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One proposed solution is to use artificial in-
telligence (AI)-based detection systems.

With the help of machine learning, clas-
sification algorithms can be trained to pre-
dict results and outcomes, provided that 
enough training data are available. In 2017, 
we at the National Cancer Institute [7] pro-
posed an AI system based on intensity and 
texture analysis and a random forest classi-
fication algorithm. This system was validat-
ed in a large multireader multicenter study in 
2018 [8]. Results of that study revealed an in-
crease in detection of transition zone lesions 
among moderately experienced readers only. 
Overall, however, the AI system was equiva-
lent to conventional MRI interpretation [8]. 
In that study, color-coded prediction maps 
were used to draw attention to AI-detected 
lesions. Feedback from the study suggested 
that prediction maps compromised the inter-
action between the radiologists and the AI 
system with resultant decreased accuracy for 
some readers. To address this issue a new AI 
detection system with more expert  annotated 
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P
rostate cancer is the most com-
mon noncutaneous cancer type 
among men [1]. Unlike most oth-
er cancers, prostate cancer is dif-

ficult to detect with conventional imaging 
techniques such as ultrasound and CT. 
Therefore, until recently, imaging has not 
been accepted as standard-of-care practice 
for prostate cancer detection. Over the last 2 
decades, major advances in prostate MRI 
have led to considerable improvements in 
prostate cancer detection. Although initially 
the use of MRI was limited [2], with the de-
velopment of higher magnetic field strengths, 
higher quality of imaging, and the combined 
use of anatomic and functional MRI se-
quences, multiparametric MRI (mpMRI) has 
emerged as an important method of detect-
ing prostate cancer [3]. Reports in the current 
literature, however, indicate that 5–30% of 
prostate cancers are missed at mpMRI [4–6]. 
The causes of such misses may be related to 
the complex nature of the prostate tissues 
and the limited spatial resolution of MRI. 

OBJECTIVE. The purpose of this study was to evaluate in a multicenter dataset the per-
formance of an artificial intelligence (AI) detection system with attention mapping compared 
with multiparametric MRI (mpMRI) interpretation in the detection of prostate cancer. 

MATERIALS AND METHODS. MRI examinations from five institutions were in-
cluded in this study and were evaluated by nine readers. In the first round, readers evaluat-
ed mpMRI studies using the Prostate Imaging Reporting and Data System version 2. After 
4 weeks, images were again presented to readers along with the AI-based detection system 
output. Readers accepted or rejected lesions within four AI-generated attention map boxes. 
Additional lesions outside of boxes were excluded from detection and categorization. The 
performances of readers using the mpMRI-only and AI-assisted approaches were compared. 

RESULTS. The study population included 152 case patients and 84 control patients with 
274 pathologically proven cancer lesions. The lesion-based AUC was 74.9% for MRI and 
77.5% for AI with no significant difference (p = 0.095). The sensitivity for overall detection 
of cancer lesions was higher for AI than for mpMRI but did not reach statistical significance 
(57.4% vs 53.6%, p = 0.073). However, for transition zone lesions, sensitivity was higher for 
AI than for MRI (61.8% vs 50.8%, p = 0.001). Reading time was longer for AI than for MRI 
(4.66 vs 4.03 minutes, p < 0.001). There was moderate interreader agreement for AI and MRI 
with no significant difference (58.7% vs 58.5%, p = 0.966). 

CONCLUSION. Overall sensitivity was only minimally improved by use of the AI sys-
tem. Significant improvement was achieved, however, in the detection of transition zone le-
sions with use of the AI system at the cost of a mean of 40 seconds of additional reading time. 

Mehralivand et al.
Artificial Intelligence in MRI of Prostate Cancer

Genitourinary Imaging
Original Research

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 D

er
 R

ijk
su

ni
ve

rs
ite

it 
G

ro
ni

ng
n 

on
 0

8/
17

/2
0 

fr
om

 I
P 

ad
dr

es
s 

12
9.

12
5.

58
.2

20
. C

op
yr

ig
ht

 A
R

R
S.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d 



2 AJR:215, October 2020

Mehralivand et al.

data was designed. Instead of color-coded 
cancer probability maps as output, the new 
AI system provides attention map boxes en-
compassing areas of increased likelihood of 
prostate cancer. Herein we report the results 
of our multicenter multireader study of the 
AI system with this new user interface. The 
main objective of the study was to evaluate in 
a multicenter dataset the performance of an 
AI detection system with attention map box-
es compared with mpMRI interpretation for 
detection of prostate cancer.

Materials and Methods
Patient Population

This HIPAA-compliant evaluation of multi-
institutional data was approved by the National 
Cancer Institute ethics committee. Inclusion of 

anonymized data from the other institutions was 
approved in concordance with National Institutes 
of Health Office of Human Subjects Resources 
protocol 11617. Local ethics approvals to share 
data were obtained as needed. Patients from five 
institutions were included in this study. Those in 
the case group underwent mpMRI and had subse-
quent prostate biopsy results positive for adenocar-
cinoma and then underwent radical prostatectomy. 
Final histopathologic results for the prostatectomy 
specimens with lesion mapping were available for 
all case population patients. All participants in the 
control group underwent mpMRI with no visible 
lesions detected. Prostate cancer was ruled out by 
means of 12-core transrectal systematic biopsy. 
Three patients with missing final radical prosta-
tectomy histopathologic lesion maps were exclud-
ed. The final study population included 152 case 

and 84 control subjects. The distribution of case 
and control subjects among institutions is summa-
rized in Table 1.

Reader Profiles
To prevent bias, the case and control MRI data 

were obtained from five different institutions but 
were interpreted by nine readers from indepen-
dent institutions. Readers ranged in experience in 
interpreting prostate mpMRI and were stratified 
into three levels of experience: low, moderate, and 
high. Determination was based on years of experi-
ence and number of prostate MRI studies read per 
year according to the following criteria: a low lev-
el of experience was less than 1 year or fewer than 
100 examinations per year; moderate, 1–3 years or 
100–300 examinations per year; high, more than 
3 years or more than 300 examinations per year.

Keywords: artificial intelligence, laparoscopic, MRI, multiparametric, prostate cancer, radical prostatectomy, robot-assisted
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Artificial Intelligence in MRI of Prostate Cancer

Study Design and Statistical Powering
Because it was unrealistic for every reader to 

read every case, each patient imaging examina-
tion was randomly assigned to three different 
readers to ensure balanced and unbiased distribu-
tion. Our primary hypothesis was that AI-assisted 
mpMRI can achieve higher lesion-based sensitiv-
ity than mpMRI without the benefit of AI. To test 
this hypothesis, nine readers read assigned cases 
according to the balanced incomplete block de-
sign, in which each randomly selected case strati-
fied by patient disease status was assigned to each 
triple-wise combination of readers [9]. Among 
the 236 patients (152 with cancer, 84 without can-
cer), each reader evaluated a mean of 78 patients 
(range, 75–81). The primary endpoint was the dif-
ference in mean lesion-level reader-specific sensi-
tivity between AI-assisted detection and mpMRI 
alone. In the power analysis, sensitivity was set at 
57% and the SD of the primary endpoint was es-
timated from previous studies [8, 10]. This study 
had 93% power to detect an 8% difference in sen-
sitivity using the Z test at the two-sided 5% sig-
nificance level.

MRI Acquisition Technique
All imaging examinations were performed at 

3 T without an endorectal coil with equipment 
from a variety of vendors. Axial T2-weighted im-
aging, DWI with at least two b values, and dy-
namic contrast-enhanced imaging sequences were 
performed. Because DWI with a b value of 1500 
mm/s2 was necessary for the AI processing, in 
cases in which this acquisition was not available, 
the high b value was calculated by use of a mono-
exponential decay model. Image acquisition pro-
tocols were compliant with Prostate Imaging Re-
porting and Data System version 2 (PI-RADSv2) 
technical recommendations.

Patient Data Deidentification
In compliance with U.S. Office of Human Sub-

jects Resources guidelines, all medical images 
were fully anonymized by provider centers before 
submission to our center (National Cancer Insti-
tute). For this purpose, standard scripts were used 

that remove all DICOM tags except for technical 
image acquisition–related information. When the 
data were received, a second deidentification was 
performed to ensure patient confidentiality at the 
highest standard.

Artificial Intelligence System
The AI system was based on a custom multi-

task random forest similar to the Hough forest and 
the regression forest [11]. Each random tree was 
trained on 3-T MR images of 161 patients from 
five different institutions; an alternating informa-
tion gain function was used that was either defined 
to optimize for classification accuracy or mini-
mize the l2 residual of predicted bounding box ex-
tents. The training population was patients and 
institutions different from those of the test popu-
lation in this study. This learning system entailed 
a combination of patch-based intensity and Ha-
ralick texture features and operated only on pre-
segmented transition and peripheral zones.

Automatic segmentations were performed on 
T2-weighted images and manually corrected by 
an expert radiologist. Each zone had its own spe-
cialized AI model. The result was a collection of 
10 random trees per zone that each evaluated an 
image patch from T2-weighted images, appar-
ent diffusion coefficient maps, and b1500 imag-
es and predicted both the probability of clinically 
significant cancer and the bounding box width and 
height of the lesion. The predictions from all trees 
were averaged, and box candidates were postpro-
cessed with nonmaximum suppression to choose 
the final predicted boxes (up to four were kept). 
The result was a probability map for clinically 
significant cancer (Gleason score > 3 + 3) and a 
collection of attention map boxes for suspicious 
lesions, the latter of which were used in this study. 
The attention map boxes were picked by use of a 
threshold corresponding to a 67% tumor detection 
rate at 2.71 false-positive results per patient.

A pixel-based cancer probability map was cal-
culated, and for this study, the readers were pro-
vided with a maximum of four attention map boxes 
corresponding to regions of high cancer probabil-
ity, which were overlaid on the T2-weighted im-

age from each case and control MRI examination. 
The idea behind this approach was to ensure that 
readers can uniformly focus on the most suspicious 
possible lesions on MRI studies without interfering 
with the actual image, as occurs with conventional 
probability maps, which usually cover the underly-
ing image. These maps were termed attention maps 
to distinguish them from probability maps (Fig. 1).

Image Evaluation
All readers used a commercially available 

DICOM viewer (RadiAnt, Medixant) at their per-
sonal workstations. Readers were blinded to clini-
cal and histopathologic outcomes.

In the first session, T2-weighted, DWI (appar-
ent diffusion coefficient, b = 1500 mm/s2), and dy-
namic contrast-enhanced images were presented 
to the readers for tumor detection and evaluation. 
For each patient a database application (Access, 
Microsoft Office 365) readout form with a pseu-
doidentifier was provided for documentation and 
analysis. Readers could call up to four lesions per 
image and assign a PI-RADSv2 category for each 
detected lesion. In addition, the location of each 
lesion was documented in accordance with the 
PI-RADSv2 recommendations, and a screen shot 
of the lesion was stored in the database document 
[12]. A timer recorded and saved the reading time 
for each reader per study.

After a 4-week washout period, a training 
package was sent to participants with three exam-
ples, so that they could become familiar with han-
dling and interpretation of the AI system. Read-
ers were instructed to read the AI images first and 
assess each attention box. Thereafter, the location 
of the boxes was annotated on the correspond-
ing mpMR images. During the AI-assisted read-
out session, the participants accepted a lesion if its 
PI-RADSv2 category within the attention box was 
3 or greater or rejected it if the PI-RADSv2 cate-
gory was less than 3. The readers were prohibited 
from evaluating lesions detected on mpMR imag-
es other than those in attention boxes provided by 
the AI system. This stringent approach, defined as 
first-reader design workflow, would theoretically 
simulate the raw performance of AI as used by ra-
diologists [13]. The results of the reading session 
were stored in a database readout form similar to 
that used in session 1.

Histopathologic Assessment
The genitourinary pathologist at each provid-

er center was blinded to the mpMRI results. For 
each case patient’s specimen, cancer lesions were 
mapped, and a corresponding Gleason score ac-
cording to the International Society of Urologi-
cal Pathology 2014 consensus guidelines was as-
signed [14].

TABLE 1: Distribution of Patients and Control Subjects by Participating 
 Institution

Institution No. Case Subjects Control Subjects Total

1 22 14 36

2 24 17 41

3 30 21 51

4 31 23 54

5 45 9 54

Total 152 84 236
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Statistical Analysis
Patient-based sensitivity and specificity were 

calculated at each PI-RADSv2 threshold, and 
AUC was estimated for each reader; the maxi-
mum PI-RADSv2 category assigned by a given 
reader represented each patient’s outcome. The 
comparison between AI and mpMRI was made at 
PI-RADSv2 1 or greater representing all detect-
ed lesions and PI-RADSv2 3 or greater represent-
ing suspicious lesions. For lesion-based analysis, 
reader sensitivity and free-response ROC analy-
sis was performed [15]. Reader statistics were av-
eraged across all readers and by experience level. 
Reader agreement on lesion detection in the same 
location was assessed by the index of specific 
agreement [16]. Statistical inference was obtained 
by the bootstrap resampling procedure with 2000 
bootstrap samples drawn at the patient level. The 
95% confidence limits were the 2.5% and 97.5% 
percentiles of the bootstrap resampling distribu-
tion. All test statistics were based on two-sided 
Wald test and bootstrap standard error. Values of 
p < 0.05 were considered statistically significant.

Results
Study Population and Lesion Characteristics

The final study population consisted of 
152 case and 84 control subjects. Except in 
38 case patients, the final histopathologic re-
sult was grade group 2 or higher. There were 

274 pathologically proven cancer lesions 
with 188 of the 274 in the peripheral zone, 
77 in the transition zone, and nine span-
ning both zones. Among all 274 lesions, 38 
were assigned grade group 1, 130 group 2, 45 
group 4, and 15 group 5 at final histopatho-
logic analysis.

Multiparametric MRI and Artificial Intelligence 
Performance at Patient Level

The overall AUCs were 81.6% for MRI 
and 78% for AI (p = 0.053). Readers with a 
low experience level had AUCs of 80.9% for 
MRI and 73.3% for AI (p = 0.018); moder-
ate experience, 80% for MRI and 76.9% for 
AI (p = 0.28); and a high level of experience, 
83.8% for MRI and 83.6% for AI (p = 0.95).

Sensitivity and specificity plotted against 
PI-RADSv2 thresholds are shown in Fig-
ure 2. For the detection of all ground truth 
lesions (threshold, PI-RADSv2 ≥ 1), no 
significant difference in sensitivity was ob-
served between MRI and AI (89.6% vs 
87.9%, p = 0.364). However, in the sub-
group of experienced readers, sensitivity 
of AI was significantly greater than that of 
MRI (95.5% vs 89.0%, p = 0.013). For lesions 
considered suspicious with MRI (threshold, 
PI-RADSv2 ≥ 3) no significant differences in 
sensitivity were observed in the whole group 

(81.7% vs 83.5%, p = 0.453). This finding held 
true for all subgroups of reader experience.

For the detection of all ground truth le-
sions (threshold, PI-RADSv2 ≥ 1), specific-
ity was significantly lower for AI (30.0% vs 
51.5%, p < 0.001) in the whole group. This 
finding held true for all subgroups of reader 
experience. For lesions considered suspicious 
on MRI studies (threshold, PI-RADSv2 ≥ 3), 
specificity was significantly lower for AI in 
the whole group (51.4% vs 60.7%, p = 0.01). 
Although it was observed in all subgroups of 
reader experience, this result did not reach 
statistical significance in the groups of read-
ers with moderate and high experience levels.

Multiparametric MRI and Artificial Intelligence 
Performance at Lesion Level

The free-response ROC AUCs were 74.9% 
for MRI and 77.5% for AI (p = 0.095). Read-
ers with a low experience level had AUCs of 
76.6% for MRI and 78.4% for AI (p = 0.095); 
moderate experience, 78.1% for MRI and 
78.6% for AI (p = 0.747); and a high experi-
ence level, 76.9% for MRI and 81.1% for AI 
(p = 0.003).

Lesion-level sensitivity and positive pre-
dictive value for all PI-RADSv2 thresholds 
are shown in Table 2 for MRI and AI. Sensi-
tivity plotted against PI-RADSv2 thresholds 

TABLE 2: Lesion-Level Diagnostic Performance Statistics on Artificial Intelligence (AI) and MRI for PI-RADS 
 Category Thresholds

PI-RADS  
Threshold for 
Performance 

Metric Evaluation 

AI MRI

Overall

Reader Experience Level

Overall

Reader Experience Level

Low Moderate High Low Moderate High

PI-RADS ≥ 1

Sensitivity (%) 57.4 (52.6–63.0) 51.5 (44.4–59.1) 58.0 (50.8–65.6) 62.7 (56.9–69.9)a 53.6 (48.5–59.6) 49.9 (43.4–57.2) 56.7 (50.3–64.2) 54.1 (47.5–62.6)a

PPV (%) 46.6 (42.9–50.4) 51.9 (46.0–58.4) 39.6 (33.9–45.1) 48.2 (42.9–53.7) 60.7 (56.9–64.6) 62.1 (55.7–68.9) 54.7 (48.8–60.7) 65.2 (58.9–71.5)

PI-RADS ≥ 2

Sensitivity (%) 57.4 (52.6–63.0) 51.5 (44.4–59.1) 58.0 (50.8–65.6) 62.7 (56.9–69.9)a 53.6 (48.5–59.6) 49.9 (43.4–57.2) 56.7 (50.3–64.2) 54.1 (47.5–62.6)a

PPV (%) 46.7 (43.0–50.7) 51.9 (46.0–58.4) 39.8 (34.1–45.3) 48.5 (43.3–54.1) 61.3 (57.4–65.3) 63.7 (57.3–70.6) 55.1 (49.4–61.0) 65.2 (58.9–71.5)

PI-RADS ≥ 3

Sensitivity (%) 50.0 (44.6–56.4) 45.4 (39.1–53.0) 52.6 (45.4–60.8) 51.9 (44.5–60.5) 51.0 (45.8–56.9) 47.8 (41.1–55.3) 54.0 (47.1–61.8) 51.0 (44.3–59.3)

PPV (%) 57.6 (53.6–61.7) 56.3 (49.8–63.4) 51.0 (45.2–57.0) 65.6 (59.6–71.4) 65.7 (61.7–69.7) 68.2 (61.5–75.1) 56.8 (50.7–63.2) 72.0 (66.1–77.6)

PI-RADS ≥ 4

Sensitivity (%) 42.3 (37.4–48.7) 38.9 (32.9–46.3) 45.2 (38.5–53.5) 42.9 (36.5–50.3) 45.1 (39.7–51.2) 41.8 (35.2–49.8) 49.4 (42.5–57.5) 44.0 (37.1–52.2)

PPV (%) 68.9 (64.7–73.1) 62.4 (54.8–70.5) 64.0 (57.3–71.0) 80.2 (74.6–85.8) 71.4 (67.4–75.8) 71.0 (64.3–78.3) 60.6 (54.2–67.2) 82.6 (76.5–88.4)

PI-RADS ≥ 5

Sensitivity (%) 18.3 (14.6–22.9) 21.4 (16.3–27.4) 18.3 (13.0–24.7) 15.3 (10.7–21.1) 19.2 (15.0–24.0) 18.3 (13.1–24.4) 21.4 (15.6–28.2) 17.9 (13.0–24.4)

PPV (%) 88.3 (83.2–93.3) 89.8 (81.8–97.4) 83.6 (74.6–91.9) 91.5 (83.7–98.3) 86.6 (81.3–92.0) 86.1 (77.8–94.0) 84.5 (74.7–94.3) 89.3 (83.3–95.4)

Note—Values in parentheses are 95% CI. PI-RADS = Prostate Imaging Reporting and Data System, PPV = positive predictive value.
 ap < 0.01.
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for the whole prostate, peripheral zone, and 
transition zone are shown in Figure 3. For the 
detection of all ground truth lesions (thresh-
old, PI-RADSv2 ≥ 1), sensitivity was high-
er for AI than for MRI but did not reach a 
statistical significance (57.4% vs 53.6%, p = 
0.073). However, in the subgroup of high-
ly experienced readers, AI had significantly 
greater sensitivity than MRI did (62.7% vs 
54.1%, p = 0.002). There were no statistically 
significant differences between AI and MRI 
in the subgroups of readers with low and in-
termediate experience levels. For lesions con-
sidered suspicious on MRI studies (threshold, 
PI-RADSv2 ≥ 3), there was no significant 
difference in sensitivity between AI and MRI 
(50% vs 51%, p = 0.65). This was also true 
among all subgroups of reader experience.

Lesion-level sensitivity and positive pre-
dictive value for all PI-RADSv2 thresh-
olds for MRI and AI in the peripheral 
are shown in Table 3 and in the transition 
zone in Table 4. There was no statistical-
ly significant difference in sensitivity be-
tween AI and MRI in the peripheral zone for 
any PI-RADSv2 threshold. In the transition 
zone, for the detection of all ground truth le-
sions (threshold, PI-RADSv2 ≥ 1), sensitiv-
ity was significantly higher for AI than for 
MRI (61.8% vs 50.8%, p = 0.001). In the sub-

group of highly experienced readers, sen-
sitivity was also significantly higher for AI 
than for MRI (70% vs 54.1%, p = 0.003). For 
lesions considered suspicious on MRI stud-
ies (threshold, PI-RADSv2 ≥ 3), there was no 
significant difference in sensitivity between 
AI and MRI (53% vs 49.4%, p = 0.238). This 
was also true among all subgroups of read-
er experience. The mean numbers of region 
proposals not corresponding to reportable 
findings according to PI-RADSv2 guidelines 
were 2.53 (range, 0–4) for control patients 
and 1.76 (range, 0–4) for case patients.

Interreader Agreement
There was moderate interreader agree-

ment in the whole group for AI and MRI 
with no statistically significant difference 
(58.7% vs 58.5%, p = 0.966). This was also 
true of readers with low (55.2% vs 48.5%, 
p = 0.403) and moderate (55.7% vs 55.5%, 
p = 0.993) experience levels. Among high-
ly experienced readers, interreader agree-
ment was substantial for AI and MRI with 
no statistically significant difference (0.644 
vs 0.645, p = 0.959).

Image Interpretation Times
The overall reading time was significant-

ly longer for AI than for MRI (4.66 vs 4.03 

minutes, p < 0.001). This was particularly 
pronounced among moderately (5.41 vs 4.68 
minutes, p = 0.001) and highly (4.22 vs 3.33 
minutes, p < 0.001) experienced readers, but 
there was no statistically significant differ-
ence among readers with a low level of expe-
rience (4.33 vs 4.1 minutes, p = 0.289).

Discussion
In this study an AI detection system entail-

ing region-based attention mapping showed 
little or no improvement over conventional 
interpretation of prostate MRI across multi-
ple readers of various experience levels. The 
notable exception was overall improvement 
in the detection of transition zone lesions, 
which are more difficult to diagnose. This 
result agrees with those of other AI studies, 
which to date have not shown dramatic im-
provements in performance over convention-
al interpretation. Interestingly, the AI system 
did not improve interreader variability or im-
prove the performance of readers with a low 
level of experience, which are features com-
monly touted for AI systems.

This study revealed some interesting find-
ings in subset analysis. For instance, among 
highly experienced readers, sensitivity was 
significantly higher for AI than for MRI for 
all lesions; this difference was not observed 

TABLE 3: Diagnosis Performance Statistics on Artificial Intelligence (AI) and MRI for PI-RADS Category Thresholds: 
Peripheral Zone Lesions

PI-RADS 
Threshold for 
Performance 

Metric Evaluation

AI MRI

Overall

Reader Experience Level

Overall

Reader Experience Level

Low Moderate High Low Moderate High

PI-RADS ≥ 1

Sensitivity (%) 56.8 (51.3–63.1) 54.5 (46.5–63.0) 56.6 (48.7–63.0) 60.5 (54.0–68.1) 55.4 (49.9–61.7) 55.4 (47.9–63.1) 55.9 (49.1–63.5) 55.1 (47.9–63.7)

PPV (%) 52.1 (47.9–56.5) 54.1 (47.5–61.4) 47.7 (41.0–54.2) 54.6 (48.5–61.4) 58.7 (54.4–63.1) 59.1 (52.5–66.1) 51.6 (45.4–58.2) 65.3 (58.6–72.8)

PI-RADS ≥ 2

Sensitivity (%) 56.8 (51.3–63.1) 54.5 (46.5–63.0) 55.6 (48.7–63.0) 60.5 (54.0–68.1) 55.4 (49.9–61.7) 55.4 (47.9–63.1) 55.9 (49.1–63.5) 55.1 (47.9–63.7)

PPV (%) 52.5 (48.2–56.9) 54.1 (47.5–61.4) 48.3 (41.6–54.8) 55.0 (49.0–61.6) 59.3 (55.1–63.7) 61.0 (54.1–68.2) 51.6 (45.4–58.0) 65.3 (58.6–72.8)

PI-RADS ≥ 3

Sensitivity (%) 50.1 (44.2–57.1) 47.6 (39.7–56.5) 50.4 (43.2–58.4) 52.5 (44.9–61.5) 52.4 (47.2–58.7) 53.0 (45.8–60.8) 53.0 (46.0–61.0) 51.3 (44.1–60.4)

PPV (%) 60.4 (55.9–65.3) 60.7 (53.5–68.6) 54.1 (46.7–61.3) 66.6 (60.6–72.7) 63.4 (59.1–67.8) 66.1 (58.7–73.8) 52.2 (45.4–59.1) 71.9 (65.9–78.3)

PI-RADS ≥ 4

Sensitivity (%) 44.0 (38.4–50.7) 41.9 (34.8–50.0) 44.1 (36.9–52.2) 46.0 (39.9–54.3) 47.2 (41.6–53.5) 46.4 (38.5–54.7) 50.5 (43.5–58.7) 44.6 (38.2–53.2)

PPV (%) 67.5 (62.8–72.5) 64.2 (55.9–72.9) 59.5 (51.5–67.5) 78.8 (72.9–84.9) 67.8 (62.9–72.5) 68.6 (60.8–76.4) 55.1 (48.2–62.3) 79.5 (72.9–86.4)

PI-RADS ≥ 5

Sensitivity (%) 17.8 (13.4–22.8) 20.0 (13.9–26.5) 18.0 (12.0–25.0) 15.3 (10.2–21.7) 18.2 (13.6–23.4) 17.8 (11.6–24.6) 19.3 (13.3–26.7) 17.4 (11.7–24.5)

PPV (%) 88.6 (82.4–94.1) 90.8 (82.7–97.9) 83.1 (72.4–93.3) 91.9 (82.4–100) 84.7 (79.0–90.9) 84.3 (74.2–94.1) 83.5 (72.4–94.9) 86.4 (79.6–93.3)

Note—Values in parentheses are 95% CI. PI-RADS = Prostate Imaging Reporting and Data System, PPV = positive predictive value.
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for lesions deemed suspicious for prostate 
cancer with MRI. In other words, the AI sys-
tem increased the sensitivity of highly ex-
perienced radiologists in detecting invisible 
(PI-RADS 1) and low-category (PI-RADS 
2) lesions, whereas it was not as contributo-
ry for clearly visible lesions (PI-RADS ≥ 3).

One possible explanation for the more pro-
nounced effect on highly experienced read-
ers could be the different output format of 
our AI system. Although our previous and 
most other AI systems use color-coded can-
cer probability maps, we chose an atten-
tion-based mapping box to decrease distrac-
tion and subjectivity caused by background 
noise and false-positive lesions on AI maps 
and focus the reader’s attention on the areas 
of highest likelihood of cancer. It is possi-
ble that highly experienced readers benefit-
ted most from this approach because they 
were more confident in detecting cancer-sus-
picious lesions and could spend additional 
time on the regions highlighted by the AI de-
rived boxes, whereas less experienced read-
ers might be less confident and not weight the 
AI data as strongly.

The AI system performed differently in 
different zones of the prostate. The peripher-
al and transition zones have very different ra-
diologic and histopathologic properties. As a 

consequence, the PI-RADS consensus guide-
lines recommend different criteria for the as-
signment of risk categories in the peripheral 
and transition zones [12]. The transition zone 
usually has a heterogeneous signal-intensity 
pattern on T2-weighted images, especially 
in patients with benign prostatic hyperpla-
sia. This complicates the detection of pros-
tate cancer lesions, which therefore can be 
easily overlooked. As a result, the sensitiv-
ity of mpMRI in general is lower for tran-
sition zone than for peripheral zone lesions 
[17]. In the subgroup analysis of peripheral 
and transition zone lesions in our study, the 
AI system had significantly higher sensitivity 
for all MRI-detected transition zone lesions 
than did mpMRI. This may represent an im-
portant contribution of this detection system.

Current AI systems are not fully automat-
ed detection systems but rather adjunct tools 
to aid radiologists reading prostate mpMRI 
studies. Therefore, the AI information along 
with prostate mpMRI findings can be consid-
ered an additional parameter potentially in-
creasing complexity for no benefit. Our study 
did not show significant improvement in in-
terreader agreement among readers. Reading 
time was slightly longer (mean, 40 seconds) 
with the AI detection system. This is under-
standable because the nature of an attention 

box is that it requires additional time to evalu-
ate. Some AI systems reduce the time need-
ed to diagnose. In a study by Greer et al. [18], 
both interreader variability and readout times 
improved when AI was used. In that study, 
however, the mpMR images were acquired at 
one site with one set of acquisitions, whereas 
the current study included MRI studies from 
multiple institutions. It is possible that such a 
heterogeneous collection of MRI data may re-
quire more time to evaluate even with an AI 
detection system. Additionally, spending extra 
time to carefully search for suspicious lesions 
within the four attention boxes in each patient 
may also have increased readout time.

Limitations
Our study had several limitations. First, 

the output of the AI detection system always 
presented four attention boxes to the read-
er even if there were no lesions. This was 
done because PI-RADS allows evaluation 
of up to four lesions and there was no meth-
od for varying the number of boxes for each 
case. This likely resulted in more false-posi-
tive readings, resulting in significantly lower 
specificity on the patient level compared with 
prior AI detection systems.

Second, the training of the algorithm was 
based on a fairly small patient population. 

TABLE 4: Diagnosis Performance Statistics on Artificial Intelligence and MRI for PI-RADS Category Thresholds: 
 Transition Zone Lesions

PI-RADS 
Threshold for 
Performance 

Metric Evaluation 

AI MRI

Overall

Reader Experience Level

Overall

Reader Experience Level

Low Moderate High Low Moderate High

PI-RADS ≥ 1

Sensitivity (%) 61.8 (53.9–70.1)a 48.1 (34.9–61.9) 67.2 (54.2–80.4) 70.0 (60.8–80.1)a 50.8 (42.3–61.2)a 40.3 (6.3–28.6) 58.1 (45.3–72.3) 54.1 (42.7–67.8)a

PPV (%) 34.4 (29.6–39.9) 39.9 (29.8–50.8) 28.5 (21.6–37.3) 34.7 (28.4–41.7) 57.7 (50.3–64.3) 61.4 (7.6–44.9) 53.6 (43.9–63.6) 58.0 (47.2–68.9)

PI-RADS ≥ 2

Sensitivity (%) 61.8 (53.9–70.1)a 48.1 (34.9–61.9) 67.2 (54.2–80.4) 70.0 (60.8–80.1)a 50.8 (42.3–61.2)a 40.3 (6.3–28.6) 58.1 (45.3–72.3) 54.1 (42.7–67.8)a

PPV (%) 34.5 (29.7–40.0) 39.9 (29.8–50.8) 28.5 (21.6–37.3) 35.0 (28.5–42.1) 58.2 (50.8–64.8) 62.2 (7.6–45.7) 54.3 (44.8–64.4) 58.0 (47.2–68.9)

PI-RADS ≥ 3

Sensitivity (%) 53.0 (44.8–62.8) 44.3 (32.7–57.4) 61.1 (48.4–75.4) 53.5 (41.4–66.6) 49.4 (41.2–59.8) 39.1 (6.4–27.2) 56.1 (43.0–70.8) 52.9 (41.7–66.7)

PPV (%) 46.2 (40.7–52.9) 41.3 (30.9–52.9) 42.1 (34.3–50.7) 55.2 (45.5–65.4) 64.6 (58.9–70.7) 67.7 (5.1–57.6) 57.8 (47.9–67.7) 68.4 (58.9–78.5)

PI-RADS ≥ 4

Sensitivity (%) 41.8 (33.8–51.1) 35.3 (25.5–46.4) 51.0 (38.4–65.5) 38.9 (28.2–50.8) 42.0 (34.2–51.5) 34.1 (5.7–23.7) 47.0 (34.9–61.4) 45.0 (33.5–58.3)

PPV (%) 64.9 (57.3–73.1) 51.7 (38.2–66.2) 66.5 (55.9–77.4) 76.5 (64.7–88.4) 74.6 (68.6–81.0) 73.6 (5.7–62.6) 63.2 (51.9–74.3) 87.1 (79.4–94.6)

PI-RADS ≥ 5

Sensitivity (%) 23.9 (16.8–32.4) 26.4 (16.5–37.0) 24.2 (14.9–35.3) 21.1 (11.3–33.1) 25.0 (17.5–34.5) 22.5 (5.3–13.3) 28.3 (18.5–40.1) 24.4 (13.8–36.6)

PPV (%) 86.6 (79.3–94.4) 86.7 (76.2–100) 82.2 (63.9–97.0) 91.1 (81.5–100) 86.4 (77.8–93.8) 86.5 (7.1–70.3) 81.0 (63.9–96.3) 91.7 (83.3–100)

Note—Values in parentheses are 95% CI. AI = artificial intelligence, PI-RADS = Prostate Imaging Reporting and Data System, PPV = positive predictive value.
ap < 0.01.

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 D

er
 R

ijk
su

ni
ve

rs
ite

it 
G

ro
ni

ng
n 

on
 0

8/
17

/2
0 

fr
om

 I
P 

ad
dr

es
s 

12
9.

12
5.

58
.2

20
. C

op
yr

ig
ht

 A
R

R
S.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d 



AJR:215, October 2020 7

Artificial Intelligence in MRI of Prostate Cancer

This might have negatively affected the per-
formance of the model because larger and 
more diverse patient populations improve 
generalizability of classification algorithms.

Third, our classification algorithm was 
based on a random forest classifier. With ad-
vances in computational resources, big data, 
and more sophisticated deep neural network 
algorithms, deep learning is gaining popu-
larity in medicine. In particular, convolu-
tional neural networks appear to be superior 
to classic machine learning techniques and 
other deep neural network architectures in 
performance and generalization in imaging-
related tasks [19–21]. As a result, we are cur-
rently working on procuring and annotating 
larger imaging datasets and developing deep 
neural network architectures for designing a 
stronger prostate cancer AI detection system.

Conclusion
The AI detection system had significant-

ly higher sensitivity than mpMRI for the de-
tection of transition zone lesions, especially 
those not visible to readers using the raw im-
ages alone. Overall, there was no significant 
gain from the AI detection system compared 
with MRI alone, and it did not improve the 
performance of readers with a low experi-
ence level or reduce interreader variability. 
AI did, however, improve the performance of 
radiologists in evaluating transition zone le-
sions. These results suggest a need for fur-
ther work on deep learning convolutional 
neural networks in larger datasets to improve 
the performance of radiologists interpreting 
mpMRI of the prostate.
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Fig. 1—55-year-old man with prostate-specific antigen level of 4.68 ng/mL and Prostate Imaging Reporting and Data System category 5 lesion in left anterior transition 
zone correctly detected by artificial intelligence system. Final histopathologic result was Gleason 3 + 4 prostate cancer.
A, T2-weighted MR image.
B, Apparent diffusion coefficient map.
C, DW image (b = 2000 mm/s2). 
D, Dynamic contrast-enhanced MR image.
E, T2-weighted MR image with attention box produced by means of artificial intelligence.
F, Photomicrograph of radical prostatectomy specimen. I = index lesion. 
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Fig. 2—Graphs show sensitivity and specificity of artificial intelligence (AI) and MRI for different Prostate Imaging Reporting and Data System (PI-RADS) category 
thresholds at patient level. Asterisk denotes p < 0.05; double asterisk, p < 0.01.
A, Sensitivity for all readers.
B, Sensitivity for readers with low level of experience.
C, Sensitivity for readers with moderate level of experience.
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Fig. 2 (continued)—Graphs show sensitivity and 
specificity of artificial intelligence (AI) and MRI 
for different Prostate Imaging Reporting and Data 
System (PI-RADS) category thresholds at patient 
level. Asterisk denotes p < 0.05; double asterisk, p < 
0.01.
D, Sensitivity for readers with high level of 
experience.
E, Specificity for all readers.
F, Specificity for readers with low level of experience.
G, Specificity for readers with moderate level of 
experience.
H, Specificity for readers with high level of 
experience.
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Fig. 3—Graphs show sensitivity of artificial intelligence (AI) and MRI for different Prostate Imaging Reporting and Data System (PI-RADS) category thresholds at lesion 
level for whole prostate, peripheral zone, and transition zone. Asterisk denotes p < 0.05; double asterisk, p < 0.01.
A, Whole prostate, all readers.
B, Whole prostate, readers with low level of experience.
C, Whole prostate, readers with moderate level of experience.
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Fig. 3 (continued)—Graphs show sensitivity of artificial intelligence (AI) and MRI for different Prostate Imaging Reporting and Data System (PI-RADS) category 
thresholds at lesion level for whole prostate, peripheral zone, and transition zone. Asterisk denotes p < 0.05; double asterisk, p < 0.01.
D, Whole prostate, readers with high level of experience.
E, Peripheral zone, all readers.
F, Peripheral zone, readers with low level of experience.
G, Peripheral zone, readers with moderate level of experience.
H, Peripheral zone, readers with high level of experience.
I, Transition zone, all readers.
J, Transition zone, readers with low level of experience.
K, Transition zone, readers with moderate level of experience.
L, Transition zone, readers with high level of experience.
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