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Abstract. In this paper, we get the existence of two positive solutions for a fourth-order problem
with Navier boundary condition. Our nonlinearity has a critical growth, and the method is a local
minimum theorem obtained by Bonanno.
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1 Introduction and main result

In this paper, we consider the following fourth-order problem:

∆2u = λ
(
|u|2

∗−2u+ µ|u|q−2u
)

in Ω,
u = ∆u = 0 on ∂Ω,

(Pλ)

where Ω is a nonempty bounded open subset of the Euclidean space (RN, |·|), N > 5,
with sufficient smooth boundary, 2∗ = 2N/(N − 4), 1 < q < 2, λ and µ are positive
parameters.

Bernis, Garcia-Azorero and Peral [3] study a fourth-order problem with a critical
growth, which presents several difficulties. Indeed, the Palais–Smale condition, as well as
the weak lower semi-continuity of the associated functional, may fail because the Sobolev
embedding is not compact. To be precise, consider the problem

∆2u = |u|2
∗−2u+ µ|u|s−2u in Ω,

u = ∆u = 0 on ∂Ω,
(D)
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where µ > 0 is a parameter. Bernis, Garcia-Azorero and Peral [3] study this problem
following the idea of Ambrosetti, Brezis and Cerami [2]. They proved the following result.

Theorem 1. (See [3].) Fix 1 < s < 2. Then there is Λ > 0 such that for each µ ∈]0, Λ[,
problem (D) admits at least two positive solutions.

Moreover, they also proved that if µ > Λ, the previous problem admits no solution
(see [3, Thm. 2.1]). Their proof is combination of topological and variational methods.
Precisely, they determine the existence of a first solution by using the method of sub- and
super-solutions and then prove that this solution is the minimum of a suitable functional
and apply the mountain pass theorem so ensuring the existence of a second solution.
For other result of fourth-order problem and variational problem, we refer the reader
to [1, 5, 8, 10–16] and references therein.

In this paper, we investigate a fourth-order problem with critical growth (Pλ). Our
approach is due to Bonanno [4, 6]. Using the variational method, we will ensure that
problem (Pλ) has one positive solution when the parameters λ and µ are in a suitable
interval. Furthermore, when λ = 1, we can get another positive solution, where µ is in
a suitable interval, and give the estimate of the parameter µ.

At first, we give the variational framework of this problem. As usual, put X :=
H1

0 (Ω) ∩H2(Ω) endowed with the norm

‖u‖ =

(∫
Ω

∣∣∆u(x)
∣∣2 dx

)1/2

and

Φ(u) =
‖u‖2

2
, Ψ(u) =

∫
Ω

(
1

2∗
∣∣u(x)

∣∣2∗

+ µ
1

q

∣∣u(x)
∣∣q)dx (1)

for all u ∈ X . Obviously, |ξ|2∗
/2∗ + µ|ξ|q/q > 0 for all ξ ∈ R.

By the Sobolev embedding,

‖u‖Ls(Ω) 6 cs‖u‖, u ∈ X, s ∈ [1, 2∗],

and by Talenti [17] we obtain

c2∗ =
1√

2N2π

(
Γ2(N2 )

Γ( N
22∗ )Γ((N2 )− ( N

22∗ ))

)2/N

. (2)

Due to (2), by the Hölder inequality it follows that

cs 6
|Ω|(2∗−s)/2∗s

√
2N2π

(
Γ2(N2 )

Γ( N
22∗ )Γ((N2 )− ( N

22∗ ))

)2/N

, (3)

where “|Ω|” denotes the Lebesgue measure of the set Ω and that the embedding X ↪→
Ls(Ω) is not compact if s = 2∗.
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Fix r > 0 and put

λ∗r =
r

µ
q c
q
q(2r)q/2 + (2r)2∗/2

2∗ c2
∗

2∗

, λ̃r =
1

c2
∗

2∗(rN)4/(N−4)
,

λ̄r = min{λ∗r , λ̃r},

where c2∗ , cq are given by (2) and (3).
Now, we give the first result of this paper.

Theorem 2. Fix q ∈]1, 2[. Then there exists µ∗ > 0, where

mu∗ =

(
q

cqq

1

2(q+2)/2

)(
min

{(
2∗

2(2∗+2)/2c2
∗

2∗

)2/(2∗−2)

;
2

3N

(
1

c2
∗

2∗

)(N−4)/4})(2−q)/2

,

and cq , c2∗ are given by (3) and (2) such that for each λ ∈]0, λ̄r[ and µ ∈]0, µ∗[,
problem (Pλ) admits at least one positive weak solution. Let λ = 1 and uµ be the positive
solution. Then

‖uµ‖ <
(

2∗

c2
∗

2∗

)1/(2∗−2)

.

Moreover, the mapping

µ 7→ 1

2

∫
Ω

|∆uλ|2 −
1

2∗

∫
Ω

|uµ|2
∗

dx− µ

q

∫
Ω

|uµ|q dx

is negative and strictly decreasing in ]0, µ∗[.

Next, we obtain the following existence result of two solutions. At the same time, an
estimate of parameters is also obtained.

Theorem 3. Fix q ∈]1, 2[. Then there exists µ∗ > 0, where

µ∗ =

(
q

cqq

1

2(q+2)/2

)(
min

{(
2∗

2(2∗+2)/2c2
∗

2∗

)2/(2∗−2)

;
2

3N

(
1

c2
∗

2∗

)(N−4)/4})(2−q)/2

,

and cq , c2∗ are given by (3) and (2) such that for each µ ∈]0, µ∗[, problem

∆2u = |u|2
∗−2u+ µ|u|q−2u in Ω,

u = ∆u = 0 on ∂Ω
(Pµ)

admits at least two positive solutions uµ and wµ such that ‖uµ‖ < (2∗/c2
∗

2∗)1/(2∗−2) and
wµ > uµ.

We observe that the solution obtained in Theorem 2 is a local minimum for the
considered functional. To obtain the second solution, we will use the mountain pass
theorem of Ambrosetti and Rabinowitiz. This argument is the same in the part of [3,
Thm. 1.1].
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230 L. Li, D. O’Regan

Example 1. Fix N = 5 and let Ω = {x ∈ R5: |x| < 1}. Then the problem

∆2u = u9 + 2u1/2 in Ω,
u = ∆u = 0 on ∂Ω

admits at least two positive solutions uµ and wµ such that wµ > uµ. In fact, it is enough
to apply Theorem 3 by choosing q = 3/2 and taking into account that c2

∗

2∗ 6 34/(221 ·
520π6), cqq 6 33/5/(263/20 · 53π9/10) for which µ∗ > 37/80 · 271/40 · 559/16π51/40 > 2.

2 Preliminaries

We present some definitions on differentiability of functionals and refer the reader to [4,
Sect. 2]. Let X be a real Banach space. We denote the dual space of X by X∗, while
〈·, ·〉 stands for the duality pairing between X∗ and X . A functional I : X → R is called
Gâteaux differentiable at u ∈ X if there is ϕ ∈ X∗ (denoted by I ′(u)) such that

lim
t→0+

I(u+ tv)− I(u)

t
= I ′(u)(v) ∀v ∈ X.

It is called continuously Gâteaux differentiable if it is Gâteaux differentiable for any u ∈
X and the functional u 7→ I(u) is a continuous map from X to its dual X∗.

Let Φ, Ψ : X → R be two continuously Gâteaux differentiable functionals and put

I = Φ− Ψ.

Fix r1, r2 ∈ [−∞,+∞] with r1 < r2. We say that the functional I verifies the Palais–
Smale condition cut off lower at r1 and upper at r2 (in short (PS)[r2]

[r1]-condition) if any
sequence (un) such that

(i) (I(un)) is bounded,
(ii) limn→+∞ ‖I ′(un)‖X∗ = 0,

(iii) r1 < Φ(un) < r2 for all n ∈ N

has a convergent subsequence.
When we fix r1 = −∞, that is, Φ(un) < r2 for all n ∈ N, we denote this type of

Palais–Smale condition with (PS)[r2]. When, in addition, r2 = +∞, it is the classical
Palais–Smale condition.

Now, we recall the following local minimum theorem.

Theorem 4. (See [6, Thm. 3.3].) LetX be a real Banach space, and let Φ, Ψ : X → R be
two continuously Gâteaux differentiable functionals such that infX Φ=Φ(0)=Ψ(0)=0.
Assume that there are r ∈ R and ũ ∈ X with 0 < Φ(ũ) < r such that

supu∈Φ−1(]−∞,r[) Ψ(u)

r
<
Ψ(ũ)

Φ(ũ)
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and, for each λ ∈]Φ(ũ)/Ψ(ũ), r/ supu∈Φ−1(]−∞,r[) Ψ(u)[, the functional Iλ = Φ − λΨ
satisfies (PS)[r]-condition. Then, for each λ ∈]Φ(ũ)/Ψ(ũ), r/ supu∈Φ−1(]−∞,r[) Ψ(u)[,
there is uλ ∈ Φ−1(]0, r[) (hence, uλ 6= 0) such that Iλ(uλ) 6 Iλ(u) for all u ∈
Φ−1(]0, r[) and I ′(uλ) = 0.

3 Proof of the main results

Firstly, we establish the following result.

Lemma 1. Let Φ and Ψ be the functional defined in (1) and fix r > 0. Then, for each
λ ∈]0, λ̄r[, the functional Iλ = Φ− λΨ satisfies the (PS)[r]-condition.

Proof. Let (un) ⊆ X be a(PS)[r] sequence, that is,

(i) (Iλ(un)) is bounded,
(ii) limn→+∞ ‖I ′λ(un)‖X∗ = 0,

(iii) Φ(un) < r for all n ∈ N.

From Φ(un) < r, for all n ∈ N, (un) is bounded in X . Going to a subsequence if
necessary, we can assume

un ⇀ u0 in X, un → u0 in Lq(Ω),

un → u0 a.e. on Ω.

Taking (i) into account, for a constant c, limn→∞ Iλ(un) = c. Moreover, (un) is bounded
in L2∗

(Ω). Now, we proof our result by many steps.

Step 1. u0 is a weak solution of problem (Pλ). Since (un) is bounded in L2∗
(Ω), we

get that (u2∗−1
n ) is bounded in L2∗/(2∗−1)(Ω). Indeed, we have∫

Ω

∣∣u2∗−1
n

∣∣2∗/(2∗−1)
dx =

∫
Ω

|un|2
∗

dx.

Therefore, we get that
u2∗−1
n ⇀ u2∗−1

0 in L2∗/(2∗−1).

In fact, since un → u0 a.e. x ∈ Ω, we obtain u2∗−1
n → u2∗−1

0 a.e. x ∈ Ω, and that,
together with the boundedness of (u2∗−1

n ) in L2∗/(2∗−1), ensures the weak convergence
of u2∗−1

n to u2∗−1
0 in L2∗/(2∗−1) (see [7, Rem. (iii)]).

Moreover, since un → u0 in Lq(Ω), taking into account [18, Thm. A.2], one has that

uq−1
n → uq−1

0 in Lq/(q−1)(Ω).

In particular,
uq−1
n ⇀ uq−1

0 in Lq/(q−1)(Ω).
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One has

lim
n→∞

(∫
Ω

∆un(x)∆v(x) dx− λ
∫
Ω

un(x)2∗−1v(x) dx− λµ
∫
Ω

un(x)q−1v(x) dx

)

=

∫
Ω

∆u0(x)∆v(x) dx− λ
∫
Ω

u0(x)2∗−1v(x) dx− λµ
∫
Ω

u0(x)q−1v(x) dx

for all v ∈ X . Therefore, due to (ii), we obtain that

0 =

∫
Ω

∆u0(x)∆v(x) dx− λ
∫
Ω

u2∗−1
0 v(x) dx− λµ

∫
Ω

uq−1
0 v(x) dx

for all v ∈ X , that is, u0 is a weak solution of (Pλ).
Step 2. We prove that

Iλ(u0) > −r. (4)

Let us consider the nonlinear term

Ψ(u) =

∫
Ω

(
1

2∗
|u(x)|2

∗
+ µ

1

q
|u(x)|q

)
dx =

µ

q
‖u‖qLq(Ω) +

1

2∗
‖u‖2

∗

L2∗ (Ω)

6
µ

q
cqq‖u‖q +

1

2∗
c2

∗

2∗‖u‖2
∗
.

So,

Ψ(u) 6
µ

q
cqq‖u‖q +

1

2∗
c2

∗

2∗‖u‖2
∗
∀u ∈ X.

It follows that for all u ∈ X , ‖u‖ 6 (2r)1/2, we obtained

Iλ(u) = Φ(u)− λΨ(u) >
‖u‖2

2
− λ
(
µ

q
cqq‖u‖q +

1

2∗
c2

∗

2∗‖u‖2
∗
)

> −λ
(
µ

q
cqq(2r)

q/2 +
1

2∗
c2

∗

2∗(2r)2∗/2

)
= −λ r

λ∗r
> −r.

Noting (iii) and Φ is sequentially weakly lower semicontinuous, we have

‖u0‖ 6 lim inf
n→∞

‖un‖ 6
√

2r.

That is,
Iλ(u0) > −r.

Step 3. Let vn = un − u0. We get that

c = Φ(u0)− λΨ(u0) + lim
n→∞

(
1

2
‖vn‖2 − λ

∫
Ω

1

2∗
|vn|2

∗
dx

)
. (5)
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In fact, ‖un‖2 = ‖vn + u0‖2 = ‖vn‖2 + ‖u0‖2 + 2〈vn, u0〉, so, we obtained

‖un‖2 = ‖vn‖2 + ‖u0‖2 + o(1).

Moreover, by the Brezis–Lieb lemma (see [7, Thm. 1]) one has∫
Ω

|un|2
∗

dx =

∫
Ω

|vn|2
∗

dx+

∫
Ω

|u0|2
∗

dx+ o(1).

Finally, since u 7→
∫
Ω

(1/q)|u|q dx is locally Lipschitz in Lq(Ω) (see, for example, [9,

Thm. 7.2.1]) and un → u0 in Lq(Ω), we obtained∫
Ω

|un|q dx =

∫
Ω

|u0|q dx+ o(1).

Hence,
c = lim

n→∞

(
Φ(un)− λΨ(un)

)
,

that is,

c = Φ(un)− λΨ(un) + o(1)

=
1

2
‖un‖2 − λ

1

2∗

∫
Ω

|un|2
∗

dx− λµ1

q

∫
Ω

|un|q dx+ o(1)

=
1

2
‖vn‖2 +

1

2
‖u0‖2 − λ

1

2∗

∫
Ω

|vn|2
∗

dx− λ 1

2∗

∫
Ω

|u0|2
∗

dx

− λµ1

q

∫
Ω

|u0|q dx+ o(1)

= Φ(u0)− λΨ(u0) +
1

2
‖vn‖2 − λ

1

2∗

∫
Ω

|vn|2
∗

dx+ o(1).

We get (5).

Step 4. The following equality is satisfied:

lim
n→∞

(
‖vn‖2 − λ

∫
Ω

|vn|2
∗

dx

)
= 0. (6)

From (ii) we have limn→∞ I ′(un)(un) = 0. We get∫
Ω

∆un∆un dx− λ
∫
Ω

|un|2
∗−1un dx− λµ

∫
Ω

|un|q−1un dx = o(1).

Nonlinear Anal. Model. Control, 26(2):227–240
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Therefore, seen in the proof of (5) and∫
Ω

|un|q−1un dx =

∫
Ω

|u0|q−1u0 dx+ o(1),

we get that |un|q−1 → |u0|q−1 in Lq/(q−1)(Ω) (see the first step) and un → u0 in Lq(Ω).
One has

‖vn‖2 + ‖u0‖2 − λ
∫
Ω

|vn|2
∗

dx− λ
∫
Ω

|u0|2
∗

dx− λµ
∫
Ω

|u0|q dx = o(1),

that is,

‖vn‖2 − λ
∫
Ω

|vn|2
∗

dx = −‖u0‖2 + λ

∫
Ω

|u0|2
∗

dx+ λµ

∫
Ω

|u0|q dx+ o(1).

Since u0 is a weak solution of (Pλ), one has

‖u0‖2 − λ
∫
Ω

|u0|2
∗

dx− λµ
∫
Ω

|u0|q dx = 0.

We get,

‖vn‖2 − λ
∫
Ω

|vn|2
∗

dx = o(1),

that is, (6).

Conclusion. Finally, we observe that ‖vn‖2 is bounded in R. Thus, there is a subse-
quence, still denoted by ‖vn‖2, which converges to b ∈ R. That is, limn→∞ ‖vn‖2 = b.
If b = 0, we have proved the lemma. In this situation, we have limn→∞ ‖un − u0‖ = 0.

We assume that b 6= 0, arguing by contradiction. From (6) we obtain

lim
n→∞

λ

∫
Ω

|vn|2
∗

dx = b.

By the Sobolev embedding, ‖vn‖L2∗ (Ω) 6 c2∗‖vn‖, and passing to the limit, we obtained
b/λ 6 c2

∗

2∗b2
∗/2. Since b 6= 0, we get

b >

(
1

λ

)(N−4)/4(
1

c2∗

)N/2
.

Due to (4) and (5), one has

c = Φ(u0)− λΨ(u0) +
1

2
b− 1

2∗
b > −r +

(
1

2
− 1

2∗

)
b = −r +

2

N
b,

http://www.journals.vu.lt/nonlinear-analysis
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that is, c > −r + 2b/N . On the other hand, since

1

2∗
|ξ|2

∗
+ µ

1

q
|ξ|q > 0

for all ξ ∈ R, we obtained
Φ(un)− λΨ(un) < r

for all n ∈ N. That is, c 6 r. Thus, −r + 2b/N < c 6 r. It follows that 2b/N < 2r, that
is, b < rN . Therefore, one has(

1

λ

)(N−4)/4(
1

c2∗

)N/2
6 b < rN,

so, it follows that 1/λ < (rNc
N/2
2∗ )4/(N−4). Hence, we get

λ >
1

(rN)4/(N−4)

1

c2
∗

2∗
= λ̃r,

and this is a contradiction.

Now, we give the proof of Theorem 2.

Proof of Theorem 2. Let

r = min

{(
2∗

2(2∗+2)/2c2
∗

2∗

)2/(2∗−2)

;
2

3N

(
1

c2
∗

2∗

)(N−4)/4}
and

µ∗ =

(
q

cqq

1

2(q+2)/2

)
r(2−q)/2.

Fix 0 < µ < µ∗, and one has λ̄r > 1. Indeed,

λ̃r =
1

c2
∗

2∗(rN)4/(N−4)
>

1

c2
∗

2∗(N)4/(N−4)[ 2
3N ( 1

c2
∗

2∗
)(N−4)/4]4/(N−4)

=

(
3

2

)4/(N−4)

> 1

and

λ∗r =
1

µ
q c
q
q2q/2r

q−2
2 + 22∗/2

2∗ c2
∗

2∗r(2∗−2)/2

>
1

µ
q c
q
q2q/2r

q−2
2 + 22∗/2

2∗ c2
∗

2∗ [( 2∗

2(2∗+2)/2c2
∗

2∗
)2/(2∗−2)](2∗−2)/2

>
1

µ
q c
q
q2q/2r

q−2
2 + 1

2

= 1.
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Therefore, from Lemma 1 the functional Iλ = Φ − λΨ satisfies the (PS)[r]-condition for
all λ ∈]0, λ̄r[.

Fix λ < λ̄r. We claim that there is a v0 ∈ X , with 0 < Φ(v0) < r, such that

supu∈Φ−1(]−∞,r[) Ψ(u)

r
<
Ψ(v0)

Φ(v0)
.

Consider ‖u‖Ls(Ω) 6 cs‖u‖, u ∈ X , we get

supu∈Φ−1(]−∞,r[) Ψ(u)

r
6

supu∈Φ−1(]−∞,r[)(
µ
q ‖u‖

q
Lq(Ω) + 1

2∗ ‖u‖2
∗

L2∗ (Ω)
)

r

6
supu∈Φ−1(]−∞,r[)(

µ
q c
q
q‖u‖q + 1

2∗ c
2∗

2∗‖u‖2
∗
)

r

6
µ
q c
q
q(2r)

q + 1
2∗ c

2∗

2∗(2r)2∗

r
.

Hence, we get
supu∈Φ−1(]−∞,r[) Ψ(u)

r
6

1

λ∗r
<

1

λ
.

Let R = supx∈Ω d(x, ∂Ω), and let x0 ∈ Ω such that B(x,R) ⊆ Ω. Moreover, put

vδ(x) :=


0 if x ∈ Ω \B(x0, R),

16 l2

R4 (R− l)2δ if x ∈ B(x0, R) \B(x0, R/2),

δ if x ∈ B(x0, R/2),

where l :=
√∑N

i=1(xi − xi0)2. Clearly, vδ ∈ X , and since

N∑
i=1

∂2vδ(x)

∂2xi
= 32δ

2(N + 2)l2 − 3R(N + 1)l +NR2

R4

for every x ∈ B(x0, R) \B(x0, R/2), we get

Φ(vδ) =
1

2

∫
Ω

∣∣∆vδ(x)
∣∣2 dx

=
210πN/2δ2

R8Γ(N/2)

R∫
R/2

∣∣2(N + 2)s2 − 3(N + 1)Rs+NR2
∣∣2sN−1 ds,

where Γ is the gamma function. Moreover, we get

Ψ(vδ) =

∫
Ω

(
1

2∗
∣∣vδ(x)

∣∣2∗

+ µ
1

q

∣∣vδ(x)
∣∣q)dx >

∫
B(x0,R/2)

(
1

2∗
|δ|2

∗
+ µ

1

q
|δ|q
)

dx

>

(
1

2∗
|δ|2

∗
+ µ

1

q
|δ|q
)

πN/2

Γ(1 +N/2)

RN

2N
,
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and so,
Ψ(vδ)

Φ(vδ)
>

R2

2(2N − 1)

1
2∗ |δ|2

∗
+ µ 1

q |δ|
q

δ2
.

From limt→0+ |t|q/t2 = +∞ we get that

lim sup
t→0+

1
2∗ |t|2

∗
+ µ 1

q |t|
q

t2
= +∞.

So, by

Φ(vδ) =
210πN/2δ2

R8Γ(N2 )

R∫
R/2

∣∣2(N + 2)s2 − 3(N + 1)Rs+NR2
∣∣2sN−1 ds

there is a δ̄ > 0 such that

R2

2(2N − 1)

1
2∗ |δ̄|2

∗
+ µ 1

q |δ̄|
q

δ̄2
>

1

λ

and Φ(vδ̄) < r. Therefore,

supu∈Φ−1(]−∞,r[) Ψ(u)

r
<

1

λ
<

R2

2(2N − 1)

1
2∗ |δ̄|2

∗
+ µ 1

q |δ̄|
q

δ̄2
6
Ψ(vδ̄)

Φ(vδ̄)

with 0 < Φ(vδ̄) < r. Hence, the claim is proved.
Finally, from Theorem 4 then functional Φ − λΨ admits a critical point uλ,µ such

that ‖uλ,µ‖2/2 > 0, which is a positive weak solution for problem (Pλ). In particular, by
choosing λ = 1 a positive weak solution uµ for problem (Pλ) is obtained. Moreover, one
has ‖uµ‖2/2 < r from which ‖uµ‖2/2 < (2∗/(2(2∗+2)/2c2

∗

2∗))2/(2∗−2), that is,

‖uµ‖ <
(

2∗

c2
∗

2∗

)1/(2∗−2)

.

Since uµ is a global minimum for I1 in Φ−1(]0, r[) again from Theorem 4, and vδ̄ ∈
Φ−1(]0, r[), one has I1(uµ) 6 I1(vδ̄). So, by Ψ(vδ̄)/Φ(vδ̄) > 1/λ > 1 we get

I1(uµ) 6 I1(vδ̄) < 0.

Next, fix 0 < µ1 < µ2. We get

I1(uµ1
) = min

u∈Φ−1(]0,r[)

(
1

2

∫
Ω

|∆u|2 dx− 1

2∗

∫
Ω

|u|2
∗

dx− µ1
1

q

∫
Ω

|u|q dx

)

> min
u∈Φ−1(]0,r[)

(
1

2

∫
Ω

|∆u|2 dx− 1

2∗

∫
Ω

|u|2
∗

dx− µ2
1

q

∫
Ω

|u|q dx

)
= I1(uµ2

),

and the conclusion is achieved.
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Proof of Theorem 3. Fix µ ∈]0, µ∗[. From Theorem 2 there exists a positive solution uµ
of (Pλ) such that uµ is a local minimum for the functional

I(u) = Φ(u)− Ψ(u) =
‖u‖2

2
−
∫
Ω

F
(
u(x)

)
dx,

where F is the primitive of f(t), and

f(t) =

{
t2

∗−1 + µtq−1 if t > 0,

0 if t < 0.

We consider a new problem

∆2v = (uµ + v)2∗−1 − u2∗−1
µ + µ(uµ + v)q−1 − µuq−1

µ in Ω,

v = ∆v = 0 on ∂Ω.
(7)

Clearly, if vµ is a positive weak solution to (7), then wµ = uµ + vµ is a weak solution
of (Pλ) such that wµ > uµ > 0. Now, our aim is to prove that (7) admits at least one
positive weak solution. Consider the functional J defined as

J(v) =
‖v‖2

2
−
∫
Ω

L
(
x, v(x)

)
dx, L(x, ξ) =

ξ∫
0

l(x, t) dt,

and

l(x, t) =


(u(x) + t)2∗−1 − [uµ(x)]2

∗−1

+µ(uµ(x) + t)q−1 − µ[uµ(x)]q−1 if t > 0,

0 if t < 0.

Clearly, nonzero critical points of J are positive weak solutions of (7). Since uµ is a local
minimum of I , one has

I(uµ + v)− I(uµ) > 0

for all v ∈ X such that ‖v‖ < δ for some δ > 0. So, taking into account that

J(v) =
1

2
‖v−‖2 + I

(
uµ + v+

)
− I(uµ) > 0

for all v ∈ X (see [3]), we get J(v) > 0 for all v ∈ X such that ‖v‖ < δ. That is, 0 is
a local minimum of J .

By using the same proof in [3], the functional J admits a positive critical point vµ for
which wµ = uµ + vµ is the second weak solution of (7), and the proof is complete.
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