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1 Introduction

Quarkonium states have long been considered as probes of the Quark-Gluon Plasma (QGP)

produced in ultra-relativistic heavy-ion collisions [1]. The large color-charge density in

the plasma prevents the formation of bound states, in an analogous process to the De-

bye screening for electromagnetic processes [2]. The suppression of J/ψ production in

nucleus-nucleus (AA) with respect to proton-proton (pp) collisions was observed by several

experiments [3–11]. To determine whether the origin of this suppression is the influence of

the QGP or of Cold Nuclear Matter (CNM), data on proton(deuteron)-nucleus collisions

are also scrutinized.

The measurements in p-Pb collisions at the LHC show a suppression of J/ψ produc-

tion [12–14], with respect to pp collisions, at low transverse momentum (pT) and forward

center-of-mass rapidity (p-going direction, positive ycms), consistent with various combina-

tions of CNM effects: modification of the parton distribution functions (PDFs) in nuclei,

i.e. shadowing [15, 16], the Color-Glass Condensate (CGC) [17, 18], or coherent parton

energy loss [19]. The measurement of ψ(2S) production in p-Pb collisions [20] exhibits a

larger suppression, with respect to pp collisions, than the one measured for J/ψ, both at

forward and backward rapidity, which was not expected from CNM predictions. This effect

is reproduced by models which consider the break-up of the bound quark-anti-quark pair

via interactions with the final-state comoving particles [21, 22].

The p-Pb data at the center-of-mass energy per nucleon-nucleon collision of
√
sNN =

5.02 TeV [23, 24] showed that these effects depend on the centrality of the collision, as
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estimated from the energy deposited in the Zero Degree Calorimeter in the Pb-going direc-

tion [25], and/or the produced charged-particle multiplicity [26]. An increase of the nor-

malized J/ψ and Υ [26–28] yields, to their respective average values, with the normalized

charged-particle multiplicity is observed, similarly to the results from pp collisions [27–29].

The increase of the J/ψ (prompt and non-prompt) normalized yields was observed to be

similar to the increase for D mesons [30, 31], suggesting that the origin of the trend is com-

mon for charm and beauty production, and that hadronization does not play a dominant

influence on this measurement. The excited-to-ground state ratios, Υ(nS)/Υ(1S), were

found to decrease with increasing charged-particle multiplicity, which was not expected

from CNM predictions [27, 28].

The measurements of two-particle angular correlations in small systems have shown

interesting structures in the angular correlation function. A near-side ridge, located at

(∆ϕ) ≈ 0, is observed in high-multiplicity pp [32] and p-Pb [33] collisions, accompanied by

an away-side structure, located at ∆ϕ ≈ π and exceeding the away-side jet contribution,

in p-Pb collisions [34, 35]. These structures are reminiscent of those in Pb-Pb data [36],

interpreted as signatures of the collective motion of the particles during the hydrody-

namic evolution of the hot and dense medium. Correlations of J/ψ (at large rapidity) and

charged particles (at midrapidity) in p-Pb collisions [37, 38] revealed persisting long-range

correlation structures at high pT, similar to those observed with charged hadrons. The cor-

responding elliptic flow coefficients are found to be positive and of comparable magnitude

to those measured in Pb-Pb collisions [39–41], indicating that the mechanism at its origin

could be similar in both collision systems.

This letter reports the measurement of the multiplicity-differential inclusive J/ψ yield

and average transverse momentum in p-Pb collisions at
√
sNN = 8.16 TeV. The J/ψ mesons

are reconstructed at forward and backward center-of-mass rapidities in their dimuon decay

channel. The charged-particle pseudorapidity density is measured around midrapidity.

It complements and extends previous J/ψ measurements performed as a function of the

collision centrality and the charged-particle multiplicity at
√
sNN = 5.02 TeV [23, 26]. The

classification of events as a function of their charged-particle pseudorapidity density enables

the scrutiny of rare events, corresponding to the 0.01–0.04% highest multiplicities in the

collision. This allows p-Pb events to be studied from low multiplicities, similar to those

of pp collisions, up to very large multiplicities corresponding to ∼ 100 produced charged

particles per rapidity unit, similar to those of peripheral Pb-Pb collisions, which exhibit

collective-like effects.

2 Experimental setup and data samples

In this section, the detector subsystems relevant for this analysis are presented. A complete

description of the ALICE detector and its performance can be found in [42, 43].

The muon spectrometer [42, 43] covers the pseudorapidity window of −4.0 < η < −2.5

and consists of: a 4 m long composite front absorber, corresponding to about 10 interaction

lengths (10 λint), starting at 90 cm from the nominal interaction point, ten layers of muon

tracking chambers (MCH), coupled to a dipole magnet with a 3 Tm field integral, and
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four layers of muon trigger chambers (MTR). The MCH and MTR systems are separated

by an additional iron wall of about 7.2 λint that absorbs the remaining hadronic and low-

momentum particle contamination. A rear absorber positioned downstream of the MTR

filters out the background from beam-gas interactions. A conical absorber surrounds the

beam pipe and protects the spectrometer against secondary particles produced mainly by

large-η primary particles interacting with the beam pipe.

The Silicon Pixel Detector (SPD) [44] is the innermost part of the Inner Tracking

System (ITS). It consists of two cylindrical silicon pixel layers at radial distances of

3.9 and 7.6 cm from the beam line. The respective pseudorapidity coverage of the two

layers are |η| < 2 and |η| < 1.4. The SPD is used to reconstruct the primary vertex and to

measure the charged-particle pseudorapidity density at midrapidity.

The V0 scintillator arrays [45] are located at each side of the interaction point, covering

the pseudorapidity ranges of −3.7 < η < −1.7 and 2.8 < η < 5.1. In this analysis, the V0

provides an online trigger and helps to reject contamination from beam-gas events.

The neutron Zero Degree Calorimeter (ZDC) [42] located at about 112.5 m on either

side from the interaction point are used to reject electromagnetic interactions and beam-

induced background.

The results presented in this letter are obtained with data recorded during the p-Pb run

at
√
sNN = 8.16 TeV in 2016. The J/ψ are reconstructed in the dimuon channel with data

taken in two different beam configurations. Due to the asymmetry of the beam energy per

nucleon in p-Pb collisions at the LHC, the nucleon-nucleon center-of-mass rapidity frame is

shifted by ∆y = 0.465 in the direction of the proton beam. As a consequence, the J/ψ are

measured in the forward rapidity range of 2.03 < ycms < 3.53 (with protons going in the

direction of the muon spectrometer, p-going direction) and in the backward rapidity region

−4.46 < ycms < −2.96 (Pb-going direction). Events used in this analysis were collected

with a dedicated dimuon trigger which requires the coincidence of signals in both V0 arrays

(minimum bias trigger, MB) with at least two opposite-sign muons registered in the MTR.

The trigger has an adjustable online threshold, which for this data sample was set to only

accept muons with transverse momenta pT > 0.5 GeV/c (pT for which an efficiency of 50%

is reached). The pT differential single-muon trigger efficiency reaches a plateau of ∼ 96% at

pT ∼ 1.5 GeV/c. In this data-taking period, the maximum pile-up probability was about

4%. A dedicated event-selection strategy — exploiting the signals in the V0 and the ZDC,

the correlation of the number of clusters and track segments reconstructed in the SPD, as

well as an algorithm to tag events with multiple vertices — allowed us to keep the pile-up

below 0.5% for the analysed events, even at large multiplicities. The data sample analyzed

corresponds to an integrated luminosity of Lint = 7.2 ± 0.2 nb−1 (10.6 ± 0.3 nb−1) for the

p-going (Pb-going) configuration [46].

3 Charged-particle multiplicity measurement

The charged-particle pseudorapidity density (dNch/dη) is measured at midrapidity exploit-

ing the information provided by the SPD detector [47, 48]. It is evaluated by counting the

number of tracklets (Ntracklet), i.e. track segments joining pairs of hits in the two layers

of the SPD pointing to the primary vertex. The primary vertex is also computed with
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Source |η| < 1

N corr
tracklet to dNch/dη correlation 0.1–6.9(5.8)%

z-vertex dependence 3%

Monte Carlo event generator 2%

〈dNch/dη〉 4%

Table 1. Sources of systematic uncertainties on the normalized charged-particle multiplicity. For

the N corr
tracklet to dNch/dη correlation an interval is quoted, varying with multiplicity, with a different

maximum uncertainty for the Pb(p)-going configuration.

the SPD information. To minimize non-uniformities in the SPD acceptance, only events

with a z-vertex position determined within |zvtx| < 10 cm are considered, and tracklets are

counted within |η| < 1.

The raw Ntracklet counts are corrected (N corr
tracklet) for the variation of the detector condi-

tions with time (fraction of active SPD channels) and its limited acceptance as a function

of zvtx using a data-driven event-by-event correction [29, 30]. This correction ensures a

uniform response as a function of zvtx. In this analysis, the correction is done by renormal-

ising the Ntracklet(zvtx) distributions to the overall maximum with a Poissonian smearing

to account for the fluctuations. The events are sliced in N corr
tracklet intervals. Monte Carlo

(MC) simulations using the DPMJET [49] event generator and the GEANT3 transport

code [50] are used to estimate dNch/dη from N corr
tracklet. A second order polynomial correla-

tion is assumed between these two quantities for the full N corr
tracklet interval. Several sources

of systematic uncertainty were taken into account. Possible deviations from the second

order polynomial correlation were estimated by using other functions to quantify the cor-

relation or MC averages in each interval, with values ranging from 0.1% at intermediate

multiplicities to 6.9% (5.8%) at the lowest (highest) multiplicity intervals. The system-

atic uncertainty on the residual zvtx dependence due to differences between data and MC

amounts to 3%. Finally, the event generator influence was considered and evaluated by

comparing the DPMJET simulations with events generated in EPOS [51], resulting in a

2% uncertainty.

The average charged-particle pseudorapidity density, 〈dNch/dη〉, in non-single diffrac-

tive (NSD) events was obtained from an independent analysis and amounts to 〈dNch/dη〉 =

20.33± 0.83 (20.32± 0.83) in p-Pb (Pb-p) collisions for |η| < 1 [48], where the quoted un-

certainty is systematic.

Table 1 summarizes the contributions to the normalized charged-particle multiplicity

uncertainty. The total uncertainty is evaluated assuming that the different sources are

uncorrelated.

4 J/ψ measurement

The normalized J/ψ yield, i.e. the yield in each multiplicity interval i normalized to the

multiplicity-integrated value, is evaluated as

dN i/dy

〈dN/dy〉
=
N i

J/ψ

NJ/ψ

N eq
MB

N i,eq
MB

(Aε)J/ψ

(Aε)iJ/ψ

εiMB

εMB
, (4.1)
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from the reconstructed number of J/ψ, NJ/ψ, the number of minimum bias (MB) events

equivalent to the analysed dimuon sample, N eq
MB, the J/ψ acceptance and efficiency correc-

tion, (Aε)J/ψ, and the NSD event selection efficiency in the minimum bias sample, εMB.

The J/ψ are reconstructed for each multiplicity interval by combining opposite-sign

muons and computing the invariant mass of the pairs. The muon identification is ensured

by requiring that the track candidates reconstructed in the MCH have a matching track

segment in the MTR. Furthermore, the individual tracks must fulfill the following criteria

to make sure they are within the acceptance of the spectrometer: their radial distance from

the beam axis at the end of the front absorber is within 17.6 < Rabs < 89.5 cm and their

pseudorapidity in the detector reference frame is within −4 < η < −2.5.

To extract the signal, the invariant-mass distributions are first corrected for the J/ψ

acceptance times efficiency (Aε), differentially in pT and y. The resulting distributions

are then fitted with a superposition of J/ψ and ψ(2S) signals and a background lineshape.

Various combinations of lineshapes are used in order to evaluate the signal counts and

their uncertainties. The two charmonium resonances are parametrized by a sum of either

two Crystal Ball or two pseudo-Gaussian functions with power-law tails [52]. The tail

parametrizations are fixed to the values determined from either fits of the J/ψ signal from

MC simulations or to values taken from fits to the multiplicity-integrated distribution in

p-Pb data at
√
sNN = 8.16 TeV [13] and in pp data at

√
s = 13 TeV [53]. The

tails obtained from fitting the multiplicity-integrated distributions using the Crystal Ball

function are also considered, and fixed in the binned fits. The J/ψ peak mean position

and width are left free in the multiplicity-integrated fit, whilst the ψ(2S) ones are bound

to those of the J/ψ following the same procedure as in [54]. Note that the ψ(2S) yields

obtained are not physical values, as the invariant-mass spectrum is corrected by the Aε

correction for the J/ψ. In the multiplicity-differential fits, the mass and width of the J/ψ

peak are fixed to the integrated values to ensure the convergence of the fits in the few cases

where statistical significance is low. The background is parameterized by either a sum of

two exponentials or the product of an exponential and a fourth-order polynomial. Two fit

mass ranges are taken into account when computing the average number of J/ψ and its

uncertainty: 1.7 < mµµ < 4.8 GeV/c2 and 2.0 < mµµ < 5.0 GeV/c2. Examples of fits at

low, intermediate, and high multiplicity for data in the rapidity range 2.03 < ycms < 3.53

are shown in figure 1. The signal lineshape is found to be independent of multiplicity,

while the background does change with multiplicity. Therefore, in order to minimize the

uncertainty on the signal extraction, the same signal lineshape is used in the fit function

for both the numerator and denominator in eq. 4.1.

The number of equivalent MB events N eq
MB is computed from the number of dimuon

triggered events, Nµµ, and the normalization factor of dimuon triggered to MB events

(calculated as explained in next section) as N eq
MB = Fnorm · Nµµ. The number needs to

be corrected for by the NSD event selection efficiency, εMB = (97 ± 1)% [48], to take into

account the fraction of events without a reconstructed SPD vertex that are rejected. This

factor εMB is found to be independent of the charged-particle multiplicity in all the intervals

studied, with the exception of the lowest multiplicity interval, where it decreases by 1%.

The J/ψ acceptance and efficiency correction is obtained from MC simulations as a

function of pT and ycms. The J/ψ are generated using pT and ycms distributions tuned
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Figure 1. Opposite-sign muon pair invariant mass distributions for selected multiplicity intervals,

corrected for the J/ψ acceptance and efficiency, at forward rapidity. The distributions are shown

together with a typical fit function (solid line, see text for details). The J/ψ signal contribution is

also depicted by a dot-dashed red line, and the background by a dotted line.

to data [13]. They are simulated to decay into a muon pair using EvtGen [55]. The final

state radiation is described with PHOTOS [56]. The acceptance and efficiency correction

is independent of multiplicity in the measurement intervals. Therefore, when estimating

the uncertainty on the MC input, only the possible variation of the input pT and ycms

distributions is taken into account by using as input a subsample of the lower/higher

multiplicity events.

To extract the J/ψ mean transverse momentum 〈pJ/ψT 〉, the Aε-corrected transverse

momentum of the dimuon pair is fitted with the following function [26]:

〈pµµT 〉(mµµ) = αJ/ψ(mµµ) 〈pJ/ψT 〉
+αψ

′
(mµµ) 〈pψ

′

T 〉
+
(

1− αJ/ψ(mµµ)− αψ′
(mµµ)

)
〈pbkgdT 〉(mµµ),

(4.2)

where the ratios of signal over the sum of signal and background of the two charmonium
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Figure 2. Average transverse momentum of opposite-sign muon pairs for selected multiplicity

intervals, corrected for the J/ψ acceptance and efficiency. The distributions are shown together

with a typical fit function (solid line, see text for details).

states αJ/ψ = SJ/ψ/(SJ/ψ + Sψ
′

+ B) and αψ
′

= Sψ
′
/(SJ/ψ + Sψ

′
+ B) are fixed to the

value extracted from fitting the invariant-mass spectrum corrected by the J/ψ Aε. The

background is described by a function 〈pbkgdT 〉(mµµ). Two functional forms are used: either

a sum of two exponentials or the product of an exponential and a fourth-order polyno-

mial. Note that the 〈pψ
′

T 〉 does not represent a physical mean transverse momentum of the

ψ(2S) as the spectra are corrected by the Aε for J/ψ. Figure 2 illustrates typical 〈pµµT 〉
distributions for selected multiplicity intervals.

5 Systematic uncertainties

The following sources of systematic uncertainty on the J/ψ yields in multiplicity classes

are considered:

(i) the signal extraction,

(ii) the normalisation,

(iii) the effect of resolution and pile-up,

(iv) the event-by-event Ntracklet to N corr
tracklet correction, and

(v) the event selection efficiency of the NSD event class.

For the measurement of the yields in each multiplicity interval normalized to the event aver-

age, the systematic uncertainties are estimated directly for this ratio. Details on the signal

extraction uncertainty were addressed in the previous section. The values are estimated

by varying the signal and background shapes of the fit function, as well as by varying the

invariant-mass range of the fit. The systematic uncertainty is computed as the root-mean-

square of the uncertainties on the ratio for each of these fits, ranging between 0.8–2.3%

(0.5–1.9%) at forward (backward) rapidity, being larger at large multiplicities where the
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number of events is smaller. The normalisation factor of the dimuon triggered to MB

events Fnorm is studied using three alternative methods [13]. The first method evaluates

the probability of a coincidence of a dimuon- and a MB-triggered event in a MB-triggered

data set. The second method exploits the higher probability of occurrence of a single-muon

trigger by looking at the product of the probability of coincidence of a single-muon- and

MB-triggered event and of the probability of finding a dimuon event in the single-muon

triggered data. The third method is based on information from the trigger scalers. The

run-by-run spread of the Fnorm/F
i
norm values, ratio of the normalisation values in the in-

tegrated and specific multiplicity intervals, computed for these three methods determines

a 2.5% systematic uncertainty, independent of multiplicity. The effect of the method of

choice for the event-by-event correction from Ntracklet to N corr
tracklet on the J/ψ yield is also

studied [29, 30]. Both the randomisation function (Poisson or binomial) and the reference

normalisation of the correction are varied. The Poissonian smearing is applied when the

maximum is selected as normalisation reference, while the binomial correction should be

used when considering all other possible reference values (in our case the minimum). The

influence of these modifications on the yield ranges from 0.1% to 2.6% (4.3%) at forward

(backward) rapidity, as a function of multiplicity.

The uncertainty coming from pile up and multiplicity axis resolution is estimated as a

single contribution by repeating the analysis multiple times with a different randomisation

seed for the event-by-event correction, or introducing a small shift of the N corr
tracklet intervals,

or varying the pile-up rejection criteria. The uncertainty amounts to 2%, independent of

multiplicity. The uncertainty on the event selection efficiency for the NSD event class is

estimated as in ref. [48]. The uncertainty amounts to 1% and is correlated in all multiplic-

ity intervals. Table 2 summarizes all contributions to the systematic uncertainty on the

normalized yield.

For the 〈pT〉, the effects of the uncertainty on the 〈pT〉 extraction procedure and of

the Aε are considered. Similar to the yields, the signal extraction uncertainty is estimated

by varying the fit function and its range. In addition, as the S/(S + B) terms in eq. 4.2

are fixed in the fit to the 〈pT〉 invariant-mass spectrum, the influence of the statistical

uncertainty on the J/ψ signal S is introduced via a Gaussian smearing of S (with respect

to its statistical uncertainty) to prevent artificially minimising the uncertainty. It ranges

from 0.2% to 3.0% (1.2%) at forward (backward) rapidity, increasing with multiplicity as

a consequence of the smaller number of events. The uncertainty on the absolute 〈pT〉 also

takes into account the uncertainty on:

(i) the MC input shapes as a function of pT and ycms, ranging from < 0.1 to 6% (< 0.1

to 11%) at forward (backward) rapidity,

(ii) the tracking efficiency, 1% [13],

(iii) the trigger efficiency, 2.6% (3.1%) [13], and

(iv) the matching efficiency between the tracks in the MCH and the MTR, 1% [13].

To evaluate the uncertainty on the MC input, the data are divided into two multiplicity

classes at the mean of the N corr
tracklet distribution for each rapidity interval. For each of

– 8 –
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Source 2.03 < ycms < 3.53 −4.46 < ycms < −2.96

Signal extraction 0.8–2.3% 0.5–1.9%

Normalization (Fnorm) 2.5% 2.5%

Event-by-event N corr
tracklet 0.1–2.6% 0.1–4.3%

Bin-flow and pile-up 2% 2%

Normalization to NSD 1%∗ 1%∗

Table 2. Sources of systematic uncertainties on the normalized yield. The contributions marked

with an asterisk are correlated in multiplicity.

2.03 < ycms < 3.53 −4.46 < ycms < −2.96

Source 〈pT〉 〈pT〉
/
〈pintT 〉 〈pT〉 〈pT〉

/
〈pintT 〉

Signal extraction 0.2–3.0% (0.2%) 0.3–3.0% 0.2–1.2% (0.2%) 0.3–1.3%

Tracking efficiency 1%* — 1%* —

Trigger efficiency 2.6%* — 3.1%* —

Track-trigger matching 1%* — 1%* —

Monte Carlo input < 0.1− 6%� < 0.1− 2%� < 0.1− 11%� < 0.1− 4%�

Table 3. Systematic uncertainty sources on the average and normalized average pT. The values in

parentheses correspond to the multiplicity-integrated uncertainties related to the signal extraction.

The contributions marked with an asterisk are correlated in multiplicity. The uncertainty on MC

input, marked with a diamond, is partially correlated in multiplicity.

these bins, the 〈pT〉 is estimated using a modified Aε correction, which was re-weighted to

better describe the pT- and y-dependent distributions of J/ψ in given bin. The systematic

uncertainty is taken as the difference of the original 〈pT〉 value, computed with the initial Aε

correction, and the new 〈pT〉 estimated with re-weighted correction. The uncertainty on all

the measured multiplicity intervals is extrapolated from these two values assuming that in

each class the uncertainty is proportional to the 〈pT〉. The contributions of the tracking, the

trigger and their matching to the uncertainty are correlated between multiplicity intervals.

The normalized 〈pT〉 values are only affected by the uncertainty on the signal extraction

procedure and the MC input, which is partly correlated in multiplicity and ranges from

< 0.1% to 2% (< 0.1% to 4%) in the forward (backward) rapidity interval. Table 3

summarizes all contributions to the average, 〈pT〉, and normalized average, 〈pT〉
/
〈pintT 〉, pT

measurements. The correlated uncertainties are added in quadrature and quoted in the

plot as a text.

6 Results and discussion

The normalized J/ψ yield, at forward and backward rapidities, is presented in figure 3 as a

function of the normalized charged-particle pseudorapidity density, measured at midrapid-

ity (|η| < 1). The normalized yield increases with increasing multiplicity in both rapidity

intervals. The yield at backward rapidity grows faster than the one at forward rapidity,

reaching values above those expected from a linear (with slope unity) increase at large
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Figure 3. Normalized yield of inclusive J/ψ, at forward and backward rapidities, as a function of

the normalized charged-particle pseudorapidity density, measured at midrapidity, in p-Pb collisions

at
√
sNN = 8.16 TeV. The vertical bars represent the statistical uncertainties. The vertical and

horizontal widths of the boxes represent the respective systematic uncertainties for the J/ψ yields

and the multiplicities. The dashed line indicates the one-to-one correlation, to guide the eye.

multiplicities. On the other hand, at forward rapidity the values show a slower-than-linear

increase at large multiplicities. The forward and backward rapidity yields cross a linear

increase estimate (and each other) at around 1.5 times the average multiplicity. The un-

derlying mechanism remains unclear. The forward (p-going) rapidity region probes the

Pb-nucleus low Bjorken-x regime (xPb ∼ 10−5 in a naive 2-body calculation for pT = 0),

whereas the backward (Pb-going) rapidity is sensitive to the intermediate-to-large values

(xPb ∼ 10−2). The observed suppression of the pT- and multiplicity-integrated J/ψ yield

at forward rapidity, with respect to pp collisions, is described by different cold nuclear

matter models considering the probed shadowing/saturation domain [13]. The centrality-

differential measurements at
√
sNN = 5.02 TeV [23] of the nuclear modification factor,

〈pT〉 and 〈p2T〉, corresponding to relative multiplicities of at most 2.5 times the average one,

can also be described by these models. The contribution from beauty-quark decays to the

inclusive J/ψ yield amounts to ∼ 10% [57]. It is not expected to affect significantly these

results, since a similar trend was observed for prompt and non-prompt J/ψ as a function

of the charged-particle pseudorapidity density in pp collisions [30]. Moreover, the autocor-

relations influence is negligible in this analysis due to the large rapidity gap between the

measurement of the charged-particle multiplicity and the J/ψ yield [58].

Figure 4 presents 〈pT〉 as a function of the relative charged-particle pseudorapidity den-

sity, in p-Pb collisions at
√
sNN = 8.16 TeV. The measured 〈pT〉 is systematically smaller

– 10 –
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Figure 4. Average transverse momentum of inclusive J/ψ at forward and backward rapidities as

a function of the normalized charged-particle pseudorapidity density, measured at midrapidity, in

p-Pb collisions at
√
sNN = 8.16 TeV. The vertical bars represent the statistical uncertainties, the

boxes the systematic ones.

at backward than at forward rapidity. This is also true for the multiplicity-integrated value,

which is consistent with the observed decrease of 〈pT〉 with increasing |ycms| in pp colli-

sions [59]. The 〈pT〉 increases steadily for multiplicities below the average, and saturates

above the average multiplicity. Two naive scenarios are typically considered to explain

high-multiplicity events: the incoherent superposition of multiple parton-parton collisions,

or single parton interactions with higher energy transfer. One would expect the latter to

be characterized by a higher 〈pT〉 of the produced J/ψ. Reality is probably somewhere

in between these two simplified scenarios. The simultaneous increase of the p-Pb yield

together with the saturation of 〈pT〉 at large multiplicities may point to J/ψ production

from an incoherent superposition of parton-parton collisions.

The measured yield in p-Pb collisions can be described with the EPOS 3 event genera-

tor [60, 61] (see figure 5) based on a combination of Gribov-Regge theory and pQCD: where

the individual scatterings are identified with parton ladders emerging as flux tubes, the ex-

istence of multiple nucleon-nucleon collisions in p-Pb collisions is accounted for, the initial

conditions of the collision are modified due to CNM effects including parton saturation,

and slow string segments (far from the surface) can be further mapped to fluid dynamic

fields using a core-corona description. The J/ψ bound-state formation in EPOS 3 assumes

a color-evaporation approach, i.e. it is associated to a charm quark-anti-quark pair in a

given mass range. The influence of the 3D+1 viscous hydrodynamic evolution of the bulk

(starting from flux tube initial conditions) in the EPOS 3 calculation is small (see figure 5).
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Figure 5. Normalized yield of inclusive J/ψ as a function of the normalized charged-particle pseu-

dorapidity density, measured at midrapidity, in p-Pb collisions at
√
sNN = 8.16 TeV compared with

EPOS 3 [60, 61] calculations. Left (right) panel presents the measurement at forward (backward)

rapidity. The vertical bars represent the statistical uncertainties, the boxes the systematic ones.

The dashed line indicates the one-to-one correlation, to guide the eye. The shaded areas represent

the statistical uncertainties on the EPOS 3 calculations.

However the number of simulated events at large multiplicities is limited and does not al-

low us to elucidate possible hydrodynamic effects. EPOS 3 description of the measurement

suggests J/ψ production from an incoherent superposition of parton-parton collisions.

The normalized J/ψ yield and 〈pT〉 are compared with the results in p-Pb collisions

at
√
sNN = 5.02 TeV [26] in figure 6 and 7, respectively. The measurements are in

remarkable agreement, within the uncertainties, at both energies and rapidities. These

results extend the probed charged-particle pseudorapidity density interval, both at low and

high multiplicity, examining events of up to almost six times the average value. The more

precise
√
sNN = 8.16 TeV data evidence a continuous increase of the normalized yield with

multiplicity up to the largest multiplicities attained. The similarities at
√
sNN = 8.16 TeV

and
√
sNN = 5.02 TeV suggest a common origin of the multiplicity trend, with a mechanism

whose effect varies with rapidity, but might have a small dependence on the collision energy,

in the explored interval. This is consistent with the large variation of the probed xPb with

rapidity and its relative slow evolution on the collision energy (typically a factor of 2 in

the simplified 2-body picture).

Figure 8 presents a comparison of the normalized J/ψ p-Pb yields with results from

pp collisions at
√
sNN = 7 TeV [29] (2.5 < ycms < 4.0) and Pb-Pb collisions at

√
sNN =

5.02 TeV [62] (2.5 < ycms < 4.0). The corresponding 〈dNch/dη〉 in |η| < 1 for those

measurements is 6.01 ± 0.01 (stat.)+0.20
−0.12 (syst.) [29] and 544.7 ± 0.2 (stat.) ± 7.3 (syst.) for

0–90% centrality [63], respectively. The ratio of the yields over the corresponding charged-

particle multiplicity is also shown in figure 8. The trend exhibited by the pp data is similar

to the one observed in the backward (Pb-going) direction. It should be noted that the pp

results are normalized to the inelastic ‘INEL’ event class, whereas the p-Pb measurements

are normalized to the non-single-diffractive ‘NSD’ one. In p-Pb collisions these two event

classes mostly overlap when comparing MB results [48]. The Pb-Pb data also show a faster-
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Figure 6. Normalized yield of inclusive J/ψ as a function of the normalized charged-particle

pseudorapidity density, measured at midrapidity, in p-Pb collisions at
√
sNN = 8.16 TeV and√

sNN = 5.02 TeV [26]. The top (bottom) panel presents the measurement at forward (backward)

rapidity. The vertical bars represent the statistical uncertainties, the boxes the systematic ones.

The dashed line indicates the one-to-one correlation, to guide the eye.

than-linear increase with the normalized charged-particle pseudorapidity density. They are

compatible within uncertainties with the p-Pb backward rapidity result in the restricted

multiplicity interval of the measurement. Whereas the pp and p-Pb data include J/ψ with

pT > 0, the Pb-Pb data points include J/ψ with 0.3 < pT < 12 GeV/c to reduce the

low-pT contribution from photoproduction, which is significant only in more peripheral

collisions [62, 64, 65]. The overall increase of multiple parton-parton collisions with the

colliding system (from pp up to Pb-Pb collisions) described in [66] is expected to cancel

in the relative quantities reported in this publication, sensitive to the relative evolution

with charged-particle density in a given colliding system. Model calculations are needed to
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Figure 7. Normalized average transverse momentum of inclusive J/ψ as a function of the nor-

malized charged-particle pseudorapidity density, measured at midrapidity, in p-Pb collisions at√
sNN = 8.16 TeV and

√
sNN = 5.02 TeV [26]. Top (bottom) panel presents the measurement

at forward (backward) rapidity. The vertical bars represent the statistical uncertainties, the boxes

the systematic ones.

interpret the similarities of pp, p-Pb, and Pb-Pb normalized J/ψ yields at large rapidity

as a function of the normalized charged-particle pseudorapidity density at midrapidity.

7 Conclusions

The production of inclusive J/ψ at large rapidities in p-Pb collisions at
√
sNN = 8.16 TeV is

reported as a function of the charged-particle pseudorapidity density at midrapidity. The

normalized J/ψ yield shows an increase with increasing normalised charged-particle pseu-

dorapidity density. The yield at backward rapidity grows faster than the forward rapidity

one, reaching values above those of the linear (with slope unity) increase estimate at large
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Figure 8. Top: normalized yield of inclusive J/ψ as a function of the normalized charged-particle

pseudorapidity density, measured at midrapidity, in various collision systems. Bottom: ratio of the

normalized yields to the corresponding normalized charged-particle pseudorapidity density. The pp

results are normalized to INEL collisions [29], whereas p-Pb ones refer to the NSD event class; all

for pT > 0. The Pb-Pb data points include J/ψ with 0.3 < pT < 12 GeV/c to reduce the low-pT
contribution from photoproduction, which is significant only in more peripheral collisions [62, 64,

65]. The vertical bars represent the statistical uncertainties, the boxes the systematic ones. The

dashed line indicates the one-to-one correlation, to guide the eye.

normalised multiplicity, whereas the values at forward rapidity show a slower-than-linear

increase. The trends of the normalised yield are reproduced by the EPOS 3 [60, 61] event

generator. The 〈pT〉 is smaller at backward than at forward rapidity, consistent with the

expected softening of the spectra with increasing |ycms|. The 〈pT〉 increases steadily for

multiplicities below the average, and saturates above the average multiplicity. The simulta-

neous increase of the yield together with the saturation of 〈pT〉may point to J/ψ production

from an incoherent superposition of parton-parton collisions. These measurements show
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trends compatible with those observed at
√
sNN = 5.02 TeV [26] in p-Pb collisions, but

in this work an improved precision and extended multiplicity coverage were reached. The

similarities suggest a common origin, with a mechanism whose effect varies with rapidity,

but with only a small dependence (if any) on the collision energy.
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y Desarrollo Nuclear (CEADEN), Cubaenerǵıa, Cuba; Ministry of Education, Youth and

Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Re-

search — Natural Sciences, the VILLUM FONDEN and Danish National Research Foun-

dation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à
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S. Acharya141, D. Adamová95, A. Adler74, J. Adolfsson81, M.M. Aggarwal100, G. Aglieri Rinella34,

M. Agnello30, N. Agrawal10,54, Z. Ahammed141, S. Ahmad16, S.U. Ahn76, Z. Akbar51,

A. Akindinov92, M. Al-Turany107, S.N. Alam141, D.S.D. Albuquerque122, D. Aleksandrov88,

B. Alessandro59, H.M. Alfanda6, R. Alfaro Molina71, B. Ali16, Y. Ali14, A. Alici10,26,54,

A. Alkin2,34, J. Alme21, T. Alt68, L. Altenkamper21, I. Altsybeev113, M.N. Anaam6, C. Andrei48,

D. Andreou34, H.A. Andrews111, A. Andronic144, M. Angeletti34, V. Anguelov104, C. Anson15,
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A. Kondratyev75, N. Kondratyeva93, E. Kondratyuk91, J. Konig68, S.A. Konigstorfer105,

P.J. Konopka34, G. Kornakov142, L. Koska117, O. Kovalenko85, V. Kovalenko113, M. Kowalski118,
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M. Lettrich34, P. Lévai145, X. Li12, X.L. Li6, J. Lien129, R. Lietava111, B. Lim17,

V. Lindenstruth39, A. Lindner48, S.W. Lindsay127, C. Lippmann107, M.A. Lisa97, A. Liu19,

J. Liu127, S. Liu97, W.J. Llope143, I.M. Lofnes21, V. Loginov93, C. Loizides96, P. Loncar35,
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K. Røed20, R. Rogalev91, E. Rogochaya75, D. Rohr34, D. Röhrich21, P.S. Rokita142,
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104 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

– 27 –



J
H
E
P
0
9
(
2
0
2
0
)
1
6
2

105 Physik Department, Technische Universität München, Munich, Germany
106 Politecnico di Bari, Bari, Italy
107 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für

Schwerionenforschung GmbH, Darmstadt, Germany
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