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ABSTRACT

In the present work, we study the problems of stability analysis of piecewise-affine
(PWA) discrete-time systems, and trigger-function design for discrete-time event-triggered
control systems. We propose a representation for piecewise-affine systems in terms of
ramp functions, and we rely on Lyapunov theory for the stability analysis.

The proposed implicit piecewise-affine representation prevents the shortcomings of
the existing stability analysis approaches of PWA systems. Namely, the need to enu-
merate regions and allowed transitions of the explicit representations. In this context,
we can emphasize two benefits of the proposed approach: first, it makes possible the
analysis of uncertainty in the partition and, thus, the transitions. Secondly, it enables the
analysis of event-triggered control systems for the class of PWA systems since, for ETC,
the transitions cannot be determined as a function of the state variables. The proposed
representation, on the other hand, implicitly encodes the partition and the transitions.

The stability analysis is performed with Lyapunov theory techniques. We then
present conditions for exponential stability. Thanks to the implicit representation, the
use of piecewise quadratic Lyapunov functions candidates becomes simple. These con-
ditions can be solved numerically using a linear matrix inequality formulation. The
numerical analysis exploits quadratic expressions that describe ramp functions to verify
the positiveness of extended quadratic forms.

For ETC, a piecewise quadratic trigger function defines the event generator. We
find suitable parameters for the trigger function with an optimization procedure. As
a result, this function uses the information on the partition to reduce the number of
events, achieving better results than the standard quadratic trigger functions found in
the literature.



We provide numerical examples to illustrate the application of the proposed repre-
sentation and methods.

Keywords: Event-triggered control, networked control systems, discrete-time sys-
tems.



RÉSUMÉ

Ce manuscrit présente des résultats sur l’analyse de stabilité des systèmes affines
par morceaux en temps discret et sur le projet de fonctions de déclenchement pour des
stratégies de commande par événements. Nous proposons une représentation pour des
systèmes affines par morceaux et l’on utilise la théorie de stabilité de Lyapunov pour
effectuer l’analyse de stabilité globale de l’origine.

La nouvelle représentation implicite que nous proposons rend plus simple l’analyse
de stabilité car elle évite l’énumération des régions et des transitions entre régions tel
que c’est fait dans le cas des représentations explicites. Dans ce contexte nous pouvons
souligner deux avantages principaux, à savoir I) la possibilité de traiter des incertitudes
dans la partition qui définit le système et, par conséquent des incertitudes dans les tran-
sitions, II) l’analyse des stratégies de commande par événements pour des systèmes
affines par morceaux. En effet, dans ces stratégies les transitions ne peuvent pas être
définies comme des fonctions des variables d’état.

La théorie de stabilité de Lyapunov est utilisée pour établir des conditions pour la
stabilité exponentielle de l’origine. Grâce à la représentation implicite des partitions
nous utilisons des fonctions de Lyapunov quadratique par morceaux. Ces conditions
sont données par des inégalités dont la solution numérique est possible avec une formu-
lation par des inégalités matricielles linéaires. Ces formulations numériques se basent
sur des expressions quadratiques décrivant des fonctions rampe.

Pour des stratégies par événement, une fonctions quadratique par morceaux est uti-
lisée pour le générateur d’événements. Nous calculons les paramètres de ces fonctions
de déclenchement a partir de solutions de problèmes d’optimisation. Cette fonction de
déclenchement quadratique par morceaux permet de réduire le nombre de d’événements



en comparaison avec les fonctions quadratiques utilisées dans la littérature.
Nous utilisons des exemples numériques pour illustrer les méthodes proposées.

Keywords: Comande déclenché par événements, systèmes de contrôle en réseau,
systèmes à temps discret.



RESUMO

No presente trabalho, são estudados os problemas de análise de estabilidade de siste-
mas afins por partes e o projeto da função de disparo para sistemas de controle baseado
em eventos em tempo discreto. É proposta uma representação para sistemas afins por
partes em termos de funções rampa, e é utilizada a teoria de Lyapunov para a análise de
estabilidade.

A representação afim por partes implícita proposta evita algumas das deficiências
das abordagens de análise de estabilidade de sistemas afins por partes existentes. Em
particular, a necessidade de anumerar regiões e transições admissíveis das represen-
tações explícitas. Neste contexto, dois benefícios da abordagem proposta podem ser
enfatizados: primeiro, ela torna possível a análise de incertezas na partição, e, assim,
nas transições. Segundo, ela permite a análise de sistemas de controle baseado em
eventos para a classe de sistemas afins por partes, já que, para o controle baseado em
eventos, as transições não podem ser determinadas como uma função das variáveis de
estado. A representação proposta, por outro lado, codifica implicitamente a partição e
as transições.

A análise de estabilidade é realizada com técnicas da teoria de Lyapunov. Condi-
ções para a estabilidade exponencial são então apresentadas. Graças à representação
implícita, o uso de funções candidatas de Lyapunov se torna simples. Essas condições
podem ser resolvidas numéricamente usando uma formulação de desigualdades matrici-
ais lineares. A análise numérica explora expressões quadráticas que descrevem funções
de rampa para verificar a postivividade de formas quadráticas extendidas.

Para o controle baseado em eventos, uma função de disparo quadrática por par-
tes define o gerador de eventos. Parâmetros adequados para a função de disparo são



encontrados com um procedimento de otimização. Como resultado, esta função usa in-
formação da partição para reduzir o número de eventos, obtendo resultados melhores do
que as funções de disparo quadráticas encontradas na literatura.

Exemplos numéricos são fornecidos para ilustrar a aplicação da representação e mé-
todos propostos.

Palavras-chave: Controle baseado em eventos, controle de sistemas em rede, siste-
mas em tempo discreto.
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1 INTRODUCTION

The popularization of the networked control systems (NCSs) in the last few decades,
driven by the developments in the technology of communication networks, as high-
lighted in the surveys (ZHANG; BRANICKY; PHILLIPS, 2001; TIPSUWAN; CHOW,
2003; YANG, 2006), made visible some of the problems related to the implementa-
tion of classical discrete-time feedback loops operating in networks. Firstly, shared
networks, generally implemented with a single communication bus, have severe band-
width limitations (LIAN; MOYNE; TILBURY, 1999; SUZUKI et al., 2011), limiting
the sampling rate and therefore the performance of control systems based on periodic
control updates. Secondly, remote control systems over a wireless network require a
high amount of energy to transmit data (AKYILDIZ et al., 2001), and usually have
limited amount of energy available, often stored in batteries. In this sense, the sensor
measurements update rate is a parameter that may improve the performance if increased,
but, on the other hand, transmitting the information from sensors may increase the en-
ergy consumption, thus decreasing the battery charge duration (SADI; ERGEN, 2017).

In this context, aiming at a better use of network resources, aperiodic control strate-
gies have been studied, where a control task, that is, the update of the controller and the
transmission of data between the sensor, the controller and the actuator, is executed only
when some condition is met. Among these strategies, the event-triggered control (ETC)
(TABUADA, 2007) and the self-triggered control (VELASCO; FUERTES; MARTI,
2003) paradigms stand out. In the first case, an event generator monitors the state or the
output of the system and an event happens when a criterion based on the monitored vari-
ables is verified. Differently, on the self-triggered control, whenever an event happens,
the event generator determines the next event instant based on the current state or output



20

information. The main advantage of the self-triggered control consists on the fact that it
does not require a constant monitoring of plant signals, and therefore the event generator
and the sensor do not have to be co-located. On the other hand, this strategy comes with
some drawbacks, such as a higher computational complexity. Also, this class of control
systems operates without any sort of feedback between two events, posing a problem
in the presence of unmodeled dynamics or unforeseen uncertainties. In turn, the ETC
strategy requires the constant monitoring of the states or outputs of the plant, but have a
lower computational complexity and is less prone to perturbations. Moreover, ETC has
shown a more efficient utilization of the network resources, as observed in the compara-
tive study (MAZO; TABUADA, 2008), and in other recent studies implementing recent
event-triggered and self-triggered techniques (YI et al., 2018; BRUNNER; HEEMELS;
ALLGÖWER, 2019). For the above reasons, this work considers the ETC strategy. Fur-
thermore, since in general NCSs are implemented over digital platforms, the present
work focuses on discrete-time (also called periodic) ETC, that is, it is considered that
the event generator only monitors the variables of interest in periodic time instants.

Even though the ETC strategies gained popularity recently, the state of the art still
presents some gaps, especially for nonlinear systems. Indeed, the literature regarding
methods of ETC for piecewise affine (PWA) systems is very scarce, with (MA; WU;
CUI, 2018; JIANG et al., 2020) being exceptions. Piecewise affine systems are a class
of nonlinear systems in which the state-space is partitioned in convex polyhedron re-
gions, and the behavior of the system in each of these regions is defined by an affine
dynamic. Several authors have studied this class of systems since it can model a wide
array of nonlinear dynamical systems, such as systems with actuator saturation, non-
linear circuits and closed-loop systems under a model predictive control (MPC). Also,
PWA functions have been shown to have universal approximation properties (LIN; UN-
BEHAUEN, 1992; XU; XIE, 2014), meaning they can approximate smooth nonlinear
functions arbitrarily well in bounded intervals. Hence, more complex dynamics may be
modeled by uncertain PWA systems.

Regarding stability analysis, the most used methods are based on Lyapunov tech-
niques. Although several representations have been proposed to described PWA func-
tions, most methods used for the stability analysis of this class of systems rely on a
standard explicit representation that enumerates the regions of the state space partition
and associates affine dynamics to each of these regions. Also, the stability conditions for
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discrete-time systems require the computation of admissible transitions and transition
sets (BISWAS et al., 2005). These facts entail some issues. First, enumerating the re-
gions and computing all the possible transitions for higher order systems demand a large
amount of computational power. Second, for any control law design and, in particular
for an ETC strategy, it is not possible, in general, to know the transition sets before the
control law (or the ETC strategy) parameters are defined. Thus the systematic design of
an event generator that ensures the stability of a PWA system is still an open problem.

Based on the above considerations, the following general objective is defined for
this work:

— Propose an ETC design method for discrete-time PWA systems.

From this general objective, the following specific objectives are considered:

— Propose a representation for PWA systems that is suited to the stability analysis
and does not require the enumeration of the regions and admissible transitions
of the partition.

— Propose conditions for the stability analysis of discrete-time PWA systems in the
proposed representation and cast these conditions as linear matrix inequalities.

— Propose a systematic method allowing the emulation based synthesis of the event
generator parameters preserving the stability and reducing the trigger activity
through convex optimization problems.

1.1 Thesis Outline

This thesis is organized as follows:

In Chapter 2, a review of the state of the art regarding ETC and PWA systems is
presented. The main characteristics of the class of PWA systems are shown, as well as
the characteristics of the ETC paradigm, including some challenges in applying an ETC
strategy to a PWA system.

In Chapter 3, a new representation for continuous PWA functions is presented. Some
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properties of this representation are explored and the relation and advantages of this new
representation to previous results in the literature of PWA systems are discussed.

In Chapter 4, conditions for the stability analysis of PWA systems described us-
ing the representation proposed in Chapter 3 are derived. These conditions rely on a a
characterization of the ramp function. Considering a piecewise quadratic (PWQ) Lya-
punov candidate function, these conditions are cast in terms of LMIs and extended to
deal with polytopic uncertainties. Some numerical examples are used to illustrate the
effectiveness of the results.

In Chapter 5, the problem of designing an ETC strategy for a discrete-time PWA
system is addressed, considering the representation proposed in Chapter 3 and the sta-
bility conditions derived in Chapter 4. A new PWQ trigger function is proposed, and
conditions for the design of such a function using convex optimization problems are
presented. The simulation of numerical examples show the potential of the proposed
ETC design method in reducing the number of control updates.

Lastly, Chapter 6 contains the conclusion of the thesis, including the final remarks
and future work perspectives.
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2 STATE OF THE ART

This chapter is dedicated to a bibliographical review of event-triggered control and
piecewise affine systems. Some of the main results regarding these two areas are pre-
sented, and some of their shortcomings are shown. Also, important concepts to the
understanding of the present work are introduced.

2.1 Event-Triggered Control

Most NCSs are implemented over digital platforms. Because of this, these systems
are usually based on a periodic sampling of the states or outputs of the plant, and thus,
the application of classic discrete time control techniques is possible. However, the
application of these techniques to networked systems causes an inefficient utilization
of network resources, since the sensors information must be sent to the actuators at
every periodic sampling time. In this sense, the event-triggered control paradigm has
been proposed as a way to use these resources more efficiently, through an aperiodic
transmission strategy, as shown in (KOPETZ, 1993; ÅSTRÖM; BERNHARDSSON,
1999).

The event-triggered control differs from the classic discrete-time control by not up-
dating the controller and sending the signal to the actuator at each period, but only
when an event is generated, which happens whenever a given trigger function violates
a threshold (HESPANHA; NAGHSHTABRIZI; XU, 2007). In this context, the update
of the controller and the sending of the signal from the controller to the actuator is
called a control task. This way, an event-triggered control strategy can be divided in
two distinct parts: a stabilizing control law, which provides the control signal to the
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actuator based on the information sent by the sensors, and the event generator, which
evaluates the trigger function and determines when the control must be updated. Thus,
the trigger function, which measures the monitored state degradation, is compared with
a determined constant, and when the trigger condition is violated (i.e. when the trigger
function value goes beyond a given threshold), an event is generated, and the control
signal applied to the plant must be updated.

2.1.1 Discrete-time Event-Triggered Control

A large portion of the literature about ETC considers that the system operates in
continuous time and that the variables can be continually monitored, and also that
the control tasks can be executed at any time instant, for instance as in (TABUADA,
2007; VELASCO; MARTÍ; BINI, 2009; SBARBARO; TARBOURIECH; GOMES DA
SILVA JR, 2014; MOREIRA et al., 2016; ABDELRAHIM et al., 2018). This assump-
tion, however, is not generally true, since the implementation of NCSs is usually done
over digital platforms, so that the control operation happens in discrete time, i.e. the
evaluation of the sensor states can only happen in determined sampling intervals, and so
does the update of the control signal. So, after the design is done in continuous time, a
discretization must be performed, so that the implemented system is merely an approx-
imation of the one designed (HEEMELS; DONKERS; TEEL, 2011). Moreover, in the
continuous time ETC there is the possibility of Zeno behavior, which does not happen in
the discrete-time ETC. Broadly speaking, Zeno behavior is the occurrence of infinitely
many events at the same instant, or the occurrence of inter-event times that tend to 0

either as the time goes to infinity or as the time goes to some finite instant. When de-
signing control strategies for continuous time systems, one must rule out such behavior,
see for instance (TABUADA, 2007; MOREIRA et al., 2017; TARBOURIECH et al.,
2017).

The discrete-time ETC, also called periodic ETC, on the other hand, considers
that the monitoring of the trigger function and the execution of control tasks can only
be performed in given time instants. This approach can be found, for instance, in
(EQTAMI; DIMAROGONAS; KYRIAKOPOULOS, 2010; HEEMELS; DONKERS;
TEEL, 2013; GROFF et al., 2016; LINSENMAYER; DIMAROGONAS; ALLGÖWER,
2019). When dealing with discrete-time systems, there is already a minimum innate
inter-event time defined by the nominal sampling period of the system (HEEMELS;
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DONKERS; TEEL, 2011), so it suffices to guarantee that that the trigger function is
smaller than the threshold at the instants in which an event occurs to ensure that the
Zeno behavior is avoided.

2.1.2 Network Topologies

According to (HESPANHA; NAGHSHTABRIZI; XU, 2007), of the many possible
network topologies the single channel topology is of particular interest for the study of
NCSs. This architecture is characterized by having the sensor and the actuator nodes
separated by a single communication channel. Although simple, this topology captures
several important characteristics of NCSs, such as bandwidth limitations. This topol-
ogy can also be used to represent different network configurations, depending on the
positioning of the controller in the actuator node or the sensor node.

In the first case, when the controller and the actuator are co-located, the information
of the plant states are only available to the controller at the instants when a control tasks
is executed. Thus, between two events, the controller dynamics happen based on the
information received through the network in the last control task. On the other hand, the
controller information is available to the actuator at every periodic instant. This kind of
architecture is studied in (LEHMANN; JOHANSSON, 2012; GOLABI et al., 2016).

On the second case, when the sensor and the controller are co-located, the informa-
tion of the plant states are available to the controller at every periodic instant, but this
information is only sent to the actuator when a control task is executed. This configu-
ration is of particular interest to the study of observer-based control, since the observer
will be periodically updated, leading to a faster convergence of the observed states.
The results found in (TALLAPRAGADA; CHOPRA, 2012; HEEMELS; DONKERS;
TEEL, 2013; SBARBARO; TARBOURIECH; GOMES DA SILVA JR, 2014; GROFF
et al., 2016) can be highlighted for approaching this configuration.

A third configuration is also possible, where the controller is located in a distinct
node from the sensor and the actuator. In this case, both the information the controller
receives from the sensors and the update of the signal applied to the actuator happen only
when a control task is executed. This network arrangement is studied in (TRIPATHY;
KAR; PAUL, 2017).

It is also important to point that in the case of a static feedback, such as in (WU;
REIMANN; LIU, 2014; GROFF; MOREIRA; GOMES DA SILVA JR, 2016; MAH-
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MOUD, 2017), the three architectures are equivalent.

2.1.3 Event Generator

The event generator is a vital part of an ETC system, as it is responsible for dictating
when a control task should be executed, that is, when there should be a sampling of the
states and an update of the control signal. This is done by monitoring a trigger function,
and an event happens whenever this function violates a given threshold. A generic
trigger strategy can be described by

Algorithm 1 Event-triggered control algorithm
if f(x(k),δ(k)) > ε then

Generate an event;
ni+1 = k;

end if

where f(x(k),δ(k)) is the trigger function, ε is the threshold, x is the system state, δ is
the state degradation defined as

δ(k) , x(ni)− x(k), (1)

and k and ni are the current time instant and the time instant of the i-th (last) event,
respectively. Thus, one of the main challenges of this control paradigm consists in
choosing an appropriate function so that the closed-loop system is stable, has the desired
performance, and at the same time efficiently uses the network resources. In this sense,
the quadratic trigger functions, that is, functions that can be written in the form

f(x,δ) =

[
x

δ

]>
Q

[
x

δ

]
, (2)

with a matrixQ of appropriate dimensions, constitute an important class of trigger func-
tions, with ample applications in the literature. However, the design of generic quadratic
functions, with a free matrix Q, is generally a complex task (HEEMELS; DONKERS;
TEEL, 2011). Thus, some particular structure is usually applied to Q in order to obtain
a tractable design or analysis problem. Three of the most prevalent trigger strategies,
namely the absolute error, the relative error and the weighted relative error are detailed
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below. Also, other results considering quadratic functions can be found in (MARC-
HAND et al., 2013) where a quadratic Lyapunov function is used for the trigger or in
(SEURET et al., 2013) where a function based on a linear-quadratic cost is used.

2.1.3.1 Absolute Error Threshold

This triggering strategy consists of generating an event when the norm of the dif-
ference between the current and the last sampled state reaches a given threshold as
summarized by the following algorithm

Algorithm 2 Absolute error threshold trigger
if ||x(ni)− x(k)|| ≥ εabs then

Generate an event;
ni+1 = k;

end if

The term εabs is the threshold and is the only design parameter available in this case.
This strategy can also be extended by applying different weights to the error of each
state variable (as well as their cross-products), yielding a strategy that can be described
by the algorithm

Algorithm 3 Weighted absolute error threshold trigger
if δ(t)>Qδδ(t) > εabs then

Generate an event;
ni+1 = k;

end if

With this, the matrix Qδ is also a design parameter, allowing more degrees of free-
dom than the threshold based simply on the Euclidean norm of the state. The main
problem with this strategy is that, since there is no normalization of the degradation
norm, as the state gets closer to the origin, the degradation norm becomes smaller, up
to the point where the event generator will no longer trigger. After this point, if the
system is stable, it will operate in open-loop indefinitely and converge to a state close
to the origin according to the open-loop dynamics. On the other hand, if it is open-loop
unstable, the degradation norm will increase again until the threshold is reached, and
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eventually reach either a limit cycle or develop a chaotic behavior. Because of these
properties, asymptotic stability cannot be achieved with this strategy.

2.1.3.2 Relative Error Threshold

One alternative to the absolute error is to normalize the state degradation with re-
spect to the current state, leading to the relative error threshold, described by the algo-
rithm

Algorithm 4 Relative error threshold trigger

if ||δ(t)||||x(t)|| ≥ σ0 then

Generate an event;
ni+1 = k;

end if

This condition was proposed in (TABUADA, 2007), where the possibility of asymp-
totic stability was demonstrated for a large class of systems. The design parameter in
this case is the variable σ0, and the greater its value, the larger the degradation of the
state can be before an event occurs, so that less events tend to occur for a larger σ0.

2.1.3.3 Weighted Relative Error Threshold

The previous trigger condition can be extended by considering weights for the dif-
ferent variables, leading to a weighted relative error condition, that can be summarized
by the algorithm

Algorithm 5 Weighted relative error threshold trigger
if δ(t)>Qδδ(t)− x>(t)Qxx(t) > 0 then

Generate an event;
ni+1 = k;

end if

The design parameters in this case are the matrices Qδ and Qx, which are sym-
metric positive-definite matrices that act as weights in the relative errors. The relation
between these has the same role as σ0 in the relative error strategy, so a “larger” Qx and
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a “smaller” Qδ” will allow a larger deviation of the current state from tha last sampled
one before an event is generated. In this sense, “larger” and “smaller” refer to the eigen-
values of the matrices, since they are involved in quadratic forms of x and δ. Also, note
that taking Qδ = I and Qx = σ0I , one retrives the relative error trigger conditions, so
this strategy is indeed a generalization of the previous one.

Methods for applying this strategy were introduced as part of the author’s research
and can be found in (GROFF et al., 2016; GROFF; MOREIRA; GOMES DA SILVA
JR, 2016).

2.2 Continuous Piecewise Affine Systems

The class of PWA systems is comprised of systems with dynamics that can be de-
scribed by

x+ = f(x), (3)

where f(x) is a PWA function, and x+ denotes the state vector at the next time instant,
that is, x+ = x(k + 1). This is class of systems has been used to represent a large
number of nonlinear systems, such as nonlinear circuits (KAHLERT; CHUA, 1992; JU-
LIAN; DESAGES; AGAMENNONI, 1999; POGGI; COMASCHI; STORACE, 2010;
PASOLLI; RUDERMAN, 2019), where even simple piecewise affine nonlinearities
can lead to complex behavior, and other engineered systems such as power convert-
ers (MOLLA-AHMADIAN et al., 2014) and pneumatic systems (ANDRIKOPOULOS
et al., 2013), or in other control systems problems, such as biosystems control (AZUMA;
YANAGISAWA; IMURA, 2008). Moreover, systems presenting some hard nonlineari-
ties, such as saturation or deadzone, can also be modelled by this class of systems, since
these functions are indeed piecewise affine (GOMES DA SILVA JR.; TARBOURIECH,
1999; LATHUILIÈRE; VALMORBIDA; PANTELEY, 2018).

The practical interest on PWA continuous functions in discrete-time systems also
appears in the context of Receding Horizon Optimal Control (RHOC) (BEMPORAD
et al., 2002), where multi-parametric linear or quadratic programs can be solved offline
to obtain PWA control laws associated to a specific partition on the state space, termed
Explicit Model Predictive Control (EMPC).
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2.2.1 Models for PWA Functions

Several representations for PWA functions have been proposed in the literature, each
with their own advantages and disadvantages, being applied in different areas of inter-
est. Among the most important ones, are the standard PWA representation, the canon-
ical PWA representation, the Hinging Hyperplanes (HH) representation and the lattice
representation, which are detailed below.

2.2.1.1 Standard PWA Representation

The standard representation of PWA systems traces back to (SONTAG, 1981), where
the following explicit representation for a PWA function was proposed

f(x) = Aix+ bi, ∀x ∈ Γi ⊂ Rn, i ∈ L (4)

where Γi is a convex polyhedron defined as

Γi = {x ∈ Rn|Eix+ ei ≥ 0}, (5)

and the index set L = {1,...,L}, L being the number of regions in the partition.

2.2.1.2 Canonical PWA Representation

Originally proposed in (CHUA; KANG, 1977), the canonical representation of a
PWA funciton is given by the following expression

f(x) = a0 + a>1 x+
L∑
i=1

bi|α>i x− βi| (6)

This form is capable of representing every scalar, continuous, PWA function of one
variable, but not every continuous mutivariate PWA function can be represented. In par-
ticular, a function must have the consistent variation property in order to be represented
by a canonical PWL function (see (CHUA; KANG, 1977), Theorem 1).

In order to extend the Canonical PWA Representation to functions that do not ex-
hibit the consistent variation property, generalizations based on nested absolute values
were proposed in (KAHLERT; CHUA, 1990), (GUZELIS; GOKNAR, 1991). A gener-
alized formulation allowing to represent any multivariate continuous PWA function was
presented in (LIN; XU; UNBEHAUEN, 1994), with the following definition.
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Definition 1. The canonical formulation (6) is called the first-level canonical PWA func-

tion. The K-th level canonical PWA function, for K > 1, takes the form

f(x) = f0(x) + C|g(x)|, (7)

where C ∈ RM×I , with a finite integer I , and f0 and g are canonical PWA functions of

at most K − 1 level.

This was an important advance in the theory of PWA systems, since it allowed the
use of the framework developed for canonical PWA functions, mainly used in the field
of electronic circuits, to be applied to general continuous PWA functions.

2.2.1.3 Hinging Hyperplanes Representation

The HH (Hinging Hyperplanes) representation was proposed in (BREIMAN, 1993)
for function approximation and classification, as an alternative to the use of neural net-
works. It is based on a sum of hinge functions which consist of two hyperplanes joined
together at a hinge. Thus, a function in this representation is given by

f(x) =
L∑
i=1

max(Ai1x+ bi1,Ai2x+ bi2). (8)

As it was shown in (WANG; SUN, 2005), the HH model has a close relation to the
canonical representation, and also suffers from the same shortcomings, that is, it can
only model function that have consistent variation. Therefore, in the aforementioned
paper, the following generalization that can represent any continuous PWA function
was proposed

f(x) =
L∑
i=1

max(Ai1x+ bi1,...,Ainx+ bin). (9)

2.2.1.4 Lattice PWA Representation

It was first proposed in (WILKINSON, 1963) that any continuous PWA function can
be expressed by a max-min composition of affine components, that is

f(x) = max
i=1,...,L

(min
j∈Ii

(`j)) (10)



32

where Ii is an index set and `j is an affine function, i.e., `j = Ajx + bj . Later, it
was formally demonstrated in (TARELA; MARTINEZ, 1999) that any continuous PWA
function can indeed be described by (10), then called the lattice PWA representation.

2.2.2 Stability of PWA Systems

In this section, results regarding the stability of PWA systems are reviewed. In the
study of PWA systems, the Lyapunov theory has been proven an important tool for
the characterization of the stability of the system’s equilibrium points (BISWAS et al.,
2005). The Lyapunov characterization of stability is presented in the appendix.

It should be pointed out that the vast majority of the results for stability analysis in
the literature are carried out using the standard PWA representation (4) (HEEMELS;
DE SCHUTTER; BEMPORAD, 2001). Thus, through this section, it is assumed that
the system is modeled by the standard representation (4) unless otherwise noted.

2.2.2.1 Quadratic Lyapunov Functions

Quadratic functions as

V (x) = x>Px, (11)

where P is a symmetric positive definite matrix, are perhaps the most popular class of
differentiable functions used as Lyapunov function candidates (CHEN, 1999). For linear
stable systems, the existence of a quadratic function is necessary and sufficient to show
the stability of the origin. For PWA systems, quadratic functions are used to formulate
sufficient stability conditions for equilibria. PWA systems admitting a single function
as (11) as the LF are called quadratically stable. (MIGNONE; FERRARI-TRECATE;
MORARI, 2000). However, this is only a sufficient condition, and stable systems may
not satisfy it. Actually, if there exists a set of positive-definite matricesRi, i = 1, . . . , L,

satisfying

L∑
i=1

(A>i RiAi −Ri) > 0, (12)

then the system does not admit a common quadratic Lyapunov function (FENG, 2002).
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Note that this approach is rather conservative, since no information about the parti-
tion is included in the stability analysis.

2.2.2.2 Piecewise Quadratic Lyapunov Functions

Piecewise quadratic functions have been proposed for PWA discrete-time systems
by (MIGNONE; FERRARI-TRECATE; MORARI, 2000; FENG, 2002; JOHANSSON,
2003). The idea consists in using Lyapunov functions of the class

V (x) = Vi(x), ∀x ∈ Γi, i ∈ L, (13)

where Vi(x) = x>Pix, and Pi, i ∈ L are symmetric positive definite matrices. The ori-
gin of the system can be shown to be stable if there exists a set of matrices Pj verifying

∆Vij(x) < 0, ∀{i,j} ∈ Ω, (14)

where ∆Vij(x) = Vj(x
+) − Vi(x) and Ω is the set of all possible transitions from one

region into another. In order to further reduce the conservatism, this condition can be
modified to account for the partition, requiring ∆Vij(x) < 0 to be satisfied only when
x ∈ Γi. This can be done by defining

Gi(x) = Eix+ ei. (15)

Since, by definition, Gi(x) ≥ 0 whenever x ∈ Γi, if

∆Vij(x) +Gi(x)>UijGi(x) < 0, ∀{i,j} ∈ Ω, (16)

with U < 0, that is, all elements of U are non-negative, then the origin of the system is
stable.

Several improvements to the method have been proposed since it was first pro-
posed, aiming at reducing the conservatism by applying relaxations and exploiting spe-
cific characteristics of PWA systems, such as in (HOVD; OLARU, 2013; IERVOLINO;
TANGREDI; VASCA, 2017; ZHU et al., 2018).

However, a major disadvantage of this method is that it requires the computation
of the set Ω, that is, the computation of all possible transitions between regions of the
system.
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2.2.2.3 Piecewise Affine Lyapunov Functions

A piecewise affine Lyapunov function is a function of the form

V (x) = Vi(x) = x>`i + ci, ∀x ∈ Γi, i ∈ L, (17)

where `i ∈ Rn and ci ∈ R are such that

Vi(x) > 0, ∀x ∈ Γi, i ∈ L. (18)

This class of functions has been originally proposed for continuous systems in (JO-
HANSSON, 2003), and extended to discrete-time systems in (BISWAS et al., 2005).
Similarly to the case of PWQ functions, if

∆Vij ≤ 0, ∀{i,j} ∈ Ω, (19)

then the origin of the system is stable. One of the advantages of this class of functions
is that the stability conditions can be checked with a linear program.

This approach has been extended in (RUBAGOTTI et al., 2011) and improved in
(RUBAGOTTI; ZACCARIAN; BEMPORAD, 2016).

Similar to the PWQ approach, this method relies on the computation of the set Ω to
cast the stability conditions as a linear program. Moreover, it also requires the compu-
tation of the transition sets, that is, the set of states that lead to each particular transition
between regions.

2.2.2.4 Other Approaches

Other approaches to the stability of PWA systems have been presented. In particular,
(BIANCHINI; PAOLETTI; VICINO, 2008) presents an L2 stability test for systems in
the hinging hyperplanes representation. The method consists in converting the system
to a linear fractional representation (LFR), and using integral quadratic constraints to
check the stability of the system. One of the main motivations behind the development
of the method was to avoid the enumeration of transitions between regions, because,
in the context of the work, a large number of regions and transitions would lead to a
large computation time to check the stability of the system. Though promising, the
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technique only applies to hyperplanes defined as (8), that is, only hyperplanes without
nesting, so it cannot be used to study the stability of functions without the consistent
variation property, which require nested hyperplanes. Also, the transformation into
an LFR equivalent required the linear part of the system to be Schur-stable, but no
guarantees could be provided that this assumption would hold, even for stable systems.

Another approach was presented in (BEMPORAD et al., 2010, 2011), where the
function is described based on a simplicial partition with a canonical PWA basis func-
tion. The stability test then relies on the computation of a PWA Lyapunov function. The
main problem of the approach is that the number of regions on the simplex grows very
quickly, specially for higher dimension systems.

2.2.3 Reachability Analysis

As seen on the previous section, the stability analysis of PWA systems in the stan-
dard representation relies on the set of possible transitions Ω. This happens because
it is not possible to know a priori in what region Γi the state will be at time instant k
nor in what region Γj the state will be at time instant k + 1, thus, it is required that the
Lyapunov function is decreasing for all possible combinations of regions Γi and Γj .

One way to compute the set Ω, as described in (BISWAS et al., 2005), is as follows.
First, a matrix T is defined with elements ti,j as

ti,j =

1, if ∃x ∈ Γi, such that f(x) ∈ Γj

0, otherwise
. (20)

Next, the matrix T is used to construct the set Ω , {i,j ∈ R | ti,j = 1}. As for
determining the values of ti,j , consider the following definition

Definition 2. For system (3), the set G(x,H) , {χ ∈ Rn | χ = f(x) ∧ x ∈ H} is the

one-step reachable set fromH.

Then, if G(x,Γi) ∩ Γj = {}, then ti,j = 0. On the other hand, if the intersection is
not empty, there exists some x ∈ Γi such that f(x) ∈ Γj , and thus ti,j = 1. For more
information on the computation of reachable sets for PWA systems, see (BEMPORAD,
2003), for instance.
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2.3 Event-Triggered Control of Piecewise Affine Systems

The literature on event-triggered controlled piecewise affine systems is currently
very scarce, with the few exceptions in (MA; WU; CUI, 2018; JIANG et al., 2020).

Firstly, interest in event-triggered control for nonlinear systems has only recently
started to get attention. Secondly, the methods for certifying the stability of PWA sys-
tems rely on computing reachable sets. In the case of event-triggered controlled sys-
tems, the error due to the control strategy can be modeled as a perturbation, so that
the system is a perturbed system. Computing reachable sets for perturbed systems is
not a difficult task, see (NAM; PATHIRANA; TRINH, 2015), for example, when the
perturbation is bounded. However, for event-triggered systems, the modeled perturba-
tion depends on the current state and the state in the last event, and since no a priori

information is known about the evolution of the system between the events, finding a
bound to this perturbation can be difficult, especially when a triggering function is yet
to be designed. The reachability analysis of linear ETC systems is approached in (FU;
MAZO, 2018), but an upper bound to the number of time instants between two events
has to be imposed, and the application to PWA systems is not straightforward. The
cited papers have not addressed this problem, and it is assumed that they consider all
transitions between states as possible, which results in a great conservatism.

2.4 Conclusion

In this chapter, a bibliographical review regarding event-triggered control and PWA
systems was presented. The main features of the event-triggered control paradigm and
results from the literature were presented. Also, the tools for the representation and
stability analysis of piecewise affine systems were summarized, as well as the reach-
ability analysis problem. Analyzing the literature that deals with the intersection of
these themes, that is, the event-triggered control of piecewise affine systems, it becomes
evident that this is still an open topic.

In particular, a methodology that enables the stability analysis of PWA systems with-
out relying on enumerating transitions would help to bridge the gap between event-
triggered control and PWA systems. In the next chapters, methods satisfying these
criteria will be presented, providing a new tools for stability analysis of PWA systems.
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These tools will then be applied to event-triggered control.
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3 IMPLICIT PIECEWISE AFFINE REPRESENTATION

As discussed in the state of the art review, there exist several representations for
piecewise affine systems. Models such as hinging hyperplanes(BREIMAN, 1993) and
lattice (TARELA; MARTINEZ, 1999) were shown to be suitable for system identifi-
cation methods. Also, models for nonlinear active devices, such as diodes, lead to the
canonical PWA representation (CHUA; KANG, 1977), which is a natural representa-
tion for nonlinear circuits. However, thanks to an intuitive mathematical description,
the explicit representation has been widely used for stability analysis (FENG, 2002;
RUBAGOTTI et al., 2011; HOVD; OLARU, 2013). The stability analysis methods of
PWA systems using the explicit representation (4) often require the enumeration of the
partition as well as the enumeration of possible transitions between partitions. In some
cases, the enumeration of these transitions may be difficult or impossible, such as when
the transition is driven by an external signal, or whenever there is an uncertainty in the
partition.

In this chapter, we propose a representation for continuous PWA functions that does
not require the regions and partitions to be enumerated to perform stability analysis with
PWA Lyapunov functions. Some of the results in this chapter were introduced by the
author in (GROFF; VALMORBIDA; GOMES DA SILVA JR, 2019).



39

3.1 Implicit Continuous PWA Functions

Consider the mapping f : Rn → Rnf defined by

f(x) = F1x+ F2φ(y(x)) (21a)

y(x) = F3x+ F4φ(y(x)) + f5 (21b)

where x ∈ Rn, y ∈ Rny , F1 ∈ Rnf×n, F2 ∈ Rnf×ny , F3 ∈ Rny×n, F4 ∈ Rny×ny ,
f5 ∈ Rny and the vector function φ : Rny → Rny is defined element-wise by the ramp
function as

φi(y) = r(yi) :=

{
0 if yi < 0

yi if yi ≥ 0
, i = 1, . . . ,ny (22)

as depicted in Figure 1.

Figure 1 – Nonlinear function r(yi).

yi

r(yi)

Source: The author

From the definition of the ramp function (22), we obtain

φ(y) = ∆(y)y (23)

where ∆ : Rm → D{0,1}. We have

∆ii :=

{
0 if yi < 0

1 if yi ≥ 0
, i = 1, . . . ,ny. (24)

The equation (21b) is, in general, an implicit equation for variable y (in Section
3.1.1 will state a result allowing to verify the well-posedeness of this equation). That is,
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to obtain y for a given x, we need to solve the equation

y − F4φ(y) = F3x+ f5. (25)

We will assume this equation is well-posed, namely, that for each x it corresponds a
unique y, thus defining a map y : Rn → Rm. Using (23)-(25), we then have that y(x)

satisfy

y(x) = (I − F4∆(y(x)))−1F3x+ (I − F4∆(y(x)))−1f5. (26)

The matrix (I − F4∆(y(x))) has an inverse since the implicit equation is well-posed.
From the above expression we also obtain, using (21a), (23) and (26).

f(x) =
(
F1 + F2∆(y(x))(I − F4∆(y(x)))−1F3

)
x+ F2∆(y(x))(I − F4∆(y(x)))−1f5

(27)
that is, (26)-(27) are expressions that can be written as

f(x) = A(x)x+ b(x)

y(x) = C(x)x+ d(x)
(28)

with

A(x) = (F1 + F2∆(y(x))(I − F4∆(y(x)))−1F3)

b(x) = F2∆(y(x))(I − F4∆(y(x)))−1f5

C(x) = (I − F4∆(y(x)))−1F3

d(x) = (I − F4∆(y(x)))−1f5.

A(x), b(x) C(x), d(x) are thus determined by ∆(y(x)) as in (27) which, in turn, depend
on the sign of the solution y to (25). Since diagonal elements of ∆(y(x)) belong to
{0,1}, it has at most 2m possible values. Therefore, A(x), b(x) C(x), d(x) can have at
most 2m values. We can then use (28) to obtain an explicit representation as

f(x) = Aix+ bi x ∈ Γi

i ∈ {1, . . . , 2m}, Γi =
{
x ∈ Rn | yj ≥ 0, ∀j ∈ Ji, yj < 0, ∀j /∈ Ji, i = 1 +

∑
j∈Ji 2(j−1)

}
,

where Ji is a set containing the indexes of the elements of y that are non-negative in the
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region Γi.

That is, from (21)-(22), it is the vector function φ(y(x)) and the regions where its
arguments are not negative that define the PWA partition of Rn. Since these partitions
and the value is defined implicitly we refer to (21)-(22) as an implicit representation of
PWA systems.

Note that when F4 = 0, or for some particular structures of F4, explicit solutions
to (21b) can be obtained (see section 3.1.1). We should also observe that, thanks to the
well-posedness and the continuity of φ, we have that f(x) is continuous.

Next, we illustrate the representation (21) with two examples, showing their relation
to the explicit representation.

Example 1: Consider (21) with n = 2, ny = 3, nf = 1 and

F1 =
[
0 1

]
, F2 =

[
1 1

]
,

F3 =

[
−1 −1

1 −1

]
, F4 =

[
0 −2/3

−1 0

]
, f5 =

[
0

0

]
.

(29)

As y ∈ R2, the partition of the state space corresponding to an explicit representation
can be obtained by considering all the 2ny possibilities involving yi ≥ 0 and yi < 0, that
is

• Γ1 = {x ∈ R2|y1(x) < 0, y2(x) < 0} .
In this case, it follows that φ1 = 0 and φ2 = 0, and we have

y1 = −x1 − x2 < 0⇔ −x1 < x2

y2 = x1 − x2 < 0⇔ x1 < x2.

• Γ2 = {x ∈ R2|y1(x) ≥ 0, y2(x) < 0}.
In this case, it follows that φ1 = y1 and φ2 = 0, and we have

y1 = −x1 − x2 ≥ 0⇔ −x1 ≥ x2

y2 = x1 − x2 − (−x1 − x2) < 0⇔ x1 < 0.

• Γ3 = {x ∈ R2|y1(x) < 0, y2(x) ≥ 0}.
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In this case, it follows that φ1 = 0 and φ2 = y2, and we have

y1 = −x1 − x2 − 2
3
(x1 − x2) < 0⇔ −5x1 < x2

y2 = x1 − x2 ≥ 0⇔ x1 ≥ x2.

• Γ4 = {x ∈ R2|y1(x)) ≥ 0, y2(x) ≥ 0}.
In this case, it follows that φ1 = 0 and φ2 = y2, and we have

y1 = −x1 − x2 − 2
3
(x1 − x2) ≥ 0⇔ −5x1 ≥ x2

y2 = x1 − x2 − (−x1 − x2) ≥ 0⇔ x1 ≥ 0.

These regions are depicted in Figure 2. An explicit representation for f(x) as in (4) is

Figure 2 – Partition of R2 for f(x) defined by (21), (29).

x1

x2

Γ1

Γ4

Γ3Γ2

Source: The author

given by

f(x)=



x2, x∈Γ1 ={x ∈ R2| − x1 < x2;x1 < x2},

−x1, x∈Γ2 ={x ∈ R2|x1 < 0;x2 ≤ −x1},

x1, x∈Γ3 ={x ∈ R2|x2 ≤ x1;x2 > −5x1},

x1, x∈Γ4 ={x ∈ R2|0 ≤ x1;x2 ≤ −5x1}.

Note that f(x) is the same in the regions Γ3 and Γ4. Since, additionally Γ3 ∪ Γ4

is a convex polyhedron, the explicit representation can be done considering only three
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regions:

f(x)=


x2, x∈Γ1 ={x ∈ R2| − x1 < x2;x1 < x2},

−x1, x∈Γ2 ={x ∈ R2|x1 < 0;x2 ≤ −x1},

x1, x∈Γ3 ∪ Γ4 ={x ∈ R2|x2 ≤ x1; 0 ≤ x1; }.

Example 2: Given a matrixK ∈ Rnf×n, and vectors µ ∈ Rnf and µ ∈ Rnf consider the
asymmetric saturation function f(x) = sat[µ,µ](Kx) : Rn → Rnf , defined elementwise
as follows

fi(x) =


µi x∈D1,i={x ∈ Rn|(Kx)i ≤ µi}

Kix x∈D2,i={x ∈ Rn|µi < (Kx)i < µi}

µi x∈D3,i={x ∈ Rn|(Kx)i ≥ µi},

i = 1, . . . , nf . To obtain an implicit representation, consider that

yj = −Kjx+ µj, j = 1,...,nf

yj = Kjx− µj−nf , j = nf + 1,...,2nf .

Hence:

• If x ∈ D1,i, it follows that yi ≥ 0 and yi+nf < 0, hence

φi = −Kix+ µi

φi+nf = 0,

and fi = Kix+ φi − φi+nf = µi.
• If x ∈ D2,i, it follows that yi < 0 and yi+nf < 0, hence

φi = 0

φi+nf = 0,

and fi = Kix+ φi − φi+nf = Kix.
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• If x ∈ D3,i, it follows that yi < 0 and yi+nf ≥ 0, hence

φi = 0

φi+nf = K1x− µi,

and fi = Kix+ φi − φi+nf = µi.

This function can be described as in (21) by considering

F1 = K, F2 =
[
Inf −Inf

]
F3 =

[
−K
K

]
, F4 = 0ny×ny f5 =

[
µ

−µ

]
(30)

with ny = 2nf . This corresponds to a partition with 3nf regions (TARBOURIECH et al.,
2011; GOMES DA SILVA JR.; TARBOURIECH, 1999), For instance, with n = 2,
nf = 1, K =

[
−1 1

]
, µ = −1 and µ = 2 we obtain the following partition of R2 in

terms of y

Γ3 = {x ∈ R2|y1(x) < 0, y2(x) ≥ 0}
Γ1 = {x ∈ R2|y1(x) < 0, y2(x) < 0}
Γ2 = {x ∈ R2|y1(x) ≥ 0, y2(x) < 0},

which is depicted in Figure 3. It is worth to note that the region where y1(x) > 0 and
y2(x) > 0 is empty, since the signal cannot be simultaneously above the upper saturation
limit and below the lower one. An explicit representation for f(x) as in (4) in this case
is given by

f(x) =


−1, x ∈ Γ3 = {x ∈ R2|Kx < −1}

Kx, x ∈ Γ1 = {x ∈ R2| − 1 ≤ Kx ≤ 2}

2, x ∈ Γ2 = {x ∈ R2|2 < Kx}.

In the following we use (21) as a model for discrete-time PWA systems. The
main feature of (21) that will be exploited in the formulation of stability conditions for
discrete-time systems is the characterization of the ramp function in terms of identities
and inequalities, presented in Section 4.1. These identities and inequalities will be key
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Figure 3 – Partition of R2 for f(x) defined in (30).

x1

x2

Γ1

Γ2

Γ3

Source: The author

to obtain numerically tractable conditions for the verification of Lyapunov inequalities
as carried out in the stability analysis of systems with sector bounded nonlinearities us-
ing sector inequalities. The implicit representation also simplifies the stability analysis
since the partitions and possible transitions between sets of the partition do not have to
be explicitly accounted for in the piecewise quadratic Lyapunov inequalities.

The representation (21) will also be useful for uncertainty representation. Besides
considering uncertainties in the dynamics, the representation can also be used to repre-
sent uncertainties in the partition by considering uncertain matrices F3, F4 and f5, which
cannot be done with an explicit representation. These uncertainties can be described by
matrix sets such as polytopic or norm-bounded ones (BOYD et al., 1994).

3.1.1 Conditions for well-posedness

Note that in Example 2 above, the solution to equation (21b) is explicit since F4 = 0,
giving y = F3x + f5. It is then straightforward to compute f(x) using the value of y.
Explicit solutions can also be obtained in case matrix F4 is structured, for instance for
a strictly lower or upper triangular structure. As an example, take m = 4 and consider
the structured algebraic loop, with an upper-triangular matrix F4



46

[
ya

yb

]
=

[
F3a

F3b

]
x+

[
02×2 F̃4

02×2 02×2

]
φ

([
ya

yb

])
+

[
f5a

f5b

]

ya, yb ∈ R2 which can be rewritten as

yb = F3bx+ f5b

ya = F3ax+ F̃4φ(F3bx+ f5b) + f5a

In general, with F4 6= 0 (21b) is an implicit equation and the existence of a unique
solution y for all x ∈ <n must be ensured. With this aim, below a condition for the
well-posedness of (21b) is provided, that is, the existence and uniqueness of solutions
to

f̃(y(x)) = y(x)− F4φ(y(x)) = F3x+ f5 ∀x ∈ Rn. (31)

In (ZACCARIAN; TEEL, 2002, Proposition 2) it is shown that for a locally Lipschitz
function f̃(y(x)) such that the Jacobian satisfies Jyf̃(y) ∈ M ⊂ Rny×ny for almost
all y ∈ Rny , whereM is a compact, convex set, with each of its elements being non-
singular, there exists a unique globally Lipschitz function y(ξ) satisfying f̃(y) = ξ.
Such a result is used in (ZACCARIAN; TEEL, 2002) to obtain a condition for the well-
posedness of an algebraic loop involving saturation and deadzone functions.

Using the definition of the ramp function in (22), it is true that the Jacobian with
respect to y of f̃(y) in (31) is given by Jyf̃(y) = (I − F4∆) with ∆ ∈ D = {∆ ∈
Dn|∆(i,i) ∈ [0, 1]}, which is a compact and convex set of matrices. Thus, following (ZA-
CCARIAN; TEEL, 2002, Proposition 2) a unique solution to (31) exists if (I − F4∆)

is non-singular for all ∆ ∈ D. A condition for the well-posedness is then cast as
an LMI constraint (see (VALMORBIDA; DRUMMOND; DUNCAN, 2018; ZACCAR-
IAN; TEEL, 2002)) as in the proposition below.

Proposition 1 ((ZACCARIAN; TEEL, 2002, Proposition 1)). If there exist a matrix

W ∈ Dny such that −2W +WF4 + F>4 W < 0 then (I − F4∆)−1 exists ∀∆ ∈ D.

In the following, it will be assumed that the condition for well-posedness of (31) of
Proposition 1 holds. Whenever well posed holds, we might be interested to compute
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the value of the function as for instance, for the implementation of state-feedback PWA
control laws. In this case, for a given x ,the PWA function has to be computed to gener-
ate a control input. Different methods can be used to solve the algebraic loop yielding
the solution to (31). One systematic approach is obtained by casting the equation as a
Linear Complementarity Problem (COTTLE; PANG; STONE, 1992) and to obtain its
solution, see Remark 4.3 below.

3.1.2 Relation to other implicit representations

Different models for PWA functions have been studied in the literature in the con-
text of nonlinear circuits and control systems. A comparison among different modelling
methods is discussed in (HEEMELS; DE SCHUTTER; BEMPORAD, 2001). This sec-
tion relates the proposed model to other models for PWA systems that do not explicitly
define the partition as (4). To this end, two representations from the literature are intro-
duced. These representations yield (31) with a structured matrix F4 which, as mentioned
in section 3.1.1, lead to an explicit solution of the algebraic loop.

3.1.2.1 MMPS functions

This section relates representation (21) to one of the models discussed in (HEEMELS;
DE SCHUTTER; BEMPORAD, 2001), namely max-min-plus-scaling (MMPS). Using
the results in (HEEMELS; DE SCHUTTER; BEMPORAD, 2001), where the equiva-
lence of MMPS and other PWA models is discussed, we can then relate (21) and the
other models studied therein.

An MMPS function is a mapping f : Rn → R which is recursively defined by a
grammar (DE SCHUTTER; VAN DEN BOOM et al., 2000)

g(x,gk,g`):=(xi|α|max(gk,g`)|min(gk,g`)|gk) + (g`|βgk) (32)

where gk and g` are themselves MMPS expressions and i ∈ 1, . . . , n. The symbol “|" in
expression (32) denotes an “or" operator (see details in (DE SCHUTTER; VAN DEN
BOOM et al., 2000)).

To obtain an MMPS model from (21), we write the ramp function as the MMPS
function

r(yi(x)) = max(0,yi(x)) (33)
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which is an expression (32) with gk = 0 and g` = yi. Using (33) we can write f(x)

in (21) as an MMPS expression. Let us illustrate these steps with an example.

Example 3: For Example 2 above, using (30) with nf = 1, n = 2, we have
f(x) = K11x1 +K12x2 − r(y1) + r(y2)

y1 = K11x1 +K12x2 − µ

y2 = −K11x1 −K12x2 + µ.

Using (33) it gives

f(x) = K11x1 +K12x2−max(0,K11x1 +K12x2−µ)+max(0,−K11x1−K12x2 +µ).

Combining the terms of this expression we can obtain (32), that is an MMPS with

g1 = x1,

g2 = x2,

g3 = K11g1,

g4 = K12g2,

g5 = g3 + g4,

g6 = −µ,
g7 = µ,

g8 = (−1)g5,

g9 = g5 + g6,

g10 = g7 + g8,

g11 = max(0, g9),

g12 = max(0, g10),

g13 = (−1)g11,

g14 = g12 + g13,

f(x) = g5 + g14.

Conversely, to obtain (21) from an MMPS expression it suffices to consider the
identities max(gk,g`) = −min(−gk, −g`) and max(gk, g`) = gk + r(g` − gk) and
perform the composition of terms using the expressions gi.

Example 4: Consider the following function, adapted from (BEMPORAD; ROLL;
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Figure 4 – Values of f(x) with the parameters from (34)

Source: The author

LJUNG, 2001):

f(x) = 0.8x1 + 0.4x2 + max(0,− 0.3x1 + 0.6x2 − 0.3)

using the identity relating max and the ramp function, gives

f(x) = 0.8x1 + 0.4x2 + (0) + r((−0.3x1 + 0.6x2 − 0.3)− (0))

=
[
0.8 0.4

]
x+ r(

[
−0.3 0.6

]
x− 0.3))

that is, defining y1 = −0.3x1 + 0.6x2 − 0.3, we can write f(x) as in (21) with

F1 =
[
0.8 0.4

]
, F2 =

[
1
]
,

F3 =
[
−0.3 0.6

]
, F4 =

[
0
]
, f5 =

[
−0.3

]
.

(34)

Figure 4 illustrates the function f(x) of the above example.

Other PWA function representations are defined as MMPS functions, such as the
HH representation (BREIMAN, 1993; WANG; SUN, 2005) and the LR (TARELA;
ALONSO; MARTINEZ, 1990; WEN; MA; YDSTIE, 2009), presented in Section 2.2.1.
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The results presented in this section thus apply to obtain an equivalent representation in
the form of (21) for both HH and LR. The possibility of readily obtaining an implicit
PWA representation for systems in the HH form is particularly interesting, since there
are several methods of system identification using the HH representation (WEN et al.,
2007; XU; HUANG; WANG, 2009; XU et al., 2020), but stability analysis methods are
scarce. Thus, it is possible to identify the systems using HH methods and transform the
result into an implicit PWA model to perform the stability analysis.

3.1.2.2 PWA Canonical Representation

This section discusses the relation between (21) and a representation introduced in
the context of non-linear circuit analysis, the so-called canonical representation for PWA
functions (KAHLERT; CHUA, 1992), (JULIAN, 2003). In particular, it is shown that
from the canonical representation, it is always possible to obtain (21) with a particular
lower triangular block structure for matrix F4. This structure leads to explicit solutions
for equation (21b).

The main definitions required to obtain the canonical representation as presented
in (JULIAN, 2003) are briefly recalled. The basic element for the generation of the
canonical form are the Nh hyperplanes generating the partition of the state space. Each
of these hyperplanes can be described by a PWA function q : Rn → R, with q = qi,
i = 1, . . . ,Nh, where

qi(x) = α>i x+ βi, (35)

αi ∈ Rn, βi ∈ R. Moreover, it relies on the generating function γ : R× R→ R

γ(v1,v2) =
1

4
(|| − v1|+ v2| − ||v2| − v1|+ | − v1|+ |v2| − | − v1 + v2|) (36)

from which a family of nested functions γk can be obtained as follows: γ0(v1) = v1,
γ1(v1) = γ(v1,v1), γ2(v1,v2) = γ(v1,v2), . . .

γk(v1,v2, . . . , vk) = γ(v1,γ
k−1(v2, . . . ,vk)). (37)

As stated in (JULIAN, 2003, Theorem 1), any continuous PWA function f : Rn →
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R can be expressed by a canonical form of level k, k ≥ 1, which takes the form

f(x) =a>x+ b+
k∑
j=1

Nk(j)∑
`=1

cj,` (38)

× γj(d(j),`,m
1 q̃(x)(j),`,1, . . . , d

(j),`,m
j q̃(x)(j),`,j)

a ∈ Rn, b ∈ R, cj,` ∈ R, d(j),`,m
k ∈ R, where each q̃(x)(j),`,s, s = 1, . . . , j, corresponds

to some function qi(x) as in (35), j corresponds to the order of a degenerate intersection
from which the arguments of function γj are computed, Nk(j) denotes the number of
degenerate intersections of order j in the partition, and m is the index associated to one
of the degenerated intersections of level j− 1 generating the intersection of level j with
index `. More details about how to obtain (38), namely the functions q̃(x)(j),`,s and the
corresponding coefficients d(j),`,m

s can be found in (JULIAN, 2003).

Since

|v1| = | − v1| = 2r(v1)− v1 (39)

and from the recursive definition of γk in (37), the expression (38) can be re-written
using ramp functions. Thus, generalizing (37) for a vector function f : Rn → Rnf , it is
true that for each level j, new vectors y(j) ∈ Rny(j) and corresponding functions φ(y(j))

have to be defined. In order to do so, first consider the following lemma.

Lemma 1. The following identity is verified

γ(v1,v2) = r(v1 − r(v1 − v2)) (40)

Proof. From (39), it follows that

r(v1 − r(v1 − v2)) =
1

4
(v1 + v2 + |v1 + v2 − |v1 − v2|| − |v1 − v2|) (41)

Now consider the following relation

4γ(v1,v2) + | − v1 + v2| = 4r(v1 − r(v1 − v2)) + |v1 − v2|,
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which leads to

|| −v1|+ v2| − ||v2| −v1|+ | −v1|+ |v2| = v1 + v2 + |v1 + v2 − |v1 − v2||, (42)

and can be demonstrated by analyzing the following cases:

Case 1: v1 < 0, v2 > 0. Then
0︷ ︸︸ ︷

| − v1 + v2| − |v2 − v1| −v1 + v2 = v1 + v2 + |v1 + v2 − |v1 − v2||

−v1 + v2 = v1 + v2 + |v1 + v2 − v2 + v1|

−v1 + v2 = v1 + v2 + |2v1|.

Case 2: v1 > 0 , v2 < 0. Then
0︷ ︸︸ ︷

|v1 + v2| − | − v2 − v1|+v1 − v2 = v1 + v2 + |v1 + v2 − |v1 − v2||

v1 − v2 = v1 + v2 + |v1 + v2 − v1 + v2|

v1 − v2 = v1 + v2 + |2v2|.

Case 3: v1 > 0, v2 > 0, v1 > v2. Then

|v1 + v2| − |v2 − v1|+ v1 + v2 = v1 + v2 + |v1 + v2 − |v1 − v2||

v1 + v2 − v1 + v2 + v1 + v2 = v1 + v2 + |v1 + v2 − v1 + v2|

v1 + 3v2 = v1 + v2 + |2v2|.

Case 4: v1 > 0, v2 > 0, v1 < v2. Then

|v1 + v2| − |v2 − v1|+ v1 + v2 = v1 + v2 + |v1 + v2 − |v1 − v2||

v1 + v2 + v1 − v2 + v1 + v2 = v1 + v2 + |v1 + v2 + v1 − v2|

3v1 + v2 = v1 + v2 + |2v1|.

Case 5: v1 < 0, v2 < 0, v1 > v2. Then

| − v1 + v2| − | − v2 − v1| − v1 − v2 = v1 + v2 + |v1 + v2 − |v1 − v2||

v1 − v2 + v2 + v1 − v1 − v2 = v1 + v2 + |v1 + v2 − v1 + v2|

v1 − v2 = v1 + v2 + |2v2|.
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Case 6: v1 < 0, v2 < 0, v1 < v2. Then

| − v1 + v2| − | − v2 − v1| − v1 − v2 = v1 + v2 + |v1 + v2 − |v1 − v2||

−v1 + v2 + v2 + v1 − v1 − v2 = v1 + v2 + |v1 + v2 + v1 − v2|

−v1 + v2 = v1 + v2 + |2v1|.

Thus, from the definition of γ in (36), (39) and (41), it follows that

4γ(v1,v2) + | − v1 + v2| = 4r(v1 − r(v1 − v2)) + |v1 − v2|

4γ(v1,v2) + |v1 − v2| = 4r(v1 − r(v1 − v2)) + |v1 − v2|
(43)

holds, hence the identity (40) is true.

Now, consider the k-th level function

γk = γ(d
(j),`,m
1 q̃(x)(j),`,1,γk−1), (44)

with q̃(x)(j),`,1 = α(j),`,1x+ β(j),`,1. From (40), it follows that

γk = r(α(j),`,1x+ β(j),`,1 − r(α(j),`,1x+ β(j),`,1 − γk−1)). (45)

Applying this relation recursively, it leads to a representation (21) with the following
structure

F1 = Ak, F2 =
[
F

(1)
2 F

(2)
2 · · · F

(k)
2

]

F3 =



F
(1)
3

F
(2)
3

F
(3)
3
...

F
(k)
3


, F4 =



0 0 0 · · · 0

F
(2),1
4 0 0 · · · 0

F
(3),1
4 F

(3),2
4 0 · · · 0

...
...

... . . . ...
F

(k),1
4 F

(k),2
4 · · · F

(k),k−1
4 0


f5 =

[
f

(1)>
5 f

(2)>
5 · · · f

(k)>
5

]>
.

(46)

To illustrate, consider the function f(x) = γ(x1,x2), used as a basis function in
(JULIAN; DESAGES; AGAMENNONI, 1999). Using the identity (40), this function



54

Figure 5 – Values of f(x) with the parameters from (47)

Source: The author

can be written as:

f(x) = r(x1 − r(x1 − x2)).

which, defining y1 = x1 − x2 and y2 = x1 − φ(y1), can be put in the form (21) with

F1 =
[
0 0

]
, F2 =

[
0 1

]
F3 =

[
1 −1

1 0

]
, F4 =

[
0 0

−1 0

]
, f5 =

[
0

0

]
(47)

The plot of the function f(x) can be seen in Figure 5.

The relation (39) can also be used to find an equivalent representation for functions
in the canonical form (6). For instance, consider the following example, taken from
(GUZELIS; GOKNAR, 1991)

f(x) = 1.5x1 + 2.5x2 − 1.5|x2|+ 1.5|x1 + x2 − |x2||



55

Figure 6 – Values of f(x) with the parameters from (48)

Source: The author

Using the identity (39), it follows that

−1.5|x2| = 1.5x2 − 3r(x2)

and that

1.5|x1 + x2 − |x2|| = 1.5|x1 + 2x2 − 2r(x2)|

= −1.5x1 − 2x2 + 2r(x2) + 3r(x1 + 2x2 − 2r(x2))

so that this function can be written as

f(x) = 2x2 − r(x2) + 3r(x1 + 2x2 − 2r(x2)),

which, defining y1 = x2 and y2 = x1 + 2x2 − 2φ(y1) can be put in the form (21) with

F1 =
[
0 2

]
, F2 =

[
−1 3

]
,

F3 =

[
0 1

1 2

]
, F4 =

[
0 0

−2 0

]
, f5 =

[
0

0

]
.

(48)



56

The Figure 6 illustrates the surface of the function f(x).

3.1.3 Existence of an Equivalent Representation with F4 Strictly Triangular

Depending on the structure of the matrix F4 of the representation (21), an implicit
PWA function representation might require the solution of an algebraic loop. However,
an explicit solution can always be computed if the matrix F4 is strictly triangular.

The next proposition states that given a continuous PWA function, there always
exists an implicit representation (21) with F4 strictly triangular.

Proposition 2. Any continuous PWA function f : Rn → R can be expressed as in (21)
with a strictly triangular matrix F4.

Proof. Since any continuous PWA function f : Rn → R can be expressed as (38), and
from this representation it is always possible to find an equivalent representation (21)
with a strictly triangular matrix F4 as discussed in the previous section, then the propo-
sition is true.

In Example 1 above, the implicit function is described with an F4 matrix that is
not strictly triangular, and thus requires the solution of an algebraic loop. However,
from Proposition 2, there must exist an implicit PWA function that does not require the
solution of an algebraic loop for that particular f(x). Indeed, that same function can be
written in the form (21) with

F1 =
[
0 1

]
, F2 =

[
0 1

]
,

F3 =

[
−2 0

1 −1

]
, F4 =

[
0 0

1 0

]
, f5 =

[
0

0

]
,

(49)

which admits an explicit solution, since y1 can be computed directly from the state x,
and y2 can then be obtained from x and y1.

3.1.4 Existence of a Representation with Non-Positive f5

Finding a representation with a non-positive vector f5 will be useful in the study
of the stability of PWA systems, as will be seen in Chapter 4. In this sense, we here
demonstrate that such a representation can always be found, provided f(0) = 0.
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Proposition 3. Any continuous PWA function f : Rn → R with f(0) = 0 can be

expressed as in (21), with f5 4 0.

Proof. First, let us note that the ramp function r satisfies the identity

r(yi) = yi + r(−yi). (50)

Indeed, if yi ≥ 0, r(yi) = yi and r(−yi) = 0. On the other hand, if yi < 0, r(yi) = 0

and r(−yi) = −yi. Now, suppose that F4 is strictly triangular, which is always possible
for a continuous PWA function, as stated in Proposition 2. Also suppose that the i-th
element f5,i of the vector f5 is positive, and that no element f5,j , with j < i, is positive.
We now want to represent the implicit PWA function in terms of a new algebraic vector
ỹ, which satisfies ỹj = yj, ∀j 6= i and ỹi = −yi, hence the constant term associated to
the i-th element of ỹ is negative. DefineQi = diag(0i−1,−1, 0ny−i),QiF = (Iny +2Qi),
then the following equivalent representation can be found

f(x) = F1x+ F2(φ(ỹ)−Qi(F3x+ F4φ(ỹ(x)) + f5)) (51a)

ỹ(x) = QiF (F3x+ F4φ(ỹ(x)) + f5 − F4Qi(F3x+ f5)) (51b)

To demonstrate this, first note that from the definition of ỹ, (I +Qi)ỹ = (I +Qi)y,
and Qiỹ = −Qiy, hence,

ỹ = (I + 2Qi)y = QiF (F3x+ F4φ(y) + f5). (52)

Similarly, from the definition of ỹ, it follows that (I + Qi)φ(ỹ) = (I + Qi)φ(y) and
Qiφ(ỹ) = Qiφ(−y). Hence,

φ(ỹ) = φ(y) +Qiφ(y)−Qiφ(−y).

From (50), this is equivalent to

φ(ỹ) = φ(y) +Qiy,

and thus

φ(y) = φ(ỹ)−Qiy = φ(ỹ)−Qi(F3x+ F4φ(y) + f5)
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Since F4 is strictly diagonal, if follows that QiF4φ(y) = QiF4φ(ỹ), thus

φ(y) = φ(ỹ)−Qi(F3x+ F4φ(ỹ) + f5)

Applying this relation to (52), and taking into account that F4QiF4 = 0, yields (51b).
Also, applying this relation to (21a) yields (51a).

Also note that, since F4 is strictly lower diagonal, the first i elements of
(QiF + F4Qi)f5 are non-positive. The iterative application of this procedure so that
all elements of f5 is non-positive yields

f(x) = F̄1x+ F̄2φ(ȳ(x)) + σ

ȳ(x) = F̄3x+ F̄4φ(ȳ(x)) + f̄5,
(53)

where F̄1, F̄2, F̄3, F̄4, f̄5 and σ are found by iterating (51). Since all elements of f̄5 are
non-positive and the system is in the form (46), it is clear that φ(ỹ(0)) = 0. Thus, since
f(0) = 0, it necessarily follows that σ = 0, and (53) is an equivalent representation
with f̄5 4 0.

To illustrate this procedure, consider the following representation of the symmetric
saturation function, with n = 1 and nf = 1.

f(x) =

F1︷︸︸︷
−K x+

F2︷ ︸︸ ︷[
−1 1

]
φ(y)

y =

[
−K
K

]
︸ ︷︷ ︸

F3

+

[
0 0

0 0

]
︸ ︷︷ ︸

F4

φ(y) +

[
µ

µ

]
︸︷︷︸
f5

.

The first iteration of (51) yields:

f(x) = 0x+
[
−1 1

]
φ(y)− µ

y =

[
K

K

]
+

[
0 0

0 0

]
φ(ȳ) +

[
−µ
µ

]
.
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The second iteration yields:

f(x) =

F̄1︷︸︸︷
K x+

F̄2︷ ︸︸ ︷[
−1 1

]
φ(ȳ)

ȳ =

[
K

−K

]
︸ ︷︷ ︸

F̄3

+

[
0 0

0 0

]
︸ ︷︷ ︸

F̄4

φ(y) +

[
−µ
−µ

]
︸ ︷︷ ︸
f̄5

,

which is an equivalent representation, and f̄5 has only non-positive elements.

3.2 Final Remarks

In this chapter, a representation for PWA system was presented. This representation
is based on a ramp function and implicitly encodes the system partition, hence not re-
quiring that the regions and transitions are enumerated. The representation is composed
of two equations, one of which can present an algebraic loop. In this case, conditions for
the well-posedness, that is, the existence and uniqueness, of functions in the proposed
form were presented. Furthermore, it was shown that any continuous PWA function can
be represented in the proposed form, and a representation with an explicit solution of
the algebraic variables always exist. Finally, the relation of the proposed representation
with other representation for PWA functions was illustrated.

This representation will be used in the next Chapters to study the stability of PWA
systems.



60

4 STABILITY OF IMPLICIT PIECEWISE AFFINE SYS-
TEMS

We proposed a new representation for PWA functions in the previous chapter. The
proposed representation in the study of PWA systems will be suitable for stability analy-
sis of discrete-time systems and, in particular, for systems usisng event triggered control
strategies. In this chapter, conditions for the stability analysis of systems in the implicit

PWA representation are presented. We formulate conditions for the exponential stability
of the origin of PWA systems using piecewise quadratic Lyapunov candidate functions.
To verify the stability conditions, expressed in terms of generalized quadratic forms con-
ditions depending on x and the ramp functions describing PWA functions φ(y(x)), we
propose linear matrix inequalities that can be solved using semi-definite programming
(SDP).

4.1 Positivity of Generalized Quadratic Forms

In this section, we describe ramp functions as a set of inequalities and identities. Us-
ing these identities we then propose conditions to verify the positivity (non-negativity)
of generalized quadratic forms. These conditions will be instrumental for the stability
analysis of PWA systems.

4.1.1 Preliminary Results

The properties of sector bounded nonlinearities have been used to study stability
of nonlinear systems since the results from Lur’e. In this context, several results to
verify the positivity of generalized quadratic forms involving sector nonlinearities rely
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on sector inequalities that hold either globally or locally (HU; TEEL; ZACCARIAN,
2006; TARBOURIECH et al., 2011). The main drawback in this case is that these
standard sector inequalities cover a broad class of nonlinearities lying in the considered
sector. In consequence, the conditions implicitly certifies the stability not only for the
particular system of interest, but for a large class of systems, leading to an inherent
conservatism.

In particular, the ramp function is a nonlinearity that lies in the sector [0, 1]. An
immediate approach would be to consider a sector bound relation to formulate stability
conditions for a system presenting such nonlinearity. However, in case it is the only
nonlinearity in the system description, such as PWA systems using the representation
presented in the previous chapter, we might be interested in a description that is more
precise than the sector inequality. It is therefore suitable, if possible, to consider more
information about the specific nonlinearity to derive the stability conditions.

In the following we show how to obtain a finer characterization of the ramp func-
tion (22), by using identities and inequalities. These relations will be instrumental to
formulate stability conditions for PWA systems, namely dynamical systems defined by
PWA functions. The key properties of the ramp function can be summarized in the
following lemma.

Lemma 2. The ramp function r(θ) satisfies the relations

(r(θ)− θ) r(θ) = 0 (54a)

r(θ) ≥ 0 (54b)

(r(θ)− θ) ≥ 0. (54c)

Proof. Since for θ < 0 we have r(θ) = 0 and (r(θ)− θ) = (0 − θ) > 0, and for
θ ≥ 0 we have that (r(θ) − θ) = 0, the relations (54a) and (54c) hold for all θ ∈ R.
Inequality (54b) comes directly from the definition of the ramp function.

From Lemma 2, the following generalizations regarding the function φ can be stated.

Lemma 3. For any matrix T ∈ Dny the function φ in (22) satisfies the identity

s1(T, y) := φ>(y)T (φ(y)− y) = 0, ∀y ∈ Rny . (55)
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Proof. Since the elements of φ are ramp functions we have

s1(T, y) =

ny∑
i=1

Ti,ir(yi)(r(yi)− yi)

which, using (54a) gives (55).

Lemma 4. For any matrix M ∈ P(1+2ny)×(1+2ny) the vector function φ in (22) satisfies

the inequality

s2(M, y) :=

 1

φ(y)

φ(y)− y


>

M

 1

φ(y)

φ(y)− y

 ≥ 0,∀y ∈ Rny (56)

Proof. We have

s2(M, y)= M11 + 2
∑ny

i=1M1(1+i)r(yi)+M1(1+ny+i)(r(yi)− yi)
+
∑ny

i=1

∑ny+1
j=1

(
M(1+i)(1+j)r(yi)r(yj)

+2M(1+ny+i)(1+j)r(yi)(r(yj)− yj)
+M(1+ny+i)(1+ny+j)(r(yi)− yi)(r(yj)− yj)

)
.

Since each element of matrix M is non-negative and the ramp function verifies (54b)
and (54c) it is concluded that each term in the above expression is not negative, there-
fore (56) holds. This condition, however, might introduce some conservatism.

Remark 4.1. In (PRIMBS; GIANNELLI, 2001), relations describing the saturation non-

linearity were obtained using the Karush-Kuhn-Tucker (KKT) optimality conditions.

The relations in Lemma 2 can be obtained using the same approach. A ramp func-

tion can be expressed as the solution to an optimization problem parameterized in θ as

follows

minimize
r

1

2
(r − θ)2 subject to − r ≤ 0. (57)

Note that if θ ≥ 0, the optimal value is given by r = θ. On the other hand, if θ < 0, the

optimal value is r = 0. With the Lagrangian associated to the optimization problem,

L(r,λ) = 1
2
(r − θ)2 − λr, we obtain the KKT conditions

(r − θ)− λ = 0; λ ≥ 0; r ≥ 0; λr = 0 (58)
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which are necessary optimality conditions (note that r ≥ 0 comes from the optimization

problem). These relations offer a characterization in terms of linear and quadratic

identities and inequalities in three variables (θ,r,λ). To obtain a description in the

variables (θ,r) one can use λ = (r − θ) above to obtain

(r − θ) ≥ 0 (59a)

r ≥ 0 (59b)

(r − θ)r = 0. (59c)

These relations correspond to (54a), (54b) and (54c), therefore they are also necessary

to describe the ramp function.

4.1.2 Conditions for Positivity of Generalized Quadratic Forms

In this section, the above lemmas are used to set conditions to verify the positivity
of generalized quadratic forms of the type

h(x)=


1

x

φ(y(x))

φ(y(x))− y(x)


>

H


1

x

φ(y(x))

φ(y(x))− y(x)

=χ(x)>Hχ(x), (60)

where the dependence of y on x follows from the implicit equation described in (21).

Proposition 4. Given a generalized quadratic form h(x) as in (60), if there exist matri-

ces T ∈ Dny , and M ∈ P(1+2ny)×(1+2ny) such that

h(x) + 2s1(T, y(x))− s2(M, y(x)) ≥ 0 (61)

then

h(x) ≥ 0 ∀x ∈ Rn. (62)

Proof. From Lemma 3, which hold for all y(x), if (61) is satisfied it follows that

h(x) ≥ s2(M, y(x)), ∀x ∈ Rn.

Then, using Lemma 4, it is concluded that h(x) ≥ 0, ∀x ∈ Rn.
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Remark 4.2. The verification of the non-negativity of a generalized quadratic form

as (60) from the solution to the inequality (61) makes possible to verify Lyapunov in-

equalities for PWA systems. Moreover, if matrix H is affine on unknown variables, the

inequality (61) can be cast as an LMI, therefore yielding constraints of a semi-definite

program which can be solved with freely available optimization software (LOFBERG,

2004).

Remark 4.3. The relations given in (54) can be used to obtain a solution to the alge-

braic loop (21b). From (54) and (22), it follows that

(φi − yi) ≥ 0 (63a)

φi ≥ 0 (63b)

(φi − yi)φi = 0, (63c)

i = 1, . . . , ny. Set ξ = F3x+f5 in equation (21b), and use yi = (F4φ+ ξ)i in the above

expressions to obtain respectively

((I − F4)φ− ξ)i ≥ 0 (64a)

φi ≥ 0 (64b)

((I − F4)φ− ξ)iφi = 0. (64c)

i = 1, . . . , ny.

The problem of solving for φ the above inequalities (64a), (64b) affine in φ, and

equations (64c), quadratic in φ, is called a mixed Linear Complementarity Problem

(LCP). For a given ξ, the solution φ to (64) thus provides a solution to the implicit

equation y = F4φ(y) + ξ. Please refer to the Lemke algorithm presented in (ADEG-

BEGE; HEATH, 2017, Section 5.1) for a strategy to solve LCPs yielding solutions to

algebraic loops. Also, as one should expect, the condition for the well posedness of

LCPs in (ADEGBEGE; HEATH, 2017, Proposition 7.1) applied to (64) holds if the

condition in Proposition 1 is satisfied.
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4.2 Global Stability Analysis

In this section the results for the verification of non-negativity of generalized quadratic
forms presented in the previous section are applied to study the global stability of
discrete-time systems defined by the implicit PWA function (21). In other words, we
are interested in the stability analysis of the following system:

x+ = f(x) = F1x+ F2φ(y) (65a)

y = F3x+ F4φ(y) + f5, (65b)

where x ∈ Rn, y ∈ Rny , F1 ∈ Rn×n, F2 ∈ Rn×ny , F3 ∈ Rny×n, F4 ∈ Rny×ny , f5 ∈ Rny ,
the vector function φ : Rny → Rny is defined elementwise by the ramp function given
in (22). For notational simplicity we dropped the dependence on the discrete time k,
k ∈ N, i.e. we consider that x = x(k) and x+ = x(k + 1). From (65b) we have

y+ = F3x
+ + F4φ(y+) + f5. (66)

It is assumed that x = 0 is an equilibrium point, i.e f(0) = 0. It is also assumed
that f5 4 0, which, according to Proposition 3, is always possible to obtain a represen-
tation (21) satisfying this. This condition will be required to guarantee an upper bound
for PWQ Lyapunov function candidates

The following theorem provides conditions for the global exponential stability of
the origin of (65a)-(65b), considering a generic Lyapunov function candidate and the
results from Lemmas 3 and 4.

Theorem 4.1. If there exist a function V : Rn → R, matrices T1 ∈ Dny , T2 ∈ D2ny ,

M1 ∈ P(1+2ny)×(1+2ny), M2 ∈ P(1+4ny)×(1+4ny) and positive scalars η < 1, ε1 and ε2
such that the following inequalities are verified along the trajectories of (65), for all

x ∈ Rn

V (x) ≤ ε2x
>x (67)

(V (x)− ε1x>x) + s1(T1, y(x))− s2(M1, y(x)) ≥ 0 (68)

−(V (x+)− (1− η)V (x)) + s1(T2, ỹ(x))− s2(M2, ỹ(x)) ≥ 0 (69)
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where ỹ =
[
y> y+>

]>
, with y+ given by (66), then the origin is globally exponen-

tially stable.

Proof. From Lemmas 3 and 4 , if (67), (68) and (69) hold it follows that

ε1‖x‖2 ≤ V (x) ≤ ε2‖x‖2 (70a)

V (x+) ≤ (1− η)V (x). (70b)

Note that (70a) implies that V (x) is radially unbounded. Thus, (70) allows to conclude
that ∆V (x) = V (x+) − V (x) ≤ −ηV (x), which ensures that limk→∞ x(k) = 0,
∀x(0) ∈ Rn. Moreover, it follows from (70) that V (x(k)) ≤ (1 − η)kV (0), and
ε1‖x(k)‖ ≤ ε2(1 − η)k‖x(0)‖, hence ‖x(k)‖ ≤ γαk‖x(0)‖ with γ = ( ε2

ε1
)
1
2 , α =

(1 − η)
1
2 , ∀x(0) ∈ Rn. which implies the global exponential convergence to the ori-

gin.

As seen in Chapter 2, several results in the literature have studied the class of PWA
systems using the explicit representation (4) or alternatives as detailed in (HEEMELS;
DE SCHUTTER; BEMPORAD, 2001). Regarding stability analysis, piecewise quadratic
Lyapunov functions have been considered and the formulation of stability conditions
often requires a first evaluation of the possible transitions between sets of the parti-
tion (FENG, 2002; IERVOLINO; VASCA; IANNELLI, 2015; HOVD; OLARU, 2013).
Moreover, in general, the possible transitions between sets in the partition do not corre-
spond to the neighbouring sets (as in continuous-time systems) and it might be difficult
to obtain all the transitions from a description of each set in the partition. A conservative
approach is then to assume that all sets in the partition are reachable in one step. An
advantage of Theorem 4.1, with respect to these conditions proposed in the literature, is
that the enumeration and the evaluation of the possible transitions is not required. This
is implicitly taken into account by the implicit system description.

The idea now is the formulation of testable conditions in LMI form that satisfy con-
ditions in Theorem 4.1 for a suitable Lyapunov function V . With this aim, we consider
a continuous piecewise quadratic Lyapunov function, given by a generalized quadratic
form on x and the function φ(y(x)). Hence, differently from previous approaches, the
definition of an explicit quadratic form on x for each set of the partition is not required.
More specifically, the Lyapunov candidate functions V : Rn → R≥0, V (0) = 0 consid-
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ered are given by

V (x) =

[
x

φ(y(x))

]>
P

[
x

φ(y(x))

]
. (71)

with P =
[
P1 P2

P>2 P3

]
, P1 ∈ Sn×n, P2 ∈ Rn×ny , P3 ∈ Sny×ny , and y(x) is given by (65b).

No a priori assumptions are made about the sign definiteness of the matrices P1, P2 and
P3. Note that V (x+) depends on y+, which is defined in (66). Also, note that this class
of PWQ functions includes the class of quadratic functions and contains information
about the partition.

To consider V above as a candidate Lyapunov function we need to check the inequal-
ities of Theorem 4.1. Next, we show that it satisfies (67) with an appropriate scalar ε2.
For this, defining y := y − f5 and substituting it in (65b) yields

y = F3x+ F4φ(y + f5).

Since we assume that f(0) = 0 and f5i ≤ 0, one has that y + f5 ≥ 0 implies that y ≥
−f5 ≥ 0, and then φ(y+f5) = ∆y is obtained with ∆ ∈ D = {∆ ∈ Dn|∆(i,i) ∈ [0, 1]}.
From the well-posedness assumption, (I − F4∆) is invertible for all ∆ ∈ D, thus

y = (I − F4∆)−1F3x

and

φ(y) = φ(y + f5) = ∆y = ∆(I − F4∆)−1F3x,

yielding

‖φ(y(x))‖ ≤ σ ‖x‖ ,

with σ = max∆∈D ‖∆(I − F4∆)−1F3‖. From (71), it follows that

V (x) ≤ ‖P1‖ ‖x‖2 + 2 ‖P2‖ ‖x‖ ‖φ‖+ ‖P3‖ ‖φ‖2

≤ (‖P1‖+ 2σ ‖P2‖+ σ2 ‖P3‖) ‖x‖2 , (72)

i.e., ε2 = ‖P1‖+ 2σ ‖P2‖+ σ2 ‖P3‖.
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The relations (68) and (69) can be written in the generic quadratic form given
by (60)-(61), where the corresponding matrices H present an affine dependence on the
elements of matrix P . Hence, from Remark 4.2, conditions in LMI form can be obtained
to ensure (68) and (69).

This is formally stated in the following theorem.

Theorem 4.2. If there exist matrices P1 ∈ Sn×n, P2 ∈ Rn×ny , P3 ∈ Sny×ny , T1 ∈ Dny ,

T2 ∈ D2ny , M1 ∈ P(1+2ny)×(1+2ny), M2 ∈ P(1+4ny)×(1+4ny) and positive scalars η < 1

and ε1 such that the following LMIs are verified

H +He
(
X>T T1IT

)
−X>MM1XM ≥ 0 (73)

−H̃ +He
(
X̃>T T2ĨT

)
− X̃>MM2X̃M ≥ 0 (74)

with

XT =
[
−f5 −F3 I − F4

]
, XM =

 1 0 0

0 0 Iny

−f5 −F3 I − F4



IT =
[
0 0 Iny

]
, H =

0 0 0

0 P1 − ε1In P2

0 P>2 P3

 ,

X̃T =

[
−f5 −F3 I − F4 0

−f5 −F3F1 −F3F2 I − F4

]
, X̃M =


1 0 0 0

0 0 Iny 0

0 0 0 Iny

−f5 −F3 −F4 0

−f5 −F3F1 −F3F2 I − F4


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ĨT =

[
0 0 Iny 0

0 0 0 Iny

]
, H̃ =


0 0 0 0

0 F>1 P1F1 − η̄P1 F>1 P1F2 − η̄P2 F>1 P2

0 F>2 P1F1 − η̄P>2 F>2 P1F2 − η̄P3 F>2 P2

0 P>2 F1 P>2 F2 P3

 ,

η̄ = 1− η

then the origin of (65) is globally exponentially stable.

Proof. Consider V (x) defined as in (71) with

P =

[
P1 P2

P>2 P3

]

Note that this function V (x) satisfies condition (67), as shown in (72).

Consider the vector χ =
[

1 x> φ(y)>
]>

. Note that XTχ = φ(y) − y and

XMχ =
[

1 φ(y)> (φ(y)− y)>
]>

. Left and right multiplying the matrix in (73) by
χ> and χ, respectively, it follows that condition (68) is verified, since χ>Hχ = V (x),
χ>X>T T1ITχ = s1(T1,y(x)) and χ>X>MM1XMχ = s2(M1,y(x)).

Recalling that ỹ = [y(x) y(x+)], consider the vector

χ̃ =

 1

x

φ(ỹ)

 =


1

x

φ(y)

φ(y+)

 .

Note that X̃T χ̃ = φ(ỹ) − ỹ and X̃M χ̃ =
[

1 φ(ỹ)> (φ(ỹ)− ỹ)>
]>

. Taking into
account that

η̄V (x) = χ̃>


0 0 0 0

0 η̄P1 η̄P2 0

0 η̄P>2 η̄P3 0

0 0 0 0

 χ̃,
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V (x+) =

[
x+

φ(y+)

]>
P

[
x+

φ(y+)

]
,

and [
x+

φ(y+)

]
=

[
0 F1 F2 0

0 0 0 I

]
χ̃,

hence

V (x+) = χ̃>


0 0 0 0

0 F>1 P1F1 F>1 P1F2 F>1 P2

0 F>2 P1F1 F>2 P1F2 F>2 P2

0 P>2 F1 P>2 F2 P3

 χ̃,
left and right multiplying the matrix in (74), by χ̃> and χ̃, respectively, it follows that
inequality (69) is verified, since χ̃>H̃χ̃ = V (x+)− η̄V (x), χ̃>X̃>T T2ĨT χ̃ = s1(T2,ỹ(x))

and χ̃>X̃>MM2X̃M χ̃ = s2(M2,ỹ(x)).

We conclude that if (73)-(74) are verified, the inequalities of Theorem 4.1 are ful-
filled along the trajectories of system (65) and the global exponential stability of the
origin follows.

From Theorem 4.2, we conclude that the stability assessment of the piecewise affine
system (65) can be numerically performed through an LMI feasibility problem.

4.3 Robust Stablity Analisys

A usual way to study to stability of uncertain PWA systems is to consider the explicit
formulation (4), which for uncertain systems is given by:

x+ = Ai(λ)x+ bi(λ), ∀x ∈ Γi. (75)

where x ∈ Rn, Ai ∈ Rn×n, bi ∈ Rn and λ ∈ Rnλ is a vector of uncertain parameters.
{Γi}i∈I = Rn, where I is an index set, denotes a partition of the state space into a
number of closed polyhedral sets.

This explicit formulation is for instance considered in (TRIMBOLI; RUBAGOTTI;
BEMPORAD, 2011) where a PWA Lyapunov candidate function is used to demonstrate
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the stability of the system, and in (HOVD; OLARU, 2018), where a parameter depen-
dant PWQ Lyapunov candidate function is used. While these approaches are effective
when the system dynamics in each subset Γi is not precisely known, it assumes a par-
tition given a priori, so it is difficult to treat the cases where the uncertain parameter
affects the partition, even more so when the number of subsets in the partition changes.
In particular, (NGUYEN et al., 2016) provides conditions to analyze the stability of lin-
ear systems under PWA control laws when the partition is also uncertain, but the method
is based on enumerating the vertices of the partition, so it cannot be applied when the
number of vertices can change due to the uncertainty.

To elucidate the problem, consider a two-dimensional uncertain piecewise linear
system described by (65) with

F2 =

[
−1 1 1

0 0 0

]
,

F3 =

−0.15 0.15

0.15 −0.15

d1 d2

 , F4 = 03×3, f5 =

−1

−1

0

 , (76)

where d1 and d2 are uncertain parameters in the following ranges

−0.1 ≤ d1 ≤ 0.06, − 0.03 ≤ d2 ≤ 0.05,

and F1 is some matrix defining the behavior of the system, which does not impact the
partition. A graphical illustration of the partition dependence on the uncertain param-
eters regarding the above system is presented in Figure 7 considering two scenarios:
d1 = −d2, on the left and d1 = d2, on the right. Note that in this case, the explicit
approach is difficult to use, since the partition {Γi}i∈I ⊂ R2 and even the index set I
change depending on the parameters d1 and d2.

On the other hand, it is simpler to handle the uncertainties in the partition using the
implicit representation (77) since the uncertainty is expressed as a parametric uncer-
tainty in matrices F3, F4 and f5.

In this section, we focus on the problem of robust stability analysis of piecewise
affine systems. Considering polytopic uncertainties on both the dynamics (i.e. on ma-
trices F1 and F2) and the partition (i.e. matrices F3, F4 and vector f5), we formulate
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LMIs that can be solved to assess the global exponential stability of the origin of uncer-
tain PWA systems.

4.3.1 The uncertain model

Consider the following class of uncertain PWA discrete-time systems:

x+ = F1(λ)x+ F2(λ)φ(y) (77a)

y = F3(λ)x+ F4(λ)φ(y) + f5(λ), (77b)

where x ∈ Rn, y ∈ Rny ,φ : Rny → Rny is defined element-wise by the ramp function
given in (22). Matrices F1(λ) ∈ Rn×n, F2(λ) ∈ Rn×ny , F3(λ) ∈ Rny×n, F4(λ) ∈
Rny×ny , f5(λ) ∈ Rny depend on a (possibly time-varying) vector λ(k) ∈ RN . Note
that, in this case

y+ = F3(λ+)x+ + F4(λ+)φ(y+) + f5(λ+), (78)

where λ+ = λ(k + 1).

We assume that these matrices belong to a convex and bounded polytopic set of
matrices F as follows

F(λ) =

[
F1(λ) F2(λ) 0

F3(λ) F4(λ) f5(λ),

]

Figure 7 – Partitions of R2 for f(x) for different values of d1 and d2. On the left,
d1 = −d2. On the right, d1 = d2. The dashed line represents y3 = 0.

x1

x2

Γ3
Γ4

Γ2

Γ1

x1

x2

Γ̃3

Γ̃4

Γ̃2

Γ̃1

Γ̃5

Γ̃6

Source: The author
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and it is supposed that:

F(λ) ∈ F =

{
F(λ) : F(λ) =

N∑
j=1

λjFj, λ ∈ Λ

}
(79)

Λ =

{
λ :

N∑
j=1

λj = 1, λj ≥ 0, ∀j

}
(80)

where

Fj =

[
F1j F2j 0

F3j F4j f5j

]

It follows that F corresponds to the convex hull of matrices Fj

F = Co
{

F1, F2, . . . ,FN
}
. (81)

Remark 4.4. Note that the well-posedness of the uncertain system can be tested by

verifying the conditions from Proposition 1 on the vertices of F4(λ). This is a sufficient

condition, and henceforth it will be assumed it is verified.

4.3.2 Stability Conditions - Parameter Independent Lyapunov Function

In this section new LMI conditions for the stability of the origin of the uncertain
PWA discrete-time system (77) are proposed, considering Lyapunov candidate functions
V : Rn → R≥0 as defined in (71).

Also, similarly to before, the upper bound for V (x) which will be useful the prove
the exponential stability of the origin, given by

V (x) ≤ ‖P1‖ ‖x‖2 + 2 ‖P2‖ ‖x‖ ‖φ‖+ ‖P3‖ ‖φ‖2

≤
(
‖P1‖+ 2σ ‖P2‖+ σ2 ‖P3‖

)
‖x‖2 (82)

= ε2 ‖x‖2 , (83)

still holds, with

σ = max
∆∈D,λ∈Λ

∥∥∆(I − F4(λ)∆)−1F3(λ)
∥∥ . (84)

Note that in the case where the matrices F1, F2, F3, F4 or the vector f5 are uncertain,



74

the convexity of Theorem 4.2 is lost. This comes basically by the cross products between
involving this matrices that appear in H̃ and also in X̃T and X̃M appearing in (73)
and (74).

To overcome this problem, we propose now a slightly different approach inspired by
the Finsler Lemma. Instead of directly replacing x+ by the expression given in (77a),
we use the dynamics as an algebraic constraint involving vectors x+, x and φ. This is
formalized in the following theorem.

Theorem 4.3. If there exist P ∈ S(n+ny)×(n+ny), matrices T1j ∈ Dny , T2jl ∈ Dny ,

T3jl ∈ Dny , M1j ∈ P1+2ny , M2jl ∈ P1+4ny , L1 ∈ R(1+n+2ny)×ny , L2 ∈ R(1+2n+4ny)×2ny ,

L3 ∈ R(1+2n+4ny)×n and positive scalars η < 1 and ε1 such that

Π1 + He(Π2j + L1G1j)− Π3j > 0, ∀j ∈ {1,...,N} (85)

−Π4 + He(Π5jl + L2G2jl + L3G3j)− Π6jl > 0, ∀j,l ∈ {1,...,N} (86)

with

Π1 =


P1 − ε1In P2 0 0

P>2 P3 0 0

0 0 0 0

0 0 0 0

, Π2j =


0 0 0 0

0 T1j −T1j 0

0 0 0 0

0 0 0 0

,

Π3j = Θ>1 M1jΘ1, Θ1 =

0 I 0 0

0 I −I 0

0 0 0 1

,

Π4 =



−(1− η)P1 0 −(1− η)P2 0 0 0 0

0 P1 0 P2 0 0 0

−(1− η)P>2 0 −(1− η)P3 0 0 0 0

0 P>2 0 P3 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,
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Π6jl = Θ>2 M2jlΘ2., Θ2 =


0 0 I 0 0 0 0

0 0 0 I 0 0 0

0 0 I 0 −I 0 0

0 0 0 I 0 −I 0

0 0 0 0 0 0 1

 ,

Π5jl =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 T2jl 0 −T2jl 0 0

0 0 0 T3jl 0 −T3jl 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

G1j =
[
−F3j −F4j I −f5j

]
,

G2jl =

[
−F3j 0 −F4j 0 I 0 −f5j

0 −F3l 0 −F4l 0 I −f5l

]
,

G3j =
[
−F1j I −F2j 0 0 0 0

]
,

then the origin of the PWA system (77) is globally exponentially stable.

Proof. As F1j , F2j , F3j, F4j , f5j , T1j , T2jl, T3jl, M1j and M2jl appear affinely in (85)
and (86), from convexity arguments, it follows that

Π1 + He(Π2(λ) + L1G1(λ))− Π3(λ) ≥ 0 (87)

−Π4 + He(Π5(λ,λ+) + L2G2(λ,λ+) + L3G3(λ,λ+))− Π6(λ,λ+) ≥ 0, (88)

with Π2(λ) =
∑N

j=1 λjΠ2j , G1(λ) =
∑N

j=1 λjG1j , Π3(λ) =
∑N

j=1 λjΠ3j ,
Π5(λ,λ+) =

∑N
l=1 λ

+
l

∑N
j=1 λjΠ5jl, G2(λ,λ+) =

∑N
l=1 λ

+
l

∑N
j=1 λjG2jl,

G3(λ) =
∑N

j=1 λjG3j , Π6(λ,λ+) =
∑N

l=1 λ
+
l

∑N
j=1 λjΠ6jl.
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Define the vectors

ξ1 =


x

φ(y)

y

1

, ξ2 =



x

x+

φ(y)

φ(y+)

y

y+

1


, (89)

then we have that

ξ>1 (Π1 + He(Π2(λ) + L1G1(λ))− Π3) ξ1 ≥ 0 (90)

ξ>2 (−Π4 + He(Π5(λ,λ+) + L2G2(λ,λ+) + L3G3(λ))− Π6(λ,λ+))ξ2 ≥ 0, (91)

From the definition of G1(λ), G1(λ)ξ1 = 0 on the trajectories of system (77), and
note that ξ>1 Π2(λ)ξ1 = s1(T1(λ),y) = 0, where T1(λ) =

∑N
j=1 λjT1j . Also, since all

entries of M1(λ) are non-negative, it follows that ξ>1 Π3(λ)ξ1 = s2(M1,y) ≥ 0. This
means that, since ξ>1 Π1ξ1 = V (x), if (90) is verified, then condition (68) from Theorem
4.1 is also verified for the uncertain system (77).

Similarly, note that from the definition of G2(λ,λ+) and G3(λ), and taking into ac-
count that y+ is given by (78), we also have that G2(λ,λ+)ξ2 = 0 and G3(λ)ξ2 = 0

on the trajectories of system (77). Also, note that ξ>2 Π5(λ, λ+)ξ2 = s1(T2(λ, λ+), y) +

s1(T3(λ, λ+), y+) = 0, where T2(λ, λ+) =
∑N

l=1 λ
+
l

∑N
j=1 λjT2jl and

T3(λ, λ+) =
∑N

l=1 λ
+
l

∑N
j=1 λjT3jl. Furthermore, since all entries of M2(λ, λ+) are

non-negative, it follows that ξ>2 Π6(λ, λ+)ξ2 = s2(M2(λ, λ+),ỹ) ≥ 0. Hence, since
ξ>2 Π4ξ2 = V (x+)−(1−η)V (x), if (91) is verified, condition (69) from Theorem 4.1 is
also verified for the uncertain system (77).

Now, recall that the condition (67) is guaranteed for the PWQ Lyapunov candidate
function, with an upper bound given by (83). Hence, if (85) and (86) hold, (90) and (91)
also hold, so all conditions form Theorem 4.1 are verified, and we conclude that the
origin of (77) is exponentially stable.

Remark 4.5. Theorem 4.3 covers the generic case of a possibly time-varying parameter.

If the parameter is uncertain, but constant, a particular formulation of Theorem 4.3 can
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be adopted. As in this case λ+ = λ, it suffices to consider only one convex sum, that is

l = j, and thus, the LMIs (85) and (86) become:

Π1 + He(Π2j + L1G1j)− Π3j > 0, ∀j ∈ {1,...,N}

−Π4 + He(Π5j + L2G2j + L3G3j)− Π6j > 0, ∀j ∈ {1,...,N}.

4.3.3 Stability Conditions - Parameter Dependent Lyapunov Function

In the last section, conditions to analyze the stability of uncertain PWA systems was
proposed, using a piecewise quadratic Lyapunov function candidate. Now, conditions
based on a parameter dependent piecewise quadratic Lyapunov function candidate are
presented.

Consider the parameter dependent Lyapunov function candidate

V (x,λ) =

[
x

φ(y(x))

]>
P (λ)

[
x

φ(y(x))

]
. (92)

with P (λ) =
∑N

j=1 λjPj .

To find an upper bound on V , define:

ρ1 , max
λ∈Λ
‖P1(λ)‖, ρ2 , max

λ∈Λ
‖P2(λ)‖, ρ3 , max

λ∈Λ
‖P3(λ)‖, (93)

then

V (x) ≤ (ρ1 + 2σρ2 + σ2ρ3) ‖x‖2 = ε2 ‖x‖2 , (94)

with σ as defined in (84).

With this, the following theorem formalizes the stability conditions with a parameter
dependent Lyapunov function.

Theorem 4.4. If there exist Pj ∈ S(n+ny)×(n+ny), matrices T1j ∈ Dny , T2j ∈ Dny ,

T3j ∈ Dny , M1j ∈ P1+2ny , M2j ∈ P1+4ny , L1 ∈ R(1+n+2ny)×ny , L2 ∈ R(1+2n+4ny)×2ny ,

L3 ∈ R(1+2n+4ny)×n and positive scalars η < 1 and ε1 such that

Π1j + He(Π2j + L1G1j)− Π3j > 0, ∀j ∈ {1,...,N} (95)

−Π4jl + He(Π5jl + L2G2jl + L3G3j)− Π6jl > 0, ∀j,l ∈ {1,...,N} (96)
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with

Π1j =


P1j − ε1In P2j 0 0

P>2j P3j 0 0

0 0 0 0

0 0 0 0



Π4jl=



−(1− η)P1j 0 −(1− η)P2j 0 0 0 0

0 P1l 0 P2l 0 0 0

−(1− η)P>2j 0 −(1− η)P3j 0 0 0 0

0 P>2l 0 P3l 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

and Π2j , Π3j , Π5jl and Π6jl as defined in theorem 4.3, then the origin of the PWA

system (77) is globally exponentially stable.

Proof. Following the same reasoning presented in Theorem 4.3, it follows that (95)
ensure that[

x>

φ(y)>

]>
Pj

[
x

φ(y)

]
− ε1 ‖x‖2 + s1(T1j,y)− s2(M1j,y) ≥ 0, ∀j ∈ {1,...,N},

(97)

which, by convexity, implies that

V (x,λ)− ε1 ‖x‖2 + s1(T1(λ),y)− s2(M1(λ),y) ≥ 0, (98)

and, hence, condition (68) from Theorem 4.1 is verified.
On the other hand, since

V (x+,λ+) =

[
x+>

φ(y+)>

]>
P (λ+)

[
x+

φ(y+)

]
,
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with P (λ+) =
∑N

l=1 λ
+
l Pl, it follows that (96) ensures that

−

[ x+>

φ(y+)>

]>
Pl

[
x+

φ(y+)

]
−

[
x>

φ(y)>

]>
(1− η)Pj

[
x

φ(y)

]+

+s1(T2jl,y) + s1(T3jl,y
+)− s2(M2jl,ỹ) ≥ 0, ∀j,l ∈ {1,...,N},

(99)

which, by convexity, guarantees that

−
(
V (x+,λ+)− (1− η)V (x,λ)

)
+

+s1(T2(λ, λ+),y) + s1(T3(λ, λ+),y+)− s2(M2(λ, λ+),ỹ) ≥ 0,
(100)

which, in turn, ensures condition (69) from Theorem 4.1 is satisfied, even for a time-
varying uncertainty.

Also, the condition (67) is guaranteed for the parameter dependent PWQ Lyapunov
function by the upper bound (94). Thus, all conditions from Theorem (4.1) are verified,
and we conclude that origin of the system (77) is exponentially stable.

4.4 Numerical Examples

In this section, the results from Theorem 4.1 are illustrated with some numerical ex-
amples. In the first, the global stability of a generic piecewise linear system is demon-
strated. In the second one, the global stability of a linear system subject to actuator
saturation is analyzed. A third example treats a benchmark example borrowed from the
explicit MPC literature. The fourth example illustrates the stability analysis of a generic
PWA uncertain system. Finally, an uncertain spring-mass-damper system driven by a
saturating actuator is studied. In all examples, the main objective is just to show that
the origin is stable, hence the variable η was chosen to be very small (just above the
floating-point accuracy, η = 2.2204.10−16).

Example I. Consider a piecewise linear system given by (65) with

F1 =

[
0.5 0.1 + κ

−1 0.5

]
F2 = κ

[
1 1

0 0

]

and F3, F4 and f5 as in (29), where κ is a design parameter.

Applying the conditions of Theorem 4.2 we can show that the system is globally
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stable for κ = 0.63, and (71) is a Lyapunov function for the system with

P =


2.2172 −0.0151 −0.4494 0.0094

−0.0151 1.6462 0.0094 0.3570

−0.4494 0.0094 −1.2060 −0.8242

0.0094 0.3570 −0.8242 −0.4758

.
Note that the matrix P is not positive definite. Indeed the positive definiteness of ma-
trix P is not imposed by the conditions in Theorem 4.2. However, since (68) holds we
have that the Lyapunov function is guaranteed to be positive definite. Some trajecto-
ries of the system are shown in Figure 8, along with the level sets of the decreasing
Lyapunov function. For comparison, the dual problem presented in (FENG, 2002, Sec-
tion II) demonstrate that there does not exist a quadratic Lyapunov function, that is
V (x) = x>P1x, with P1 ∈ Rn×n, that certifies the stability for κ ≥ 0.357, and through
simulation, we find that the origin of the system is stable for−0.35 < κ < 0.7. It should
also be pointed out that with the method proposed in (FENG, 2002), using a piecewise
quadratic Lyapunov function, is not possible to certify the stability of the system for
κ ≥ 0.51 (considering known all the admissible transitions between regions), which
shows that our conditions lead to less conservative results.

Example II. Consider the system taken from (DRUMMOND; VALMORBIDA; DUN-
CAN, 2017) and discretized with a sampling period of 100ms and subject to asymmetric
actuator saturation

x+ = Ax+Bsat[−1,15](Kx)

with

A =

[
0.9464 0.0957

−0.9568 0.9033

]
, B =

[
0.0049

0.0959

]
,

K =
[
9.9000 0.4950

]
.

Using (30) we have that the right hand side of the above system is written as (65) with
f(x) defined by

F1 = A+BK, F2 =
[
−B B

]
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Figure 8 – System trajectories and Lyapunov function level sets for Example I.
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and F3, F4 and f5 as in (30).

It can be shown (see (FENG, 2002, Section II)) that there does not exist a com-
mon quadratic Lyapunov function for the linear systems defined by A and (A + BK)

Since the quadratic global stability of a linear system subject to a saturating linear state
feedback imposes that the Lyapunov function be common for the open-loop and the
closed-loop without saturation, we conclude that there is no quadratic function to as-
sess the stability of the system. However, considering a piecewise quadratic Lyapunov
function as in (71) and applying Theorem 4.2, we can certify that the system is globally
stable with

P =


0.1372 0.1684 −0.0030 −0.0241

0.1684 1.0349 −0.0241 0.0668

−0.0030 −0.0241 0.1042 −0.0073

−0.0241 0.0668 −0.0073 0.0934

.
Note that though in this case, the computed P is a positive-definite matrix, this is not
imposed a priori.
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Figure 9 – System trajectory and Lyapunov function level sets for Example II.

-2.5 -1.25 0 1.25 2.5

-5.5

-4

-2

0

2

4

5.5

Source: The author

In Figure 9, a trajectory of the system and the level sets of the decreasing Lyapunov
function are depicted.

Example III. Consider the following closed-loop system

x+ = Ax+Bu,

A =

[
0.7326 −0.0861

0.1722 0.9909

]
, B =

[
0.0609

0.0064

]
,

with u being given by the explicit MPC law computed in (BEMPORAD et al., 2002)
leading to the explicit PWA representation given in Table 1. From this explicit represen-
tation, we obtain the following compact representation of the closed-loop system (65),
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Table 1 – Explicit MPC law: regions of the partition and associated piecewise linear
control laws

Region u(k)


−5.9220 −6.8883
5.9229 6.8883

−1.5379 6.8296

1.5379 −6.8296

x ≤


2

2

2

2


[
−5.9220 −6.8883

]
x

−6.4159 −4.6953
−0.0275 0.1220

6.4159 4.6953

x ≤

 1.3577

−0.0357
2.6423


[
−6.4159 −4.6953

]
x

+0.6423 6.4159 4.6953

0.0275 −0.1220
−6.4159 −4.6953

x ≤

 1.3577

−0.0357
2.6423


[
−6.4159 −4.6953

]
x

−0.6423−3.4155 4.6452

0.1044 0.1215

0.1259 0.0922

x ≤

 2.6341

−0.0353
−0.0267

 2

[
0.0679 −0.0924
0.1259 0.0922

]
x ≤

[
−0.0524
−0.0519

]
2[

−0.0679 0.0924

−0.1259 −0.0922

]
x ≤

[
−0.0524
−0.0519

]
−2 3.4155 −4.6452

−0.1044 −0.1215
−0.1259 −0.0922

x ≤

 2.6341

−0.0353
−0.0267

 −2

Source: (BEMPORAD et al., 2002)

with f(x) described in the implicit proposed representation (21) with

F1 = A+BK1, F2 = B
[
1 −1 1 −1

]
φ(y)

F3 =


K2 −K1

K1 −K2

−K1

K1

 , F4 =


0 0 0 0

1 0 0 0

−1 1 0 0

1 −1 1 0

 ,
fT5 =

[
−0.6423 −0.6423 −2 −2

]
K1 =

[
−5.9220 −6.8883

]
, K2 =

[
−6.4159 −4.6953

]
.
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The value of the control signal u is depicted in Figure 10.

Figure 10 – Value of u as a function of x for Example III

Source: The author

Applying Theorem 4.2, we can find a quadratic Lyapunov function that certifies the
stability of the system. In this case V (x) = x>P1x (a quadratic function is a particular
case of the generic form (71), in which we consider P2 = 0 and P3 = 0) with

P1 =

[
0.9262 0.4674

0.4674 1.0815

]
.

A trajectory and the level sets of the obtained Lyapunov function are shown in Figure
11.

Example IV. Consider an uncertain piecewise linear system given by (65) with

F1 =

[
0.85 0.25

−0.8 0.8

]
, F2 =

[
−1 1 1

0 0 0

]
,

F3 =

−0.15 0.15

0.15 −0.15

d1 d2

 , F4 = 03×3, f5 =

−1

−1

0

 ,
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Figure 11 – System trajectory and Lyapunov function level sets for Example III.

Source: The author

where d1 and d2 are uncertain parameters such that:

−0.1 ≤ d1 ≤ 0.06, − 0.03 ≤ d2 ≤ 0.05.

The partition of R2 for this system is the same partition discussed in section 4.3. Note
that in this example, even enumerating transitions between sets of the partition is not
possible, since the number of regions can vary depending on the values of the parameters
d1 and d2, as can be seen in Figure 7. However, using the Lyapunov function as (71) we
certify the global stability of the uncertain system with

P =


5.9646 −0.7936 −4.8724 3.7880 1.3481

−0.7936 1.6585 −1.7570 2.1793 3.2269

−4.8724 −1.7570 2.5663 −1.6874 −0.0837

3.7880 2.1793 −1.6874 4.0464 2.3755

1.3481 3.2269 −0.0837 2.3755 3.7548

 .

This shows the flexibility of the proposed method, where the regions and transitions are
implicitly encoded in the representation.
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Example V. Consider an uncertain piecewise linear system given by (65) with:

F1 =

[
0 1

−kd −cd

]
, F2 =

[
0 0

−d d

]
,

F3 =

[
Kc

−Kc

]
, F4 = 02×2, f5 =

[
−1

−1

]
,

which represents a spring-mass-damper system with a saturating actuator, where k is the
spring constant, c is damping constant, d = 1/m, wherem is the mass andKc represents
the feedback gains of the controller. Assume that the values for these constants are
k = 8, c = 2, Kc = [−5 1.5] and the mass can vary with the operation of the system.
Using the results from Theorem 4.3, we can guarantee the stability of the system for
d ∈ [0.5 2], with a Lyapunov with an associated matrix

P =


4.2670 0.7879 −0.1270 0.0291

0.7879 0.6912 0.0291 0.0002

−0.1270 0.0291 0.0665 −0.0227

0.0291 0.0002 −0.0227 0.0277

 .

The Lyapunov function level sets can be seen in Figure 12 along with two trajectories
that start at x = [1 1]′, with different values of m.

On the other hand, using the results from Theorem 4.4, we can guarantee the stability
of the system for d ∈ [0.46 2.5], with a parameter dependent Lyapunov function with
associated matrices

P1 =


1.4190 0.4241 0.0116 0.0029

0.4241 0.2522 0.0029 −0.0070

0.0116 0.0029 0.0114 −0.0023

0.0029 −0.0070 −0.0023 0.0176

 ,

P2 =


1.0265 0.2404 −0.0332 0.0048

0.2404 0.1900 0.0048 0.0039

−0.0332 0.0048 0.0244 −0.0058

0.0048 0.0039 −0.0058 0.0137

 .
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Figure 12 – Level sets of the Lyapunov function and two trajectories, with d = 2 (dashed
green) and d = 0.5 (dashed red)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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-1

0

1

2

x
2

Source: The author

4.5 Final Remarks

In this chapter a new framework for the stability analysis of discrete-time PWA
systems was presented. For this, a novel implicit representation of PWA functions was
introduced, based on the use of ramp functions. In particular, we present the connections
of this representation with results in the literature.

Exploiting a characterization of ramp functions in terms of a set of equalities and
inequalities, it was shown how to use them to guarantee the verification of Lyapunov
inequalities related to piecewise quadratic functions candidates. This is done by casting
these inequalities in a generic quadratic form depending on the ramp functions, which
leads to conditions to assess stability in the form of LMIs.

The following aspects of the proposed approach represent advantages with respect
to existing results in the literature and can be highlighted.

— There is no need of defining the quadratic function associated to each set of the
partition: this is implicitly done in a generalized quadratic form.

— There is no need of enumerating possible transitions between regions to reduce
the conservativeness of the stability analysis.
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— The conditions for stability are cast in two LMIs and can be efficiently tested by
standard optimization packages.

— The use of properties associated to ramp functions applies only this class of func-
tion and therefore are less conservative than generic sector bounded conditions.

— From the novel proposed representation, the matrices describing the dynamics
of the system appears affinely on the stability LMI conditions, which allows
to directly consider uncertainties both in the system dynamics as well as the
partition.

The potential of the proposed approach has been illustrated in several examples,
including a generic PWA system, a linear system with saturating inputs and the explicit
solution of an MPC problem.
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5 EVENT-TRIGGERED CONTROL FOR PIECEWISE AFFINE
SYSTEMS

In this chapter, the problem of designing an event-triggered control strategy applied
to a piecewise affine system is addressed. For this, the representation proposed in Chap-
ter 3 and the stability conditions presented in Chapter 4 are used. Similarly to Chapter 4,
conditions to verify the stability of the origin with a generic Lyapunov function are pre-
sented. Finally, LMI conditions are formulated for the computation of the parameters of
a trigger function that ensures the asymptotic stability of the origin of the closed-loop
system.

In particular, a new PWQ trigger function is proposed to employ information from
the state partition in the event generator. Based on the derived conditions, a convex
optimization problem is formulated to design the trigger function aiming at reducing
the number of events, i.e. the number of control updates.

It is important to recall that these conditions do not require the set of transitions
between regions to be computed, which is a great advantage to the application of the
method for the stability analysis of ETC systems.

5.1 Event-Triggered Controlled Piecewise Affine Systems

The system considered throughout this chapter is a discrete-time closed-loop plant,
represented by the following equation

x(k + 1) = f1(x(k)) + u(k), (101)



90

with

f1(x(k)) = F11x(k) + F21φ(yp(x(k)))

yp(x(k)) = F̃3x(k) + F̃4φ(yp(x(k))) + f̃5,

with F11 ∈ Rn×n, F21 ∈ Rn×nyp , F̃3 ∈ Rnyp×n, F̃4 ∈ Rnyp×nyp and f̃5 ∈ Rnyp , and u
being the control input. To stabilize the system, a state-feedback PWA control law given
by

u(k) = f2(x(k)) (103)

is considered, with

f2(x(k)) = F12x(k) + F22φ(yp(x(k))) (104)

where F12 ∈ Rn×n, F22 ∈ Rn×nyp .

Remark 5.1. Note that system (101) with u(k) given by (103)-(104) encompasses the

case where the control signal is applied to the system through an input matrix, that is,

the control law is defined as

u(k) = Bv(k) = BF̄12x(k) +BF̄22φ(yp(x(k))). (105)

In this case, it suffices to consider

F12 = BF̄12, F22 = BF̄22. (106)

With a given stabilizing control law (103) that updates the control periodically, that
is at each time instant k, a control input u(k) is computed and updated based on the
value of the state x(k), we would like to obtain an event-triggered strategy. Recall
that in the ETC paradigm, an event generator monitors the state of the system, and
the control signal is only updated when a conditions is violated, reducing the number
of control updates required for the stability of the system, and thus reducing the use
of network resources. In this case, the control is updated only when an event occurs,
namely whenever a function ft, to be computed, exceeds a triggering value.

Considering k = ni, i ∈ N as the time instants in which an event is triggered, the
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control signal that is generated by the triggering law and that is effectively applied to
the system is given as follows

u(k) = u(ni) = f2(x(ni)), ∀k ∈ [ni, ni+1), (107)

i.e. between two events, the control signal is kept constant with the value computed
in the last trigger instant. For simplicity of notation, the time dependence of x(k) is
omitted, hence x(k) is henceforth denoted by x. Also, x(k + 1) is denoted by x+ and
x(ni) is denoted by xn. Then, the event-triggered implementation of the control law can
be written as

f2(xn) = F12xn + F22φ(yp(xn)) (108a)

yp(xn) = F̃3xn + F̃4φ(yp(xn)) + f̃5, (108b)

Defining δ = x − xn, that is, δ is a measure of the difference between the state on the
last control update and the current state, which we call the state degradation. Thus,
from (108a) and considering that xn = x− δ, the closed-loop dynamics resulting from
the application of the event-triggered control (107) can be expressed as

x+ =(F11+F12)x+F21φ(yp(x))+F22φ(yp(x− δ))−F12δ

yp(x) = F̃3x+ F̃4φ(yp(x)) + f̃5

yp(x− δ) = F̃3x+ F̃4φ(yp(x− δ)) + f̃5 − F̃3δ

(109)

Defining

y(x,δ) =

[
yp(x)

yp(x− δ)

]
, F1 = F11 + F12, F2 =

[
F21 F22

]
,

F3 =

[
F̃3

F̃3

]
, F4 =

[
F̃4

F̃4

]
, f5 =

[
f̃5

f̃5

]
, Fδ =

[
0

F̃3

]
,

the closed-loop dynamics of (101) can be written as

x+ = F1x+ F2φ(y(x,δ))− F12δ

y(x,δ) = F3x+ F4φ(y(x,δ)) + f5 − Fδδ
(110)

Note that this representation is similar to (21), with the addition of the state degra-
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dation δ, due to the event-triggered implementation. The well-posedness of the closed-
loop ETC system can be tested as stated in Proposition 1, since this test relies only on
the matrix F4.

As discussed in section 2.1, the ETC strategy consists in evaluating a trigger function
ft(x,δ) at each instant k to determine whether the control must be updated or not. This
is summarized by the following algorithm

Algorithm 6 ETC algorithm
if f(x,δ) > 0 then

Generate an event;
ni+1 = k;

end if

5.2 Stability Analysis for Event-Triggered Controlled Piecewise Affine
Systems

In this section, the stability conditions presented in the previous chapter are applied
to the global stability analysis of closed-loop piecewise affine systems with the event-
triggered strategy described in Section 5.1. In other words, the stability conditions are
extended to the stability analysis of the system (110).

First, conditions for the global exponential stability of the origin of (110), consider-
ing a generic Lyapunov function candidate are presented in the following theorem.

Theorem 5.1. If there exist a function V : Rn → R, a function ft : Rn+nδ → R,

matrices matrices T1 ∈ Dny , T2 ∈ Dny , M1 ∈ P(1+2ny)×(1+2ny), M2 ∈ P(1+4ny)×(1+4ny)

and positive scalars η < 1, ε1 and ε2 such that the following inequalities are verified

along the trajectories of (110), for all x ∈ Rn,

ft(x,δ) ≤ 0, for δ = 0 (111)

V (x) ≤ ε2x
>x (112)

(V (x)− ε1x>x) + s1(T1, y)− s2(M1, y) ≥ 0 (113)

−(V (x+)− (1− η)V (x)) + s1(T2, ỹ)− s2(M2, ỹ) + ft(x,δ) ≥ 0 (114)

with ỹ = [y> y+>]>, then the origin of (110) is globally exponentially stable.
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Proof. From Lemmas 2 and 3, using the arguments presented in Proposition 4, if (112)
and (113) are satisfied, it follows that ε1 ‖x‖2 ≤ V (x) ≤ ε2 ‖x‖2. It also follows
from (114), using the same arguments, that

V (x+)− (1− η)V (x) ≤ ft(x,δ). (115)

The remaining of the proof is carried out considering the time intervals k = ni and
k ∈ ]ni ni+1[.

First, considering k = ni, it means that an event occurs at the time instant k. With
this, from Algorithm 6, it follows that xn = x and, consequently, δ = 0. From (111),
ft(x,0) ≤ 0, which means, from (115), that ∆V (x) ≤ −ηV (x) whenever k = ni.

Considering k ∈ ]ni ni+1[, it means that an event does not occur at the time instant
k, which, in turn, implies from Algorithm 6 that ft(x,δ) ≤ 0, because otherwise an
event would have occurred and the control state would have been updated, leading to
the situation analyzed for k = ni. Then, from (115), this leads to ∆V (x) ≤ −ηV (x)

whenever k ∈ ]ni ni+1[.

With both cases, we can conclude that ∆V (x) ≤ −ηV (x) whenever (114) is veri-
fied. This, in turn, implies the global exponential convergence of the origin, as shown
in the proof of Theorem 4.1.

Remark 5.2. Note that this theorem applies to an event generator with any trigger

function, provided it follows Algorithm 6 and the trigger function satisfies (111).

5.3 Event Generator

It is assumed that the event generator has access to the state of the system, and an
event generator based on a PWQ trigger function is presented, leading to a piecewise
weighted relative error threshold trigger. This is an extension of the weighted relative
error threshold trigger based on a quadratic trigger function, and it uses the fact that the
system behaviour is piecewise defined to try reduce the conservatism by using φ(yp(x)),
that encodes the partition of the system. The PWQ trigger function considered is then

ft(x,δ) = x>Qxx+ φ(yp(x))>Qφφ(yp(x)) + δ>Qδδ (116)
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whereQδ is a symmetric positive-definite matrix andQx andQφ are symmetric matrices
such that

x>Qxx+ φ(yp(x))>Qφφ(yp(x)) ≤ 0. (117)

5.4 Constructive LMI Stability Conditions

Theorem 5.1 provides conditions for the stability analysis of the origin of closed-
loop PWA discrete-time systems based on an event-triggered control strategy. In this
section, testable LMI conditions based on the trigger function described in Section 5.3
and a particular class of Lyapunov function candidates, namely, continuous PWQ func-
tions V : Rn → R≥0 of the form

V (x) =

[
x

φ(y(x,δ))

]>
P

[
x

φ(y(x,δ))

]
, (118)

with P =
[
P1 P2

P>2 P3

]
, P1 ∈ Sn×n, P2 ∈ Rn×ny , P2 =

[
P̃2 0n×nyp

]
, P3 ∈ Sny×ny ,

P3 = diag(P̃3, 0nyp ), P̃2 ∈ Rn×nyp and P̃3 ∈ Snyp×nyp , are presented. Note that this
particular structure means that V (x) is given by

V (x) =

[
x

φ(yp(x))

]>
P̃

[
x

φ(yp(x))

]
, (119)

with P̃ =
[
P1 P̃2

P̃>2 P̃3

]
, hence it is indeed a PWQ function of x.

When considering candidate functions of the class above, the inequality (114) be-
comes dependent of the vector δ+. Thus, properties of the dynamics of δ and its con-
nection to x and x+ should be exploited. As such, consider the following lemma.

Lemma 5. The function δ satisfies the identity

δ+>N(δ+ − δ + x− x+) = 0. (120)

for any matrix N ∈ Rn×n.

Proof. Suppose there is an event at instant k + 1. Then, δ+ = 0 and the identity (120)
is satisfied. On the other hand, suppose that there is no event at instant k + 1. In that
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case, δ+ − δ = x+ − x, and the identity is also satisfied.

Note that the upper bound for V (x) derived in chapter 4, given by

V (x) ≤
(
‖P1‖+ 2σ ‖P2‖+ σ2 ‖P3‖

)
‖x‖2 , (121)

with σ = max∆∈D ‖∆(I − F4∆)−1F3‖, still apply, and can be used in the proof of the
exponential stability of the origin.

With this, the following Theorem can be stated.

Theorem 5.2. If there exist matrices P ∈ S(n+nỹ)×(n+nỹ), T1 ∈ Dny , T̃ ∈ Dny T2 ∈
Dny , T3 ∈ Dny , M1 ∈ P1+2ny , M̃ ∈ P1+2ny , M2 ∈ P1+4ny , L1 ∈ R(1+2n+2ny)×ny ,

L̃ ∈ R(1+2n+2ny)×ny , L2 ∈ R(1+4n+4ny)×2ny , L3 ∈ R(1+4n+4ny)×n, Qδ ∈ Sn×n, Qσ ∈
Rn×n and Qφ ∈ Rny×ny , and positive scalars η < 1 and ε1 such that

Π1 + He(Π2 + L1G1)− Π3 ≥ 0 (122)

−Π4 + He(Π5 + L2G2 + L3G3 +N )− Π6 +Qt ≥ 0 (123)

Π̃ + He(Π̃2 + L̃1G1)− Π̃3 ≥ 0, (124)

with

Π1 =


P1 − ε1I 0 P2 0 0

0 0 0 0 0

P>2 0 P3 0 0

0 0 0 0 0

0 0 0 0 01

 ,

Π2 =


0 0 0 0 0

0 0 0 0 0

0 0 T1 −T1 0

0 0 0 0 0

0 0 0 0 0

 , Π3 = Θ>1 M1Θ1,
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Θ1 =

0 0 Iny 0 0

0 0 Iny −Iny 0

0 0 0 0 1

,

Π4 =



−(1− η)P1 0 0 0 −(1− η)P2 0 0 0 0

0 P1 0 0 0 P2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−(1− η)P>2 0 0 0 −(1− η)P3 0 0 0 0

0 P>2 0 0 0 P3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



N =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

N −N −N N 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


Qt = diag(Qx, 0n, Qδ, 0n, Q̃φ, 0ny , 0ny , 0ny , 0), Q̃φ = diag(Qφ,0nyp )
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Π5 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 T2 0 −T2 0 0

0 0 0 0 0 T3 0 −T3 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, Π6 = Θ>2 M2Θ2,

Θ2 =


0 0 0 0 Iny 0 0 0 0

0 0 0 0 0 Iny 0 0 0

0 0 0 0 Iny 0 −Iny 0 0

0 0 0 0 0 Iny 0 −Iny 0

0 0 0 0 0 0 0 0 1

,

G1 =
[
−F3 Fδ −F4 Iny −f5

]
,

G2 =

[
−F3 0 Fδ 0 −F4 0 Iny 0 −f5

0 −F3 0 Fδ 0 −F4 0 Iny −f5

]
,

G3 =
[
−F1 In F12 0 −F2 0 0 0 0

]
,

Π̃ =


−Qσ 0 0 0 0

0 0 0 0 0

0 0 −Qφ 0 0

0 0 0 0 0

0 0 0 0 0

 , Π̃2 =


0 0 0 0 0

0 0 0 0 0

0 0 T̃ −T̃ 0

0 0 0 0 0

0 0 0 0 0

 , Π̃3 = Θ>1 M̃Θ1,

then the origin of the closed-loop PWA system (110) is globally exponentially stable

under the proposed ETC strategy.
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Proof. Define the vectors

ξ1 =


x

δ

φ(y)

y

1

, ξ2 =



x

x+

δ

δ+

φ(y)

φ(y+)

y

y+

1


.

Assuming (122) and (123) are verified, it follows that

ξ>1 (Π1 + He(Π2 + L1G1)− Π3) ξ1 ≥ 0 (125)

ξ>2 (−Π4 + He(Π5 + L2G2 + L3G3 +N )− Π6 +Qt)ξ2 ≥ 0. (126)

Note that from the definition ofG1,G1ξ1 = 0 on the trajectories of the system (110).
Furthermore, note that ξ>1 Π2ξ1 = s1(T1,y) = 0. Also, since all entries of M1 are non-
negative, recall that ξ>1 Π3ξ1 = s2(M1,y) ≥ 0. Hence, as ξ>1 Π1ξ1 = V (x) − ε1x

>x

we conclude that condition (113) from theorem 5.1 is verified on the trajectories of the
system (110).

Following the same steps, (124) ensures that (117) is verified, since

ξ>1 Π̃ξ1 = −x>Qxx− φ(yp(x))>Qφφ(yp(x)).

On the other hand, note that from the definition of G2 and G3, we also have that
G2ξ2 = 0 and G3ξ2 = 0 on the trajectories of system (110). Also, note that ξ>2 Π5ξ2 =

s1(T2,y) + s1(T3,y
+) = 0 and since all entries of M2 are non-negative, it follows that

ξ>2 Π6ξ2 = s2(M2,ỹ) ≥ 0. Moreover, from (120), ξ>2 N ξ2 = 0. Furthermore, ξ>2 Qtξ2 =

ft(x,φ,δ), and from the event-triggered strategy, ft(x,φ,δ) ≤ 0, since an event would
have happened if the trigger function was positive, and, in that case, δ is reset to zero
and the function would again become non-positive, due to (117), as demonstrated in the
proof of Theorem 5.1. Hence, as ξ>2 Π4ξ2 = V (x+)−(1−η)V (x), we can conclude that
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the condition (114) from theorem 5.1 is verified on the trajectories of the system (110).

Finally, since the condition (111) is guaranteed by (117) and the condition (112) is
guaranteed by (121), all conditions from Theorem 5.1 are verified, and we conclude that
the origin of system (110) is globally exponentially stable.

Remark 5.3. The inequalities from theorem 5.2 are cast in a similar form to those from

theorems 4.3 and 4.4. Thanks to this fact, the results can be readily applied to the

stability analysis of ETC PWA systems with polytopic uncertainties.

5.5 Optimization Problem

In Section 5.4, we provided conditions to test the stability of PWA systems under
an event-triggered control strategy. Furthermore, the matrices Qδ, Qx and Qφ can be
considered as free variables in the LMIs (122) and (123). In this case, we propose a
convex optimization problem that aims to find parameters of the trigger function that
lead to a reduction in the trigger activity, i.e., reduce the number of control updates.

In (MOREIRA; GROFF; GOMES DA SILVA JR, 2016), it is proposed that the op-
timization of a quadratic trigger function fq(x,δ) = δ>Qδδ − x>Qσx can be performed
by finding suitable Qδ ≥ 0 and Qσ ≥ 0. Theses matrices are obtained with the choice
of the objective function trace(Qδ + Q−1

σ ). Following a similar idea, with the trigger
function (116), we introduce an auxiliary variable Qσ such that the following LMI is
verified

Π̃a + He(Π̃2 + L̃G1)− Π̃3 ≥ 0, (127)

with

Π̃a =


−Qσ −Qx 0 0 0 0

0 0 0 0 0

0 0 −Qφ 0 0

0 0 0 0 0

0 0 0 0 0

 ,

and Π̃2, L̃1 and Π̃3 constructed as Π2, L1 and Π3 in (122). This inequality is analogous
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to (124) and, if verified, implies

x>Qxx+ φ>Qφφ ≤ −x>Qσx. (128)

Thus, we can implicitly optimize ft by optimizing fq. With this, we propose the follow-
ing optimization problem.

minimize trace(Qδ −Qσ)

subject to: (122), (123), (127).
(129)

In this case, matrices Qx and Qφ are symmetric, but no assumptions on their sign
definiteness are made, thus, as long as (128) is verified, Qx and Qφ can be indefinite.

Note also that, at any given time instant, the value of the piecewise quadratic trigger
function obtained by this optimization problem will be equal to or smaller than the value
of the quadratic function fq(x,δ) = δ>Qδδ − x>Qσx, as, from (128), it follows that

x>Qxx+ φ>Qφφ+ δ>Qδδ ≤ −x>Qxx+ δ>Qδδ.

Hence, given an event, the number of time instants until the next event using the obtained
piecewise quadratic function ft(x,δ) will be greater than or equal to the number of time
instants until the next event using the quadratic function fq(x,δ). In this sense, the
piecewise quadratic trigger function is a generalization of the quadratic trigger function
and can lead to less conservative results, as will be shown in the numerical examples.

5.6 Numerical Examples

Example I: Consider the following piecewise-linear system, given by with

F11 =

[
0.5 0.85

−1 0.5

]
, F21 =

[
0.75 0.75

0 0

]
,

F̃3 =

[
−1 −1

1 −1

]
, F̃4

[
0 −1/3

−1 0

]
, f̃5 =

[
0

0

]
,
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Figure 13 – First and second components of F11x + F21φ(y) (top and middle, respec-
tively) and first component of F12x+ F22φ(y) (bottom).

Source: The author

and an event-triggered controller given by, with

F12 =

[
0 κ

0 0

]
, F22 =

[
κ κ

0 0

]
,

where κ is a design parameter of the controller.

We plot F11x+ F21φ(y(x)) in Figure 13. Also, in the same figure, the values of the
first component of F12x + F22φ(y) are shown. Note that the second component of this
function is equal to zero.

Considering K = −0.1, and using the LMI formulation from Theorem 5.2, with the
optimization problem (129), the following parameters for the triggering function were
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computed

Qx =

[
−2.2359 −1.0205

−1.0205 −0.5772

]
, Qφ =

[
−0.0350 0.0636

0.0636 0.0491

]
,

Qδ =

[
2.7701 0.3361

0.3361 1.3508

]
.

A Lyapunov function with the following matrix P̃ =
[
P1 P̃2

P̃>2 P̃3

]
was obtained

P̃ =


0.0169 −0.0067 −2.3250 −2.3127

−0.0067 0.0162 −2.3127 2.3163

−2.3250 −2.3127 −4.6369 1.5363

−2.3127 2.3163 1.5363 4.6183

 .

Note that from (119), P =
[

P̃ 0n×nyp
0nyp×n 0nyp×nyp

]
.

To assess the efficiency of the event-triggered strategy in reducing the control up-
dates, the simulation of 100 initial conditions, evenly distributed in a unitary circle
around the origin, was made, with k = [0 50]. The 50 time instants were enough
for the states to converge to the origin. The average number of events over the simula-
tion period was navg = 27.83, meaning that the control updates were reduced almost by
half. Simulation results for x0 = [−0.9989 0.0476] and x0 = [−0.0317 − 0.9995] are
depicted in figures 14 and 15, respectively, where the bars represent the instants when
an event happened with a value of 1, and the instants when an event didn’t happen with
a value of 0.

Whenever we impose Qφ = 0 it results that Theorem 5.2 yields a quadratic trigger
function. In this case, the following parameters were obtained

Qx =

[
−0.4268 −0.2126

−0.2126 −0.1063

]
, Qδ =

[
1.0534 0.0030

0.0030 1.0141

]
.

all the simulations had 51 events, meaning an event happened at every single time instant
and therefore the ETC strategy had no impact in reducing the control updates. This
example shows that the term φ(y)>Qφφ(y), which includes information of the partition
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in the trigger function can help reduce the events.

For the sake of comparison, using the results from (MA; WU; CUI, 2018) and fixing
the values of the controller, the stability can not be shown for any trigger function. This
shows that the stability test proposed in this chapter is less conservative than the one
used in the aforementioned work.

Example II: Consider the MPC control problem presented in the Example 3, in
Chapter 4. Now, suppose the control law u is implemented with an event-triggered
control strategy. In this case, the system can be described by:

F11 = A, F21 = 0,

F̃3 =


K2 −K1

K1 −K2

−K1

K1

 , F̃4 =


0 0 0 0

1 0 0 0

−1 1 0 0

1 −1 1 0

 ,

f̃T5 =
[
−0.6423 −0.6423 −2 −2

]
,

F12 = BK1, F22 = B
[
1 −1 1 −1

]
φ(y).

Using the proposed optimization problem (129), one can find the following param-
eters for the triggering function

Qx =

[
−1.8916 −1.1546

−1.1546 −1.1703

]
, Qφ =


0.0705 −0.0135 −0.0054 0.0031

−0.0135 0.0680 −0.0337 −0.0053

−0.0054 −0.0337 0.0432 −0.0024

0.0031 −0.0053 −0.0024 0.0436

 ,

Qδ =

[
16.4579 18.0110

18.0110 21.9858

]
.

Also, a Lyapunov function that certifies the stability of the system can be found, with
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the following matrix P̃ =
[
P1 P̃2

P̃>2 P̃3

]

P̃ =



235.7184 162.9185 −13.4113 17.7559 −13.7545 −7.3717

162.9185 322.5319 −34.2679 16.8953 −16.4932 −4.1465

−13.4113 −34.2679 3.2818 −0.5158 2.4523 0.3444

17.7559 16.8953 −0.5158 −10.4631 −3.7240 0.5601

−13.7545 −16.4932 2.4523 −3.7240 2.8074 0.7273

−7.3717 −4.1465 0.3444 0.5601 0.7273 −4.0712


.

The efficiency of the event-triggered strategy was assessed by simulating 1000 ini-
tial conditions generated with uniformly distributed random x1 and x2 in the interval
[−1.5 1.5], for k ∈ [0 25]. The uniform distribution was chosen because, unlike the
previous PWL example, this system is not homogeneous due to the (nonlinear) affine
terms in y. The average number of events was navg = 13.50, which represents a re-
duction of 48% in the number of control updates. Figure 18 presents the trajectories
for the initial conditions x0 = [−1.1804 0.4036] and x0 = [0.7791 − 0.7600]. The
simulation results of the of the states and the trigger instants are shown in Figures 16
and 17, where the bars represent the instants when an event happened with a value of 1,
and the instants when an event didn’t happen with a value of 0. A significant reduction
of the control updates can be observed, showing the effectiveness of the proposed ETC
strategy.

5.7 Conclusions

In this chapter, a new methodology for the emulation based design of an ETC strat-
egy for a PWA system was proposed. First, it was shown how to represent an event-
triggered PWA system with the implicit representation proposed in Chapter 3. Then,
stability conditions based on the results presented in Chapter 4 were derived for this
class of system, and an optimization problem was applied to design a PWQ trigger
function. Finally, some numerical examples were used to illustrate the results.

The following advantages of the proposed method can be pointed out.

— The use of the implicit representation means that the stability analysis can be
carried out without needing a reachability analysis, since the transitions are im-
plicitly encoded and do not have to be enumerated.
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— The numeric examples have shown that the conditions presented are less conser-
vative than previous conditions in the literature in assessing the stability of the
origin of the system.

— The proposed PWQ trigger function yielded better results than a quadratic trig-
ger function, this is illustrated by the Example I.
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Figure 14 – Simulation with x0 = [−0.9989 0.0476]: 26 events occurred.
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Figure 15 – Simulation with x0 = [−0.0317 − 0.9995]: 51 events occurred.
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Figure 16 – Simulation with x0 = [−1.1804 0.4036]: 14 events occurred.
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Figure 17 – Simulation with x0 = [0.7791 − 0.7600]: 10 events occurred.
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Figure 18 – Trajectories of the initial conditions. In cyan, x0 = [−1.1804 0.4036], in
magenta, x0 = [0.7791 − 0.7600]
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6 CONCLUSION

In this thesis, the problems of stability analysis and event generator design for PWA
systems under an event-triggered strategy was studied. For such, a new implicit rep-
resentation for continuous PWA functions was introduced and some properties of this
representation were studied. Then, stability conditions based on the Lyapunov theory
were derived for systems described by the new implicit representation, and considering
PWQ Lyapunov candidate functions, testable LMI conditions were presented. Finally,
a method to design event generators based on a PWQ trigger function guaranteeing
the preservation of the stability properties of PWA systems under an ETC strategy was
proposed.

Given this summary, the following contributions of the thesis can be discussed in
more detail.

• Introduction of a new implicit representation for continuous PWA functions

In Chapter 3, a new representation for continuous PWA functions was proposed,
based on ramp functions. Conditions for the well-posedness of functions in the
proposed form were presented and the relation of this representation with other
representations in the literature were illustrated. Moreover, the existence of a
representation with an explicit solution for any continuous PWA function was
demonstrated. Among the advantages of the proposed representation, it can be
pointed that:

— The proposed implicit representation does not require the regions of the state-
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space partition to be explicitly described and enumerated;
— The representation is based on ramp functions, which have properties that

can be exploited to demonstrate the positivity of quadratic forms, and thus is
well suited for the stability analysis, as shown in Chapter 4.

• Stability conditions for PWA systems in the implicit representation

In Chapter 4, stability conditions for PWA systems described by the proposed
implicit representation were derived using the Lyapunov theory, exploiting some
propertied of ramp functions. Then, considering PWQ Lyapunov candidate
functions, these conditions were cast as LMIs, which can be numerically tested.
Some advantages of the proposed method in comparison to existing methods are:

— The conditions are based on a generalized implicit piecewise quadratic form,
meaning there is no need to define individual quadratic functions to each
region;

— Since the regions of the partition are implicitly encoded by the ramp func-
tions, the stability analysis can be carried out with no need to map the set of
possible transitions;

— The implicit encoding the the regions also enables the analysis of systems
with polytopic uncertainties both in the dynamics and in the partition, which
was not possible with the other approaches in the literature;

— Since the conditions are cast in LMIs, they can be efficiently tested with
standard optimization packages;

— The properties of the ramp functions used resulted in less conservatism than
previous methods in the literature, which include sector bounded inequali-
ties. In fact, the used properties apply only to ramp functions and allow their
exact characterization, i.e. these properties are verified if and only if the
function is a ramp.

• Design of event generators for PWA systems under an ETC strategy

In Chapter 5, the problem of designing an event generator for the ETC of PWA
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systems was addressed considering a PWQ trigger function, and an optimization
problem was proposed to find suitable parameters for this trigger function.

— A new condition relating the dynamics of the state to the state degradation
was proposed.

— The use of the implicit representation for PWA systems overcame the prob-
lem of conducting a reachability analysis before the stability conditions are
tested, which poses problems in the case of ETC.

— The PWQ trigger function includes information about the partition and re-
sults in a reduced number of events when compared to quadratic trigger func-
tions found in the literature.

— The LMI-based conditions can be readily extended to deal with systems con-
taining polytopic uncertainties.

6.1 Future Work

Here, some ongoing research as well as problems that remain open are summarized.

• Address the local stability analysis of PWA systems in the implicit represen-
tation. It is not always possible to guarantee the global stability of nonlinear
systems, and PWA systems are no exception. In this sense, tools to analyze the
local stability, the existence of multiple equilibria and limit cycles are very im-
portant, and this topic is currently being researched.

• Consider discontinuous PWA functions. The proposed representation based on
ramp functions was shown to model any continuous PWA function, but that is
only a subclass of PWA functions. Modifications, possibly involving the use of
step functions, are being investigated to deal with discontinuities.

• Consider the co-design of the event-generator and a PWA control law. The re-
sults from this work focused on the emulation based design, that is, given a con-
trol law that stabilizes the system with a classical discrete-time update scheme,
find an event generator that preserves the stability under an event-triggered up-
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date strategy. However, the simultaneous design of the control law and the event-
generator might improve the performance of the overall ETC strategy.

• Consider systems with transport delay. Communication delay is a common prob-
lem in the study of NCSs. In the present work, it was considered that the com-
munication channel can transmit information quickly enough that this problem
can be disregarded, however that is not always the case, and tools to consider the
effect of this delay on the stability analysis of systems in the implicit represen-
tation is an important open topic.

• In the robust stability analysis, consider a polynomial dependency of the Lya-
punov candidate function on the uncertainties, which can lead to less conserva-
tive results.

• In the MPC problem, find an implicit representation directly from the solution
of the KKT conditions. In this case, an explicit PWA model, enumerating the
regions of the partition, and the conversion of this model to the implicit repre-
sentation, would not be required for the stability analysis.

• In the ETC problem, consider a trigger function based on the system output, to
deal with systems where the complete state is not available.
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APPENDIX A STABILITY OF DYNAMIC SYSTEMS

One of the most important characteristics of a given system is the stability, since
closed-loop unstable systems are, in general, of little use and often dangerous (SLO-
TINE; LI et al., 1991). The Lyapunov theory is the main tool for the stability analysis
of nonlinear systems (KHALIL, 1996), and has been proven an efficient mean to the
characterization of internal stability of event-triggered systems (HEEMELS; JOHANS-
SON; TABUADA, 2012), as well as for PWA systems (BISWAS et al., 2005), which
are addressed in this work. Thus, in the appendix, the concept of stability in the sense of
Lyapunov, as well as the second method of Lyapunov (also know as the indirect method)
are presented, and so are its applications to discrete-time systems.

A.1 Stability in the Sense of Lyapunov

The study of the stability of a system based on Lyapunov theory is related to the sta-
bility of its equilibrium points. Thus, considering the following discret-time dynamical
system:

x(k + 1) = g(x(k)), (130)

the following definitions can be made

Definition 3. A state x∗ is considered an equilibrium point if, once x(k) = x∗ in k = k1,

x(k) remains equal to x∗ for any k ≥ k1, that is, we have that g(x∗) = x∗ ∀k ≥ k1.

For the stability analysis in the sense of Lyapunov, it is convenient that the equilib-
rium point being analyzed is at the origin, that is, x∗ = 0. When this is not the case,
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the point can be transfered to the origin by a change of variables (SLOTINE; LI et al.,
1991).

Definition 4. Let x = 0 be an equilibrium point of system (130). It is considered stable

if for all r > 0 there exists r > 0 such that:

‖x(0)‖ < r =⇒ ‖x(k)‖ < r, ∀k ≥ 0. (131)

This point is considered asymptotically stable if, besides that,

lim
k→∞
‖x(k)‖ = 0. (132)

This stability definition, called stability in the sense of Lyapunov, means that, if an
equilibrium point it stable, the trajectories of the system can be kept arbitrarily close
to the equilibrium point if they start sufficiently close to it. If this is not possible, the
equilibrium point is considered unstable (SLOTINE; LI et al., 1991).

One way of verifying the internal stability of the system is the application of the
second method of Lyapunov, which consists in using a scalar function of the system
states. If this function is positive and decreasing in time in a region around the equilib-
rium point, the trajectories will get closer to it, and thus it is asymptotically stable. The
following Theorem formalizes this method.

Theorem A.1 (Lyapunov Theorem for Discrete Time Systems, (ÅSTRÖM; WITTEN-
MARK, 1997)). Let x = 0 be an equilibrium point of (130) and D ⊂ Rn, it will be

considered stable if there exists a scalar function V : D 7→ R continuous in x, such that

V (0) = 0 and:

V (x) > 0, ∀x ∈ D − {0}, (133)

∆V (x) = V (g(x))− V (x) ≤ 0, ∀x ∈ D. (134)

Furthermore, if ∆V (x) < 0, ∀x 6= 0, it will be considered locally asymptotically stable.

An equilibrium point can also be considered globally stable, if D = Rn and V (x) is
radially unbounded, that is, lim‖x‖→∞V (x) =∞.

In general, many Lyapunov functions can exist for the same system. Since the con-
ditions from the Lyapunov Theorem are only sufficient for the stability of the origin,
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in case a candidate function verifies the conditions of the Lyapunov Theorem, then the
equilibrium point in question is stable. However, if it does not satisfy these conditions,
nothing can be asserted, except that some other candidate function might be able to
demonstrate the stability. Hence, the main challenge in using the theory of Lyapunov
resides in finding an adequate function.

A commonly used Lyapunov candidate function is the quadratic function, given by

V (x) = x>Px =
n∑
i=1

n∑
j=1

pijxixj, (135)

where P is a symmetric positive definite matrix. When (130) is a linear system, that is,
g(x) = Ax(k), the variation of V (x) is given by:

∆V (x) = x(k)>(A>PA− P )x(k), (136)

so that the set of LMIs

P > 0, A>PA− P < −Q, (137)

with Q > 0, provides a sufficient and necessary condition for the stability of the system
in question (ÅSTRÖM; WITTENMARK, 1997).
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APPENDIX B LINEAR MATRIX INEQUALITIES

The use of LMIs is very important in the analysis and synthesis of control systems,
because a wide array of control problems can be reduced to convex optimization prob-
lems, which can be efficiently numerically solved (BOYD et al., 1994). The challenge
consists, thus, in formulating conditions for solving the problem in terms of LMIs, since
oftentimes nonlinear terms are presente in the resulting formulation. In this appendix,
the definition of an LMI and some techniques employed in deal with them are presented.

A strict LMI is an inequality of the form

F (x) = F0 +
m∑
i=1

xiFx > 0, (138)

where x ∈ Rm is a vector of variables and the symmetric matrices Fi = F>i ∈ Rn×n

are known. In case F (x) ≥ 0, the inequality is said non-strict. One of the fundamental
properties of LMIs is that the restriction (138) is convex in x, that is, the set of solutions
X = {x : F (x) > 0} is convex, so that a problem of the form

minimize: c>x

subject to: F (x) > 0,
(139)

is a convex optimization problem (BOYD et al., 1994).

B.1 Schur Complement

The Schur Complement is a very useful tool for converting nonlinear matrix inequal-
ities in equivalent LMIs. It can be enunciated as follows
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Lema B.1 (Schur Complement (BOYD et al., 1994)). Let Q = Q′, R = R′ and S be

real matrices of appropriate dimensions. Then:

i)R > 0, Q− SR−1S> > 0, (140)

ii)

[
Q S

S> R

]
> 0 (141)

are equivalent.

In this way, the quadratic inequality (140) can be transformed into the LMI (141),
which can be efficiently treated by computational methods.

B.2 S-Procedure

Commonly there are cases where it is desired to guarantee the difinition in sign of
a quadratic function whenever another quadratic function is defined in sign. The S-
procedure is a tool that allows the approximation of this kind of restriction through an
LMI. The S-procedure for strict inequalities is presented next.

Lema B.2 (S-procedure (BOYD et al., 1994)). LetT0, ..., Tp ∈ Rn×n be symetric matri-

ces. If there exist scalars τ1, ..., τp such that:

T0 −
p∑
i=1

τiTi > 0, (142)

then

x>T0x > 0, for all x 6= 0 such that x>Tix ≥ 0, i = 1,...,p (143)

is verified.

B.3 Finsler’s Lemma

Through the use of Finsler’s Lemma, it is possible to obtain equivalent conditions
for the test of LMIs. Moreover, Finsler’s Lemma can be directly employed in the elimi-
nation of variables in some LMIs (BOYD et al., 1994).
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Lema B.3 (Finsler’s Lemma (DE OLIVEIRA; SKELTON, 2001)). Let x ∈ Rm, Q ∈
Rm×m and N ∈ Rn×m, such that rank(B) < n, then the following statements are

equivalent:

i) x>Qx < 0, ∀Bx = 0, x 6= 0 (144)

ii) B>0 QB0 < 0, ∀BB0 = 0 (145)

iii) Q− αB>B < 0, ∀α ∈ R (146)

iv) Q+NB + B>N> < 0, ∀N. (147)


