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Abstract. The use of macroscopic models in numerical approaches for studying subsurface flow has become
common practice in hydrogeology and petroleum engineering since the late 1960’s. Particularly in rock masses,
where the presence of joints constitutes a key weak point along which the mechanical, physical and hydraulic
properties of rock matrix degrade, the presence of discontinuities, at different scales, represent a fundamental
component of transport of fluid or contaminants through rock masses. However, one of the major questions that
still poses a problem is what parameters to introduce into the models. From a transport properties viewpoint, joints
within rock masses represent preferential channels for fluid flow and, as such, may be contributors to rapid transport
of fluid and contaminants through rock masses, particularly when the permeability of the rock matrix is low. This
article aims to present a micromechanical approach to the derivation of jointed rock permeability. Several examples
are present for different numbers of joint sets crosscutting rock masses, showing the flow anisotropy introduced by
their presence.
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1 Introduction

Product of geological phenomena in the history of rock masses, discontinuities, usually referred to as joints,
are commonly present at different scales, modifying and degrading mechanical and other physical properties of
the rock matrix. They are surfaces of small thickness, along which sliding is likely to occur and strongly affect the
overall behavior of rock masses. In what concerns hydraulic and transport properties, joints represent preferential
channels for fluid flow, contributing to rapid transport of fluid and/or contaminants through the medium, especially
when rock matrix permeability is low. Since the late 1960’s the use of macroscopic approaches in numerical
models simulating subsurface flow has become common practice in hydrogeology and petroleum engineering,
as well as attempts towards upscaling approaches, searching to understand the macroscopic behavior from the
microscopic one [1–3]. Numerical simulations as well as experimental data show changes of several orders of
magnitude caused by the existence of joints in a porous medium [4]. The presence of long crosscutting joints in a
rock mass usually leads, for instance, an originally isotropic material – as normally is the case for the rock matrix
– to behave anisotropically with respect to a number of properties.

The macroscopic approach for determination of hydraulic properties is a classical and useful branch in en-
gineering, considering a continuum medium for which every physical is defined for all points in the medium.
Instead, this article aims to present a micromechanical approach to determination of the homogenized permeabil-
ity for jointed rock media, giving an alternative approach to the determination of input data for numerical and other
physical models.

2 Macroscopic and Microscopic Darcy’s Law

The macroscopic theory used to model fluid flow in permeable media is based in the so called Darcy’s Law.
An useful micromechanical approach is to use the Darcy’s Law in the microscopic scale (REV scale). In such scale
the fluid flow is exactly described by the Navier-Stokes Equations, which governs the equilibrium and constitutive
behavior of the fluid. Ene and Sanchez-Palencia [7] and Auriault [8] have shown in the context of periodic homog-
enization that the concept of permeability express on the macroscopic scale the physics of the flow for a viscous
Newtonian fluid at the scale of the pores. At the macroscopic scale, Darcy’s Law writes:
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Q = − 1

µ
K ′ ·G, (1)

whereQ [m/s] is the macroscopic filtration velocity vector,G [Pa/m] is the macroscopic pressure gradient, µ [Pa.s]
is the fluid viscosity, and the second order tensor K ′ [m2] is the macroscopic intrinsic permeability tensor, which
is entirely determined by the morphology of the porous space. In a micromechanics point of view K ′ is the result
of a previous homogenization process (K ′ ≡ K ′ hom).

In many geological formations where the rock matrix have low permeability, the fluid flow occurs predomi-
nately through joints. In some cases, most of the flow occurs in a single joint, while in other cases a joint network
exists for fluid flow [9]. A classical approach to compute the permeability of a single joint, commonly used for
hydromechanical behavior of fractured rocks, considers a joint as a system of two smooth parallel plates separated
by a mechanical aperture em, resulting in a linear relation between flow rate and pressure gradient [5]. This makes
possible to define a fictional porous medium equivalent to the real joint conserving the link between flow rate
and pressure gradient through a microscopic second order intrinsic permeability tensor k′ [m2]. Therefore, the
microscopic flow through a single fracture can be written as

q = − 1

µ
k′ · g (2)

where q [m/s] is the microscopic filtration velocity vector and g [Pa/m] is the microscopic pressure gradient.
Mathematically, use of eq. (2) simplifies the problem, allowing homogenization of a darcyan medium instead of a
flow governed by the Navier-Stokes equations. For simplicity, it is also useful to define a microscopic conductivity
tensor as κ = k′/µ [m2Pa−1s−1].

2.1 Homogenized hydraulic behavior

In order to determine the macroscopic hydraulic behavior of a fractured rock mass from the microscopic
one or, in other words, to determine an homogenized permeability tensor K ′ hom, which links Q and G, the
micromechanics theory states that a volume Ω of the rock mass can be taken where the joint network is statistically
represented. With this concept in mind, if an elementary volume is taken, where the characteristic size d of the
heterogeneities (joints) is supposed to be small with respect to the dimension l of the volume Ω, which in turn is
supposed to be sufficiently smaller than the characteristic dimension L of the rock mass, this volume is said to
be a representative elementary volume (REV). The precedent conditions (d � l � L) are called scale separation
conditions. It the context of jointed rocks, where the joints are long and crosscut the REV, d is identified as the
average spacing between the joints.

The rock matrix as well as the joints are considered to be permeable. The rock matrix is usually taken as
isotropic with respect to its conductivity (κ

m
= κm1). The conductivity tensor for the joints κ

f
, referred to its

local frame (tj , t
′
j , nj), with nj being the outer unit normal to the plane of any joint set j, can be expressed as:

κj
f

= κjt
(
tj ⊗ tj + t′j ⊗ t′j

)
+ κjnnj ⊗ nj , (3)

where κjn and κjt are, respectively, the normal and tangential conductivity components for the joint and j indicates
the referred joint set. The tangential component κt is classically associated with the hydraulic aperture (eh) of the
joint by some version of the cubic law, and the normal component κn is usually taken as equal to the rock matrix
conductivity (κn = κm).

Considering a REV with joints as layers of small thickness, as shown in Figure 1, a localization problem can
be stated by applying an uniform pressure gradient on the boundary ∂Ω of the REV, and the problem imposed to
Ω writes:

∀x ∈


Ω : div q (x) = 0 (a)

Ω : q = −κ (x) · g (b)

∂Ω : p = g (x) · x (c)

. (4)
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Figure 1. REV for a jointed rock

A classical micromechanics reasoning indicates that for an admissible microscopic pressure field p, solution
of (4), the average rule applies1:

G =
〈
g
〉
. (5)

The macroscopic filtration velocity vector is defined as

Q =
〈
q
〉

(6)

and the continuity of the microscopic filtration velocity vector crosscutting any joint is expressed as
[[
q
]]
· n = 0.

A microscopic pressure gradient g (x) = G is solution of the localization problem if it satisfies (4) and
q (x) = −κ (x) · G respects the continuity of q through the joints. This is true ∀G considering κn = κm and, in
this case, the relation between the microscopic and macroscopic Darcy’s Law is given by:

Q =
1

µ
K ′ hom ·G, with K ′ hom = µ

〈
κ
〉
. (7)

3 Hydromechanical Behavior of Joints

The application of the Navier-Stokes equations for laminar incompressible flow between two parallel smooth
plates results in the following well known expression for the tangential conductivity component [10]:

κt =

(
eh
)2

12µ
. (8)

Experimental results presented by Barton [11] shows that values of eh are, in fact, different from the measured
mechanical opening em of the joints, given that natural fractures are dissimilar to the ideal parallel plates model.
The author gives an empirical expression that takes into account the joint roughness in the relation between eh and
em, as follows:

eh =
(em)

2

JRC2.5 , (9)

where JRC [dimensionless] is the joint roughness coefficient, easily estimated by tilt and Schmidt hammer tests
[12]. In eq. (9) eh and em are in µm.

The mechanical aperture, in turn, can be estimated by means of an linear relationship as:

1〈·〉 = 1
|Ω|

∫
Ω (·) dΩ
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Micromechanics Approach to the Effective Permeability of a Jointed Rock

em = em0 − [[ξn]] (10)

where em0 is the initial mechanical aperture existing in situ and [[ξn]] is the joint closure due to a normal load. The
initial mechanical aperture can be estimated by the empirical relationship proposed by Barton and Bakhtar [13] as

em0 ≈
JRC
50

[
2
( σc

JCS

)
− 1
]
, (11)

where em0 is given in mm, σc [MPa] is the rock matrix compressive strength and JCS [MPa] is the joint wall
compressive strength. The joint closure [[ξn]] is calculated following the model of Bandis et al. [14] as:

[[ξn]] =
σ

σ/ξ0 − kn,0
(12)

where σ [MPa] is the acting compressive stress, ξ0 [m] is the maximum closure and kn,0 [MPa/m] is the initial
normal stiffness of the joints.

3.1 Illustrative Examples of Homogenized Hydromechanical Behavior

The anisotropy and non-linearity induced in the permeability by the presence of the joints is evidenced here.
• Case 1:

Consider the rock matrix crosscut by a single joint set within the (e1, e2) plane, uniformly distributed with
spacing d and under an uniaxial macroscopic compressive stress Σ0e3⊗e3, as shown in Figure 2(a). The volumetric
fraction η of the joints is given by
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Figure 2. Permeability variation as a function of the considered direction for one joint set, considering the acting
normal stress in the joints

η =
em

d
, (13)

The homogenized permeability tensor (7) is then given by
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K ′ hom

µ
=
〈
κ
〉

= κ
m

+ η (κt − κm)
(
1− e3 ⊗ e3

)
. (14)

The permeability anisotropy of this jointed rock may be illustrated by calculating the homogenized perme-
ability component in the direction u = cos θe1 + sin θe3. This permeability component, function of the angle θ, is
given by

K ′ hom (θ)

µ
= u ·

(
K ′ hom

µ

)
· u = κm + η (κt − κm) cos2 θ. (15)

Figure 2(b) shows the variation of the ratio K ′ hom (θ) /k′m with respect to the considered direction for dif-
ferent values of Σ0 and the following input data: kn,0 = 5,000 MPa/m, JRC = 15, JCS = −100 MPa, σc = −300
MPa, d = 1 m, ξ0 = 1 mm and κm = 1.0× 10−10 m2Pa−1s−1 (considering viscosity of water µw = 9.97× 10−4

Pa.s at 295 K). The tangential conductivity κt is function of the normal stress level and may be calculated by use
of eq. (8) to (12).

In Figure 2, a strong normal stress dependency for the permeability component in the direction of the joints
(θ = 0 rad) can be noticed, caused by use of the non-linear elastic law proposed by Bandis et al. [14], associating
the joint closure to the acting normal stress. As expected, the ratio K ′ hom (θ) /k′m is maximum at θ = 0 rad, given
that the tangential joint permeability is orders of magnitude bigger than the matrix permeability, decreasing when
θ increases until, for any normal stress, the permeability is the same as that of the matrix at θ = π/2 rad.

The procedure can be generalized for any number M of joint sets considering the contribution of each set,
summing their effects in the permeability tensor by rewriting eq. (14) as:

K ′ hom

µ
=
〈
κ
〉

= κ
m

+

M∑
j=1

[
ηj

(
κjt − κm

) (
1− nj ⊗ nj

)]
. (16)

• Case 2:
Consider now two sets of joints inclined by 0 and π/4 rad, respectively, with respect to the (e1, e2) plane,

with identical uniaxial macroscopic compressive stresses and parameters for both two sets as the previous case
(Figure 3(a)).
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Figure 3. Permeability variation as a function of the considered direction for two joint sets considering the acting
normal stress in each set
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In Figure 3(b) the global increase in the permeability is evident, as well as the different effect of the normal
stresses acting in each joint set. The effect of the different normal compressive stress (σj = nj · (Σ0e3 ⊗ e3) · nj)
acting on each set can be seen in the (slight) deviation in the maxima and minima values of K ′ hom (θ) /k′m for
each Σ0. This results are in accordance with the common understanding that, the more fractured the rock mass,
the bigger its permeability in any direction.

4 Conclusions

A micromechanical formulation for a preliminary determination of the macroscopic permeability tensor for
jointed rock is presented. Most of the classic macroscopic approaches are based in expensive and time consuming
laboratory and field testing programs, giving as result an unique average permeability coefficient and has as output
that any rock mass is ultimately considered as isotropic with respect to its permeability. The micromechanical
approach derived allows to take into account the anisotropic hydraulic behavior introduced by the presence of joint
sets and their orientations.

The effects of normal stresses acting on the joints are considered by an hydromechanical coupling, linking
the normal stress to the tangential joint permeability/conductivity coefficient using micromechanical reasoning
together with the parallel plate model, empirical expressions and a non-linear elastic law. This stress dependency
is evidenced by examples for one e two joint sets, which results are consistent with experimental and practical
observations.

Besides, the present approach is suitable for use in numerical analyses. The quality and computational costs
of numerical analyses are strongly dependent of their input data and numerical method used. An evident benefit
of the present approach is the use in finite element analyses, for instance, where an homogeneous medium can be
considered using the permeability tensor components as inputs to allow anisotropy consideration, instead of the
explicit consideration of existing joint sets.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



A. B. Borges, S. Maghous

[14] Bandis, S. C., Lumsden, A. C., & Barton, N. R., 1983. Fundamentals of rock joint deformation. International
Journal of Rock Mechanics and Mining Sciences, vol. 20, n. 6, pp. 249–268.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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