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ABSTRACT 

Aaron Seth Clapp: Association Between IMU Based Accelerometry on the Tibia and 
Vertical Ground Reaction Force During Drop-Landing 

(Under the Direction of Brian Pietrosimone) 
 
 

Peak vertical ground reaction force is a fundamental biomechanical variable often 

used to assess lower extremity injury risk. Currently, the tools to measure vGRF are not 

cost effective. Therefore, the purpose of this study is to determine the association 

between the variables related to IMU-based accelerometry and vGRF as measured from a 

research grade force-plate during a drop-landing task. Correlations were run on the 

averages of the 8 trials for peak vGRF to MVA and MMVAD in the right, left, dominant, 

and non-dominant limb. The non-dominant limb showed the greatest correlation of peak 

vGRF to MVA (r=0.803, p<0.01) and MMVAD (r=0.779, p<0.01). The dominant limb 

showed the lowest correlation of peak vGRF to MVA (r=0.573, p<0.01) and MMVAD 

(r=0.563, p<0.01). The strength of the association between accelerometry and vGRF 

during a drop landing may be limb dependent. The strongest associations between vGRF, 

MVA and MMVAD were in the non-dominant limb.
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CHAPTER 1: INTRODUCTION 

Background 

 Following lower extremity injury, specifically anterior cruciate ligament (ACL) 

injury, individuals demonstrate altered drop-landing biomechanics compared to uninjured 

controls due to impaired neuromuscular control of the lower extremity.1–4 Aberrant drop-

landing biomechanics may increase the risk of sustaining a second ACL injury following 

ACL reconstruction (ACLR).4,5 Proper lower extremity energy attenuation is critical for 

ensuring that joint tissues are not overstressed during dynamic movements.6,7 Therefore, 

the ability to easily measure loading of the lower extremity during dynamic movements, 

such as drop-landing, is critical for determining injury risk in individuals with knee 

injuries and those at risk for knee injuries.   

Vertical ground reaction force is defined as the force exerted on the body in the 

vertical direction by the ground during stance phase. Greater vGRF during landing may 

increase the forces exerted to structures of the knee and increase the risk for injury.  

Lesser knee and hip flexion angles during drop-landing with high vGRF may further 

increase the risk of injury.4,7,8 Peak vGRF is an important biomechanical variable 

associated with knee injury risk, therefore has been a target for drop-landing biofeedback 

interventions which seek to decrease peak vGRF during drop-landing.9–13 However, 

vGRF is most commonly analyzed within a research laboratory setting with expensive 

equipment including forceplates.4,14 There is limited research evaluating affordable real-
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world devices for collecting measures that correlate with vGRF during drop-landing. In a 

real-world setting, such as in a clinic, it is difficult to find sufficient alternatives for 

helping correct altered drop-landing patterns following injury. 

 In recent research, accelerometers have shown the potential to be used to 

accurately estimate peak vGRF.15 Due to the high cost of the equipment used to measure 

vGRF in a laboratory setting, accelerometers could prove to be a cheaper option for 

estimating vGRF in the real world. Determining the strength of the association between 

accelerometer variables and vGRF could the lead to the use of this data in the real world 

to provide real-time feedback. There has been some success with using an accelerometer 

mounted on the top of the shoe to predict vGRF during various running speeds.16 While a 

strong cross-correlational coefficient was reported between the predicted value of vGRF 

and the observed vGRF (r=0.99), the study used a neural network model to achieve this 

strong correlation.16 The potential of finding a strong correlation between peak vGRF and 

the data from an inertial measurement unit (IMU) based accelerometer could lead to a 

more clinically feasible method for using accelerometers to estimate important vGRF 

outcomes during drop-landing or other dynamic activities.    

Gaps in the Literature 

 Currently, there is limited research evaluating the association between individual 

variables captured by a single accelerometry signal within an IMU to vGRF data from 

research grade force plates during drop landing. Often, the data from the accelerometers 

are input into a neural network model in order to try and predict vGRF during varius 

running and walking tasks.16 There are also inconsistencies with accelerometer placement 

leading to different results at the hip (r=0.73),17 tibia (r=0.75), 15,18 and the top of the shoe 
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(r=0.99, neural net compared to actual vGRF)16 during those tasks. Due to previous 

literature we have chosen to place the accelerometer on the tibia to because it shows a 

higher correlation with vGRF during walking and running tasks.15,17 The high correlation 

with the placement on the tibia in those dynamic tasks demonstrates that the best 

correlation during a drop-landing task may come from the placement on the tibia.  

Purpose and Aim of the Study 

 Therefore, the purpose of this study was to determine the association between the 

variables related to IMU-based accelerometry placed on the tibia and vGRF as measured 

from a research grade force-plate during a drop-landing task.  

Research Question 1 

Does the maximum vertical acceleration (MVA) from the x-axis of the 

accelerometer signal derived from the IMU located at the middle of the tibia correlate 

with in-ground force plate peak vGRF collected during a drop-landing task, for the right 

and left limbs, as well as the dominant and non-dominant limbs? 

Hypothesis 1 

There will be a strong positive correlation between the MVA and the peak vGRF 

from the force plate during the drop-landing task the right and left limbs, as well as the 

dominant and non-dominant limbs. 

Research Question 2 

Does the minimum to maximum vertical acceleration difference (MMVAD) from 

the x-axis of the accelerometer signal derived from the IMU located at the middle of the 

tibia correlate with the peak vGRF, during a drop-landing task, from the in-ground force 

plate, for the right and left limbs, as well as the dominant and non-dominant limbs? 
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Hypothesis 2 

There will be a strong positive association between the MMVAD and the peak 

vGRF from the force plate during the drop-landing task in the right and left limbs, as well 

as the dominant and non-dominant limbs.  
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CHAPTER 2: LITERATURE REVIEW 

Altered Biomechanics Following ACL Injury: The Impetus for this study 

Importance of the study of biomechanics 

 Biomechanical analyses are commonly used to study movement differences 

between controls and patient populations of interest.19–21 Gait analysis specifically allows 

for studying injury prevention22 and improvements in movement from rehabilitation23 as 

well as disease etiology and pathology.20,24–26 Following anterior cruciate ligament (ACL) 

reconstruction, the biomechanics during gait are altered which impacts the ability to 

absorb load at the joint.19,20 Compensations in gait could increase the risk of ACL re-

injury19,20 or the development of post-traumatic osteoarthritis.25–28 

Problem with ACL Injury 

Anterior cruciate ligament (ACL) injury has been thought to occur due to two 

philosophies. One is that decreased neuromuscular control along with increased valgus 

joint loading can lead to ACL injury.29 Decreased neuromuscular control specifically 

refers to the muscle groups around the knees inadequate means of dissipating forces and 

torques.29 The other thought is that during non-contact ACL injury landing on an 

extended knee puts an individual at a high risk of ACL rupture, especially if accompanied 

by increased anterior translation of the tibia, internal tibial rotation, or valgus rotation.30 

A recent epidemiological study has shown that nearly 120,000 ACL injuries occur every 

year.31 ACL injury accounts for nearly 50 percent of all the knee injuries that occur at the 



  
 

6 
 

high school or collegiate level of athletics.31 It is estimated that ACL reconstruction and 

rehabilitation costs come close to 1 billion dollars nationwide.31 Female high school 

athletes have a higher incidence of 0.081 ACL injury per 1000 exposures compared to 

male athletes who have 0.05 ACL injuries per 1000 exposures.32  

ACL injury is common and the lasting effects after injury can lead to further 

pathologies that will impact long-term health of the patient. Muscle deficits and 

biomechanical abnormalities that persist following injury and reconstruction can lead to 

post-traumatic osteoarthritis (PTOA).19 The abnormalities being discussed are seen 

during an individual’s gait following ACLR. These gait changes following ACL 

reconstruction (ACLR) have been found as risk factors for early onset PTOA or 

secondary ACL injury.19,20 PTOA can show as early as 5 years post reconstruction and 

close to 40 percent develop PTOA within 10 years.19,33 The development of interventions 

to restore pre-injury biomechanics could be an important and effective intervention for 

improving gait biomechanics and mitigating the risk of PTOA following ACLR. 

Biomechanical abnormalities of ACLR individuals 

Vertical Ground Reaction Force 

 Ground reaction force is defined as the amount of force exerted on the body by 

the ground during stance phase of gait. Ground reaction force is broken into three 

components, anterior-posterior, mediolateral, and vertical components.34 Vertical ground 

reaction force (vGRF) is defined as the vertical component of force applied to the lower 

extremity during three phases of gait: weight acceptance, mid-stance, and push off.14 

During gait the peak vGRF during weight acceptance phase (i.e. impact peak) is 

thought to be indicative of long lasting joint health and subsequently is a common studied 
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gait component.35 Individuals with ACLR have a gait pattern with less vGRF during the 

initial peak (weight acceptance) and greater vGRF during the mid-stance of gait.35,36 It 

has been shown in research that greater peak vGRF during the weight acceptance phase 

of gait has shown lesser type II collagen turnover (breakdown relative to synthesis) in the 

involved limb.36 When an individual demonstrates a lesser peak vGRF during the first 

50% of stance, the individual has greater type II collagen turnover, leading to early onset 

PTOA.36 It is important to understand the relationship between the ACLR limb and the 

uninvolved limb. Rather than the biomechanics of the ACLR limb being elevated to the 

level of the uninvolved, the reverse happens. The uninvolved limb often demonstrates 

biomechanics similar to the ACLR limb in terms of showing less vGRF during the first 

50 percent of gait.4,20,26,27,35,36 The changes in the involved and uninvolved leg have been 

linked to several different areas that relate to the patients overall health and well being 

following ACLR. It has been shown that improper loading mechanics can lead to lower 

patient reported outcomes, cartilage deformation, and type II collagen breakdown.28,36–39  

Knee Flexion Angle 

 Peak knee flexion angle is defined as the maximum knee flexion angle that an 

individual demonstrates during the first 50% of stance. A lesser peak knee flexion angle 

is associated with a “stiffened-knee gait” strategy that prohibits proper distribution of 

load across the joint surface, potentially damaging the area of contact, that has been 

shown to be detrimental in ACLR individuals.20,35 If an ACLR individual displays a 

smaller knee flexion angle the load cannot be distributed across the entire joint 

surface.4,20 Knee flexion excursion is a biomechanical measurement describing the total 

change in knee flexion range of motion over the first 50 percent of gait.28 Peak knee 
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flexion angle and knee flexion excursion have been used to describe the gait of ACLR 

patients compared to control groups and to the uninvolved limb of the patient.  

 When compared to the uninvolved limb, peak knee flexion angle during stance in 

the ACLR limb is lesser at various time points post-surgery.4 Over time, the peak knee 

flexion angle of the ACLR individuals becomes more symmetrical to that of the 

uninvolved limb.4 A reason for this could be that the uninvolved limb is actually 

developing a lesser knee flexion angle to make the body have a more symmetrical gait. In 

a study comparing the ACLR limb of 22 female participants to the uninvolved limb it 

was found that patients demonstrated less peak knee flexion even 60 months post-

ACLR.28 In the same study greater knee flexion excursion following ACLR associated 

with lesser cartilage deformation after gait.28 Individuals, following ACLR, display less 

knee flexion excursion, which could lead to greater cartilage deformation.28 

Sagittal Knee Moments 

 During gait, the quadriceps eccentrically contract allowing the knee to go into a 

deeper knee flexion angle to absorb the forces being placed on it. The internal knee 

extension moment (KEM) (i.e., external knee flexion moment) is used to analyze gait 

biomechanics following ACLR.20 The KEM describes the forces the quadriceps must 

produce to counter the force making the knee go into flexion.  

 Peak KEM is decreased in individuals with ACLR when compared to a healthy 

control group.20 The decrease in peak KEM is referred to as the quadriceps avoidance 

strategy.23,28,40 Following ACL surgery the vastus medialis oblique (VMO) is inhibited 

causing patients to have less of an eccentric contraction during gait;35 often leaving 

patients displaying a stiffer knee during gait because the quadriceps are not allowing the 
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knee to go into a greater knee flexion excursion.35 Differences between in peak KEM 

have also been shown when comparing an ACLR group to a healthy control.20 

Associations between KEM and cartilage health have also been discussed in literature. 

Increases in KEM led to increases in T1 and T2 relaxation times on an MRI, which 

associated with greater cartilage degeneration.41 

Drop Landing Biomechanics 

 In a dynamic movement, such as a drop landing task, lower-extremity 

biomechanics must adapt in order to absorb greater magnitudes of energy.3 This is key 

for patients returning from ACL reconstruction because aberrant landing biomechanics 

are associated with future injury risk.9 One of the key biomechanical variables often 

evaluated for injury risk is the peak knee flexion angle during the drop-landing task. 

Similarly to what was described within gait biomechanics, the peak knee flexion angle is 

the point of maximum flexion during the eccentric loading phase of the drop landing 

task.2,4 Peak knee flexion angle has been associated with changes in peak vGRF during a 

drop landing phase.3,4 Greater peak vGRF during a drop-landing task has been associated 

with individuals described as having a stiff landing.5 Individuals described as having a 

soft landing show lesser peak vGRF and a lesser peak knee flexion angle.5,9 When 

individuals display lesser knee flexion angle during landing; they also show a lesser 

external knee extension moment. External knee extension moment refers to the 

counteractive forces as the knee goes into flexion eccentrically.2 If the quadriceps are not 

adequately prepared to fire to achieve a great knee flexion angle to individual will appear 

to have a stiffened landing as well.4 Lesser knee flexion is associated with higher vGRF 



  
 

10 
 

during drop-landing, which may be associated with higher injury risk to lower extremity 

tissues. 

The Need to Optimize Biomechanics after Injury 

 The development of interventions to restore pre-injury biomechanics could be an 

important and effective intervention for improving biomechanics and mitigating the risk 

of re-injury and PTOA following ACLR. Real-time biofeedback is a method used to alter 

biomechanics that prompt a change to normal movement patterns.14 Current methods of 

conducting research regarding real-time vGRF require force plate treadmills or force 

plates that have highs costs associated with them.14 Outside of a laboratory setting it is 

hard to capture real-time feedback given the equipment needed.34 Due to cost it is hard 

for some institutions (i.e. rehabilitation clinics, college athletics, other athletic facilities) 

to outweigh the cost versus benefits of use. If interventions to change gait biomechanics 

are going to be accessible to the public they must be more cost effective. Progress has 

been made in the use of insole based pressure sensors and accelerometers to calculate a 

measure of vGRF during gait.17,34,42–45  

Efforts to collect Biomechanics in the Real World 

Inertial Measurement Units 

 Inertial measurement units (IMU) combine three small electrical devices together 

and are used to orient an object’s relative 3-dimensional (3-D) position in space by 

measuring linear and rotational accelerations.46 The three devices that compose the IMU 

are an accelerometer, a gyroscope, and a magnetometer.47 The gyroscope measures the 

rotational accelerations of the IMU.47 A magnetometer is used to measure the strength 

and location of changes in the magnetic field around the device, acting similarly to a 
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compass. The accelerometer measures inertial acceleration or movement and when 

combined with the magnetometer and gyroscope can give a 3-D representation of the 

limb in space.47 Data collected from each of the three components can be transmitted 

wirelessly to an external device for real-time analysis or can be stored within the IMU for 

post-processing purposes.48 Depending on storage, transfer, capture rate capabilities, and 

affiliated software, the cost of an IMU varies between $15 and $900.49,50 Due to the cost 

effectiveness compared to standard laboratory gait analysis equipment, IMUs may have 

the potential to be purchased by clinicians to study joint position and the biomechanics of 

gait in real time.47 

 IMUs have been used to estimate variables of human biomechanics (i.e., phase of 

gait, stride length, swing phase duration, and gait asymmetries),48 both within and outside 

of a laboratory setting.43,47 Distinguishing between phases of stance (i.e., heel-strike, 

midstance, and toe-off) is important to understand when loading is occurring.16,47 

Although determining phases of stance is easily done by analyzing ground reaction 

forces, this limits the analysis to a laboratory setting. Recently, using time overlap of the 

vGRF data and the peak acceleration data, the anterior-posterior axis of the accelerometer 

in the IMU was used to estimate phase of stance.16 Using this same anterior posterior axis 

of the accelerometer, but adding other known variables such as gait speed, stride length 

and swing and stance phase time-durations were also estimated. 48 Comparing this 

information acquired from the IMUs between limbs of an individual subject allowed for 

determination of limb asymmetry.48  
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 Due to the complexity of the algorithms that must be conducted to integrate the 

data from the three components of the IMU, it is difficult to use and understand from a 

clinical setting.  

Pressure Insoles 

 Pressure insoles42,51 may be an alternative and effective way of analyzing gait. 

Within an insole, pressure sensors are used to turn the mechanical pressure into an 

electrical signal.42 Pressure is defined as the amount of force divided by the area under it. 

Easily understood, the greater the force put into a specific area the greater the pressure, 

but as surface area increases, pressure decreases. Insoles vary in the amount of pressure 

sensors per brand of insole with some consisting of 1 sensor with others having up to 99 

sensors.42 Depending on the number and position of pressure sensors within the insole, 

the company, and data storage and transmission unit, the prices of the insoles can cost a 

couple thousand dollars. Pressure data from the insoles are different between insoles, but 

data can either be collected and then downloaded to a computer while other have the 

capability to connect to a phone application via WiFi or Bluetooth.42,51 Compared to 

IMUs, pressure insoles are more easily analyzed due to the fact that a mechanical load is 

turned into an electrical signal.34 The signal from pressure insoles allows for easy to 

understand signal that maps out similarly to that of vGRF due to the input of one variable 

versus multiple variables from the IMU. 

 Pressure insoles have been used to analyze gait kinetics (vGRF, loading rate, 

impulse, contact time and pressure distribution).51 Pressure insoles can be placed into a 

shoe and measure the plantar distribution across the insole and collect a voltage signal 

that has been correlated with vGRF, ground contact time, and time to initial peak.42,51,52 
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Loadsol, which is made up of one sensor spanning the width of the insole, showed a high 

interclass coefficient (ICC) 0.61-0.97 for impact peak of vGRF during running when 

compared to force plate data for impact peak.51 Loadsol pressure insole only showed an 

ICC value lower than 0.90 when the collecting frequency was 100 Hz, when this was 

increased to 200 Hz the ICC values were all greater than 0.90.51 Similarly, high 

associations (r = 0.80) were found between the voltage signal and force plate sensors in 

OpenGo sensors, although ICC values were not calculated.42 F-Scan Insoles showed high 

reliability when compared to impact peak at the toe, midfoot, and forefoot sensor 

placement with a ICC above 0.83. The heel sensor only showed a ICC of 0.68, suggesting 

only moderate reliability of this sensor for associating with impact peak of vGRF.52 The 

finding is specifically important because forces produced at the heel during initial contact 

are often described as the initial peak of vGRF during the first 50 percent of gait.52  

 Despite promising applications of these insoles, there are limitations for clinical 

or other real-world use. With this high cost coming per set of pressure insoles it is 

difficult for rehabilitation clinics to buy multiple insoles and the software needed to 

analyze these data. 

Nanocomposite Piezoresponsive Foam Sensors 

 Nanocomposite quasi-piezoelectric foam (NQPF) sensors are a different type of 

sensors that predict kinetics. Initially, the NQPF sensors were placed inside football 

helmets to detect impact forces during game play in order to detect when a certain force 

threshold had been reached so the clinician could check for concussive symptoms.34 As 

the head hits the NQPF sensors an output voltage proportional to the load is generated 

and recorded to a microchip hard-wired to the foam sensors themselves.34 The voltage 
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output is then used as an input of a predictive model created to estimate variables of 

load.34 By placing 4 of sensors into an insole that is then placed into, a shoe, these same 

sensors are now being used to estimate ground reaction forces during human 

movement.34 

 Voltage signals from each sensor within the insole were collected during walking 

and running and used to predict anterior-posterior, medio-lateral, and vertical GRF 

throughout the entire gait waveform.34 vGRF provided the lowest mean average error 

percentage (2.31%) between the predicted measurements of force using the piezoelectric 

sensors and the measured force from the instrumented treadmill.34 Although accuracy 

measures were collected along one set walking speed, it is hard to tell whether various 

walking speeds would affect this mean average error across subjects.34 Other methods of 

data collection such as IMU’s and pressure insoles were tested across multiple walking 

speeds and that is why walking speed is only a limitation for the NQPF sensors at this 

time. 

 While the foam insoles are still in the beginning stages of development, the low 

cost of the foam insoles make them a promising avenue for future real-time and real-

world gait analysis. 

Overview 

 Although these various forms of vGRF measuring devices show promise for the 

future in terms of real-world applications, limitations impacting usability exist for each of 

these devices. Limitations in the price of these measurement tools and the software that 

they require should require other methods to be further explored. 
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Accelerometry 

Background 

 Accelerometers have the potential to provide a low cost and accurate way of 

analyzing movement. There are two forms of accelerometers, uniaxial and triaxial 

accelerometers.15 Uniaxial accelerometers are capable of measuring data along a single 

axis; the axis is dictated by the positioning of the accelerometer on the moving object.18 

Triaxial accelerometers record data across the axial, mediolateral, and anterior-posterior 

axes.18 The additional data measured from the triaxial accelerometers, compared to the 

uniaxial accelerometers, are necessary to provide a better chance to estimate 

characteristics of the relative complex nature of human movement.18 Each of the three 

axes are susceptible to noise, or data unattributed to gait that is being analyzed. Careful 

placement of the accelerometer on the subject of interest can help to reduce unwanted 

noise, however, often the resultant of the axes is filtered with a low pass filter prior to 

analysis.53  

Compared to IMUs, pressure insoles, and NQPF sensors, accelerometers can be 

dramatically lower in cost; depending on storage and transmission capabilities a standard 

triaxial accelerometer can be purchased for less than $10 to as much as $60.54 In fact, the 

low cost and high potential of accelerometers has already led to the commercialization of 

“instrumented shoes” that have accelerometers embedded into the sole of otherwise 

standard running shoes. If accurate predictive models using accelerometry data could be 

created to be valid and reliable, analyzing human kinetics and kinematics would be 

feasible in a clinical setting.  
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Analysis of Accelerometer Data 

Accelerometers have the potential to estimate both foundational and complex 

kinetics and kinematics. Depending on the variable of interest, accelerometers can be 

used independently or in tandem with other accelerometers.15,17 Common ways of 

processing data are: (1) Comparing discrete points from one accelerometer axis to a 

biomechanical variable of interest,17 (2) comparing relative accelerations between 

multiple accelerometers placed on unique segments,15,44 or (3) creating a model using a 

neural network to predict the variable of interest.16  

When dealing with a “simple” direct variable such as vGRF, a single 

accelerometer can be used to associate and find a predicted value.  However, more 

complicated kinetic and kinematic measurements (i.e., joint angles) can be approximated 

by using data from multiple accelerometers placed on unique segments simultaneously.43 

The most robust way to approximate a variable of interest using accelerometer data is by 

creating a predictive model.16 Predictive models allow for an unlimited number of data 

inputs. Meaning, that all axes of multiple accelerometers can be used to inform an 

approximation of the variable of interest. Whether it is in literature around pressure 

insoles, IMUs, or accelerometer data a neural network (NN) model is often used to 

predict variables along the vGRF graph from the data collected by these various 

collecting tools.16,34 NN models are uniquely designed for the data set that is being 

collected, taking into account the input variables of interest to produce an output variable 

(i.e. vGRF).16 
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Accelerometer use in Prior Gait Biomechanical Research 

Accelerometry data has successfully been correlated with multiple biomechanical 

variables of interest, especially with cyclical tasks such as walking and running.16–18,55 

During the cyclical task of walking, the acceleration of the tibia is a repeated pattern that 

coincides with each step through a variety of peaks and valleys of the accelerometer 

data.53 When an individual is not taking a step there is still a noise present within the 

signal.18 Accelerations collected at higher frequencies must use a low pass filter with post 

processing to cancel out the noise, or excess signal when the accelerometer is not 

moving.18 Only after the use of a low pass filter can the true accelerations be appreciated.  

Two of the most relevant variables for this paper are peak positive tibial axial 

acceleration and trunk acceleration and the relationship between these variables and 

vGRF.53 All three of these variables are measured directly from the accelerometer and are 

used to correlate with other kinetic and kinematic variables.53 Peak positive tibial 

acceleration (TA) is measured by summation of linear acceleration of the tibia caused by 

ground reaction forces, acceleration of gravity, and angular motion.18 Peak TA has shown 

correlation during running between the stride length, cadence, and running velocity but 

the correlation to vGRF was not as significant.18 It was predicted that the axial 

component of the accelerometer data would change in relation to foot strike but that was 

not the case.18 

 Trunk acceleration is another critical variable that can be collected with the use of 

accelerometers to correlate with various gait characteristics.17,56 The major gait 

characteristics that trunk acceleration has been associated with are vGRF, cadence, and 

stride length.17,56 When measuring trunk acceleration the triaxial accelerometer was 
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attached to a belt, secured around the waist for collection.56 Trunk acceleration was 

capable of collecting cadence and stride regularity by looking at the unbiased and biased 

accelerometry data, although no accuracy measure was reported.56 Stride length and 

regularity were measured by taking the amount of time from initial footfall to the 

ipsilateral footfall.56 Trunk acceleration has also been used to correlate with vertical 

forces attenuate up the lower extremity.17 The peak loading rate and the peak vGRF were 

both collected and correlated with trunk acceleration, r=.85 and r=.76 respectively.17 The 

correlations values demonstrate that accelerometry at the hip have positive correlations 

with that of the vGRF data from force plates.  

 Accelerometry has been found to correlate with loading rates and peak vGRF. 

Loading rate describes the rate that force is exerted onto the limb, therefore should be 

associated with an expression of acceleration in the axial component of acceleration.18 

Strong positive correlations with loading rates are much easier variables to find 

association with because loading rates are a form type of acceleration.18 Accelerometers 

placed at both malleoli have been correlated with the acceleration of the ankle during 

running tasks.44  

Finding a direct correlation to vGRF from accelerometry is more difficult to do, 

and subsequently attempted less frequently as vGRF is not a direct measurement of 

acceleration. However, due to the correlation between accelerometers and variables of 

gait, such as tibial acceleration and loading rate, it is believed that there will be a 

correlation between raw accelerometry data and vGRF. Additionally, by using a neural 

network model to create a predictive model of vGRF estimations of vGRF can be good. 

The signals from accelerometers have had some success with using the raw data to 
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correlate to vGRF.17,44,53 Correlations to vGRF from accelerometry data have been found 

at various body segment attachments but some of the best results have been shown from 

placement along the tibia, malleoli of the ankle, and shoe.16,18,44 Although the most 

successful way was using peak acceleration within a NN model, good results were found 

with the predictive model having a correlation of r = 0.99 at various running speeds to the 

vGRF data.16 If vGRF can be assessed using accelerometry this could open the door to 

studying other limb kinetics such as knee flexion angle or KEM. Vertical GRF has been 

correlated with knee flexion angle and KEM.4,20,27 An individual displaying lesser knee 

flexion angle will also have a lesser KEM due to the quadriceps avoidance strategy.20,35 

Peak KFA and KEM can both directly be correlated back to the vGRF that they are 

experiencing during gait. By altering the vGRF an individual would then be able to 

change their gait to display a greater peak KFA and KEM. Accelerometry could prove to 

be a cost effective tool for measuring vGRF and thus could be useful in a clinical setting 

for altering gait biomechanics.  

Next Steps 

 Raw accelerometry data could prove to have correlative factors to that of vGRF or 

loading rates of the lower extremity.15,17,44 The first step involves finding the specific 

points of the raw accelerometry data that correlates with vGRF.15 While data from a 

triaxial accelerometer placed on the ankle has shown promise in this regard,15 shoe based 

accelerometry has yet to be explored as an alternative measurement tool for gait 

biomechanics research. 
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Conclusion 

 The current state of biomechanics analysis requires laboratories with advanced 

equipment that is out range in cost for most rehabilitation centers. Physical therapist or 

athletic trainers in clinics are unable to properly change a patient’s gait biomechanics 

purely because of cost of the equipment necessary. There is a necessity for real-world 

applications of this technology so compensations during gait can be fixed in a clinic 

setting. Accelerometry may be a cost effective tool that can be used as an alternative 

measurement tool for changing these gait patterns following injury. The first step to 

achieving this goal is to discover what portions of the data best correlate with the vGRF. 
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CHAPTER 3: METHODS 

Study Design 

 This study was a descriptive cross-sectional study consisting of a single testing 

session, during which all outcomes (i.e., peak vGRF, maximum vertical acceleration 

(MVA), and the minimum to maximum vertical acceleration difference (MMVAD)) were 

collected during a drop-landing protocol. Peak vGRF from each drop-landing, measured 

using an in-ground force plate (FP406010, Bertec Corp) was selected as the criterion 

variable, while variables of MVA and the MMVAD from an accelerometer within an 

IMU were chosen to be predictive variables. All participants had one IMU placed on each 

tibia (Blue Trident, IMeasureU, Auckland, NZ) for the entirety of the session. The IMUs 

were placed on the flat aspect of the proximal anterior medial portion of the tibia. The top 

of the IMU was placed 5 cm distal to the tibiofemoral joint line as palpated. All 

participants provided written informed consent approved by the Institutional Review 

Board at the University of North Carolina at Chapel Hill prior to participating in any 

research related procedures. 

Participants 

 We enrolled a convenience sample of 27 individuals from the university 

community between the ages of 18-35 years of age. All participants were required to be 

currently engaging in unrestricted physical activity, which included at least 30 minutes of 

physical activity three times per week. We excluded individuals with: 1) any lower 
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extremity injury/surgery within the past 6 months; 2) known pregnancy (due to 

alterations in biomechanics; and 3) an inability to participate in physical activity. We 

estimated the ability to detect a statistically significant association between accelerometer 

data and vGRF if a moderate effect (r=0.52) was present in 27 individuals (two-tailed test 

with 80% power and α < 0.05).  

Drop-Landing Analysis 

Drop-Landing Protocol 

  Participants then completed a drop landing protocol on to two 40x60 cm force 

plates (Bertec, Columbus, OH, Model FP406010). Participants were allowed practice 

drops to allow for them to become familiar with the process. Participants were instructed 

to jump forward off a 30 cm box, placed approximately 50% of the participant’s height 

away from the force plates. Participants were instructed to land with one foot in each 

force plate. Approximately 3 practice drops were allowed to each participant, unless the 

researcher felt that the participant needed more practice. The in-ground force plates were 

calibrated and zeroed 30 minutes prior to data collection and were zeroed again 

immediately prior to the 8 drop-landing trials. Vertical GRF and vertical accelerations 

from the accelerometer were collected simultaneously during the 8 drop-landing trials. If 

an error occurred during one of the drops (e.g., both feet did not land in individual force 

plate) then the participant was asked to repeat the drop. Vertical GRF data from the force 

plates were collected and stored using Vicon compatible computer software (Vicon, 

Nexus, Oxford, UK) for post-session processing. Vertical accelerations were 

synchronized to the computer software (Vicon, Nexus, Oxford, UK) as well, although at 
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a lower frequency 50 Hz. The IMU, onboard, collected at a frequency of 1125Hz, so the 

data from the IMU was then connected to Nexus from post-session processing. 

Vertical GRF Data Extraction and Processing 

 Forces from the in ground force-plates were collected at a sampling frequency of 

1000 Hz. Before processing the data, forces collected from Vicon were converted to a 

C3D file for filtering. The C3D file was then put into Visual 3D Software (C-Motion, 

Germantown, MD) to run the filtering and analyzing pipelines. This software allowed for 

the raw force data to be filtered using a low pass 6th order Butterworth filter cut off 

frequency of 20 Hz. The vGRF cutoff frequency was based upon the fourier 

transformation which was conducted on the accelerometers. The cut off frequency of 20 

Hz was used for both the vGRF and accelerometer data. Filtering of the data was 

completed in Visual 3D computer software after the cut off frequency was determined. 

After filtering the forces, Matlab computer software, (Matlab, version R2020a, Math-

works Inc., Natick, Massachusetts, United States) defined each drop as the first 100ms 

after initial ground contact (>20 vGRF), after manually selecting a point prior to any rise 

in the vGRF data (as shown in Figure 1). Then the next line of the code in Matlab was 

added to find the maximum value between initial ground contact and the last point in the 

100ms. This value was defined as peak vGRF during the drop-landing task, as indicated 

by the green arrow in Figure 1. The peak vGRF variable was found for each of the drop-

landing trials. For each subject, the average peak vGRF across the 8 drop-landings was 

then normalized to the participant’s body weight and were used as the peak vGRF 

variable. The averages for peak vGRF for each subject can be seen in Table 2 for the left 
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and right limb and Table 3 for the Dominant and Non-Dominant Limb. Peak vGRF were 

normalized to each subject’s body weight (BW).  

Vertical Acceleration Data Extraction and Processing 

 During the drop landing protocol, the accelerometers from the IMU collected data 

at 50 Hz, in real time, while synchronized to Vicon software (Vicon, Nexus, Oxford, 

UK). Onboard the IMU data was collected and stored at a frequency of 1125Hz for post 

session processing. The data collected within the IMU was then connected to Vicon to 

receive all of the data, stored onboard, and run an interpolation function so the data was 

presented at 1250 Hz. Filtering of this data was done through Visual 3D computer 

software with a cut off frequency of 20Hz with a 6th order low-pass Butterworth filter. A 

Fourier transformation was conducted on the data in order to determine the previously 

stated cut off frequency, as seen in Figure 2. Matlab computer software (Matlab, version 

R2020a, Math-works Inc., Natick, Massachusetts, United States) was then used to 

analyze the IMU data. Vertical GRF data and vertical accelerations were analyzed using 

the same Matlab program. The area of interest for the acceleration data was defined as the 

same 100 ms timeframe once the participant made ground contact (>20vGRF). The code 

then found the minimum acceleration value and the maximum acceleration value during 

that timeframe. The maximum acceleration value was identified as the first variable of 

interest, MVA. The difference between the minimum acceleration value and the 

maximum acceleration value was identified as the second variable of interest, MMVAD. 

Both of the variables are represented within Figure 1. Averages of MVA and MMVAD 

were used for the 8 drop-landing trials for each participant. Subtracting by 9.81 m/s 

normalized the averages of MVA and MMVAD for the eight trials. The averages of the 
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normalized MVA and MMVAD for each subject can be seen in Table 2 for the left and 

right limbs and Table 3 for the Dominant and Non-Dominant Limb. 

Statistical Analysis 

Normality of each variable was assessed via the Shapiro-Wilk test. Dependent t-

tests were used to compare the average vGRF for the right vs left as well as dominant vs 

nondominant limbs. Separate correlations were completed between the average peak 

vGRF and the averages of both MVA and the MMVAD. A Pearson product-moment 

correlation (r) was used to evaluate the associations between peak vGRF and both the 

MVA and the MMVAD. If a variable was non-normally distributed, a Spearman rank 

order correlation was used in place of a Pearson product-moment correlation. The 

associations were defined as negligible (0.0-0.29), low (0.30-0.49), moderate (0.50-0.69), 

high (0.70-0.89), and very high (0.90-1.0).58 Alpha levels were set to 0.05 for all 

analyses, which were performed using the Statistical Package for the Social 

Sciences (SPSS, Version 21, IBM Corp., Somers, NY).  
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CHAPTER 4: RESULTS 

Between Limb Differences for Peak vGRF, MVA, MMVAD 

 All 27 participants completed the drop landing protocol (Table 1). The average 

peak normalized vGRF was lesser on the left limb (1.953 ± 0.485 BW) compared to the 

right limb (2.211 ± 0.487 BW); t(26) = 4.178; P<0.001; effect size= -0.530. Seven of the 

participants noted their dominant limb as being the left side. The average peak 

normalized vGRF was lesser on the non-dominant limb (1.988 ± 0.511 BW) compared to 

the dominant limb (2.176 ± 0.476 BW), t(26)= 2.660; P= 0.013; effect size= -0.396. No 

outliers were found in the data sample for the average peak vGRF. The average MVA 

was lesser on the left limb (245.125 ± 146.653 m/s/s) compared to the right limb 

(265.422 ± 141.424 m/s/s), t(26) = 0.992; P=0.330; effect size= -0.144. The average 

MVA was lesser on the non-dominant limb (231.598 ± 123.809 m/s/s) compared to the 

dominant limb (278.949 ± 158.837 m/s/s), t(26)=2.537; P=0.018; effect size= -0.298. No 

outliers were found in the data sample for the average MVA. The average MMVAD was 

lesser for the left limb (298.265 ± 185.560 m/s/s) compared to the right limb (332.548 ± 

177.474 m/s/s), t(26)=1.287; P=0.209; effect size= -0.193. The average MMVAD was 

lesser on the non-dominant limb (283.347 ± 161.595 m/s/s) compared to the dominant 

limb (347.466 ± 195.684 m/s/s), t(26)=2.625; P=0.014; effect size= -0.328. No outliers 

were found in the data sample for the average MMVAD.  
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Correlations between Peak vGRF and MVA, MMVAD 

 Greater MVA associated with greater peak normalized vGRF for the left 

(r=0.780, P< 0.01) and right limb (r= 0.590, P<0.01; Table 4). The correlations can be 

seen in Figure 3 for the left limb and Figure 4 for the right limb. Greater MVA associated 

with greater peak normalized vGRF for the non-dominant (r=0.803, p<0.01) and 

dominant limb (0.573, p<0.01; Table 5). The correlations can be seen in Figure 5 for the 

non-dominant limb and Figure 6 for the dominant limb. 

Greater MMVAD associated with greater peak normalized vGRF for the left 

(r=0.764, p<0.01) and right limb (r=0.576, p<0.01; Table 6). The correlations can be seen 

in Figure 7 for the left limb and Figure 8 for the right limb. Greater MMVAD associated 

with greater peak normalized vGRF for the non-dominant (r=0.779, p<0.01) and 

dominant limb (r=0.563, p<0.01; Table 7). The correlations can be seen in Figure 9 for 

the non-dominant limb and Figure 10 for the dominant limb. 
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CHAPTER 5: DISCUSSION 

Analysis of the Hypothesis 

 The purpose of this study was to determine if the x-axis of the accelerometer 

within an IMU sensor could serve as a comparative measure to vGRF from force plates 

during a drop-landing task. We chose the x-axis due to the alignment and orientation of 

the IMU when it was placed on the tibia. The x-axis represented the vertical axis of the 

tibia when the participant was standing. In agreement with our hypotheses, greater MVA 

and MMVAD were associated with greater peak vGRF.  While there was a significant 

positive association between accelerations as measured by the IMU and peak vGRF, the 

strengths of the correlations varied between limbs. Overall, the left and non-dominant 

limbs demonstrated stronger associations compared to the right and dominant limbs, 

respectively. The differences in the strengths of the correlations for the left and right 

limb, as well as, the non-dominant and dominant limb are important to consider due to 

the implications that the x-axis of the accelerometers may not be a reliable measure for 

vGRF in the dominant limb. Future research will be needed to confirm this hypothesis. 

Effects of Limb Dominance on the Measurement 

 When a participant completes a drop landing task, the body position may change 

prior to making initial contact with the ground in order to more appropriately absorb the 

energy imposed on the body.7 As the participant leaves the box and prepares for landing, 

the knee starts in slightly flexed position and begins to go into greater knee flexion after 
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they make initial contact.2,3 During a drop landing task, as the participants may utilize 

strategies to increase knee and hip flexion angle to lessen  peak vGRF.2,4 Individuals may 

be more likely to alter their landing strategy on their dominant limb during this novel 

drop landing task. Furthermore, this task may have been novel to many participants and 

they may have tested various kinematic strategies to land from the jump more 

comfortably. A possible explanation of the differences in associations between limbs 

could come from the representation of the vertical axis of acceleration during a drop-

landing task. As the participant begins to go into greater knee flexion to absorb the 

ground reaction forces, the tibia moves out of a vertical position.3,7 The change in 

orientation of tibia, during the 100ms after initial contact where vertical accelerations 

were measured, may have changed the outcomes of MVA and MMVAD due to the 

movement. Individuals may have been more likely to make these changes on the 

dominant limb rather than the non-dominant limb.  It is possible that neuromuscular 

changes were easier to pursue on the dominant extremity.  

Our study was focused on participants with no lower extremity injury or surgery 

within the past 6 months. We believe that the participants within this study demonstrated 

a drop-landing pattern where they favored their dominant limb during the drop-landing 

task leading to greater mean values for the three variables of interest. When comparing 

the means of the separate groups of non-dominant and dominant limb, we determined that 

there was a difference in the in the peak vGRF, MVA and MMVAD. We saw greater 

peak vGRF, MVA and MMVAD in the dominant limb. The greater association was 

found for peak vGRF to the two predictive variables (MVA and MMVAD) in the non-

dominant limb than in the dominant. In the study, 7 of the 27 participants were left limb 
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dominant, which would explain the results of seeing a higher correlation of the variables 

for left versus the right limb.   

Alternative Means of Correlating vGRF and Accelerometer Data 

Using the Max Resultant versus the Vertical Axis of the Accelerometer 

 During the study we saw a difference in the strength of the correlations between 

peak vGRF and the two variables of interest (MVA and MMVAD) for the dominant and 

non-dominant limbs. The difference could be in part to only correlating the measures of 

vertical acceleration from a single axis versus using a resultant. As the knee goes into 

flexion and the vertical orientation of the tibia changes, the true measure of vertical 

acceleration may be a resultant of the three axes. The resultant is a measure of multiple 

axes within the accelerometer that can give a more accurate measure of true total 

acceleration of the limb. With the IMU being placed on the tibia, the x-axis only shows 

the acceleration forces relative to the vertical orientation of the tibia. Small changes in 

lower extremity kinematics may impact the ability to correlate these data with the vertical 

force vector during landing.  

Utilizing Multiple Accelerometers versus One Accelerometer 

 Another alternative method of understanding the true vertical acceleration of the 

limb could be to use multiple accelerometers placed on different locations of the lower 

extremity. Multiple accelerometers have been used to try and correlate with vGRF and 

other biomechanical variables during various tasks such as walking15 and running.16,17 

The strategy of using multiple accelerometers could help the researcher understand the 

accelerations and forces throughout the entire limb, instead of one segment during a drop-

landing task.  
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Clinical Relevance 

 Accelerometers have shown promise in various activities as being an intervention 

for measuring vGRF with a lower cost than force plates. Our study has shown that in the 

non-dominant limb there is a high correlation between the vGRF from force plates and 

the MVA, as well as the MMVAD. Clinically, after the conclusion of this study the 

correlative measure between the peak vGRF and the two predictive variables MVA and 

MMVAD show that vertical accelerations from a single placement and axis may be more 

accurate for the non-dominant limb with a lower peak vGRF, but not for the dominant 

limb when greater vGRFs are created. More research is needed to determine the validity 

and reliability of using accelerometers during a drop landing task, so that clinicians can 

use this lower cost intervention to assess landing biomechanics in patients for return to 

activity following lower extremity injury. 

Limitations 

 While the results of this study provide insight regarding the use of accelerometers 

to estimate measure vGRF during a drop-landing task, there were limitations, which 

should be reviewed. Within our study we only used healthy individuals with no history of 

lower extremity injury/surgery within the last 6 months. Correlations may be different 

when reviewing patient populations in terms of an injured and uninjured limb. Other 

limitations are that the IMU was placed on the participants versus having a fixed 

placement and orientation and the selection of using the single axis of the accelerometer 

within the IMU. While there were specific directions into the placement and orientation 

of the IMU, because the IMU was placed on the individual every session by the research 

team it is possible that the x-axis could be slightly off from participant to participant. 
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Researchers should look at the inter-rater and intra-rater reliability of placing the IMU; as 

well as try to use an IMU with a fixed placement and orientation. With all of these trials 

taking place in a laboratory setting versus in the real world setting also should be looked 

at as a limitation to be addressed in future research. 

Future Direction 

 Further research is needed to understand the relationship between using vertical 

accelerations from an accelerometer and vGRF from force plates. While this study has 

shown high correlations for some variables of interest, we have also seen that it is not as 

reliable in the dominant limb. Alternative methods in the future should be explored to 

better see if they provide a better representation of the association between these 

variables. The alternative methods include using a max resultant, multiple 

accelerometers, or having a way to have the accelerometer in a fixed placement and 

orientation. Finally, in order for this to be used in the future clinical setting, more 

research should be conducted to evaluate the relationships between peak vGRF and 

vertical acceleration in an injured populations. 

Conclusion  

 It seems that the strength of the association between accelerometry and vGRF 

during a drop-jump may be limb dependent. The strongest associations between vGRF, 

MVA and MMVAD were found in the non-dominant limb. 
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TABLES AND FIGURES 

Figure 1. Overlay of Vertical Accelerations from the Accelerometer and Vertical 

Ground Reaction Forces from the In-ground Force plates. Figure 1 shows the overlay 

of the vertical accelerations from the accelerometer (orange line) and the vGRF from the 

in ground force plates (blue line) after the data was processed during one drop landing. 

The variables of vGRF, maximum vertical accelerations, and minimum to maximum 

vertical acceleration difference were determined after selecting the area before the first 

increase in vGRF. After the vGRF went over 20N the variables were determined within 

the following 100ms. The green arrow describes the peak vGRF, the red arrow describes 

the MVA, and the difference between the blue arrows is the variable of MMVAD. 
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Figure 2. Fourier Transformation of the Accelerometer Data. Figure 3 displays the 

Fourier transformation of the accelerometer data after it was extracted from the 

accelerometer. This allowed for a cut-off frequency of 20 Hz in order for a low pass filter 

to be applied. It was determined that any data collected at a frequency greater than 20 Hz 

would be excluded as noise. 
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Table 1. Participant Demographics. Table 1 lists out the demographics of the 

participants enrolled in this study. Table 1 shows the participant’s age, sex, height (cm), 

weight (kg) and the dominant limb. In the table sex is denoted as a 0 or 1 where 1 

represents female and 0 represents male. The dominant limb is also denoted as a 0 or 1 

where 0 represents the left leg and a 1 represents the right leg. 

Participant’s Demographics 

Prefix 

Letter Number Age Sex 

Height 

(cm) 

Weight 

(kg) 

Dominant 

limb 

s 18 22 1 170.50 69.40 1 

s 19 21 1 165.00 66.40 0 

s 20   1 166.00 58.17 1 

s 21 20 1 174.00 87.40 1 

s 22 20 1 174.20 67.60 0 

s 23 21 0 184.50 88.20 1 

s 24 23 1 162.50 56.20 1 

s 25 20 1 159.50 70.60 1 

s 27 19 1 166.60 63.20 1 

s 28 21 0 183.50 78.60 1 

s 29 18 1 163.50 55.00 0 

s 30 20 1 168.00 80.60 1 

s 31 22 1 178.00 65.60 1 

s 32 21 1 168.50 56.00 0 

s 33 20 1 163.00 57.00 1 

s 34 21 1 169.20 65.80 0 

v 9 20 1 183.00 74.40 0 

v 10 21 1 171.00 59.90 0 

v 11 18 1 167.64 66.20 1 

v 12 20 1 182.88 75.30 0 

v 13 19 1 180.34 94.30 1 

v 14 18 1 186.00 77.10 1 

v 16 20 1 177.80 64.90 1 

v 17 18 1 176.00 72.10 1 

v 18 20 1 168.00 68.90 1 

v 19 19 1 160.03 60.30 1 

v 20 20 1 170.00 67.60 1 
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Table 2. Participant Averages of the Variables for Left and Right Side. Table 2 

shows averages of 8 drop landings across each subject for peak vGRF normalized to body 

weight, Maximum Vertical Acceleration (MVA), and Minimum to Maximum Vertical 

Acceleration Difference (MMVAD). 

Averages of Variables for the Left and Right Limb 

Participant vGRF (L) MVA (L) 

MMVAD 

(L) vGRF (R) MVA (R) MMVAD (R) 

s18 2.069 214.69 259.71 1.892 197.85 274.26 

s19 2.647 641.06 789.61 2.769 397.00 521.95 

s20 2.600 272.85 285.80 2.594 582.89 707.09 

s21 1.735 170.99 215.11 2.632 176.03 227.81 

s22 1.760 166.27 213.57 2.052 216.19 281.45 

s23 1.144 86.59 117.49 1.432 88.85 87.10 

s24 1.530 152.72 172.76 1.919 153.96 186.20 

s25 2.103 215.29 243.80 2.505 242.90 342.96 

s27 1.494 131.28 154.60 1.708 141.22 176.10 

s28 3.049 544.03 700.78 3.592 482.60 594.19 

s29 1.990 262.57 297.37 2.154 144.60 155.02 

s30 2.493 290.91 347.48 2.605 366.25 452.18 

s31 1.954 246.90 312.63 2.263 351.77 435.90 

s32 2.263 518.98 631.09 3.068 508.48 638.47 

s33 1.145 114.15 131.25 1.461 145.59 186.73 

s34 1.748 113.72 154.05 1.665 127.34 182.44 

v9 2.266 403.48 513.85 2.009 411.57 517.76 

v10 2.666 353.50 450.02 2.331 247.85 308.39 

v11 1.324 44.33 58.21 2.126 65.25 119.82 

v12 1.407 124.28 169.81 1.641 165.59 211.11 

v13 1.930 207.26 256.48 2.235 197.85 246.37 

v14 1.926 244.62 299.03 2.181 254.33 301.62 

v16 2.073 104.40 112.97 1.936 297.66 379.62 

v17 1.876 386.11 497.37 1.896 473.57 632.00 

v18 2.361 238.50 283.31 2.583 123.42 129.16 

v19 1.636 189.75 194.73 2.257 379.67 442.83 

v20 1.547 179.14 190.27 2.197 226.10 240.28 
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Table 3. Participant Averages of the Variables for the Dominant and Non-Dominant 

limbs. Table 3 shows averages of 8 drop landings across each subject for peak vGRF 

normalized to body weight, Maximum Vertical Acceleration (MVA), and Minimum to 

Maximum Vertical Acceleration Difference (MMVAD). Participants where the left limb 

is listed as the dominant limb are denoted with an asterisk. 

Averages of Variables for the Dominant and Non-Dominant Limb 

Participant vGRF (ND) 

MVA 

(ND) 

MMVAD 

(ND) vGRF (D) MVA (D) MMVAD (D) 

s18 2.069 214.69 259.71 1.892 197.85 274.26 

s19* 2.769 397.00 521.95 2.647 641.06 789.61 

s20 2.600 272.85 285.80 2.594 582.89 707.09 

s21 1.735 170.99 215.11 2.632 176.03 227.81 

s22* 2.052 216.19 281.45 1.760 166.27 213.57 

s23 1.144 86.59 117.49 1.432 88.85 87.10 

s24 1.530 152.72 172.76 1.919 153.96 186.20 

s25 2.103 215.29 243.80 2.505 242.90 342.96 

s27 1.494 131.28 154.60 1.708 141.22 176.10 

s28 3.049 544.03 700.78 3.592 482.60 594.19 

s29* 2.154 144.60 155.02 1.990 262.57 297.37 

s30 2.493 290.91 347.48 2.605 366.25 452.18 

s31 1.954 246.90 312.63 2.263 351.77 435.90 

s32* 3.069 508.48 638.47 2.263 518.98 631.09 

s33 1.145 114.15 131.25 1.461 145.59 186.73 

s34* 1.665 127.34 182.44 1.748 113.72 154.05 

v9* 2.009 411.57 517.76 2.266 403.48 513.85 

v10* 2.331 247.85 308.39 2.666 353.50 450.02 

v11 1.324 44.33 58.21 2.126 65.25 119.82 

v12* 1.641 165.59 211.11 1.407 124.28 169.81 

v13 1.930 207.26 256.48 2.235 197.85 246.37 

v14 1.926 244.62 299.03 2.181 254.33 301.62 

v16 2.073 104.40 112.97 1.936 297.66 379.62 

v17 1.876 386.11 497.37 1.896 473.57 632.00 

v18 2.361 238.50 283.31 2.583 123.42 129.16 

v19 1.636 189.75 194.73 2.257 379.67 442.83 

v20 1.547 179.14 190.27 2.197 226.10 240.28 
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Table 4. Correlative Measures For MVA within the Left and Right Limb. Table 4 

displays the Pearson product moment correlation coefficient for MVA to Peak vGRF, 

across all subjects for the left and right limbs. These r values are determined by Figures 3 

and 4. Figure 3 looking at the correlation between MVA and peak vGRF for the left limb. 

Figure 4 looking at the correlation between MVA and peak vGRF for the right limb.  

Table 4. Correlative Measures for 

MVA 

  Peak vGRF 

MVA (Left) r= 0.780 

MVA (Right) r= 0.590 
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Figure 3. Peak vGRF and MVA Correlation for the Left Limb.  Figure 3 describes 

the correlation between the criterion variable, peak vGRF, and the first predictive 

variable, MVA, across all subjects for the left limb. The x-axis of the graph shows the 

average peak vGRF normalized to the participant’s body weight for each subject across 

the 8 drop-landing trials. The y-axis shows the average MVA for each subject across the 

8 drop-landing trials. The respective correlation value (r) and p value are listed on the 

right hand side of the graph. 
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Figure 4. Peak vGRF and MVA Correlation for the Right Limb.  Figure 4 describes 

the correlation between the criterion variable, peak vGRF, and the first predictive 

variable, MVA, across all subjects for the right limb. The x-axis of the graph shows the 

average peak vGRF normalized to the participant’s body weight for each subject across 

the 8 drop-landing trials. The y-axis shows the average MVA for each subject across the 

8 drop-landing trials. The respective correlation value (r) and p value are listed on the 

right hand side of the graph. 
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Table 5. Correlative Measures For MVA in the Non-Dominant and Dominant Limb. 

Table 5 displays the Pearson product moment correlation coefficient for MVA to Peak 

vGRF, across all subjects in the non-dominant and dominant limb. These r values are 

determined by Figures 5 and 6. Figure 5 looking at the correlation between MVA and 

peak vGRF in the non-dominant limb. Figure 6 looking at the correlation between MVA 

and peak vGRF in the dominant limb.  

Table 5. Correlative Measures for 

MVA 

  Peak vGRF 

MVA (ND) r= 0.803 

MVA (DOM) r= 0.573 
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Figure 5. Peak vGRF and MVA Correlation for the Non-Dominant Limb.  Figure 5 

describes the correlation between the criterion variable, peak vGRF, and the first 

predictive variable, MVA, across all subjects for the non-dominant limb. The x-axis of 

the graph shows the average peak vGRF normalized to the participant’s body weight for 

each subject across the 8 drop-landing trials. The y-axis shows the average MVA for each 

subject across the 8 drop-landing trials. The respective correlation value (r) and p value 

are listed on the right hand side of the graph. 
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Figure 6. Peak vGRF and MVA Correlation for the Dominant Limb.  Figure 6 

describes the correlation between the criterion variable, peak vGRF, and the first 

predictive variable, MVA, across all subjects for the dominant limb. The x-axis of the 

graph shows the average peak vGRF normalized to the participant’s body weight for each 

subject across the 8 drop-landing trials. The y-axis shows the average MVA for each 

subject across the 8 drop-landing trials. The respective correlation value (r) and p value 

are listed on the right hand side of the graph. 
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Table 6. Correlative Measures For MMVAD in the Left and Right Limb. Table 6 

displays the Pearson product moment correlation coefficient for MMVAD to Peak vGRF, 

across all subjects in the left and right limb. These r-values are determined by Figures 7 

and 8. Figure 7 looking at the correlation between MMVAD and peak vGRF in the left 

limb. Figure 8 looking at the correlation between MMVAD and peak vGRF in the right 

limb.  

Table 6. Correlative Measures for 

MMVAD 

  Peak vGRF 

MMVAD 

(Left) r= 0.764 

MMVAD 

(Right) r= 0.576 
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Figure 7. Peak vGRF and MMVAD Correlation for the Left Limb.  Figure 7 

describes the correlation between the criterion variable, peak vGRF, and the second 

predictive variable, MMVAD, across all subjects. The x-axis of the graph shows the 

average peak vGRF normalized to the participant’s body weight for each subject across 

the 8 drop landing trials. The y-axis shows the average MMVAD for each subject across 

the first 8 drop-landing trials. The respective correlation value (r) and p value are listed 

on the right hand side of the graph. 
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Figure 8. Peak vGRF and MMVAD Correlation for the Right Limb.  Figure 8 

describes the correlation between the criterion variable, peak vGRF, and the second 

predictive variable, MMVAD, across all subjects. The x-axis of the graph shows the 

average peak vGRF normalized to the participant’s body weight for each subject across 

the 8 drop-landing trials. The y-axis shows the average MMVAD for each subject across 

the first 8 drop-landing trials. The respective correlation value (r) and p value are listed 

on the right hand side of the graph. 
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Table 7. Correlative Measures For MMVAD in the Non-Dominant and Dominant 

Limb. Table 7 displays the Pearson product moment correlation coefficient for MMVAD 

to Peak vGRF, across all subjects in the non-dominant and dominant limb. These r values 

are determined by Figures 9 and 10. Figure 9 looking at the correlation between 

MMVAD and peak vGRF in the non-dominant limb. Figure 10 looking at the correlation 

between MMVAD and peak vGRF in the dominant limb.  

Table 7. Correlative Measures for 

MMVAD 

  Peak vGRF 

MMVAD (ND) r= 0.779 

MMVAD 

(DOM) r= 0.563 
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Figure 9. Peak vGRF and MMVAD Correlation for the Non-Dominant Limb.  

Figure 9 describes the correlation between the criterion variable, peak vGRF, and the 

second predictive variable, MMVAD, across all subjects. The x-axis of the graph shows 

the average peak vGRF normalized to the participant’s body weight for each subject 

across the 8 drop landing trials. The y-axis shows the average MMVAD for each subject 

across the first 8 drop-landing trials. The respective correlation value (r) and p value are 

listed on the right hand side of the graph. 
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Figure 10. Peak vGRF and MMVAD Correlation for the Dominant Limb.  Figure 10 

describes the correlation between the criterion variable, peak vGRF, and the second 

predictive variable, MMVAD, across all subjects. The x-axis of the graph shows the 

average peak vGRF normalized to the participant’s body weight for each subject across 

the 8 drop landing trials. The y-axis shows the average MMVAD for each subject across 

the first 8 drop-landing trials. The respective correlation value (r) and p value are listed 

on the right hand side of the graph. 
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