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a b s t r a c t

Modern Machine learning techniques take advantage of the exponentially rising calculation power in
new generation processor units. Thus, the number of parameters which are trained to solve complex
tasks was highly increased over the last decades. However, still the networks fail – in contrast to our
brain – to develop general intelligence in the sense of being able to solve several complex tasks with
only one network architecture. This could be the case because the brain is not a randomly initialized
neural network, which has to be trained from scratch by simply investing a lot of calculation power, but
has from birth some fixed hierarchical structure. To make progress in decoding the structural basis of
biological neural networks we here chose a bottom-up approach, where we evolutionarily trained small
neural networks in performing a maze task. This simple maze task requires dynamic decision making
with delayed rewards. We were able to show that during the evolutionary optimization random
severance of connections leads to better generalization performance of the networks compared to fully
connected networks. We conclude that sparsity is a central property of neural networks and should
be considered for modern Machine learning approaches.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sparsity is a characteristic property of the wiring scheme of
the human brain, which consists of about 8.6 × 1010 neurons
(Herculano-Houzel, 2009), interconnected by approximately 1015

synapses (Hagmann et al., 2008; Sporns, Tononi, & Kötter, 2005).
Thus, from almost 1022 theoretically possible synaptic connec-
tions, only one of 10 million possible connections is actually
realized. This extremely sparse distribution of both neural con-
nections and activity patterns is not a unique feature of the
human brain (Hagmann et al., 2008) but can also be found in
other vertebrate species such as for example mice and rats (Kerr,
Greenberg, & Helmchen, 2005; Oh et al., 2014; Perin, Berger,
& Markram, 2011; Song, Sjöström, Reigl, Nelson, & Chklovskii,
2005). Even evolutionary very old species with a quite simple
nervous system such as the nematode C. elegans with only 302
neurons (Jarrell et al., 2012) and over 7000 connections (White,
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Friedrich-Alexander University of Erlangen-Nürnberg, Waldstrasse 1, 91054
Erlangen, Germany.

E-mail address: achim.schilling@uk-erlangen.de (A. Schilling).

Southgate, Thomson, & Brenner, 1986) show this sparsity. Besides
the described sparsity of virtually all nervous systems, many bio-
logical neural networks also show small world properties (Ama-
ral, Scala, Barthélémy, & Stanley, 2000; Bassett & Bullmore, 2006;
Latora & Marchiori, 2001; Watts & Strogatz, 1998), such as scale
free connectivity patterns (Bassett, Meyer-Lindenberg, Achard,
Duke, & Bullmore, 2006; Perin et al., 2011; van den Heuvel & Yeo,
2017).

When dealing with the term sparsity in biology and machine
learning, it is necessary to distinguish between three different
forms of sparsity: ‘‘sparse representation’’, ‘‘input sparsity’’, and
‘‘model sparsity’’ (Kafashan, Nandi, & Ching, 2016). Sparse repre-
sentation means that only a small amount of neurons respond to
certain stimuli. Thus, even a fully connected network can have the
property of sparse representation. One famous but controversial
example for sparse representation, often called sparse-coding
(Zhang, Yang, & Feng, 2011), is the so called ‘‘grandmother cell’’,
being a vivid term for the idea that only a single neuron en-
codes for one highly complex concept (Barwich, 2019; Quiroga,
Kreiman, Koch, & Fried, 2008; Rose, 1996). In recent years much
effort has been undertaken to achieve sparse coding of certain
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input stimuli to improve machine learning (Babadi & Sompolin-
sky, 2014; Dasgupta, Stevens, & Navlakha, 2017; Jiao et al., 2018;
Jin, Zhou, Gao, & Zhang, 2018; Olshausen & Field, 2004; Pehlevan
& Sompolinsky, 2014) and on the other hand sparse coding was
also investigated in biology (Crochet, Poulet, Kremer, & Petersen,
2011; Zaslaver et al., 2015). Input sparsity, in contrast, means
that the input patterns fed to the neural network are sparse.
However, in this study we investigate the development of model
sparsity in artificial neural networks, being the analogue to a
sparse connectome in biology. For reasons of simplicity, we use
from now on the term sparsity to refer to model sparsity in the
biological sense, as well as in the context of machine learning.

Sparsity in biology is the result of both, phylogenetic and
ontogenetic adaptations. Even though, almost all species’ im-
mature nervous systems are already very sparse, this sparsity
is even further increased during development and maturation
of the agents’ nervous systems (Low & Cheng, 2006). In fact,
the infant human brain contains two times more synapses than
the adult brain (Kolb & Gibb, 2011). Analogously, the immature
nervous system of C. elegans contains more synapses than the
adult form (Oren-Suissa, Bayer, & Hobert, 2016).

But pruning is not restricted to axons and synaptic connec-
tions. It even extends to the total number of neurons, which also
decreases during development. For instance, the immature ner-
vous system of C. elegans initially consists of 308 neurons (Chalfie,
1984), whereas the adult form contains only 302 neurons (Jar-
rell et al., 2012). And also in humans, the number of neurons
decreases during development (Yeo & Gautier, 2004). These on-
togenetic changes are referred to as pruning (Paolicelli et al.,
2011), and it seems to be a universal phenomenon for all species
from C. elegans to humans. Furthermore, pruning is found to
be mandatory for healthy development (Hong, Dissing-Olesen, &
Stevens, 2016). In cases where normal synaptic pruning fails, this
may even lead to disorders like schizophrenia (Boksa, 2012).

Since sparse connectivity architectures are realized on all
scales and in a vast number of agents of different complexity, it
can be assumed that sparse connectivity is a general principle
in neural information processing systems, leading to advantages
compared to densely connected networks. One major advantage
of sparse artificial deep neural networks used for image classifica-
tion in comparison to fully connected networks, is the reduction
of computational costs while at the same time boosting the ability
to generalize (Anwar, Hwang, & Sung, 2017; Han, Mao, & Dally,
2015; Mocanu et al., 2018; Wen, Wu, Wang, Chen, & Li, 2016).

However, these pure feed forward network architectures show
low biological plausibility as they neither have the ability of
dealing with time series data, nor have any memory-like fea-
tures. Efficient processing of time series data in artificial neural
networks is a complex task with a bunch of limitations. The
technique of training the neural networks by unfolding the data
in time is computational expensive and time consuming and leads
to effects such as vanishing or exploding gradients (Hochreiter,
1998; Pascanu, Mikolov, & Bengio, 2012), which have been partly
overcome by the introduction of Long–Short-Term-Memory Net-
works (Schmidhuber & Hochreiter, 1997). However, these net-
works are difficult to interpret from a biological point of view.

To overcome these limitation, novel biologically inspired ap-
proaches for processing time series data were introduced called
reservoir computing (Lukoševičius, Jaeger, & Schrauwen, 2012;
Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007). A so called
reservoir of neurons with fixed (i.e. not adjusted by training)
random recurrent connections is used to calculate higher-order
correlations of the input signal which serve as input for a feed
forward output layer that is trained with error back-propagation.
The properties of the reservoir networks were found to be ideal
for biologically inspired parameters with a high sparsity (Alexan-
dre, Embrechts, & Linton, 2009). Thus, these reservoirs work best

at the edge of chaos, meaning that the parameters have to be
chosen so that they are balanced between complete chaos and
absolute periodicity (Bertschinger & Natschläger, 2004; Krauss
et al., 2019b; Schrauwen, Verstraeten, & Van Campenhout, 2007).

Much effort has been undertaken to apply the technique of
reservoir computing on tasks with delayed rewards such as robot
navigation in mazes (Antonelo & Schrauwen, 2012; Antonelo,
Schrauwen, & Stroobandt, 2007).

However, the technique of reservoir computing is still based
on the fact that the output layer has to be trained in a supervised
way using back-propagation and, thus, complex tasks with a
delayed reward are difficult to realize. Thus, in this study we
used an evolutionary approach to train networks in solving a
maze task. Although, reinforcement learning techniques – espe-
cially deep reinforcement learning – would be suitable for this
kind of hidden-state Markov process, this approach lacks biolog-
ical plausibility. Thus, deep reinforcement learning needs further
techniques for hyper-parameter tuning such as Bayesian opti-
mization (Springenberg, Klein, Falkner, & Hutter, 2016). However,
the aim of this study is to analyze self-evolving networks and
to characterize the architecture to derive basic principles, which
are of relevance for biological systems. Nevertheless, evolutionary
techniques could be used to optimize reinforcement learning as
well (Young, Rose, Karnowski, Lim, & Patton, 2015).

In our evolutionary system we were able to show that the
random severing of connections (evolutionary pruning), without
explicitly rewarding sparsity, did lead to a general sparsification
of the networks and a better generalization performance. Fur-
thermore, we could demonstrate that evolutionary training works
best when the probability for destroying connections is higher but
in the same range of the probability for recreating connections.

The paper is structured as follows: In the Method section
we describe the used software resources, how the maze task is
implemented, the evolutionary algorithm, and the initial neural
network architecture. The Results section starts with the analysis
of the effect of the different sparsification methods on the per-
formance of the neural networks. We furthermore analyze the
architecture of the evolved networks and demonstrate the effect
of severance probability and reconnection probability. We added
a Conclusion section summarizing the main results, and provide
a discussion on the limitations of the study and possible future
research directions (Discussion).

2. Materials and methods

2.1. Software resources

All simulations were run on a desktop computer equipped
with an i9 extreme processor (Intel) with 10 calculation cores.
The complete software was written in Python 3.6 using the
libraries sys, os, glob, subprocess, json, natsort, pickle, shutil,
NumPy (Van Der Walt, Colbert, & Varoquaux, 2011). Data visual-
ization was done using Matplotlib (Hunter, 2007) and plots were
arranged using the Pylustrator (Gerum, 2019).

2.2. Maze task

The task for the agents to perform is a maze based on a
rectangular grid of 400 × 22 cells (Fig. 1c). The maze/obstacle
task we use here, is similar to the maze task described by Sanchez
and coworkers (Sanchez, Pérez-Uribe, & Mesot, 2001), which they
also use to analyze the performance of evolutionary approaches.

In our maze task there exist two types of cells, free cells and
wall cells. Free cells can be entered and wall cells not. The border
of the maze consists of walls to prevent agents from leaving the
maze. Starting from the left, every 2 to 10 cells a wall with a
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Fig. 1. Example network and mazes. a, Weight matrix of an exemplary network. b, The same network displayed as connections. c, Mazes are 400 cells wide and
22 high. Walls (pink) are at all borders and randomly placed in between. The green line depicts one ideal path though the network. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

length between 4 to 20 is inserted. With a probability of 0.25 the
wall is inserted from the same side (up or down) as the last wall
or with a probability of 0.75 it is inserted from the other side.

Agents start always at the left end of the maze facing to the
right. As ‘sensory’ input each agent receives the distance to the
wall in front, to the left and to the right (input neurons 0 to 6, cf.
Fig. 1a).

If the distance is larger then 10, it is set to 10 (visual range).
It also receives the direction, it is currently looking at, as a one-
hot encoded, four-neuron input, i.e. one neuron at a time is in
state 1 and the others are in state 0. This input serves as a
kind of compass. The seven input neurons do exclusively receive
input from the environment, but do not get any input from other
neurons, thus, they are reset at each time step.

The agent can output three values for the three possible ac-
tions: go straight, turn right, or turn left. The action with the
highest value is selected (winner takes all) (output neurons 7 to
9, cf. Fig. 1a). When the agent chooses to go straight and the next
field is a wall, it is not moved.

After 400 actions, the covered x-distance of the agent is fed to
the fitness function which is proportional to the covered distance
(cf. Fig. 1c). Thus, the reward is delayed by 400 time steps.

2.3. Network

The logic of each agent consists of a fully connected network
of N = 16 neurons (identified as the number of neurons leading
to the best performance with fast convergence, cf. Supplements
S8, S9, S10), with states s (cf. Fig. 1a,b). The connection weights
W are initialized with a random value drawn from a uniformly
distribution from the interval [−σ , +σ ] with σ = 4 ·

√
6

N+N /10.
For each time step t in the task, the 3 + 4 input values (distances
(left, front, right) and one-hot encoded direction) are set as the
states of the neurons #0 to #6. Then one processing pass through
the network is calculated, st+1 = ReLu (W · st) (st : state of the
network at time point t), with ReLu(x) being the rectified linear
function

ReLu(x) =

{
0 x ≤ 0
x x > 0

(1)

The states s of the neurons #7 to #9 are used as outputs to choose
one of the three possible actions to perform in the maze task
(connectivity matrix see Fig. 1a). Thus, the action is determined

by a winner-takes all-method (in the case of no activation, the
‘‘move’’ action is chosen). Our approach is a policy based ap-
proach, as the output of the network directly is the action to take
and no quality assessment of different states is undertaken.

2.4. Evolutionary algorithm

For optimizing the networks to fulfill the maze task, we use
an evolutionary algorithm (Fekiac, Zelinka, & Burguillo, 2011).
Therefore, a pool of 1000 agents (for simulations with different
population sizes cf. Supplements S11) is created with a random
initialization and 10 mazes are created for the agents to be
trained on.

For each iteration, all agents have to perform the maze task
and are assigned a fitness, depending on their score in the task.
The best half of the agent pool has now the chance to create
offspring. The probability to generate an offspring is proportional
to their relative fitness compared to the other agents. Agents with
a probability of 10% or more are set to a maximal probability
of 10% to retain biodiversity. For each of the old agents to be
replaced, a parent agent is selected at random according to their
reproduction probabilities. Agents can have multiple offspring or
no offspring at all.

After offspring generation, each agent is mutated. We used
three different mutation types:

• Weight mutation: The connection weights W are each mu-
tated by addition of a Gaussian distributed random vari-
able (µ = 0: mean of distribution, σ = |σmut|: standard
deviation).

• Mutation rate change: The mutation rate σmut is also mu-
tated by multiplication with a Gaussian distributed random
variable (µ = 1, σ = σmut).

• Connection mutation: Existing connections are removed
with a probability pdisconnect and non-existing connections
are added with a probability of pconnect = pdisconnect. Re-
moved connections have a weight of 0 and are not subject
to weight mutations. Thus, a removed connection cannot
be recovered by a simple mutation step, but can only be
recovered by a reconnection mutation.

The fitness (Eq. (2)) is calculated from the squared mean of the
square root distances the agent reached in all 10 training mazes
(SMR, Eq. (3), this is done to favor generalizing agents which
perform okay in all mazes against a specializing agent which
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Fig. 2. Performance of networks of the different experiments during training and validation. a–f, Performance over generations for different experiments in 10
validation mazes. Curves show 5 different training seeds, evaluated on the same 10 validation mazes. h–m, Performance during training over generations for the
5 different training seeds. Labels stand for the different properties of the condition: ‘‘mut.’’ for mutation of the weights, ‘‘sev.’’ for severing/restoring connections,
‘‘sprs.’’. for adding a sparsity reward to the fitness function. n–s, Histograms of the connection weights for the different experiments. Zero connections are not
included in the histograms. Gray shaded areas in the center indicate which weights can be removed without reducing the performance.

Table 1
Settings for the different experiments. The initial mutation rate σmut , the
probability of removing or restoring a connection pconnect and the sparsity reward
factor fsparsity .

Name σmut pconnect fsparsity
Control 0.01 – –
Connection severance 0.01 0.01 –
Connection severance 0.01 0.001 –
Connection severance no mut. – 0.01 –
Connection severance sparsity reward 0.01 0.01 0.1
Sparsity reward 0.01 – 0.1

performs well in only one maze), the maximum mean activation
of the neurons and optionally from the mean number of active
connections:

fitness = SMRmazes − maxmazes(mean(activation)) (2)
+ fsparsity · sparsity

SMRmazes =

(
1

Nmazes
·

Nmazes∑
i=1

√
di

)2

(3)

(SMRmazes): Root-Mean-Square-Distance, di: covered distance in
maze i, activation: average activation of neural network, Nmazes:
number of mazes, fsparsity: sparsity reward factor. All experiments
(for the initial parameters see Table 1) are repeated for 5 different
seeds of the random number generator that is used to obtain the
initial weights and the mutations. The different repetitions were
performed on the same 10 training mazes to keep them compa-
rable. The performance of the networks is defined as the average
distance covered in the mazes after 400 time-steps. The validation
performance is the average distance in unseen validation mazes,
whereas the training performance is the average distance in the
ten known training mazes.

3. Results

The evolutionary algorithm was able to find solutions enabling
the agents to efficiently navigate through the mazes. In all ex-
periments, except the experiment without weight mutations, the
agents gradually learned to perform better in the maze tasks over
the generations (Fig. 2h–m). The convergence was quite slow,
as about 5000 generations were needed to converge to a stable
solution. The convergence behavior was mostly independent of
the seed of the random number generator, except for the ‘‘no
mutation’’ condition, which relied strongly on the initial weights.
The performance during training was best for the conditions with
no, or low sparsification pressure (Fig. 2h,j,m).

The fitness in validation mazes, that the agents had not seen
during training, was more sensitive to the seed than the perfor-
mance during training. For the experiments with more sparsifi-
cation pressure (Fig. 2b,e) the validation performance did exceed
the fitness during training, showing good generalization, whereas
the experiments with lower sparsification pressure (Fig. 2a,c,f)
showed more problems with over-fitting, which means that the
performance is higher during training than during validation.

Validation performance increased in most runs during train-
ing, although some drops in validation performance were ob-
served, which sometimes recovered after a few generations, but
in some cases the validation performance continued to fluctuate
(see Supplements S2–S6). In general when the mean validation
fitness dropped also the variability of the performance/fitness in-
creased, showing that even if some agents found an ‘‘overfitting’’
solution, it was not quickly adopted by all agents, whereas when
the solutions were more general, they seemed more stable and
were adopted by the whole pool of agents.

The weight distribution of the final generation was different
for each experiment. While the experiments with low sparsifica-
tion pressure, that also showed overfitting, show more connec-
tions and more weights with larger absolute values (Fig. 2n,p,s)
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Fig. 3. Correlation of validation performance to sparsity and training performance. a, Sparsity
(
1 −

nnon-zero
npossible

)
as a function of the epochs (generations, sparsity is

exclusively gained by evolutionary pruning). b, Correlation of validation performance to sparsity. Except for the case of ‘‘connection severance no mutation’’ validation
performance increases on average with increased sparsity. c, Correlation of validation performance to training performance. Higher training performance leads in all
experiments also to higher validation performance, indicating that none of the networks runs into severe overfitting.

compared to the other experiments that show more small weight
values (Fig. 2o,q). Apart from ‘‘connection severance no mut’’ and
‘‘connection severance sparsity reward’’ (48% and 49% negative
weights) all experiments show more negative weights (52%–
55%), referring to inhibitory synapses, a fact which indicates
more interesting behavior and more efficient information pro-
cessing (Krauss et al., 2019b).

In most experiments, the sparsity increased over time (Fig. 3a),
but in ‘‘connection severance’’ it even slightly decreased after
the initial rise and in ‘‘sparsity reward’’ the sparsity fluctuated
strongly over time. A higher sparsity was in all cases (except
the no mutation case) associated with a higher validation per-
formance (Fig. 3b), showing that sparsity improves the general-
ization behavior of evolutionary trained networks. A comparison
of the training performance to the validation performance also
shows that for the sparser cases, the training fitness decreases
and in contrast to that, the validation performance increases.
Therefore, the sparsification prevents overfitting and enhances
the generalization properties of the networks. In addition, it im-
proves computation efficiency in the evolutionary trained net-
works as the computations, divided between many neurons in the
fully connected control group, are, in sparser networks, forced to
be carried out on a small subset of neurons.

Furthermore, it could be shown that the networks which
perform best in the test mazes develop simple feed-forward
structures (cf. Fig. 1a). Additionally, some asymmetry in the con-
nectivity matrix can be observed (cf. Fig. 1b). On the one hand, the
bias units prefer the turn towards a certain direction. On the other
hand, the connection from the input distance sensor to the turn
output (e.g. to turn to the left side dleft in example Fig. 4b) is over-
represented for one side. Thus, the networks have a preference
to go to one side (e.g. to turn left, in the example in Fig. 4b),
if there is enough space. The bias unit serves as counterpart, if
the agent moves along the upper edge (resp. left side seen when
moving along the x-axis) and guarantees that the network can
walk away from the wall. The simple network architectures allow
for the analysis of the functional tasks of certain neurons. This un-
derstanding of the functional tasks of neurons in artificial neural
networks could potentially help to understand biological neural
networks (Jonas & Kording, 2017; Kriegeskorte & Douglas, 2018).
Different experiments develop quite different solutions to solve
the maze task (see Supplementary Material S1). Interestingly, in
some experiments similar structures emerge, regardless of the
seed. This is especially the case in the ‘‘connection severance’’
experiment, where 4 out of 5 solutions are strikingly similar. This
hints at the existence of strongly attractive maxima in the space
of possible solutions.

Furthermore, we were able to show that training works best,
in terms of validation and training performance, when the prob-
ability for removing existing connections pdisconnect is in the same

range of the probability of recreating removed connections
pconnect (Fig. 5). Thus, even when pdisconnect = pconnect generaliza-
tion performance of the networks is increased. Sparsity of the
networks can additionally be increased by deleting all unused
connections, which do not lead to any changes in performance
(combination of pruning and deletion after training, c.f. Fig. 5).
This, procedure can be sophisticated as the random severance of
connections does not prevent the development of unconnected
subnetworks, which should be finally deleted to remove pseudo-
complexity of the neural networks. This could be done by simply
thresholding the connection weights (c.f. Supplements Fig. S14).
However, gradually thresholding the network connections does
not help to significantly increase the sparsity of fully connected
networks (c.f. control condition in Fig. S14) as these networks
were not forced to distribute the information processing over a
smaller amount of neurons by the random pruning procedure.

4. Conclusion

In this study we showed that evolutionary pruning of artificial
neural networks, evolutionary trained to solve a simple maze
task, leads to sparser networks with better generalization prop-
erties compared to dense networks trained without pruning. The
evolutionary pruning is realized via two mutation mechanisms:
First the networks can set a threshold defining the upper limit
of the absolute weight value being virtually set to zero. Secondly,
some connections are removed (weight set to 0) and also restored
at random with given probabilities pconnect, pdisconnect. The random
removal of existing connections leads to more robust networks
with better generalization abilities. This effect works best when
pconnect ≤ pdisconnect and both probabilities are in the same range.
In conclusion, evolutionary pruning by random severance of con-
nections can be used as additional mechanism to improve the
evolutionary training of neural networks.

5. Discussion

5.1. Limitations

The maze task is still not complex enough to trigger the
development of more complex recurrent neural networks which
include abilities such as memory. As the agents in the maze
are always provided with a ‘‘compass’’ meaning always know in
which direction they are pointing, the task can be solved with a
Markov like decision process, as the information of one time step
is enough to decide the next action. Thus, after 5000 epochs the
best performances are achieved by simple feed forward networks
(cf. Fig. 4). Nevertheless, it has to be considered that these net-
works were not forced to develop feed forward architectures but
are a result of the Markov properties of the task they were trained
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Fig. 4. State of the maze and configuration of the network during a turn. The position and orientation in the maze are denoted by the green triangle. The past
trajectory by the green line. Below, the current state of the network is visualized. The values correspond to the current activation of each node and the colored
connections to the weight times the activation (note that the weights are static) of the target node (pink negative, green positive). a, Network one step before turn.
b, Network encounters a wall and turns. c, Network has just turned and is now heading north. d, Network continues walking straight in the new direction. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Training/test performance as a function connection probability pconnect and disconnection probability pdisconnect ratio. The training (a) and test (b) performance
of the agents as a function of the generation for different values of pconnect (0, 0.001, 0.01, 0.1) and a fixed pdisconnect = 0.01. Best performance is achieved when
pconnect ≤ pdisconnect and both are in the same range. (c, d), The sparsity expressed as the number of connections (c) and as a relative count of realized connections (d).
A connection is counted active, if the fitness is not decreased when the connection is disabled. Thus, the sparsity of the networks is reduced by deleting sub-networks,
which are not used (analogously to Supplements S14).

on. The simulation shows that simple feed forward networks are
able to navigate through a maze using only 16 sparsely connected
neurons.

5.2. Future research directions

Thus, the here described networks demonstrate that only a
small number of neurons is needed to navigate through envi-
ronment and shows that for example C. elegans with its 302
neurons (White et al., 1986) should be indeed able to perform
complex tasks. It has already been shown that C. elegans shows
thermo- and electrotaxis (Gabel et al., 2007) which are not simply
a biased random walk in contrast to its’ chemotaxis (for cer-
tain temperatures thermotaxis also changes to a random walk)
(Pierce-Shimomura, Morse, & Lockery, 1999; Ryu & Samuel, 2002).

C. elegans shows a direct movement along the electric gradi-
ent (Gabel et al., 2007). Thus, the amphid sensory neurons of C.
elegans could be seen as and equivalent to the ‘‘compass’’ neurons
in our simulation.

The here described study does not show a biologically inspired
neuron configuration, however, demonstrates that 16 neurons
are enough to perform relatively simple navigation tasks and
gives a hint that the development of sparsity has evolutionary
advantages. These findings contrast with current developments in
the field of artificial intelligence where the size of the networks
due to higher calculation power are scaled up (Xu et al., 2018).

Furthermore, the maze task could be extended so that the task
is not a simple Markov process, which means that the next deci-
sion cannot be made by simply analyzing the current position in
the maze (Littman, 2012; Wierstra &Wiering, 2004). This increase
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of complexity can be achieved e.g. by removing the compass
neurons. Consequently, a neural network which is able to achieve
similar performance than networks with compass neurons need
to develop some ‘‘memory’’ features. The networks would have
to remember which movements they recently executed and they
would have to dynamically recall this information. An even more
demanding task would be to force the agents to go directly back
to the starting point after they passed the maze. This task requires
path integration (Etienne & Jeffery, 2004; Wehner & Wehner,
1986), which in turn requires the ability to flexibly navigate in
physical space like insects (Andel & Wehner, 2004; Müller &
Wehner, 1988, 1994; Wehner & Wehner, 1986), and at least in
mammals episodic memory (Etienne, Maurer, & Séguinot, 1996;
McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Séguinot,
Cattet, & Benhamou, 1998). It has been demonstrated that these
abilities can only be achieved within highly recurrent networks,
as they can be found in the hippocampus (Etienne & Jeffery,
2004). Recently it has been shown that the network architecture
of the hippocampus is not limited to spatial navigation, but seems
to be domain-general (Aronov, Nevers, & Tank, 2017; Killian &
Buffalo, 2018; Nau, Schröder, Bellmund, & Doeller, 2018) and even
allows navigation in abstract high-dimensional cognitive feature
spaces (Bellmund, Gärdenfors, Moser, & Doeller, 2018; Constan-
tinescu, O’Reilly, & Behrens, 2016; Eichenbaum, 2015; Garvert,
Dolan, & Behrens, 2017; Theves, Fernandez, & Doeller, 2019).
Future work will have to investigate, whether networks with
the above mentioned abilities can also be found by evolutionary
algorithms.

Further potential research directions could be to optimize
network architectures using evolutionary algorithms to find ef-
ficient neural networks, which can be trained supervisely or
via reinforcement learning. The counterpart to this approach
would be the analysis of evolutionary trained sparse neural net-
works, and to search for functional units such as motifs (Krauss,
Zankl, Schilling, Schulze and Metzner, 2019c), weight statistics
(Krauss et al., 2019b), or to analyze complex dynamics like ’recur-
rence resonance’ effects (Krauss, Prebeck, Schilling and Metzner,
2019a), which is up to now often done in untrained networks,
that perform no real information processing.

These two strands, would be in line with the philosophy that
artificial and biological intelligence are ‘‘two sides of the same
coin’’ (Kriegeskorte & Douglas, 2018; Schilling et al., 2018), and
that the understanding of brain mechanisms on the one hand and
the development of artificial neural network algorithms on the
other hand are an iterative process, stimulating each other.
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