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1
Introduction

Microgrids are power distribution systems typically classified by Direct Current
(DC) and Alternating Current (AC) networks and are interconnected clusters of
Distributed Generation Units (DGUs), loads and energy storage devices. Due to
the technological developments and politics for environmental protection, renew-
able generation sources and new loads such as Electric Vehicles (EVs) are largely
implemented in power systems. Renewable generation sources generally reduce
the cost of electricity generation and provide clean energy for customers. However,
renewable generation sources are uncontrollable and should be managed as the
uncertainty of generation side in addition to the uncertainty of load side. Power
networks traditionally tackled the uncertainty of loads via adjusting the controllable
generations. However, thanks to the increased share of renewable generations and
large scale introduction of new loads such as EVs, new control strategies are required
to address the uncertainties of power networks. The integration of smart sensors
and meters, advanced two-way communication technologies, distributed control
strategies, and IT-infrastructures can be utilized to promote the control strategies to
address the uncertainties of power networks.

The chapter is organized as follows. The background and problem statement are
presented in Section 1.1. In Section 1.2, the literature is reviewed. In Section 1.3, the
contributions and thesis outline are presented. In Section 1.4, the relations between
the chapters are presented. The list of publications and notations are presented in
Sections 1.5 and 1.6, respectively.



2 1. Introduction

1.1 Background and Problem Statement

Microgrid networks are typically classified by DC and AC networks, which are
interconnected clusters of Distributed Generation Units (DGUs), loads and energy
storage devices. Power networks can be modeled by dynamical systems affected by
external disturbances such as loads and uncontrolled generations.

In DC power networks, in order to guarantee a proper and safe functioning of
the overall network and the appliances connected to it, the main goal is voltage
stabilization (see for instance [1–10]). Moreover, as different DGUs may generally
have different generation (or storage) capacities, an additional goal is to (fairly) share
the total demand of the network among its DGUs (see for instance [11–15]). This goal
is usually called power or current sharing and its achievement does not generally
permit to regulate the voltage at each node towards the corresponding pre-specified
reference value. Consequently, different forms of voltage regulation have been
proposed in the literature, where for instance the average value of the voltages of the
whole microgrid is controlled towards a desired setpoint (see for instance [12–14]).
Moreover, it is well known that electric loads are in practice time-varying and, due
to the random and unpredictable diversity of usage patterns, it is more realistic to
consider unknown time-varying loads described for instance by dynamical systems
or stochastic processes. Therefore, the first problem is achieving (average) voltage
regulation (and current sharing) in DC power networks with time-varying or stochastic
loads and renewable sources.

In AC power networks, the supply-demand mismatch induces frequency devia-
tions from the nominal value, eventually leading to fatal stability disruptions [16, 17].
Therefore, reducing this deviation is of vital importance for the overall network
resilience and reliability, attracting a considerable amount of research activities on
the design and analysis of the so-called Load Frequency Control (LFC), also known
as Automatic Generation Control (AGC), where a suitable control scheme continu-
ously changes the generation setpoints to compensate supply-demand mismatches,
regulating the frequency to the corresponding nominal value (see for instance [16,17]
and the references therein). Moreover, besides ensuring the stability of the overall
power infrastructure, in order to solve the so-called economic dispatch problem [18],
modern control schemes aim also at reducing the operational costs associated to the
LFC. In the literature (see for instance [18–21] and the references therein), this control
objective is referred to as Optimal LFC (OLFC). Nowadays, renewable energy sources
and new loads such as EVs are an integral part of the power infrastructure. As a
consequence, unavoidable uncertainties are sharply increasing and may put a strain
on the system stability. For this reason, the resilience and reliability of the power grid
may benefit from the design and analysis of control strategies that theoretically guar-
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antee the system stability in presence of time-varying loads and renewable sources.
Thus, the second problem is achieving LFC and OLFC in AC power networks with
the time-varying loads and renewable sources.

Microgrids are power distribution systems which include controllable loads and
Distributed Energy Resources (DERs). Controllable loads can work with or without
the main grid and DERs are integrated with Distributed Generations (DG) includes
PhotoVoltaics (PV), Wind Turbines (WT), and Distributed Storage (DS) [22]. An
Energy Management Strategy (EMS) is required in microgrids to control the power
flows among different buses (nodes). An EMS should provide the operational goals
of the microgrid such as the minimization of costs and supplying the demanded
loads. Typically, a nonlinear optimization problem is used to model the microgrid
energy management where usually it is assumed that we have a perfect prediction of
the loads and renewable sources. Thus, commonly an offline optimization approach
is utilized to address the energy management problem. However, the uncertainties
of the loads, renewable sources, and market do not let us have a perfect prediction
of them [23]. Moreover, new loads such as EVs insert more uncertainties to the
microgrids. Hence, the third problem is achieving a distributed optimal EMS in smart
microgrids with stochastic loads and underlying distribution network constraints.

Moreover, microgrids are energy systems typically composed of a Transmission
System Operator (TSO), Distribution System Operators (DSOs), and buildings [24].
In the power networks, DSOs have the task of active distribution systems man-
agement with high penetration renewable generations [25]. However, DSOs may
miss scheduling data or even be bypassed by TSOs. Therefore, the DSO requires
a control method to operate as the system operator. Thanks to the uncertainties of
the power network such as loads or renewable sources, the frequency may deviate
from its nominal values; therefore, a control strategy is required for the regulation of
frequency [26]. The frequency regulation is traditionally obtained via the control of
generated power [27] while the building decisions are not considered. In order to take
advantage of building units, it is required to separate the building dynamics from
the microgrid dynamics. Then, it is possible to present a control strategy achieving
the frequency control and minimizing the costs of different units in the power net-
work [28]. However, the large scale introduction of EVs and penetration of renewable
energy sources challenge the stability of power networks controlled by the current
control strategies. The smart charging of EVs can potentially provide flexibility to
address the stability challenges in the power network where EVs’ batteries operate
as the energy storage devices for the power network [29,30]. More precisely, in smart
charging of EVs when the demanded load is lower than the generated power, the
EVs charge their batteries (Grid-to-Vehicle or G2V mode) and when the demanded
load is higher than the generated power, the EVs discharge their batteries to the
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power network (Vehicle-to-Grid or V2G mode). In smart charging, an aggregator
coordinates the charging and discharging schedule of EVs to satisfy the utility of EVs
and provide ancillary services [24, 29]. However, the social behavior of EV drivers,
i.e., the extent to which EV drivers are willing to use smart charging, is a vital factor
the smart charging which should be taken into account. Specifically, we need to
study whether EV drivers are willing to have their batteries used as energy storage
devices and which factors influence their willingness. Thus, the fourth problem is
achieving an optimal control strategy in smart microgrids with considering the social
behavior of EV drivers to use smart charging.

1.2 Literature Review

In this section, we firstly present a literature review for control of smart microgrids
composed of DC and AC power networks. Then, we bring a literature review
for optimal energy management in smart microgrids consisting optimal microgrid
energy management and optimality and social behavior of EV drivers.

1.2.1 Control of smart microgrids

Smart microgrid networks are typically classified by DC and AC networks, which are
interconnected clusters of Distributed Generation Units (DGUs), loads and energy
storage devices. In this subsection, we present literature reviews for control of DC
and AC networks.

DC networks

The recent wide spread of renewable energy sources, electronic appliances and batter-
ies (including for instance EVs) motivates the design and operation of DC networks,
which are generally more efficient and reliable than AC networks, attracting growing
research interest [3].

In [1], a nonlinear passivity-based control (PBC) scheme for power converters
with constant loads is proposed, where the Brayton–Moser theory is used to tune the
control parameters. A robust decentralized voltage control scheme is presented in [5]
for islanded DC microgrids, where the current loads are assumed to be measurable. A
nonlinear adaptive control scheme is designed in [7] to increase the stability margin of
DC power neworks with unknown constant power loads. An input-to-state stability
(ISS)-like Lyapunov function is obtained and used for control design in [8], ensuring
voltage stability in DC microgrids with known constant loads. A robust and decen-
tralized passivity-based control technique for solving the voltage regulation problem
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in DC networks including boost converters with unknown constant impedance (Z),
current (I), and power (P) loads is proposed in [9]. In [10], the authors study the
conditions under which voltage PI controllers (locally) passivate the generation units
and the constant ZIP loads. A passivity-based control technique is proposed in [31]
to achieve (global) voltage regulation in DC networks with unknown constant ZIP
loads. In [32], a systematic and constructive design based on the port-Hamiltonian
framework is proposed. However, all these works provide stability guarantees only
in presence of constant load components, while loads are in practice time-varying.

In all these works the load components are assumed to be constant. However, it is
well known that electric loads are in practice time-varying and, due to the random and
unpredictable diversity of usage patterns, it is more realistic to consider unknown
time-varying loads described for instance by dynamical systems or stochastic processes
(see for instance [33–35]). A cascade control system for the energy management
of DC microgrids with I loads is presented in [36], where the proposed control
scheme includes an adaptive estimation of the quasi-stochastic load current profiles.
In [37], a droop control scheme is designed for DC microgrids with stochastic Z loads.
Moreover, in some papers, the Stochastic Differential Equations (SDEs) have been
used for modeling the loads and other uncertainties in power system networks (see
for instance [38–40]). In [38], the random load characteristic is considered to develop
a stochastic model for voltage stability analysis. A stochastic power system model
based on stochastic differential equations is presented in [39] to consider the uncertain
factors such as load levels and system faults. In [40], a systematic and general
approach to model power systems as continuous stochastic differential-algebraic
equations is proposed and it justifies the need for stochastic models in power system
analysis. Additionally, [35,41] for AC networks and [42,43] for DC networks consider
time-varying loads. More precisely, [42] presents a design methodology based on
Hamiltonian surface shaping and power flow control for a hierarchical control scheme
that regulates renewable energy sources and energy storage in DC microgrids. A
control scheme for two interconnected Boost DC-to-DC power converters feeding a
time-varying current demand is proposed in [43]. However, the two latter works do
not provide any stability or convergence guarantee.

AC networks

Traditionally, an AC power network is subdivided in the so-called control areas,
each of which represents an electric power system or combination of electric power
systems to which a common LFC scheme is applied [44, 45]. The LFC problem is
usually addressed at each control area by primary and secondary control schemes.
More precisely, the primary control layer preserves the stability of the power system
acting faster than the secondary control layer, which typically provides the generation
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setpoints to each control area [18]. Then, in order to obtain OLFC, a tertiary control
layer can be used to reduce the generation costs in slow timescales. To tackle the
same problem in fast timescales, distributed control schemes are usually adopted,
where the control areas cooperate with each other [46]. For the latter case, there exist
generally two types of control approaches: consensus-based protocols or primal-
dual algorithms. By using the first approach, all the control areas that exchange
information through a communication network achieve the same marginal cost,
solving the OLFC problem typically in absence of constraints [41, 47–56]. The second
approach performs OLFC by solving an optimization problem that may potentially
include constraints for instance on the generated or exchanged power [19, 20, 57–67].
In the following, we briefly discuss some of the relevant works in the literature on
the design and analysis of control schemes achieving LFC and OLFC.

In [68–71], different control schemes for solving the LFC problem in presence
of constant loads are proposed. More precisely, in [68] and [69], distributed PI
droop controllers are designed, while stability conditions for droop controllers are
investigated in [70], where the well-known port-Hamiltonian framework is used.
Based on the sliding mode control methodology, a decentralised control scheme
is proposed in [71], where besides frequency regulation, the power flows among
different areas are maintained at their scheduled values. In [18, 21, 46, 49, 57, 72–75],
different control schemes for solving the OLFC problem in presence of constant
loads are proposed. More precisely, a distributed passivity-based control scheme
is proposed in [18], where the voltages are assumed to be constant. A distributed
sliding mode control strategy is proposed in [21], where, although the robustness
property of sliding mode is able to face time-varying loads, the stability of the desired
equilibrium point is established under the assumption of constant loads only. A
hierarchical control scheme is proposed in [46], while decentralized integral control
and distributed averaging-based integral control schemes are proposed in [49]. In [57],
the convergence is proved under the assumptions of convex cost functions and known
power flows, while a gradient-based approach is proposed in [72]. A linearized power
flow model is adopted in [73], while a primal-dual approach is proposed in [74],
where an aggregator collects the frequency measurements from all the control areas
in order to compute and broadcast the generation setpoints to each control area. A
real-time bidding mechanism is developed in [75].

Nowadays, renewable energy sources and new loads such as EVs are an integral
part of the power infrastructure. As a consequence, unavoidable uncertainties are
sharply increasing and may put a strain on the system stability. For this reason, the
resilience and reliability of the power grid may benefit from the design and analysis
of control strategies that theoretically guarantee the system stability in presence of
time-varying or stochastic loads and renewable sources. Although the present control
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strategies with constant uncontrolled power injections (i.e., the difference between
the power generated by the renewable energy sources and the one absorbed by
the loads) are efficient to deal with LFC problem, they cannot operate properly in
practice with time-varying or stochastic renewables and loads and more advanced
methods are required [76]. However, most of the recent papers consider constant
loads for OLFC problem [18, 21, 46, 49, 57, 68–70, 72–75]. In most of the recent papers
(see for instance [18, 21, 71, 74, 75]), the loads are assumed to be constant but it is
well known that the loads are time-varying in practice and it is more realistic to
model the loads as dynamic systems. To do this, an internal model approach is
proposed in [41], where the loads behaviour is described as the output of a dynamical
exosystem, as it is customary in output regulation theory [77, 78] which takes into
account the time-varying load and voltage dynamics. However, in [41] the turbine
governor dynamics are neglected, while it is generally important in terms of tracking
performance to describe the generation side in a satisfactory level of detail. Moreover,
the exosystem model adopted in [41] to describe the load dynamics is linear, assumed
to be incrementally passive, generally does not allow to achieve OLFC and depends
on some predefined constant matrices.

1.2.2 Optimal energy management in smart microgrids

In this subsection, we present literature reviews for optimal microgrid energy man-
agement and optimality and social behavior of EV drivers.

Optimal microgrid energy management

In [79–82], online algorithms for real-time energy management systems are proposed
to address the uncertainties of loads and renewable generation sources. These
papers propose the algorithms which do not need a prior statistical knowledge of the
loads. However, in real-time approach, we have many communicational challenges
especially in the case of having numerous variable loads. Moreover, we may not
be able to measure all of the loads in microgrids and it is too expensive to install
smart meters for all of the loads. Therefore, there are not enough infrastructures for
implementation of the online EMS in many microgrids. In [83], a Security Constrained
Unit Commitment (SCUC) algorithm adopting the battery storages to make the wind
farms dispatchable is proposed. In latter method, for each wind generation unit, a
battery storage is considered such that they are connected to one bus. The variations
of the wind farms are controlled via programming the charge and discharge of the
batteries. However, the latter method does not provide a distributed algorithm and
does not consider the underlying power flow constraints. In [84], a SCUC method for
ac-dc grids is presented which applies the Conditional Value-at-Risk (CVaR) to carry
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out the issue of the renewable and load fluctuations. The latter algorithm employs
l1-norm approximation to relax the nonconvex optimization problem. This relaxation
makes the optimization problem nonexact and the optimal value of relaxed problem
may not be the same as the nonconvex one. A two-stage robust SCUC algorithm is
introduced in [85] to tackle the problem of wind power uncertainty and the Column
and Constraint Generation (C&CG) method is utilized to address a large number of
second-stage constraints in SCUC. Nonetheless, the convergence speed can be slow
thanks to a large number of vertices; thus, the latter algorithm has high computational
cost. A fully parallel stochastic SCUC method is introduced in [86] as a nonconvex
optimization problem and addressed by decomposing the problem into three solution
modules through the Auxiliary Problem Principle (APP). These three modules are
solved in a parallel manner. Although the latter paper has proposed a fully parallel
SCUC algorithm, there is no convergence proof for such nonconvex Mixed Integer
Programming (MIP) problem.

It is well known that electric loads are in practice stochastic thanks to the random
and unpredictable diversity of usage patterns. However, most of the recent papers
do not consider exact stochastic models for the loads (see for instance [22,23,79]) and
do not consider the underlying power flow constraints with a distributed structure
(see for instance [83–86]). Furthermore, in the stochastic EMS, it is crucial how to
simulate the randomness. It is a custom to assume that the randomness has a certain
distribution and apply Monte Carlo approach to produce simulation data. However,
the stochastic loads have time-series scenarios with self-correlation in time. Hence,
the simulation data should be generated based on the transformation process of the
randomness over time [87].

Optimality and social behavior of EVs

A centralized model predictive control (MPC) is proposed in [24] to optimize control
variables over a common time horizon, considering the potential role of individual
buildings in frequency control of the power system, by introducing electrical en-
ergy storage units. In [88, 89], V2G-based strategies stabilizing a power grid with
large-scale Renewable Energy Sources (RESs) are introduced. A decision-making
strategy considering the State of Charge (SoC) of the EVs, time of day, electricity
price and EV charging requirements is introduced in [90]. In [91], a method that
takes advantage of V2G is proposed to evaluate the resulting changes in generation
dispatch and emissions. The advantages of the smart charging are studied in [92],
where the degradation rate of EVs’ batteries is considered. In [93], the effects of
combined driving and V2G option on the lifetime performance of EVs’ batteries are
investigated. In [94], the benefits and challenges of V2G technology are reviewed
and the optimization techniques obtaining different V2G objectives with multiple
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constraints are summarized. Bidirectional AC-DC and DC-DC converters are pro-
posed in [95] to transfer electrical power via V2G and G2V modes of EVs where a
Proportional Integral (PI) controller is deployed for the (dis)charging current and
voltage control of EVs. In [96], a qualitative review of policies for integrating EVs in
the grid is reviewed and three policy strategies composed of cost-reflective pricing,
intelligent technology and integrated infrastructure planning are proposed to address
the environmental and economic issues in power networks. In [97], the most popular
variants of V2G option for EVs are reviewed and their viability are investigated.
In [98], the implementation impacts, requirements, benefits, challenges and strategies
of V2G and G2V technologies of EVs for distributed systems are studied. The impacts
of operating costs and market rules in power networks are investigated in [99] via
developing a centralized V2G system. In [100], an optimal pricing mechanism based
on the consumers’ demand and social welfare is proposed for the V2G technology. A
method deploying the V2G option of EVs for frequency regulation on a daily basis
and peak reduction on days with high electricity demand is proposed in [101].

Having the battery of your EV used as an energy storage device means that when
energy demand is high, electricity can be used from the battery instead of the grid.
That way, peak energy demand can be reduced. To meet peak energy demand often
peak power load plants are used, that emit more CO2 emissions than base load
power plants [102–104]. Therefore, reducing peak demand can reduce CO2 emissions
and contribute to reducing environmental problems. But having the battery of your
EV used as an energy storage device may degrade the quality of the battery. If the
quality of the battery of the EV degrades, the charge level of the EV may reduce
which in turn reduces the range of the EV. With a lower range, the distance a fully
charged EV can drive is lower. The range of the EV is an important factor influencing
the adoption of an EV. Indeed, range anxiety (i.e., the extent to which people are
uncertain about the charge levels of their EVs) is a barrier to EV adoption [105].
Furthermore, a study using a discrete choice experiment suggests that range anxiety
is an important determinant of the willingness to use V2G [106]. Specifically, the
stronger one’s range anxiety, the less willing one is to use V2G. After all, if drivers
are afraid that the range of their EV may not be sufficient, they are less likely to have
energy from their battery used which will decrease their EV range. However, this
study hardly included EV drivers. The question remains whether range anxiety also
reduces the willingness to smart charge among EV drivers. We hypothesize that the
stronger one’s range anxiety, the less willing one is to have his EV battery used as an
energy storage device.

As explained above, having the battery of your EV used as an energy storage
device can contribute to reducing environmental problems. An important predictor
of pro-environmental behavior is environmental self-identity. Environmental self-
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identity refers to the extent to which people see themselves as a pro-environmental
person [107]. Researches have shown that environmental considerations influence
whether people are willing to adopt EVs [108]. Furthermore, researches suggest
that environmental considerations also influence the acceptance of smart charging
[109]. However, it is unclear whether environmental self-identity is related to smart
charging. We hypothesize that the stronger one’s environmental self-identity, the
more likely one is willing to have the battery of his EV used as an energy storage
device.

1.3 Contributions and Thesis Outline

Nowadays, renewable energy sources and new loads such as EVs are an integral part
of the power infrastructure. As a consequence, unavoidable uncertainties are sharply
increasing and may put a strain on the system stability. For this reason, the resilience
and reliability of the power grid may benefit from the design and analysis of control
strategies that theoretically guarantee the system stability in presence of time-varying
or stochastic loads and renewable sources. Although the present control strategies
with constant loads are efficient to deal with different control objectives in power
networks, they cannot operate properly in practice with time-varying or stochastic
renewables and loads and more advanced methods are required [76]. In this thesis,
we propose various control schemes to ensure stability and achieve voltage regulation
in DC networks and LFC in AC networks including time-varying or stochastic loads.
Indeed, we use output regulation methodology for control design when we model the
loads as dynamical systems and we use Ito calculus framework when we model the
loads by stochastic processes. Moreover, an EMS taking into account stochastic loads
and system operational constraints in a microgrid is presented. Also, a MPC based
control scheme considering the social behavior of the EV drivers via a corresponding
real data set is proposed. We list the contributions of the thesis as follows:

• We model each component of the ZIP load in DC power networks as the sum
of an unknown constant and the solution to a stochastic differential equation
describing the load dynamics. Then, sufficient conditions for the stochastic
passivity of the open-loop system are presented, facilitating the interconnection
with passive control systems and the asymptotic stochastic stability of the
power network controlled by the distributed control scheme proposed by [14]
is proved.

• We formulate the voltage control problem in DC power networks including
time-varying loads as a standard output regulation problem. Then, we consider
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time-varying impedance and current load components where each load com-
ponent is described as the output of a nonlinear dynamical exosystem, as it
is customary in output regulation theory [77, 78]. Next, we propose a control
scheme achieving voltage regulation and ensuring the stability of the overall
network.

• We formulate the voltage control problem in DC power networks including
time-varying and uncertain constant loads as a robust output regulation problem.
Then, we consider superposition of time-varying and uncertain constant ZIP
load components where each time-varying component of the load is described
as the output of a dynamical exosystem, as it is customary in output regulation
theory [77, 78]. Next, we propose control schemes achieving voltage regulation
and ensuring the local robust stability of the overall network including time-
varying and uncertain constant ZIP loads. Then, we propose a control scheme
achieving voltage regulation and ensuring the global robust stability of the
overall network including time-varying and uncertain constant ZI loads.

• We formulate the LFC problem for nonlinear AC power networks including
time-varying uncontrolled power injections (i.e., the difference between the
power generated by the renewable energy sources and the one absorbed by the
loads) as a standard output regulation problem [77, 78]. Then, the time-varying
uncontrolled power injections are described as the outputs of nonlinear dynam-
ical exosystems, as it is customary in output regulation theory [77,78]. Next, we
propose a control scheme based on the classical output regulation theory for
solving the conventional LFC problem in presence of time-varying uncontrolled
power injections, ensuring the stability of the overall network. Then, we use
an approximate output regulation method for solving an approximate OLFC
problem in presence of time-varying uncontrolled power injections, ensuring
the stability of the overall network.

• We formulate the EMS problem in microgrids as a nonconvex optimization
problem taking into account the loads, power flows, and system operational
constraints in a distribution network such that the costs of the DGs, DSs and
energy purchased from the main grid are minimized and the customers’ de-
manded loads are provided where the loads are considered stochastic gener-
ated by a time-homogeneous Markov chain. Next, we relax the nonconvex
constraints to obtain a convex optimization problem according to the conditions
provided in [110, 111] for the exactness of this convexification. Then, to handle
the customers’ privacy, communication challenges, and high computational
burdens of centralized optimization, we decompose the centralized optimiza-
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Ch. 3 Ch. 4

Ch. 5

Ch. 6

Ch. 7

Ch. 8

Output Regulation

DC Networks AC Networks

Part I Part II

Figure 1.1: Graph of relations between chapters. Solid lines show strong relations
and dashed lines represent weaker relations.

tion problem into a distributed problem via the Predictor Corrector Proximal
Multiplier (PCPM) method proposed by [122].

• We exploit the dynamical Buildings-to-Grid (BtG) framework introduced by
[24], integrating TSO, DSO networks, and buildings where EVs are considered
instead of batteries. Then, we use a data set about EV drivers’ social behavior to
model the willingness of EV drivers for using smart charging via a probability
variable. Finally, we propose a MPC strategy to achieve frequency regulation
while minimizing the costs of power generations, buildings and EVs in the
power network.

1.4 Relations Between Chapters

To summarize, Chapter 2 presents the preliminaries for the rest of this thesis. The
voltage regulation in DC networks is the main topic of Chapters 3, 4 and 5, where the
load components are described by SDEs in Chapter 3 and by time-varying exosystems
in Chapters 4 and 5. The load frequency control in AC networks including time-
varying loads is studied in Chapter 6. An energy management strategy in microgrids
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with stochastic loads and MPC based strategy considering the social behavior of EV
drivers are presented in Chapters 7 and 8, respectively. Finally, the conclusions and
future research are provided in Chapter 9. The relations between the chapters of this
thesis are depicted in Figure 1.1.
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1.6 Notations

The set of complex numbers, real numbers and natural numbers are denoted by C,
R, and N, respectively. The set of positive (nonnegative) real numbers is denoted by
R>0 (R≥0). Let 0 be the vector of all zeros or the null matrix of suitable dimension(s)
and let 1n ∈ Rn be the vector containing all ones. The i-th element of vector x is
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denoted by xi. Given a vector x ∈ Rn, [x] ∈ Rn×n indicates the diagonal matrix
whose diagonal entries are the components of x. Let A ∈ Rn×n be a matrix. In
case A is a positive definite (positive semi-definite) matrix, we write A > 0 (A ≥ 0).
Also, σ(A) denotes the spectrum of matrix A. The n× n identity matrix is denoted
by In. The elements of a matrix whose values are not important are indicated
by ∗. Let x ∈ Rn, y ∈ Rm be vectors and x̃ ∈ R1×n, ỹ ∈ R1×m be row vectors,
then we define col(x, y) := (x> y>)> ∈ Rn+m and row(x̃, ỹ) := (x̃ ỹ) ∈ R1×(n+m).
Consider the vector x ∈ Rn and functions g : Rn → Rn×m, h : Rn → Rn, then the
Lie derivative of h(x) along g(x) is defined as Lgh(x) := ∂h(x)

∂x g(x), with ∂h(x)
∂x =

col
(∂h1(x)

∂x , . . . , ∂hn(x)
∂x

)
and ∂hi(x)

∂x =
(∂hi(x)

∂x1
. . . ∂hi(x)

∂xn

)
, for i = 1, . . . , n. The bold

symbols denote the solutions to Partial Differential Equations (PDEs). Let V be an
open neighborhood of the origin of Rq. Then, a function okr : V → Rr is said to be
zero up to the kth order if it is sufficiently smooth and vanishes at the origin together
with all the partial derivatives of order less than or equal to k. Then, let ok(v) denote
a function of v which is zero up to kth order regardless of the dimension of its range
space (see [77, Definition 4.1]). A continuous function α : R>0 → R>0 is said to be
of class K if it is nondecreasing and α(0) = 0 and it is said to be of class K∞ if it
also satisfies lims→∞ α(s) = ∞. Let A,B ∈ Rm×n be matrices, then the Hadamard
(entrywise) product of A and B is defined as (A ◦B)ij := (A)ij(B)ij .
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