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Abstract. The search for mathematical and numerical models to address problems of nanostructures has gained 

centrality in the last two decades. This importance stems from the increasing applications of allotropic forms of 

carbon as nanotubes and more recently graphene in high-performance composite materials, resonators for high 

frequency, biosensors, gas sensors, among others. In fullerene nanotubes and graphene sheets, the natural 

frequencies are of the order of THz, a fact that enabled the application of these materials in ultra-frequency 

resonators and sensors based on the dispersion of mechanical waves in solid media. In the simulation of the 

dynamic behavior of nanostructures, the molecular dynamics (MD) method is frequently used, however, with a 

high computational cost. Recently, low-cost computational approaches based on the principles of non-local 

continuum mechanics have been used to include neighborhood effects of fundamental importance in the treatment 

of nanoscale problems. In this work, the authors propose the use of non-local continuous mechanics in the approach 

of free vibrations of axisymmetric nano-shells on Winkler's foundation modeled by first-order kinematic theories 

considering shear deformation (FSDT) and by cubic kinematic theories (TSDT). To increase the accuracy of the 

relatively high frequencies (above ten percent of the eigenvalues approximated by the numerical model) the 

approximation space will be built according to Uniform FEM B-Spline (U- FEM B-Spline) technique, with high 

order and high regularity. The results will be analyzed under three aspects: the sensitivity of the first natural 

frequency to variations in dimensions and the nanoscale coefficient; the relative error with respect to a target 

frequency; the relative error for a pre-stipulated frequency range. 

Keywords: U-FEM B-Spline, FSDT, TSDT, shells. 

1  Introduction 

The simulation of the dynamic behavior of nanostructures has been the subject of recent research due to its 

importance in the study of super materials using allotropic forms of carbon. The use of nano structures of fullerene 

tubes (nano tubes) and graphene sheets (materials defined in 2D) has been widely researched in the last two 

decades due to the superior physical properties. In this context, it has been reported the high modulus of elasticity 

by Y. Nan and L. Vicenzo [1], the ability to detect high frequencies in the work of D. Garcia-Sanchez et al., [2], 

among others. On the other hand, in addressing the problem of free and forced vibrations on an atomic scale, 

classical or local solid mechanics was not shown adequate. In addressing dynamic problems on the atomic scale, 

the method of molecular mechanics (MM) and molecular dynamics (MD) has been widely used, as mentioned in 

the studies of: S.C. Chowdhury et al., [3] and [4], in the simulation of bonding forces in carbon chains and the 

problem of vibrations in graphene plates and by Belytschko et al. [5] in addressing the fracture problem in carbon 

nanotube chains, among others. This methodology, although very accurate, is computationally expensive using 

models with a small number of molecules involved to make computation possible. An alternative approach to the 

MD, but significantly less computationally expensive, is presented by Eringen [6] and [7] within the context of 

non-local continuum mechanics. In this theory the neighborhood effects on the atomic scale, extremely relevant 

in the constitutive equation, are considered. Recent work using this theory has been presented by S. Natarajan et 

al. [8] in addressing the problem of free vibrations in thin nano plates with a functional gradient using non-local 
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elasticity theory and the isogeometric method to obtain the approximation space; L. W. Zhang et al. [9] in the 

study of vibrations subjected to transverse magnetic field in thin square graphene nanoplates using an 

approximation space built according to the kp-Ritz element-free method; and other relevant studies that will not 

be mentioned in this document for brevity. 

In the present work, the authors study the effect of variation in dimensions, of the nano-scale coefficients and 

regularity of approximation spaces on the axisymmetric natural modes and frequency of a hemispherical nano-

shell over one Winkler's elastic foundation. The shell is modeled with a degenerated solid element described in 

cylindrical coordinates in J. L Bathoz and G. Dhatt [10], together with the first order shear deformation theory 

(FSDT) and the third shear deformation theory HSDT, both shown in J. N. Reddy [11]. The effect of the regularity 

of the approximation space on natural modes and frequencies is obtained using Uniform FEM B-Spline with C2 

and C4 regularity, in the one-dimensional version, proposed by R. Burla [12]. The results are analyzed over three 

aspects: the sensitivity of the first natural frequency to the increment in dimensions and the nanoscale coefficient, 

the influence of the regularity of the approximation space on the convergence with respect to a relatively high 

target frequency (above ten percent of the numerically approximate modes) and the influence of the regularity of 

the approximation spaces in the decay of the first natural frequency with the increment of the nanoscale 

coefficients. This work is presented in five sections which are: introduction; discretized model of the free vibration 

problem using non-local elasticity; numerical results, conclusions, and bibliographic reference. 

2  Free vibrations in non-local elasticity 

In this section the problem of non-damped axisymmetric free vibrations is studied for a solid of revolution 

described in the plane of radial symmetry in Fig. 1 (a). The problem is to find the set of solutions �������
�  where 

�� ∈ 	
� (eq. (1)) satisfies the elliptical eigenvalues / eigenvectors problem described in non-local elasticity by 

equations (2) to (4) for the spectrum 0 ≤ �� ≤ �� ≤ ⋯ �� … ≤ ��. 

 ( ) ( ) ( ) ( ){ }2, | , , DKin r z C r z r zΩ Γ= ≠ ∈ = ∈0 0u u , X  (1) 

 

 
(a) 

 
(b) 

Figure 1: a) solid of revolution shown in the radial symmetry plane; b) degenerate solid element shown 

in cylindrical coordinates 

 
( ) ( )2 21 ,

l
r zω ρ µ Ω∇ ⋅ = − − ∇ ∈u,  Xσ

 (2) 

 ( ),l Dn r zκ Γ⋅ = − ∈u,     Xσ  (3) 

 
( ), Dr z Γ= ∈0u , X

 (4) 

In eq. (1) ��  is the local stress tensor, � the natural frequency, � the specific mass and � the nanoscale 

coefficient. In eq. (2), κ  is the spring stiffness that characterizes the Winkler foundation. 

The weak discretized formulation is obtained for a shell of revolution modeled with a degenerated solid 
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element described in cylindrical coordinates (see Fib.1(b)) along with the FSDT and HSDT kinematic theories 

both described in J. N. Reddy [11]. The approximation space is obtained according to the Uniform FEM B-SPline 

methodology with regularity ���Ω� and polynomial order � = � + 1, � = 2,4, shown in R. Burla [12] and used 

in this work in the one-dimensional version. The Shape functions that approximate the displacement field are 

associated with the extreme nodes of the element shown in Fig.1 (b) and are described in detail in D. A. de Andrade 

et al. [13]. The description of the displacement field in the element according to the kinematic theories FSDT and 

HSDT is defined by eqs. (5) and (6) in global coordinates with sub-indexes f and t for the first and third order 

theories, respectively. 

 

( ),eh f f

eh

v

w
η ζ

   =     
u = N U

 (5) 

 

( ),eh t t

eh

v

w
η ζ

   =     
u = NU

 (6) 

The explicit forms of the matrices in eqs. (5) and (6) are described by eqs. (7) to (10). In eq. (7) ne is the 

number of the last grid node of the element in Fig.1(b) and nf is the number of shape functions associated with the 

element's first and last node.  

 

( ) ( )( )
( ) ( )( )

   
2

2

0 2
, 1, 1,

0 2

i i r
k k k k

f i i z
k k k k

h v
k ne i nf

h v

φ η φ η ζ

φ η φ η ζ

 
 = = = 
  

N
⋯ ⋯

⋯ ⋯

 (7) 

 
{ }T i i i

f k k kv w θ=U ⋯ ⋯

 (8) 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 3 3
2 2 2

2 2 3 3
2 2 2

0 2 4 8
,

0 2 4 8

i i r i r i r
k k k k k k k k k k

t i i z i z i z
k k k k k k k k k k

h v h v h v

h v h v h v

φ φ ζ φ ζ φ ζ
η ζ

φ φ ζ φ ζ φ ζ

 
 =  
  

N
⋯ ⋯

⋯ ⋯

 (9) 

 
{ }T i i i i i

t k k k k kv w θ α β=U ⋯ ⋯

 (10) 

In eqs. (7) to (10), ( )i
k
φ η  are B-Splines functions associated with the first and last node of the element, ℎ�  is the 

thickness corresponding to the k node and { }2 2 2,
T r z
k k kv v=v  are the components of the tangent vector at node k to 

the Gaussian curve 0ζ = .  

The weak discretized formulation is obtained by the Galerkin method applied to the free vibration problem 

defined in equations (2) to (4) and resulting in the eq. (11). 
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In eq. (11), U is the vector of nodal displacement parameters that depends on the kinematic model used as 

mentioned in equations (8) and (10). Also, in eq. (11), $ is the penalty coefficient, %&, '&, and ( are the kinematic, 

deformation and constitutive matrices described in detail for the FSDT and HSDT kinematic models in [13]. %&
)
 

and %&
* are the penalty matrix of the essential boundary conditions and the matrix that represents the displacement 

component that produces spring deformation, both described for the FSDT model in eqs. (12) and (13). 
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Still in eq. (11) the matrices +& defined in the eq. (14), is associated with the gradient ∇�. � operating in the 

displacement field. 

 e eζ= ∂G J N
 (14) 

In eq. (14) the operators ζ∂ e J  are shown in detail in O. A. G. de Suarez et al. [14].  Equation (11) is usually 

shown in matrix form in the problem of free vibrations by eq. (15).   

 ( )l nl
 − + =  0.K M M U  (15) 

In eq. (15), K , lM  and nlM  represent the stiffness matrix, the local mass matrix and the non-local mass 

matrix all described explicitly in equations (16) to (18). 
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3  Numerical Result 

The numerical results are obtained for the hemispherical shell on Winkler's elastic foundation with geometric 

characteristics and mechanical properties indicated in Fig. 1. In this section, the numerical results are analyzed 

from the perspective of the influence of the regularity of the approximation spaces on relatively high frequencies 

(ten percent above the frequencies obtained by the numerical model) and on the influence of the dimensions and 

coefficients of the nanoscale on the first resonant frequency. Still with a speculative character, the influence of the 

regularity of the approximation space on the decay of the first natural frequency is analyzed with the increase of 

the nanoscale coefficients. 

 
Figure 2: a) Hemispherical shell on Winkler foundation; b) boundary 

conditions in the symmetric radial plane.  
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3.1 Influence of approximation space regularity 

The influence of approximation space regularity to obtain relatively high frequencies is analyzed for a 

hemispheric shell modeled with FSDT kinematic theory and with boundary conditions and mechanical and 

geometric properties indicated in case I of Fig. 2. In this study, the convergence analysis is performed by the 

relative error defined in eq. (19) for the target frequency �./. The approximation spaces are obtained by the “h” 

version presented in the strategies in the Tab.1. The reference solution �0 in eq. (19) is obtained by the rule 

proposed in Dan Givoli [15] for an approximation space constructed with one hundred Lagrangian elements of six 

nodes (fifth polynomial order) resulting in a numerical model with 1498 degrees of freedom. 

 
r h r re ω ω ω= −

 (19) 

Table 1: Numerical strategies 

FEM Lagrange U-FEM B-Spline 

L3 L5 p=3 p=5 

nel. NDOF nel. NDOF grid NDOF grid NDOF 

10 88 10 148 29 87 29 87 

20 178 15 223 69 207 69 207 

30 268 20 298 109 327 109 327 

50 448 30 448 149 447 149 447 

 

In Tab.1, L3 and L5 are the one-dimensional Lagrangian elements of four nodes (cubic polynomial order) and the 

Lagrangian elements of six nodes (fifth polynomial order) respectively.  

 

 The results observed in the target frequency convergence studies in Fig.3 (a) show a significant 

improvement in the accuracy of the relatively high frequency obtained with approximation spaces build according 

to U-FEM B-Spline with respect to those obtained with FEM Lagrange. This fact, already mentioned in T. J. R. 

Hughes [16] and [15], is due to the regularity C2 and C4 of the approximation spaces built according to Uniform 

FEM B-SPline. 

 

 
(a) 

 
(b) 

Figure 3: a) convergence to target frequency �./; b) influence of dimensions and nano scale 

coefficient in first resonant frequency. 

 

3.2 Influence of dimensions and nanoscale coefficients on the first natural frequency 

The influence of the variation of the nanoscale coefficient and of the dimensions in the first natural frequency 

is analyzed for the shell indicated in Fig.1 with geometric and mechanical properties shown in case II. This study 
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considered the increase in nanoscale coefficients � = �0,2,4,6���2�� and the dimensions 3 = �10,30���2�. The 

numerical models used are described in items A, B and C in Tab.2. The results of this study are shown in Fig.3 

(b). 

 

 Table 2: proposed strategies  

A B C 

FEM C0 FSDT U-FEM B-SPline 

C2 

FSDT U-FEM B-SPline 

C2 

HSDT 

elem. eltype NDOF grid p NDOF grid p NDOF 

50 L3 448 149 3 447 149 3 745 

 

From the analysis of Fig. 3, an evident fact emerges that is based on the theory of non-local elasticity of 

Eringen [7]. With the increase of the dimensions of the structure the results for different values of nanoscale 

coefficients converge to that obtained by the classical elasticity with μ = 0. Another aspect of the analysis refers 

to the significant difference in the decay of the first natural frequency observed in Fig. 3 (b) of strategy A in relation 

to strategies B and C for the shell with a = 10nm. A speculation about the greater sensitivity to behavior on the 

nanoscale, shown by the strategies that build the approximation spaces using U-FEM B-SPline, is in the fact that 

it presents continuity in the solution gradient that directly affects the non-local mass matrix as it is shown in eq. 

(11). 

4  Conclusions 

The effects of the regularity of the approximation spaces in the numerical approach to the eigenvalue / 

eigenvector problem (version of the free vibration problem) qualitatively confirm the results obtained in M. Rauen 

et al. [17], J. A. Cottrell et al. [18] and [19], in the analysis of free vibrations of a hemispheric nano-shell within 

the limits of classical elasticity, that is, with μ = 0. The sensitivity on the first natural frequency of the nanoscale 

coefficients and shell dimensions was found according to Eringen's theory [7]. Another aspect found in the analysis 

of this work is related to the influence of the regularity of the approximation space on the decay of the frequency 

values with the increase of the nanoscale coefficients. This fact is possibly due to the use of the gradient of the 

approximation solutions in obtaining the non-local mass matrix. In this case, the approach spaces built with 

regularity C2 and C4 guarantee the continuity of the gradient, which does not happen with the approach spaces 

built according to the FEM C0. 
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