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Introduction

From exploration to mine planning, methodologies for 
quantifying the risk associated with mineral deposits can 
dramatically improve the decision-making process in the mining 
industry. Small variations in boundary conditions can have 
a significant impact on the final return of the project. In this 
context, geological uncertainty can be a major factor contributing 
to eventual failure of a mining project. The need to quantify and 
manage geological risk for project evaluation and decision making 
can be translated into the need to assess the geological risk of any 
parameter at all stages, from resource quantification, through 
mine sequencing to exhaustion of reserves. In addition, geological 
uncertainty can be translated into financial risk, providing an 
analysis of the economic feasibility of a project. The need for 
quantification of geological uncertainty has been recognized 
by the mining industry since the 1970s, when local and global 
estimates were considered insufficient for optimization of 
production planning, mine sequencing and homogenization 
strategies. Therefore, stochastic simulation has played a crucial 
role in the construction of grade uncertainty models in mineral 
deposits, providing a tool to perform risk analysis.

Geological exploration, project development and mining itself, 
including mine closure procedures, are all driven by the need to 
delineate, understand, evaluate, and plan the extraction of mineral 
resources. The definition of a robust geological and numerical 
model for a mineral deposit is an essential tool to analyse the  

 
quality of the in-situ material and to calculate the masses that need 
to be moved, with their respective grades. With knowledge of the 
reserves and existing material in a specific location, geostatistical 
techniques can be used to provide consistent evaluation and 
planning and to determine the associated variability and even 
uncertainty Matheron [1], David [2], Journel & Huijbregts [3]. 
Traditionally, grade control and mine planning are done using a 
block model generated by a traditional estimator, usually ordinary 
kriging, which gives the best estimate (unbiased and with the 
least error) using the available samples. However, this procedure 
is unable to incorporate the uncertainty associated with the 
estimate, and the variability of the estimated values is lower than 
the variability of the original data Costa [4].

Unlike kriging, geostatistical simulation methods aim to 
reproduce the variability and the spatial continuity of the original 
data, generating equiprobable models, conditioned to the data, 
which reproduce the first- and second-order statistics of the 
sample data. Geostatistical simulation algorithms are based on 
delineation of the uncertainty range by generating multiple 
realisations of the considered attribute values distributed in 
space Goovaerts [5]. These models are fed to transfer functions 
with different degrees of complexity to generate a distribution of 
possible outcomes, and the range of variation of this distribution 
characterises the so-called space of uncertainty Costa [6]. The 
processes involved in mine planning can be seen as transfer 
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functions, which are models used to describe the actual operations 
or systems Peroni [7]. In this case, an uncertainty model based 
on stochastic simulation allows evaluation of the sensitivity 
of economic development, taking account of the uncertainty 
levels and tonnages for both mathematical surfaces and mining 
envelopes, as in the cases of design and long-term sequencing 
Silva [8].

Planning of the optimal production sequence can be a complex 
procedure, considering the number of variables and constraints 
that might be involved. The mine planning process is primarily 
determined by defining a final pit through an optimisation 
algorithm, providing a logical block extraction sequence Whittle 
& Rozman [9], Peroni [7]. The subsequent determination of 
an operational sequence of blocks up to the final pit is defined 
as pushback. At this stage, it is possible to evaluate the direct 
impact on key performance indicators such as cash flow and net 
present value (NPV). Several methods for determining an optimal 
extraction sequence have been presented Crawford & Davey [10], 
Mathieson [11], Dagdelen & François-Bongarçon [12], Whittle and 
Rozman [9], Rozman & Dagdelen [13], Tolwinski [14]. According to 
Diedrich [15], the main difficulties encountered when attempting 
to solve the optimal extraction sequencing of blocks to be mined, 
taking the uncertainty into account, are as follows:

a) The number of variables involved in the stochastic 
optimisation processes (simulated models and parameters).

b) The complexity of the equations defining the profit 
function costs and revenues, taking account of the diversion of 
targets (due to stochastic optimisation).

c) The generation of scenarios that are operationally 
executable given the time needed to process each optimisation 
and considering the computational capacity and the need for 
speed in decision making.

This paper therefore proposes the use of stochastic simulation 
as a method for assessing changes caused by the uncertainty 
associated with the attributes that define ore reserves and drive 
mine planning. It also proposes the introduction of risk associated 
with blocks, determining penalties within the mine planning that 
are transferred to the profit function and measure the impact on 
the project’s economic results. The methodology is applied to 
a case study of a phosphate deposit located in central Brazil to 
demonstrate the application of this approach to a real deposit.

Objective

The goals of this study are as follows:

i. To model the uncertainty levels for a particular deposit 
using geostatistical simulation algorithms within irregular 
domains, contained within geological envelopes generated by the 
interpretation of sections.

ii. To compare the response of mining scenarios according 
to economic criteria.

iii. To introduce a risk analysis factor taking account of 
grade uncertainty and measure its impact on risk acceptance (or 
rejection), considering the probabilities given by the simulation 
algorithm. 

Methodology

Incorporating geological uncertainty into mine 
planning

Using sequential Gaussian simulation (sGs), 50 realisations 
were generated for P2O5 grades. After running the simulation 
algorithm, 10 scenarios were selected, taking account of 
strategic aspects of mine planning, including the economic model 
constructed on the basis of the profit function targeting long-
term mine planning. The blocks containing the economic values 
were imported into pit optimisation software (NPV Scheduler 4) 
to determine the final pit for each of these scenarios. The next 
step was sequencing the blocks to define a horizon of a medium-
term range and define a smaller area considering the estimated 
value. The main goal of this work is to determine the impact of 
the variation given by the simulation scenarios. Besides the 
impact due to the simulation, the concept of risk acceptance (or 
aversion) is introduced. This criterion involves the adoption of a 
risk or uncertainty that the company will assume on the basis of a 
feasibility analysis related uniquely to the geological uncertainty. 
Therefore, an average scenario is adopted, represented by the 
mathematical expectation (E-type) of the P2O5 grade, with the 
appraisal of extreme scenarios determining the limits of variation 
of the project and the incorporation of criteria for risk tolerance. 
This information, when put together, allows one to delineate a 
mine plan or a set of mine plans including the variation of the size 
of the deposit to be mined or reported as reserves or to limit the 
project’s feasibility under different risk tolerances Capponi [16].

Constructing the profit function

The construction of the profit function is equivalent to 
calculating the economic value for each block defining the cut- off 
grade and consequently the block selection between waste and 
ore. For those blocks recognised by geological contact as waste 
blocks, only mining costs are used to calculate the economic 
value. On the other hand, for those blocks within the ore zone, 
the decision whether the block is waste, or ore is made on an 
economic basis. The profit function is constructed in two stages: 
first, determination of the ultimate pit and selection of the study 
area using the average scenario (E-type results); second, use of 
the penalty factors given by the probability from the simulation. 
The following equations determine the conventional approach of 
evaluating a block model and the proposed modification with the 
introduction of a probability factor:
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PF = Revenues − Costs, (1)

PF = (S × G × R) − (M + P + G&A), (2)

where

S is the long-term selling price,

G is the grade of each block,

R is the process recovery,

M represents the mining costs,

P represents the process costs,

G&A represents the general and administrative costs.

The level of acceptance of the probability given by the 
stochastic simulation is defined by 

PROB = 1 if prob i>= prob lim

PROB = 1 if prob i < prob lim  (3)

Where:

Prob i is the probability of a block i calculated from the 
simulation

Prob lim is the probability limit chosen as the maximum 
probability level accepted

PROB is the categorical value assumed if the probability of a 
block i is greater or less than Prob lim.

and the inclusion of the probability within the profit function 
as a penalty parameter for the ore blocks after defining the 
probability limit to be used as risk acceptation or rejection is 
defined by

PF = S × G × R × PROB − (M + P + G&A), (4)

where

PROB is the probability that a block with grade G is higher 
than a specific cut-off grade.

Building the Optimal Pit

When building the optimal pit, the extent of mining and its 
sequencing are determined such that the best economic result is 
obtained. Figure 1 presents the hard boundaries used to generate 
the analysis. The pink boundary represents the horizontal limit 
of mineralisation of the deposit, the orange boundary is the 
current pit outline and the red line represents the area selected 
in this study, which comprises approximately a 15-year pushback. 
The main inputs to the final pit optimisation software were the 
initial topography (as at the end of 2011), the resource model 
classification taking account of the drilling density and the 
minimum data in the search strategy, geotechnical information, 
the long-term price for the phosphate rock and the estimate of the 
process cost. The final pit was defined using the Lerchs–Grossman 
algorithm Lerchs & Grossmann [17] through the implementation 
available on the NPV scheduler software according to Underwood 
& Tolwinski [18], Tolwinski [14]. 

Figure 1: Hard boundaries and drilling pattern used to optimise and simulate the deposit.

Risk Analysis of Mine Planning

In the mine planning stage, the uncertainties related to the 
ore quality to be mined, as well as the profitability from the 
exploitation, are essential, because these will define the sequence 
of extraction of the ore with the project’s earnings in mind. The 
planning process is complex, involving a number of uncertain 
variables with strong impact on the production outputs, and 

depends on the economic premises adopted. Depending on the 
stage of development of the project, the risk analysis will allow 
decision making in terms of the following:

a) Investment in additional information: incorporation of 
new samples, performance of new metallurgical tests, review of 
the limits and constraints of the target areas, and review of the 
concentration routes according to the characteristics of the ore.
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b) Development and commencement of mining operations, 
taking account of basic information based on equally probable 
scenarios.

c) Further development of the mine and investment 
in additional information, including consideration of further 
attractive projects, even in the minimum scenario when it is 
desired to reduce the dispersion of economic indicators.

d) Decision to abandon the project definitively or to delay 
start-up while waiting for technological improvements or for a 
better economic context.

At this stage, a risk analysis was performed, considering as 
ore those blocks with probabilities of being higher than the cut-
off grade of 60–90% in 10% steps, applied to the E-type from 
the geostatistical simulation. The variable that was created was 
named PROBCUT and the cut-off grade considered was 5% of P2O5.

The uncertainty and risk analysis adopted in this work was 
applied as follows:

i. P90 – the conservative scenario, in which the P2O5 
content of the considered block has a 90% probability of being 
higher than the 5% cut-off grade.

ii. P80 – the intermediate/conservative scenario, in which 

the grade has an 80% probability of being higher than the 5% cut-
off grade.

iii. P70 – the intermediate/optimistic scenario, in which the 
P2O5 grade has a 70% chance of being higher than the 5% cut-off 
grade.

iv. P60 – the optimistic scenario, in which the P2O5 grade 
has a 60% probability of being higher than the 5% cut- off grade.

After calculating the profit function for each block, each 
selected scenario was imported again into the optimisation 
software to assess the economic result produced by each scenario 
after pit optimisation and mine sequencing. Figure 2 shows an 
example of an NPV graph for a given period: the curve points 
were plotted after classification of the results in descending 
order and cumulative probability. In this case, P90 was taken as 
the conservative estimate, P70 as intermediate and P60 as the 
optimistic estimate. Figure 3 shows the variation in ore masses 
generated by mathematical pits modelled by objective functions 
with higher probabilities to be feasible like P60, P70, P80 and P90 
are shown in Figure 3. A relative mass difference of up to 60% can 
be seen in comparison with the expected mass of blocks at 90% 
probability that these blocks assume values above the stipulated 
cut-off grade.

Figure 2: NPV of the project considering different risk acceptances.

The impact of quantifying the risk associated with geological 
uncertainty generated from selected simulations can be seen in 
the design of the mathematical pit outlines shown in Figure 4. 
Section AA’ indicates a variation of the pit limits for the northeast 
region of the area analysed. This uncertainty indicates a greater 
likelihood that the grades in this sector are closer to the cut-off 
grade. It can be seen, for example, that areas for the E-type scenario 
have a wide extent, but those for scenarios with low acceptance 
risk are contracted and have uncertain borders. Similarly, Figure 
5 shows the pit depth according to the criterion of acceptance/
aversion to the risk; the areas with high uncertainty associated 
with the blocks are again highlighted.

Mine sequencing

According to Peroni [2], a pushback (also referred to in the 
literature as a cut-back or phase; see Hustrulid & Kuchta [19] can 
be defined as the stage in mine development that can be practically 
executed and mined according a logical extraction sequence. This 
means that the limits of a pushback and its predecessor must be 
separated by a minimum distance unless those limits coincide 
with the final pit limits. Table 1 presents the number of phases 
generated for each risk scenario. The cumulative quantities of 
ore versus sterile material by phase generated for each case 
analysed, as well as the expected-value E-type simulations, are 
shown in Figure 6. It can be seen that the curve gradient is the 
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mine stripping ratio in the period. Thus, it can be assumed that the 
sterile ore ratio is directly related to the probability that the P2O5 

grade is higher than the given cut-off grade. It can be seen that the 
uncertainty criterion does not give similar results to traditional 
approaches in terms of parameterisation prices or costs (revenue 
cost factor or revenue factor), where the ratio usually increases 

with the size of the pit: small pits with low ratios and bigger 
pits with high ratios. Here, the situation is reversed, and, for the 
scenario with high certainty, a small pit with a high ratio was 
made possible because the blocks were of high grade and so there 
was a high probability that the pit had grades above the selected 
cut-off grade of 5%.

Figure 3: Total ore mass for each risk scenario, considering probability factor.

Figure 4: Plan view at the 1230 m level of the final pits for each risk scenario, taking account of the simulated block model associated with 
the probabilities shown by the differently colored lines.

Figure 5: Vertical section (A’, A) of the ultimate pits under different probabilities.
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Figure 6: Curves of accumulated ore against waste masses for different acceptances of risk.

Table 1: Potential NPV for each phase, incorporating the risk factor.

Pit Phase

NPV (MM$)

1 2 3 4 5 6 7 8 9 10 Sum

E-TYPE 411 274 591 271 297 296 144 234 65 28 2611

PROB60 404 839 300 301 293 380 55 - - - 2572

PROB70 412 782 546 371 322 76 - - - - 2509

PROB80 386 824 342 419 319 63 - - - - 2353

PROB90 939 694 246 102 - - - - - - 1981
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Pushback Generation

The risk analysis studies presented here were performed 
with optimised pits that can be used to determine the phases by 
application of the revenue factor Whittle [20] and consequently 
can provide useful information to define pushbacks and the mine 
sequence by generating tonnes and grades during the lifetime 
of the mine. It is important to note that head grade or tonnage 
requirements might not be met at every stage, since the stripping 
ratio might exhibit variations, which must be equalised later 
during the project operation. The impact on grade variation 

during mine sequencing of considering probabilities of P2O5 
grades being higher than the cut-off grade is presented in Figure 
7. It can be seen that the grade increases with the associated 
risk, which means that as long as the risk is rejected, the selected 
blocks have grades higher than the established cut-off grade. 
Figure 8 presents the NPV variation generated from the selected 
simulations. It can be seen that there is an absolute difference of 
US$619M when compared with the sequencing applying a PROB 
of 90% over the expected value.

Figure 7: Average grade for each mining sequence for different probabilities.

Figure 8: Cash flow analysis for each probability scenario.

Conclusion

The application of geostatistical simulation techniques has 
proved to be a fundamental tool in the uncertainty approach 
to geological variables. Traditionally, the mining industry has 
employed sensitivity analyses of other uncertain parameters such 

as costs, selling prices and process performance. Considering that 
geology and grades have a huge impact on a project’s feasibility, 
the use of a tool like this can help to show that grades are variable 
and that this variation, or a lack of understanding of it, can 
have a significant impact on revenues. The incorporation of this 
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variability allows its impact on the mine planning to be evaluated. 
Although in the study described here, the base case planning 
was based on the block generated by an average scenario, the 
impact on operational advances (pushbacks) could be seen, and, 
in the face of these variations, the mine plan could be altered by 
considering the different results from the probabilistic models. 
However, the purpose of this study was not analysis of the plan 
itself but rather measurement of the impact of the variations 
on the project’s outcome. This impact was determined, and it 
was shown that the level of variability is an important aspect of 
uncertainty (due to lack of data, intrinsic variability of the deposit, 
quality of information, etc.) that needs to be considered. This 
uncertainty represents, for the case studied, something like 10% 
of the economic output of the project to the designated area.

a) Another aspect that has proved to be relevant for the 
application of the methodology is the observation of the deposit’s 
behavior under scenarios of risk aversion/acceptance. In this 
study, the risk was measured by the probability that a given block 
has a grade higher than the cut-off value of 5% P2O5. When the 
risk acceptance was reduced, the presence of remaining portions 
of the deposit areas associated with higher grades where the 
uncertainty was actually smaller was confirmed by sample data 
or by the characteristics of the deposit in areas of low variability. 
The introduction of the uncertainty parameter in conjunction 
with the risk criterion allows the mining company to achieve the 
desired results while minimising errors and reducing the number 
of samples that need to be taken. This can be seen by comparing 
the results of mine planning based on the E-type model with those 
obtained using progressive probabilities.
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