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A biochemical oscillator model, describing developmental stage of myxobacteria, 
is analyzed mathematically. Observations from numerical simulations show that in 
a certain range of parameters, the corresponding system of ordinary differential 
equations displays stable and robust oscillations. In this work, we use geomet-
ric singular perturbation theory and blow-up method to prove the existence of a 
strongly attracting limit cycle. This cycle corresponds to a relaxation oscillation of 
an auxiliary system, whose singular perturbation nature originates from the small 
Michaelis-Menten constants of the biochemical model. In addition, we give a detailed 
description of the structure of the limit cycle, and the timescales along it.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Oscillators are ubiquitous in different fields of science such as biology [33], biochemistry [8,11], neuro-
science [15], medicine [12,30,29], and engineering [31]. In particular, biochemical oscillations often occur in 
several contexts including signaling, metabolism, development, and regulation of important physiological 
cell functions [25]. In this paper, we study a biochemical oscillator model that describes the developmental 
stage of myxcobacteria. Myxcobacteria is multicellular organisms that are common in the topsoil [3]. During 
vegetation growth, i.e. when food is ample, myxobacteria constitute small swarms by a mechanism called 
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“gliding” [16]. In contrast, under a starvation condition, they aggregate and initiate a complex developmen-
tal cycle during which small swarms are transformed into a multicellular single body known as “fruiting 
body”, whose role is to produce spores for next generation of bacteria [3]. During the aforementioned tran-
sition, myxobacteria pass through a developmental stage called the “ripple phase” [16,3], characterized by 
complex patterns of waves that propagate within the whole colony.

Two genetically distinct molecular motors are concentrated at the cell poles of myxobacteria, allowing 
them to glide on surfaces; these two motors are called Adventurous (A-motility) and Social (S-motility) 
motors, respectively [16]. The role of the former is to push the cells forward, while the role of the latter 
is to pull them together. So, in order for a cell to reverse its direction, it has to alternatively activate 
its A-motility (push) and S-motility (pull) motors at opposite cell poles [16]. As a result, by forward and 
backward motion of myxobacteria, complex spatial wave patterns are created. In particular, wave patterns 
are produced by the coordination of motion of individual cells through a direct end-to-end contact signal, 
the “C-signal”. During the ripple phase of development, the C-signaling induces reversals, while suppresses 
them during the aggregation stage of development. Observations from experiments resulted in proposing a 
biochemical oscillator in [16], known as the Frzilator, which acts as a “clock” to control reversals.

The Frzilator is detailed in Section 2.1. From our numerical simulations, it appears that this biochemical 
oscillator is robust under small variation of parameters. More importantly, it seems that (almost) all solutions 
converge to a “unique” limit cycle. Regarding the previous property, in [28] it has been shown that within 
a certain range of parameter values, (almost) all trajectories are oscillatory, the system has a finite number 
of isolated periodic orbits, at least one of which is asymptotically stable. Although some biological systems 
may produce more than one stable periodic solution for a certain range of parameters [4], the coexistence 
between multiple stable solutions has not yet been observed experimentally [9].

The main contribution of this paper is to prove that, within a certain range of parameter values, there 
exists a strongly attracting periodic orbit for the Frzilator. Moreover, the detailed description of the structure 
of such periodic orbit is given. The methodology used to prove the aforementioned result consists first 
on an appropriate rescaling of the original model, which leads to a slow-fast (or two timescales) system; 
next, we take advantage of the two timescales of the rescaled system to develop a geometric analysis via 
techniques of multi-timescale dynamical systems. From the multi-timescale nature of the problem, it turns 
out that the limit cycle is in fact a relaxation oscillator, meaning that there are several timescales along the 
orbit of the oscillator. From an analytical point of view, the main difficulty of this analysis is the detailed 
description of a transition along two non-hyperbolic lines (see details in Section 3). Our analysis is based 
on the approach developed in [18,19] where similar mechanisms, leading to an attracting limit cycle in the 
Goldbeter minimal model [8], have been studied. The C-signal of the biological oscillator plays a crucial 
role both in our analysis and in the behavior of the limit cycle. Thus, besides proving the existence of a 
strongly attracting limit cycle using geometric singular perturbation theory and blow-up method, we have 
performed a two-parameter bifurcation analysis to show which combination of the C-signal and Michaelis-
Menten constants of the system leads to oscillatory motions. In addition, we have computed a certain range 
for γ over which our main result is valid.

The rest of this paper is organized as follows. In Section 2 we introduce the model, perform some 
preliminary analysis on the model, and briefly introduce the tools which we are going to use in the paper. 
In Section 3 we give the slow-fast analysis of an auxiliary system, corresponding to the original system. 
More precisely, we discuss the behavior of the dynamics when ε → 0. In Section 4, we present the blow-up 
analysis of the non-hyperbolic parts. We conclude the paper with a discussion and outlook in Section 5.

2. Detailed model and preliminary analysis

In this section we provide a preliminary analysis of the biochemical oscillator proposed in [16]. We start 
in Subsection 2.1 by presenting a detailed description of the model under study. Furthermore, we describe 
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Fig. 1. Essential components of the Frzilator.

the behavior of the trajectories and the role of parameters, and propose a unification of them. Afterwards, in 
Subsection 2.2, we present a two-parameter bifurcation analysis where we clarify the nature and the role of 
two distinct parameters of the system. Finally, in Subsection 2.3 we provide a brief introduction to slow-fast 
systems and the main techniques for their analysis.

2.1. Model description

We study a biochemical oscillator model which describes the social-behavior transition phase of myxobac-
teria [16]. This model, which is known as the Frzilator (or simply “Frz”) model, is based on a negative 
feedback loop. In the Frz model, there are three proteins, namely, a methyltransferase (FrzF), the cytoplas-
mic methyl-accepting protein (FrzCD), and a protein kinase (FrzE). A direct and end-to-end collision of 
two myxobacteria results in producing a signal, so-called “C-signal”, under which a protein called FruA is 
phosphorylated. The signal from phosphorylated FruA (FruA-P) activates the Frz proteins as follows [16]: 
(i) the methyltransferase FrzF (FrzF∗) is activated by the protein FruA-P; (ii) in response to FrzF∗, the 
protein FrzCD is methylated (FrzCD-M); (iii) the phosphorylation of FrzE (FrzE-P) is activated by the 
methylated form of FrzCD; (iv) FrzF∗ is inhibited by the phosphorylated form of FrzE. Fig. 1 shows a 
schematic representation of interactions between proteins of the Frz system. For a more detailed explana-
tion of the model and its biological background, see [16]. Denote f, c and e respectively as the fraction of 
activated FrzF, methylated FrzCD, and phosphorylated FrzE. These fractions are given by [16]

f = [FrzF∗]
[FrzF∗] + [FrzF] , c = [FrzCD-M]

[FrzCD] + [FrzCD-M] , e = [FrzE-P]
[FrzE] + [FrzE-P] .

The interaction between the Frz proteins is modeled by Michaelis-Menten kinetics and hence leads to the 
dynamical system

df

dτ
= ka(1 − f) − kdfe,

dc

dτ
= km(1 − c)f − kdmc,

de

dτ
= kp(1 − e)c− kdpe,

(1)

where
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ka = kmax
a

Ka + (1 − f) , kd = kmax
d

Kd + f
,

km = kmax
m

Km + (1 − c) , kdm = kmax
dm

Kdm + c
,

kp =
kmax
p

Kp + (1 − e) , kdp =
kmax
dp

Kdp + e
.

(2)

Remark 1. Due to the fact that f, c and e represent fractions of active protein concentrations, their values 
are restricted to [0, 1]. So the fraction of inactive protein concentrations are given by (1 − f), (1 − c) and 
(1 − e). Therefore, hereafter, our analysis is restricted to the unit cube

Q =
{
(f, c, e) ∈ R3 | f ∈ [0, 1], c ∈ [0, 1], e ∈ [0, 1]

}
. (3)

As mentioned in [16], the Frz system has the well-known property of “zero-order ultrasensitivity” which 
requires that the Michaelis-Menten constants Ka, Kd, Km, Kdm, Kp and Kdp have to be small [10]. It is 
observed numerically in [16] that for the parameter values Ka = 10−2, Kd = Km = Kdm = Kp = Kdp =
5 × 10−3, kmax

d = 1 min−1, kmax
m = kmax

p = 4 min−1, kmax
dm = kmax

dp = 2 min−1, and kmax
a = 0.08 min−1, 

system (1) has an attracting periodic solution. Owing to the fact that the unit of kmax
d , kmax

m , kmax
p , kmax

dm and 
kmax
dp is min−1, to make the model non-dimensional, we divide all equations of system (1) by kmax

d . Note that 
this does not change the qualitative behavior of the system, while makes all its parameters dimensionless. 
For simplicity, we unify all the dimensionless Michaelis-Menten constants by Ka = 2Kd = 2Km = 2Kdm =
2Kp = 2Kdp = ε � 1. After unifying all Michaelis-Menten constants by ε, denoting γ := kmax

a , and 
substituting (2) in (1), we obtain the following dynamical system

df

dτ
= γ(1 − f)

ε + (1 − f) − 2fe
ε + 2f ,

dc

dτ
= 8(1 − c)f

ε + 2(1 − c) − 4c
ε + 2c , (4)

de

dτ
= 8(1 − e)c

ε + 2(1 − e) − 4e
ε + 2e .

Figs. 2 and 3 show numerically computed attracting limit cycle as well as time evolution of system (4) for 
ε = 10−3 and γ = 0.08.

Remark 2. For our analysis in this paper, we fix γ = 0.08, while later we show that this parameter can be 
relaxed to some extent, see Remark 3 and Appendix A.

The dynamics along the limit cycle, shown in Fig. 2, can be summarized as follows. Initially, all protein 
ratios f, c and e are close to zero, under the dynamics (4), the variable f increases (due to the action of the 
C-signal), while c and e stay close to zero. Once the variable f passes the activation threshold f∗ := 0.5, 
the variable c increases very fast. Next, once the variable c passes the threshold c∗ := 0.5, the variable e is 
activated and also increases very fast until it reaches its maximum value, i.e., e = 1. Due to the fact that 
there is a negative feedback from e to f , the increase in e results in the degradation of variable f . Once f
reaches the threshold f∗, variable c decreases, and once c reaches the threshold c∗, the variable e decreases 
vary fast. As a result, the variables f and c reach their lowest values (i.e. very close to zero), but the variable 
e reaches the threshold e∗ := γ. Once the variable e drops below the threshold e∗, the variable f is activated 
and increases. This behavior is repeated in a periodic manner and a limit cycle is formed (see Fig. 2).

For system (4), a parameter-robustness analysis with respect to ε and γ = 0.08 is presented in [28]. 
More precisely, using bifurcation analysis, it is shown that system (4) is robust under the variation of ε for 
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Fig. 2. Numerically computed attracting limit cycle of system (1) for ε = 10−3 and γ = 0.08. The arrows indicate the direction 
and speed of the flow along the limit cycle. A single arrow corresponds to the slowest time scale, while three arrows indicate the 
fastest one.

Fig. 3. Numerically computed periodic solution of system (1) for ε = 10−3 and γ = 0.08.

ε ∈ (0, ε∗) with ε∗ := 0.05517665. Moreover, it is proven that for ε ∈ (0, ε∗), almost all trajectories converge 
to a finite number of periodic solutions, one of which is orbitally asymptotically stable. In this article, we 
prove the existence of a strongly attracting limit cycle which explains the numerically computed periodic 
orbit, for sufficiently small ε > 0.

2.2. Two-parameter bifurcation analysis

This section is devoted to the two-parameter bifurcation analysis of (4). In particular, we are interested 
in understanding the behavior of system (4) under the variation of parameters (ε, γ). To this end, let us 
represent (4) by

ẋ = G(x; ε, γ), (5)

where x = [f c e ]�, and G(x; ε, γ) denotes the right-hand side of (4). We have used the numerical 
continuation software Matcont [5] to compute the two-parameter bifurcation diagram of (5) with respect 
to (ε, γ), presented in Fig. 4, where the vertical and the horizontal axes show, respectively, the behavior of 
G(x; ε, γ) with respect to ε and γ. The blue curve indicates that for any 0 < γ < 1 and any ε below the 
curve, the system has unstable equilibria. Owing to the fact that system (4) is cyclic [28, Theorem 5.7], 
according to [28, Theorems 5.5 & 5.7] almost all trajectories of system (4) converge to a limit cycle for 
any 0 < γ < 1 and any ε below the bifurcation curve, depicted in Fig. 4. For those values of ε which are 
above the blue curve, the system is not oscillatory anymore, i.e. the equilibrium point is stable. In fact, 
the blue curve is a curve of Hopf bifurcations where the equilibria of the system switches from being stable 
to unstable: with fixed 0 < γ < 1, as ε passes through the curve from above to below, a limit cycle is 
generated.

As shown in Fig. 4, there are two points, denoted by “GH”, which are generalized Hopf (or Bautin) 
Bifurcation points. At these points, the equilibria of (5) have a pair of purely imaginary eigenvalues at which 
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Fig. 4. Two-parameter bifurcation analysis of (4) with respect to (ε, γ). (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

the first Lyapunov exponent coefficient of the Hopf bifurcation vanishes [23]. Computed by Matcont, the 
values of (ε, γ) at “GH” points are as follows:

(ε1, γ1) = (0.060907128, 0.086423772), (ε2, γ2) = (0.043172692, 0.949470320). (6)

In Fig. 4, the red curves are the curves of “limit points” (or saddle-node bifurcation) of cycles. For parameter 
values (ε, γ) between the blue and red curves in Fig. 4, at least two limit cycles exist simultaneously, i.e., 
for γ close to 0 or γ close to 1, with a suitable 0 < ε � 1, at least one stable and one unstable limit cycle 
coexist.

Remark 3. As we mentioned in Section 2.1, due to the property of “zero-order ultrasensitivity”, the 
Michaelis-Menten constants and hence ε have to be small. Our observation from numerical simulations 
shows that, for sufficiently small ε, system (4) has similar qualitative behaviors when γ belongs to certain 
bounds which are close to 0 and 1. In this regard, we emphasize that although the position of the limit cycle 
changes when γ is close to 1 (see, for instance, Fig. 5), the geometric analysis of the dynamics is the same 
as the case that γ is close to 0, for sufficiently small ε.

Remark 4. In Section 2.1, we have unified all the Michaelis-Menten constants of system (1) by ε, resulted 
in system (4). Although γ has a similar size as the Michaelis-Menten constants, we have not unified it 
with them. The reason is that γ is the C-signal of the biological oscillator, i.e., the input under which the 
dynamics are triggered (see Fig. 1). Since such a signal coordinates the movements of the individual cells 
and influences the shape of the fruiting bodies [16], it is crucial to have γ in a certain range between 0 and 
1. Our analysis throughout the paper clearly shows the role of γ.

2.3. Preliminaries on slow-fast systems

Our goal is to understand the dynamics of (4) for small ε in the limit ε → 0. However, as it is seen in (4), 
when the variables f, c and e are very close to the boundary of Q, the limiting behavior is different from 
the case that they are away from the boundary. To resolve the aforementioned problem, one possibility is 
to consider an auxiliary system which is smoothly equivalent to (4). To this end, let us define

Hε(f, c, e) := Hε
1(f)Hε

2(c)Hε
3(e),

where
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Fig. 5. Numerically computed attracting limit cycle of system (1) for ε = 10−3 and γ = 0.9. The arrows indicate the direction and 
speed of the flow along the limit cycle. A single arrow corresponds to the slowest time scale, while three arrows indicate the fastest 
one.

Hε
1(f) := (ε + 1 − f)(ε + 2f),

Hε
2(c) := (ε + 2 − 2c)(ε + 2c),

Hε
3(e) := (ε + 2 − 2e)(ε + 2e).

(7)

Note that Hε(f, c, e) > 0 for any ε > 0 and any (f, c, e) ∈ Q. Therefore, we can reparametrize time of 
system (4) by multiplying both sides of (4) in Hε(f, c, e), which leads to the following dynamical system

df

dτ
=

(
γ(1 − f)

ε + (1 − f) − 2fe
ε + 2f

)
Hε(f, c, e),

dc

dτ
=

(
8(1 − c)f

ε + 2(1 − c) − 4c
ε + 2c

)
Hε(f, c, e), (8)

de

dτ
=

(
8(1 − e)c

ε + 2(1 − e) − 4e
ε + 2e

)
Hε(f, c, e),

where, for simplicity, we recycle τ to denote the reparametrized time. One can rewrite (8) as follows

Xε :

⎧⎪⎪⎨
⎪⎪⎩

df
dτ = [γ(1 − f)(ε + 2f) − 2fe(ε + 1 − f)]Hε

2(c)Hε
3(e),

dc
dτ = [8(1 − c)f(ε + 2c) − 4c(ε + 2 − 2c)]Hε

1(f)Hε
3(e),

de
dτ = [8(1 − e)c(ε + 2e) − 4e(ε + 2 − 2e)]Hε

1(f)Hε
2(c).

(9)

The vector field (9) is smoothly equivalent to (4) for ε > 0 [1], which from now on is the object of study. 
The main reason to rewrite system (4) into the form of system (9) is that the latter is a singularly perturbed 
ODE which allows us to analyze the system using geometric methods. Moreover, note that in contrast to 
(4), system (9) is polynomial, which is another of its advantages.

2.3.1. Slow-fast systems
System (9) is a slow-fast system in non-standard form. Thus, in this section, we present a brief summary 

of the basic definitions and results regarding slow-fast systems of such a form. Our aim is to provide just 
necessary terminologies needed for this paper. For a detailed exposition, the reader is referred to [32].

A slow-fast system (SFS) in standard form is a singularly perturbed ordinary differential equation with 
two timescales often presented as

ẋ = F (x, y, ε),

εẏ = G(x, y, ε),
(10)
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where the dot ˙ denotes derivative with respect to the slow time t, F and G are assumed to be smooth, 
x ∈ Rns , y ∈ Rnf , and 0 < ε � 1 is a small parameter that describes the timescale separation between x
and y. For details see [21].

In contrast, a slow-fast system in non-standard form is a vector field as

z′ = Z(z, ε), (11)

where z ∈ Rn, n ≥ 2, the prime ′ denotes the derivative with respect to the fast time-parameter τ , and the 
smooth vector field Z : Rn×R → Rn is assumed to satisfy Z(z, ε) = Z0(z) +εW (z, ε). One usually assumes 
that ε ∈ (0, ε0), with ε � 1. The main difference between (10) and (11) is that in system (11) there is no 
evident time scale separation between the components of z. As (11) is a perturbation problem, one usually 
starts its analysis by considering its unperturbed version.

Definition 1. The limit ε → 0 of (11), that is

z′ = Z(z, 0) = Z0(z), (12)

is called the layer equation.

The set of singularities of Z0 has a crucial role in the analysis of (11), and allows one to distinguish 
whether (11) defines a regular or a singular perturbation problem:

Definition 2. Let

C = {x ∈ Rn |Z(z, 0) = Z0(z) = 0 ∈ Rn} . (13)

Then:

• System (11) is a regular perturbation problem if the set C is either empty or it consists entirely of 
isolated singularities.

• System (11) is a singular perturbation problem if there exists a subset C0 ⊆ C which forms a k-
dimensional, 1 ≤ k < n, differentiable manifold. The set C0 is called the critical manifold of (11).

Remark 5. In general, and as it happens in this paper, the set C0 is not necessarily a manifold. For example, 
it could be formed by the union, along lower dimensional submanifolds, of disjoint k-dimensional manifolds. 
Nevertheless, it is customary to keep referring to C0 as the critical manifold. One could refer to it as “the 
critical set” to avoid such ambiguity.

We note that generically, given that the critical manifold C0 is k-dimensional, the map Z0 : Rn → Rn

has constant rank (n − k). This also implies that the Jacobian DZ0, evaluated at each point z ∈ C0, has at 
least k zero eigenvalues (called trivial eigenvalues) that correspond to the tangent space TzC0, and (n − k)
nontrivial eigenvalues.

Definition 3. Let C0,n ⊆ C0 denote the subset where all nontrivial eigenvalues of DZ0|C0,n are nonzero, and 
let C0,h ⊆ C0,n denote the subset where all nontrivial eigenvalues of DZ0|C0,h have nonzero real part. In the 
latter case, C0,h is called normally hyperbolic. On the other hand, points in C0\C0,n or in C0,n\C0,h, if they 
exist, are called non-hyperbolic, and one says that “the critical manifold C0 loses normal hyperbolicity at 
such points”.
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If in (11) we rescale time by defining the slow time parameter t = ετ , one can rewrite (11) as

ż = 1
ε
Z0(z) + W (z, ε). (14)

The limit of (14) as ε → 0, is called the reduced problem and is well defined if z ∈ C0 and the projection 
of W (z, ε) to C0 is well defined (see [32, section 3.2]). The overall idea of Geometric Singular Perturbation 
Theory (GSPT) is to analyze the layer equation and the reduced problem, and then use perturbation 
arguments to describe the dynamics of (11).

One of the main results of Geometric Singular Perturbation Theory (GSPT) is concerned with slow-fast 
systems within a small neighborhood of a normally hyperbolic critical manifold.

Theorem 1 (Fenichel [7]). Let S0 ⊆ C0,h be a compact and normally hyperbolic critical manifold of a SFS 
(11). Then, for ε > 0 sufficiently small, the following holds:

• There exists a locally invariant manifold Sε which is diffeomorphic to S0 and lies within distance of 
order O(ε) from S0.

• The flow on Sε converges to the reduced flow on S0 as ε → 0.
• Sε has the same stability properties as S0.

In a nutshell, Fenichel’s theorem implies that the dynamics of the slow-fast system (11) near a compact 
and normally hyperbolic critical manifold is a regular perturbation of the reduced problem. On the other 
hand, the dynamics near non-hyperbolic points can be quite intricate. In the next section we briefly present 
a powerful technique to study the dynamics of slow-fast systems near a class of non-hyperbolic points.

2.3.2. The blow-up method
The blow-up method was introduced to describe the dynamics of SFSs near non-hyperbolic points, and 

is the main mathematical technique used in forthcoming section of this article. Here we just provide a brief 
description of the method, for more details the interested reader is referred to [6,17,20,21].

Definition 4. Consider a generalized polar coordinate transformation

Φ : Sn × I → Rn+1

Φ(z̄, ε̄, r̄) �→ (r̄αz̄, r̄γ ε̄) = (z, ε), (15)

where 
∑n

i=1 z̄
2
i +ε̄2 = 1 and r̄ ∈ I where I is a (possibly infinite) interval containing 0 ∈ R. The corresponding 

(quasi-homogeneous)5 blow-up is defined by (z̄, ̄ε, ̄r) = Φ−1(z, ε). The map Φ is called blow down.6

For the purposes of this article, it is sufficient to let r̄ ∈ [0, ρ), with ρ > 0. The main idea of the blow-up 
method is to construct a new, but equivalent, vector field to Z (11), which is defined in a higher dimensional 
manifold, but whose singularities are simpler compared to those of Z.

Definition 5. The blown up vector field Z̄ is induced by the blow-up map as Z̄ = DΦ−1 ◦ Z ◦ Φ, where DΦ
denotes the derivative of Φ. If Z̄ vanishes on Sn×{0} with order m ∈ N, we define the desingularized vector 
field Z̃ = 1

r̄m Z̄.

5 A homogeneous blow-up (or simply blow-up) refers to all the exponents α, β, γ set to 1.
6 Note that the blow-up maps the origin 0 ∈ Rn+1 to the sphere Sn × {0} while the blow down does the opposite, hence the 

names.
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Note that the vector fields Z and Z̃ are equivalent on Sn × {r̄ > 0}. Moreover, if the weights (α, γ) are 
well chosen, the singularities of Z̃|r̄=0 are partially hyperbolic or even hyperbolic, making the analysis of Z̃
simpler than that of Z. Due to the equivalence between Z and Z̃, one obtains all the local information of 
Z around 0 ∈ Rn+1 from the analysis of Z̃ around Sn × {r̄ ≥ 0}.

While doing computations, it is more convenient to study the vector field Z̃ in charts. A chart is a 
parametrization of a hemisphere of Sn × I and is obtained by setting one of the coordinates (z̄, ̄ε) ∈ Sn

to ±1 in the definition of Φ. For example, one of the most important charts in the blow-up method is the 
central chart defined by Kε̄ = {ε̄ = 1}. After we study the dynamics in the relevant charts, we connect the 
flow together via transition maps, allowing us a complete description of the flow of Z̃ near Sn × {0}. In 
turn, and as mentioned above, the flow of Z̃ is equivalent to the flow of Z for ε > 0 sufficiently small. For 
more details see Section 4 and [17,21].

Remark 6. It is also possible to blow-up only some of the variables in the system (11), and keep the others 
unchanged. In this paper, we blow-up a non-hyperbolic line of equilibria to a cylinder, see Section 4.

3. Geometric singular perturbation analysis

The goal of this section is to give the detailed analysis of the slow-fast structure of the auxiliary system 
(9).

3.1. Layer problem and the critical manifold

Setting ε = 0 in (9) results in the layer problem

df

dτ
= (γ − e)H0(f, c, e),

dc

dτ
= 2 (2f − 1)H0(f, c, e),

de

dτ
= 2(2c− 1)H0(f, c, e),

(16)

with

H0(f, c, e) = 32fce(1 − f)(1 − c)(1 − e).

Apart form the isolated equilibrium point P := (0.5, 0.5, γ), which is inside the cube Q, the boundary of 
Q, which consists of six planes, is the equilibria set of the layer problem (16). We denote each plane of 
equilibria by S0,i (i = 1, 2, ..., 6) as follows:

S0,1 :=
{
(f, c, e) ∈ R3 | f = 0, c ∈ [0, 1], e ∈ [0, 1]

}
,

S0,2 :=
{
(f, c, e) ∈ R3 | f ∈ [0, 1], c = 0, e ∈ [0, 1]

}
,

S0,3 :=
{
(f, c, e) ∈ R3 | f ∈ [0, 1], c ∈ [0, 1], e = 0

}
,

S0,4 :=
{
(f, c, e) ∈ R3 | f = 1, c ∈ [0, 1], e ∈ [0, 1]

}
,

S0,5 :=
{
(f, c, e) ∈ R3 | f ∈ [0, 1], c = 1, e ∈ [0, 1]

}
,

S0,6 :=
{
(f, c, e) ∈ R3 | f ∈ [0, 1], c ∈ [0, 1], e = 1

}
.

(17)

Therefore S0 :=
⋃6

i=1 S0,i is the critical manifold. The stability of system (9) changes at lines �f ∈ S0,2, �f ∈
S0,5 (given by f = f∗); �c ∈ S0,3, �c ∈ S0,6 (given by c = c∗); and �e ∈ S0,1, �e ∈ S0,4 (given by e = e∗). 
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Fig. 6. The critical manifold S0 =
⋃6

i=1 S0,i, non-hyperbolic lines �f , �c, �e, �f , �c, �e in red, all 12 non-hyperbolic edges in blue, and 
in particular, the two non-hyperbolic edges �1 and �2 shall play an important role in our analysis.

Moreover, the 12 edges of the unit cube, where the 6 planes S0,i intersect, are non-hyperbolic lines as well. 
However, for our analysis, only the lines �1 = S0,1 ∩ S0,2 and �2 = S0,2 ∩ S0,3 are crucial (see Fig. 6). The 
stability of points in S0 is summarized in the following lemma.

Lemma 1. The critical manifold S0 of the layer problem (16) has the following properties:

• S0,1 is attracting for e > e∗ and repelling for e < e∗.
• S0,2 is attracting for f < f∗ and repelling for f > f∗.
• S0,3 is attracting for c < c∗ and repelling for c > c∗.
• S0,4 is attracting for e < e∗ and repelling for e > e∗.
• S0,5 is attracting for f > f∗ and repelling for f < f∗.
• S0,6 is attracting for c > c∗ and repelling for c < c∗.
• The equilibrium P := (0.5, 0.5, γ) is a saddle-focus point.
• The lines �f ∈ S0,1, �c ∈ S0,2, �e ∈ S0,3, �f ∈ S0,4, �c ∈ S0,5, �e ∈ S0,6, all 12 edges of the unit cube, and 

in particular, the edges �1 = S0,1 ∩ S0,2 and �2 = S0,2 ∩ S0,3 are non-hyperbolic.

Proof. The eigenvalues of the linearization of system (16) at points, e.g., in the plane S0,1 are given by

λ1 = λ2 = 0, λ3 = −32ce(c− 1)(e− 1)(e− γ).

It is clear that λ3 is zero at the boundary of S0,1, and also along the line le given by e = e∗. Therefore, S0,1 is 
attracting for e > e∗ and it is repelling for e < e∗. The proof of the other cases is performed analogously. �

We denote the interior of the cube Q by Q̊. Note that when (f, c, e) ∈ Q̊, the layer problem (16) can 
be divided by the positive term H0(f, c, e) = 32fce(1 − f)(1 − c)(1 − e). Therefore away from the critical 
manifold S, all the variables evolve on the fast time scale τ and the orbits of the layer problem (16) are 
identical to the orbits of the linear system

df

dτ
= γ − e,

dc

dτ
= 2(2f − 1),

de = 2(2c− 1).

(18)
dτ
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Table 1
For each row i we show the interval of definition of Sa

ε,i and the relation by which it is defined, 
all analogous to Lemma 2.

i Ia
i Sa

ε,i

2 (f, e) ∈
[
δ, 1

2 − δ
]
× [δ, 1 − δ] c = f

1−2f ε + O(ε2)
3 (f, c) ∈ [δ, 1 − δ] ×

[
δ, 1

2 − δ
]

e = c
1−2c ε + O(ε2)

6 (f, c) ∈ [δ, 1 − δ] ×
[ 1
2 + δ, 1 − δ

]
e = 1 + 1

2(1−2c) ε + O(ε2)

Remark 7. System (18) is the limit of (4) when ε → 0 and (f, c, e) ∈ Q̊.

3.2. Reduced problem, slow manifolds, and slow dynamics

From Subsection 3.1, we know that the boundary of Q is the critical manifold S0. Any compact subset 
of S0 that does not contain any non-hyperbolic point is normally hyperbolic, and hence Fenichel theory [7]
is applicable. In other words, this theory implies that the normally hyperbolic parts of S0 perturb to slow 
manifolds, which lie within a distance of order O(ε) of the critical manifold S0. In the following, we compute 
the slow manifolds and analyze the reduced flows in the planes S0,1, S0,2, S0,3 and S0,6 which are essential 
for our analysis.

Lemma 2. For sufficiently small δ > 0, there exist ε0 > 0 and a smooth function hε,1(c, e) defined on 
Ia
1 = [δ, 1 − δ] × [γ + δ, 1 − δ] such that the manifold

Sa
ε,1 = {(f, c, e) ∈ Q | f = hε,1(c, e), (c, e) ∈ Ia

1 } , (19)

is a locally invariant attracting manifold of (9) for ε ∈ (0, ε0]. The function hε,1(c, e) has the expansion

hε,1(c, e) = γ

2(e− γ)ε + O(ε2). (20)

Proof. Since the set Ia
1 is hyperbolic, Fenichel theory implies that there exists a sufficiently small ε0 > 0

such that the function hε,1(c, e) has the expansion hε,1(c, e) = η(c, e)ε + O(ε2) for all ε ∈ (0, ε0]. Due to 
invariance, we can substitute hε,1(c, e) into the equation of dfdτ in (9) and identify coefficients of ε. By doing 
so, we obtain

η(c, e) = γ

2(e− γ) . (21)

Note that (21) reflects the fact that the manifold Sa
ε,1 is not well-defined when e = γ. Thus, the invariant 

manifold Sa
ε,1 is given as stated in the lemma, which completes the proof. �

For the sake of brevity, we summarize the analysis in the planes S0,2, S0,3 and S0,6 in Table 1, which 
is shown by following the same line of reasoning as the one of Lemma 2. For more details, the interested 
reader is referred to [27].

Remark 8. Similar results can be obtained for the “repelling” parts Sr
ε,i, i = 1, 2, ..., 6. However, these are 

not needed in our analysis. Nonetheless, we point out that the slow manifolds Sr
ε,i would be expressed by 

the same functions hε,i and appropriate intervals Ir
i .

Remark 9. The expansions of the functions hε,i(·, ·), i = 1, 2, 3, 6, also explain why it is necessary to restrict 
the domain of definition of the slow manifolds to Ia

i to exclude their singularities.
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Fig. 7. Flow of the slow vector field in S0,1, non-hyperbolic line �e in red, and sections c1, c2 in cyan.

We now turn to the analysis of the reduced flows in the planes S0,1, S0,2, S0,3 and S0,6 which, respectively, 
means the planes f = 0, c = 0, e = 0 and e = 1. We know that system (9) has the fast time scale τ . By 
substituting the functions hε,i, i = 1, 2, 3, 6 into (9), transforming the fast time variable to the slow one 
by t = ετ , and setting ε = 0, the equations governing the slow dynamics on the critical manifold S0,i are 
computed. In the following, we give the analysis in the plane S0,1.

After substituting hε,1 into system (9), the dynamics of the reduced system in S0,1, i.e., on the plane 
f = 0, is governed by

c′ = −32ce2(c− 1)(e− 1)
e− γ

ε + O(ε2),

e′ = 32ce2(c− 1)(e− 1)(2c− 1)
e− γ

ε + O(ε2),
(22)

where ′ denotes the differentiation with respect to τ . Now by dividing out a factor of ε, which corresponds 
to switching from the fast time variable to the slow one, we have

ċ = −32ce2(c− 1)(e− 1)
e− γ

+ O(ε),

ė = 32ce2(c− 1)(e− 1)(2c− 1)
e− γ

+ O(ε),
(23)

where the overdot represents differentiation with respect to t = ετ . Now, by setting ε = 0 in (23), the 
reduced flow on S0,1 is given by

ċ = −32ce2(c− 1)(e− 1)
e− γ

,

ė = 32ce2(c− 1)(e− 1)(2c− 1)
e− γ

.

(24)

As it is clear, the vector field (24) is singular at the line �e, given by e = e∗. In other words, the flow (24) is 
not defined on the line �e. The lines c = 0, e = 0, c = 1, and e = 1, shown in Fig. 7, are lines of equilibria. 
The line c = 0 is attracting for e > e∗ and it is repelling for e < e∗, while the line c = 1 is attracting for 
e < e∗ and repelling for e > e∗.

By dividing out the factor 32ce2(c−1)(e−1)
e−γ in (24), the orbits of the reduced flow can be derived from the 

desingularized system
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ċ = −1,

ė = 2c− 1,
(25)

which can be integrated explicitly.

Remark 10. For e > e∗, systems (24) and (25) have qualitatively the same dynamics when c, e ∈ (0, 1). 
In particular, the vector field (25) is C∞-equivalent but not C∞-conjugate to the vector field (24). For 
the case that e < e∗, the direction of the vector field (24) is not preserved in the vector field (25). 
However, for our analysis, it suffices to study the flow of system (24) when e > e∗, or equivalently 
on Sa

0,1.

Fig. 8. The reduced flows along Sa
0,2, Sa

0,3 and Sa
0,6. The vector fields are singular at red lines. The thick blue lines are lines of 

equilibria. The direction of vector fields shows which (part of) line of equilibria is either attracting or repelling.
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Lemma 3. For e > e∗, the reduced flow (24) on S0,1 and hence the slow flow (23) on Sa
ε,1 maps section 

{c = c1} to {c = c2}, where 0 < c2 < c1 < 1
2 ; this map is well-defined and its first derivative with respect to 

e is equal to one.

Proof. It suffices to consider (25). Let Π(e) denote the map from {c = c1} to {c = c2} induced by the flow 
of (25). Then, it is straightforward to get Π(e) = e + c2 − c22 − c1 + c21, from which the statement follows. �

In order to obtain the equations governing the slow flow along Sa
ε,2, Sa

ε,3 and Sa
ε,6, a similar analysis 

can be done by inserting the functions hε,2, hε,3 and hε,6 into (9) and dividing out a factor of ε, which 
corresponds to switching to the slow time scale t = ετ . Next, by setting ε = 0 one obtains the reduced flow 
on the critical manifolds S0,2, S0,3 and S0,6. For the sake of brevity, we have summarized the slow flows 
along S0,2, S0,3 and S0,6 in Fig. 8. For more details, the interested reader is referred to [27].

3.3. Singular cycle

In this section, we present the overall behavior of the singular cycle, which is a closed curve consisting of 
alternating parts of the layer problem, and the critical manifold S0. However, by the information that we 
have so far from the critical manifold and the layer problem, we cannot fully describe the singular cycle close 
to the non-hyperbolic lines �1 and �2. A full description of the singular cycle for those parts that cannot be 
derived from the critical manifold and the layer problem is presented in Section 4 by the blow-up method.

The construction of the singular cycle Γ0 starts at the point pf := (0.5, 0, 0). This point is connected 
to the point p1 := (1+√

γ

2 , 0.5, 0) ∈ �c through the orbit ω1 of the reduced flow (27). Starting at p1, the 
layer problem (18) intersects the attracting part of the plane Sa

0,6 in a point, denoted by p2. This point is 
connected to a point, denoted by qe ∈ �c, through the orbit ω3 of the reduced flow (28). Starting at qe, 
through the layer problem (18), the orbit ω4 intersects the plane Sa

0,1 at a point, denoted by qe. The orbit 
ω5 of the reduced flow (22) connects qe to a point, denoted by pe ∈ �1, which is the intersection of Sa

0,1 and 
Sa

0,2; pe is connected to the point pe := (0, 0, γ) by a segment on the line �1, denoted by ω6. The orbit ω7 of 
the reduced flow (26) connects pe to the point pf := (γ

2

4 , 0, 0); Finally, pf is connected to pf by a segment 
on the line �2, denoted by ω8. Hence, the singular cycle Γ0 ∈ R3 of system (9) for ε = 0 is defined as follows 
(see Fig. 9):

Γ0 := ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ ω5 ∪ ω6 ∪ ω7 ∪ ω8. (29)

Remark 11. All the orbits ωj (j = 1, 2, ..., 8) are known analytically.

Owing to the fact that the layer problem is linear, all the points that connect ωj to ωj+1 are ex-
plicitly known. For the particular quantity γ = 0.08, we have pf = (0.5, 0, 0), p1 ≈ (0.6414, 0.5, 0), 
p2 ≈ (0.3638, 0.8485, 1), qe ≈ (0.0771, 0.5, 1), qe ≈ (0, 0.3438, 0.9743), pe ≈ (0, 0, 0.7487), pe = (0, 0, 0.08), 
and pf = (0.0016, 0, 0).

Remark 12. At the singular level, there is no visible flow on the segments ω6 and ω8. The blow-up analysis, 
carried out in Section 4, will reveal a hidden flow for such segments.

3.4. Main result

In view of the singular cycle Γ0, introduced in the previous subsection, we are now ready to present the 
main result.
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Fig. 9. Schematic diagram of the singular cycle Γ0.

Theorem 2. Assume that Γ0 is the singular cycle described in Section 3.3. Then for sufficiently small ε > 0, 
there exists a unique attracting periodic orbit Γε of the auxiliary system (9), which tends to the singular 
cycle Γ0 as ε → 0.

In order to prove Theorem 2, we need to introduce the following sections

Σ1 := {(f, c, e) ∈ R3 | (f, e) ∈ R1, c = δ1},
Σ2 := {(f, c, e) ∈ R3 | (c, e) ∈ R2, f = δ2},
Σ3 := {(f, c, e) ∈ R3 | (f, e) ∈ R3, c = δ3},

(30)

where Rj (j = 1, 2, 3) are suitable small rectangles, and δj are chosen sufficiently small. Note that Σ1 is 
transversal to ω4, Σ2 is transversal to ω6, and Σ3 is transversal to ω8, see Fig. 9.

According to the definition of the sections Σi, introduced in (30), we define the following Poincaré maps 
for the flow of the system (9)

π1 : Σ1 → Σ2,

π2 : Σ2 → Σ3,

π3 : Σ3 → Σ1,

(31)

where the map π1 describes the passage from Σ1 to Σ2 along the non-hyperbolic line �1, the map π2 describes 
the passage from Σ2 to Σ3 along the non-hyperbolic line �2, and the map π3 describes the passage from Σ3

to Σ1. The map π3 consists of slow flow along Sa
ε,3, followed by the fast dynamics from a neighborhood of 

p1 to a neighborhood of p2, followed by the slow flow along Sa
ε,6 to a neighborhood of qe. Through the fast 

dynamics, this neighborhood is mapped to a neighborhood of qe, followed by the slow flow along Sa
ε,1 to Σ1.

We summarize the properties of the above maps in the following lemmas.

Lemma 4. If the section Σ1 is chosen sufficiently small, then there exists ε0 > 0 such that the map

π1 : Σ1 → Σ2, (f, e) �→ (πc
1(f, e, ε), πe

1(f, e, ε)), (32)
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is well-defined for ε ∈ [0, ε0] and smooth for ε ∈ (0, ε0]. The map π1 is a strong contraction with contraction 
rate exp(−K/ε) for some K > 0. The image of Σ1 is a two-dimensional domain of exponentially small size, 
which converges to the point q2 := Σ2 ∩ ω7 as ε → 0.

Lemma 5. If the section Σ2 is chosen sufficiently small, then there exists ε0 > 0 such that the map

π2 : Σ2 → Σ3, (c, e) �→ (πf
2 (c, e, ε), πe

2(c, e, ε)), (33)

is well-defined for ε ∈ [0, ε0] and smooth for ε ∈ (0, ε0]. The map π2 is a strong contraction with contraction 
rate exp(−K/ε) for some K > 0. The image of Σ2 is a two-dimensional domain of exponentially small size, 
which converges to the point q3 := Σ3 ∩ ω1 as ε → 0.

The proofs of Lemmas 4 and 5 are based on the blow-up analysis of the lines �1 and �2, respectively, 
which will be presented in Subsections 4.1 and 4.2.

Remark 13. The points on the line �c when 0.5 < f < 1, and on the line �c when 0 < f < 0.5 are jump 
fold points, i.e., the trajectory switches from the slow dynamics to the fast dynamics. One way of showing 
the aforementioned is by following [24, Lemma 6]. For the reader’s convenience, we have included such 
computations in Appendix B. This also explains why the behavior of the trajectory near �c is very similar 
to the behavior of standard slow-fast systems with two slow variables and one fast variable near a generic 
“fold” line, studied in [26] based on the blow-up method. The critical manifolds S0,3 and S0,6 of system 
(9) can be viewed as a standard folded critical manifold, which has been straightened out by a suitable 
diffeomorphism. This leads to the curved fibers of the layer problem (16). Therefore, we can use the results 
of [26] to understand the behavior of (9) close to the non-hyperbolic lines �c and �c.

The following lemma describes the map from the section Σ3 to the section Σ1, defined in (31).

Lemma 6. If the section Σ3 is chosen sufficiently small, then there exists ε0 > 0 such that the map

π3 : Σ3 → Σ1, (f, e) �→ (πf
3 (f, e, ε), πe

3(f, e, ε)), (34)

is well-defined for ε ∈ [0, ε0] and smooth for ε ∈ (0, ε0]. The image of Σ3 is an exponentially thin strip 
lying exponentially close to S1

a,ε ∩ Σ1, i.e., its width in the f -direction is O(exp(−K/ε)) for some K > 0. 
Moreover, π3(Σ3) converges to a segment of Sa

0,1 ∩ Σ1 as ε → 0.

Proof. The basic idea of the proof is based on the map that has been already described in Fig. 9 for ε = 0, 
denoted by π0

3, and then treat π3 as an ε-perturbation of π0
3. If the section Σ3 is chosen sufficiently small, 

then the trajectories starting in Σ3 can be described by the slow flow along the manifold Sa
ε,3 combined 

with the exponential contraction towards the slow manifold until they reach a neighborhood of the jump 
points on the line �c. Applying [26, Theorem 1] close to the jump pints, the trajectories switch from the slow 
dynamics to the fast dynamics, and hence pass the non-hyperbolic line �c; this transition is well-defined 
for ε ∈ [0, ε1], and smooth for ε ∈ (0, ε1] for some ε1 > 0. Note that [26, Theorem 1] guarantees that the 
contraction of the solutions in the e-direction persists during the passage through the fold-line �c, as it is 
at most algebraically expanding. After that, the solutions follow the fast dynamics ω2 until they reach a 
neighborhood of the point p2, see Fig. 9. Next, the solutions follow the slow flow along the manifold Sa

ε,6
combined with the exponential contraction towards the slow manifold until they reach a neighborhood of 
the point qe. Again applying [26, Theorem 1] close to the jump points, the solutions which are very close 
to the non-hyperbolic line �c switch from the slow dynamics to the fast dynamics, and hence pass the 
non-hyperbolic line �c, where the corresponding transitions are well-defined for ε ∈ [0, ε2], and smooth for 
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ε ∈ (0, ε2] for some ε2 > 0, and then follow the fast dynamics (ω4) until they reach a neighborhood of the 
point qe. Finally, the solutions follow the slow flow along the manifold Sa

ε,1 combined with the exponential 
contraction towards the slow manifold until they reach the section Σ1.

Theorem 1 of [26] implies that the map π3 is at most algebraically expanding in the direction of e when 
Σ3 is chosen sufficiently small. On the other hand, the slow manifold Sa

ε,1 is exponentially contracting in 
the direction of f (Fenichel theory). Therefore, the image of Σ3 is a thin strip lying exponentially close to 
Sa
ε,1 ∩ Σ1. Hence, the statements of the lemma follow. �
Now we are ready to give the proof of the main result.

Proof of Theorem 2. Let us define the map π : Σ3 → Σ3 as a combination of the maps πj (j = 1, 2, 3), 
described in Lemmas 4, 5 and 6. More precisely, we define

π = π2 ◦ π1 ◦ π3 : Σ3 → Σ3.

If the section Σ3 is chosen sufficiently small, Lemma 6 implies that there exists ε3 > 0 such that the map π3
is well-defined for ε ∈ [0, ε3] and smooth for ε ∈ (0, ε3], and the image of Σ3 is a thin strip lying exponentially 
close to Sa

ε,1 ∩ Σ1, i.e., π3(Σ3) is exponentially contracting with rate exp(−K3/ε), for some K3 > 0, in the 
f -direction while it is bounded in the e-direction.

Next, if the entry section Σ1 is chosen such that Σ1 ⊃ π3(Σ3), Lemma 4 implies that there exists ε1 > 0
such that the map π1 is well-defined for any ε ∈ [0, ε1] and smooth for ε ∈ (0, ε1], and π1 is an exponential 
contraction with rate exp(−K1/ε) for some K1 > 0. Finally, if the entry section Σ2 is chosen such that 
Σ2 ⊃ π1(Σ1), Lemma 5 implies that there exists ε2 > 0 such that the map π2 is well-defined for any ε ∈ [0, ε2]
and smooth for any ε ∈ (0, ε2], and further, π2 is an exponential contraction with rate exp(−K2/ε), for 
some K2 > 0, such that Σ3 ⊃ π2(Σ2).

Denoting ε0 := min{ε1, ε2, ε3} and K := min{K1, K2, K3}, the map π : Σ3 → Σ3 is well-defined for any 
ε ∈ [0, ε2], and smooth for ε ∈ (0, ε0]. Further, based on the contracting properties of the maps πi, i = 1, 2, 3, 
we conclude that π(Σ3) ⊂ Σ3 is contraction with rate exp(−K/ε). The Banach fixed-point theorem implies 
the existence of a unique fixed point for the map π, corresponding to the attracting periodic orbit of the 
system (9). Moreover, due to the last assertion of Lemmas 4, 5 and 6, the periodic orbit Γε tends to the 
singular cycle Γ0 as ε → 0. This completes the proof.

4. Blow-up analysis

The slow-fast analysis that we have done in Section 3 does not explain the dynamics of system (9)
close to the non-hyperbolic lines �1 and �2. As the segments ω5 and ω7 lie on these lines (see Fig. 9), we 
need a detailed analysis close to the lines �1 and �2, which is carried out in this section via the blow-up 
method [21,14,20]. To apply this, we extend system (9) by adding ε as a trivial dynamic variable and obtain

df

dτ
= [γ(1 − f)(ε + 2f) − 2fe(ε + 1 − f)]Hε

2(c)Hε
3(e),

dc

dτ
= [8(1 − c)f(ε + 2c) − 4c(ε + 2 − 2c)]Hε

1(f)Hε
3(e),

de

dτ
= [8(1 − e)c(ε + 2e) − 4e(ε + 2 − 2e)]Hε

1(f)Hε
2(c),

dε

dτ
= 0,

(35)

where Hε
1(f), Hε

2(c) and Hε
3(e) are defined in (7). Note that for the extended system (35), the lines �1 ×{0}

and �2 × {0} are sets of equilibria. Due to the fact that the linearization of (35) around these lines has 
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quadruple zero eigenvalues, system (35) is very degenerate close to �1 × {0} and �2 × {0}. To resolve these 
degeneracies, we use the blow-up method, given in next subsections.

4.1. Blow-up of the non-hyperbolic line �1 × {0}

The blow-up of the non-hyperbolic line �1×{0} is presented in this subsection. To this end, we transform 
the non-hyperbolic line of steady states �1 × {0} by

f = rf̄ , c = rc̄, ε = rε̄, e = ē, (36)

where f̄2 + c̄2 + ε̄2 = 1 and r ≥ 0. Note that since (f, c, e) ∈ Q, we may further assume that f̄ , ̄c ≥ 0 and 
ē ∈ [0, 1]. Since all weights are equal to 1 in (36), this is a homogeneous blow-up. For fixed ē, each point 
(0, 0, ̄e) is blown-up to a sphere S2, and the line �1 × {0} is blown-up to a cylinder S2 × [0, 1], see Fig. 10.

For the analysis of system (35) near the line �1 × {0}, we define three charts K1, K2 and K3 by setting 
c̄ = 1, ε̄ = 1, and f̄ = 1 in (36), respectively:

K1 : f = r1f1, c = r1, ε = r1ε1, e = e1, (37)

K2 : f = r2f2, c = r2c2, ε = r2, e = e2, (38)

K3 : f = r3, c = r3c3, ε = r3ε3, e = e3. (39)

The changes of coordinates for the charts K1 to K2, and K2 to K3 in the blown-up space are given in the 
following lemma.

Lemma 7. The changes of coordinates K1 to K2, and K2 to K3 are given by

κ12 : f2 = f1

ε1
, c2 = 1

ε1
, ε2 = r1ε1, e2 = e1, ε1 > 0, (40)

κ23 : r3 = r2f2, c3 = c2
f2

, ε3 = 1
f2

, e3 = e2, f2 > 0. (41)

The goal of this subsection is to construct the transition map π1 : Σ1 → Σ2, defined in (31), and prove 
Lemma 4. Before going into the details, let us briefly describe our approach. We describe the transition map 
π1 : Σ1 → Σ2 via an equivalent one in the blown-up space. More specifically we define

π1 := Φ ◦ π̄1 ◦ Φ−1, (42)

where

π̄1 := Π3 ◦ κ23 ◦ Π2 ◦ κ12 ◦ Π1,

and Φ : S2× [0, 1] × [0, r0) → R4 is the cylindrical blow-up defined by (36), the maps Πi are local transitions 
induced by the blown-up vector fields which are detailed below, and κ12 and κ23 denote the changes of 
coordinates, given in Lemma 7. π̄1 is the transition map in the blown-up space and due to the fact that Φ
is a diffeomorphism, it is equivalent to π1. A schematic of the problem at hand is shown in Fig. 10.

The left picture in Fig. 10 illustrates the critically manifolds Sa
0,1 and Sa

0,2, and the corresponding flows 
in blue. The non-hyperbolic line �1 is shown in orange. For e > γ, the reduced flows on both critically 
manifolds approach the line �1. At the point on the line �1 with e = γ, a transition from Sa

0,1 to Sa
0,2 is 

possible as indicated in the figure. The right picture in Fig. 10 schematically shows the configuration in 
the blown-up space. The cylinder corresponding to r = 0 is show in orange. The part of the phase space 
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Fig. 10. The left figure shows the dynamics close to the non-hyperbolic line �1. The right figure shows the corresponding dynamics 
in the blown-up space.

corresponding to ε̄ = 0 and r > 0 are shown outside of the cylinder. Here we recover the layer problem, the 
critically manifolds, and the reduced flows in S̄a

0,1 and S̄a
0,2. In the blown-up space, the manifolds Sa

0,1 and 
Sa

0,2 are separated and hence gained hyperbolicity, in particular they are attractive, as indicated below in 
Fig. 11a. All these assertions will be proven in this section.

Roughly speaking, in chart K1 we continue the attracting slow manifold S̄a
0,1 onto the cylinder. Chart 

K2 is used to track the flow across the cylinder. The exit of the flow from the cylinder and its transition to 
S̄a

0,2 is studied in chart K3, see Figs. 10 and 15. The detailed analysis of the maps Πi introduced in (42), is 
given in the forthcoming subsections.

4.1.1. Analysis in chart K1

After substituting (37) into (35) and dividing out all the equations by the common factor r1, the equations 
governing the dynamics in chart K1 are given by

f ′
1 = −4f1Γ1G11 + [γ(1 − r1f1)(ε1 + 2f1) − 2f1e1(r1ε1 + 1 − r1f1)]G12,

r′1 = 4r1Γ1G11,

e′1 = 4r1[2r1(1 − e1)(r1ε1 + 2e1) − e1(r1ε1 + 2 − 2e1)]G13,

ε′1 = −4ε1[2r1f1(1 − r1)(ε1 + 2) − (r1ε1 + 2 − 2r1)]G11,

(43)

where we denote

Γ1 := [2r1f1(1 − r1)(ε1 + 2) − (r1ε1 + 2 − 2r1)],

G11 := (r1ε1 + 1 − r1f1)(r1ε1 + 2 − 2e1)(ε + 2f1)(r1ε1 + 2e1),

G12 := (r1ε1 + 2 − 2r1)(r1ε1 + 2 − 2e1)(ε1 + 2)(r1ε1 + 2e1),

G13 := (r1ε1 + 1 − r1f1)(r1ε1 + 2 − 2r1)(ε1 + 2f1)(ε1 + 2).

(44)

From (43) it is clear that the planes r1 = 0 and ε1 = 0 are invariant. Hence, we consider the following cases:

1. r1 = ε1 = 0: in this case, the dynamics (43) is simplified to

e′1 = 0,

f ′ = 32f e (1 − e )[2f + γ − e ].
(45)
1 1 1 1 1 1
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Fig. 11. Dynamics of (43) restricted to invariant subspaces.

For fixed e, the equilibria of the system (45) are the attracting point pa1 = (f1, r1, e1, ε1) = (0, 0, e1, 0), 
and the repelling point pr1 = (f1, r1, e1, ε1) = ( e1−γ

2 , 0, e1, 0). Note that the two hyperbolic points pa1 and 
pr1 intersect at the non-hyperbolic point (f1, r1, e1, ε1) = (0, 0, γ, 0), see Fig. 11a.

2. ε1 = 0: in this case, the dynamics (43) is represented by

f ′
1 = 32f1e1(1 − e1)(1 − r1)(1 − r1f1)[(γ − e1) − 2f1(2r1f1 − 1)],

r′1 = 64r1f1e1(1 − e1)(1 − r1)(1 − r1f1)[2r1f1 − 1],

e′1 = 64r1f1e1(1 − e1)(1 − r1)(1 − r1f1)[2r1 − 1].

(46)

From (46), one concludes that the plane f1 = 0 is the plane of equilibria which is denoted by S̄a
0,1, see 

Fig. 11a. The non-zero eigenvalue along S̄a
0,1 is given by λ = 32e1(1 − e1)(1 − r1)(γ− e1). For 0 ≤ r1 < 1

and e1 > γ, the plane S̄a
0,1 is attracting. As the e1-axis is a part of S̄a

0,1, we denote that part of the 
e1-axis that γ ≤ e1 ≤ 1 by �e1 . We also have another curve of equilibria which is defined by r1 = 0, and 
f1 = e1−γ

2 , denoted by Mr
1, see Fig. 11a. This curve of equilibria is of saddle-type with the eigenvalues 

λ = ±32e1(e1 − 1)(e1 − γ). Note that we have recovered the information of the previous case here.
3. r1 = 0: in this case, the dynamics (43) is represented by

e′1 = 0,

f ′
1 = 8e1(1 − e1)[(ε1 + 2)(γ(ε1 + 2f1) − 2f1e1) + 4f1(ε1 + 2f1)],

ε′1 = 32e1ε1(1 − e1)(ε1 + 2f1).

(47)

By setting ε1 = 0, we again have the line �e1 and the curve Mr
1. The Jacobian matrix at a point in �e1

has two eigenvalues: one zero and the other one is λ = 32e1(1 − e1)(γ − e1). So the line �e1 is attracting 
when e > γ. As in this case we have two zero eigenvalues, it implies that there exists a two-dimensional 
center manifold, namely, Ca,1.

Remark 14. In chart K1, the most important role is played by the two-dimensional center manifold Ca,1, 
see Lemma 9. In fact, this is the continuation of the critical manifold S̄a

0,1.

We summarize the analysis performed in this subsection in the following lemmas.

Lemma 8. System (43) has the following manifolds of equilibria:

1. The plane S̄a
0,1 which includes the line �e1 ,



22 H. Taghvafard et al. / J. Math. Anal. Appl. 495 (2021) 124725
2. Mr
1 = {(f1, r1, e1, ε1) | f1 = e1−γ

2 , r1 = 0, e1 ∈ [γ, 1], ε1 = 0}.

Lemma 9. The following properties hold for system (43):

1. The linearization of (43) along S̄a
0,1 has three zero eigenvalues, and the nonzero eigenvalue λ = 32e1(1 −

e1)(1 − r1)(γ − e1), which for r1 = 0 corresponds to the flow in the invariant plane (f1, e1).
2. There exists a three-dimensional center manifold Wc

a,1 of the line �e1 which contains the plane of equi-
libria S̄a

0,1 and the two-dimensional center manifold Ca,1. The manifold Wc
a,1 is attracting, and in the 

set D1, defined by

D1 := {(f1, r1, e1, ε1) | 0 ≤ r1 ≤ δ1, e1 ∈ I1, 0 ≤ ε1 ≤ α1},

is given by the graph

f1 = ha,1(r1, e1, ε1),

where I1 is a suitable interval, and α1, δ1 > 0 are sufficiently small. For the particular point pa,1 ∈ �e1
where e0 ∈ I1, the function ha,1(r1, e0, ε1) has the expansion

ha,1(r1, e0, ε1) = γ

2(e0 − γ)ε1 + O(ε2
1). (48)

3. There exists K > 0 such that the orbits that are near the center manifold Wc
a,1 are attracted to Wc

a,1 by 
an exponential rate of order O(exp(−Kt1)).

Proof. A straightforward calculation shows the first claim. Due to the fact that the linearization of (43)
along S̄a

0,1 has three zero eigenvalues, there exists [2,13] an attracting three-dimensional center manifold 
Wc

a,1 at the point pa,1. To derive equation (48), we first expand f1 to the first order of variables r1, e1 and 
ε1, and then plug into (43). By comparing the coefficients of r1, e1 and ε1, equation (48) is obtained. The 
last claim is proven by the center manifold theory applied at the point pa,1. �
Remark 15. The attracting center manifold Wc

a,1 recovers parts of the slow manifold Sa
ε,1 away form the 

line �1, and extends it into an O(ε) neighborhood of �1. The slow manifold Sa
ε,1 is obtained as a section 

ε = constant of Wc
a,1. In chart K1, this center manifold is given by the graph (48).

Note that in chart K1, our goal is to understand the dynamics (43) close to the center manifold Wc
a,1, 

which corresponds to a sufficiently small neighborhood of the slow manifold S̄a
0,1. Assume that δ1, α1, β1 > 0

are small constants. Let us define the sections

Δin
1 := {(f1, r1, e1, ε1) | (f1, r1, e1, ε1) ∈ D1, r1 = δ1},

Δout
1 := {(f1, r1, e1, ε1) | (f1, r1, e1, ε1) ∈ D1, ε1 = α1},
Rin

1 := {(f1, r1, e1, ε1) | (f1, r1, e1, ε1) ∈ D1, r1 = δ1, |f1| ≤ β1}.
(49)

Note that by the way we have defined Δin
1 , we in fact have Δin

1 = Σ̄1 := Φ−1(Σ1×{[0, ρ1]}) for some ρ1 > 0, 
see Fig. 10. Furthermore, the constants δ1, α1, β1 are chosen such that Rin

1 ⊂ Δin
1 , and the intersection of 

the center manifold Wc
a,1 with Δin

1 lies in Rin
1 , i.e., Wc

a,1 ∩ Δin
1 ⊂ Rin

1 .
Let us denote Π1 as the transition map from Δin

1 to Δout
1 , induced by the flow of (43). In order to 

construct map Π1, we reduce system (43) to the center manifold Wc
a,1 and analyze the system based on 

the dynamics on Wc
a,1. To this end, by substituting (48) into (43) and rescaling time, the flow of the center 

manifold is given by
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r′1 = −r1,

e′1 = −1
2 [O(r1) + O(r1ε1)],

ε′1 = ε1,

(50)

where the derivative is with respect to the new timescale, namely, t1. Now let us consider a solution of (50), 
namely, (r1(t1), e1(t1), ε1(t1)) which satisfies the following conditions:

r1(0) = δ1, r1(T out) = rout1 ,

e1(0) = ein1 , e1(T out) = eout1 ,

ε1(0) = εin1 , ε1(T out) = α1.

(51)

From equation ε′1 = ε1 with the conditions ε1(0) = εin1 and ε1(T out) = α1, we can calculate the time that 
(r1(t1), e1(t1), ε1(t1)) needs to travel from Δin

1 to Δout
1 , which is given by

T out = ln α1

εin1
. (52)

Since e′1 = −1
2 [O(r1) + O(r1ε1)] with e1(T in) = ein1 , we can estimate the time evolution of e1(t1), which is 

given by

e1(t1) = rin1
2

[
exp(−t1) − 1 − t1ε

in
1
]
+ ein1 , 0 ≤ t1 ≤ T out. (53)

Hence, in view of (52), one has

e1(T out) = eout1 := rin1
2

(
εin1
α1

− 1 − εin1 ln α1

εin1

)
+ ein1 . (54)

We summarize the analysis performed for chart K1 in the following theorem.

Theorem 3. For system (43) with sufficiently small δ1, α1, β1 and Rin
1 ⊂ Δin

1 , the transition map Π1 : Rin
1 →

Δout
1 is well-defined and has the following properties:

1. Π1(Rin
1 ) ⊂ Δout

1 is a three-dimensional wedge-like region in Δout
1 .

2. The transition map Π1 is given by

Π1

⎛
⎜⎝
f1
δ1
e1
ε1

⎞
⎟⎠ =

⎛
⎜⎜⎝
ha,1( δ1

α1
ε1, e

out
1 , α1) + Ψ(δ1, e1, ε1)

δ1
α1

ε1
eout1
α1

⎞
⎟⎟⎠ ,

where eout1 is given in (54), Ψ(·) is an exponentially small function, and ha,1(·) is of order O(ε1), due 
to (48).

4.1.2. Analysis in chart K2

After substituting (38) into (35) and dividing out all the equations by the common factor r2, the equations 
governing the dynamics in chart K2 are given by
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Fig. 12. Fully attracting critical manifold N0
2 in purple, and the slow and fast dynamics in chart K2.

f ′
2 = 8e2 [γ(1 + 2f2) − 2f2e2] (1 − e2)(1 + 2c2) + O(ε),

c′2 = −32c2e2(1 − e2)(1 + 2f2) + O(ε),

e′2 = −16εe2(1 − 2e2)(1 + 2f2)(1 + 2c2) + O(ε2),

ε′ = 0.

(55)

Due to the fact that r2 = ε in chart K2, we have presented (55) in terms of ε. Note that since r′2 = ε′ = 0, 
system (55) is a family of three-dimensional vector fields which are parametrized by ε. Moreover, system (55)
is a slow-fast system in the standard form, i.e., e2 is the slow variable, and f2 and c2 are the fast variables. 
Since the differentiation ′ in (55) is with respect to the fast time variable, namely τ2, by transforming it to 
the slow time variable we have t2 = ετ2, and hence

εḟ2 = 8e2 [γ(1 + 2f2) − 2f2e2] (1 − e2)(1 + 2c2) + O(ε),

εċ2 = −32c2e2(1 − e2)(1 + 2f2) + O(ε),

ė2 = −16e2(1 − 2e2)(1 + 2f2)(1 + 2c2) + O(ε),

(56)

where the derivative is with respect to t2. Now by setting ε = 0 in (55) we obtain the corresponding layer 
problem

f ′
2 = 8e2 [γ(1 + 2f2) − 2f2e2] (1 − e2)(1 + 2c2),

c′2 = −32c2e2(1 − e2)(1 + 2f2),

e′2 = 0,

(57)

which has the associated critical manifold c2 = 0 and f2 = γ
2(e2−γ) , denoted by N0

2 (see Fig. 12). The 
Jacobian matrix corresponding to (57) along this critical manifold has the eigenvalues

λ21 = −16e2(1 − e2)(e2 − γ), λ22 = 32e2
2(e2 − 1)

(e2 − γ) . (58)

As it is clear form (58), the critical manifold restricted to e2 ∈ (γ, 1) is normally hyperbolic, and specially, 
is fully attracting since both of the eigenvalues are negative. As e2 approaches γ from above, f2 develops 
a singularity along N0

2 . Thus, the behavior of N0
2 as e → γ has to be studied in chart K3. Using Fenichel 

theory and the dynamics in chart K2 for ε = 0, one is able to describe the dynamics for 0 < ε � 1 in this 
chart, i.e., there exists a slow manifold Nε

2 which is the ε-perturbation of N0
2 . We summarize the properties 

of the critical manifold of chart K2 in the following lemma.
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Lemma 10. The critical manifold

N0
2 = {(f2, c2, e2) | f2 = γ

2(e2 − γ) , c2 = 0, e2 ∈ I0
2}, (59)

is fully attracting, where I0
2 is a compact subset of the interval (γ, 1). Moreover, there exists ε0 > 0 such 

that for any ε ∈ (0, ε0), there exists a smooth locally invariant attracting one-dimensional slow manifold 
Nε

2 , which is O(ε)-close to N0
2 , with the slow flow

ė2 = −4e2(ε + 2 − 2e2)(ε + 1 − εf2)(ε + 2)(1 + 2f2). (60)

Note that e2 is decreasing along Nε
2 , see Fig. 12. Now, we construct the transition map Π2. For this let 

us define the sections

Δin
2 := {(f2, c2, e2, ε) | f2 ∈ [0, β2], c2 = 1

α1
, e2 ∈ I2, ε ∈ [0, α2]},

Δout
2 := {(f2, c2, e2, ε) | f2 = β2, c2 ∈ [0, 1

α1
], e2 ∈ I2, ε ∈ [0, α2]},

where δ1 is small, β2 = β1
α1

, α2 = δ1α1, and I2 is a suitable interval. Note that Δin
2 = κ12(Δout

1 ). Let us 
define the transition map from Δin

2 to Δout
2 as follows:

Π2 : Δin
2 → Δout

2 , (f in
2 ,

1
α1

, ein2 , ε) �→ (β2, c
out
2 , eout2 , ε). (61)

The map Π2 is described by the Fenichel theory, i.e., all orbits starting from (f in
2 , 1

α1
, ein2 , ε) are attracted 

by the slow manifold Nε
2 , follow the slow manifold along Nε

2 , and then after some time intersect the section 
Δout

2 transversally.

Remark 16. In the limit ε = 0, the map Π2 is defined by first projecting (f2, e2) ∈ Δin
2 onto N0

2 along the 
stable foliation, and then by following the slow flow (60).

We summarize the analysis performed in chart K2 in the following lemma.

Lemma 11. For small α1 > 0, there exists a sufficiently small α2 > 0 such that the transition map Π2, 
defined in (61), is well-defined. Moreover, for ε = constant, Π2 is contracting with the contraction rate 
exp(−K/ε) for some K > 0.

Proof. The transition map Π2 : Δin
2 → Δout

2 is described by Fenichel theory, i.e., all orbits starting from 
Δin

2 are attracted by the slow manifold Nε
2 , with a contraction rate exp(−K/ε) for some K > 0, and after 

some time they reach the section Δout
2 . �

Remark 17. The slow manifold Nε
2 corresponds to the perturbation of N0

2 when ε = constant. The family 
of all such manifolds is denoted by N2.

4.1.3. Analysis in chart K3

Solutions in chart K2 which reach the section Δout
2 must be continued in chart K3. For this reason, we 

continue our analysis in chart K3. After substituting (39) into (35) and dividing out all the equations by 
the common factor r3, the equations governing the dynamics in chart K3 are given by
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r′3 = r3Γ3G31,

c′3 = −c3Γ3G31 + [8r3(1 − r3c3)(ε3 + 2c3) − 4c3(r3ε3 + 2 − 2r3c3)]G32,

e′3 = r3 [8r3c3(1 − e3)(r3ε3 + 2e3) − 4e3(r3ε3 + 2 − 2e3)]G33,

ε′3 = −ε3Γ3G31,

(62)

where we denote

Γ3 := [γ(1 − r3)(ε3 + 2) − 2e3(r3ε3 + 1 − r3)] ,

G31 := (r3ε3 + 2 − 2r3c3)(ε3 + 2c3)(r3ε3 + 2 − 2e3)(r3ε3 + 2e3),

G32 := (r3ε3 + 1 − r3)(ε3 + 2)(r3ε3 + 2 − 2e3)(r3ε3 + 2e3),

G33 := (r3ε3 + 1 − r3)(ε3 + 2)(r3ε3 + 2 − 2r3c3)(ε3 + 2c3).

System (62) has three invariant subspaces, namely, r3 = 0, ε3 = 0 and their intersection. Recall that by 
definition e = e3 and thus 0 < e3 < 1.

1. r3 = ε3 = 0: in this case the dynamics is governed by

c′3 = −32c3e3(1 − e3)[2 + c3(γ − e3)]

e′3 = 0.
(63)

When e3 > γ the equilibria of the system are pa3 = (r3, c3, e3, ε3) = (0, 0, e3, 0) and pr3 = (r3, c3, e3, ε3) =
(0, 2

e3−γ , e3, 0). Note that the point pa3 is attracting for the flow in the plane (c3, e3), while the point pr3
is repelling.

Remark 18. Note that when e3 → γ, the point pr3 → ∞ and is not visible any more in the chart K3, see 
Fig. 13a.

2. ε3 = 0 and r3 ≥ 0: In the invariant plane ε3 = 0, the dynamics is governed by

r′3 = r3c3 [γ − e3]V (r3, c3, e3),

c′3 = c3 [(4r3 − 2) − c3(γ − e3)]V (r3, c3, e3),

e′3 = 2r3c3 [(2r3c3 − 1)]V (r3, c3, e3),

(64)

where V (r3, c3, e3) = 32e3(1 − r3)(1 − e3)(1 − r3c3). Recall that c = r3c3 and therefore V (r3, c3, e3) > 0. 
The equilibria of the system are the plane c3 = 0, denoted by S̄0,2, and the curve of equilibria given 
by c3 = 2

e3−γ , denoted by Mr
3. The change of stability of the points in S̄0,2 occurs at r3 = 0.5, i.e., for 

r3 < 0.5 the points are attracting, while for r3 > 0.5 they are repelling. We denote the attracting part 
of S̄0,2 by S̄a

0,2. The e3-axis, which we denote by �e3 , is a boundary of S̄a
0,2, which is a line of equilibria.

3. r3 = 0 and ε3 ≥ 0: In the invariant plane r3 = 0, the dynamics is governed by

e′3 = 0,

c′3 = −8c3e3(1 − e3) [(γ(ε3 + 2) − 2e3)(ε3 + 2c3) + 4(ε3 + 2)] ,

ε′3 = −8ε3e3(1 − e3) [γ(ε3 + 2) − 2e3] (ε3 + 2c3).

(65)

The equilibria of the system are the planes c3 = 0, and the line ε3 = 2(e3−γ)
γ , denoted by N0

3 . The 
Jacobian of (65) along the curve N0

3 has the eigenvalues
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Fig. 13. Dynamics of system (62) restricted to invariant subspaces.

λ31 = −64e3(c3 + 1)(1 − e3), λ32 = −8γε3e3(1 − e3)(ε3 + 2c3), (66)

and hence N0
3 is fully attracting. In fact, N0

3 is exactly the critical manifold N0
2 that we found in chart 

K2. In other words, N0
3 is the image of N0

2 under the transformation κ23, defined in (41).

Remark 19. Note that the attracting manifold N0
2 that is unbounded in chart K2, is now bounded in 

chart K3. So the behavior of the critical manifold that is not visible in chart K2 when e → γ, is now 
visible in chart K3. For e3 = γ, the critical manifold N0

3 intersects the line �e3 at the non-hyperbolic 
point qe3 = (e3, c3, ε3) = (γ, 0, 0).

We summarize the analysis of the invariant planes, performed in this subsection, in the following Lemma.

Lemma 12. The following properties hold for system (62):

1. The equilibria are the plane S̄0,2 which intersects the line �e3 , and the following two one-dimensional 
manifolds

Mr
3 = {(r3.c3, e3, ε3) | r3 = ε3 = 0, e3 ∈ (γ, 1), c3 = 2

e3 − γ
},

N0
3 = {(r3.c3, e3, ε3) | r3 = c3 = 0, e3 ∈ [γ, 1), ε3 = 2(e3 − γ)

γ
}.

2. For e3 > γ, the equilibria of system (62) along N0
3 have

(a) a two-dimensional stable manifold corresponding to the negative eigenvalues given in (66).
(b) a two-dimensional center manifold corresponding to a double zero eigenvalue.

3. The linearization of the system in S̄0,2 has a triple zero eigenvalue, and the eigenvalue λ = 64e3(e3 −
1)(r3 − 1)(r3 − 0.5) changes its stability at r3 = 0.5.

4. The linearization of system (62) at the steady states in the line �e3 has a stable eigenvalue λ = 64e3(e3−
1), and a triple zero eigenvalue. Moreover, there exists a three-dimensional center manifold Wc

a,ε at the 
point (r3, c3, e3, ε3) = (0, 0, e3, 0) ∈ �e3 . In chart K3 close to the point e3 = γ, the center manifold Wc

a,ε

is given as the graph

c3 = r3ε3(1 + O(r3ε3)). (67)
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The main goal of chart K3 is to analyze the behavior of the solutions of (62) close to the exit point 
qe3 ∈ �e3 . From our analysis in chart K2, we know that there exists the family of attracting slow manifolds N2. 
This in chart K3 is denoted by N3 which is the image of N2 under the transformation κ23, i.e. N3 = κ23(N2). 
In order to know how N3 is continued close to the point qe3 , we restrict the dynamics to the sets

Din
3 := {(r3, c3, e3, ε3) | r3 ∈ [0, α3], e3 ∈ (γ, 1], ε3 ∈ [0, β3]},

Dout
3 := {(r3, c3, e3, ε3) | r3 ∈ [0, α3], e3 ∈ [0, γ), ε3 ∈ [0, β3]},

where α3 = α2β2 and β3 = 1
β2

, due to the transformation κ23 defined in (41). Now we define the sections 
as follows

Δin
3 := {(r3, c3, e3, ε3) ∈ Din

3 | ε3 = β3},
Δout

3 := {(r3, c3, e3, ε3) ∈ Dout
3 | r3 = α3}.

Let us denote Π3 as the transition map from Δin
3 to Δout

3 , induced by the flow of (62). In order to construct 
the map Π3, we reduce system (62) to its center manifold, namely, Wc

a,3 and analyze the system based on 
the dynamics on Wc

a,3. This is done by substituting (67) into system (62), and rescaling time by dividing 
out the common factor

[
r3ε3 + 2−2r2

3ε3(1 + O(r3ε3)
]
[ε3 + 2r3ε3(1 + O(r3ε3)] . (68)

The flow of the center manifold is given by

r′3 = r3G34,

e′3 = r3G35,

ε′3 = −ε3G34,

(69)

where we denote

G34 := [γ(1 − r3)(ε3 + 2) − 2e3(r3ε3 + 1 − r3)] (r3ε3 + 2 − 2e3)(r3ε3 + 2e3),

G35 :=
[
8r2

3ε3(1 + O(r3ε3))(1 − e3)(r3ε3 + 2e3) − 4e3(r3ε3 + 2 − 2e3)
]
(r3ε3 + 1 − r3)(ε3 + 2).

It is clear from (69) that the planes r3 = 0 and ε3 = 0 are invariant. Setting r3 = 0 in (69), one obtains

e′3 = 0,

ε′3 = −4ε3e3(1 − e3)[γ(ε3 + 2) − 2e3].
(70)

The equilibria of (69) are again the line �e3 and the manifold N0
3 . The Jacobian of (70) evaluated at the 

line �e3 has the eigenvalue λ = 8e3(1 − e3)(e3 − γ), showing that �e3 is repelling for e3 > γ, while attracting 
for e3 < γ. Moreover, the manifold N0

3 is attracting for the flow in the plane r3 = 0. The eigenvalue at the 
point (r3, e3, ε3) = (0, γ, 0) ∈ �e3 is zero and hence this point is degenerate.

Setting ε3 = 0 in system (69) results in

r′3 = 8r3e3(1 − e3)(1 − r3)[γ − e3],

e′3 = −16r3e3(1 − e3)(1 − r3).
(71)

In the plane ε3 = 0, the line �e3 is attracting for e3 > γ while repelling for e3 < γ.
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Fig. 14. Dynamics of the system (69); the attracting manifold N0
3 in purple, and the nilpotent point qe3 in black.

Remark 20. Note that the dynamics in the invariant plane ε = 0 corresponds to the reduced flow on S2
a in 

the original system.

Summarizing the analysis, we have the following lemma.

Lemma 13. The following properties hold for system (69):

1. The curve N0
3 has a one dimensional stable manifold, and a two dimensional center manifold away from 

the point qe3 .
2. The linearization of (69) at the points in �e3 is given by

(8e3(e3 − 1)(e3 − γ) 0 0
16e3(e3 − 1) 0 0

0 0 −8e3(e3 − 1)(e3 − γ)

)
,

3. The point qe3 is nilpotent.

As we already mentioned, our goal in chart K3 is to describe the dynamics (62) close to the line �e3 , and 
especially at the point qe3 . To this end, we defined the map Π3 : Δin

3 → Δout
3 where Δin

3 is transversal to N0
3

for e > γ, while Δout
3 is transversal to the slow manifold in the plane ε3 = 0 for e < γ. From Lemma 13 we 

know that the point qe3 is nilpotent. Thus, in order to describe the transition map Π3 we need to blow-up 
the point qe3 . For such a point, a similar analysis has been carried out in [18, Theorem 5.8], in view of which 
we have the following theorem.

Theorem 4. Assume that R3 ⊂ Δin
3 is a small rectangle centered at the intersection point N0

3 ∩ Δin
3 . For 

sufficiently small α3, the transition map Π3 : R3 → Δout
3 induced by the flow of (69) is well-defined and 

satisfies the following properties:

1. The continuation of N3 by the flow intersects the section Δout
3 in a curve denoted by σout

3 .
2. Restricted to the lines r3 = constant in R3, the map is contracting with the rate exp(−K/r3) for some 

K > 0.
3. The image Π3(R3) is an exponentially thin wedge-like containing the curve σout

3 .

Finally, if we set α3 = δ2 (recall the definition of Σ2) we actually have that Δout
3 = Σ̄2 := Φ−1(Σ2 ×

{[0, ρ2]}) for some ρ2 > 0.
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Fig. 15. Geometry of the blown-up space and the singular cycle close to the non-hyperbolic line �1 , which is blown-up to the orange 
cylinder. The reduced flows in S̄a

0,1 and S̄a
0,1 are illustrated in blue. The thick orange manifold inside the cylinder corresponds to 

the three-dimensional center manifold in chart K1. The attracting critical manifold in chart K2 is shown in purple.

4.1.4. Properties of the blow-up of the non-hyperbolic line �1 × {0} and proof of Lemma 4
In the above subsections, we have presented the detailed analysis of the blow-up of the non-hyperbolic 

line �1 × {0} in charts K1, K2 and K3, which has been summarized in Fig. 15. A summary of the analysis, 
carried out in such charts, is as follows. First of all, the critical manifolds S0,1 (i.e., f = 0) and S0,2 (i.e., 
c = 0) intersect in the non-hyperbolic line �1, which is replaced by the orange cylinder, see Figs. 10 and 
15. Note that in Fig. 15, the orbits ω̄5 and ω̄7 in the blown-up space correspond to the orbits ω5 and ω7, 
respectively. The point at which ω̄5 reaches the cylinder is denoted by q̄e, and the point at which ω̄7 starts 
is denoted by q̄e. Starting from the section Σ̄1, the trajectory follows the orbit ω̄5 on f̄ = 0 until it reaches 
the point q̄e. Our analysis in chart K1 (Lemma 9) shows that there exists a three-dimensional attracting 
center manifold which is the continuation of the family of orbits (indexed by ε) of the attracting slow 
manifold Sa

ε,1. This allows us to connect the family Sa
ε,1 into the chart K2 which is inside the cylinder (see 

the thick orange manifold from q̄e to N̄ 0 in Fig. 15). Our analysis in chart K2 (Lemma 10) shows that the 
slow manifold N0

2 is normally hyperbolic and stable. Therefore, the family Sa
ε,1 is exponentially attracted 

by the slow manifold Nε
2 . Next, our analysis in chart K3 shows that the unbounded critical manifold N0

2
(see Figs. 12, 14) limits in the point qe3 , which is exactly the point q̄e in Fig. 15. Next, our analysis in 
chart K3 (see Lemma 13 and Fig. 14) demonstrates that the unbounded critical manifold Nε

2 (see Figs. 12
and 14) limits at the point qe3 , which is exactly the point q̄e in Fig. 15. In addition, we have proven that the 
point qe3 is degenerate, i.e., the linearization of the dynamics at qe3 has a nonzero (stable) eigenvalue and 
a triple zero eigenvalue (see Lemma 13), which allows us to construct a three-dimensional center manifold 
at the point qe3 . Now, by following the family N2 along such a center manifold, we conclude (Lemma 4) 
that the continuation of Nε

2 for a sufficiently small ε > 0 intersects the section Σ̄2 in a point, namely, 
(α3, c3(ε3), e3(ε3), ε3) ∈ Σ̄2, for some ε3 ∈ [0, β3], which is exponentially close to the slow manifold Sa

ε,2. 
Note that the point (α3, c3(ε3), e3(ε3), ε3) converges to the point q2 := Σ2∩ω7 as ε3 → 0. All these analyses 
in charts K1, K2, and K3 show that the transition map π̄1 : Σ̄1 → Σ̄2 is well-defined for ε ∈ [0, ε0] and is 
smooth for ε ∈ (0, ε0], for some ε0 > 0.

We are now ready to prove Lemma 4.
Proof of Lemma 4. The proof is carried out by constructing the map π1 : Σ1 → Σ2 for ε > 0 as

π1 = Φ ◦ π̄1 ◦ Φ−1, (72)

where Φ is given by (36), Φ−1 is the corresponding blown-up transformation, and π̄1 : Σ̄1 → Σ̄2 is a 
transition map which can equivalently be regarded as
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Fig. 16. Geometry of the blown-up space and the singular cycle close to the non-hyperbolic line �2 , which is blown-up to the orange 
cylinder. The reduced flows in S̄a

0,2 and S̄a
0,3 are shown in blue. The thick orange manifold inside the cylinder corresponds to the 

three-dimensional center manifold in chart K̃1. The attracting critical manifold in chart K̃2 is illustrated in purple.

π̄1(Σ̄1) = Π3 ◦ κ23 ◦ Π2 ◦ κ12 ◦ Π1(Σ̄1) ⊂ Σ̄2 (73)

The proof is based on the corresponding transition map π̄1 : Σ̄1 → Σ̄2 in the blown-up space and 
interpreting the result for fixed ε ∈ [0, ε0] with ε0 > 0. Recall that the transition π̄1 : Σ̄1 → Σ̄2 is equivalent 
to the transition map π1 : Σ1 → Σ2 in the sense that it has the same properties. Furthermore, via the 
matching maps κij defined in Lemma 7, we have appropriately identified the relevant sections in each of 
the charts, allowing us to follow the flow of the blown-up vector field along the three charts.

As summarized above, the transition map π̄1 : Σ̄1 → Σ̄2 is well-defined for ε ∈ [0, ε0] and smooth for 
ε ∈ (0, ε0] for some ε0 > 0. It remains to prove that π̄1 is a contraction. From Lemma 3 we know that 
the solutions started in Σ̄1 are contracting, see (Fig. 7). This family of orbits is continued to chart K2 by 
spending an O(1)-time on the time scale t2 of system (56). This continuation persists (Theorem 4) during 
the passage near the point qe3 in chart K3 until it reaches the section Σ̄2. As the contraction persists from 
Σ̄1 to Σ̄2, one concludes that π̄1 is a contraction. This completes the proof. �
4.2. Blow-up of the non-hyperbolic line �2 × {0} and a sketch of the proof of Lemma 5

In this subsection, for the sake of brevity, we summarize the blow-up of the non-hyperbolic line �2 × {0}
and give a sketch of the proof of Lemma 5. To this end, we transform the non-hyperbolic line of steady 
states �2 × {0} by

f = f̃ , c = rc̃, ε = rε̃, e = rẽ, (74)

where c̃2 + ẽ2 + ε̃2 = 1, f̄ ∈ [0, 1] and r ≥ 0, and define the charts K̃1, K̃2 and K̃3 as follows

K̃1 : f = f̃1, c = r̃1c̃1, ε = r̃1ε̃1, e = r̃1,

K̃2 : f = f̃2, c = r̃2c̃2, ε = r̃2, e = r̃2ẽ2,

K̃3 : f = f̃3, c = r̃3, ε = r̃3ε̃3, e = r̃3ẽ3.

K̃1 = {ẽ = 1}
Recall that the goal of Lemma 5 is to describe the map π2 : Σ2 → Σ3 in the original space. In this 

subsection, we present a sketch of the proof of Lemma 5 by constructing the corresponding map π̄2 : Σ̄2 → Σ̄3
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in the blown-up space, and interpreting the results for fixed ε ∈ [0, ε0] for some ε0 > 0. For the sake of 
brevity, we have summarized the analysis of the blow-up of the non-hyperbolic line �2 × {0} in Fig. 16.

First of all, note that the non-hyperbolic line �2, which is the intersection of the critical manifolds c = 0
and e = 0, has been blown-up to the orange cylinder (see Fig. 16). We have illustrated the slow flows in the 
planes c = 0 and e = 0 in blue. Note that the orbits ω̄7 and ω̄1 which are in the blown-up space correspond, 
respectively, to the orbits ω7 and ω1 in the original space (see Figs. 9 and 16). As it is shown in Fig. 16, the 
intersection of the cylinder with ω̄7 and ω̄1 is denoted by p̃f and p̃f , respectively.

Our analysis in chart K̃1 proves that there exists a three-dimensional attracting center manifold at the 
point p̃f , which is the continuation of the family indexed by ε of the attracting slow manifold S̄a

0,2. In view 
of such a center manifold, the family of the slow manifold S̄a

0,2 enters the chart K̃2. Our analysis in chart 
K̃2 proves that there exists a hyperbolic attracting one-dimensional slow manifold Ñ 0, which attracts the 
interior of the cylinder. Our analysis in chart K̃3 shows that the critical manifold Ñ 0 limits at the point p̃f
(see Fig. 16). Note that p̃f is a degenerate point, i.e., the linearization of the blown-up dynamics in chart K̃3
at p̃f has a stable eigenvalue, and a triple zero eigenvalues which allows us to construct a three-dimensional 
attracting center manifold. Therefore the family of flows follows such a center manifold and then intersects 
the section Σ3 in a point (f(ε), δ3, e(ε)), for some δ3 > 0, which is exponentially close to the slow manifold 
Sa
ε,3 and converges to the point q3 := Σ3 ∩ ω1 as ε → 0. This proves that the transition map π̄2 : Σ̄2 → Σ̄3

and hence π2 : Σ2 → Σ3 are well-defined for ε ∈ [0, ε0] and also are smooth for ε ∈ (0, ε0], for some ε0 > 0. 
The proof of contraction of the transition map π2 follows the same line of reasoning as that of the map π1, 
and hence is omitted for brevity.

5. Conclusions

In this work we have studied a model that describes several important properties of myxobacteria during 
development [16]. This model, which is in line with observation from experiments [16], acts as an internal 
clock to control the gliding motions in myxobacteria. When two cells collide with each other, the speed of the 
clock in both cells is affected, some spatial wave patterns are created, and hence lead to synchronization of 
cells, i.e., fruiting body. The model presented in [16] can reproduce observed spatial patterns in experiments, 
and furthermore, it can explain both the cellular oscillations and the developmental stage of myxobacteria 
from vegetative swarming to the rippling phase and hence to the formation of the fruiting body.

The model, described by a system of three ordinary differential equations, has oscillatory behavior for 
certain parameter values, and sufficiently small Michaelis-Menten constants which we have unified them 
by a parameter ε. We have analyzed the dynamics of this oscillator in the limits of ε, and proven that for 
sufficiently small ε, there exists a strongly attracting limit cycle. The geometric method could be pushed to 
analyze the global uniqueness of the limit cycle which is clearly of great interest from both the mathematical 
and biological point of view. This requires a more global analysis of the singular flows, and in particular, 
connecting orbits between the critical manifolds S0,i by orbits of the layer problem. As the layer problem is 
linear, this is possible. Our approach has been based on the geometric perturbation analysis and blow-up 
method. The geometric perturbation theory and geometric desingularization by several blow-ups allow us 
to fully understand the structure of the limit cycle. We emphasize that the approach and tools presented 
in this paper, i.e. geometric singular perturbation theory and the blow-up method, are not limited to the 
analysis of the system (4); these tools can be applied to similar systems such as [22] whose parameters have 
the property of zero-order ultrasensitivity.

As discussed in Appendix A, the limit cycle has the same qualitative behavior as the singular cycle 
provided that γ ∈ (0.0561, 0.1177). From the biological point of view, it is crucial to have γ in a certain 
range between 0 and 1 as it is the C-signal of the system. The simultaneous limit (ε, γ) → (0, 0) is very 
singular because the point (0, 0, γ), playing a crucial role in our analysis, approaches (0, 0, 0) which is the 
intersection of three critical manifolds f = 0, c = 0, and e = 0. Mathematically, it is interesting to study 
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this limit further, which could explain the coalescence of the Hopf curve and the saddle-node curve at (0, 0), 
see Fig. 4. Similar remark holds as (ε, γ) → (0, 1).

Appendix A. Range of parameter γ in Theorem 2

Although in our analysis we have fixed the parameter γ = 0.08, in this appendix we show that the 
behavior of the singular cycle Γ0, illustrated in Fig. 9, will remain qualitatively the same under a sufficiently 
small perturbation of γ, and hence Theorem 3.22 holds for these values as well.

As it is shown in Fig. 9, ω1 and ω3 are described by the layer problem (18), whose behavior highly depends 
on parameter γ. For the former, observations from numerical simulations show that if the layer problem 
starts from a point in Sa

0,3, namely pγ := (fγ , 12 , 0) ∈ �e when 1
2 < fγ < 1, the parameter γ can influence 

the fast dynamics to move from pγ to a point either in Sa
0,1, Sa

0,2, Sa
0,3, Sa

0,4, Sa
0,5 or Sa

0,6. For the latter, 
numerical simulations show that if the layer problem starts from a point in Sa

0,6, namely pγ := (fγ , 12 , 1) ∈ �e

when 0 < fγ < 1
2 , the parameter γ can influence the fast dynamics to move from pγ to a point either in 

Sa
0,1 or Sa

0,2. In this regard, it is interesting to find a certain range for γ such that the qualitative behavior 
of the fast dynamics remains the same as ω1 and ω3, shown in Fig. 9, i.e., the fast dynamics moves directly
from pγ to a point in Sa

0,6, and from pγ to a point in Sa
0,1, while does not intersect with the other planes.

In view of equations (27), one can show that the slow flow, started from the point pf = (1
2 , 0, 0), will 

reach the point p1 = (1+√
γ

2 , 12 , 0). In order to find a certain range for γ, as the layer problem (18) is linear, 
one can find the closed form of solutions. In view of the boundary conditions in Sa

0,3 and Sa
0,6, we will get 

a system of transcendental equations, whose solution determines a point at which ω1 intersects with Sa
0,6. 

However, due to the fact that it is impossible to solve such a system of equations analytically, we have used 
numerical methods to calculate the solution of transcendental equations. Computed numerically, for any 
γ ∈ R1 := (0.0561, 0.1177), the qualitative behavior of the fast dynamics is the same as ω1, illustrated in 
Fig. 9. Moreover, one can check that for such a range, the qualitative behavior of the fast dynamics is the 
same as ω3 as well, illustrated in Fig. 9. Therefore, one concludes that Theorem 2 is valid for all γ ∈ R1. 
Analogously, one can find a range for the case that γ is close to 1, see Remark 3.

Appendix B. Line �c as a fold line

In this appendix, we follow [24, Lemma 6] to show that the line �c is a fold line except at f ∈ {0, 12 , 1}. 
Similar results hold for lines �f and �e, whose analyses are omitted for brevity.

In Section 3.1, we have shown that the layer problem is governed by the equations

df

dτ
= (γ − e)H0(f, c, e),

dc

dτ
= 2 (2f − 1)H0(f, c, e),

de

dτ
= 2(2c− 1)H0(f, c, e),

in which

H0(f, c, e) = 32fce(1 − f)(1 − c)(1 − e).

As shown in (18), the fast fibers of the layer problem away from the critical manifold (i.e., when (f, c, e) ∈ Q̊) 
are spanned by the following vector field:

Vs(f, c, e) =
(

γ − e
2(2f − 1)

)
.

2(2c− 1)
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The first and second derivatives of H0 and the first derivative of Vs are computed as follows:

DH0 = (32ce(1 − 2f)(1 − c)(1 − e) 32fe(1 − f)(1 − 2c)(1 − e) 32fc(1 − f)(1 − c)(1 − 2e)) ,

D2H0 =
( −64ce(1 − c)(1 − e) 32e(1 − 2f)(1 − 2c)(1 − e) 32c(1 − 2f)(1 − c)(1 − 2e)

32e(1 − 2f)(1 − 2c)(1 − e) −64fe(1 − f)(1 − e) 32f(1 − f)(1 − 2c)(1 − 2e)
32c(1 − 2f)(1 − c)(1 − 2e) 32f(1 − f)(1 − 2c)(1 − 2e) −64fc(1 − f)(1 − c),

)
,

DVs =
( 0 0 −1

2f 0 0
0 4c 0

)
.

Following [24, Lemma 6 and Section 4.3], we have

DH0Vs|{e=0} = 64fc(c− 1)(2c− 1)(f − 1), (B.1)

which indeed shows that S0,3 loses normal hyperbolicity at f ∈ {0, 1} and c ∈
{
0, 1

2 , 1
}
. Now we restrict 

our analysis to the line �c and compute

(V �
s D2H0Vs + DH0DVsVs)|�c = −64f(f − 1)(2f − 1), (B.2)

which confirms that the line �c is a line of “generic folds” except at f ∈ {0, 12 , 1}. Since the limit cycle passes 
sufficiently away from such a point (see Figs. 8, 9 and 16), we do not study the vicinity of (f, c, e) = (1

2 , 
1
2 , 0)

further. Following [24], one can easily verify that such a point is a “cusp” contact point for 0 < γ < 1.
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