Finally, we randomize X − 1 more
initial positions to create in total, 10 mazes with 10 goals and 10 initial positions.



68 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

(a) Inception A module architecture

(b) Inception B module architecture

(c) CNN Architecture

Figure 4.5: The nine-layer position estimation convolutional neural network archi-
tecture with inception. The input to the network is an 84 × 84 image; The output
is estimated as X , Y , sin θ, cos θ. Images (A) and (B) show two different Inception
modules and (C) shows the complete CNN architectures.



4.4. Experiments and Results 69

Reaching the goal gives the agent a reward of 100 while hitting blocked cells
gives a reward of -2. All other actions receive a fixed punishment of -0.1. We ini-
tialize the Q-values to 80 to encourage exploration. The learning rate for the update
of Q-values is 1.0 for the maze, 0.1 for the 2D simulator, and 0.8 for the Gazebo 3D
simulator. The maze learning rate is set to 1.0 because the environment and actions
are deterministic. For the 2D simulator, a smaller value is selected to avoid large
changes in Q-values during training due to the stochasticity of the robot control. In
the 3D simulator, however, we increased the learning rate because the simulation
speed is slower and due to the position estimation errors the Q-values should be
updated faster.

The agent uses Boltzmann exploration for the selection of actions for all the maze
scenarios which can be seen in Equation 4.6.

P (ai|s) =
exp(Q(st,ai)

T )∑N
j=1 exp(

Q(st,aj)
T )

(4.6)

T is the temperature, and for each action in state st, we compute action proba-
bilities for the N actions. When the temperature T is high, actions will be assigned
similar probabilities. When T drops, higher Q-values will have a higher probabil-
ity to be selected. We initialize the temperature T to 2 with a decay value of 0.998.
After each trial, the temperature is multiplied by the decay value. For the 2D and
the 3D environment, however, we use the ε−greedy method to reduce exploration
because the Q-functions have already been trained and too much additional explo-
ration costs more time in the simulators. The ε value is set to 0.1.

For the maze experiments, we consider a goal learned when the success ratio at
reaching the goal is 100 percent for fifty consecutive trials from each starting posi-
tion, and the average difference in number of steps to reach the goal is smaller than
10.

The results on the mazes allow us to reliably measure the performance of the
multi-goal RL approach versus the sequential goal selection method. To assess the
temporal difference goal selection, we perform a separate set of maze experiments
with different convergence criteria. In these experiments, the required success ratio
of 100 percent is only necessary for fifteen consecutive trials. We also remove the
average difference in the number of steps to show the difference between the two
approaches better. However, the final goal is to use our method to navigate a robot
in a realistic environment. Therefore, we perform experiments in the 2D and 3D
simulator as well. For these environments, we use the same big apartment map as
during the data gathering phase. We have to, however, downscale the map and
convert it to a maze with the correct cell sizes. We start the map approximation by



70 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

selecting the top left corner of the map images as (0, 0). We divide the width and
height of the map with the required cell resolution to extract rows and columns.
Any cell with an occupied map pixel will be considered as an obstacle, and the rest
will be free cells. We apply the same closing method as we perform for the random
mazes.

Big Apartment and Transfer Learning

For the big apartment in Figure 4.4, the map size has a width of 17 and length of 9
meters. The cell resolution is 40 centimeters, and therefore the approximated maze
size is 47 × 24. We run the RL tests on the approximated maze (Figure 4.2b), 2D
simulator (Figure 4.2a), and 3D simulator (Figure 4.4). The location of the robot in
the maze is just a cell index. For the 2D simulator, we use the ground truth pose
of the robot to determine the location of the robot in the cells. In the 3D simulator,
the position estimator network outputs the predicted position of the robot. These
experiments are repeated 10 times.

In order to test the performance of transfer learning, we train the agent in the
maze using RL, and then use the trained Q-function in the 2D simulator to cope with
the possible problems of local navigation. Finally, the trained Q-function in the 2D
simulator is used for the 3D simulation where the position estimator neural network
predicts the location of the robot, and the RL method deals with the errors in the
predictions. We expect to see a sharp decrease in the required time to converge to
reliably finding the goals. These experiments are done on the big apartment (Figure
4.4).



4.4. Experiments and Results 71

Small Kitchen - HSV

Layer Size No. Layer Corruption

Error

Position (m) Angular (Degree)

Mean Std Mean Std

1500 1

20%

0.218 0.213 12.6 14.0

4000 1 0.217 0.207 12.8 13.6

1500 2 0.204 0.221 11.6 13.7

4000 2 0.193 0.205 11.3 12.8

1500 3 0.198 0.214 11.6 13.9

4000 3 0.182 0.205 10.7 12.5

Big Apartment - HSV

4000 3 20% 0.560 0.869 28.8 48.9

Table 4.3: The experimental results for position and orientation approximations with
the stacked denoising autoencoders.

4.4.4 Experiment Results

In this section, we discuss the results of the position estimation networks and the
RL experiments.

Position Estimator Results

Table 4.3 shows the results of the SDA experiments. The best results for the small
kitchen room are for the network with 3 layers and 4000 hidden units with 20 per-
cent corruption of the input data. We used the same network for the big apartment
as well. The high position and angular errors in the big simulated room show that
these networks cannot scale well with the size of the environment.

Figure 4.6a shows a better overview of the error throughout the environment
for the big apartment. For each location, the robot estimates the position for each
angular rotation of the camera. Then, we average this error for each cell. The green
color shows the minimum mean cell error value from the network and the shades
toward red mean higher errors. Positions in the center of the map have a better
localization in comparison to locations close to walls and corners. The main reason
is that the robot has a wider view and can see a larger part of the room when it is
in the center. This gives the network more information to distinguish its location
robustly. In the corners and next to the walls on the other hand, the estimations are
poor. Plain looking walls or objects do not have much information, and therefore
the estimations suffer from this lack of information.



72 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Small Kitchen RGB

Network Type Position Error (m) Angle Error (Degree)

Mean Std Mean Std

7 Layer 0.066 0.087 4.9 1.96

9 Layer 0.069 0.101 6.1 2.59

inception 9 Layer 0.056 0.079 4.9 2.07

Small Kitchen HSV

Network Type Position Error (m) Angle Error (Degree)

mean std mean std

7 Layer 0.065 0.086 6.1 2.46

9 Layer 0.069 0.101 6.2 2.60

Inception 9 Layer 0.056 0.080 5.1 2.10

Big Apartment RGB

Network Type Position Error (m) Angle Error (Degree)

mean std mean std

7 Layer 0.156 0.190 3.9 2.67

9 Layer 0.113 0.125 3.1 2.21

Inception 9 Layer 0.076 0.067 3.8 16.3

Inception Pool 7 Layer 0.324 0.087 5.6 1.94

Inception Pool 9 Layer 0.276 0.174 4.5 2.51

Table 4.4: The experimental results for the convolutional neural networks.

Table 4.4 shows the results of the position estimation for the CNNs. The best
results are achieved by the Inception architecture in both rooms. In addition, the
results for the RGB color space is slightly superior to that of the HSV space. The
best 9-layer network with the RGB color space has 0.056 cm position error and 4.9

degrees angular error with 0.079 cm and 20.7 degrees standard deviation. The use
of the RGB color space works slightly better with the CNNs which is confirmed by
other researches as well (Sachin et al. 2018). Having more layers allows the system
to encapsulate the environment better, while using the inception architecture in each
level allows the network to use coarse and fine information at the same time. The
smaller 3 × 3 kernels only use the surrounding pixel information while the bigger
5 × 5 kernels also include a larger neighborhood which adds more global informa-



4.4. Experiments and Results 73

(a) Position errors for the best
SDA network. Green color repre-
sent minimum errors of 0.43 meter
per location, and red color has the
maximum error of 1.6 meter per lo-
cation.

(b) Position errors for the best
CNN network. Green color repre-
sent minimum errors of 0.12 meter
per location, and red color has the
maximum error of 0.56 meter per lo-
cation.

Figure 4.6: The error heat map for the position of the robot in the big simulated room.

tion. The result of the inception network on the bigger room is also interesting. The
positional and angular error has remained similar while the size of the room is dou-
bled. This shows that the CNNs can scale with the size and type of the environment.

The results from table 4.3 and 4.4 clearly show that not only the CNN network
performs better in a small environment, but it also scales much better when the en-
vironment is larger. For this reason, the 9 layer inception network is used to estimate
the positions for the RL method in the 3D simulator.

Figure 4.6b shows the distribution of the errors in the big environment. The
same procedure for the SDA heat map is repeated here. The higher error values are



74 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Random Mazes

Maze Number

RL Method 1 2 3 4 5 6

Normal RL 184k 209k 204k 185k 255k 212k

Multi-Goal RL 76k 82k 90k 73k 10k 91k

Random Mazes

Maze Number

RL Method 7 8 9 10 Average

Normal RL 186k 172k 203k 201k 201k

Multi-Goal RL 83k 75k 78k 93k 84k

Table 4.5: The experiment with 10 different random mazes. The values in the table
are the total number of steps required to solve the maze from each initial location to
each goal.

strictly for the positions that are closer to walls. In addition, we also observe that the
network gives higher position estimation errors when the scene has a large depth.
Since the network uses only a single image, it will be quite hard for it to correctly
estimate the depth, and the appearances of the objects that are further away do not
change a lot when the camera moves toward them.

Reinforcement Learning Results

Table 4.5 shows the results of experiments with the normal and multi-goal approach
for random mazes. The data show the average required number of steps to learn to
navigate to all the goals from all the initial positions. The multi-goal approach on
average has a 239% faster convergence time. Table 4.6 shows the comparison be-
tween random and temporal difference based goal selection with different starting
temperatures for the Bolzmann exploration. Note that we relaxed the convergence
criteria for this experiment. When the starting temperature and initial Q-values are
high, the agents are encouraged to explore the complete environment, and most of
the new goals do not need additional training. However, with a reduced starting
temperature and initial Q-values, the agents will not encounter all the goals where
smart goal selection can positively impact the convergence time. With this setting,
The TD-based goal selection performs on average 9 percent better than random goal
selection.



4.4. Experiments and Results 75

Random Mazes - Multi-Goal RL

T = 1.0, Q = 0 Maze Number

Goal Selection 1 2 3 4 5 6

Random 23k 31k 28k 27k 46k 29k

TD-Error 23k 30k 23k 26k 43k 28k

T = 2.0, Q = 80 Maze Number

Goal Selection 1 2 3 4 5 6

Random 26k 39k 31k 27k 26k 33k

TD-Error 33k 41k 29k 27k 28k 31k

Random Mazes - Multi-Goal RL

T = 1.0, Q = 0 Maze Number

Goal Selection 7 8 9 10 Average

Random 32k 52k 38k 29k 34k

TD-Error 31k 41k 40k 28k 31k

T = 2.0, Q = 80 Maze Number

Goal Selection 7 8 9 10 Average

Random 26k 50k 26k 31k 32k

TD-Error 21k 47k 28k 34k 32k

Table 4.6: Comparison between temporal difference error based goal selection and
random goal selection with 10 different random mazes with different starting tem-
peratures and initial Q-values.

Table 4.7 and 4.8 show the results of the big apartment maze for the single and
multi-goal approach. The multi-goal approach requires 40% less trials and requires
half the number of actions as well. The large difference between the random mazes
and the approximated maze can be explained by the position of the goals. In ran-
dom mazes, it is possible that two goals are very close to each other which benefits
the multi-goal approach. In our approximated maze, the goals and initial positions
are scattered fairly, hence the improvement is less substantial. Figures 4.7a and 4.7b
depict the differences between the single and the multi-goal approach more clearly.
The single goal network has to learn to navigate to goals from scratch and therefore
the number of trials and actions to learn the optimal path is higher compared to
the multi-goal approach. For the multi-goal approach, however, all the goals that
were close to the exploration range of the first goal were learned almost immedi-



76 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Single Goal Multi Goal

Goal No. Mean Std Mean Std

1 112.1 50.8 112.6 50.6

2 123.2 62.9 107.7 48.6

3 89.6 16.4 50.0 0.0

4 87.2 28.2 50.1 0.1

5 107.2 49.8 50.4 0.3

6 99.7 22.6 51.3 0.9

7 87.3 17.8 50.7 0.5

8 88.4 31.6 51.0 0.7

9 96.0 21.9 52.4 1.6

10 98.9 32.2 50.1 0.1

Average 98.9 32.2 62.6 10.3

Table 4.7: The average number of trials to reach the goals from all initial positions
in the approximated maze of the big simulated apartment using the single and the
multi-goal approach. The multi-goal approach requires 40 percent less trials for
convergence.

ately, while due to the experience sharing between the Q-functions and smart goal
selection using the TD error the agent learned to navigate to all the goals faster. The
TD-based goal selection obtained a similar overall performance as the random goal
selection in this scenario. While the average number of trials is similar, the TD-based
error has a significantly lower standard deviation, making it a suitable candidate for
the rest of the multi-goal experiments as well.

Table 4.9 shows the performance of the multi-goal method in the 2D and 3D
simulator. For the 2D simulation, the robot could reach all the goals. The required
number of actions to reach the goals were slightly higher than that of the maze simu-
lations. The stochasticity of the ε-greedy method, and non-deterministic behaviour
of the controller of the robot can explain the higher number of actions. The local
navigation system considers the robot footprint and must locally navigate from cell
to cell. This can introduce problems when the robot is in tight corners due to in-
sufficient sampling of the velocity space by the DWA approach which may result in
failed or incomplete actions.



4.4. Experiments and Results 77



78 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Figure 4.7: The number of actions versus the number of trials for the multi-goal and
the single goal RL method in the approximated maze, and for the multi-goal ap-
proach in the 2D and 3D simulation of the big apartment. Figure 4.7a shows the
result for the single goal approach on the approximated maze. Figure 4.7b shows
the multi-goal results for the approximated maze. Note that the Q-functions have
almost converged after the second goal. Figure 4.7c shows the 2D simulator results
with the multi-goal approach. Figure 4.7a shows the results of the 3D simulation
with the multi-goal approach. Note that the number of actions to reach some of the
goals are considerably higher than for the 2D simulation due to the errors of the
CNN position estimation. Figure 4.7b shows the results of the multi-goal approach
without transfer learning in the 3D simulation.



4.4. Experiments and Results 79

Single Goal Multi Goal - TD Multi Goal - Random

Goal No. Mean Std Mean Std Mean Std

1 115.0 73.4 117.5 2.8 120.6 20.7

2 103.5 59.7 54.7 5.0 28.3 13.7

3 55.2 15.7 26.6 0.1 19.8 7.6

4 68.0 37.9 17.1 3.2 21.9 7.8

5 79.7 49.0 17.4 2.4 17.7 3.4

6 65.5 23.7 20.8 5.4 24.3 11.4

7 56.0 17.9 16.8 4.1 18.9 7.6

8 75.0 44.2 18.1 2.9 22.7 5.8

9 53.4 18.3 20.3 4.2 24.6 11.2

10 59.0 16.3 17.7 5.9 23.0 9.8

Average 73.0 35.6 32.7 3.6 32.2 9.9

Table 4.8: The average number of actions to reach the goals from all initial posi-
tions in the approximated maze of the big simulated room using the single and
the multi-goal approach. The multi-goal’s required number of actions is two times
less compared to the single goal method. This shows that goals were quite often
reached during exploration to other goals. The temporal difference goal selection
has a slightly higher mean but a significantly lower standard deviation in this spe-
cific maze.

The 3D simulation results show a higher number of actions to reach the goals
(also in Figure 4.7a). In the 2D simulator, the location of the robot is always correct.
However, in the Gazebo 3D simulation, the inception CNN was used to estimate the
position of the robot. Therefore, due to erroneous estimations, cell selection will be
incorrect at some positions in the room. As can be seen in Figure 4.8, it is possible
that the actual location of the robot is slightly different than the estimated position.
This problem becomes larger if the robot faces plain looking walls, or texture-less
surfaces, where the output of the CNN is usually the average of all the different
positions with the same input. However, the ε-greedy method allows the robot to
get out of these situations but with a cost of a higher number of actions.

Table 4.10 shows the results of training the agents directly in the 3D simulator
without any transfer learning. From the large standard deviations and higher means
compared to Table 4.9, and the number of agents that failed to learn all the goals, it
is evident that the two-stage transfer learning significantly speeds up the learning
process.



80 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

2D Simulation 3D Simulation

Goal No. Mean Std Mean Std

1 35.3 7.3 43.6 10.3

2 42.4 7.8 73.4 16.3

3 19.7 2.6 28.0 4.6

4 25.2 6.4 46.7 15.7

5 33.7 7.9 44.5 11.1

6 23.8 4.0 28.9 5.0

7 22.1 4.2 26.6 5.3

8 27.6 6.3 43.0 12.5

9 19.2 4.4 27.7 9.4

10 21.2 2.1 29.0 3.7

Average 27.0 5.3 39.1 9.4

Table 4.9: The average number of actions (after convergence) to reach the goals from
all initial positions in the 2D and 3D simulator using the multi-goal approach. The
2D simulator used ground truth positions for the robot localization while the 3D
simulation used the CNN to estimate the positions.

4.5 Discussion

In this chapter, we introduced a two-stage visual navigation system using deep con-
volutional neural networks and multi-goal reinforcement learning. Our goal was to
design a system that is explainable, robust, and resilient to localization errors. There-
fore, we first investigated whether a deep convolutional neural network is capable
of learning position information based on an image and whether it can generalize
well for locations that are outside of the training set. We performed several compar-
isons between different CNN architectures and our previously proposed SDA archi-
tectures on a small and a large 3D simulated environment. The proposed inception
CNN architecture performed best with 0.076m position error and 3.8 degrees angu-
lar error in the large room and 0.056m position error and 4.9 degrees angular error
in the small room. CNNs proved superior to SDA in both accuracy and the ability
to scale with a more considerable amount of data. However, CNNs, similar to other
methods that rely on visual input, suffer greatly from lack of texture, and therefore
their output values should be used in combination with the motion model of the
robot. Based on the results, we can argue that the proposed CNN has good poten-
tial in robot localization. We then tested our proposed multi-goal RL method to see



4.5. Discussion 81

Trials Actions Not Reached

Goal No. Mean Std Mean Std No. of Agents

1 6849.6 5154.0 74.8 8.4 0

2 376.6 253.2 87.9 40.3 3

3 181.1 104.5 46.9 63.5 1

4 141.8 1.8 24.0 3.8 0

5 432.0 60.0 144.4 45.2 4

6 142.4 5.6 21.3 6.4 1

7 153.1 15.8 33.8 5.8 1

8 473.1 181.5 189.7 31.6 1

9 3141.5 5343.4 131.1 60.9 3

10 160.4 23.9 372.7 26.1 0

Average 1205.2 1114.4 80.1 29.2

Table 4.10: The average number of trials and actions (after convergence) to reach
the goals from all initial positions in the 3D simulator using the multi-goal ap-
proach without transfer learning. The right most column is the number of agents
that couldn’t learn the respective goals after 14 thousand trials. These experiments
took approximately a month to complete.

whether a combination of dynamic goal selection, experience sharing, and transfer
learning can reduce learning time. We first tested the multi-goal and single-goal ap-
proach in 10 different random mazes with 10 random goals and 10 random initial
positions. Our multi-goal approach learned to solve all navigation tasks around, on
average, 240 percent faster than the traditional method. We then focused on robot
RL experiments and tested how transfer learning can reduce learning time. We com-
pared RL agents on the approximated maze of the large simulated room using the
multi-goal and the single-goal approach. The multi-goal agent was able to learn to
navigate to all the goals using half of the total number of actions required by the
single-goal method. We transferred the trained multi-goal agent to the 2D simula-
tion of the large room in which we evaluated the effects of the stochasticity of robot
base movements. After learning to navigate to all goals in the 2D simulator, we
transferred the agent to the 3D simulated environment. We showed that while the
agent could guide the robot to the goals, the number of actions for convergence was
slightly higher in the 3D simulator in comparison to the 2D simulator. The higher
number of actions was caused by the position estimation errors of the CNN and the
stochasticity of the robot moving platform. We can conclude that CNNs can learn



82 4. Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal RL

Figure 4.8: An example view of erroneous position estimation from the CNN. Figure
4.8a shows one of the positions in the big apartment where the CNN estimation is
incorrect due to the limited view of the robot. Figure 4.8b shows the robot’s camera
view. Figure 4.8c shows the actual position of the robot versus the estimated pose.
The estimated pose is shown by the red arrow, while the robot footprint is the green
rectangle. The other colored pixels are the inflated cost maps with increased range
to better visualize the situation.

and transform images into reliable coordinates for localization and that a multi-goal
RL agent can achieve faster convergence by sharing the experiences of one goal with
all the others using transfer learning, and smart exploration to reduce the required
number of actions to navigate to different goals.

For future work, the first improvement step could be to learn continuous control
of the robot. It is possible to use a neural network with the position, angle, velocity,



4.5. Discussion 83

and acceleration information of the robot as inputs, and longitudinal and angular
velocity as outputs. This would simplify the method and since no discretization
would be needed, the generalization performance would increase, which should
lead to less training time. Also, it is possible to expand the multi-goal system to con-
tain realistic, conflicting affordances. Similar to Van Moffaert et al. paper (Moffaert
and Nowé 2014) on pareto dominant policies in multi-objective RL, besides finding
goals, the robot should minimize battery usage and exploration time.

We also want to research how we can train the position estimator network with-
out needing so much accurate position data. It might be possible to use the locally
accurate robot odometry model for this purpose. This would allow to scale up our
system to learn to navigate in even larger environments.





Chapter 5

Discussion

In this thesis, we addressed several parts of a robotic navigation system. A naviga-
tion system consists of three main modules; mapping and localization, control, and
planning. State of the art navigation systems rely on a variety of sensors and actua-
tors to navigate safely in an environment. Often through occupancy grid mapping
methods, a spatial map of the environment is created by combining visual or range
sensory readings with the movement of the robot. Additional sensors can assist the
robot in more reliable sensing of the obstacles. The robot can then plan a global path
through the environment. Finally, a controller produces trajectories which moves
the robot toward the goal while satisfying criteria such as smoothness and collision
avoidance.

In Chapter 2, we reviewed the control algorithm of a widely used navigation
pipeline. The dynamic window approach, like any other robot control system, pro-
duces trajectories based on a number of parameters and criteria such as:

• Longitudinal, lateral and angular acceleration, and velocity range

• Number of samples for acceleration and velocity during prediction

• Horizon of prediction

• Controller Frequency

• Distance to goal, obstacles, and the given path

For each controller loop, the robot forward simulates trajectories based on the
available samples, and checks for safety, and closeness to the given path and the
local goal. To reach the desired controller frequency, and because of computational
limitations, the number of acceleration and velocity samples are limited. There-
fore, either the robot speed, grid resolution, simulation time, or controller frequency
should be reduced. Each of these either increases the navigation time or reduces
the smoothness and reliability of the navigation system. We showed that a single
set of parameters is not sufficient to guarantee high and reliable performance and
answered the first research question in our thesis.



86 5. Discussion

1. Is it possible to improve an established navigation system using an avail-
able learning method?

Our proposal to use a custom histogram of oriented gradients (HoG) on the
occupancy grid of the robot proved that it is possible to distinguish various sce-
narios through unsupervised hierarchical clustering of these feature sets in both
simulation and real environments. We also proved that it is sufficient to learn these
clusters in simulation and use the results in real-life experiments without additional
data gathering. By using a different set of parameters for each possible scenario,
we can make sure that the robot operates with maximum performance. For exam-
ple, in cluttered locations with bottlenecks such as doors, the robot can limit the
acceleration and velocity range for a more careful approach while it can increase the
number of samples to assure safety. There are several possible improvements to our
method. We can additionally change the occupancy grid resolution during opera-
tion to enhance the tuning process — lower resolutions for areas that are open, and
higher resolutions for cluttered environments. Besides, we can automate the pa-
rameter optimization process for each cluster. Another shortcoming of our feature
descriptor is that it only encapsulates topological information. At this moment, we
do not capture other characteristics such as speed and direction of dynamic objects
and the robot itself. We can implement an additional feature descriptor that focuses
on these characteristics. The hierarchical clustering can then use the combination
of all the feature sets. With these additions, we can extend the application of our
method to a broader range of robotics applications.

In Chapter 3, we investigated the robotic localization problem to address the
next research question.

2. Can artificial neural networks be used to solve the localization problem in
navigation?

We evaluated the accuracy and generalizability of stacked denoising autoen-
coders. Unlike the usual occupancy grid belief system which can suffer from ini-
tialization and the kidnapped robot problem, the SDA results showed that the net-
work was able to recreate similar images of the environment after the unsupervised
pretraining phase and that this initialization of the network weights allowed the
backpropagation to achieve better results compared to a normal MLP with similar
design. Since the network is not relying on the robot’s motion, it is resistant to the
kidnapped robot problem. We observed that a neural network is capable of encod-
ing images and the respective positions. However, our proposed SDA suffers from
sparse-texture views; therefore, the position is unreliable when the robot faces a



87

plain-looking wall. Additionally, there is no indication of the reliability of the out-
put. Perhaps, by training an ensemble of networks, or using the dropout approach
during network operation, we can extract a reasonable standard deviation. By us-
ing this as a noise value for the update section of a non-linear Kalman filter, we can
track the position of the robot in sparse-texture places without problems.
In Chapter 4, we went further with testing the scalability of the SDA networks in
larger environments to answer the third research question.

3. Are convolutional neural networks better than stacked denoising autoen-
coders in solving the localization problem in larger environments, and are
they scalable?

The SDA results for a larger environment showed that this type of network is not
capable of handling a larger and more complex problem. Increasing more nodes in
each layer also didn’t help, although the training did not show any signs of overfit-
ting. Therefore, we switched to convolutional neural networks with deeper layers to
evaluate their performance in these scenarios. We proposed a new CNN architecture
based on the GoogLeNet Inception network (Szegedy et al. 2017). We reused the in-
ception modules and removed pooling layers to avoid scale and rotation invariance.
The CNN performed significantly better than the SDA in both environments. The
reason for this superiority is that the CNN retains the topological structure of the
image, and allows for deeper layers with less number of parameters. However, the
problem with sparse-texture views remains. In addition, we observed that the prop-
agation of the error is non-linear throughout the environment. The results show an
auspicious learning system for localization. We should note that our research did
not investigate how resilient the CNN is against occlusion of the view. Our prelim-
inary analysis, shown in Figure 5.1, shows that only significant disruptions to the
view can greatly affect the position data. Therefore we believe that this is a valid
research area for future work. Nevertheless, the question of the usefulness of map-
ping only with convolutional neural networks is still an open question. We believe
that the result of mapping an environment using neural networks is slightly differ-
ent than the current grid-based approaches. For self-supervised training of a deep
CNN, we ought to involve the prediction of the robot motion into the design. There-
fore, on the one hand, the network should be able to learn discriminative features
from the environment by minimizing a reconstruction loss function, which can be
done through deconvolution layers in the network. On the other hand, we not only
expect to learn the current state, but we want to predict the future based on a given
movement command. Therefore, we can concatenate robot motion information to
the flattened section of the network during the exploration and data gathering phase
(Figure 5.2).



88 5. Discussion

Figure 5.1: An example of the effect of scene occlusion to the position estimation of
our proposed CNN Inception architecture. Preliminary analysis show resilience to
partial occlusion. The green rectangle is the actual position of the robot, and the red
arrows are the estimated positions.

However, it is challenging for the network to associate a couple of numerical
physical attributes to the required geometrical changes in the image. Our suggestion
is to also calculate the optical flow from the previous frame and concatenate the
information in the layer before the deconvolution (Figure 5.3).

The goal of the network is to learn to predict the next image based on the cur-
rent robot motion. The trained network should contain the inherently learned map
without the conventional two-dimensional coordinates. Any positive results in this
area can open new paths in the robotic mapping and localization field.

In the second part of Chapter 4, we used the trained deep CNN position-
estimator network for the reinforcement learning experiments to answer the final
research question of this thesis.

4. How can reinforcement learning be improved to let a robot learn to navigate
to many goal positions?

We know that reinforcement learning methods are capable of solving mazes. The
additional question that we wanted to answer was whether it is possible to train it
promptly in a robot application. Our proposed goal exploration method by using
the goal states’ temporal difference error and the multi-goal experience sharing was
our solution to this question. We considered the maze learning, robot movement
stochasticity, and the non-linear CNN position estimation errors. The multi-goal
approach with the TD-error goal selection strategy demonstrated the efficiency of



89

Motion
Info

Figure 5.2: Convolution neural network concept for prediction of next state using the
robot’s motion information and deconvolution.

the methods for faster learning. The use of transfer learning from the maze to 2D
and then 3D physics simulator proved valuable due to the reduced learning time
on the robot. Our proposed multi-goal RL method could consistently reach all the
goals. However, we propose to move from a discrete action space to a continuous
one by using a non-linear function approximator for the Q-values. In this setting,
we can use the robot’s current longitudinal and angular acceleration and velocity
information in combination with its estimated position. The selected actions are the
robot’s longitudinal and lateral velocity. Additionally, we should keep in mind to
select a stopping velocity range for the action space. Finally, it is possible to expand
the multi-goal system to contain realistic, conflicting affordances such as further
reduction of exploration time and minimizing battery usage.



90 5. Discussion

Optical
Flow

Motion
Info

Figure 5.3: Convolutional neural network concept for prediction of next state using
the optical flow in addition to plain robot motion information.

Epilogue

The results and experiences obtained in this project have allowed us to apply these
methods in the autonomous driving industry. In (Shantia et al. 2019), we designed
a framework in which we predict the direction of the travel of a vehicle by detecting
and tracking the front wheel(s) using convolutional neural networks. The CNN is
responsible for estimating the wheel angle based on previous images. We use the
wheel angles to extract the change in vehicle yaw-rate, which allows us to calculate
and track a trajectory using a Kalman filter with simplified bicycle motion model.
In (Pathak et al. 2020), we proposed a reinforcement learning framework where
the agent learns whether it is safe to perform a lane-change operation using the
vehicle’s current path planning system. In this framework, the road and object data



91

is projected into a multi-channel semantic image, each channel carrying a specific
type of data (e.g., lane marking, object acceleration, and object speed channels).
The agent encounters various scenarios in a simulation environment where it learns
to decide whether a lane change is possible and beneficial. When the simulation
results are satisfactory, we move the agent to an actual vehicle and continue the
learning process.

The proposed machine learning methods for improving robotic navigation have
been iteratively improved upon based on field experiences, case studies, and peer
reviews. Nevertheless, no algorithm ever reaches perfection. This thesis is only a
small part of the ever-growing robotics and machine learning field. Potential future
directions include connected and explainable deep reinforcement learning frame-
works, allowing transfer learning from simulated environments to the real world
or new neural network architectures that can better encapsulate objects and their
frame of reference in the world.





Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A., Irv-
ing, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D. G., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P. A., Vanhoucke, V., Vasudevan,
V., Viégas, F. B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and
Zheng, X.: 2016, Tensorflow: Large-scale machine learning on heterogeneous
distributed systems, CoRR abs/1603.04467.
URL: http://arxiv.org/abs/1603.04467

Alonso-Mora, J., Beardsley, P. and Siegwart, R.: 2018, Cooperative collision avoid-
ance for nonholonomic robots, IEEE Transactions on Robotics 34(2), 404–420.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,
B., Tobin, J., Abbeel, O. P. and Zaremba, W.: 2017, Hindsight experience replay,
Advances in Neural Information Processing Systems, pp. 5048–5058.

Atkeson, C. G.: 1994, Using local trajectory optimizers to speed up global optimiza-
tion in dynamic programming, in J. D. Cowan, G. Tesauro and J. Alspector
(eds), Advances in Neural Information Processing Systems 6, Morgan-Kaufmann,
pp. 663–670.
URL: http://papers.nips.cc/paper/788-using-local-trajectory-optimizers-to-speed-up-
global-optimization-in-dynamic-programming.pdf

Barto, A. G. and Mahadevan, S.: 2003, Recent advances in hierarchical reinforcement
learning, Discrete Event Dynamic Systems 13(4), 341–379.
URL: https://doi.org/10.1023/A:1025696116075



94 BIBLIOGRAPHY

Bellman, R.: 1957, A markovian decision process, Journal of Mathematics and Mechan-
ics pp. 679–684.

Bellman, R.: 1961, Adaptive control processes: a guided tour, Princeton University Press,
Princeton, New Jersey, USA.
URL: http://books.google.nl/books?id=hIP5oAEACAAJ

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian,
J., Warde-Farley, D. and Bengio, Y.: 2010, Theano: a CPU and GPU math ex-
pression compiler, Proceedings of the Python for Scientific Computing Conference
(SciPy). Oral Presentation.

Bertsekas, D. P. and Tsitsiklis, J. N.: 1995, Neuro-dynamic programming: an
overview, Decision and Control, 1995., Proceedings of the 34th IEEE Conference on,
Vol. 1, IEEE, pp. 560–564.

Bidoia, F., Sabatelli, M., Shantia, A., Wiering, M. A. and Schomaker, L.: 2018, A deep
convolutional neural network for location recognition and geometry based in-
formation, Proceedings of the 7th International Conference on Pattern Recognition
Applications and Methods, ICPRAM 2018, Funchal, Madeira - Portugal, January 16-
18, 2018., pp. 27–36.
URL: https://doi.org/10.5220/0006542200270036

Bonin-Font, F., Ortiz, A. and Oliver, G.: 2008, Visual navigation for mobile robots: A
survey, Journal of intelligent and robotic systems 53(3), 263–296.

Borrelli, F., Falcone, P., Keviczky, T., Asgari, J. and Hrovat, D.: 2005, Mpc-based ap-
proach to active steering for autonomous vehicle systems, International journal
of vehicle autonomous systems 3(2-4), 265–291.

Bradski, G.: 2000, OpenCV, Dr. Dobb’s Journal of Software Tools .

Bristeau, P.-J., Callou, F., Vissiere, D. and Petit, N.: 2011, The navigation and control
technology inside the ar. drone micro uav, IFAC Proceedings Volumes 44(1), 1477–
1484.

Brito, B., Floor, B., Ferranti, L. and Alonso-Mora, J.: 2019, Model predictive con-
touring control for collision avoidance in unstructured dynamic environments,
IEEE Robotics and Automation Letters 4(4), 4459–4466.

Burger, R., Bharatheesha, M., van Eert, M. and Babuska, R.: 2017, Automated tuning
and configuration of path planning algorithms, 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 4371–4376.



BIBLIOGRAPHY 95

Busoniu, L., Babuska, R., Schutter, B. D. and Ernst, D.: 2010, Reinforcement Learning
and Dynamic Programming Using Function Approximators, 1st edn, CRC Press,
Inc., USA.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.
and Leonard, J. J.: 2016, Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age, IEEE Transactions on Robotics
32(6), 1309–1332.

Chen, L., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A. L.: 2018, Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs, IEEE Transactions on Pattern Analysis and Machine
Intelligence 40(4), 834–848.

Dalal, N. and Triggs, B.: 2005, Histograms of oriented gradients for human detec-
tion, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, Vol. 1, pp. 886–893 vol. 1. ID: 1.

Deng, J., Dong, W., Socher, R., jia Li, L., Li, K. and Fei-fei, L.: 2009, Imagenet: A
large-scale hierarchical image database, CVPR.

Dubois, P. F., Hinsen, K. and Hugunin, J.: 1996, Numerical Python, Computers in
Physics 10(3).

Engel, J., Stückler, J. and Cremers, D.: 2015, Large-scale direct slam with stereo
cameras, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1935–1942.

Everett, H. R. and Gage, D. W.: 1999, From laboratory to warehouse: Security robots
meet the real world, The International Journal of Robotics Research 18(7), 760–768.

Feng, S., Xinjilefu, X., Atkeson, C. G. and Kim, J.: 2015, Optimization based con-
troller design and implementation for the atlas robot in the darpa robotics chal-
lenge finals, 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), pp. 1028–1035.

Floreano, D. and Wood, R. J.: 2015, Science, technology and the future of small au-
tonomous drones, Nature 521(7553), 460–466.

Fox, D., Burgard, W., Dellaert, F. and Thrun, S.: 1999, Monte carlo localization: Effi-
cient position estimation for mobile robots, Proceedings of the Sixteenth National
Conference on Artificial Intelligence and the Eleventh Innovative Applications of Ar-
tificial Intelligence, AAAI ’99/IAAI ’99, American Association for Artificial In-
telligence, Menlo Park, CA, USA, pp. 343–349.
URL: http://dl.acm.org/citation.cfm?id=315149.315322



96 BIBLIOGRAPHY

Fox, D., Burgard, W. and Thrun, S.: 1997, The dynamic window approach to colli-
sion avoidance, Robotics Automation Magazine, IEEE 4(1), 23 –33.

Garcia, J. and Zalevsky, Z.: 2008, Range mapping using speckle decorrelation. US
Patent 7,433,024.
URL: https://www.google.com/patents/US7433024

Gerkey, B. P. and Konolige, K.: 2008, Planning and control in unstructured terrain,
Workshop on Path Planning on Costmaps, Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA.

Glassner, A. S. (ed.): 1989, An Introduction to Ray Tracing, Academic Press Ltd., Eng-
land.

Gómez-Consarnau, L., González, J. M., Coll-Lladó, M., Gourdon, P., Pascher, T.,
Neutze, R., Pedrós-Alió, C. and Pinhassi, J.: 2007, Light stimulates growth of
proteorhodopsin-containing marine flavobacteria, Nature 445(7124), 210–213.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. C. and Bengio, Y.: 2014, Generative adversarial networks, CoRR
abs/1406.2661.
URL: http://arxiv.org/abs/1406.2661

Gordon, N. J., Salmond, D. J. and Smith, A. F. M.: 1993, Novel approach to
nonlinear/non-gaussian bayesian state estimation, IEE Proceedings F - Radar
and Signal Processing 140(2), 107–113.

Gower, J. C. and Ross, G. J. S.: 1969, Minimum spanning trees and single linkage
cluster analysis, Journal of the Royal Statistical Society. Series C (Applied Statistics)
18(1), 54–64.
URL: http://www.jstor.org/stable/2346439

Grisetti, G., Stachniss, C. and Burgard, W.: 2005, Improving grid-based slam with
rao-blackwellized particle filters by adaptive proposals and selective resam-
pling, Proceedings of the 2005 IEEE International Conference on Robotics and Au-
tomation, pp. 2432–2437.

Grisetti, G., Stachniss, C. and Burgard, W.: 2007, Improved techniques for grid
mapping with rao-blackwellized particle filters, Robotics, IEEE Transactions on
23(1), 34–46.

Gu, S., Holly, E., Lillicrap, T. and Levine, S.: 2017, Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates, Robotics and
Automation (ICRA), 2017 IEEE International Conference on, IEEE, pp. 3389–3396.



BIBLIOGRAPHY 97

Hart, S. and Grupen, R.: 2011, Learning generalizable control programs, IEEE Trans-
actions on Autonomous Mental Development 3(3), 216–231.

He, K., Zhang, X., Ren, S. and Sun, J.: 2016, Deep residual learning for image recog-
nition, Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 770–778.

Hebb, D. O.: 1949, The organization of behavior; a neuropsychological theory, Vol. 65,
Wiley, New York, NY, USA.

Henry, P., Krainin, M., Herbst, E., Ren, X. and Fox, D.: 2012, Rgb-d mapping: Using
kinect-style depth cameras for dense 3d modeling of indoor environments, The
International Journal of Robotics Research 31(5), 647–663.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M.,
Blundell, C. and Lerchner, A.: 2017, DARLA: Improving zero-shot transfer in
reinforcement learning, in D. Precup and Y. W. Teh (eds), Proceedings of the 34th
International Conference on Machine Learning, Vol. 70 of Proceedings of Machine
Learning Research, PMLR, International Convention Centre, Sydney, Australia,
pp. 1480–1490.
URL: http://proceedings.mlr.press/v70/higgins17a.html

Hinton, G. E.: 2006, Reducing the dimensionality of data with neural networks,
Science 313(5786), 504–507.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.:
2012, Improving neural networks by preventing co-adaptation of feature de-
tectors, CoRR abs/1207.0580.
URL: http://arxiv.org/abs/1207.0580

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C. and Burgard, W.: 2013,
Octomap: An efficient probabilistic 3d mapping framework based on octrees,
Autonomous Robots 34(3), 189–206.

Howard, R. A.: 1960, Dynamic Programming and Markov Processes, MIT Press, Cam-
bridge, MA.

Ichter, B., Harrison, J. and Pavone, M.: 2018, Learning sampling distributions for
robot motion planning, 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 7087–7094.

Jazwinski, A.: 1970, Stochastic process and filtering theory, academic press, A sub-
sidiary of Harcourt Brace Jovanovich Publishers .



98 BIBLIOGRAPHY

Kahn, G., Villaflor, A., Ding, B., Abbeel, P. and Levine, S.: 2018, Self-supervised
deep reinforcement learning with generalized computation graphs for robot
navigation, 2018 IEEE International Conference on Robotics and Automation, ICRA
2018, Brisbane, Australia, May 21-25, 2018, IEEE, pp. 1–8.
URL: https://doi.org/10.1109/ICRA.2018.8460655

Kapitanyuk, Y. A., Proskurnikov, A. V. and Cao, M.: 2017, A guiding vector-field al-
gorithm for path-following control of nonholonomic mobile robots, IEEE Trans-
actions on Control Systems Technology 26(4), 1372–1385.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J. and Jaśkowski, W.: 2016, Viz-
doom: A doom-based ai research platform for visual reinforcement learning,
2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8.

Khatib, O.: 1986, Real-time obstacle avoidance for manipulators and mobile robots,
Autonomous robot vehicles, Springer, pp. 396–404.

Khoshelham, K. and Elberink, S. O.: 2012, Accuracy and resolution of kinect depth
data for indoor mapping applications, Sensors 12(2), 1437–1454.
URL: http://www.mdpi.com/1424-8220/12/2/1437

Kingma, D. P. and Welling, M.: 2014, Auto-encoding variational bayes, in Y. Ben-
gio and Y. LeCun (eds), 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
URL: http://arxiv.org/abs/1312.6114

Kober, J. and Peters, J.: 2014, Reinforcement Learning in Robotics: A Survey, Springer
International Publishing, Cham, pp. 9–67.
URL: https://doi.org/10.1007/978-3-319-03194-1˙2

Koenig, N. P. and Howard, A.: 2004, Design and use paradigms for Gazebo, an
open-source multi-robot simulator., IROS, IEEE, pp. 2149–2154.

Kohl, N. and Stone, P.: 2004, Policy gradient reinforcement learning for fast
quadrupedal locomotion, Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004 IEEE International Conference on, Vol. 3, pp. 2619–2624 Vol.3.

Kosecka, J., Zhou, L., Barber, P. and Duric, Z.: 2003, Qualitative image based local-
ization in indoors environments, Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference on, Vol. 2, pp. II–3–II–8 vol.2.

Krizhevsky, A.: 2009, Learning Multiple Layers of Features from Tiny Images, Master’s
thesis, University of Toronto.
URL: http://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf



BIBLIOGRAPHY 99

Krizhevsky, A. and Hinton, G. E.: 2011, Using very deep autoencoders for content-
based image retrieval, ESANN 2011, 19th European Symposium on Artificial Neu-
ral Networks, Bruges, Belgium, April 27-29, 2011, Proceedings.

Krizhevsky, A., Sutskever, I. and Hinton, G. E.: 2012, Imagenet classification with
deep convolutional neural networks, in P. L. Bartlett, F. C. N. Pereira, C. J. C.
Burges, L. Bottou and K. Q. Weinberger (eds), Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pp. 1106–1114.
URL: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks

Kulhanek, J., Derner, E., de Bruin, T. and Babuska, R.: 2019, Vision-based navigation
using deep reinforcement learning, 2019 European Conference on Mobile Robots
(ECMR), IEEE, pp. 1–8.

Kulkarni, T. D., Whitney, W. F., Kohli, P. and Tenenbaum, J.: 2015, Deep con-
volutional inverse graphics network, in C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama and R. Garnett (eds), Advances in Neural Information Processing
Systems, Vol. 28, Curran Associates, Inc., pp. 2539–2547.

Kuperstein and Rubinstein: 1989, Implementation of an adaptive neural controller
for sensory-motor coordination, International 1989 Joint Conference on Neural
Networks, Vol. 2, pp. 305–310.

Lam, D., Manzie, C. and Good, M.: 2010, Model predictive contouring control, 49th
IEEE Conference on Decision and Control (CDC), IEEE, pp. 6137–6142.

Laud, A. D.: 2004, Theory and Application of Reward Shaping in Reinforcement Learning,
PhD thesis, University of Illinois, USA. AAI3130966.

LeCun, Y. and Bengio, Y.: 1995, Convolutional networks for images, speech, and
time series, The handbook of brain theory and neural networks 3361.

LeCun, Y., Bengio, Y. and Hinton, G.: 2015, Deep learning, nature 521(7553), 436–444.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel,
L. and Baird, H.: 1990, Constrained neural network for unconstrained hand-
written digit recognition, in C. Suen (ed.), Frontiers in Handwriting Recognition,
Montreal, 1990, CENPARMI, Concordia University.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P.: 1998, Gradient-based learning ap-
plied to document recognition, Proceedings of the IEEE 86(11), 2278–2324.



100 BIBLIOGRAPHY

Levine, S., Pastor, P., Krizhevsky, A. and Quillen, D.: 2016, Learning hand-eye co-
ordination for robotic grasping with large-scale data collection, International
Symposium on Experimental Robotics, Springer, pp. 173–184.

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J. Z.,
Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman,
A., Werling, M. and Thrun, S.: 2011, Towards fully autonomous driving: Sys-
tems and algorithms, Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 163–
168.

Lin, L.-J.: 1993, Reinforcement Learning for Robots Using Neural Networks, PhD thesis,
Carnegie Mellon University, Pittsburgh.

Long, J., Shelhamer, E. and Darrell, T.: 2015, Fully convolutional networks for se-
mantic segmentation, IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2015, Boston, MA, USA, pp. 3431–3440.
URL: https://doi.org/10.1109/CVPR.2015.7298965

Lowe, D. G.: 2004, Distinctive image features from scale-invariant keypoints, Inter-
national journal of computer vision 60(2), 91–110.

Lu, D. V.: 2014, Contextualized Robot Navigation, PhD thesis, Washington University
in St. Louis.

Lu, F. and Milios, E.: 1997, Globally consistent range scan alignment for environ-
ment mapping, Autonomous robots 4(4), 333–349.

Maciejowski, J.: 2002, Predictive Control with Constraints., Prentice Hall, England.

MacQueen, J. B.: 1967, Some methods for classification and analysis of multivariate
observations, in L. M. L. Cam and J. Neyman (eds), Proc. of the fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, Vol. 1, University of California
Press, pp. 281–297.

Malika, C., Ghazzali, N., Boiteau, V. and Niknafs, A.: 2014, Nbclust: an r package for
determining the relevant number of clusters in a data set, J. Stat. Softw 61, 1–36.

MATLAB: 2014, version 8.4.0 (R2014b), The MathWorks Inc., Natick, Massachusetts,
USA.

Minsky, M. and Papert, S.: 1969, Perceptrons: An Introduction to Computational Geom-
etry, MIT Press, Cambridge, MA, USA.

Misa, T. J. and Frana, P. L.: 2010, An interview with Edsger W. Dijkstra, Commun.
ACM 53(8), 41–47.
URL: http://doi.acm.org/10.1145/1787234.1787249



BIBLIOGRAPHY 101

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. and
Kavukcuoglu, K.: 2016, Asynchronous methods for deep reinforcement learn-
ing, International conference on machine learning, pp. 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and
Riedmiller, M. A.: 2013, Playing atari with deep reinforcement learning, CoRR
abs/1312.5602.
URL: http://arxiv.org/abs/1312.5602

Moffaert, K. V. and Nowé, A.: 2014, Multi-objective reinforcement learning us-
ing sets of pareto dominating policies, Journal of Machine Learning Research
15(107), 3663–3692.
URL: http://jmlr.org/papers/v15/vanmoffaert14a.html

Mur-Artal, R. and Tardós, J. D.: 2017, Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras, IEEE Transactions on Robotics 33(5), 1255–
1262.

N. J. Nilsson, P. and B. Raphael: 1968, A formal basis for the heuristic determination
of minimum cost paths, IEEE Transactions on Systems, Science, and Cybernetics
SSC-4(2), 100–107.

Nair, V. and Hinton, G. E.: 2010, Rectified linear units improve restricted Boltzmann
machines, Proc. International Conference on Machine Learning, pp. 807–814.

Nemec, B., Zorko, M. and Zlajpah, L.: 2010, Learning of a ball-in-a-cup play-
ing robot, 19th International Workshop on Robotics in Alpe-Adria-Danube Region
(RAAD 2010), pp. 297–301.

Nilsson, N. J.: 1984, Shakey the robot, Technical report, SRI INTERNATIONAL
MENLO PARK CA.

Nissen, S.: 2003, Implementation of a fast artificial neural network library (fann),
Technical report, Department of Computer Science University of Copenhagen
(DIKU). http://fann.sf.net.

Nister, D., Naroditsky, . and Bergen, J.: 2004, Visual odometry, Proc. CVPR, pp. 652–
659.

Nüchter, A.: 2009, 3D Robotic Mapping: The Simultaneous Localization and Mapping
Problem with Six Degrees of Freedom, 1st edn, Springer Publishing Company, In-
corporated.

Pathak, S., Shantia, A. and Veronese, L.: 2020, Autonomous lane change. EP3667556.
URL: https://register.epo.org/application?number=EP18212102



102 BIBLIOGRAPHY

Peters, J. and Schaal, S.: 2008, 2008 special issue: Reinforcement learning of motor
skills with policy gradients, Neural Netw. 21(4), 682–697.
URL: https://doi.org/10.1016/j.neunet.2008.02.003

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A. and Carin, L.: 2016, Vari-
ational autoencoder for deep learning of images, labels and captions, Proceed-
ings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, Curran Associates Inc., Red Hook, NY, USA, pp. 2360–2368.

Quattoni, A. and Torralba, A.: 2009, Recognizing indoor scenes, Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 413–420. ID: 1.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T. B., Leibs, J., Wheeler, R. and
Ng, A. Y.: 2009, ROS: an open-source robot operating system, ICRA Workshop
on Open Source Software.

Ren, S., He, K., Girshick, R. and Sun, J.: 2015, Faster r-cnn: Towards real-time object
detection with region proposal networks, Advances in neural information process-
ing systems, pp. 91–99.

Reynolds, S. I.: 2002, Reinforcement learning with exploration, PhD thesis, University
of Birmingham.

Rosenblatt, F.: 1958, The perceptron: a probabilistic model for information storage
and organization in the brain., Psychological review 65(6), 386.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: 1986, Learning representations
by back-propagating errors, nature 323(6088), 533–536.

Rummery, G. A. and Niranjan, M.: 1994, On-line Q-learning using connectionist sys-
tems, Vol. 37, University of Cambridge, Department of Engineering Cambridge,
England.

Sachin, R., Sowmya, V., Govind, D. and Soman, K. P.: 2018, Dependency of various
color and intensity planes on cnn based image classification, in S. M. Thampi,
S. Krishnan, J. M. Corchado Rodriguez, S. Das, M. Wozniak and D. Al-Jumeily
(eds), Advances in Signal Processing and Intelligent Recognition Systems, Springer
International Publishing, Cham, pp. 167–177.

Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H. J. and Davison, A. J.:
2013, Slam++: Simultaneous localisation and mapping at the level of objects,
2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1352–1359.

Saputra, M. R. U., Markham, A. and Trigoni, N.: 2018, Visual slam and structure
from motion in dynamic environments: A survey, ACM Computing Surveys
(CSUR) 51(2), 1–36.



BIBLIOGRAPHY 103

Schaul, T., Horgan, D., Gregor, K. and Silver, D.: 2015, Universal value function
approximators, International Conference on Machine Learning, pp. 1312–1320.

Schmidhuber, J.: 2015, Deep learning in neural networks: An overview, Neural Net-
works 61, 85–117.
URL: https://doi.org/10.1016/j.neunet.2014.09.003

Schonberger, J. L. and Frahm, J.-M.: 2016, Structure-from-motion revisited, Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–
4113.

Shantia, A., Begue, E. and Wiering, M.: 2011, Connectionist reinforcement learning
for intelligent unit micro management in starcraft, The 2011 International Joint
Conference on Neural Networks (IJCNN), IEEE, pp. 1794–1801.

Shantia, A., Mulder, A., Wolf, B., Timmers, R., van der Mark, R., Sandor, L., Knigge,
L., van der Struijk, S., Vienken, G., Bidoia, F. and Luneburg, N.: 2015, Team
description paper 2015, Technical report, University of Groningen.

Shantia, A., Thorsten, W. and Wedel, A.: 2019, Method for predicting a change in
the direction of travel of a vehicle. EP3543086A1.
URL: https://register.epo.org/application?number=EP18163369

Shantia, A., Timmers, R., Schomaker, L. and Wiering, M.: 2015, Indoor localiza-
tion by denoising autoencoders and semi-supervised learning in 3D simulated
environment, International Joint Conference on Neural Networks (IJCNN), IEEE,
pp. 1–7.

Shteingart, H. and Loewenstein, Y.: 2014, Reinforcement learning and human be-
havior, Current Opinion in Neurobiology 25, 93 – 98. Theoretical and computa-
tional neuroscience.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. et al.: 2016,
Mastering the game of go with deep neural networks and tree search, nature
529(7587), 484–489.

SILVER project: 2016, Supporting Independant living for the elderly through robotics,
SILVER consorsium, European Union.
URL: http://www.silverpcp.eu/newsletter-july-2016/

Sriman, B. and Schomaker, L.: 2015, Object attention patches for text detection and
recognition in scene images using sift, Proceedings of the International Conference
on Pattern Recognition Applications and Methods, pp. 304–311. ID: 1.



104 BIBLIOGRAPHY

Sutton, R. S.: 1996, Generalization in reinforcement learning: Successful examples
using sparse coarse coding, Advances in neural information processing systems,
pp. 1038–1044.

Sutton, R. S. and Barto, A. G.: 1998, Reinforcement learning: An introduction, Vol. 1,
MIT press Cambridge.

Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. A.: 2017, Inception-v4, inception-
resnet and the impact of residual connections on learning, in S. P. Singh and
S. Markovitch (eds), Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, San Francisco, California, USA, AAAI Press,
pp. 4278–4284.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Van-
houcke, V. and Rabinovich, A.: 2015, Going deeper with convolutions, IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, IEEE Computer Society, pp. 1–9.
URL: https://doi.org/10.1109/CVPR.2015.7298594

Tan, C. C. and Eswaran, C.: 2008, Performance comparison of three types of autoen-
coder neural networks, Modeling and Simulation, 2008. AICMS 08. Second Asia
International Conference on, pp. 213–218. ID: 12.

Tesauro, G.: 1995, Temporal difference learning and td-gammon, Communications of
the ACM 38(3), 58–68.

Theodoridis, S. and Koutroumbas, K.: 2009, Chapter 11 - clustering: Basic concepts,
in S. Theodoridis and K. Koutroumbas (eds), Pattern Recognition (Fourth Edi-
tion), fourth edition edn, Academic Press, Boston, pp. 595–625.

Thrun, S.: 2002, Probabilistic robotics, Communications of the ACM 45(3), 52–57.

Thrun, S. et al.: 2002, Robotic mapping: A survey, Exploring artificial intelligence in
the new millennium 1(1-35), 1.

Tombari, F., Salti, S. and Di Stefano, L.: 2010, Unique signatures of histograms for
local surface description, Computer Vision–ECCV, Springer, pp. 356–369.

Torr, P. H. and Zisserman, A.: 1999, Feature based methods for structure and motion
estimation, International workshop on vision algorithms, Springer, pp. 278–294.

van Elteren, T., Shantia, A., Neculoiu, P., Oost, C., Snijders, R., van der Wal, E. and
van der Zant, T.: 2013, Team description paper 2013, Technical report, University
of Groningen.



BIBLIOGRAPHY 105

Vaughan, R.: 2008, Massively multi-robot simulation in stage, Swarm intelligence 2(2-
4), 189–208.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl,
T., Lampe, T. and Riedmiller, M.: 2017, Leveraging demonstrations for deep re-
inforcement learning on robotics problems with sparse rewards, arXiv preprint
arXiv:1707.08817 .

Veeriah, V., Oh, J. and Singh, S.: 2018, Many-goals reinforcement learning, CoRR
abs/1806.09605.
URL: http://arxiv.org/abs/1806.09605

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A.: 2008, Extracting and
composing robust features with denoising autoencoders, Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, ACM, New York, NY,
USA, pp. 1096–1103.
URL: http://doi.acm.org/10.1145/1390156.1390294

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.-A.: 2010, Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion, Journal of machine learning research : JMLR.
11(2), 3371–3408.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M.,
Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., Quan, J., Gaffney, S.,
Petersen, S., Simonyan, K., Schaul, T., van Hasselt, H., Silver, D., Lillicrap, T. P.,
Calderone, K., Keet, P., Brunasso, A., Lawrence, D., Ekermo, A., Repp, J. and
Tsing, R.: 2017, Starcraft II: A new challenge for reinforcement learning, CoRR
abs/1708.04782.
URL: http://arxiv.org/abs/1708.04782

Vuurpijl, L. and Schomaker, L.: 1997, Finding structure in diversity: A hierarchical
clustering method for the categorization of allographs in handwriting, Proceed-
ings of the Fourth International Conference on Document Analysis and Recognition,
Vol. 1, IEEE, pp. 387–393.

Wan, E. A. and Van Der Merwe, R.: 2000, The unscented kalman filter for nonlinear
estimation, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No. 00EX373), Ieee, pp. 153–158.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan,
M., Wang, X., Liu, W. and Xiao, B.: 2020, Deep high-resolution representation
learning for visual recognition, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence pp. 1–1.



106 BIBLIOGRAPHY

Wang, S., Clark, R., Wen, H. and Trigoni, N.: 2017, Deepvo: Towards end-to-end
visual odometry with deep recurrent convolutional neural networks, 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2043–2050.

Watkins, C. J. C. H.: 1989, Learning from delayed rewards, PhD thesis, King’s College,
Cambridge.

Watkins, C. J. C. H. and Dayan, P.: 1992, Technical note q-learning, Mach. Learn.
8, 279–292.
URL: https://doi.org/10.1007/BF00992698

Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J. and McDonald, J.: 2013, Robust
real-time visual odometry for dense RGB-D mapping, 2013 IEEE International
Conference on Robotics and Automation, pp. 5724–5731.

Wiering, M. A.: 1999, Explorations in efficient reinforcement learning, PhD thesis, Uni-
versity of Amsterdam.

Wisspeintner, T., Van Der Zant, T., Iocchi, L. and Schiffer, S.: 2009, Robocup@ home:
Scientific competition and benchmarking for domestic service robots, Interac-
tion Studies 10(3), 392–426.

Witten, I. H.: 1977, An adaptive optimal controller for discrete-time markov envi-
ronments, Information and control 34(4), 286–295.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S. and Ba, J.: 2017, Scalable trust-region
method for deep reinforcement learning using kronecker-factored approxima-
tion, Advances in neural information processing systems, pp. 5279–5288.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A. and Torralba, A.: 2010, Sun database:
Large-scale scene recognition from abbey to zoo, Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pp. 3485–3492. ID: 1.

Zhou, T., Brown, M., Snavely, N. and Lowe, D. G.: 2017, Unsupervised learning of
depth and ego-motion from video, Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1851–1858.



Publications of the Author

In this thesis

• Shantia, A., Timmers, R., Chong, Y., Kuiper, C., Bidoia, F., Schomaker, L., Wiering,
M.: 2021, Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal
Reinforcement Learning. – Journal of Robotics and Autonomous Systems, Elsevier, In
Press.
URL: https://doi.org/10.1016/j.robot.2021.103731

• Shantia, A., Bidoia, F., Schomaker, L., Wiering, M.: 2016, Dynamic parameter update
for robot navigation systems through unsupervised environmental situational anal-
ysis. – Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1-7, (Best Paper
Award).

• Shantia, A., Timmers, R., Schomaker, L., Wiering, M.: 2015, Indoor localization by de-
noising autoencoders and semi-supervised learning in 3D simulated environment.
– The International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1-7.

Patents
• Pathak, S. , Shantia, A., Veronese, L. : 2018, Autonomous Lane Change. – European

Patent Office, EP3667556.

• Shantia, A., Thorsten, W., Wedel, A. : 2019, Method for Predicting a Change in the
Direction of Travel of a Vehicle. – European Patent Office, EP3543086A1.



108 Publications of the Author

Other Publications
• Shantia, A., Bague, E., Wiering, M.: 2011, Connectionist reinforcement learning for in-

telligent unit micro management in starcraft. – International Joint Conference on Neural
Networks (IJCNN), pp. 1794-1801.

• van Elteren, T., Neculoiu, P., Oost, C., Shantia, A., Snijders, R., van der Wal, E., van der
Zant, T.: 2013, BORG - The RoboCup@Home team of the University of Groningen
Team Description Paper. – International RoboCup@Home Competitions, Eindhoven

• Shantia, A., Mulder, A., Wolf, B., Timmers, R., van der Mark, R., Sandor, L., Knigge,
L., van der Struijk, S., Vienken, G., Bidoia, F., Luneburg, N.: 2015, BORG - The
RoboCup@Home team of the University of Groningen Team Description Paper. –
International RoboCup@Home Open Competitions, Iran

• Jansen, S., Shantia, A., Wiering, M.: 2015, The neural-sift feature descriptor for vi-
sual vocabulary object recognition. – International Joint Conference on Neural Networks
(IJCNN), pp. 1-8.

• Cnossen, F., Sweers, N., Shantia, A.: 2016, Supporting medication intake of the el-
derly with robot technology: Poster and demonstration. – Poster session presented at
Supporting health by technology VII.

• Bidoia, F., Sabatelli, M., Shantia, A., Wiering, M., Schomaker, L.: 2018, A Deep Con-
volutional Neural Network for Location Recognition and Geometry based Informa-
tion. – In Proceedings of the 7th International Conference on Pattern Recognition Applications
and Methods, SciTePress, pp. 27-36.

• Küppers, F., Kronenberger, J., Shantia, A., Haselhoff, A: 2020, Multivariate Confidence
Calibration for Object Detection – CVPR Workshop of Safe Artificial Intelligence for Au-
tomated Driving (SAIAD), Accepted



Summary

The work conducted in this thesis contributes to the robotic navigation field by fo-
cusing on different machine learning solutions: supervised learning with (deep)
neural networks, unsupervised learning, and reinforcement learning. In the thesis,
different solutions are described to solve the following essential problems in robot
navigation:

• Where is the robot?

• How should the robot move?

• Where should the robot move to?

In Chapter 2, we analyze a well established and frequently used robot navigation
pipeline (Lu 2014). In this system, we create a map using a grid-mapping approach
with a LIDAR sensor (Grisetti et al. 2007). The robot uses this map and localizes
itself through adaptive Monte Carlo localization (Fox et al. 1999). The robot calcu-
lates its general path with the Dijkstra algorithm (Misa and Frana 2010) and drives
through the environment by utilizing the dynamic window approach (DWA) (Fox
et al. 1997) in which the method extracts trajectories by sampling velocity and ac-
celeration space. Trajectories that cause collisions or deviate from the path are pro-
hibited. To have smooth behavior, we should tune many parameters of the system;
Notably, the resolution of the collision grid, the number of samples, and the sam-
pling range for velocity and acceleration in longitudinal and angular space. At each
point in time, the robot updates its knowledge regarding the surrounding obstacles,
and in a predictive manner, forward simulates the possible trajectories using the
given parameters. However, different environments and scenarios require different
settings. The robot can move faster if the immediate surrounding is clear of obsta-
cles, but it should carefully move when there are numerous obstacles around, or it is



110 Summary

reaching tight quarters. We propose a semi-supervised machine learning approach
that can dynamically update the parameters based on the surrounding environment
of the robot, which significantly improves the performance and safety of the robot.
We first record the surrounding cost map of the robot that was traversing an of-
fice space in 3D simulation. Using a customized histogram of oriented gradient
(HoG) feature (Dalal and Triggs 2005), we create a feature vector that can capture
the complexity of the surrounding environment during robot movement (e.g., open
hallways, tight corners, doors). Then, using agglomerative clustering, we create the
dendrogram of the collected data. The results show that five clusters separate the
data adequately. Visualizing the average image of all the members of the clusters
reveals the different scenarios that a robot faces during its navigation. Finally, we
select and tune separate parameters for each of these clusters. The results show that
the robot successfully identifies the change in the surrounding, which results in a
thirty percent improvement in the operation of real robot experiments.

In Chapter 3, we turn our attention toward the localization problem in robotics.
We would like to investigate whether a neural network is capable of encoding the
topological information of the surrounding environment. To this end, we gathered
images from a 3D simulated environment. A large part of the dataset contains only
unlabeled images of the environment while a smaller portion includes ground truth
position labels. We trained and compared the results of a traditional multilayer per-
ceptron, a stacked denoising autoencoder (SDA) (Vincent et al. 2010), a combination
of an SDA with top five SIFT feature descriptors in the scene (Lowe 2004), and an
MLP which uses histograms of oriented gradients (HoG) of the captured images as
its feature vector. The results show that the SDA is capable of learning the posi-
tion of the robot. The SDA average error for all the locations is approximately 10cm
and 4 degrees. Our comparisons show that an SDA which is pre-trained on the
unlabeled dataset performed significantly better than an MLP and HoG methods.
Adding the top SIFT feature descriptors increases the localization performance, but
computationally is not beneficial for a real-time robot.

We continue our investigation in Chapter 4 by testing the scalability of the SDAs
and comparing them to various convolutional neural network (CNN) architectures.
Therefore, we add a large 3D simulated environment to the experiments. We remove
the pooling layers from the CNNs to bypass scale and rotation invariance, which is
detrimental to a localization system. The experiment results showed that not only
CNNs perform better in a smaller environment, but their performance also does
not drop in larger ones. At the same time, the SDAs suffer significantly with more
complex data. However, CNNs, similar to SDAs, perform poorly if the image only
contains limited texture information. The output of the network becomes the mean
of all the positions with the same sparse-texture view. In addition, we observe a



Summary 111

Figure 5.4: Evolution of our first robotic platform, Sudo, developed by the Borg team
of the University of Groningen.

performance drop in long hallways, where the longitudinal movement of the robot
does not substantially change the pixel values. On average, however, the results
show that deep neural networks have strong potential in localization.

We then connected the position estimator CNN to a navigation system powered
by reinforcement learning. We define a multi-goal reinforcement learning method
in which the agent learns to reach multiple goals at the same time. By using the
temporal-difference error of the goal states, the agent selects its next destinations
based on the locations that it didn’t traverse. Since learning can take a lot of time in
a 3D simulated environment, we use transfer learning to speed up the convergence
of the algorithm. First, the agent learns to reach all the goals in a maze created
from the map of the environment. Then, we use this trained agent in a 2D physics
simulator with ground-truth positioning to tackle problems that may arise from the
robot control system during navigation. Finally, we test the agent in 3D simulation,
in which the trained agent uses the CNN position estimator output to localize itself



112 Summary

in the environment. The results show that the trained agent can reach all the given
goals in the 3D environment using some additional steps in comparison to the 2D
simulator experiments. This deviation can be explained by the errors in the position
estimation of the robot. The final system was able to learn to navigate to all goal
positions using images taken in the 3D simulator. In future work it would be inter-
esting to use the proposed system with a mobile robot to let it learn to navigate in
the real world.

In this thesis, we proposed several methods to improve robotic navigation using
a variety of machine learning approaches and demonstrated them through 3D simu-
lation and real-world experiments. The research and development of the real-word
domestic service robots were done in parallel with a team of enthusiastic students
of the cognitive robotic laboratory of the University of Groningen throughout this
project. The Borg team’s main objective was to develop a domestic service robot
that is capable of communicating with humans and carrying out complex tasks in
the household, such as obstacle aware navigation, object detection and manipula-
tion, and person recognition and tracking. We developed multiple prototypes dur-
ing this project (Figure 5.4), learning from experience that we gathered during par-
ticipation in RoboCup competitions (Wisspeintner et al. 2009), which assessed our
robot’s capabilities against standard benchmarks.

Our final prototype, Alice, can recognize humans, understand complex com-
mands, navigate safely and efficiently in the environment, and detect and manipu-
late objects1 (Figure 5.5). While a promise of a near-future with sophisticated ser-
vice robots in each household is far fetched due to the complexity and price of these
products, robotic solutions can be used to assist individuals in a day to day indus-
trial and business environments. Increasing production and reducing the need for
constant human monitoring and maintenance allows us to invest the saved time to
develop new products and bring new ideas to the market.

1https://www.youtube.com/user/teamborgnl/videos



Summary 113

(a) Alice detecting and grasping a removable cup from the table.

(b) Alice using its cleaning tool to remove small debris from the
table.

Figure 5.5: The cleaning operation of Alice.





Samenvatting

Het onderzoek in deze dissertatie draagt bij aan het werkveld van de navigatie van
robots door te focussen op verschillende machine learning oplossingen: supervised
learning met (diepe) neurale netwerken, unsupervised learning, en reinforcement
learning. In de dissertatie worden verschillende oplossingen beschreven voor de
volgende essentiële problemen in robotnavigatie:

• Waar is de robot?

• Hoe zou de robot moeten bewegen?

• Waar zou de robot naartoe moeten bewegen?

In hoofdstuk 2 analyseren we een beproefd en veelgebruikte robot navigatie pi-
jplijn (Lu 2014). In dit systeem creëren we een rasterkaart met een LIDAR sensor
(Grisetti et al. 2007). De robot gebruikt deze kaart en lokaliseert zichzelf met adap-
tieve Monte Carlo localisatie (Fox et al. 1999). De robot berekent zijn globale route
met het Dijkstra algoritme (Misa and Frana 2010) en rijdt door de omgeving door
middel van de dynamische window aanpak (DWA) (Fox et al. 1997), waarbij de
methode trajecten selecteert door de snelheid en acceleratieruimte te sampelen. Tra-
jecten die aanrijdingen veroorzaken of afwijken van het pad zijn niet toegestaan.
Voor vloeiend gedrag zouden we veel parameters van het systeem moeten afstellen;
voornamelijk de resolutie van het botsingsraster, de sample frequentie en het sam-
ple bereik voor snelheid en acceleratie wat betreft de hoek en afstand. Op elk mo-
ment werkt de robot zijn kennis bij over de obstakels om zich heen, en voorspelt de
mogelijke trajecten met de gegeven parameters door deze te simuleren. Echter, ver-
schillende omgevingen en scenario’s behoeven verschillende instellingen. De robot
kan sneller bewegen als de onmiddellijke omgeving vrij is van obstakels, maar het
moet voorzichtig bewegen wanneer er veel obstakels in de buurt zijn of wanneer de



116 Samenvatting

ruimte beperkt is. We stellen een semi-supervised machinaal-leren benadering voor,
die de parameters dynamisch kan updaten gebaseerd op de omgeving van de robot,
wat de prestaties en veiligheid van de robot significant zal verbeteren. Eerst wordt
een kosten plattegrond van de omgeving opgenomen voor de robot die een kan-
toorruimte doorgaat in een 3D simulatie. Door een aangepast histogram of oriented
gradient (HoG) te gebruiken (Dalal and Triggs 2005), wordt een vector gecreëerd die
de complexiteit van de omgeving tijdens het bewegen van de robot kan vastleggen
(bijvoorbeeld lege gangen, krappe hoeken, deuren). Vervolgens wordt er met ag-
glomerative clustering een dendrogram gemaakt van de verzamelde data. De resul-
taten laten zien dat vijf clusters de data adequaat scheiden. Door het gemiddelde
beeld van alle datapunten in de clusters te visualiseren, worden de verschillende
scenario’s die een robot tijdens navigatie tegenkomt onthuld. Ten slotte selecteren
we voor elk van deze clusters de parameters en passen deze aan. De resultaten
laten zien dat de robot de veranderingen in de omgeving succesvol identificeert,
wat resulteert in een verbetering van dertig procent in het uitvoeren van echte robot
experimenten.

In hoofdstuk 3 wordt aandacht geschonken aan het lokalisatie probleem van
de robotica. We willen onderzoeken of een neuraal netwerk topologische infor-
matie van de omgeving kan coderen. Hiervoor hebben we beelden van een 3D
gesimuleerde omgeving verzameld. Een groot deel van de dataset bevat alleen on-
gelabelde beelden van de omgeving, terwijl een kleiner deel gelabelde informatie
(ground truth positielabels) bevat. We trainden en vergeleken de resultaten van een
traditioneel multilayer perceptron, een gestapelde ruisverwijderende autoencoder
(SDA) (Vincent et al. 2010), een combinatie van een SDA met de top vijf SIFT feature
descriptors in het veld (Lowe 2004), en een MLP die histograms of oriented gradi-
ents (HoG) gebruikt van de vastgelegde beelden als de feature vector. De resultaten
laten zien dat de SDA in staat is om de positie van de robot te leren aan de hand
van het beeld. De gemiddelde afwijking voor alle locaties is ongeveer 10 cm en 4
graden. Onze vergelijkingen laten zien dat een SDA die vooraf getraind is op de on-
gelabelde dataset, significant beter presteert dan de MLP met HoG methode. Door
de top SIFT feature descriptors toe te voegen, verbetert de lokalisatie, maar dit is
computationeel niet gunstig voor een real-time robot.

In hoofdstuk 4 zetten we ons onderzoek voort door de schaalbaarheid van
de SDA’s te testen en ze te vergelijken met verschillende convolutionele neu-
rale netwerk (CNN) architecturen. Hiervoor voegen we grote 3D gesimuleerde
omgevingen toe aan de experimenten. We verwijderen de “pooling” lagen van de
CNN’s om de schaal en rotatie invariantie te omzeilen, wat nadelig is voor een
lokalisatiesysteem. De resultaten van de experimenten toonden dat niet alleen de
CNN’s beter presteren in een kleinere omgeving, maar dat de prestaties ook niet



Samenvatting 117

verminderen in grotere omgevingen. Tegelijkertijd lijden de SDA’s significant on-
der complexere data. Maar CNN’s, net zoals SDA’s, presteren slecht wanneer het
beeld textuurloos is. De output van het netwerk wordt het gemiddelde van alle
posities met hetzelfde textuurloze beeld. In aanvulling daarop observeerden we
een prestatiedaling in lange gangen, waar de longitudinale beweging van de robot
de pixelwaarden niet wezenlijk verandert. Gemiddeld echter, laten de resultaten
zien dat diepe neurale netwerken grote potentie hebben in lokalisatie.

Vervolgens verbonden we de positie schattende CNN aan een navigatiesysteem
dat aangedreven wordt door reinforcement learning. We definiëren een meer-
voudige reinforcement learning methode waarin de agent (de robot) tegelijkertijd
leert om meerdere doelen te bereiken.

Door de leerfouten van de doeltoestanden te gebruiken, selecteert de agent
de volgende bestemming op basis van de locaties waar het nog niet is geweest.
Aangezien leren in een gesimuleerde 3D omgeving veel tijd kan kosten, gebruiken
we transfer learning om de convergentie van het algoritme te versnellen. Eerst
leert de agent om alle doelen te bereiken in een doolhof gemaakt van de kaart van
de omgeving. Vervolgens gebruiken we deze getrainde agent in een 2D natuur-
getrouwe simulator met ground-truth positionering om problemen op te lossen die
zouden kunnen ontstaan door het robot controle systeem gedurende het navigeren.
Ten slotte testen we de agent in een 3D simulatie, waarin de getrainde agent de
CNN positie schatter output gebruikt om zichzelf te lokaliseren in de omgeving.
De resultaten laten zien dat de getrainde agent alle opgegeven doelen in de 3D
omgeving kan bereiken, met wat meer stappen vergeleken met de 2D simulator
experimenten. Deze afwijking kan verklaard worden door de fouten in de positie
inschatting van de robot. Het uiteindelijke systeem was in staat om te leren te
navigeren naar alle doelposities, gebruikmakend van beelden gemaakt in de 3D
simulator. In toekomstig onderzoek zou het interessant zijn om het voorgestelde
systeem voor een mobiele robot te gebruiken, en het te laten leren navigeren in de
echte wereld.





Acknowledgments

I clearly remember the days during my Master’s studies when I worked as part of
the Borg robotic team to build an automated platform that could act as a service
robot. I remember the sadness when we failed to score points in our first inter-
national Robocup competition despite everyone’s hard work, and I remember the
joy when I received my acceptance letter from graduate school as one of the few
candidates who received funding for their Ph.D. proposals. I have to admit that my
Ph.D. journey took much longer than I anticipated. However, when I look back,
this big project of my life was worth it with all its fluctuations. The ups and downs
never stopped, nor the tremendous support of my family, friends, supervisors, and
colleagues that I am ever thankful for.

Therefore, I would like to thank my supervisor and friend, Dr. Marco Wiering,
for his constant support during this long journey. It was an honor being Marco’s
student. Our discussions during the coffee breaks or the gatherings at Noorder-
plantsoen were a source of inspiration for me. I would also like to thank my
promoter, Prof. Lambert Schomaker, for his constant guidance and support during
the project’s length and his confidence in me to bring this project to an end. The
valuable advice and feedback that I received in our regular meetings allowed me
to plan my study and career path with a long-term vision. I am also grateful to the
graduate school for funding this project and Dr. Sietse van Netten and the educa-
tion department for giving me the opportunity to teach the robotics courses at our
department.

However, completing this Ph.D. was not achievable without the commitment
and hard work of my friends and colleagues of the Borg Robotic team. Thanks to Dr.
Tijn van der Zant, we started the research on our service-robots back in 2010 from
ground zero. Throughout the years, numerous enthusiastic students have joined us
in this project and helped us in completing our robot prototypes, Sudo, and Alice.



120 Acknowledgments

My dear friends and partners, Ron, Egbert, and Christof, were part of the first
group. It was a privilege to work with them as part of the robotic team and later
as partners during our times at our startup, Enacer B.V. I will cherish the time that
we spent together and the invaluable experiences that we gathered throughout the
years. It is always comforting to know that you have friends who you can rely on.
I would also like to thank the rest of my team, Francesco, Rik, Anton, Ben, Sybren,
Ayla, Noel, Marc, Yiebo, Cornel, Paul, and others for their hard work and significant
impact on the development of Sudo and Alice. I would like to especially thank my
good friend, Francesco, for our fruitful joint work on one of our academic papers
and the great time we spent together at the university. Although I haven’t managed
to master the Italian Amatriciana and Carbonara recipes that he taught me, I have
learned a couple of solid cocktails from him.

Although my time was mostly spent in the robot lab on the second floor, I have
spent a great deal with my other department colleagues. I learned how to juggle
balls from my office mate Jean-Paul and enjoyed coffee breaks with Charlotte, Har-
men, Faik, Mahya, and Maruf, in addition to our fruitful discussions on research
topics. I would also like to thank Elina for her constant support during my time at
the university, especially the last three years, for providing me the necessary means
to finish the project. I am glad that I was part of this big family, and Groningen will
always remain my second home.

I would also like to take this opportunity to thank my dear friends, Mehdi
Sadaghian, Elnaz, Ismaeel, Sahar, Mehdi Hatef, Parisa, Mayke, Mehdi Hamidi,
Fahime, Saeedeh, Mehrsima, and Sara, who shared the happiness and hardships
that I went through. I am blessed to have friends like you.

In the end, I would like to dedicate this thesis to my lovely wife Elham, who
supported me every second of every day to bring this project to a finish, to my mom
and dad, Aliyeh and Mehdi, to whom I owe every accomplishment of my life, and
to my dear brothers and sister, Ali, Shahram, and Maryam, who I climbed on their
shoulders to be able to reach this point of my life. I love you with all my heart.

Amirhossein Shantia
Karlsruhe

January 19, 2021


	Acronyms
	Glossary
	Introduction
	Robotics and Automation
	Robotic Navigation
	Artificial Neural Networks and Learning
	Reinforcement Learning
	Scope of this Thesis

	Dynamic Parameter Update using Unsupervised Situational Analysis
	Introduction
	Preliminaries
	Methodology
	Unsupervised Environmental Situation Analysis
	Parameter Selection
	Parameter Update

	Experiments
	Clustering Results
	Base Parameter Selection
	Simulation
	Real Experiments

	Conclusion

	Localization using Stacked Denoising Auto Encoders
	Introduction
	Methodology
	Feature Sets
	Denoising Autoencoder Training

	Experiments
	3D Simulation
	Results
	Computational Performance and Costs

	Conclusion
	Future Work

	Two-Stage Visual Navigation by Deep Neural Networks and Multi-Goal Reinforcement Learning
	Introduction
	Previous Work
	Methodology
	Multi-Goal Reinforcement Learning
	Position-Estimator Networks

	Experiments and Results
	Data Gathering
	Deep Networks and Localization
	Reinforcement Learning
	Experiment Results

	Discussion

	Discussion
	Bibliography
	Publications of Author
	Summary
	Samenvatting
	Acknowledgements
	titelblad - shantia-b5.pdf
	Amirhosein Shantia
	Supervisor
	Co-supervisor
	Assessment Committee




