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ABSTRACT 
 

Andrew M. Camp: Switchable Olefin Isomerization  
in Iridium Complexes 

(Under the advisement of Alexander J. M. Miller) 
 

The structure-reactivity relationships in iridium-pincer crown ether complexes is 

expanded in this work. These frameworks contain a strongly donating pincer scaffold with a 

flexible, weakly donating aza-crown ether moiety that can reversibly bind the metal center. The 

iridium pincer-crown ether complexes can access tridentate, tetradentate, or pentadentate 

coordination modes reversibly using discrete chemical steps. Careful NMR characterization of 

representative complexes in each coordination mode revealed a correlation between the 

difference in chemical shift between geminal diastereotopic protons of the crown and 

coordination mode of the complex, allowing characterization of the binding modes of the 

complexes in solution using routine and time efficient NMR experiments.  

 Binding studies demonstrate the modulation of affinity of the crownether for cations with 

organometallic fragments. Adding transition metal centers changes 1-aza-crown ether host-guest 

properties: the selectivity of the 1-aza-15-crown-5 ethers for Li+ over Na+ is increased; the 

binding affinity for Li+ and Na+ salts is reduced, though increasing the ring size of the crown 

ether mitigates the decrease; distinct proton-dependent reactivity is observed; and the ion 

binding properties shift fundamentally to enable heteroditopic binding of ion pairs. 

 The observation that moving to larger crowns increases the binding affinity of pincer-crown 

ether complexes towards cations motivated the synthesis of new cationic complex, [k5- 

(18c6NCOPiPr)Ir(H)]+, featuring a larger 1-aza-18-crown-6 crown ether to improve salt rate 
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enhancement of olefin isomerization to access switchable regioselectivity. Without cation in 

solution, the complex is selective for the one bond isomerization product, with a strong 

preference for the E stereoisomer. Upon the addition of cation, the selectivity is observed to 

favor thermodynamic olefinic products, with complete inversion in regioselectivity observed 

across diverse functionalized substrates. Despite the impressive shifts in regioselectivity in the 

studied substrate, isomerizations with Lewis basic substituted olefins were unable to be 

“switched” to favor thermodynamic regioisomers. 

 Explorations of these substrates revealed Lewis basic olefins can form chelated species which 

significantly inhibit the rate of isomerization with these substrates. Using the aquated iridium 

complex, [k4-(18c6NCOPiPr)Ir(H)(OH2)]+, >30% conversion to thermodynamic products were 

observed after 216 hours, representing an improvement to the activity seen in [k5- 

(18c6NCOPiPr)Ir(H)]+. Explorations with long chain olefins revealed selectivity for internal olefins 

in the presence of cation, while preserving preference for the one-bond isomerization product in 

the absence of cation. While high yielding switchable catalysis to thermodynamic products and 

internal olefins is elusive, this work lays the foundation for continuing efforts to increase the 

scope of switchable olefin isomerization to functionalized olefins. 
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CHAPTER 1. PASS THE REMOTE: INCORPORATING CONTROL OF ACTIVITY 
IN CATALYTIC SYSTEMS 

 
I. The Advent of Controllable Catalysis 

 
Catalytic Design and Reactivity 

Catalysts play an essential role in driving chemical transformations that shape the world. 

Enzymes allow reactions that are essential for life to occur on reasonable timescales,1 and 

catalysts have been harnessed to synthesize commodity chemicals,2 fertilize the agricultural 

industry,3 and synthesize natural products and pharmaceuticals.4,5 Catalytic structure is intimately 

linked with the performance of a catalyst in an application, supporting the synthesis of 

homogenous catalytic systems to access valuable reactions and to better understand the 

relationships between structure and activity.6 Synthetic modification of ligand scaffold are used 

to shape catalytic activity towards desired goals; however, balancing desired characteristics of 

durability, activity, and selectivity in catalytic systems remains a difficult challenge in catalyst 

design.  

The typical synthetic paradigm for catalyst development is a slow evolution of catalytic 

structure to better improve desired selectivity or catalyst stability.7 While such iterative design is 

powerful, the labor involved can be arduous and time consuming. Small synthetic changes to the 

ligand structure can result in large changes in catalyst selectivity or even lead to complete loss of 

catalytic activity.8 Each unique catalyst is designed to have very specific reactivity: one catalyst 

yields one product. Once the maximum yield of a desired product is obtained, the reaction is 

worked-up and purified before subsequent reactions take place. 
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This contrasts significantly with what is observed in biological systems, where reactions 

are “dynamic” – reactivity is controlled by stimuli-gated reactivity, product feedback loops, and 

membrane compartmentalization.9,10 Product generation is constantly changing to accommodate 

the needs of the system. Mapping this framework onto anthropogenic systems creates an 

alternate paradigm, where changes to the system can influence the outcomes of a reaction and 

break the 1:1 structure-reactivity relationship. Moreover, moving to such a system allows 

increasing responsiveness in synthetic systems, possibly allowing product distributions to be 

modified on-line to meet economic demands.   

This intriguing possibility has motivated the incorporation of stimuli-responsive moieties 

into catalyst frameworks.11 Generally, reactivity with these systems can be categorized into two-

types of stimuli-controlled catalysis. In switchable catalysis, a catalyst is modulated between two 

discrete states, each with specific reactivity. This is commonly designed to change rate or 

product selectivity. In tunable catalysis, reactivity can be modulated over a spectrum states yielding 

fine control over reactivity. The following sections summarize major methods of stimuli 

controlled catalytic reactivity  

 
 
Switchable Catalysis Using External Stimuli 

Ideally, switchable catalysts should be selective for one reaction, and demonstrate a complete 

change in catalytic state upon introduction of a stimulus. In an on-off switchable system, this 

should maximize the difference in the rate of product formation in each catalytic state. When a 

difference in product selectivity is desired, maximizing the change in catalytic state upon 

application of a stimulus increases the selectivity for each product. This method of elaborating 

reactivity is an intriguing method to diversify reactivity independently of synthetic approaches. 

Various novel stimuli, including light, chemical additives, mechanical force, ultrasonics, and 
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electric and magnetic fields, have been explored to change reactivity in catalysts.11–13 The 

following paragraphs summarize the chief methods for achieving switchable catalysis. 

Light is a convenient stimulus for accessing switchable catalysis, given the ability to turn 

on and off light sources and target specific electronic excitations of a catalyst.14 Branda and 

coworkers demonstrate this concept using a switchable chiral CuI catalyst.15 Upon UV 

irradiation, an achiral structure is favored, dropping the observed enantiomeric excess to 5%. 

One of the limitations in this example is that a mixture of Cu-1 and Cu-2 (3:7) is observed in 

solution under UV irradiation (Scheme 1.1), hampering product selectivity. This demonstrates 

the challenges in achieving high switchable selectivity. Not only must each unique catalytic state 

be selective for a certain product, but the stimulus must completely switch the states of the catalyst 

to achieve high selectivity.  

 

Scheme 1.1. Light driven rearrangment of a ligand framework.  
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nm light, a photocyclization is induced, reducing the donor strength of the N-heterocycylic 

carbene (NHC) and decreasing the rate of hydroboration 9-fold.16 Irradiating with light >500 

nm, allows the reverse reaction to occur, restoring the rate of hydroboration (Scheme 4). This 

photoinduced change in rate was able to be toggled in situ, allowing both rate regimes to be 

observed in a single time course.16  

Azobenzenes are another popular photoresponsive group that is able to undergo light 

induced isomerization from the E to the Z isomer.11 The photoresponsive group can be 

incorporated into catalytic frameworks to bring together two remote groups and generate the 

catalytically active species, demonstrating a reversible photoswitchable response.17 

Changing the catalyst oxidation state offers another attractive method of switching 

catalytic activity. Redox-switchable catalysts have been used extensively in polymerizations to 

change monomer distribution in copolymers.18–20 Redox control of catalytic reactivity has been 

demonstrated in other fundamental organic transformations, including rates of Michael addition 

and CO2 electroreduction catalysts by switchable heterogenous catalysts.13 Homogeneous 

organometallic complexes have been synthesized with redox-active ligands, that display 

potential-controlled polymerization, olefin reduction, imine hydrolysis, and metathesis 

reactions.11 Lorkovic, Duff, and Wrighton installed a redox active cobaltocene moiety into the 

backbone of a RhI complex to switch the rate of hydrogenation.21 Upon addition of an oxidant, 

the rate of cyclooctene hydrogenation drops 15 fold, which can be restored upon the addition of 

a reductant  (Scheme 1.2). 
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Scheme 1.2. Redox control of hydrogenation rates. 

 

 
Catalytic activity can also be controlled by modification of catalytic structure with 

ligands, protons, or cationic additives. While opening a coordination site to increase the rate of 

catalysis has been used extensively,22 the ability to reversibly influence catalytic activity sets 
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modifying rate of enzymatic catalysis using downstream catalytic products and cationic binding 
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Protonation of catalysts are often used to induce conformational changes in enzymes 
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shown to be reversible by removing the carbon monoxide and chloride with a nitrogen sparge or 

addition of Ag+, respectively. 

 

Scheme 1.3. Binding of a CO and Cl- anion opens up the Zn2+ active site, turning on phosphate 
hydrolysis. 
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Scheme 1.4. Cation binding turns on DNA cleavage, a process that is believed to be mediated by 
increasing affinity of the ligand for hydrogen bond donors in the substrate. 
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of strong affinity of crown ethers for Na+ to deprotect a Rh active site, turning on alkene 

hydrogenation (Scheme 1.5).29  

 

Scheme 1.5. Cation crown binding opens a Rh site to allow olefin binding and subsequent 
hydrogenation. 
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CO2 reduction.31 By changing the applied potential, the distribution of the formate, hydrogen, 

and CO products was able to be altered.31  

 In a homogeneous example, Stratakes and Miller were able to access photoelectrocatalytic H2 

production using a cyclopentadienyl Ir bipyridine complex.32 Upon application of light and 

voltage, the kobs of H2 production was found to be sensitive to the photon flux – up to an 8-fold 

increase – and the applied potential – up to a 40-fold increase.32 Schanz and coworkers 

demonstrated tunable ring opening metathesis polymerization using their tertiary amine 

substituted N-heterocyclic carbene (NHC) substituted Hoveyda-Grubbs type catalyst and 

various amounts of tosylic acid (Scheme 1.6).33 Upon addition of acid, up to a 12-fold decrease 

in the polymerization rate was observed.33 The rate polymerization was found to be highly 

dependent on acid concentration. 

 

Scheme 1.6. Protonation of basic functionalities changes the rate of polymerization. 
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elaborate reactivity using stimuli, conditions, and catalysts beyond the purview of biological 

systems. 

 

II. Bridging Switchable and Tunable Catalysis with a Pincer Crown-Ether 
Framework 
 

Controlling Catalytic Activity in Solution using Static and Dynamic Hemilability 

 Hemilabile ligands contain both strong donors designed to keep the ligand framework bound to 

the metal center and weak donors that can reversibly dissociate from the metal to allow substrate 

to bind.34  Incorporating hemilabile donors into a catalytic system has yielded successful catalytic 

systems that optimize stability and reactivity.35 Most of the examples of controllable catalysis 

modify activity using changes to the ligand scaffold without modifying the primary coordination 

sphere itself; additionally, elaborate supramolecular scaffolds are often used to control the 

control catalytic activity. If a stimulus-responsive hemilabile moiety was incorporated into the 

scaffold, the primary coordination sphere could be altered to control catalytic rate.11,36,37 

 Modulating hemilability can be divided into three approaches. The most common approach to 

adjust activity in catalysts with hemilabile donors is synthetic methods, which can add stronger 

donors or change the sterics of the hemilabile donor to influence reactivity.38,39  In static 

hemilability, an additive acts as a switch between a weak donor bound and weak donor dissociated 

state, which do not rapidly interconvert (Figure 1.1). This framework can be mapped onto 

switchable catalysis, since each state can have unique reactivity and rates. Another class is dynamic 

hemilability, where the weak donor bound and dissociated state of the complex are able to rapidly 

interconvert. Dynamic hemilability can be applied to access tunable catalysis – by adjusting the 

equilibria between these two states, a spectrum of rates and reactivities are accessible.  



    11 

 

Figure 1.1. Modes of hemilabilitiy.  
A. In static hemilability, two discrete states of the catalyst are toggled between two states using 
an external additive. B. In dynamic hemilability, exchange between two states is an equillibrium 
process, which can be tuned through external additives. 

 
 Towards the goal of tunable dynamic hemilability, a pincer-crown ether framework was 

developed to introduce stimuli responsive behavior to metal based catalysis. The pincer ligand 

contains a strong phosphine and phenyl background to anchor the ligand on the metal center, 

and a weak aza-crown-ether that can reversibly bind the metal center. The crown ether can then 

bind cations to deprotect the metal center to allow substrate to bind and turn on catalysis 

(Scheme 1.7). Crown-ethers are an attractive group for controlling reactivity, given the breadth 

of literature on well-defined binding of cationic additives.40  
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Scheme 1.7. Controlling isomerization of olefins using cation gated reactivity.  
In an example of static hemilability, Cl- can be extracted to open a coordination site for ligand to 
bind (an equillibrium process favoring the crown bound structure, Ir-k5). This dynamic 
hemilabile regime can be further tuned using Li+ to increase the rate of reactions.

 
 

Pincer-crown ethers can assume a variety of binding modes, demonstrating its hemilabile 

nature; metalation of the pincer-crown ether ligand yields a tetradentate (k4) iridium 

hydridochloride pincer-crown ether complex, with 1 oxygen of the crown ether bound (Scheme 

1.7, Ir-k4).41 Abstracting the chloride yields a pentadentate (k5) cationic iridium pincer-crown 

ether complex with two ethers bound (Scheme 1.7, Ir-k5).41 The crown ether serves as a cationic 

binding site, favoring a tridentate (k3) binding mode with both ethereal donors disassociated 

from the transition metal center; added cation is proposed to regulate the equilibria between 

ether-bound and free states and influence the rate of reactivity. 

 

Controlling Catalytic Rates with Cationic Additives: Switchable and Tunable Regimes 

Early studies investigating cation-controlled reactivity in iridium pincer-crown ethers 

looked at deuterium scrambling into the cationic hydride complex. Without any cationic species 

added, the half-life (t1/2) for hydride signal decay under D2 is 160 hrs. Upon the addition of 0.3 

eq of NaBArF
4, the t1/2 of hydride signal decay is reduced to 8 hrs, and upon the addition 0.4 eq 

Ir

N

O PiPr2
H

O

O
O

O

+

Ir

N

O PiPr2
H

O

OO
O

L

L

++ Li+

Li+

Catalysis
O

O

O
O

Ir

N

O PiPr2
H

Cl

– Cl-

+ Cl-
Rh+Ir Cl

ClCl-

ClCl-
Ir Ir

ClLi+

– Li+ClLi+

ClLi+
Ir-κ4 Ir-κ5



    13 

of LiBArF
4, t1/2 was further reduced to 0.67 hrs.41 The responsiveness to both cation identity and 

concentration observed in the system was the first indication of modulated dynamic hemilability, 

with the reaction rate tunable over two orders of magnitude depending on cation concentration 

and identity.  

To apply cationic-modulated of catalytic activity towards productive catalysis, iridium-

based isomerization of allylbenzene was explored. The chloride complex, Ir-k4, was found to be 

inactive to allylbenzene isomerization. Upon halide abstraction with 1 equiv. of NaBArF
4, the 

chloride anion is removed as NaCl, forming the cationic pentadentate complex, Ir-k5. This 

shows that the crown ether is under a static hemilabile regime by halide abstraction. Ir-k5 shows 

>96% conversion to b-methylstyrene over 141 hrs, This can be toggled in situ, by alternatively 

adding PPNCl and NaBArF
4, showing that control of static hemilabilty gives access to a switchable 

catalytic regime (Figure 1.2A).42 

 

Figure 1.2. Controlling olefin isomerization using salt additives.  
A. Switchable catalysis can be controlled by alternating addition of Na+ salt, which opens up 
coordination to the metal center and increases the rate of isomerization through association with 
the crown ether. Addition of Cl- reverses the “switch”, turning off catalysis. B. A four rate 
regime is demonstrated using various additives. Without any cation, isomerization of 
allylbenzene with Ir-k5 proceeds slowly. In the presence of Na+ isomerization is fast, but is the 
fastest in the presence of Li+ salts. Addition of Cl- turns off catalysis. Reproduced from Kita, M. 

1 mol% [Ir]

CD2Cl2

														Ir-κ4 

														Ir-κ5 
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R.; Miller, A. J. M. M. An Ion-Responsive Pincer-Crown Ether Catalyst System for Rapid and 
Switchable Olefin Isomerization. Angew. Chemie - Int. Ed. 2017, 56 (20), 5498–5502. With 
permission from Angewandte Chemie International Edition, © 2017. 

 
Upon addition of LiBArF

4 to Ir-k5, a dramatic (3 orders of magnitude) enhancement in 

the rate of isomerization is observed, showing the ability to control allyl benzene isomerization 

rates through addition of simple cationic additives. Furthermore, the Ir-k5 shows rates 

responsive to cation concentration and identity, allowing access to up three rate regimes with 

further modulation accessible depending on cation concentration added. By controlling the dynamic 

hemilability  of the pincer-crown ether complex, tunable catalysis is able to be achieved (Figure 

1.2B).42 Thus, pincer-crown ether catalysts are capable of moving between a switchable and 

tunable catalytic regime, depending on the additives put into solution, and represent an excellent 

platform to generalize stimuli controllable catalysis in olefin isomerization reactions. 

 

III. Controlling Product Selectivity in Olefin Isomerization 
Background and Challenges 

 Olefin isomerization is an intriguing fundamental reaction to explore the concept of controllable 

catalysis. Olefins are key chemical intermediates for the production of pharmaceuticals, 

fragrances, and natural products.43–47 Terminal olefins are readily available synthons, which can 

then be isomerized to internal olefinic products.48,49 If isomer selectivity can be controlled, 

isomerization represents an atom economical path to functionalized olefinic products.50  

The availability of various isomers also acts as a challenge in catalyst design, as the 

thermodynamic differences between olefinic isomers are often small.51 In the isomerization of 1-

hexene to various internal isomers, the free energy difference between various internal isomers is 

<1 kcal/mol, demonstrating this difficulty.52 Early isomerization efforts typically used metal 

salts, strong acids, or bases, at high temperatures to achieve thermodynamic isomeric 
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distributions, but suffered from poor selectivity and competing reactions (i.e. alkyl migrations, 

hydration, polymerization).51,53–56  

Designing selectivity for a specific regio- and stereoisomer is an ongoing challenge; 

typically, a new catalyst is needed to alter product selectivity and reaction rates. Adding stimuli-

responsive moieties to a catalytic framework for olefin isomerization offers a powerful way to 

control activity, further elaborating catalytic activity beyond synthetic modification. Given the 

efficacy of olefins as platforms to modulate regio- and stereoselectivity in subsequent derivation, 

controlling isomerization is an appealing way to elaborate geometries of subsequent 

functionalized products.50  

 

Overview of Transition Metal Catalyzed Olefin Isomerization 

Current efforts for olefin isomerization  have focused on improving catalytic rates, 

functional group tolerance, and using mild conditions.51 While many examples of allyl groups 

have been reported using organometallic platforms and demonstrate mild conditions needed to 

accomplish one bond isomerization across diverse functional groups,54,57 an ongoing challenge 

for organometallic platforms is preserving activity and selectivity across substrates that have 

multiple possible products.  Grotjahn and coworkers demonstrated an example of an alkene 

zipper, an impressive example of homogeneous catalysis capable of moving a double bond over 

30 positions to a thermodynamic product (Scheme 1.8A).58 In another example, Kochi and 

coworkers generated a cationic palladium-phenanthroline that was able to isomerize a terminal 

alkene over 20 position of siloxy functionalized alkenes at low catalytic loadings (Scheme 1.8B).59 

Such examples of isomerization of long chain alkenes are remarkable demonstrations of 

thermodynamic selectivity, accessing the thermodynamic product in reasonable time scales over 

a large number of bonds. 
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Scheme 1.8. Examples of alkene “zippers”, moving double bonds over large numbers of bonds. 

 

Given the small differences in energies of olefinic isomers, achieving high selectivity for 

kinetic products has garnered significant research interest. Huang and coworkers have shown an 

extremely E-selective iridium(I) pincer stabilized by agostic interactions, with E:Z ratios >20:1 

(Scheme 1.9A).60 Besides the high stereoselectivity, this system shows good substrate tolerance 

and selectivity for the one bond isomerization product. Shoenebeck and coworkers recently 

demonstrated a Ni(I) catalyst that yields high E selectivity across a wide range of substrates 

through a unique 1,3-hydrogen atom transfer mechanism.46 In another example of a kinetically 

selective catalyst, Hilt and coworkers developed a Co(I) 1,3-bis(diphenylphosphino)propane 

ligand which isomerized 1-hexadecene to the Z stereoisomer (1:6 E:Z) in good yields.61  Holland 

and coworkers also demonstrated a rare example of a one bond, Z selective catalysis using a 

sterically bulky high spin Co(II) catalyst (Scheme 1.9B).62 While the selectivity for Z isomer is 

more modest and variable across substrates, accessing the thermodynamically unfavored Z 

isomer with reasonable selectivity is an impressive development. In a more recent report, 

Dobereiner and colleagues are able to access Z selectivity across a variety of functionalized 

olefins through in situ generation of Mo-H catalyst from air stable Mo(0) precatalysts.63

30 mol% [Ru]
70 oC, 3 days

Ru PiPr2
N

N

MeCN

PF6

PdN

N

H3C
Cl

OH

28

O

28

O

19

Si

2.5 mol% [Pd]
3 mol% NaBArF

0 oC, 3 hr O19 Si

[Pd]:

[Ru]:

A.

B.

Pd

Ru



    17 

Scheme 1.9. Exempla of kinetically selective catalysts. 

 

 
Changing Catalytic Activity in Olefin Isomerization 

While remarkable achievements have been made selectively achieving one product, often 

very specific ligand optimization is required to access selectivity. Brookhart and Daugulis and 

coworkers utilized a sterically encumbered diimine-Pd sandwich catalyst to selectively perform a 

one bond isomerization (Scheme 1.10).64 While professing near thermodynamic E selectivity 

(about 4:1 E:Z),65 this example is notable in using synthetic modification to suppress 

polymerization and favor selective isomerization.
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Scheme 1.10. Affecting reaction outcomes using ligand modfication.  

 

 
Synthesis is and will remain a powerful tool to elaborate metal-based reactivity. However, 

small changes to ligand scaffold can have a huge impact on selectivity. Liu and Jiao and 

coworkers used a cobalt amine pincer system to elegantly explore ligand modification on the 

isomerization activity in an olefinic precursor to (+)-Minfiensine (Table 1.1).8 Starting with PNP 

isopropyl system (Co-I) no reactivity is observed. Replacing phosphine with a more labile pyridyl 

group (Co-II), yields a related PNN system capable of 99% conversion of the starting material 

and a modest 8:1 selectivity for the desired regioisomer. Increasing the steric bulk of the 

phosphine preserves activity (Co-III), but increases the selectivity of the desired isomer to 11:1. 

Interestingly, increasing the steric bulk of the pyridyl unit with a methyl group (Co-IV) 

completely shuts down reactivity (Table 1.1).8 This example demonstrates difficulties in using 

synthetic modification to control catalytic activity and selectivity; while indeed a powerful tool to 

alter selectivity, minor synthetic modifications can completely alter reactivity. Creating multiple 

variants of a catalyst to modify reactivity creates additional burdens of characterization and 

synthesis of new catalytic species. 
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Table 1.1. Steric bulk influences catalytic outcomes of a Co-PNP system. 

 

 
 

Grotjahn and coworkers are able to show a more dramatic change in catalyst selectivity 

using synthetic steric control. By moving to a bulkier methyl substituted cyclopentadienyl moiety 

(Cp*), the regioselectivity of the platform is able to be completely inverted in silyl ether 

substituted substrates while preserving high E selectivity; the increase in selectivity towards the 

one bond isomerization product is general feature of the Cp* system (Scheme 1.11).65
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Scheme 1.11. Steric bulk dramatically influences regioselectivity in a Cp-Ru system. 

 

 
A less attested approach to controlling catalytic activity in olefin isomerization is to 

include stimuli-responsive moieties in the catalytic system. A dendrimer was decorated with a 

ferrocenyl ruthenium cymene complex to yield a redox-responsive catalytic system. Upon 

oxidation, an order of magnitude decrease in the rate of isomerization of 1-octen-3-ol to 3-

octanone is observed, demonstrating in situ switchable catalysis using a redox couple.66 

 In another stimul-responsive system, light is used to access a switchable, one bond selective 

isomerization using cobalt and photosensitizer-based ligands. In this system, the 

photosensitizer/ligand is proposed to act as a photooxidant of a sacrificial reductant, which can 

then shuttle electrons to generate Co(I) in situ. Subsequent protonation yields a cobalt hydride, 

which can subsequently undergo alkene insertion chemistry to accomplish isomerization.67 What 

sets this apart from previous examples of photoswitchable control of alkene isomerization is the 

access to both kinetic and thermodynamic products, depending on the choice of the 

photosensitizer/ligand (Scheme 1.12). 
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Scheme 1.12. Using ligand scaffold to control product selectivty in  light driven isomerization. 

 

Finally, switchable catalysis provides an opportunity to change selectivity in tandem 

catalytic systems. Hartwig, Zhao, and coworkers demonstrate a tandem switchable photocatalytic 

system using iridium phenyl pyridine photosensitizers and ene-reductases. Without a 

photocatalyst, no reactivity is seen, but with a phototocatalyst under light, 83% yield of the R 

enantiomer is observed (Scheme 1.13).68 

 

Scheme 1.13. Coupling photoisomerization to seletive hydrogenation. 
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demonstrate not only the utility, but also the extensive characterization and screening needed to 

modulate activity using synthetic approaches.  

 

Building Upon Existing Reactivity: Shedding New Light on Iridium Pincer Crown Ether Complexes 

 Given our ability to access cation-dependent reactivity using iridium pincer-crown ether 

complexes, we were interested in expanding the scope of substrates beyond aryl and alkyl 

olefinic species and using our ability to control reaction rates to alter selectivity. While 

functionalized olefins are valuable commodity chemicals, perfumes, and pharmaceuticals, 51 

reactions with functionalized olefinic substrates can be challenging due to the coordination of 

groups on the substrate. Catalysts with hemilabile groups present unique challenges, as they 

include Lewis basic donors which could displace weak ethereal donors, possibly yielding a new 

species as the active catalyst.  

This thesis examines various aspects of controlling catalysis using cation-crown 

interactions in iridium pincer-crown ether complexes. Understanding the spectral features of 

different binding modes of iridium-pincer crown ether complexes aids in the characterization of 

ligand coordination mode in the presence of strong donors. Binding affinity studies explored the 

cation-crown interaction and helped motivate synthesis of new, larger crown complexes for 

olefin isomerization. Using new insight gained from these studies, this work seeks to realize 

controllable product selectivity in functionalized olefins. 
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CHAPTER 2. MAPPING THE BINDING MODES OF HEMILABILE 

PINCER−CROWN ETHER LIGANDS IN SOLUTION USING DIAMAGNETIC 
ANISOTROPIC EFFECTS ON NMR CHEMICAL SHIFT 

 
Reproduced with permission from: Camp, A. M., Kita, M. R., Grajeda, J., White, P.S, Dickie D. 
A., and Miller, A. J. M. Inorg. Chem. 2017, 56, 11141−11150.  
 
 
I. Introduction 

 
Multiple Binding Modes of Hemilabile Ligands 

Hemilabile ligands have emerged as broad and versatile tools in coordination chemistry.1 

As chelates with a weak donor that can dissociate or be displaced from the metal center, 

hemilabile ligands balance the stability of coordinatively saturated metal complexes with the 

activity provided by facile ligand substitution at the weak donor site. This balance has been 

particularly fruitful in the preparation of catalysts with high activity and good stability2−4 as well 

as catalysts that can be recycled through control of the hemilabile ligand binding mode.5,6 

 In pursuit of catalysts that can be tuned using cationic additives, we have developed 

“pincer−crown ether” ligands that contain an aza-crown ether macrocycle capable of multiple 

hemilabile coordination modes.7−9 As shown in Scheme 2.1, pincer−crown ether ligands can 

adopt a tridentate (κ3) binding mode like that of traditional pincer ligands, or weak ether donors 

can bind to reach tetradentate (κ4) or pentadentate (κ5) binding modes.10 

 It can be challenging to characterize the different binding modes of hemilabile ligands in 

solution. The weak donors can bind to the metal center, dissociate to form a low-coordinate 

species, or be displaced by a solvent or another external donor ligand. In some cases, the binding 

modes interconvert rapidly (“dynamic hemilability”), while in other cases isomerization can be 

slow or require a chemical impetus (“static hemilability”).7,11 Crystallographic characterization 
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can readily identify binding modes in the solid state.7,12 It is more difficult to probe the binding 

mode of a hemilabile ligand in solution. 

 

Scheme 2.1. Pincer−Crown Ether Ligand Binding Modes and Effect of Diamagnetic Anisotropy 
on Proximal Protons. 

 
 
 
 In this work, a collection of well-defined pincer−crown ether complexes has been used to 

develop a new NMR protocol for identifying the coordination mode of these hemilabile ligands 

in solution. The protocol connects the hemilabile ligand coordination mode to chemical shift 

differences based on the presence of diamagnetic anisotropy induced by other ligands at the 

metal center. Diamagnetic anisotropy influences chemical shifts through the field-induced 

movement of paired electrons, which generates local secondary fields.13 This differs from 

paramagnetic anisotropy, which influences chemical shifts over hundreds of parts per million 

(ppm) through field-induced movement of unpaired electrons.14 Diamagnetic anisotropic effects 

from organic arenes,15 carbonyls,16 and nitriles17 have been shown to significantly influence 

chemical shifts, thus providing valuable structural information on complex organic molecules 

and proteins in solution.14,18,19 While not used routinely in inorganic systems, diamagnetic 

anisotropy has been productively applied to structural determination of ruthenium(II) 
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diastereomers,20 characterization of metal−metal quadruple bonds,21 and the orientation of 

complexes of the type (arene)M(CO)3.22,23 

In pincer−crown ether ligands, the chemical shifts of geminal protons in the crown are 

sensitive to the proximity of the macrocycle to other ligands bound to the metal. The difference 

in chemical shift between geminal protons (Δδ) can serve as a marker of the coordination mode 

(Scheme 2.1). Focusing on pincer−crown ether complexes as a convenient development 

platform, a protocol for gaining insight into hemilabile ligand coordination mode is developed 

on the basis of a concise series of routine and inexpensive NMR experiments. 

 

II. Synthetic Access to Different Binding Modes 
 

Synthesis and Characterization of Halide-Containing Pincer−Crown Ether Complexes 

Synthetic routes to a large array of pincer−crown ether complexes with different 

coordination modes of the pincer−crown ether ligand are shown in Scheme 2.2. As discussed in 

the following paragraphs, complexes 3, 4, 5, and 6-trans have not been previously characterized. 

The ligand coordination modes of several complexes have been assigned on the basis of solid-

state crystallographic studies. NMR spectroscopic studies suggest that the coordination mode is 

maintained in solution for noncoordinating solvents such as chloroform and dichloromethane, 

as detailed below. 

The previously reported iridium hydride [κ5-(15c5NCOPiPr)Ir(H)][BArF
4] (1) adopts a 

pentadentate binding mode, with two crown ether oxygen atoms binding the metal center, both 

in the solid state and in noncoordinating, chlorinated solvents.7 Hydride resonances in 1H NMR 

spectra provide a convenient marker of solution-phase structure. The ligand trans to the hydride 

has a big impact on the chemical shift of the hydride resonance.24 The hydride in 1 has a 1H 
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NMR chemical shift (δ −30.03) in CDCl3 that is indicative of an ether donor trans to the 

hydride.25 

 
 
Scheme 2.2. Moving Between the Binding of Pincer-Crown Ether Ligands. 

 

The pentadentate-bound complex 1 serves as a convenient starting place for examining 

changes in binding mode, as the weak ether donors can undergo ligand substitution reactions. 

Addition of 1 equiv of PPNCl (PPN = bis-(triphenylphosphine)iminium) to cationic hydride 

complex 1 in CH2Cl2 (Scheme 2) has been shown to yield the tetradentate-bound chloride 

complex κ4-(15c5NCOPiPr)Ir(H)(Cl) (2) featuring one ether bound to Ir.26 Complex 2 can also be 

accessed by metalation of the pincer ligand with [Ir(COD)(Cl)]2.7 A crystallographic study 

previously established that the pincer ligand in 2 adopts a tetradentate binding mode in the solid 

state.7 In CDCl3 solution, compound 2 is characterized by a hydride resonance (δ −31.26) 

consistent with the weak ether donor remaining in the site trans to the hydride. The chloride can 

be abstracted from 2 with 1 equiv of NaBArF
4 to reform 1 (Scheme 2.2).7 
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Tetradentate-bound complexes of other halides were also targeted. Addition of PPNBr 

to a solution of 1 in CH2Cl2 at room temperature yields a new bromide complex, κ4–

(15c5NCOPiPr)Ir(H)(Br) (3), in 72% yield (Scheme 2.2). Successful incorporation of bromide was 

confirmed by high-resolution mass spectrometry (HRMS). The hydride resonance (δ −31.23) is 

consistent with a tetradentate pincer coordination mode with the ether donor trans to the 

hydride.  

The analogous iodide complex was prepared in a different manner, via halide exchange 

in 2. Heating a solution of 2 in CDCl3 in the presence of excess NaI yields κ4-(15c5NCOPiPr)- 

Ir(H)(I) (4) (Scheme 2.2), as confirmed by HRMS studies. The hydride resonance (δ −31.20) has 

a chemical shift that is almost identical to that of 3, suggesting an analogous tetradentate 

structure in solution.  

Complexes with a meridional tridentate binding mode of the pincer ligand are accessible 

from the hydridochloride 2. Sequential addition of portions of NBu4Cl to 2 leads to a new 

species identified as the anionic dichloride κ3-[(15c5NCOPiPr)Ir(H)(Cl)2]−(5) (Scheme 2.2). The 

growth of a new hydride peak downfield of 2 (δ −24.4) suggests that chloride has displaced the 

ether ligand. More than 150 equiv of NBu4Cl was required to reach 99% conversion, precluding 

isolation of 5.  

Binding of CO was then investigated. When a pale-yellow solution of 2 in CH2Cl2 is 

placed under 1 atm CO at room temperature, the color immediately fades. Two products, 

observed in a 15:1 ratio, are assigned as trans-κ3-(15c5NCOPiPr)Ir(H)(Cl)(CO) (6-trans) and cis-κ3-

(15c5NCOPiPr)Ir(H)(CO)(Cl) (6-cis) (Scheme 2.2). The major species, 6-trans, features a hydride 

resonance characteristic of a carbonyl trans to the hydride (δ −7.02; cf. the hydride resonance of 

6-cis at δ −19.22). In the 13C NMR spectrum of 6-trans, the carbonyl carbon appears as a 

doublet of doublets (δ 178.88, 2JHC = 56.6 Hz, 2JPC = 3.4 Hz) with the strong carbon−proton 
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coupling expected in a trans-hydridocarbonyl geometry. Isomer 6-cis shows only coupling 

attributed to phosphorus (δ 180.76, 2JPC = 4.6 Hz). Single crystals of 6-trans suitable for an X-

ray diffraction (XRD) study grew after pentane was layered over a concentrated solution of 6-

trans in toluene. The solid-state structure of 6-trans (Figure 2.1A) features no crown ether 

oxygen interactions with the iridium center, confirming a tridentate binding mode of the pincer 

ligand.  

 

Figure 2.1. Crystal structures of new iridium pincer complexes.
Structural representations of 6-trans (A) and one of the two independent cations of 8 in the 
asymmetric unit (B), with elliposids drawn at the 50% probability level. Hydrogen atoms and 
counterions have been omitted for clarity. A 14% substitutional disorder of CO and Cl ligands 
was observed for 6-trans, consistent with some cocrystallized 6-cis. 
. 

The coordination isomer 6-cis, with the carbonyl cis to the hydride, was previously 

characterized (including an XRD study confirming the expected κ3 binding mode) as the sole 

product of metalation of the free pincer−crown ether ligand with Ir(CO)2(Cl)(p-toluidine) in 

refluxing toluene.8 Hypothesizing that 6-trans was the kinetic product of ether displacement 

from 2, the 15:1 6-trans/6-cis mixture was heated at 50 °C for 36 h. Thermal redistribution of 

the isomers resulted in a 1:3 ratio favoring the 6-cis isomer. Heating isolated samples of pure 6- 

cis did not produce detectable levels of 6-trans, suggesting that 6-cis is the thermodynamic 
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product. This is consistent with prior reports of iridium hydridocarbonyl chloride com- 

plexes.27−29  

The carbonyl ligands of 6-trans and 6-cis are stable under prolonged exposure to 

dynamic vacuum at room temperature. However, the carbonyl ligand of 6-cis can be removed 

using trimethylamine N-oxide, a decarbonylation reagent that has been successfully applied to 

other systems.30 Stirring 6-cis and Me3NO in THF for 48 h provides a new route to move 

between coordination modes, generating 2 as the only hydride containing species according to 

1H NMR spectroscopy. The expected trimethylamine byproduct was present as a singlet at δ 

2.11 (Scheme 2.2).  

Acetonitrile has been previously shown to bind to hydridochloride 2, producing an 

equilibrium mixture comprising the starting material 2 and the two coordination isomers trans-

κ3-(15c5NCOPiPr)Ir(H)(Cl)(NCCH3) (7-trans) and cis-κ3-(15c5NCOPiPr)Ir(H)(NCCH3)(Cl) (7-cis). 

Applying dynamic vacuum to the mixture at room temperature regenerates 2 (Scheme 2.2).7  

 

Synthesis and Characterization of Carbonyl-Containing Pincer−Crown Ether Complexes 

 A larger array of carbonyl complexes could be accessed conveniently from pentadentate- bound 

1, as shown in Scheme 2.3. Placing 1 under 1 atm CO in CDCl3 leads to a mixture of two 

products at room temperature. The minor product is assigned as the new cationic 

hydridocarbonyl [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (8), which exhibits a tetradentate binding 

mode with an ether donor trans to the hydride (δ −25.79). The major product is assigned as the 

new dicarbonyl complex [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF
4] (9) on the basis of the downfield 

hydride resonance at δ −9.43, which is indicative of a strong donor trans to the hydride. 

Exposing the mixture of 8 and 9 to dynamic vacuum at room temperature yields 8 as the 

exclusive product. Crystals of 8 suitable for an X-ray diffraction study were grown by slow 
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evaporation of an Et2O solution. Figure 2.1B shows that 8 adopts a tetradentate binding mode 

in the solid state, with a crown ether oxygen donor trans to the hydride. 

 

Scheme 2.3. Synthetic access to a family of carbonyl containing pincer-crown complexes. 

 

A mixed ligand system with a tridentate binding mode is accessible by addition of excess 

acetonitrile to 8 in CDCl3 to yield [κ3-(15c5NCOPiPr)Ir(H)(CO)(NCCH3)][BArF
4] (10).8 The hydride 

peak shifts to an intermediate range (δ −19.83) when acetonitrile displaces the ether donor. The 

acetonitrile ligand can be removed under dynamic vacuum to regenerate the tetradentate 

hydridocarbonyl complex 8. 

Addition of 1 equiv of PPNCl to monocarbonyl 8 in CH2Cl2 leads to the 

hydridocarbonyl chloride complex 6-cis after 1 hr (NMR spectroscopy). This reaction offers yet 

another route to complex 6-cis; the same species can also be accessed by addition of CO to 

hydridochloride 2 followed by thermolysis (see above) or by direct metalation of the free ligand 
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with a carbonyl precursor.8 Abstracting the chloride from 6-cis with 1 equiv of NaBArF
4 in 

CH2Cl2 generates 8 (Scheme 2.3). 

 

Summary of Iridium Pincer−Crown Ether Substitution Reactions  

 
Many iridium pincer−crown ether species are accessible by several different synthetic 

routes, and almost every reaction can be reversed by applying a vacuum or through a chemical 

reaction. Ligands beyond halides and carbon monoxide have also been explored and are 

included for the NMR studies that follow.  

 

Table 2.1. New cationic complex of iridium pincer-crown ethers. 

 

The complexes in Table 2.1 have been previously prepared by addition of a ligand to 

complex 1. The tetradentate-bound acetonitrile complex [κ4-(15c5NCOPiPr)Ir(H)(NCCH3)]- 

[BArF
4] (11) and the tridentate-bound bis(acetonitrile) complex [κ3-

(15c5NCOPiPr)Ir(H)(NCCH3)2][BArF
4] (12) can be prepared using different amounts of 

acetonitrile.7 Water can also bind to 1 to generate another tetradentate-bound species, [κ4-

(15c5NCOPiPr)Ir(H)(H2O)][BArF
4] (13).7 

The wide variety of pincer−crown ether coordination modes and the range of available 

exogenous ligands make this system ideal for NMR studies probing hemilabile ligand binding 

mode
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III. NMR Methods for Identifying Pincer-crown Ether Coordination Mode 
 

Assignment of Crown Ether Protons 

In hopes of identifying a simple NMR protocol for distinguishing between different 

hemilabile ligand coordination modes, we first performed a full assignment on just a few selected 

pincer−crown ether complexes. Routine characterization always involves the acquisition of 1H, 

31P{1H}, and 13C{1H} NMR spectra. Full proton assignments for 1, 2, 3, 6, and 8 were made 

using a combination of multidimensional experiments, including 1H−13C HSQC, 1H−13C HSQC- 

TOCSY, 1H−1H COSY, and 1H−13C HMBC.  

 
Figure 2.2. Comparison of 1H NMR spectra (crown ether region) of the free ligand and 2
Atom labels are consistent across all complexes. 

 
The 1H NMR spectrum of the free ligand is shown in Figure 2.2A. The labeling scheme 

for all of the complexes is shown in Figure 2.2A; carbon atoms are labeled with uppercase 

letters, and hydrogen atoms are given lowercase letters (e.g., CA and Ha/ Ha′). The crown ether 

region of the free ligand is crowded with 16 overlapping proton resonances centered at δ 3.63 
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and a triplet at δ 2.76 (4H integration). The upfield resonance is characteristic of a pair of 

equivalent methylene groups adjacent to nitrogen.31 

The chloride complex 2 features a well-resolved 1H NMR spectrum with resonances 

spanning a wide range (Figure 2.2B). Nuclear Overhauser effect spectroscopy (NOESY) studies 

confirmed that a tetradentate coordination mode is maintained in solution (Figure 2.3). 

Through-space coupling between the isopropyl methyl protons and crown ether protons 

indicates that the macrocycle adopts a conformation that places methylene protons near the 

metal center. Such NOE interactions have not been observed in the free ligand or in complexes 

that adopt a tridentate coordination mode. 

 
Figure 2.3. 1H-1H NOESY spectrum of 2.
Cross-peaks between methyl protons of the isopropyl group and Hd (I) and Hc (II) support a 
tetradentate binding mode. 

 
Complex 2 features two crown ether protons that are shifted dramatically downfield (Hd 

and Hj; Figure 2.2B). Downfield shifts have been observed in chelating ethers in Ir complexes,32 

so it would be reasonable to assign these resonances as the protons closest to the metal center. 

However, multinuclear, two-dimensional NMR analysis revealed that the most downfield crown 
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ether resonances correspond to two protons that are not adjacent to the metal center – they are 

in fact far apart in the macrocycle. 

 

Figure 2.4. Molecular representation of 2 (from X-ray crystallographic data)7 showing proximity 
of protons Hj and Hd to the chloride ligand. 

 
Comparisons with crystallographic data show that downfield protons Hd and Hj in 2 are 

in close proximity to the chloride ligand in the solid-state structure. As shown in Figure 2.4, the 

Cl−Hd and Cl−Hj distances are 2.629 and 2.764 Å, respectively. On the other hand, the other 

protons of these geminal pairs (Hd′ and Hj′) are oriented away from the group in space. The 

resonances for Hd′ and Hj′ are found in the typical region for ethers, leading to chemical shift 

differences between the diastereotopic geminal protons (Δδ) of 1.69 ppm (Δδd/d′) and 1.65 ppm 

(Δδj/j′). The data suggest that chloride anisotropy is responsible for the large downfield shifts for 

Hd and Hj in 2 (δ 5.04 and δ 4.93, respectively, in Figure 2.2B) and the large Δδ values for the 

geminal pairs. 
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pairs, larger halogens should have a more dramatic effect on the chemical shifts.33 In the 
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analogous bromide complex κ4-(15c5NCOPiPr)Ir(H)(Br) (3), the same protons Hd and Hj are 

further deshielded to δ 5.05 and δ 5.11, respectively. The differences in chemical shift between 

the two geminal protons increase as well (Δδd/d′ = 1.72 ppm and Δδj/j′ = 1.84 ppm). Similarly, the 

iodide complex κ4-(15c5NCOPiPr)Ir(H)(I) (4) features downfield crown ether resonances at δ 5.29 

and δ 5.04 and even larger differences in chemical shift for the diastereotopic protons (Δδd/d′ = 

1.79 ppm and Δδj/j′ = 2.06 ppm). 

 

Figure 2.5. Molecular representation of 6-cis8 and 6-trans (from X-ray crystallographic data).
6-trans shows the proximity of proton Ha to the chloride ligand (A). Molecular representation 
of 6-trans (from X-ray crystallographic data), showing that proton Ha′ is proximal to the chloride 
ligand (B). 
 

The NMR spectra of the halide complexes suggest that anisotropic effects from the 

halide ligands induce the observed downfield shifts and large Δδ values when the ligand adopts a 

coordination mode that brings the macrocycle close to the transition metal center. It is worth 

noting that steric interactions could potentially give rise to similar shifts, although these are 

usually observed only in extremely rigid systems.34−36 

Hydridocarbonyl chloride 6-cis features a tridentate coordination mode in which the 

macrocycle has no ligated ethers. Only the eight ethylene linker protons proximal to the nitrogen 

show distinct chemical shifts in 6-cis, while the rest of the crown ether protons are observed as 
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a multiplet at δ 3.6−3.7 (Figure 2.5A). The largest Δδ value is only 0.55 ppm, corresponding to a 

pair of protons Ha/a′  adjacent to the amine nitrogen. Proton Ha in 6-cis (δ 4.44) is 2.779 Å from 

the chloride in the X-ray diffraction structure and is deshielded relative to its partner Ha′ (δ 3.89) 

(Figure 2.6A).8 

 

Figure 2.6. Comparison of the 1H NMR spectra of complexes 6-cis (A) and 6-trans (B).
Key protons were assigned on the basis of NOESY interactions with the benzylic linker (orange 
arrows). 
 

The geometric isomer 6-trans also shows the largest Δδ values for the methylene unit 

adjacent to the amine nitrogen. In 6-trans, however, it is Ha′ that is now oriented toward the 

chloride (2.740 Å, Figure 2.6B), leading to a downfield shift for Ha′ (δ 4.41). Ha is oriented away 

from the chloride in 6-trans and has the more upfield shift (δ 3.51; Figure 2.5B). This isomer- 

dependent change illustrates how proximity to the chloride ligand gives rise to anisotropy-

induced changes in chemical shift. 
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Tridentate-bound complexes experience less chloride induced anisotropy overall: 

anisotropic shifting is limited to the methylene units closest to the amine (and closest to the 

metal center). This suggests that Δδ values are markers of hemilabile ligand coordination modes. 

To determine whether Δδ could be applied in halide-free cases, pentadentate-bound 

cation 1 and tetradentate-bound carbonyl cation 8 were fully assigned. As shown in Figure 2.7A, 

the largest chemical shift difference between geminal protons in 1 is observed for Hj/j′ (δ 4.20 

and δ 3.37, Δδ = 0.83 ppm), followed by Hd/d′ (Δδ = 0.55 ppm). The significant Δδ values may 

originate from oxygen diamagnetic anisotropy from the ethers in the crown,37,38 from steric 

congestion,35 or from constraint of the methylene groups.39 

One large Δδ of 1.27 ppm is seen in 8, consistent with the rigid conformation of the 

tetradentate coordination mode bringing crown protons close to the ligand (Figure 2.7B). The 

other diastereotopic protons show low-to-moderate Δδ, ranging from 0.01 to 0.57 ppm. In 

general, the Δδ values are lower for halide-free systems, indicating weaker anisotropic effects 

from the bound carbonyl ligand.22 However, the tridentate bis(carbonyl) 9 still has smaller 

chemical shift differences than the tetradentate and pentadentate analogues. Most of the geminal 

pairs have Δδ less than 0.1 ppm; the largest Δδ value of 0.37 ppm is assigned to the protons 

nearest to nitrogen. Taken together, these examples show that Δδ values are sensitive to the 

pincer−crown ether ligand binding mode. 
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Figure 2.7. 1H NMR spectra (crown ether region) of 1 (A) and 8 (B). 

 
Average Differences in Chemical Shift (Δδavg) of Geminal Protons as a Marker of Pincer−Crown Ether 
Coordination Mode 
 
 The full family of complexes was evaluated by 1H NMR spectroscopy along with 1H−13C HSQC 

and 1H−1H COSY experiments. The HSQC experiment identifies which protons are attached to 

the same carbon, allowing facile measurement of Δδ values for each geminal pair in the crown 

ether macrocycle, while the 1H NMR and COSY data assist with calculation of Δδ values in cases 

where HSQC cross-peaks are not resolved. The values of Δδ for the individual geminal pairs in 

the macrocycle were averaged to give Δδavg. Each value of Δδ has some uncertainty stemming 

from the ability to resolve the protons in the NMR experiments. In general, the 2D experiments 

provide resolution of about 0.01 ppm, but when many protons have similar chemical shifts 

(more common in the tridentate binding mode), there is more uncertainty in each Δδ value and 

thus in the composite value of Δδavg. Explanations of uncertainty can be found in the 

Experimental section. 
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The power of this method lies in its ability to provide a useful metric of the coordination 

mode (the value of Δδavg) without requiring full structural assignment of all protons in the 

system; only a 1H NMR spectrum and 1H−13C HSQC and 1H−1H COSY experiments are 

needed. For example, samples of complex 9 contain small amounts of 8 (see above); this 

prevents full assignment of each proton in 9, but Δδ values can still be readily extracted. The 

value of Δδavg is sensitive to large Δδ values, but because Δδavg weights each crown proton 

equally, macrocycles with little variation in the chemical shift of diastereotopic pairs will shift the 

average toward smaller values. 

Figure 2.8. Bar graphs showing the average difference in chemical shift (Δδavg).
Δδavg of geminal protons in the macrocycles of halide-containing (A) and halide-free (B) pincer 
crown ether complexes. Tetradentate- and pentadentate-bound complexes are shown in dark red 
(A) or blue (B), while tridentate-bound complexes are shown in light pink (A) or purple (B). 
 

The Δδavg values for 13 complexes are collected in Figure 2.8. A significant difference in 

Δδavg is apparent when comparing complexes assigned to tridentate and tetradentate binding 

modes. In halogen-free examples, tetradentate and pentadentate species have Δδavg values around 

0.34, more than double that of tridentate species (Δδavg ≈ 0.12). This effect is amplified in 

chloride-containing species, resulting in an approximately 4-fold difference in Δδavg between 

coordination modes. This protocol readily distinguishes between hemilabile ligand binding 

modes of pincer−crown ethers using a relatively concise number of NMR experiments. 
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IV. Conclusions 
 

Facile synthetic access to a structurally diverse series of iridium pincer−crown ether 

complexes has enabled the development of an NMR protocol that reports the presence of 

iridium−oxygen interactions of these hemilabile ligands in solution. Assignment of each crown 

ether proton of a few complexes and comparison to solid-state structures revealed that 

diamagnetic anisotropy dramatically influences the chemical shift in the tetradentate and 

pentadentate coordination modes, which bring the macrocycle close to the metal center through 

ether donation to iridium. A parameter based on the difference in chemical shift between 

diastereotopic methylene protons, Δδavg, was found to be sensitive to the pincer−crown ether 

ligand binding mode. Tetradentate and pentadentate binding modes that feature ether(s) binding 

iridium have more than 2-fold larger Δδavg values compared with tridentate examples that lack 

Ir−O bonds. 

The pincer−crown ether complexes feature hemilabile oxygen donor ligands, as is 

common in other hemilabile ligands,2,3,40−42 and the metal coordination sphere is completed by 

commonly encountered ligands such as halides, carbon monoxide, and acetonitrile. Many 

hemilabile ligands feature methylene linkers that would be suitable for obtaining Δδ values when 

the protons are diastereotopic.32,43−46 Thus, it is possible that future studies might find 

diamagnetic anisotropy to be a helpful probe of the coordination chemistry of hemilabile ligands 

beyond pincer−crown ether systems. Every system will be different, of course, but the present 

example shows that the meaning of Δδ in a particular system can be made clear through full 

assignments of a few key complexes, followed by rapid collection of 1H−13C HSQC data for a 

wider range of complexes. 
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V. Experimental Details 
 

General Considerations  

Air- and moisture-free reactions were performed using a vacuum line, Schlenk 

techniques, or in a glovebox under nitrogen. Under standard glovebox operating conditions, 

pentane, diethyl ether, benzene, toluene, and tetrahydrofuran were used without purging, such 

that traces of these solvents were present in the atmosphere and in solvent bottles. NMR 

samples were prepared in Teflon-sealed NMR tubes under a nitrogen atmosphere in the 

glovebox. A purge was performed prior to sample preparation to minimize solvent impurities in 

NMR spectra. NMR solvents were purchased from Cambridge Isotope Laboratories. Benzene-

d6 (C6D6), chloroform-d with tetramethylsilane (0.03%) (CDCl3 w/TMS), and dichloromethane-

d2 (CD2Cl2) were freeze−pump−thawed three times for degassing and dried by passage through 

a small plug of activated alumina. 

1H, 31P{1H}, and 2D homo- and heteronuclear NMR experiments were performed on 

400, 500, and 600 MHz spectrometers at 298 K. 1H and 2D homonuclear (1H−1H) NMR spectra 

were referenced to residual NMR solvent peaks as appropriate, 31P NMR spectra are reported 

relative to an 85% H3PO4 external standard (0 ppm), and 2D heteronuclear (13C−1H) spectra are 

referenced relative to TMS (0 ppm). κ5-[(15c5NCOPiPr)Ir(H)][BArF
4] (1),7 κ4-

(15c5NCOPiPr)Ir(H)(Cl)(2),7 cis-κ3-(15c5NCOPiPr)Ir(H)(CO)(Cl) (6-cis),8 cis-κ3-

(15c5NCOPiPr)Ir(H)(NCCH3)(Cl) (7-cis),7 trans-κ3-(15c5NCOPiPr)Ir(H)(Cl)(NCCH3) (7-trans),7 [κ4-

(15c5NCOPiPr)Ir(H)(NCCH3)][BArF
4] (11),7 [κ3-(15c5NCOPiPr)Ir(H)(NCCH3)2][BArF

4] (12),7 [κ4-

(15c5NCOPiPr)Ir(H)(H2O)][BArF
4] (13),7 (15c5NCOPiPr)(H),7 PPNBr,47 PPNI,47 and NaBArF

4
48 were 

prepared according to literature procedures. All of the other reagents were commercially 

available and used without modification. 
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HRMS measurements (resolution 100 000, mass error ≤1 ppm) were performed with a 

Q Exactive Orbitrap mass spectrometer (ThermoFisher, Bremen, Germany). Samples were 

introduced via syringe pump into an atmospheric pressure photoionization source at a flow rate 

of 10 µL/min. Xcalibur (ThermoFisher, Breman, Germany) was used to analyze the data. 

Molecular formula assignments were determined with Molecular Formula Calculator (version 

1.2.3). 

Single-crystal X-ray diffraction data were collected on a Bruker APEX-II CCD 

diffractometer at 100 K with Cu Kα radiation (λ = 1.54175 Å). Structures were solved and 

refined using the Bruker SHELXTL49,50 software package within Apex3,51 and/or OLEX.2.52  

 

∆δ Methodology 

Individual ∆δ values are calculated from 1H-13C HSQC spectra by assessing the 

difference between chemical shifts of diastereotopic protons. For a ∆δ value, only a 1H and 1H-

13C HSQC spectra are required, with a 1H-1H COSY aiding identification of germinal protons 

when 13C chemical shifts are very close. Longer experiments were used for absolute assignment. 

From the ten ∆δ in the crown, a ∆δavg can be calculated. Additionally, a standard deviation (Sn) 

marks the spread of ∆δ values in a complex. Complexes with strong anisotropic effects will have  

larger standard deviations. Error is dependent on the resolution in the NMR spectra. 

Overlapping 1H-13C HSQC cross peaks will reduce the accuracy of ∆δ values calculated, 

resulting in larger error in the ∆δavg. Resolved 1H-13C HSQC cross peaks are assigned an error of 

0.1 ppm. Through propagation of error for the ∆δavg, error bars for each ∆δ value can be 

calculated.  
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Synthesis of κ4-(15c5NCOPiPr)Ir(H)(Br) (3)  

In a 20 mL scintillation vial, 26.4 mg of 1 (39.5 µmol) and 23 mg of PPNBr (40.07 µmol) 

were dissolved in CH2Cl2 (5 mL), and the mixture was stirred for 2 h in a glovebox. The solvent 

was removed under vacuum, and the byproduct, [PPN][BArF
4], was removed with an ether wash 

(2 × 2 mL) to yield 14.3 mg (72% yield) of a yellow solid. The product was 92% pure according 

to multinuclear NMR spectroscopy (with 8% complex 2 present that carried over during the 

synthesis), so elemental analysis is not reported; this was sufficient purity for the present NMR 

studies.  

1H NMR (500 MHz, CDCl3): δ −31.23 (d, J = 25.9 Hz, 1H), Ir−H), 0.88 (dd, J = 15.6, 

7.6 Hz, 3H, CH(CH3)2), 1.21 (m, 3H, CH(CH3)2), 1.37 (dd, J = 13.9, 6.9 Hz, 3H, CH(CH3)2), 

1.45 (dd, J = 16.3, 7.2 Hz, 3H, CH(CH3)2), 2.36 (m, 1H, CH(CH3)2), 2.55 (m, 1H, CH(CH3)2), 

3.01 (dd, J = 15.0, 2.5 Hz, 1H, crown-CH2), 3.25 (dd, J = 15.7, 1.8 Hz, 1H, crown-CH2), 3.33 (d, 

J = 11.4 Hz, 1H, crown-CH2, 3.42−3.55 (m, 2H, crown-CH2), 3.57−3.97 (m, 8H, crown-CH2), 

4.08−4.13 (m, 2H, crown-CH2), 4.42 (m, 2H, ArCH2N, 5.04 (t, J = 10.9 Hz, 1H, crown-CH2), 

5.10 (dd, J = 11.7, 11.5 Hz, 1H, crown- CH2), 6.54 (d, J = 8.2 Hz, 1H, Ar−H), 6.57 (d, J = 8.2 

Hz, 1H, Ar− H), 6.71 (t, J = 7.5 Hz, 1H, Ar−H). 13C{1H} NMR (151 MHz, CDCl3): δ 16.59 (d, J 

= 2.9 Hz). 17.41 (d, J = 3.0 Hz, CH(CH3)2)), 17.56 (s, CH(CH3)2) 17.95 (d, J = 6.6 Hz, 

CH(CH3)2)), 29.68 (d, J = 38.5 Hz, CH(CH3)2), 31.39 (d, J = 32.9 Hz, CH(CH3)2)), 63.51 (d, J = 

2.7 Hz, crown-CH2), 65.00 (d, J = 2.1 Hz, crown-CH2), 67.54 (d, J = 2.5 Hz, crown-CH2), 68.61 

(s, crown-CH2), 69.25 (s, crown-CH2), 70.43 (s, crown-CH2), 70.59 (s, crown-CH2), 72.40 (d, J = 

2.0 Hz, ArCH2N), 72.95 (s, crown-CH2), 73.22 (s, crown-CH2), 76.19 (s, crown-CH2), 107.32 (d, 

J = 11.5 Hz), 113.21 (s, CAr), 122.70 (s, CAr), 134.76 (s, CAr), 148.15 (d, J = 3.2 Hz, CAr), 

162.81 (d, J = 3.4 Hz, CAr). 31P{1H} NMR (243 MHz, CDCl3): δ 144.88. HRMS: (3+−H, m/z 

713.12744, calcd 713.127423). 
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Figure 2.9. 1H NMR spectrum of κ4-(15c5NCOPiPr)Ir(H)(Br) (3) in CDCl3. 

 

 

Figure 2.10. 31P{1H} NMR spectrum of κ4-(15c5NCOPiPr)Ir(H)(Br) (3) in CDCl3.  
Trace of compound 2 is present. 
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Figure 2.11. 13C{1H} NMR spectrum of k4-(15c5NCOPiPr)Ir(H)(Br) (3) in CDCl3. 

 

 

Figure 2.12. 1H-13C HSQC NMR spectrum of κ4-(15c5NCOPiPr)Ir(H)(Br) (3) in CDCl3.
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Synthesis of κ4-(15c5NCOPiPr)Ir(H)(I) (4)  

In air, an NMR tube was charged with 2 (11.7 mg, 11.7 µmol), NaI (22.8 mg, 152 µmol), 

and CDCl3. The mixture was heated overnight at 55 °C. Excess salt was filtered off, and the 

solvent was removed by rotary evaporation, yielding a yellow film (3.1 mg, 23% yield).  

1H NMR (500 MHz, CDCl3): δ −31.17 (d, J = 24.4 Hz, 1H, Ir−H), 0.90 (dd, J = 15.5, 6.9 

Hz, 3H, CH(CH3)2), 1.25 (m, 3H, CH(CH3)2), 1.38 (dd, J = 14.2, 7.0 Hz, 3H, CH(CH3)2), 1.47 

(dd, J = 16.2, 7.3 Hz, 3H, CH(CH3)2), 2.36 (m, 1H, CH(CH3)2), 2.58 (m, 1H, CH(CH3)2), 3.04 (d, 

J = 12.3 Hz, 1H, crown-CH2), 3.25 (m, 2H, crown-CH2), 3.45 (m, 1H, crown- CH2), 3.54 (m, 

2H, crown-CH2), 3.62 (m, 2H, crown-CH2), 3.72 (m, 3H, crown-CH2), 3.86 (m, 4H, crown-CH2), 

4.04 (m, 1H, crown- CH2), 4.14 (m, 1H, crown-CH2), 4.29 (dd, J = 14.7, 12.8 Hz, 1H, crown-

CH2), 4.42 (m, 2H, ArCH2N), 5.05 (t, J = 10.3 Hz, 1H, crown- CH2), 5.31 (dd, J = 15.4, 12.1 Hz, 

1H, crown-CH2), 6.56 (d, J = 7.4 Hz, 1H, Ar−H), 6.60 (d, J = 7.8 Hz, 1H, Ar−H), 6.75 (t, J = 

7.7 Hz, 1H, Ar−H). 13C{1H} NMR (126 MHz, CDCl3): δ 17.10 (s, C(CH3)2), 17.64 (s, C(CH3)2), 

18.22 (s, C(CH3)2), 19.21 (d, J = 5.4 Hz, C(CH3)2), 30.36 (d, J = 38.8 Hz, C(CH3)2), 31.25 (d, J = 

33.6 Hz, C(CH3)2), 65.41 (d, J = 8.2 Hz, crown-CH2), 68.11 (s, crown-CH2), 68.65 (s, crown-

CH2), 69.37 (s, crown-CH2), 70.54 (s, crown-CH2), 70.63 (s, crown-CH2), 72.11 (s, ArCH2N), 

72.99 (overlapping s, crown-CH2), 76.42 (s, crown-CH2), 107.49 (d, J = 11.7 Hz, CAr), 113.39 (s, 

CAr), 122.89 (s, CAr), 137.21 (s, CAr), 148.63 (s, CAr), 162.43 (s, CAr). 31P{1H} NMR (202 

MHz, CDCl3): δ 145.63. HRMS: (4+− H, m/z 759.11467, calcd 759.11561). Anal. Calcd for 

C40H40IIrNO5P: C, 36.32; H, 5.30; N, 1.84. Found: C, 35.14; H, 4.82; N, 1.75. Although the 

product was pure by NMR analysis and the expected mass was confirmed by HRMS, the analysis 

results suggest that a minor impurity (perhaps residual NaI) was present. No impact on the 

NMR analysis was expected. 
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Figure 2.13. 1H NMR spectrum of κ4-(15c5NCOPiPr)Ir(H)(I) (4) in CDCl3. 

 

Figure 2.14. 31P{1H} NMR spectrum of κ4-(15c5NCOPiPr)Ir(H)(I) (4) in CDCl3. 
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Figure 2.15. 13C{1H} NMR Spectrum of κ4-(15c5NCOPiPr)Ir(H)(I) (4) in CDCl3. 

 

 

Figure 2.16. 1H-13C HSQC NMR spectrum (crown region) of κ4-(15c5NCOPiPr)Ir(H)(I) (4) in 
CDCl3 w/ TMS.
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Equilibrium Formation of κ3-[(15c5NCOPiPr)Ir(H)(Cl)2]− (5)  

In air, complex 2 (21.60 mg, 23.3 µmol) was dissolved in CDCl3. To this solution a stock 

solution of NBu4Cl (89.7 mg, 322.8 µmol dissolved in 4 mL of CDCl3) was added portionwise to 

the solution of 2. An additional 20 equiv of NBu4Cl (179.4 mg, 645.6 µmol) was added, with 

44% conversion observed. Addition of over 150 equiv of NBu4Cl drove the reaction forward to 

99% conversion. Separation of 5 from excess chloride proved to be difficult; this species was not 

isolated. 

 

Figure 2.17. 1H NMR spectrum after addition of [NBu4][Cl] to 2 in CDCl3 w/TMS.
Greater than 150 equiv of [NBu4][Cl] are needed to generate the new hydride species at –24.29 
ppm, assigned as [NBu4][κ3-(15c5NCOPiPr)Ir(H)(Cl)2] (5). 

 
Synthesis of trans-κ3-(15c5NCOPiPr)Ir(H)(Cl)(CO) (6-trans) 

 In a Teflon-sealed 50 mL reaction vessel, 2 (34.9 mg, 52.2 µmol) was dissolved in 

CH2Cl2 (10 mL). The solution was freeze−pump−thaw degassed, and 1 atm CO was admitted to 
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the reaction vessel at room temperature. Upon addition of CO, the yellow color faded, affording 

a clear, colorless solution. The solvent was removed by vacuum, yielding a white solid (23.8 mg, 

66% yield). Single crystals suitable for X-ray diffraction were grown by layering pentanes over a 

concentrated solution of 6-trans in toluene. 

 1H NMR (600 MHz, CDCl3): δ −7.02 (d, 23.8 Hz, 1H, Ir-H), 1.16−1.34 (m, 12H, 

CH(CH3)2), 2.45 (m, 1H, CH(CH3)2), 2.57 (m, 1H, CH(CH3)2), 3.28 (dt, J = 12.8, 5.90 Hz, 1H, 

crown-CH2), 3.51 (m, 3H, crown-CH2), 3.66 (m, 10H, crown- CH2), 3.78 (m, 2H, crown-CH2), 

3.86 (dt, J = 10.8, 5.25 Hz, 1H, crown-CH2), 4.01 (m, 2H, crown-CH2), 4.20 (d, J = 13.1 Hz, 1H, 

ArCH2N), 4.36 (m, 1H, crown-CH2), 4.42 (dt, J = 14.4, 6.2 Hz, 1H, crown-CH2), 4.60 (dd, J = 

14.0, 3.4 Hz, 1H, ArCH2N), 6.64 (d, J = 7.8 Hz, 1H, Ar−H), 6.73 (d, J = 7.8 Hz, 1H, Ar−H), 

6.83 (t, J = 7.8 Hz, 1H, Ar−H). 13C{1H} NMR (151 MHz, CDCl3): δ 16.42 (s, CH(CH3)2), 16.57 

(s, CH(CH3)2), 17.35 (d, J = 3.4 Hz, CH(CH3)2), 17.63 (s, CH(CH3)2), 30.96 (d, J = 42.4 Hz, 

CH(CH3)2), 33.30 (d, J = 33.6 Hz, CH(CH3)2), 33.30 (s, crown-CH2), 53.44 (s, crown-CH2), 61.36 

(d, J = 2.3 Hz, crown-CH2), 62.86 (s, crown-CH2), 66.56 (d, J = 2.1 Hz, crown-CH2), 69.87 (s, 

crown-CH2), 70.18 (s, crown-CH2), 70.26 (s, crown-CH2), 70.35 (s, crown-CH2), 70.64 (s, crown-

CH2), 71.18 (s, crown-CH2), 75.44 (d, J = 2.4 Hz, ArCH2N), 108.58 (d, J = 11 Hz, CAr), 117.01 

(s, CAr), 124.15 (s, CAr), 129.28 (d, J = 3.3 Hz, CAr), 143.42 (d, J = 2.4 Hz, CAr), 160.88 (CAr), 

178.90 (dd, J = 56.6, 3.4 Hz, Ir−CO; note that the 1H decoupler did not reach this downfield 

signal). 31P{1H} NMR (243 MHz, CDCl3): δ 150.17. IR (toluene): ν(CO) 2017 cm−1. Anal. Calcd 

for C24H40ClIrNO6P: C, 41.34; H, 5.78; N, 2.01. Found: C, 41.08; H, 5.49; N, 1.91. 
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Figure 2.18. 1H NMR spectrum of trans-κ3-(15c5NCOPiPr)Ir(H)(Cl)(CO) (6-trans) in CDCl3.
Trace amounts of cis-κ3-(15c5NCOPiPr)Ir(H)(CO)(Cl) (6-cis) are present. 

 

 
Figure 2.19. 31P{1H} NMR spectrum of trans-κ3-(15c5NCOPiPr)Ir(H)(Cl)(CO) (6-trans) in CDCl3.
Trace amounts of cis-κ3-(15c5NCOPiPr)Ir(H)(CO)(Cl) (6-cis) are present. 
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Figure 2.20. 13C{1H} NMR spectrum of trans-κ3-(15c5NCOPiPr)Ir(H)(Cl)(CO) (6-trans) in CDCl3.
Trace amounts of cis- κ3-(15c5NCOPiPr)Ir(H)(CO)(Cl) (6-cis) are present. Inset: Carbonyl region 
of the 13C NMR spectrum of trans-κ3-(15c5NCOPiPr)Ir(H)(Cl)(CO) (6-trans). 

 

 
Figure 2.21. 1H-13C HSQC NMR spectrum (crown focus) of trans-κ3-
(15c5NCOPiPr)Ir(H)(Ir)(Cl)(CO) (6-trans) in CDCl3. 
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Synthesis of [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (8)  

A 20 mL scintillation vial was charged with (15c5NCOPipr)Ir(H)(CO)(Cl) (0.0522 g, 0.0749 

mmol), NaBArF
4 (0.0732 g, 0.0826 mmol), and CH2Cl2 (8 mL). The resulting yellow slurry was 

stirred for 17 h. The mixture was filtered, and the light-golden-yellow filtrate was concentrated 

to ∼1 mL under vacuum. Pentane (5 mL) was added, and the solvent was removed under 

vacuum, affording 8 as an off-white solid (0.0997 g, 87% yield). Single crystals suitable for X-ray 

diffraction were grown by slow evaporation of an Et2O solution of 8 into (Me3Si)2O. 1H NMR 

(600 MHz, CD2Cl2): δ −25.67 (d, J = 21.4 Hz, 1H, Ir−H), 0.92 (dd, J = 16.8, 7.0 Hz, 3H, 

CH(CH3)2), 1.05 (dd, J = 20.9, 6.9 Hz, 3H, CH(CH3)2), 1.38 (dd, J = 18.9, 7.5 Hz, 3H, 

CH(CH3)2), 1.44 (dd, J = 14.8, 6.8 Hz, 3H, CH(CH3)2), 2.55 (overlapping m, 2H, CH(CH3)2), 

3.06 (m, 1H, crown-CH2), 3.58 (m, 9H, crown-CH2), 3.78 (m, 4H, crown-CH2), 3.93 (m, 1H, 

crown-CH2), 4.01 (m, 2H, crown-CH2), 4.18 (m, 1H, crown-CH2), 4.28 (m, 2H, crown-CH2), 

4.58 (dd, J = 15.6, 2.9 Hz, 1H, ArCHHN), 4.63 (d, J = 15.7 Hz, 1H, ArCHHN), 6.80 (d, J = 7.7 

Hz, 1H, Ar−H), 6.82 (d, J = 8.3 Hz, 1H, Ar−H), 7.07 (t, J = 7.8 Hz, 1H, Ar−H), 7.56 (s, 4H, 

p−B−Ar−H), 7.72 (s, 8H, o− B−Ar−H). 13C{1H} NMR (151 MHz, CD2Cl2): δ 16.12 (d, J = 4.7 

Hz, CH(CH3)2), 17.37 (d, J = 2.3 Hz, CH(CH3)2), 17.86 (d, J = 4.0 Hz, CH(CH3)2), 18.20 (d, J = 

6.3 Hz, CH(CH3)2), 29.69 (d, J = 38.9 Hz, CH(CH3)2), 31.93 (d, J = 36.0 Hz, CH(CH3)2), 66.13 

(d, J = 1.4 Hz, crown-CH2), 67.50 (s, crown-CH2), 69.08 (s, crown-CH2), 69.42 (d, J = 2.0 Hz, 

crown-CH2), 70.52 (d, J = 2.4 Hz, crown-CH2), 70.66 (s, crown-CH2), 70.83 (s, crown-CH2), 

71.75 (s, crown-CH2), 73.12 (s, crown-CH2), 75.69 (d, J = 1.4 Hz, ArCH2N), 78.56 (s, crown-

CH2), 110.16 (d, J = 12.3 Hz, CAr), 115.57 (s, CAr), 117.87 (p, J = 4.1 Hz, p- CH, BArF), 124.99 

(q, J = 272.4 Hz, CF3, BArF), 129.05 (s, CAr), 129.26 (qdd, J = 31.2, 5.8, 2.9 Hz, C−CF3, 

BArF), 135.19 (s, o-CH, BArF), 145.87 (d, J = 5.0 Hz, CAr), 152.27 (d, J = 3.3 Hz, CAr), 162.14 

(dd, J = 99.7, 49.9 Hz, B−C, BArF), 162.80 (d, J = 1.4 Hz, CAr), 183.35 (s, Ir−CO). 31P{1H} 
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NMR (243 MHz, CD2Cl2): δ 152.77. IR (solid): ν(CO) 2041 cm−1. Anal. Calcd for 

C56H52BF24IrNO6P: C, 44.11; H, 3.44; N, 0.92. Found: C, 44.38; H, 3.28; N, 0.95. 

 
Figure 2.22. 1H NMR spectrum of κ4-[(15c5NCOPiPr)Ir(H)(CO)][BArF

4] (8) in CD2Cl2. 

 

 
Figure 2.23. 31P{1H} NMR spectrum of κ4-[(15c5NCOPiPr)Ir(H)(CO)][BArF

4] (8) in CD2Cl2. 
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Figure 2.24. 13C{1H} NMR spectrum of κ4-[(15c5NCOPiPr)Ir(H)(CO)][BArF

4] (8) in CD2Cl2. 

 

 

Figure 2.25. 1H-13C HSQC NMR spectrum (crown region) of [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] 

(8) in CDCl3. 
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spectroscopy. Backfilling again with CO saw further conversion to 87%. Complex 9 is stable 

only under a CO atmosphere, so this product was not isolated.  

1H NMR (600 MHz, CDCl3): δ −9.42 (d, J = 20.8 Hz, 1H, Ir−H), 1.07− 1.14 (m, 6H, 

CH(CH3)2), 1.15−1.26 (m, 6H, CH(CH3)2), 2.52 (m, 2H, CH(CH3)2, 3.56−3.82 (m, 14H, crown-

CH2), 3.83−3.92 (m, 2H, crown-CH2), 4.03 (m, 1H, crown-CH2), 4.21 (m, 1H, crown-CH2), 4.46 

(d, J = 14.7 Hz, 1H, ArCH2N), 4.59 (dd, J = 14.7, 3.43 Hz, 1H, ArCH2N), 6.85 (d, J = 8.2 Hz, 

1H, Ar−H) 6.99 (d, J = 7.0 Hz, 1H, Ar−H), 7.08 (m, 1H, Ar−H). 13C{1H} NMR (151 MHz, 

CDCl3): δ 16.45 (s, 3H, CH(CH3)2), 16.61 (s, 3H, CH(CH3)2), 17.29 (d, J = 2.6 Hz, 3H, 

CH(CH3)2), 17.43 (d, J = 3.4 Hz, 3H, CH(CH3)2), 30.64 (d, J = 42.1 Hz, 1H, CH(CH3)2), 33.88 

(d, J = 34.8 Hz, 1H, CH(CH3)2), 67.14 (s, crown-CH2), 67.55 (s, crown-CH2), 67.71 (s, crown-

CH2), 69.76 (s, crown-CH2), 69.89 (s, crown-CH2), 70.07 (s, crown-CH2), 70.27 (s, crown-CH2), 

70.48 (s, crown-CH2), 70.48 (s, crown-CH2), 70.55 (s, crown-CH2), 70.95 (s, ArCH2N), 111.02 (d, 

J = 12.3 Hz, CAr), 117.44 (p, J = 11.7 Hz, p-CH, BArF), 119.3 (s, CAr), 124.52 (q, J = 272.5 Hz, 

BArF), 128.7 (s, CAr), 128.76 (qdd, J = 31.5, 5.9, 2.9 Hz, C−CF3, BArF), 129.87 (d, J = 4.0 Hz, 

CAr), 134.76 (s, o-CH, BArF), 145.37 (d, J = 2.0 Hz, CAr), 161.13 (s, CAr), 161.54 (dd, J = 

100.7, 48.67 Hz, ipso-C, BArF), 168.51 (d, J = 2.9 Hz, trans-CO), 169.81 (s, cis-CO). 31P{1H} 

NMR (243 MHz, C5D5Cl): δ 152.8. IR (CH2Cl2): ν(CO) 2099, 2062 cm−1. 
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Figure 2.26. 1H NMR spectrum of [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF

4] (9) in CDCl3.   

 
 

 
Figure 2.27. 13C{1H} NMR spectrum of [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF

4] (9) in CDCl3. 
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Figure 2.28. 1H-13C HMBC NMR spectrum of the hydride region of κ3-
[(15c5NCOPiPr)Ir(H)(CO)2][BArF

4] (9) in CDCl3. 
Two cross-peaks corresponding to bound carbonyls are observed at 168.51 and 169.81 ppm. 

 

 
Figure 2.29. 1H-13C HSQC NMR spectrum (crown region) of [κ3-
(15c5NCOPiPr)Ir(H)(CO)2][BArF

4], (9) in CDCl3. 

 
Decarbonylation of 6-cis  

A 20 mL scintillation vial charged with compound 6-cis (9.6 mg, 6.3 µmol), 

trimethylamine N-oxide (5 mg, 66.6 µmol), and THF was allowed to stir overnight. The solvent 

was removed under vacuum, and the crude reaction mixture was taken up in C6D6 for NMR 

analysis.
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CHAPTER 3. ORGANOMETALLIC ELABORATION AS A STRATEGY FOR 

TUNING THE SUPRAMOLECULAR CHARACTERISTICS OF AZA-CROWN 
ETHERS 

 
Reproduced in part with permission from: Smith, J.B., Camp, A.M., Farquhar, A. H., Kerr, S.H., 
Chen, C. H., Miller, A. J. M. Organometallics. 2019, 38, 4392-4398. 

 
I. Introduction 
 
Host-Guest Interactions in Crown Ethers 

Crown ethers are quintessential cation-binding macrocycles in supramolecular chemistry. 

The discovery of crown ethers helped spark a wave of research into synthetically tunable 

constructs for molecular recognition.1−3 The fundamental knowledge of host−guest properties 

has enabled applications in a variety of fields including sensing,4 separations,5,6 and molecular 

machines.7−11 

Hundreds of macrocyclic structures have been prepared using synthetic organic methods 

to tailor ion recognition properties.12,13 New crown ethers are typically prepared via 

macrocyclization reactions that can be tedious, unselective, and low-yielding.14,15 Post-

macrocyclization synthetic modification, as in the installation of pendent donors (“lariat” ethers), 

offers an attractive alternative for systematic tuning.16,17 We hypothesized that organometallic 

elaboration – installing an organotransition metal fragment on the periphery of a crown ether – 

would represent a robust, versatile, and reversible means of tuning host−guest properties. 

Organometallic complexes offer several attractive features for tunable binding. First, 

strong transition metal−carbon bonds in the organometallic binding pocket could enforce guest 

molecule binding in the crown ether. Second, organometallic synthetic transformations could be 

used to change the structure of the metalla-crown ether and tune the host−guest properties. Of 
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particular interest was the ability of the proximal transition-metal center to support ion pair 

(ditopic) binding.18−20 The ability of transition metals to control supramolecular traits is apparent 

in the coordination chemistry underpinning advances in on/off switching in artificial allosteric 

regulation of supramolecular constructs.21−28 While many “metalla-crown ethers” (defined here 

as the broad class of crown ethers that incorporate a distinct transition-metal binding pocket) 

have been examined in the context of sensing and catalysis,29−31 we are not aware of any 

systematic study of how changes at the transition-metal center influence the host−guest 

properties of the macrocycle. 

Our interest in the cation-modulated catalysis of “pincer-crown ether” ligands that 

incorporate an aza-crown ether macrocycle into a phenylphosphinite pincer framework led us to 

consider this platform for organometallic tuning of crown ether host−guest properties (Figure 

3.1).32 For applications in organometallic catalysis, we considered the cation−macrocycle 

interactions as tuning the reactivity of the transition-metal center.33−38 However, the 

intramolecular communication can also be considered from the other perspective: changes to 

the transition-metal center should tune the host−guest properties of the crown ether.  

 
Figure 3.1. Overview of organometallic elaboration approach to tuning cation binding properties 
of an aza-crown ether 

 
In a prior study of nickel pincer-crown ether complexes which focused on drawing 

comparisons to catalytic inter-mediates, alkali metal cation binding affinity studies revealed some 

striking differences between organic crown ethers and the pincer-crown ether complexes.38 

M

PiPr2

N

L

O

O
O

O

O

L

Lalkali metal cation 
receptor site

organometallic 
tuning site

• transition metal identity and charge
• supporting ligand structure

n+

Binding affinity (Ka) 
Proton responsiveness
Ditopic binding

+ M

PiPr2

N

L

O

O
O

O
O

L

L

n+Ka

Tuned by organometallic site:



 70 

Because the amine donor of the aza-crown ether is bound to nickel, there are fewer donors 

available to bind alkali-metal cations, leading to a decrease in the binding affinity of the 1:1 

cation:pincer-crown ether adducts. This change is accompanied by an increase in the selectivity 

for Li+ over Na+, however.  

Herein, we show that straightforward synthetic modifications at the transition-metal 

center of pincer-crown ether complexes can tune the cation binding affinity, modulate Li+/Na+ 

selectivity, and enable ion pair recognition. This strategy is noteworthy for both for establishing 

dramatic changes in the supramolecular characteristics and providing a mechanism of subtle 

tuning of binding affinities. 

 

II. Results and Discussion 
 

Tuning Supramolecular Properties through Installation of Organometallic Iridium on 1-Aza-15-crown-5-Ether 

Initial studies tracked changes in the binding affinity and Li+/Na+ selectivity through the 

process of metalating an organic aza-crown ether. To enable comparisons with organic 

macrocycles, measurements were made in acetonitrile solution. The macrocycle 1-aza-15-crown-

5 ether was selected as a starting point based on possible selectivity for Li+ when the nitrogen 

donor is bound to a transition metal. We chose to focus on iridium complexes because of the 

ability of these species to readily access multiple oxidation states, coordination numbers, and 

charges through facile synthetic transformations.  

Starting from 1-aza-15-crown-5 ether (a15c5),39 reductive amination provides m-

(aza-15-crown-5)methylphenol (1, Figure 3.5).36,38 The pincer-crown ether ligand precursor 1 

binds Li+ and Na+ cations tightly in a 1:1 fashion in CD3CN at 25 ± 1 °C, as evidenced by the 

linear response of 1H NMR spectroscopic titrations up until 1 equiv of the cation relative to the 

macrocycle. A competitive binding technique (experimental details in the Experimental Section) 
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provided association constants (Ka) for 1 with both LiOTf (Ka(Li+) = 130000 ± 4000 M−1) and 

NaBArF
4 (Ka(Na+) = 79000 ± 4000 M−1, BArF

4 = 3,5-bis(trifluoromethyl)phenyl).40 These values 

are reasonable in comparison to those for other substituted N-benzylaza-15-crown-5 ethers, 

which exhibit strong substituent effects in CH3CN.41 Phosphination of 1 provides the known 

pincer-crown ether ligand (15c5NCOPiPr)H (2),33 which maintains Ka(Li+) and Ka(Na+) values 

identical with those of 1 in CD3CN at 25 ± 1 °C. Scheme 3.1 summarizes the synthetic steps and 

binding affinity values. The salts LiOTf and NaBArF
4 were chosen to ensure solubility under 

these conditions; comparisons of LiOTf and LiBArF
4 here and in a prior study show that 

solvation by acetonitrile is sufficient to minimize counteranion effects.38  

Scheme 3.1. Organometallic elaboration of 1-aza-15-crown-5 ether.  
Synthetic modification changes binding affinity (Ka) and Li+/Na+ selectivity (Ka(Li+)/Ka(Na+)) in 
CD3CN. Reaction conditions: (i) 3-hydroxybenzaldehyde, NaHB(OAc)3, THF; iPr2PCl, NEt3, 
THF; (iii) Ir(CO)2(Cl)(p-toluidine); (iv) KOtBu. 

 

Metalation of 2 with Ir(CO)2(Cl)(p-toluidine) provides the known d6 Ir(III) complex (κ3–

15c5NCOPiPr)Ir(H)(CO)(Cl) (3, Scheme 3.1).42,43 Binding affinity curves were generated by 
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titration of Li+ and Na+ salts into each host complex and measurement of changes in chemical 

shift. The binding isotherm curves were nicely fit by the expression for a 1:1 model at various 

concentrations and combined to yield an average binding affinity (see Experimental Details).44  

Titrations of 3 with LiOTf and NaBArF
4 provided binding affinities: Ka(Li+) = 560 ± 44 M−1 and 

Ka(Na+) = 19 ± 2 M−1. An analogous titration of 3 with LiBArF
4, Ka(Li+) = 500 ± 13 M−1, 

confirmed that counter-anion effects are minimal in acetonitrile.  

The iridium metalla-crown ether complex 3 features exquisite selectivity for Li+ over Na+ 

(Ka(Li+)/Ka(Na+) =29), as observed for nickel pincer-crown ether complexes.38 Consistent with 

the independent measurements, complex 3 binds Li+ preferentially in CD3CN solutions 

containing an equimolar amount of LiBArF
4 and NaBArF

4 (Figure 3.2). The smaller Ka values for 

complex 3 relative to the organic crown ethers are the expected result of the nitrogen donor no 

longer participating in cation binding. Smaller Ka values are also observed on going from a15c5 

(Ka(Li+) = 160000 M−1; Ka(Na+) =40000 M−1 in CH3CN) to the smaller, amine-free 12-crown-4 

ether (Ka(Li+) = 2500 M−1; Ka(Na+) = 2000 M−1).45,46 The binding affinity of the aza-15-crown-5-

based pincer-crown ether complexes is in the same range of those of other four-oxygen 

macrocycles.  
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Figure 3.2. Li and Na+ competitive binding in 3.  
Comparing the 7Li chemical shift of Li+, Na+, and 3 (middle) with free LiBArF

4 (top) and Li+ and 
3 alone (bottom), shows that coordinated Li+ is favored even in the presence of Na+. 

 

Higher affinities in the metalla-crown ethers can be accessed by starting with a larger 

macrocycle. A previously synthesized analogue containing an aza-18-crown-6 ether group, 3-

18c6,36 has Ka(Na+) = 15000 ± 4000 M−1, binding that cation much more tightly than 3. 

Comparison of 3-18c6 and a15c5, which feature the same number of donor atoms in the crown 

ether, reveals only a 10-fold difference in Ka (Scheme 3.1).  

Treating 15-crown-5-based complex 3 with KOtBu provides another neutral iridium 

species, (κ3–15c5NCOPiPr)Ir(CO) (4).43 Alkali-metal salt titrations revealed a reduction in Li+ 

binding affinity (Ka(Li+) = 180 ± 6 M−1) without a significant change in Na+ affinity (Ka(Na+) = 

27 ± 1 M−1). The cation binding properties of 3 and 4 foreshadow a broader ability to tune 

macrocyclic properties via the organometallic center. Complex 3 is an octahedral six-coordinate 

complex with a +3 formal Ir oxidation state, while complex 4 is a square planar four-coordinate 

complex with a +1 formal oxidation state. These structural and electronic differences are 

accompanied by a 3-fold change in both Ka and the relative binding affinity Ka(Li+)/Ka(Na+).  
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To better understand how routine synthetic modifications of the transition-metal center 

can tune the cation binding properties of the crown ether, Ka(Li+) was determined for a series of 

pincer-crown ether complexes in which the identity of the transition metal, nature and 

orientation of ancillary ligands, and overall charge were systematically varied. 

 

Tuning Lithium Ion Binding Affinity by Changing the Identity of the Transition Metal 

The identity of the transition-metal ion was varied to compare binding affinity across an 

isoelectronic series of d8 square-planar organo-metallic fragments. Figure 3.3A depicts the 

synthesis of new chloride complexes of nickel (κ3-15c5NCOPiPr)Ni(Cl) (5-Cl) (analogous to the 

known bromide),35,38 palladium (κ3-15c5NCOPiPr)Pd(Cl) (6), and platinum (κ3-15c5NCOPiPr)-Pt(Cl) 

(7). Multinuclear NMR spectroscopy and single-crystal X-ray diffraction (XRD) analysis confirm 

a tridentate binding mode for complexes 5-Cl, 6, and 7 (Figure 3.3B) that leaves all four ether 

oxygen atoms free for binding cations.  

 

Figure 3.3. (A) Synthesis of group 10 pincer-crown ether complexes. (B) Structural 
representation of 7 from X-ray diffraction data.  
 

The binding affinity of each group 10 organometallic complex with LiOTf was 

established by 1H NMR titration in CD3CN. The Ni complex 5-Cl (Ka = 110 ± 13 M−1) has the 
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weakest Li+ interaction of the series, while the Pd complex 6 (Ka = 290 ± 16 M−1) has the 

strongest interaction, about a 3-fold enhancement. The Pt complex 7 (Ka = 190 ± 6 M−1) and Ir 

complex 4 (180 ± 6 M−1) exhibit intermediate Li+ binding. The complexes with lower LiOTf 

binding affinity feature the most electronegative metals, consistent with the organometallic 

fragment withdrawing more electron density from the amine nitrogen and ether oxygen 

atoms.38,41,47,48 

 

Tuning Lithium Ion Binding Affinity through Transition-Metal Ligand Substitution: Halide, Geometry, and 
Charge Effects 
 
 The various metalla-crown ethers were further elaborated using routine organometallic synthesis, 

with the expectation that structural changes in the primary coordination sphere might influence 

cation−macrocycle interactions. One of the simplest structural changes involves altering the 

stereochemistry of the transition-metal complex (Figure 3.4A). The complex trans-(κ3-

15c5NCOPiPr)Ir(H)(Cl)(CO) (3-trans), an isomer of 3 in which the carbonyl group is trans to the 

hydride, was prepared by addition of CO to (κ4-15c5NCOPipr)Ir(H)(Cl).33,49 Complex 3-trans 

(Ka(Li+) = 790 ± 120 M−1) has a slightly higher binding affinity for LiOTf in comparison to 3 

(Ka(Li+) = 560 ± 44 M−1). The increased affinity is attributed to favorable interactions between a 

chloride lone pair and the crown-intercalated lithium ion, with the halide cis to the hydride better 

positioned to help the macrocycle bind cations (Figure 3.4C).  
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Figure 3.4. Tuning LiOTf binding affinity (Ka(Li+)) by isomerization. 
(A) and halide substitution (B), along with the proposed role of halide bridges (C). Change in 
Ka(Li+) upon halide substitution by nitrile (D).   

 

Ligand substitution is a fundamental inorganic reaction that offers another way to tune 

crown ether binding affinity remotely. As shown in Figure 3.4B, varying the halide in pincer-

crown ether nickel complexes leads to a nearly 2-fold change in LiOTf binding affinity. The 

iodide complex (κ3-15c5NCOPiPr)NiI (5-I), prepared by addition of excess NaI to an acetone 

solution of 5-Br,50 binds LiOTf more tightly in comparison to the other halide complexes: 

Ka(Li+) = 170 ± 70 M-1. The observed differences in binding affinity are hypothesized to derive 

from variations in the electron richness of nickel, as well as cooperative effects from halide lone 

pair donation to Li+ (Figure 3.4C). The importance of interactions between cations and halide 

ligands is further underscored by the observation of a Ni−Na−Br bridge in the solid-state 

structure of (κ3-15c5NCOPiPr)Ni(Br)@NaBArF
4.38  
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Substitutions exchanging neutral and cationic ligands were also explored. Bromide 

substitution by the neutral donor acetonitrile forms the cationic complex [(κ3-

15c5NCOPiPr)Ni(NCCH3)][PF6] (8).35,38  Titration of 8 with LiPF6 gave Ka = 6 ± 4 M−1 – a 20-fold 

decrease in binding affinity. Similarly, iridium complex 3 undergoes facile halide substitution by 

acetonitrile to produce cationic [(κ3-15c5NCOPiPr)Ir(H)(CO)(NCCH3)][BArF
4] (9).  

Titration of 9 with LiBArF4·3Et2O gave Ka = 45 ± 12 M −1 (Figure 3.4D). Changing the charge 

on the transition metal complex leads to a roughly 10-fold change in affinity in both Ni and Ir 

complexes. This decrease in binding affinity is attributed to unfavorable electrostatic interactions 

between the cationic alkali metal and the cationic nickel center, as well as the loss of any 

stabilizing interactions with halide lone pairs. 

 
Proton-Responsive Behavior of Pincer−Crown Ether Complexes  

 
One of the defining features of aza-crown ethers is proton responsive binding 

affinity.51,52 Organic aza-crown ethers generally forfeit essentially all cation binding affinity upon 

protonation. Accordingly, the protonated form of 1, [H(m-(aza-15-crown-

5)methylphenol][BArF4] (1-H+), exhibits a 4 orders of magnitude decrease in binding affinity 

toward Li+(Ka(Li+) = 6 ± 1 M−1, Figure 3.5A). Some of the iridium pincer-crown ether 

complexes described above can be interconverted via proton transfer reactions, as shown in 

Figure 3.5B. For example, protonation of Ir(I) complex 4 (Ka(Li+) = 180 M−1) using an acid 

paired with a non-coordinating anion gives complex 9 (Ka(Li+) = 45 ± 12 M-1).43 This 4-fold 

decrease in affinity stands in stark contrast to the 20000-fold decrease in affinity for the organic 

macrocycle. 

The Ir(I) complex 4 is related to the Ir(III) complex 3 (Ka(Li+) = 560 M-1) by 1 equiv of 

HCl. Yet HCl addition results in a 3-fold increase in binding affinity (Figure 3.5B). The 
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organometallic pendant thus features distinct proton-responsive behavior relative to the free aza-

crown ether: instead of a complete shutdown in the presence of acids seen in a15c5, the pincer-

crown ether complexes maintain cation affinity upon protonation, with HCl addition even 

enhancing cation binding.  

 
Figure 3.5. Proton-responsive behavior of pincer-crown ether complexes compared with organic 
crown ethers.  

 

Turning on Ion Pair Recognition by Facile Synthetic Modification at the Iridium Center  

The various iridium halide complexes examined above suggest that pincer-crown 

ether complexes should be capable of ion pair recognition (i.e., ditopic binding). Organic aza-

crown ethers are generally only suitable for cation binding. Ditopic binding by transition-metal-

based metalla-crown ethers is relatively rare.53,54 In pincer-crown ethers, however, an 

appropriately configured transition-metal center could be harnessed to access ion pair 

recognition.55,56 
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To engage anion binding capabilities, a cationic iridium complex was targeted. The 

bis(acetonitrile) complex salt [(κ3-15c5NCOPiPr)Ir(H)(NCCH3)2][BArF
4] (10) was prepared by 

dissolution of the known complex [(κ5-15c5NCOPiPr)Ir(H)][BArF
4]33 in acetonitrile. LiI was 

selected for ion pair binding studies on the basis of the favorable solubility of this salt (Table 

3.1).  

 

Table 3.1. Salt solubility screening.  
Salts screened at an approximately 50 mM concentration. Heat map of observed solubility is 
reported: insoluble (red), partially soluble (orange), soluble (green), not tested (white).  

 

Addition of 0.5 equiv of LiI to 10 results in partial conversion to two new species. 

Further addition of 20 equiv of LiI led to 97% conversion. The crown ether resonances of the 

products shifted with increasing LiI concentration, as expected for a Li+ binding process. The 

products are assigned as isomeric iodide complexes, given that the same species form upon 

dissolution of the iodide complex (κ4-15c5NCOPiPr)Ir(H)(I)49 (11) in CH3CN. 2D NMR analysis, 

∆d analysis,49  and 15NCCH3 labeling experiments (Assignment details in the Experimental 

Section) enabled assignment as the geometric isomers cis-(κ3-15c5NCOPiPr)Ir(H)(NCCH3)(I) (12-

cis) and trans-(κ3-15c5NCOPiPr)Ir(H)(I)(NCCH3) (12-trans), where cis and trans refer to the 

relationship between the hydride and nitrile.  

To quantitatively assess cooperativity,57,58 the thermochemical cycle of Figure 3.6 was 

examined by independently establishing binding affinities for Li+ and I-. The Li+ binding  
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affinity of 10, Ka(Li+) = 160 ± 1 M−1, was determined by fitting a binding isotherm from an 

NMR titration using the salt LiBArF
4, which features a noncoordinating anion. The iodide 

binding affinity was then examined with PPNI as a salt featuring a bulky cation that would not 

interact with the crown ether. Slow exchange among 10, 12-cis, and 12-trans enabled the iodide 

binding affinity of 10 to be determined by NMR integration, with Ka(I) = 370 ± 32 M-1 for 12-

cis and Ka(I) = 200 ± 12 M-1 for 12-trans.  

 
Figure 3.6. Ditopic binding map showing experimentally determined (black) and mathematically 
calculated (blue) binding affinities for LiBArF

4, PPNI, and LiI in CD3CN.  

 

The enhancement of Li+ binding at the crown ether site engendered by iodide binding at 

the iridium center was probed by titration of 12-cis/12-trans with LiBArF
4 under conditions of 

excess iodide, with Ka(Li+) = 670 ± 12 M−1 for 12-cis and Ka(Li+) = 1700 ± 65 M−1 for 12-trans. 
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The Li+ binding affinity of 12-cis is 4 times that of 10. An even larger, 10-fold enhancement in 

Li+ binding affinity is observed when 12-trans and 10 are compared. The higher Li+ affinity of 

12-trans is attributed to improved iodide donation to the encapsulated Li+ ion, which leads to a 

striking change in the isomeric distribution: LiI addition favors formation of 12-trans, while 

PPNI addition favors formation of 12-cis. (Note that the Ka(Li+) values obtained with LiBArF
4 

are similar to those of other Ir(III) complexes obtained using LiOTf). Although LiCl is not 

sufficiently soluble for a full analysis, at least 10-fold enhancement in Li+ binding is observed 

upon chloride binding to the analogous Ir carbonyl complex 9 (see above). These studies 

confirm that aza-crown ethers can be readily modified to enable ion pair recognition. 

  

III. Conclusions 
 
Installing an organometallic pendant on 1-aza-15-crown-5 ether leads to four dramatic 

changes in host−guest properties. (1) The selectivity for Li+ over Na+ increases by as much as 

29- fold. (2) The binding affinity for Li+ and Na+ salts is reduced substantially, although this 

decrease can be mitigated by increasing the donor number of the metalla-crown ether. (3) 

Distinct proton-dependent reactivity is observed, with protonation of Ir pincer-crown ether 

complex 4 leading to an increase in binding affinity. (4) The ion binding properties shift 

fundamentally to enable heteroditopic binding of ion pairs.  

These properties can be further tuned through organometallic synthesis. The choice of 

transition-metal ion has a significant effect on the binding affinity, for example. In addition, 

ligand substitution on a particular transition-metal complex leads to substantial shifts in the 

crown ether Li+ binding affinity. The electronic structure of the transition metal can favor or 

disfavor ditopic binding as well, with neutral square-planar transition-metal complexes expected 

to have low halide affinity relative to cationic transition-metal complexes with d6 configuration. 
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No competition for the binding sites is observed in this system, thanks to the strong phenyl-

phosphinite donor set. 

This new strategy for post-macrocyclization modification takes advantage of the 

synthetic versatility and structural diversity of organometallic complexes to give both 

transformational changes and fine-tuned adjustments in the host−guest properties of crown 

ethers. 

 

IV. Experimental Details 
 

General Considerations 

Standard vacuum line and glovebox techniques were utilized to maintain a N2 atmosphere 

during manipulation of all compounds, unless otherwise noted. Organic solvents were dried and 

degassed with argon using a Pure Process Technology solvent system and stored over 3 Å 

molecular sieves. Under standard glovebox operating conditions, pentane, diethyl ether, benzene, 

toluene, and tetrahydrofuran were used without purging, so traces of those solvents were present 

in the atmosphere and in the solvent bottles. 1H, 31P, and 13C NMR spectra were recorded on 400, 

500, 600, or 850 MHz spectrometers. NMR characterization data are reported at 25 °C, unless 

specified otherwise. All NMR solvents were purchased from Cambridge Isotopes Laboratories. 

Acetonitrile-d3 (CD3CN), benzene-d6 (C6D6), and methylene chloride-d2 (CD2Cl2) were 

freeze−pump−thaw-degassed three times, dried by passage through a small column of activated 

alumina, and stored over 3 Å molecular sieves. 1H and 13C chemical shifts are reported in parts per 

million relative to residual protio solvent resonances. All 31P resonances are reported relative to 

85% H3PO4 external standard (δ 0).  

All 15N experiments were referenced using absolute refencing relative to MeNO2. The 

following compounds were synthesized according to literature procedures: m-(aza-15-crown-

5)methylphenol (by reductive amination),33,36 (15c5NCOPiPr)H,33 NaBArF
4,59 LiBArF

4,33 

Pd(COD)Cl2,60 Pt(SMe2)2Cl2,61 (κ3-15c5NCOPiPr)Ni(Br),35,38 [(κ4-15c5NCOPiPr)Ni][BArF
4],38 (κ3-

15c5NCOPiPr)Ir(CO),43 (κ3-15c5NCOPiPr)Ir(H)(CO)(Cl),43 and [(κ3-
15c5NCOPiPr)Ir(H)(CO)(NCCH3)][BArF

4].43 Experimental details for 5-Cl, 5-I, 6, and 7 are reported 

in the original text. LiOTf was dried under reduced pressure at 100 ˚C for 24 h prior to storage in 
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a N2 glovebox. All other reagents were commercially available and used without further 

purification. Elemental analyses were performed by Robertson Microlit Laboratories (Ledgewood, 

NJ). 

 

Competitive Binding Methodology 

 
The calibrated competitive method for determining binding constants by NMR 

spectroscopy reported by Heath et al.10 was used to determine binding affinities of 1 and 2 via 

competition with 15-crown-5 and 18-crown-6 (1 only). Calibration curves were constructed for 

15-crown-5 and LiOTf and NaBArF
4 in CD3CN. A calibration curve was constructed with 18-

crown-6 and NaBArF
4 in CD3CN (18-crown-6 does not exhibit a linear response to [Li+] due to a 

lower binding affinity). The reference value (Kref) used for Li+ complexation by 15-crown-5 was 

log Kref = 4.96. The Kref used for Na+ complexation by 15-crown-5 was log Kref = 5.1. The Kref 

used for Na+ complexation by 18-crown-6 was log Kref = 4.6.  

Triplicate samples of each reference/macrocycle/salt combination were prepared and 

analyzed as follows. A 60 mM stock solution of a reference molecule (15-crown-5 or 18-crown- 

6), a 60 mM stock solution of a (pre)ligand (1, 2, 3-18c6), and a 24 mM stock solution of salt 

(LiOTf or NaBArF
4) were prepared in CD3CN. 100 µL aliquots of the reference and (pre)ligand 

stock solutions and 250 µL aliquots of the salt solution were combined in a 4 mL glass vial. The 

samples were diluted to 600 µL with CD3CN, transferred to NMR tubes, and analyzed by 1H 

NMR spectroscopy at 25 ± 1 °C. The resulting concentrations of all three species in each sample 

were 10 mM. The chemical shift of the organic crown ether was determined for each sample and 

compared to the calibration curve to obtain a binding affinity value. The standard deviation of 

the measured chemical shift values (~0.0002 ppm) was within the resolution limit of the 

spectrometer (0.006 ppm), so all binding affinity values measured in this way have an estimated 

uncertainty of ±4,000 M–1 based on the spectrometer resolution. Spectra of 3-18c6 and Na+ are 
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provided as representative experiments; experiments with 1 and 2 are elaborated in the parent 

text. 

 

Figure 3.7. Calibration curves for binding of LiOTf and NaBArF
4 by 15-crown-5 in CD3CN. 

 

 

Figure 3.8. Calibration curves for binding of NaBArF
4 by 18-crown-6 in CD3CN. 
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Figure 3.9. Competitive binding of 15-crown-5 ether with 3-18c6. 
1H NMR spectra (600 MHz) of 15-crown-5 ether. 1 equivalent NaBArF

4, and 3-18c6 (top); 15-
crown-5 ether and 1 equivalent NaBArF

4 (bottom). Average of 3 tubes yields a Ka of 15000 ± 
500 M-1. 

 
Figure 3.10. Competitive binding of 18-crown-6 ether with 3-18c6. 
 1H NMR spectra (600 MHz) of 18-crown-6 ether, 1 equivalent NaBArF

4, 3-18c6 (top); 18-
crown-6 ether and 1 equivalent NaBArF

4 (bottom). Average of 2 tubes yields a Ka of 15000 ± 
500 M-1. 

 

������������������������������������������������������������������������������	���	���	�

��
����

����������������������	����	
���	����	����	����		���	����	����	��

�
�����

��������	�����������

����
����
�

� !"!#
$%�$#
&$'(����(������)
*�+,�
��

��������	�������	���

����
#�-
�*./

� !"!#
$%�$#
&$'(����(������)
*�+,�
��



 86 

General Procedure for Titration

The following general procedure is for titrations with a final analyte concentration of 

approximately 2.5 mM. Masses of solid reagents were obtained using balance with precision to 

0.0001 g. A 12.3 mM stock solution of a macrocycle and a 48.4 mM stock solution of an alkali 

metal salt were prepared in CH3CN. 125 µL aliquots (1.53 × 10-3 mmol) of the analyte solution 

were added to ten glass vials. Aliquots of the alkali metal stock solution corresponding to 0−60 

equiv (up to 96.7 × 10-3 mmol) of alkali metal salt to analyte were then added to the vials 

containing the analyte. The protio solvent was completely evaporated under vacuum. The 

samples were then dissolved in 500 µL of CD3CN, transferred to NMR tubes, and analyzed by 

1H NMR spectroscopy at 25 ± 1 °C. The final concentration of analyte in solution was 2.55 mM. 

The final concentration of alkali metal in the samples ranged from 0.00 to 161 mM.  

The change in proton chemical shift vs. host/guest ratio was fit to the well-known 1:1 binding 

equilibrium model by least-squares analysis using the BindFit online software package.44,62 All 

reported binding affinity values are derived from at least two titrations performed at different 

concentrations of the guest using the general procedure. The reported uncertainty is based on 

the standard deviation of Ka values obtained from fitting the binding isotherm data at the three 

different concentrations, which leads us to report Ka values to two significant figures. 

Representative titrations are reported here, with the remaining titration details in supplement of 

the parent text. 
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Figure 3.11. Titration of 3-18c6 with NaBArF
4. 

(Top) 1H NMR spectra of k3-(18c6NCOPiPr)(H)Ir(CO)(Cl) (3-18c6) in CD3CN in the presence of 
increasing concentrations of NaBArF

4, with blue circles marking peaks used to measure the 
change in chemical shift (Dd). At concentrations of NaBArF

4 greater than 1 equiv, halide 
abstraction is observed, leading to a new set of hydride peaks at -19.5. Concentrations of 3-18c6 
were determined by integrating both iridium species to determine the mole fraction of 3-18c6 
and multiplying by initial concentration. As the binding affinity of the new halide abstracted 
species was unknown, the amount of free Na+ in solution was approximated by assuming 
complete binding of Na+ and no binding of cation, with both approximations yielding a Ka of 
15,200 M-1 within error. (Bottom) Plot of Dd as a function of Na+/3-18c6 concentration ratio 
(markers) and least squares fit for 1:1 binding. Initial concentration at 2.5 mM, but decreases due 
to halide abstraction with Na+ addition. While a Ka of 15,200 was able to be extracted by global 
fitting, this value is on the edge of what can accurately measured using this titration method. 
Competition experiments yielded the same value within error. 
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Figure 3.12. Binding isotherms for the titration of [(k3-15c5NCOPiPr)Ir(H)(CO)(NCCH3)][BArF
4] 

(9) with LiBArF
4.  

Binding isotherms for the titration [(k3-15c5NCOPiPr)Ir(H)(CO)(NCCH3)][BArF
4] (9) with LiBArF

4. 
(Left) 1H-NMR spectra of [(k3-15c5NCOPiPr)Ir(H)(CO)(NCCH3)][BArF

4] (9) in CD3CN in the 
presence of increasing concentrations of LiBArF

4, with blue circles marking peaks used to 
measure the change in chemical shift (Dd). (Right) Plots of Dd as a function of the Li+/9 
concentration ratio (markers) and least squares fit for 1:1 binding used to obtain Ka(Li+): 57 M-1 

(5.0 mM 9) and 33 M–1 (2.5 mM 9), average Ka(Li+) = 50 ± 20 M–1. 

 

Ditopic Binding of LiI: Equilibrium Constants of Species in Slow Exchange

Mixtures of the iridium complexes 10, 12-cis, and 12-trans in acetonitrile feature distinct 

resonances for each complex by 1H NMR spectroscopy, indicating slow chemical exchange 

relative to the timescale of the NMR acquisition. This situation enables calculation of equilibrium 

constants for the interconversion of any two of these species directly by integration. 

A 2.6 mM solution of iridium complex was prepared in CD3CN.  To this solution, 4.3 µL 

mesitylene was added as an internal standard. A separate stock solution containing 9 mM solution 

of PPNX (X = halide) in CH3CN was prepared, and aliquots containing 0.52, 1.04, 2.08, and 4.16 

equivalents of PPNX relative to iridium were distributed to four glass vials. Each vial was 

evaporated to dryness under vacuum, at which point 0.5 mL of the iridium stock solution was 

added to each vial. After the solids were dissolved, the solution was transferred to NMR tubes for 

analysis by 1H NMR spectroscopy at 25 ± 1 °C. 

 Concentrations of each iridium species were determined by integration of the distinct resonances 

for each complex relative to the mesitylene internal standard.  Iodide binding affinities or 

isomerization equilibria were calculated at each concentration of salt additive using the equilibrium 
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expressions in equations 1 and 2 (Figure 3.15). The equilibrium constant for interconversion 

between the two iodide complex isomers was calculated according to equation 3 (Figure 3.15). 

The reported iodide binding affinity and isomerization equilibrium values are the average of four 

values, with uncertainty given as the standard deviation. 

 
Figure 3.13. Square scheme of all I- and Li+ binding equilibria. 

 

 
Figure 3.14. 1H NMR spectra of [κ3-(15c5NCOPiPr)Ir(H)(NCMe)2][BArF

4] in CD3CN with 
increasing amounts of PPNI. 
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Figure 3.15. Binding affinity for iodide binding and cation free 12-cis/trans isomerization 
equilibrium. 

 

Ditopic Binding of LiI: Determining Ion-Pair Binding Affinity

The ion pair binding affinity can be obtained from the thermochemical cycle drawn below. 

The most useful comparison is how the Li+ binding affinity, Ka(Li+), changes when I– is bound to 

the host. The Li+ binding affinity of 10, in the absence of any iodide, was determined using 

standard titration method as described above. The situation is somewhat more complicated in the 

presence of free iodide ion, because Li+ can bind to any of the three iridium complexes shown in 

Figure 3.15. Two assumptions are taken in order to simplify the treatment. First, it is assumed that 

complex 10 can be ignored. This is a reasonable assumption because the concentration of complex 

10 is negligible under conditions of excess iodide (10 constitutes <5% of Ir-containing species at 

10 equiv PPNI, <2% of Ir-containing species at 20 equiv PPNI). Second, it is assumed that the 

total Li+ concentration is available for binding by each of the individual complexes 12-cis and 12-

trans. While the same pool of Li+ supplies the two isomeric hosts, this assumption is reasonable 

because the Li+ is present in relatively large excess during the titrations. Binding affinity values 

were then obtained by fitting the change in chemical shift of protons in 12-cis and 12-trans as a 

function of the Li+/macrocycle ratio, as described above. At high concentrations of Li+, where 

the binding isotherms have leveled off indicating high conversion to the Li+ adducts of 12-cis and 

12-trans, the relative ratio of these species was used to calculate Keq
11. 

Equiv PPNI Ka
2 (M–1) Ka

1 (M–1) Keq
10 (M–1) Sum of Ka for I– (M–1)

0.52 401 212 1.89 612
1.04 391 211 1.85 603
2.08 364 202 1.8 567
4.16 318 183 1.74 501

Average 369 202 1.82 571
Stdev 37 13 0.06 50

["] = %" ! − ( 12*+, + 12./01, ) (1)

3"# = [%#&'(]
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3"% = [%#,-./(]
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Table 3.2. Changes in Keq

obs, the observed ratio of 12-cis vs 12-trans.  

At low Li+ concentrations, values are closer to Keq
10. At higher Li+, the ratio approaches a new 

value, Keq
11. Averaging the high Li+ Kobs values (>5 equiv LiBArF4), yields an average Keq

11 of 
0.74 ± 0.04. 

 
 

 
Figure 3.16. Binding isotherms for the titration of [(k3-15c5NCOPiPr)Ir(H)(NCCH3)2][BArF

4] (10) 
with LiBArF

4.  
Binding isotherms for the titration [(k3-15c5NCOPiPr)Ir(H)(NCCH3)2][BArF

4] (10) with LiBArF
4. 

(Left)
 1H-NMR spectra of 5mmol [(k3-15c5NCOPiPr)Ir(H)NCCH3)2][BArF

4] (10) in CD3CN in the 
presence of  increasing concentrations of  LiBArF

4, with blue circles marking peaks used to 
measure the change in chemical shift (Dd). (Right) Plots of  Dd as a function of  the Li+/10 
concentration ratio (markers) and least squares fit for 1:1 binding used to obtain Ka(Li+): 160 
M-1 (5.0 mM 10) and 159 M–1 

(2.5 mM 10), average Ka(Li+) = 159 ± 1 M–1. 
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Figure 3.17. Binding isotherms for the titration of (k3-15c5NCOPiPr)Ir(H)(NCCH3)(I) (12-cis) with 
LiBArF

4.  
Binding isotherms for the titration (k3-15c5NCOPiPr)Ir(H)(NCCH3)(I) (12cis) with LiBArF

4. (Left) 

1H-NMR spectra of (k3-15c5NCOPiPr)Ir(H)(NCCH3)(I) (12cis) in CD3CN in the presence of 
increasing concentrations of LiBArF

4, with blue circles marking peaks used to measure the 
change in chemical shift (Dd). Iodide complex was generated in situ by adding excess 10 and 20 
eq PPNI, and the concentration of the host calculated as a mol fraction of the initial 2.5 mM Ir 
added. (Right) Plots of Dd as a function of the Li+/12-cis concentration ratio (markers) and 
least squares fit for 1:1 binding used to obtain Ka(Li+): 680 M�1 (20 eq PPNI, orange) and 657 M–

1 (10 eq PPNI), average Ka(Li+) = 670 ± 16 M–1. 

 
Figure 3.18. Binding isotherms for the titration of (k3-15c5NCOPiPr)Ir(H)(I)(NCCH3) (12-trans) 
with LiBArF

4.  
Binding isotherms for the titration (k3-15c5NCOPiPr)Ir(H)(I)(NCCH3) (12-trans) with LiBArF

4. 
(Left) 1H-NMR spectra of (k3-15c5NCOPiPr)Ir(H)(I) (NCCH3) (12-trans) in CD3CN in the 
presence of increasing concentrations of LiBArF

4, with blue circles marking peaks used to 
measure the change in chemical shift (Dd). Iodide complex was generated in situ by adding 
excess 10 and 20 eq PPNI, and the concentration of the host calculated as a mol fraction of the 
initial 2.5 mM Ir added. (Right) Plots of Dd  as a function of the Li+/12-trans concentration 
ratio (markers) and least squares fit for 1:1 binding used to obtain Ka(Li+): 1780 M–1 (20 eq 
PPNI, orange) and 1650 M–1 (10 eq PPNI, red), average Ka(Li+) = 1720 ± 90 M–1. 
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Table 3.3. Equations for Calculating Ka in the LiI Square Scheme. 

 
 

Synthesis and Titration of [H(m-(aza-15-crown-5)methylphenol)][BArF4] (1-H+)  

In a glovebox, a vial was charged with 10.3 mg (0.0317 mmol) m-(Aza-15-crown-

5)methylphenol and dissolved in ether (1 mL). Another vial was charged with HBArF
4•2Et2O 

(34.2 mg, 0.0338 mmol) and dissolved in ether (1 mL). The two vials were allowed to cool in the 

freezer (-35 oC) for approximately twenty minutes. The HBArF
4•2Et2O solution was then added 

dropwise to the solution of m-(aza-15-crown-5)methylphenol while stirring, and the reaction was 

allowed to warm up to room temperature. After approximately a half hour, the product was 

dried in vacuo, and washed with pentane to afford a white solid (35.7 mg, 94% yield). 

1H NMR (600 MHz, CD2Cl2): 7.72 (8H, t, J = 2.17 Hz, BArF), 7.56 (4H, s, BArF), 7.39 (1H, 

broad s, HN), 7.33 (1H, t, J = 7.89 Hz, Ar-H), 7.15 (1H, t, J = 1.68, Ar-H), 7.07 (1H, s, Ar-OH), 

7.00 (1H, dd, J = 8.33, 2.06 Hz Ar-H), 6.87 (1H, dd, J = 7.54, 0.74 Hz, Ar-H), 4.30 (2H, d, J = 

5.37 Hz, Ar-CH2), 3.86-3.76 (4H, m, crown-H), 3.76-3.67 (8H, m, crown-H), 3.53-3.48 (4H, m, 

crown-H), 3.46-3.40 (2H, m, N-CH2-CH2), 3.36-3.29 (2H, m, N-CH2-CH2). 13C{1H} NMR 

(150.903 MHz, CD2Cl2): 161.81 (q, 1JBC = 49.9 Hz), 157.48, 134.73, 131.01, 128.77 (q, 2JFC = 

31.7), 124.54  (q, 1JFC = 278.0 Hz), 121.37, 118.67, 117.43, 115.54, 69.88, 68.40, 62.64, 58.48, 

55.16. HRMS: m/z calcd for C17H29O5N (M+) 326.1967, found m/z 326.19678.  

!!" = [$%&'(]!"
$* [+'][,] (8)

Substituting equations 2,5  into 8 yields:
!!" = !!% ∗ !!-

!!. = [$%&'(]!"
$* [+'][,] (9)

!!/ = [$%0123(]!"
$* !"[,]

(11)

Substituting Equations 9,7 into 11: 
!!/ = !!./!!4

!56$* ∗ !!- = !56$$ ∗ !!7 (12)

!!- = [$%&'(]!"
$%&'( [+'] (5)

!!7 = [$%0123(]!"
$%0123( [+'] (6)

!!4 = [$*]!"
$* [+'] (7)

Plugging in calculated values of 4, 5, and 6 into 12 yields:
1.8 ∗ 670 = !56$$ ∗ 1,720

!56$$ =	0.70; within error of experimental value.

Substituting equations 3,6 into 9 yields: 
!!. = !!$ ∗ !!7

!!8 = [$%&'(]!"
$* !"[,]

(10)

Substituting Equations 8,7 into 10: 
!!8 = !!"/!!4
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Figure 3.19. 1H NMR spectrum (600 MHz) of [H(m-(aza-15-crown-5)methylphenol)][BArF

4] (1-
H+) in CD2Cl2. 

 
Figure 3.20. 13C{1H} NMR spectrum (151 MHz) of [H(m-(aza-15-crown-
5)methylphenol)][BArF

4] (1-H+) in CD2Cl2. 
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Figure 3.21. 15N-1H HMBC NMR (600 MHz, C) of [H(m-(aza-15-crown-
5)methylphenol)][BArF

4] (1-H+) in CD2Cl2. 

 

 
Figure 3.22. 1H NMR spectrum (600 MHz) of [H(m-(aza-15-crown-5)methylphenol)][BArF

4] (1-
H+) in CD3CN. 
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Figure 3.23. Binding isotherms for the titration of [H(m-(Aza-15-crown-5)methylphenol)][BArF

4] 
(1-H+) with LiOTf. 
Binding isotherms for the titration of [H(m-(Aza-15-crown-5)methylphenol)][BArF

4]  (1-H+) 
with LiOTf. (Left) 1H-NMR spectra of [H(m-(Aza-15-crown-5)methylphenol)][BArF

4]  (1-H+) in 
CD3CN in the presence of increasing concentrations of LiOTf, with blue circles marking peaks 
used to measure the change in chemical shift (Dd). (Dd) Plots of Dd as a function of the Li+/1-
H+ concentration ratio (markers) and least squares fit for 1:1 binding used to obtain Ka(Li+): 5.0 
M–1 (5 mM 1-H+) and 7.0 M–1 (2.5 mM 1-H+), average Ka(Li+) = 6.0 ± 1.4 M–1. 
 

Speciation of (κ4-15c5NCOPiPr)Ir(H)(I) (11) in CD3CN 

 
Figure 3.24. 1H spectra (600 MHz, CD3CN) of a titration of LiI into a solution containing 5mM 
10. 
At low equivalents of LiI, the spectrum resembles cation free I- titrations, with 12-cis being the 
favored iodine containing product. At high concentrations of LiI, speciation is flipped, with 12-
trans becoming the favored isomer.  
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Figure 3.25, 1H NMR spectrum after dissolution of (κ4-15c5NCOPiPr)Ir(H)(I) in CD3CN spiked 
with 10% CH3C15N. 
The hydride resonance at –20.8 ppm is consistent with an iodine trans to the hydride and 1H-13C 
HSQC analysis is consistent with a k3 species (∆davg = 0.25 ppm).49  

 

 

 
Figure 3.26. Assignment of the speciation of (κ4-15c5NCOPiPr)Ir(H)(I) (11). 
1H NMR spectra of [κ3-15c5NCOPiPr)Ir(H)(NCMe)2][BArF

4] (top) and the mixture formed upon 
dissolution of (κ4-15c5NCOPiPr)Ir(H)(I) in CD3CN (bottom). The species with a hydride 
resonance at –22.0 ppm is assigned as [κ3-(15c5NCOPiPr)Ir(H)(NCMe)2][I] based on the closely 
matched spectral features in the two spectra. 
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Figure 3.27. 1H-31P HMBC spectrum after dissolution of (κ4-15c5NCOPiPr)Ir(H)(I) (11) in CD3CN. 
The 31P chemical shifts are as follows: 12-cis, d 143.2; 10,  d 143.8; 12-trans, d 146.1. 

 

 
Figure 3.28. 1H-15N HMBC spectrum after dissolution of (κ4-15c5NCOPiPr)Ir(H)(I) (11) in CD3CN 
spiked with 10% CH3C15N. 
Cross-peaks are observed for each hydride at –30 oC, demonstrating that acetonitrile is bound in 
each species. While 10 shows evidence of a triplet in the proton spectrum (resulting from 31P and 
15N coupling), the 12-cis and 12-trans do not. In the case of the 12-cis, the coupling constants 
for a cis bound 15N are expected to be small (<2 Hz) so observable coupling is not expected. 12-
trans should present itself as a triplet at room temperature, but this is not observed, presumably 
due to dynamic exchange with bulk acetonitrile.  
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CHAPTER 4. OLEFIN ISOMERIZATION WITH CATION-SWITCHABLE 
REGIOSELECTIVITY: REGULATING ACCESS TO SELECTED DOUBLE BOND 

POSITIONS FROM A SINGLE CATALYST 
 

Camp, A.M., with contributions from: Kita, M. K., Dodge, H. M., Blackburn, P. T., Chen, C. H., 
Miller, A. J. M. 

 
I. Introduction 

 
Targeting Selective Olefin Isomerization 

Olefins are essential intermediates and products in the fragrance, commodity chemicals, 

and pharmaceutical industries.1–3 Industrial  methods using the Shell Higher Olefin Process 

(SHOP) or Fisher-Tropsch chemistry readily generate hydrocarbon a-olefins,4 and ethenolysis 

provides access to a wide variety of substituted a-olefins.5 Once an unsaturated linkage is 

present, olefin isomerization offers a convenient, atom-economical method for relocating the 

double bond to a different position.6–9 Preparing specific alkene stereo- and regioisomers 

remains a major challenge, however. Classical isomerization methods require strong acids or 

simple metal salts and high temperatures, giving a thermodynamic distribution.10,11 These 

methods can work well for alkenes that feature one double bond position that is much more 

stable than others, such as allylbenzene isomerization to b-methylstyrene.3 When multiple 

possible products of double bond positional isomerization are energetically similar, however, 

isomerization often results in a poorly selective distribution of alkenes. Current catalytic systems 

usually have custom-tailored supporting ligands to select specific isomers, particularly selective 

isomerization from 1- to 2-position with E or Z stereochemistry.12–19  

If olefin isomerization could be controlled to achieve the selective generation of various 

individual isomers with diverse structures and physical properties, attractive applications based 
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on rapid diversification upon subsequent elaboration would become possible.20 The current 

paradigm for controlling selectivity is that for each different product, a new metal/ligand 

combination is needed (Figure 4.1A).21–23 We set out to explore an alternative approach, in which 

a single metal/ligand combination selectively produces multiple products using switchable 

catalysis (Figure 4.1B).   

 

 
Figure 4.1. Using isomerization to control product selectivity. 
A. Using synthesis to generate new catalysts with distinct selectivity. B. Using additives to tune 
the reactivity of a single catalyst towards particular selectivity. 

 

We hypothesized that a catalyst with kinetic selectivity in one state could be toggled to a 

different state that exhibits thermodynamic selectivity, thereby controllably generating either of 

two desired olefinic products using a single catalyst. Such a platform could be used to create 

unique catalytic outcomes with external additives, without laborious synthetic modifications.20 

Catalytic olefin isomerization with stimulus-driven switchable regioselectivity remains unknown, to the 

best of our knowledge.  

Herein, we introduce new cationic pincer-crown ether iridium hydride complexes featuring 

hemilabile 1-aza-18-crown-6 receptors and demonstrate cation-programmable regioselectivity 
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from a single pincer-crown ether catalyst. The degree of hemilability is directly related to the rate 

and stereoselectivity of olefin isomerization, and the inclusion of a crown ether in the catalyst 

structure enables cationic stimuli to tune this key parameter.24,25 Switchable and tunable 

allylbenzene isomerization was previously reported with a 1-aza-15-crown-5-based catalyst.26 

Compared to prior studies of catalysts with 1-aza-15-crown-5 receptors, the new 18-crown-6-

based pincer-crown ether catalysts are more active, exhibit larger degree of cation enhancement 

(including the use of more readily available Na+ salts), and are more tolerant of water and other 

Lewis bases. These features enabled the development of a single catalyst platform with cation-

switchable selectivity for specific isomers. 

 

II. Results 
 

Synthesis of New Catalysts Featuring 1-Aza-18-crown-6 Ether 

 The binding pocket of 1-aza-15-crown-5 ether based pincers is selective for Li+, as the 

nitrogen donor is coordinated to the iridium ion and is analogous to the binding pocket of 12-

crown-4 ethers.25,27 Given that 1-aza-18-crown-6 ether phenyl phosphonite pincer complexes 

showed very high binding affinity for alkali metal cations,25 we hypothesized that a new catalyst 

with a larger macrocycle would result in larger reactivity differences between the two catalyst 

states (Figure 4.2). In targeting cation-switchable selectivity, we therefore started by preparing a 

new cationic iridium hydride complex containing the 1-aza-18-crown-6 ether macrocycle. 
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Figure 4.2. Controlling catalyst state with cation-crown interactions. 
Choosing a crown-ether that has a higher binding affinity should yield a strong “switch” 
between catalyst states. 

 

 The 1-aza-18-crown-6-ether-based pincer-crown ether iridium chloride complex, k4-

(18c6NCOPiPr)Ir(H)(Cl) (1-18c6a) was synthesized as previously reported.28 Chloride ligands block 

olefin binding, however, so a new halide-free complex was targeted as a catalyst candidate. 

Addition of NaBArF
4 to 1-18c6a in CH2Cl2 resulted in a color change from yellow to red. The 

isolated product featured a hydride 1H resonance at –33 ppm (ca. 1 ppm downfield relative to 1-

18c6a) and a 31P resonance at –132 ppm (ca. 11 ppm upfield relative to 1-18c6a). X-ray quality 

crystals obtained by layering CH2Cl2/pentanes revealed the new species to be a Na+ adduct of 1-

18c6a, [k4-(18c6NCOPiPr)Ir(H)(Cl)@Na)][BArF
4] (1-18c6a@Na), isolated in 89% yield (Figure 

4.3). Instead of the removing the chloride ligand as a NaCl precipitate, the Na+ ion was 

intercalated by the crown ether, with an additional interaction between a chloride bridging the Ir 

and Na+ ions. A similar interaction was previously observed with the Na+ adduct of a nickel 
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pincer-crown ether complex,29 and proposed to play a key role during on/off switchable catalysis 

by 15-crown-5-based Ir complex.26  

 

 
Figure 4.3. Na+ adduct of 1-18c6 (1-18c6@Na). 
BArF

4 cation omitted for clarity. Ellipsoids shown at the 50% probability level. 

 

 Removal of chloride was eventually accomplished by stirring 1-18c6a@Na in 1:1 CH2Cl2:H2O 

mixtures. The Na+ and Cl– ions migrate to the aqueous phase and the iridium center aquates to 

yield [k5-(18c6NCOPiPr)Ir(H)(OH2)][BArF
4] (3-18c6a) in 94% yield. Diagnostic 1H NMR signatures 

of 3-18c6a include a downfield doublet at –32.5 ppm for the hydride and a broad singlet at 5.56 

ppm that integrates to 2 protons for the bound water.   
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Scheme 4.1. Synthesis of 18-crown-6 based iridium pincer complexes. 

 

Heating solid samples of complexes 3-18c6a at 145 oC under vacuum overnight 

generated the desired complexes [k5-(18c6NCOPiPr)Ir(H)][BArF
4] at a 98% yield (2-18c6a, Scheme 

4.1). The cationic hydride complex has a characteristic doublet (–29.5 ppm) for the hydride 

ligand. A broad peak at 139.1 ppm was observed by 31P NMR spectroscopy, and extensive 

broadening is seen in the crown region, which is attributed to crown ether oxygen hemilability 

involving bound and free oxygen atoms exchanging on the timescale of the NMR acquisition. 

Dynamic behavior was seen as low as –80 oC, preventing structural analysis of the conformers in 

exchange. This conformational exchange is not observed at room temperature for the analogous 

complex containing the smaller aza-15-crown-5 macrocycle.24 

 In the course of this study, it was found that adding a methoxy group to the phenyl backbone 

ortho to the phosphinite blocks C–H activation pathways that lead to catalyst deactivation.30–32 

Structural comparisons of catalysts with and without “blocking” methoxy groups was therefore 

sought. The hydrido chloride complex with the methoxy group in the backbone, k4-(Meo-

18c6NCOPiPr)Ir(H)(Cl) (1-18c6b), was synthesized as previously reported (Scheme 4.2).28 The new 
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cationic hydrido aquo complex was accessed using the same biphasic halide abstraction 

procedure that was successful for the parent complex, providing [k5-(MeO-

18c6NCOPiPr)Ir(H)(OH2)][BArF
4] (3-18c6b) according to Scheme 4.2 in a 63% yield, post-

crystallization. The methoxy-containing aquo complex has almost identical spectroscopic 

patterns to 3-18c6a, other than the resonances of the methoxy group. Heating solid samples of 

complexes 3-18c6b at 145 oC for 24 hours yielded the blocked cationic hydride complex [k5-(Meo-

18c6NCOPiPr)Ir(H)][BArF
4] in a 98% yield, with a characteristic hydride  (–29.5 ppm) and a broad 

peak at 140.7 ppm was observed by 31P NMR. Like 2-18c6a, dynamic behavior of 2-18c6b was 

seen as low as –80 oC, indicating rapid exchange of ether ligands.  

Scheme 4.2. Synthesis of methoxy substituted iridium pincer-crown ethers. 

 

  

Structural and Thermodynamic Comparisons of Pincer-Crown Ether Complexes 

The growth of single crystals of both 2-18c6a and 2-18c6b enabled comparative X-ray 

diffraction (XRD) studies. The solid-state structure of 2-18c6a features two crown ether oxygen 

atoms donating to the Ir center (Figure 4.4). The oxygen closest to the amine (O1) and its 
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two oxygen atoms proximal to the amine (O1 and O5) that donate, rather than two consecutive 

ethers.  

 

Figure 4.4. Crystal structures of 2 orthologues.
Two conformation modes are observed, either oxygens 1 and 2 bind to the iridium center (2-
15c5b, 2-18c6a), or oxygens 1 and 4 (2-15c5a, 2-18c6b). 15c5 structures were previously 
published and provided for comparison.24,30 The hydride was located in the difference map and 
allowed to freely refine (except for the previously reported 2-15c5a); BArF

4 and solvent 
molecules are not shown for clarity. Thermal ellipsoids are represented at the 50% probability 
level. 

 

The Ir-O bond lengths are similar in both conformers (Ir-O1 = 2.274 Å, Ir-O2 = 2.269 Å for 2-

18c6a and Ir-O1 = 2.297 Å, Ir-O5 = 2.254 Å for 2-18c6b), indicating the larger crown size can 

access similarly stable chelates in both linkage isomers.  

The relative energies of the different linkage isomers were examined computationally. 

The optimized structures obtained from Density Functional Theory (DFT) using 

Ir

O P

N

C

O1

O4

O2

O2

O1

O4

H

O1

O2

O5

O1

O5

O2

Unblocked

15c5

18c6

2-15c5a

2-18c6a 2-18c6b

2-15c5b

Blocked



 

 112 

B3LYP/LANL2DZ33,34 with 1,2-dichloroethane (DCE) solvent modeled as a polarizable 

continuum (see Experimental section for computational details) are very similar to the 

crystallographically determined structures. The two conformers of 2-18c6b were computed to 

differ in energy by only 0.5 kcal/mol. A 5-coordinate complex with one ether dissociated, a likely 

intermediate in a dissociative substitution mechanism to interconvert the conformers, is 

endergonic by only 6 kcal/mol (Figure 4.5). The DFT studies indicate that both conformers 

should be present in solution and that interconversion through a low-energy intermediate may 

be facile, consistent with the dynamic behavior observed by NMR spectroscopy (vide supra).

 
Figure 4.5. Thermodynamic landscape of crown ether linkage isomers.
15-crown-5 based complexes are show in red, while the 18-crown-6 based structures are shown 
in purple. 
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15c5NCOPiPr)Ir(H)][BArF
4] (2-15c5b) two adjacent ethers (O1 and O2) bind to Ir. Installing a 

methoxy group thus leads to a change in the observed solid-state conformer in both 15-crown-

5- and 18-crown-6-containing complexes, but with opposite binding modes featured in the two 

cases. Despite structural characterization revealing both linkage isomers of 15-crown-5 

complexes, NMR and DFT studies support that one linkage isomer is the major species solution 

at room temperature. In the absence of crystal packing effects, the linkage isomer with the two 

amine-adjacent ether oxygen donors is thermodynamically favored by –2.5 kcal/mol according 

to DFT (Figure 4.5); furthermore, the 5-coordinate intermediate is higher in energy for the aza-

15-crown-5-based complexes than for the 1-aza-18-crown-6-based complexes. NMR spectra are 

consistent with this picture, with sharp resonances observed 2-15c5a and 2-15c5b indicating a 

single linkage isomer dominates under standard conditions.24 

   Structural comparisons of aqua complexes are also instructive. The large macrocycle-containing 

complexes 3-18c6a and 3-18c6b were examined by XRD after the growth of single crystals from 

Et2O solutions layered with pentane (Figure 4.6). The solid-state structures of the aqua adducts 

are essentially identical, contrasting the case of 2-18c6a/b. In both complexes, one crown ether 

oxygen (O1) binds to the Ir center in the primary coordination sphere while the bound water 

engages in hydrogen bonding with two other crown ether oxygen atoms (O2 and O5). The 
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hydrogen bonding network in the secondary coordination sphere draws the crown ether 

macrocycle around the metal center.  

 
Figure 4.6. Comparison of aquated iridium complexes.
Hydride and water hydrogens were found in the difference map and allowed to freely refine. 
BArF

4 counteranion and non-bonding solvent molecules ignored for clarity. Crown size 
determines the hydrogen bonding environment of the aquo complexes. In the 18c6 structures, 
the aquo molecule is encapsulated by the crown. In the 15c5 analogue, either one or two 
hydrogen bonding contacts are observed with the crown.  Aqua protons were located in the 
difference map and allowed to freely refine. Thermal ellipsoids shown at the 50% probability 
level. 

The aqua complexes with smaller macrocycles had not been structurally characterized, so 

the 15-crown-5 analogues [k4-( 15c5NCOPiPr)Ir(H)(H2O)][BArF
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crown variants. The flexibility of the larger 18-crown-6 macrocycle enables the ring to fully 

encapsulate the water ligand, whereas the 15-crown-5 macrocycle only interacts with the water 

ligand from one side. This structural difference, as well as the structural differences that suggest 

Et2O solvent hydrogen bonding, is energetically similar to crown ether hydrogen bonding, 

foreshadow possible differences in reactivity of these Ir aqua complexes as a function of 

macrocycle size.

 

Influence of Macrocycle Size on Cation-gated Isomerization 

To assess the performance of the new 18-crown-6-based catalysts with the original 15-

crown-5-based catalysts, isomerization with 4-phenyl-1-butene (4a) was examined in a 

comparative study. Reactions were initiated by injecting substrate and monitored at room 

temperature by NMR spectroscopy.  The conversion of 4a to 4b was fit as a first order decay, 

consistent with previous results in the presence of Et2O.26 In each case, E-4-phenyl-2-butene 

(4b) was obtained as the major product. The half-life (t1/2) derived from pseudo-first-order rate 

constants for isomerization of 4a to 4b for each catalyst are compared in Figure 4.7. 

 
Figure 4.7. Comparative isomerization of 4-phenyl-1-butene iridium pincer crown-ether 
complexes. 
Conversion of 4a was tracked as a function of time. On the time scales monitored, 4b was the 
only product observed. 
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The reactivity of 2-15c5b agreed nicely with our prior study of allylbenzene 

isomerization, featuring a 120-fold rate enhancement in the presence of Li+ but only a 3-fold rate 

enhancement in the presence of Na+.26 Gratifyingly, 2-18c6b demonstrated an excellent 

reactivity profile. In the absence of cation, 2-18c6b showed slow isomerization kinetics (t1/2 = 

190 hr), but upon the addition of Na+, the rate of isomerization saw a 4,600-fold enhancement  

(t1/2 = 0.041 hr). The relative rate difference between the two states is 40-fold greater for 2-

18c6b/Na+ than for 2-15c5b/Li+. The new catalyst 2-18c6b even outperforms 2-15c5b in the 

presence of Li+, providing a 360-fold rate enhancement relative to the salt-free condition (c.f. 

120-fold difference for 2-15c5b±Li+).  

 The aqua bound structures were subsequently tested for isomerization activity. 3-15c5 was 

unable to be generated exclusively; addition of 2 equiv of H2O to 2-15c5b resulted in a mixture 

of 2-15c5b and 3-15c5b (1:4) in solution. Higher loadings of water were avoided to prevent 

inhibition of Li+ by free water. The rates of isomerization were 2- to 5-fold slower in the 

presence of water relative to water-free conditions (Figure 4.7). While discriminating rate 

influences of a changing equilibria of 2-15c5b and 3-15c5b and Li+ inhibition by added water is 

difficult, the inhibitory effect of water on catalytic activity is clear (Figure 4.7). Aqua complex 3-

18c6b is easily isolated, even without requiring excess water, and remains intact throughout 

catalysis, contrasting with the shifting equilibrium between 2-15c5b and 3-15c5b. In the absence 

of salts, 3-18c6b is drastically inhibited relative to 2-18c6b, t1/2 = 2300 hrs. Yet, surprisingly, 

aqua catalyst 3-18c6b is almost as fast as water-free catalyst 2-18c6b in the presence of salts. A 

massive 18,000-fold enhancement in the rate of isomerization by 3-18c6b is observed upon 

addition of Na+ salts. In the presence of Li+ salts, 3-18c6b is an order of magnitude faster than 

2-15c5/3-15c5 mixtures under analogous conditions (Figure 4.7).  
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Comparing the reactivity profiles of the studied catalysts, 2-18c6b emerged as the most 

promising candidate to access switchable selectivity. Given the larger discrepancy in rate 

between the salt-free vs Na+ condition, faster catalysis of the water bound analogue, 3-18c6b, 

increased tolerance to ethereal Lewis bases and commercial availability of NaBArF
4, 2-18c6b was 

selected to access switchable regioselectivity. 

 

Cation-Switchable Regioselectivity in the Isomerization of 4-Phenyl-1-Butene Derivatives 

The promising new catalyst 2-18c6b was examined as a platform for the cation-

switchable isomerization of olefins to specific regioisomers. A variety of 4-aryl-1-butenes was 

examined initially. Reactions were heated at 50 oC, with or without salts, in a multi-well shaker 

until a stable distribution of isomers was observed, with reaction aliquots typically collected (and 

quenched with excess chloride to deactivate the catalyst)26 at 24, 48, 120, and 216 hours.  

 

Table 4.1. Isomerization of functionalized arenes. 

 

 Substrate R,R' Salt 
Added? Time b (E:Z) c (E:Z)     b    :    c 

4 H, H 
– 48 94%  (14 : 1) <1% >90 : 1 

Na+ 24 7%      (4 : 1) 93% (50 : 1) 1 : 10 

5 H, OMe 
– 48 92%  (14 : 1) <1% >90 : 1 

Na+ 24 6%   (   5 : 1) 94% (>90 : 1) 1 : 20 

6 OMe, H 
– 48 95%  (14 : 1) 2% 60 : 1 

Na+ 24 10%    (4 : 1) 89% (50 : 1) 1 : 8.9 

7 H, F 
– 216 93%  (15 : 1) 1% 90 : 1 

Na+ 24 4%      (4 : 1) 96% (50 : 1) 1 : 20 

8 H, Br 
– 216 95%  (10 : 1) 1% 90 : 1 

Na+ 24 7%      (4 : 1) 93% (70 : 1) 1 : 9 

9 H, Cl 
– 216 88%  (14 : 1) 2% 40 : 1 

Na+ 24 4%      (4 : 1) 96% (60 : 1) 1 : 20 

10 Cl, H 
– 120 91%  (15 : 1) <1% >90 : 1 

Na+ 48 20%    (4 : 1) 79% (30 : 1) 1 : 4 

11 H, CF3 
– 216 84%  (12 : 1) <1% >80 : 1 

Na+ 24 7%       (3 : 1) 84% (40 : 1) 1 : 12 

12 H, COOEt 
– 216 92% (7.1 : 1) 1% 60 : 1 

Na+ 216 40% (3.4 : 1) 58% (5.1 : 1) 1 : 1.5 

1 mol% 2-18c6
2 mol% NaBArF

1.5 mol% tBu2pyr

50oC, DCE ba

R

R1

R

R1

c

R

R1

+
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 Table 4.1 demonstrates cation-switchable regioselectivity in olefin isomerization, with a single 

catalyst generating either the 2-isomer (denoted b) or 3-isomer (denoted c) based on whether or 

not Na+ is included in the reaction. The degree of control over regioselectivity and 

stereoselectivity is striking: regioisomer b is formed in 84 to 95% yield and 7:1 to 15:1 E:Z 

selectivity (in the absence of salts), and regioisomer c is formed 79 to 96% yield and 36:1 to 

>90:1 E:Z selectivity (in the presence of NaBArF
4, excepting substrate 12 which is discussed 

below). The salt-containing mixtures generally generate isomer c faster (48 h or less) than the 

salt-free solutions produce isomer b (48-216 h). Electron donating functional groups show faster 

conversion, in line with prior evidence that substrate binding is the rate limiting step for 

catalysis.26   

The cation-free conditions demonstrate a remarkable conservation of regioselectivity 

even after long periods of heating. An exemplum is seen in the isomerization of substrate 6a. A 

95% yield of 6b is seen at 48 hours and is highly selective for the 6b (6b:6c = 60:1). Heating the 

reaction solution for 216 hours still dramatically favors the kinetic regioisomer, yielding 88% 6b 

(6b:6c = 10:1). While regioselectivity is maintained over long time scales, the 14:1 E:Z 

stereoselectivity at 48 hrs is observed to decay to 7:1 at 216 hrs. In contrast, upon the addition of 

2 equiv. of NaBArF
4, a yield of 89% 6c is obtained (6b:6c = 1:9), demonstrating the expected 

thermodynamic distribution. The kinetic preference of 2-18c6b affords selectivity for the 6b 

isomer across long timescales, and is observed across the studied substituted arenes.  

The exception to the trends noted above is the ester functionalized arene (R1: COOEt, 

12a). This substrate proceeded noticeably slower, even compared to the other electron deficient 

arenes. To test for possible catalyst inhibition by the ester functional group, a 1:1 mixture of 

ethyl acetate and 4a was isomerized at 50oC in the presence of cation. After 120 hours, only 6% 

of E-4c isomer was observed, with the dominant product being the b regiosiomer (93%).  While 
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conversion is faster with 4a alone (93% c at 24 hrs), the system tolerates added ethyl acetate 

enough to produce 4b in high yields. The electron withdrawing effects of the ester group and 

modest inhibition by the phenyl ester likely explains the slow isomerization of 12a in the 

presence of cation. The differences in regioselectivity will be discussed below. 

While in principle one could imagine simply running the salt-promoted reaction for short 

times to obtain the b isomer, and for long times to obtain the c isomer, this is not possible in 

practice. The E:Z ratio of 4b was tracked as a function of time at room temperature (Figure 4.8). 

Without salt additives, the b isomer is formed with exceptional E selectivity. During catalysis 

under the salt-free condition, the E-4b is drastically favored (E:Z = 23:1). In the presence of 

Na+, the E-4b isomer is only moderately favored (E:Z = 5:1 at early times, later decaying further 

toward the expected thermodynamic ratio of 4:1). Thus, the two catalyst states have distinct 

stereoselectivity, and high selectivity for both E-b and E-c is only possible when using 

switchable catalysis. 

 

 
Figure 4.8. Comparing stereoselectivity during isomerization. 
The isomerization 4a to 4b with 2-18c6b alone (left) and in the presence of NaBArF

4 (right). The 
ratio of E-4b (orange) to Z-4b (yellow) are marked.
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Cation-Switchable Isomerization of Functionalized 1-Butenes 

Various 1-butene derivatives containing functional groups were examined to assess the 

generality of isomerization with cation-switchable regioselectivity (Table 4.2). A purely aliphatic 

substrate, 4-methyl-1-pentene (13a), was chosen as a representative alkyl-substituted alkene 

lacking any resonance stabilization from a phenyl ring. Good yields of the two regioisomers were 

obtained using the switchable catalyst 2-18c6b (Table 4.2). Without salts, singly isomerized 

product 13b was obtained in 94% yield (13:1 E:Z); in the presence of NaBArF
4, the doubly 

isomerized product 13c was obtained in 75% yield (Table 4.2; a small amount of disubstituted 

terminal alkene 13d was also observed, in accord with reported distributions with Pd catalysts.11  

  

Table 4.2. Switchable regioselectivity in other classes of substrate 

 

 Silyl ethers are popular protecting groups in organic chemistry and the isomerization of silyl 

ether functionalized olefins allows access to the synthetically valuable enol silyl ethers at mild 
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conditions.35,36 The triisopropylsilyl-ether-protected olefin (14a) was readily isomerized to either 

regioisomer with excellent control using 2-18c6b (Table 4.2). This substrate is noteworthy as 

regioisomer 14c was produced as predominantly the Z stereoisomer (E:Z = 1:2). Previous 

isomerization studies demonstrate that a higher preference for the Z isomer is often expected for 

silyl enol ethers, including the triisopropyl variant.8,36  

Boronic esters are valuable synthetic intermediates, such as in the construction of C–C 

bonds via the Suzuki-Miyaura reaction.37 The boronic ester-functionalized butene 15a underwent 

isomerization with 2-18c6 to give 76% yield of 15b. Isomer 15c was also present, leading to 6.4:1 

selectivity at 24 hours. In the presence of Na+, 2-18c6 catalyzes the isomerization of 15a to 15c 

in 64% yield with excellent stereoselectivity (16:1 E:Z, Table 4.2). Of the substrates studied, only 

isomerization with 15a exhibited less stable regioselectivity. At 24 hours, 86% 15b is observed 

(6b:6c = 6.4:1) while at 48 hrs the yield of 6b decreases to 73% (6b:6c = 2.9:1). 

Some olefins could not be controllably isomerized. Olefins with Lewis basic sites 

typically reacted too slowly for synthetic practice, with 5-hexen-2-one, 5-pentenoate, and 5-

hexen-1-ol all undergoing slow isomerization to b (and no further) even in the presence of 

cations (c <5% at 216 hrs). 4-methoxy-1-butene showed only poor conversion to the c isomer at 

216 hrs (15% c ). Other olefins isomerized rapidly, but to unselective mixtures of regioisomers. 

 The acetal-protected ketone substrate 2-(but-3-en-1-yl)-2-methyl-1,3-dioxolane (16a)12 

isomerized rapidly to 16b in the presence of Na+, but no further isomerization to 16c was 

observed (Table 4.3). Less than 10% yield of 17c and 18c were obtained during Na+-activated 

isomerization of but-3-en-1-yltrimethylsilane nor 3-butenyl acetate could be brought to the c 

regioisomers in the presence of salt (Table 4.3). The origin of the lack of switchable 

regioselectivity is examined in the Discussion section below. Nonetheless, these substrates 

showed excellent E selectivity for isomerization to the b isomer.38,39 Substrates 16b, 17b, and 18b 
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have E:Z ratios >7:1 upon isomerization with 2-18c6b (Table 4.3); upon addition of Na+, the 

E:Z ratio decays to around 3:1 near the calculated thermodynamic values.  

 

Table 4.3. Isomerization of substrates without kinetic and thermodynamic discrimination 

 

 The sesquisterpene b-caryophyllene (19-I) was examined as an example of an alkene of higher 

structural complexity (Table 4.4). Caryophyllene is used in the pharmaceutical and fragrance 

industry and has shown anti-cancer activity,40 motivating our investigations of cation-controlled 

selectivity of isomerization. Initial isomerization attempts at 50 oC without salt and at 1 mol% 

catalyst saw no conversion of 19-I. To engage isomerization in salt-free conditions, heating to 80 

oC and 5 mol% of 2-18c6b was required, leading to the double bonds in caryophyllene 

redistributing as shown in Table 4. Without salts, 64% of the products represent E/Z or 

positional isomerization of the trisubstituted alkene. When the reaction was performed at 50 ºC 

1 mol% 2-18c6
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in the presence of NaBArF
4, however, 69% of the products represent positional isomerization of 

the exocyclic gem-disubstitued alkene. Additionally, 2-18c6b is selective for only olefinic 

isomerization, a stark contrast from reported acid catalyzed isomerizations, which cause 

significant structural rearrangements and hydration of the double bonds.41–43  

  

Table 4.4. Isomerization of b-Caryophyllene 

 

 

Computational Studies of Relative Energetics of Olefin Isomers 

 DFT computations were carried out to examine the relative stability of regioisomers of the 1-

butene derivatives examined in the catalytic studies. Two methods were compared, each with 

DCE solvent modeled as a polarizable continuum (further details are provided in the 

Experimental section). MP244–47/aug-cc-pVDZ48, which has been used to predict isomer 

distributions of long-chain functionalized olefins,49 was compared with B3LYP/ 6-

311++G(d,p),33,34 with the assessment based on literature values proposed to represent the 

thermodynamic distribution of isomers of butenyl ester,50 butenyl boronic esters,51 4-methyl-1-

pentene,11 and substituted butenyl arenes.52 For the substrates studied here, B3LYP/6-

311++G(d,p)33,34 reflects the experimentally observed thermodynamic distributions. Figure 4.9 

summarizes the computational results.  

H

H

H

HH

H H
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Figure 4.9. Calculated thermodynamic distributions of substrates for switchable regioselectivity 
Isomer distributions were calculated B3LYP/ 6-311G++(d,p) functional and basis set at 50 oC, 
and 1,2-dichloroethane (DCE) was modeled as a continuous polarization. Calculations were run 
under tight convergence criterion.  

 
The 1-butene derivatives can be organized into two categories based on their computed 

thermodynamic distributions of regioisomers. Seven substrates had a distribution where the c 

regioisomer was the lowest energy species, while three substrates showed a thermodynamic 

preference for the b regioisomer (Figure 9). Most substrates are strongly E selective in both the 

b and c regioisomers, with the exception of methoxy and silyl ether substituted alkenes.  

 

III.  Discussion 
 

The Influence of Crown Ether Size on Structure and Activity 

 These studies revealed several distinct advantages of using the newly developed 2-18c6b 

complex for switchable regioselectivity studies. The observed massive (4,600-fold) difference in 

rate between the cation-free and Na+-promoted conditions make NaBArF
4 an ideal chemical 

switch. This complex also benefits from using the commercially available NaBArF
4, demonstrates 
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greater tolerance of added Lewis bases, and has a water-bound adduct that maintains switchable 

and relatively fast reactivity, making this system more attractive for exploring functionalized 

olefins. 

2-18c6b shows a 2.8-fold decrease in the rate of olefin isomerization relative to 2-15cb. 

A more stable crown ether chelate afforded by more conformational freedom in larger crown 

structures may explain the decrease in isomerization activity. NMR and computational studies 

support multiple low-lying conformers present in solution, which may deplete the population of 

the olefin-Ir complex – a proposed key intermediate in catalysis – which may also explain the 

reduced activity with 2-18c6b. 

 

Figure 4.10. Comparing binding affinities of iridium pincer-crown ether complexes 

 
While cation-crown interactions have been previously shown to promote substrate 

binding and increase the rate of olefin isomerization,26 binding affinity studies of model 
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complexes prove key to understanding the large rate differential in the presence of salt.25,53 The 

binding affinities for Li+ are similar in nickel pincer complexes containing 1-aza-15-crown-5 (Ka 

= 76 M-1) or 1-aza-18-crown-6 (Ka = 34 M-1, Figure 4.10); the similar affinities for Li+ are 

reflected in the similar rates of isomerization in 2-15c6b (t1/2 = 0.58)  and 2-18c6b (t1/2 = 0.53).53 

Even more striking are the different binding affinities of iridium pincer complexes containing 1-

aza-15-crown-5 (Ka = 19 M-1) or 1-aza-18-crown-6 (Ka = 15,000 M-1). We thus hypothesized that 

the new catalysts with 1-aza-18-crown-6 macrocycles would have similar activity to the original 

15-crown-5-based catalysts in the presence of Li+ salts and much higher activity in the presence 

of Na+ salts.25  

Catalytic studies comparing 2-15c5b and 2-18c6b adhere to expectations based on cation 

binding affinity studies. In the presence of NaBArF
4, the new catalyst 2-18c6b isomerized an 

olefin with a half-life  (t1/2 = 0.041 hrs) that was 500 times shorter than that of 2-15c5b under 

the same conditions (t1/2 = 22 hrs), which agrees with a massive increase in binding affinity for 

Na+ observed in 18-crown-6 analogues.. The ratio of the binding affinities of Na+ vs Li+ 

previously observed in nickel pincer-crown ether complexes (Ka(Na+)/Ka(Li+) = 40) roughly 

track with the observed rates of 4-phenyl-1-butene isomerization by 2-18c6b in the presence of 

these salts (t1/2(Na+)/t1/2(Li+) = 14).54   

The higher affinity for Na+ has the added benefit of increasing the resistance of the 

system to reactivity dampening by added Lewis bases. At the 36 equivalents of Et2O required to 

solubilize all added salts, isomerization by 2-18c6b proceeds an order of magnitude faster with 

Na+ than 2-15c5b when Li+ salts are added. 

The aqua complexes 3-15c6b and 3-18c6b are substantially slower than the water-free 

variants in the absence of salts. The reduced activity may be due to strong hydrogen bonding 

interactions that additionally stabilize the aqua ligand. However, when Na+ is added 3-18c6b 
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demonstrates only a 3-fold decrease in the isomerization of 4a, a much higher recover of activity 

than what is seen with 3-15c5b. While the exact role of Na+ is unclear, the cation likely disrupts 

the hydrogen bonding network between the crown and the aquo ligand, allowing substrate to 

bind and leading to a massive 18,000-fold enhancement in the rate of olefin isomerization. 

Given the aquo complexes are common impurities observed during long time courses and 

syntheses, the moderate activity and preservation of switchable behavior seen with 3-18c6b is an 

exciting observation. 

 

Rationalizing Observed Trends in Regioselectivity Control 

 Switchable regioselectivity is accessed across all studied arene functionalized butenes, as well as 

butenes with alkyl, boronic ester, and silyl ether substituents. In the absence of salts, the catalyst 

2-18c6b facilitates a single isomerization of the double bond to the first internal position, 

producing the b isomer in high yield and with high regioselectivity and high stereoselectivity 

(favoring the E isomer). The ratio of b:c regioisomers without salts often exceeded 40:1. In the 

presence of NaBArF
4, the doubly isomerized product is formed instead, also in high yield and 

good stereoselectivity (again favoring the E isomer in most cases). The regioselectivity is 

inverted, with the b:c ratio typically beyond 1:8.  

The crux of understanding the observed reactivity lies in the thermodynamic landscape 

of olefin isomerization. Comparing the computed regioisomer distributions with the 

experimental outcomes under different conditions, it is clear that the catalytic reactions in the 

presence of NaBArF
4 generate the most thermodynamically favored isomer (the “thermodyamic 

product”). Conversely, the regio- and stereoselectivity of reactions catalyzed by 2-18c6b in the 

absence of salts are consistent with a high degree of kinetic control: the thermodynamic product 
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is not obtained, and instead a specific and less stable isomer is produced. Thus, switchable catalysis 

relies on a cation-induced change from kinetic control to thermodynamic control.  

The substrates for which switchable regioselectivity were observed all have the same 

reaction coordinate diagram, depicted in Figure 4.11. A “stair-step” pattern is apparent, with the 

starting terminal olefin a being the least stable, isomer b being intermediate, and isomer c being 

the thermodynamic product. In the absence of a salt, the kinetic barrier to convert a to E-b is 

surmountable, but further isomerization to Z-b or either c stereoisomer is not possible under 

the examined reaction conditions (even with prolonged reaction times). The kinetic product E-b 

is thus obtained, and 2-18c6b alone produces high yields of this isomer with exquisite 

regioselectivity and stereoselectivity. If instead the reaction is performed with NaBArF
4, the 

barriers for both positional isomerizations are reduced dramatically, and the reaction proceeds 

under thermodynamic control to the most stable species c (Figure 4.11). Isomer c is the most 

stable species when the substituents engage in p-conjugation ( arene, ketone, esters, and boronic 

esters),8,20,50–52,55 or hyperconjugation56 by alkyl substituents (Figure 4.11).  

 
Figure 4.11. Simplified energetic scheme for the isomerization of switchable olefins 

 

R
a

R
b

R
c

[Ir]
[Ir] + [Na+]
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This model also explains why some substrates did not exhibit cation-switchable 

reactivity. For alkenes with silyl, acetyl, and ketal substituents, calculations reveal that b is the 

most stable isomer. Thus, the product is the same under kinetic or thermodynamic control 

(Figure 4.12). Substrates that are not stabilized by resonance or increased hyperconjugation and 

functionalized with electron withdrawing groups have a decreased preference for the c 

regioisomer. 17b also shows a thermodynamic preference for the b isomer, which may be 

explained by decreased hyperconjugation and steric effects in the vinyl silane isomer, c. 

  
Figure 4.12. Simplifed thermodynamic landscape of isomerization of non-switchable substrates 

 
The free energy landscape model does not explain the sluggish reactivity of alkenes with 

methoxy, ketone, or ester substituents. In these cases, DFT predicts the c isomer is the expected 

thermodynamic product (Figure 9). These substrates all feature Lewis basic functional groups, 

however, and the slow rates of catalysis are therefore attributed to substrate binding either to the 

catalyst or to the cation. The inhibitory effect of Lewis basic groups was apparent in the very 

slow isomerizations in presence of ethyl acetate. Overcoming inhibition of switchable 

regioselectivity by Lewis basic functional groups is a focus of ongoing work. 

[Ir]
[Ir] + [Na+]

R
a

R
b

R
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While switchable stereoselectivity has been demonstrated in other reactions,57,58 a 

stimulus driven framework to switch regioselectivity has not been reported for olefin 

isomerization reactions. Instead, synthetic tuning of the ligand framework of catalytic 

systems22,38,59 or substrate functionalization59 have been typically used to modulate isomerization 

selectivity. The iridium pincer-crown ether platform offers the unique ability to control olefin 

isomerization, moving between kinetic and thermodynamic regioisomers with high selectivity.   

 

Rationalizing Unique Stereoselectivity in Each Catalytic State 

 Previous studies of the influence of salt additives on rate and selectivity utilized 2-15c5 and 

allylbenzene; these studies found the isomerization to b-methylstyrene was highly E selective 

(>99%) both with and without Li+ salts.26 However, the thermodynamics of this system also highly 

favors the E isomer, making discrimination of selectivity of different catalyst states difficult (E:Z 

>8:1).60 4b has smaller thermodynamic preference for the E isomer (Thermodynamic E:Z = 4:1),23 

allowing stereoselectivity for each catalytic state to be resolved more easily. Without salt, the 

isomerization of 4a to 4b by 2-18c6b was found to be highly E selective (E:Z = 23:1) at room 

temperature, exceeding the expected thermodynamic ratio of 4:1. Even heating reactions at 50 oC 

still dramatically favors E-4b (13:1). Upon the addition of NaBArF
4, the selectivity of the system 

drastically changes, with E-4b still being favored (5:1), but rapidly decaying to thermodynamic 

distribution (E:Z = 4:1).  This example illustrates that the selectivity of each catalytic state (salt-free vs 

Na+) is unique. Even if the reactions with salt are optimized to maximize the yield of b isomers, the 

resulting product distribution is distinct from the salt-free condition. 

The proposed mechanism for olefin isomerization using pincer-crown ethers is a hydride 

insertion, elimination pathway.26 Without cation, the crown likely plays a role in the E selectivity 

observed in the system (Scheme 4.3). Computational studies have shown that the Ir-O bond 
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trans to phenyl are easiest to dissociate, which can open up a binding site for alkene to bind.24 

Thus, crown-ether binding trans to the hydride is expected to remain, allowing the sterics of the 

crown to influence the selectivity of the system. Grotjahn and coworkers have shown sterics of 

the cyclopentadiene ring of Ru-imidazoyl plays a significant role in enforcing the high E 

selectivity observed in their system,23 and  Jiao and Liu and coworkers have shown a strong 

steric influence on selectivity seen in olefin insertion into cobalt hydrides.21 

 

Scheme 4.3. Unique selectivity of each catalytic state 

 

Upon the addition of cations, the crown ether is proposed to bind Na+ while breaking 

both Ir–O bonds present in the precatalyst. Model systems have shown that cation–crown 

interactions can dramatically enhance ligand binding in pincer-crown ether complexes, and in the 

catalytic reaction cation-crown interactions are proposed to similarly favor substrate binding, 

thereby dramatically accelerating isomerization. With sufficient activity, and perhaps a different 

steric environment imparted by crown ether dissociation from Ir, a thermodynamic distribution 

of regio- and stereoisomers is observed.  
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IV. Conclusions 
 

In search of a system capable of olefin isomerization cation-switchable regioselectivity, a 

new iridium pincer-crown ether complex featuring a larger, 1-aza-18-crown-6 moiety was 

prepared. The strong binding affinity for Na+ by complex 2-18c6 resulted in distinct reactivity 

with and without salts: the addition of Na+ results in a 4,000-fold increase in the rate of 

isomerization of 4-phenyl-1-butene relative to the salt-free condition.  

 Switchable regioselectivity was demonstrated for the first time with a single catalyst. In the absence of 

salts, 2-18c6b facilitates a single positional double bond isomerization of butenes containing 

phenyl, alkyl, siloxy, and boronic ester groups with high yields and exceptional regio- and 

stereoselectivity. Under otherwise identical conditions, but in the presence of NaBArF
4, the same 

catalyst produces the doubly isomerized product in high yields and high regio- and 

stereoselectivity. 

 Computational studies of relative isomer stability guided the development of a model that 

explains the selectivity outcomes observed for various functionalized olefins. The salt additives 

lead to two distinct catalytic states are accessed, one (salt-free) that exhibits high kinetic 

selectivity for a single E-selective double bond rearrangement, and another (salt-activated) that 

exhibits thermodynamic selectivity. When the relative stability of the olefins increases from a to 

b to c isomers, high yields of different regioisomeric E alkenes can be accessed from a single 

catalyst platform based on the inclusion of salt stimulus. Toggling the selectivity in the 

isomerization functionalized alkenes using a single scaffold presents a remarkable platform for 

regiodivergent alkene manipulation using simple additives, an important tool in manipulating 

alkene position in pharmaceuticals and fragrances. 
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V. Experimental and Characterization of New Catalysts 
 

General Considerations 

All compounds were manipulated using standard vacuum line or Schlenk techniques or 

in a glovebox under a nitrogen atmosphere. NMR scale reaction mixtures were prepared under 

nitrogen in a glovebox and kept in Teflon-sealed tubes. 1H, 31P, and 13C NMR spectra were 

recorded on 400, 500, and 600 MHz spectrometers. NMR characterization data are reported at 

298 K, unless specified otherwise. All NMR solvents and isotopically labeled reagents were 

purchased from Cambridge Isotope Laboratories, Inc. 1,2-dichloroethane-d4 (C2D4Cl2), 

chloroform-d (CDCl3), and methylene chloride-d2 (CD2Cl2) were freeze−pump−thaw degassed 

three times before drying by passage through a small column of activated alumina. Chemical 

shifts for 1H and heteronuclear spectra are reported in ppm and referenced relative to residual 

proteo solvent impurity.61 

 

Computational Details 

All calculations were performed using the Gaussian 16 software packages.62 Calculations of 

iridium-containing molecules utilized the B3LYP33,34 functional and a LANL2DZ 63 basis set. 

Initial geometries of iridium complexes were based on coordinates derived from experimental X-

ray diffraction studies. Calculations of olefins utilized B3LYP and 6-311++G(d,p),33,34 with tight 

convergence criteria. A polarizable continuum model (IEFPCM implementation in Gaussian, 

DCE solvent) was used.  

 

General Procedure for Room Temperature Catalytic Studies 

 Stock solutions of 4a, LiBArF
4, NaBArF

4, iridium catalysts, and di-tert-butylpyridine (Bu2pyr) were 

prepared in 9:1 DCE:DCE-d4. The stock solutions were combined such that each tube contained 
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0.5 mL of 0.2 M 4a, 1 mol% iridium catalyst, 0 or 2 equiv MBArF
4 (M = Li+ and Na+), and 36 

equiv Et2O (relative to Ir concentration); 1.5 mol% di-tert-butylpyridine (tBu2pyr) was added to 

each tube to suppress any possible side reactions promoted by adventitious protons. The 

reaction was monitored by NMR spectroscopy, with the residual DCE signal suppressed using a 

presaturation pulse sequence. Activity and selectivity were determined by integration of the 

olefinic peaks relative to added Et2O.  

 

General Procedure for Heated Shaker Catalysis Studies

Solutions of 0.2 M substrate, 1 mol% catalyst, and 0 or 2 mol% salt were heated at 50 oC 

in gas chromatography vials in a 24-well shaker. Aliquots were taken at 24, 48, 120, and 216 hrs. 

Each aliquot was immediately quenched with excess PPNCl in CDCl3 to convert 2-18c6b to 

chloride complex 1-18c6b and halt the reaction.24 Independent tests of 1-18c6b and substrate 

showed no observable olefin isomerization and monitoring of the quenched aliquots show 

insignificant change in the isomer distributions after quenching. The quenching solution also 

contained mesitylene as an internal standard for quantification by integration of NMR spectra. 

 

Substrates and Previously Reported Compounds 

 All substrates were freeze−pump−thaw degassed three times and stored over sieves. Substrates 

4a, 5a, 13a, 17a, 18a, and 19 were commercially available and passed through an alumina plug 

before storage over sieves. Substrates 14a64 and 16a65 were synthesized according to previously 

reported methodologies.  LiBArF
4
24

, 1-18c6a,24 and 1-18c6b28 were prepared as previously 

reported and NaBArF
4 was purchased commercially and purified by recrystallization according to 

previously reported methods.66 
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Synthesis and Characterization of [k4-(18c6NCOPiPr)Ir(H)(Cl)@Na)][BArF
4] (1-18c6a@Na) 

1-18c6a (54.4mg, 76.3 mmol) and 1.3 equivalents of NaBArF
4 (85mg, 96.9 mmol) were 

stirred in CH2Cl2 at room temperature for 4 hours. Within minutes, the color deepened to brick-

red. Subsequent characterization revealed the new species (1-18c6a@Na) (104.9 mg, 86% yield). 

Brick red crystals were grown by layering a solution of 1-18c6a@Na in toluene with pentanes. 

1H NMR (500 MHz, CD2Cl2): -32.96 (d, J = 27.7 Hz, 1H, Ir-H), 0.77 (dd, J =15.5, 6.9, 3H, 

(CH)(CH3)2, 1.12 (dd, J = 19.2, 6.9 Hz, 3H, (CH)(CH3)2),  1.40 (dd, J = 12.9, 6.8 Hz, 3H, 

(CH)(CH3)2), 1.52 (dd, J = 17.6, 7.5 Hz, 3H, (CH)(CH3)2), 2.60 – 2.40 (m, 2H, (CH)(CH3)2 ), 2.91 

(d, J = 14.5 Hz, 1H, crown-CH2), 3.33 (d, J = 14.2 Hz, 1H, crown-CH2), 3.79 – 3.38 (m, 15H, 

crown-CH2), 3.83 (ddd, J = 10.7, 7.1, 3.4 Hz, 1H, crown-CH2), 3.90 (d, J = 12.2 Hz, 1H, crown-

CH2), 4.09 (ddd, J = 11.5, 7.8, 2.8 Hz, 1H, crown-CH2), 4.19 (dd, J = 15.5, 2.4 Hz, 1H, benzylic-

CH2), 4.46 (d, J = 15.6 Hz, 1H, benzylic-CH2), 6.58 (t, J = 7.6 Hz, 2H, aryl-CH), 6.77 (t, J = 7.7 

Hz, 1H, aryl-CH), 7.56 (s, 4H, p-B-Ar-H), δ 7.77 – 7.65 (t, 8H, o-B-Ar-H). 31P NMR (202 MHz, 

CD2Cl2): 132.0. 

 
Figure 4.13. 1H NMR of 1-18c6a@Na in CD2Cl2 
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Figure 4.14.31P{1H} NMR of 1-18c6a@Na in CD2Cl2 
 

Synthesis and Characterization of [k4-(18c6NCOPiPr)Ir(H)(OH2)][BArF
4] (3-18c6a) 

 1-18c6a (168.9 mg, 236.8 µmol) and NaBArF
4 (218 mg, 237 µmol) were dissolved in CH2Cl2 (4 

mL). HPLC grade water was added (4 mL) and the reaction stirred vigorously for 1 hour. The 

water layer was abstracted, and replaced with 2 mL of fresh HPLC water, and the reaction 

allowed to stir for 15 minutes (2x). The yellow CH2Cl2 layer was abstracted and passed through 

an alumina plug, and concentrated on a rotary evaporated to yield a pale yellow solid (353 mg, 

93.7 % yield). The solid was redissolved in ether (2 mL) and layered with pentanes (4 mL) to 

yield pale yellow crystals.  

1H NMR (600 MHz, CD2Cl2): d -32.5 (d, J = 25.9 Hz, 1H, Ir-H), 0.84 (dd, J = 15.4, 7.0 Hz, 

3H, CH(CH3)2), 1.12 (dd, J = 19.1, 7.0 Hz, 3H, CH(CH3)2), 1.4 (m, 6H, CH(CH3)2), 2.42 (dsep, J 

= 13.8, 6.7 Hz, 1H, CH(CH3)2), 2.68 (m, 2H, CH(CH3)2,, crown-CH2), 3.01 (dt, J = 13.9, 7.2 Hz, 

1H, crown-CH2), 3.22 (m, 2H, crown-CH2) 3.32 (d, J = 13.2 Hz, 1H, crown-CH2), 3.39-3.96 (m, 

18H, crown-CH2), 3.88 (m, 1H, benzylic-CH2), 4.24 (m, 2H, crown-CH2, benzylic-CH2), 5.56 (s, 

OH2), 6.58 (d, J = 7.7, 1H, aryl-CH), 6.61 (d, J = 7.6, 1H, aryl-CH), 6.74 (t, J = 7.8 Hz), 7.56 (s, 

4H, p-B-Ar-H), 7.72 (t, 8H, o-B-Ar-H). 13C{1H} NMR (151 MHZ, CD2Cl2): d 16.4 (s, CH(CH3)), 

16.6 (d, J = 4, CH(CH3)), 17.1 (s, CH(CH3)), 17.6 (d, J = 8 Hz, CH(CH3)), 28.7 (d, J = 40 Hz, 

CH(CH3)), 30.0 (d, J = 34 Hz, CH(CH3)), 59.3 (s, crown-CH2), 62.6 (s, crown-CH2), 66.5 (s, 
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crown-CH2), 68.8 (s, crown-CH2), 69.0 (s, crown-CH2), 69.4 (s, crown-CH2), 69.4 (s, crown-

CH2), 69.7 (s, crown-CH2), 70.1 (s, crown-CH2), 70.5 (s, crown-CH2), 70.6 (s, crown-CH2), 71.0 

(s, crown-CH2), 76.5 (s, benzylic-CH2), 107.9 (d, J = 11, aryl-CH), 115.6 (s, aryl-CH),  117.5 (p, J 

= 4.1 Hz, p-CH, BArF), 124.0 (s, aryl-CH), 124.3 (s, aryl-C), 125.0 (q, J = 272.4 Hz, CF3, BArF), 

129.3 (qdd, J = 31.2, 5.8, 2.9 Hz, C−CF3, BArF), 134.7 (s, o-CH, BArF), 135.2 (d, J = 3 Hz, 

aryl-C), 143.4 (s, aryl-C), 162.1 (dd, J = 99.7, 49.9 Hz, B−C, BArF), 163.7 (s, aryl-C). 31P{1H} 

NMR (203 MHz, CD2Cl2): d 138.6. HRMS: calculated m/z for C26H46IrNO7P (M+ – H2O) 

678.25355, found: 678.25350. 

 
Figure 4.15. 1H NMR of 3-18c6a in CD2Cl2 

 
Figure 4.16. 31P{1H} NMR of 3-18c6a in CD2Cl2 
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Figure 4.17. 13C{1H}  NMR of 3-18c6a in CD2Cl2 

 

Synthesis and Characterization of [k4-(Meo-18c6NCOPiPr)Ir(H)(OH2)][BArF
4] (3-18c6b) 

 1-18c6b (153 mg, 206 µmol) and NaBArF
4 (191 mg, 208 µmol) were dissolved in CH2Cl2 (4 mL). 

HPLC grade water was added (4 mL) and the reaction stirred vigorously for 1 hour. The water 

layer was removed, and replaced with 2 mL of fresh HPLC water, and the reaction allowed to 

stir for 15 minutes (2x). The yellow CH2Cl2 layer was passed through an alumina plug and 

concentrated on a rotary evaporated to yield a pale yellow solid. The solid was redissolved in 

ether (2 mL) and layered with pentanes (4 mL) to yield pale yellow crystals of 3-18c6b (209 mg, 

62.6% yield). 

1H NMR (400 MHz, CD2Cl2): d -32.5 (d, J = 26.0, 1H, Ir-H), 0.79 (dd, J = 15.6, 6.8, 3H, 

CH(CH3)2), 1.07 (dd, J = 19.9, 6.9, 3H, CH(CH3)2), 1.37 (m, 6H, CH(CH3)2), 2.42 (dsep, J = 13.9, 

7.0, 1H, CH(CH3)2), 2.68 (m, 2H, CH(CH3)2,, crown-CH2), 3.01 (dd, J = 13.9, 5.9, 1H, crown-

CH2), 3.22 (m, 2H, crown-CH2) 3.32 (d, J = 12.0, 1H, crown-CH2), 3.39-3.96 (m, 18H, crown-
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CH2), 3.77 (s, 3H, OCH3), 3.88 (m, 1H, benzylic-CH2), 4.42 (m, 2H, crown-CH2, benzylic-CH2), 

5.56 (s, OH2), 6.42 (d, J = 8.1, 1H, aryl-CH), 6.61 (d, J = 8.1, 1H, aryl-CH), 7.56 (s, 4H, p-B-Ar-

H), 7.72 (t, 8H, o-B-Ar-H). 13C{1H} NMR (101 MHZ, CD2Cl2): d 16.5 (d, J = 1.6, CH(CH3), 

16.6 (d, J = 4.6, CH(CH3), 17.1 (d, J = 1.3, CH(CH3), 17.6 (d, J = 8.9 Hz, CH(CH3), 28.7 (d, J = 

39.7, CH(CH3), 30.0 (d, J = 34.0, CH(CH3), 56.0 (s, OCH3), 59.2 (s, crown-CH2), 62.3 (s, crown-

CH2), 66.5 (s, crown-CH2), 68.8 (s, crown-CH2), 68.9 (s, crown-CH2), 69.4 (s, crown-CH2), 69.4 

(s, crown-CH2), 69.7 (s, crown-CH2), 70.0 (s, crown-CH2), 70.1 (s, crown-CH2), 70.6 (s, crown-

CH2), 70.9 (s, crown-CH2), 76.5 (s, benzylic-CH2), 108.4 (s, aryl-CH), 116.0 (s, aryl-CH), 117.5 (p, 

J = 4.1 Hz, p-CH, BArF
5), 125.0 (q, J = 272.4 Hz, CF3, BArF

4), 125.6 (d, J = 5 Hz, aryl-C), 129.3 

(qdd, J = 31.2, 5.8, 2.9 Hz, C−CF3, BArF
4), 134.7 (s, o-CH, BArF

4), 135.2 (d, J = 3 Hz, aryl-C), 

143.0 (d, J = 10.0 Hz, aryl-C), 151.7 (d, J = 4 Hz, aryl-C), 162.1 (dd, J = 99.7, 49.9 Hz, B−C, 

BArF
4). 31P{1H} NMR (162 MHz, CD2Cl2): d 140.4. HRMS: calculated m/z C26H46IrNO7P (M+ 

– H2O): 708.26411; found 708.26456. Anal. Calcd. for C58H60BF24IrNO8P: C, 43.84; H, 3.81; N, 

0.88. Found: C, 43.84; H, 3.52; N, 0.88. 

 

 
Figure 4.18. 1H NMR of 3-18c6b in CD2Cl2 
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Figure 4.19. 31P{1H}  NMR of 3-18c6b in CD2Cl2 

 

 
Figure 4.20. 13C{1H}  NMR of 3-18c6b in CD2Cl2 
 

Synthesis and Characterization of [k4-(18c6NCOPiPr)Ir(H)][BArF
4] (2-18c6a)  

3-18c6a (100mg, 64 µmol) was dried at 140 oC under vacuum. P2O5 was placed on the 

same line to aid in water removal. An off-white powder was collected, yielding 2-18c6b (97mg, 

98% yield).  

1H NMR (600 MHz, CD2Cl2): d -29.50 (d, J = 26.2 Hz, 1H, Ir-H), 0.89 (bdd, J = 15.2, 6.7 Hz, 

3H, CH(CH3)2), 1.05 (dd, J = 20.0, 7.1 Hz, 3H, CH(CH3)2), 1.29 (bdd, J = 15.6, 7.2 Hz, 3H, 
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CH(CH3)2), 1.35 (bdd, J = 15.0, 6.9 Hz, 3H, CH(CH3)2), 2.34 (dsep, J = 6.9, 6.9, 1H, CH(CH3)2), 

2.42 (sep, J = 6.9 Hz, 1H , CH(CH3)2), 3.11 (bd, J = 14. Hz, 1H, crown-CH2), , 3.54-4.28 (bm, 

23H, crown CH2),), 4.40 (bd, J = 15.3, 1H, benzylic-CH2), 4.54 (d, J = 15.3 Hz, 1H, benzylic-

CH2), 6.56 (d, J = 8.0 Hz, 1H, aryl-H), 6.58 (d, J = 7.8 Hz, 1H, aryl-H), 6.79 ( J = 7.8 Hz, 1H, aryl-

H), 7.56(s, 4H, p-B-Ar-H), 7.72 (t, 8H, o-B-Ar-H). 31P{1H} NMR (243 MHz, CD2Cl2): d 139.0. 

HRMS: calculated m/z for C26H46IrNO7P (M+), 678.25355, found: 678.25360.  

 

Alternate synthesis of 2-18c6a: 

 Trityl tetrakis(pentafluorophenyl)borate (12.4mg, 13.5 µmol), triethylsilane (2.2 uL, 13.5 µmol), 

and 1-18c6a (9.6 mg, 13.5 µmol) were dissolved in separate stock solutions of chlorobenzene (2 

mL). The triethylsilane was added dropwise to the trityl solution and the reaction stirred for 2 

minutes. The resulting silylium solution was added dropwise to the 1-18c6a solution and the 

reaction stirred for 1 hr. The chlorobenzene was removed by vacuum, and the solid triturated 

with pentanes. Product was extracted with cold benzene and lyophilized. The oily solid was 

washed with pentanes and extracted with DCM (2 mL). An equal volume of pentanes was 

added, crashing out an oily residue. The supernatant was removed, and dried to reveal the 

product as a white solid (9.2 mg, 50% yield). Spectroscopic comparisons with 2-18c6a derived 

from tetrakis(3,5-trifluoromethyphenyl)borate show identical chemical shifts of the iridium 

cation. 

A solution of 2-18c6a in CH2Cl2 was layered with pentanes (1:4), yielding colorless, X-Ray quality 

crystals. 
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Figure 4.21. 1H NMR of 2-18c6a in CD2Cl2 

 
Figure 4.22. 31P{1H}  NMR of 2-18c6a in CD2Cl2 
 

Synthesis and Characterization of [k5-(Meo-18c6NCOPiPr)Ir(H)][ BArF
4] (2-18c6b) 

Crystals of 3-18c6b (286 mg, 180 µmol) were crushed and heated under high vacuum at 

145 oC on a schlenk line. P2O5 was placed on the same line to aid in water removal. After heating 

for 24 hours, the solid was cooled and transferred to a dry box, yielding the off-white product 2-

18c6b (281 mg, 99% yield). A solution of 2-18c6b in CH2Cl2 was layered with pentanes (1:4), 

yielding colorless X-Ray quality crystals. 

1H NMR (400 MHz, CD2Cl2): d -29.50 (d, J = 26.4 Hz, 1H, Ir-H), 0.86 (bdd, J = 16.2, 6.8 Hz, 

3H, CH(CH3)2), 1.04 (dd, J = 19.7, 7.1 Hz, 3H, CH(CH3)2), 1.31(bdd, J = 15.8, 6.9 Hz, 3H, 
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CH(CH3)2), 1.36 (bdd, J = 14.9, 7.3 Hz, 3H, CH(CH3)2), 2.29-2.51 (m, 2H, CH(CH3)2), 3.09 (bd, 

J = 14.1 Hz, 1H, crown-CH2), 3.38 (bs, 1H, crown-CH2), 3.50-4.30 (bm, 21H, crown CH2), 3.76 

(s, 3H, OCH3), 4.35 (bm, 1H, crown-CH2), 4.38 (d, J = 14.7 Hz, 1H, benzylic-CH2), 4.47 (d, J = 

14.7 Hz, 1H, benzylic-CH2), 6.46 (d, J = 8.2 Hz, 1H, aryl-H), 6.57 (d, J = 8.2 Hz, 1H, aryl-H), 

7.56 (s, 4H, p-B-Ar-H), 7.72 (t, 8H, o-B-Ar-H). 13C{1H} NMR (101 MHZ, CD2Cl2): d 16.1 (s, 

CH(CH3), 16.6  (broad s, 2C, CH(CH3)), 17.1 (s, CH(CH3)), 30.0 ( d, J = 39.4 Hz, CH(CH3)),  

30.7 (d, J = 33.3 Hz, CH(CH3)),  56.0 (s, OCH3), 59.2 (crown-C), d 64.3 (crown-C), 68.6-72.6 

(crown-C), 70.3  (benzylic-CH2), 108.9 (aryl-CH, 115.5 (aryl-CH), 117.5 (p, J = 4.1 Hz, p-CH, 

BArF
4), 125.0 (q, J = 272.4 Hz, CF3, BArF

4), 126.0 (d, J = 4.3, aryl-C) 128.9 (qdd, J = 31.2, 5.8, 

2.9 Hz, C−CF3, BArF
4), 134.7 (s, o-CH, BArF

4), 135.4 (s, aryl-C), 143.0 (aryl-C), 151.7 (d, J = 3.7 

Hz, aryl-C), 161.7 (dd, J = 99.7, 49.9 Hz, B−C, BArF
4).31P{1H} NMR (162 MHz, CD2Cl2): d 

140.7. HRMS: calculated m/z for C26H46IrNO7P (M+): 708.26411, found: 708.26379. Anal. 

Calcd for C58H58BF24IrNO7P: C, 44.34; H, 3.72; N, 0.89. Found: C, 44.21; H, 3.61; N, 0.87. 
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Figure 4.23. 1H NMR of 2-18c6b in CD2Cl2 

 

 
Figure 4.24. 31P{1H}  NMR of 2-18c6b in CD2Cl2 
Approximately 3% of 3-18c6b is also present in this sample, corresponding to the sharp peak at 
140.4 ppm. 
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Figure 4.25. 13C{1H}  NMR of 2-18c6b in CD2Cl2 
 

 
Figure 4.26. 1H-13C HSQC spectrum of 2-18c6b in CD2Cl2
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Synthesis and Characterization of [k4-(MeO-15c5NCOPiPr)Ir(H)(OH2)][ BArF
4] (3-15c5b) 

 2-15c5b was dissolved in wet CH2Cl2. Full conversion to the aqua adduct was observed by 

NMR. 2-15c5b solid was dissolved in wet ether (2 mL) and layered with pentanes (4 mL) to yield 

pale yellow crystals. 

1H NMR (400 MHz, CD2Cl2): d -32.5 (d, J = 26.1 Hz, 1H, Ir-H), 0.79 (dd, J = 16.4, 6.9 Hz, 

3H, CH(CH3)2), 1.05 (dd, J = 20.1, 6.8 Hz, 3H, CH(CH3)2), 1.34 (dd, J = 17.0, 7.5 Hz, 3H, 

CH(CH3)2), 1.40 (dd, J = 13.8, 6.9 Hz, 3H, CH(CH3)2), 2.42 (dsep, J = 14.0, 6.6 Hz, 1H, 

CH(CH3)2), 2.56 (dsep, J = 8.4, 7.3 Hz, 1H, CH(CH3)2,), 2.68 (m, 1H, crown-CH2), 3.22 (m, , 2H, 

crown-CH2), 3.36-3.97 (15H, crown-CH2) 3.77 (s, 3H, OCH3), 4.02 (dd, J = 13.1, 2.6 Hz, 1H, 

benzylic-CH2), 4.17 (ddd, J = 12.7, 12.7, 3.4 Hz, 1H, crown-CH2), 4.25 (d, J = 13.1, 1H, 

benzylic-CH2), 4.33 (dd, J = 14.8, 5.8 Hz, 1H, crown-CH2), 6.17 (s, 2H, OH2), 6.42 (d, J = 8.1, 

1H, aryl-CH), 6.62 (d, J = 8.1, 1H, aryl-CH), 7.56 (s, 4H, p-B-Ar-H), 7.72 (t, 8H, o-B-Ar-H). 

13C{1H} NMR (101 MHZ, CD2Cl2): d 16.1 (m, 2C, CH(CH3)2), 16.8 (m, 2C, CH(CH3)2), 28.9 (d, 

J = 39.7 CH(CH3)), 30.1 (d, J = 34.8, CH(CH3), 56.0 (s, OCH3), 61.1 (s, crown-CH2), 62.4 (s, 

crown-CH2), 65.2 (s, crown-CH2), 67.2 (s, crown-CH2), 68.5 (s, crown-CH2), 68.9 (s, crown-

CH2), 69.9 (s, crown-CH2), 70.6 (s, crown-CH2), 71.2 (s, crown-CH2), 71.7 (s, crown-CH2), 

74.3(s, benzylic-CH2), 108.4 (s, aryl-CH), 116.0 (s, aryl-CH), 117.5 (p, J = 4.1 Hz, p-CH, BArF
4), 

125.0 (q, J = 272.4 Hz, CF3, BArF
4), 125.6 (aryl-C),  129.3 (qdd, J = 31.2, 5.8, 2.9 Hz, C−CF3, 

BArF
4), 135.2 (s, o-CH, BArF

4), 135.4 (aryl-C), 143.0 (aryl-C), 153.2 (aryl-C), 162.1 (dd, J = 99.7, 

49.9 Hz, B−C, BArF
4). 31P{1H} NMR (162 MHz, CD2Cl2): 140.4. HRMS: calculated m/z for 

C24H42IrNO6P (M+– H2O) 664.23779, found: 664.23790.  
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Figure 4.27. 1H NMR of 3-15c5b in CD2Cl2 

 
Figure 4.28. 31P{1H} NMR of 3-15c5b in CD2Cl2 
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Figure 4.29. 13C{1H}  NMR of 3-15c5b in CD2Cl2 

 
Synthesis of 2-(but-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (15b) 

3-butenyl-1-boronic acid (470mg, 4.7 mmol) and pinacol (516 mg, 4.37 mmol) were 

weighed into a 20 mL scint vial. Solids were stirred vigorously over 1hr, and filtered through a 

silica plug yielding a volatile, clear oil (248.8 mg, 31.3%). Chemical shifts match previous 

reports.14 
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CHAPTER 5. OLEFIN ISOMERIZATION WITH CATION-SWITCHABLE 
REGIOSELECTIVITY: UNDERSTANDING INHIBITION BY LEWIS BASIC 

MOIETIES 
 
 

I. Introduction 
 

Accessing Switchable Catalysis in Lewis Basic Olefins 

 Lewis basic moieties, such as alcohols, ketones, esters, and ethers are ubiquitous in highly 

functionalized olefinic species. While many successful isomerizations of functionalized allylic 

olefins have been reported,1–4 maintaining high stereo- and regioselectivity in longer chain 

functionalized olefins poses unique challenges.5–8 The strong driving force for conjugated 

olefinic products can favor overisomerization to thermodynamic regioisomers when a selective 

one-bond transformation is desired.9 Lewis basic functional groups can also interact with the 

Lewis acidic metal center;10 while in some cases this can enforce selectivity,10,11 interaction with 

the metal center can also dampen catalytic activity with these groups.12,13  Given the ubiquity of 

these moieties, poor selectivity for these systems holds back applications in the fragrance, 

commodity chemicals, and pharmaceutical industries.14–18   

 In the previous chapter, an iridium pincer crown-ether complex was shown to be capable of 

toggling the regioselectivity in functionalized olefins using cationic additives. Weak ether donors 

from the crown ether can bind the metal center, competing with substrate binding and enforcing 

kinetic selectivity; upon the addition of salt, the crown ether disassociation becomes more 

favorable, allowing thermodynamic olefinic products to be accessed (Figure 5.1A). An 

interesting facet of this system is the inability to toggle the regioselectivity of sterically 

unencumbered Lewis basic moieties, even in the presence of salt (Figure 5.1B, top).  
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Figure 5.1. Accessing switchable isomerization in Lewis basic functionalized olefins. 

 

While providing remarkable catalytic control, incorporating weak ethereal donors into 

the substrate leaves the metal center vulnerable to facile substitution by Lewis basic donors.19 

Furthermore, the addition of weak Lewis bases has been shown to inhibit the Lewis acidity of 

the cationic additives, dampening rate enhancement by salt additives.20 The interaction between 

salt, catalyst, and Lewis basic substrates is explored through analysis of the catalytic state in the 

presence of substrate. While switchable rates of isomerization have been observed in the 

isomerization of allyl alcohols,21 switchable regioselectivity has not been observed in Lewis basic 

functionalized olefins.  Using new insight into the structural changes of the catalyst, switchable 

regioselectivity by iridium pincer crown-ether complexes of Lewis basic functionalized olefins 

was sought through modification of the primary and secondary coordination sphere (Figure 

5.1B, bottom). 
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II. Initial Isomerization Attempts of Lewis Basic Substrates 
 

Influence of Catalytic Conditions 

Cationic iridium pincer complexes, [k5-(18c6NCOPiPr)Ir(H)][BArF
4] (1-iPr18c6a) and a 

methoxy-blocked variant, [k5-(MeO-18c6NCOPiPr)Ir(H)][BArF
4] (1-iPr18c6b) ([BArF

4 = Tetrakis(3,5-

bis(trifluoromethyl)phenyl)borate)) were synthesized as reported in the previous chapter. Both 

systems show very similar structure and reactivity, differing by substitution of a methoxy group 

ortho to the phosphinite. Incorporation of a methoxy “blocking” group increases the stability of 

the catalyst.22 Early structural studies feature 1-iPr18c6a and most isomerization studies use 1-

iPr18c6b.  

 5-hexene-2-one (2a), ethyl pentanoate (3a), and 5-hexen-1-ol (4a) were chosen as model 

substrates to explore isomerization with Lewis basic functional groups. Regioisomers are labeled 

relative to the terminal olefinic starting material (a), with the first isomerization product labeled 

b and each subsequent isomer labeled with the next letter. Beside featuring sterically 

unencumbered Lewis basic moieties, these substrates have thermodynamically favorable c 

isomerization products, through conjugation with electron withdrawing groups or 

tautomerization to an aldehyde. In arenes, substituted alkenes, silyl ethers, and boronic esters, 

this type of thermodynamic driving force allows cation-gated switchable regioselectivity (Chapter 

4.2). Without cation, the kinetic b isomer is favored. In the presence of NaBArF
4, the 

thermodynamic distribution of isomers is favored.  

 In comparison, isomerization of 2a with 1-iPr18c6b yields primarily the kinetic product, 2b in 

poor yield at room temperature (Table 5.1). Upon the addition an equivalent of NaBArF
4, a 

modest 3-fold enhancement of the rate of isomerization 2b is seen. However, even upon 

reacting at room temperature for an additional 72 hours, 2c is not observed in solution. 
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Table 5.1. Isomerization of 5-hexen-2-one at room temperature. 

 
 

Increasing the reaction temperature to 50 oC does not push the isomerization to thermodynamic 

products; only a decay in the E selectivity is observed (3.5 : 1 at rt, 1.8 : 1 at 50 oC, Figure 5.1), 

indicating inhibition of cation-crown interaction or substrate inhibition of the catalyst itself. 

 To test for dampening of the Lewis acidity of added salts by substrate, the influence of salt 

concentration on observed reactivity was studied (Figure 5.2). 0.5 – 20 equivalents of NaBArF
4 

and LiBArF
4 were added to solutions of 1-iPr18c6b and 2a. Examining the rate of isomerization 

under each salt condition reveals two regimes. At early time points, 0.5 equiv of Na+ shows less 

substrate conversion than 1 equiv of salt (Figure 5.2, top, left). This result agrees with previous 

observations that increasing salt concentration increases the rate of isomerization by iridium 

complexes.20 Li+ concentration studies shows similar substrate conversion at low Li+ loadings; 

given previous observations that Li+ activity can be significantly dampened by ethereal donors, 

the similarity in rates at low Li+ loadings in the presence of 0.2 M 2a is reasonable (Figure 5.2, 

top, right). 

Surprisingly, moving to >1 equiv of salt inhibits the rate of isomerization, a trend 

opposite of what would be expected if only Lewis acidic dampening explained the slow rate of 

isomerization. Even heating for 216 hrs under large excess of Na+ yields almost no conversion 
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to the expected thermodynamic regioisomer, though complete conversion of 4a is observed 

(Figure 5.2, bottom, left). Similar inhibition of substrate conversion is seen at early timepoints in 

the presence of Li+, though at long timepoints, modest amounts of the expected thermodynamic 

product are observed (Figure 5.2, bottom, right). 

 
Figure 5.2. Salt dependence in 5-hexen-2-one isomerization. 

 

 These results support substrate inhibition of the catalyst was playing a large role in slow rates of 

isomerization, rather than dampening of the Lewis acidity of added salt by substrate. Selectivity 

for kinetic regioisomers 3b and 4b are also seen in isomerization attempts with substrates 3a and 

4a, respectively, indicating a general trend of catalyst inhibition across the studied Lewis basic 

substrates (Table 5.2).  

 

 

 
 

3

4

3

3

3

64

65

65

67

68

30

28

28

26

27

2

3

3

2

2

0 20 40 60 80 100

0.5

1

5

10

20

Isomer Distribution (%)

Sa
lt 

Eq
ui

va
le

nt
s

216 hours
2a E-2b Z-2b E-2c Z-2c

4

3

9

15

73

68

57

48

20

25

21

13

2

3

11

22

0 20 40 60 80 100

0.5

1

10

20

Isomer Distribution (%)

Sa
lt 

Eq
ui

va
le

nt
s

216 hours
2a E-2b Z-2b E-2c Z-2c

16

15

48

50

67

61

33

31

15

21

16

13

2

2

3

6

0 20 40 60 80 100

0.5

1

10

20

Isomer Distribution (%)
Sa

lt 
Eq

ui
va

le
nt

s

Li+ Dependence, 48 hours 
2a E-2b Z-2b E-2c

12

9

20

24

38

52

50

50

47

38

34

39

29

27

23

1

2

1

1

1

0 20 40 60 80 100

0.5

1

5

10

20

Isomer Distribution (%)

Sa
lt 

Eq
ui

va
le

nt
s

Na+ Dependence, 48 hours
2a E-2b Z-2b E-2c

A. B.

O
2a E-2b E-2c

DCE, 50 oC

1 mol% [Ir]
X eq MBArF

4
O
Z-2cZ-2bOO O

+ + +



 

 160 

Table 5.2. Heated isomerization of olefins substituted with Lewis bases. 

 
*E:Z ratio unable to be determined by NMR 

 

NMR Studies of Catalytic Resting States 

To explore this phenomenon further, NMR studies of catalytic resting state during 

isomer isomerization was undertaken. When substrate 2a is added to solution, the catalyst 

speciates into multiple products. Attempts to characterize the new products in stoichiometric 

studies were foiled by speciation of 1-ipr18c6a and extensive broadening of spectral features. 

Proposing that moving to a more Lewis basic substrate should interact more strongly 

with the metal center and reduce dynamic behavior, a stoichiometric reaction with 1 and 4a was 

also studied. Upon the addition of 4a, the hydride and aryl regions overlay with 1, but 

broadening is observed in the crown. Little isomerization of 4a is observed. Adding an 

equivalent of NaBArF
4 yields a new hydride at -27.6 ppm, with 1-18c6 being completely 

consumed over 2 days (Figure 5.3). The new species was characterized by 1H-13C HSQC and 1H-

1H COSY experiments, which was assigned as a chelated 4c bound to 1-iPr18c6a, 5-iPr18c6a 

a

216

216

–

Na+

7% 91% (9:1) 2%

4% 93% (2.9:1) 3%

216

216

–

Na+

50 : 1

30 : 1

32 : 1

7.9 : 1

3

4
a

2% 95%* 3%*

2% 87%* 11%*

OH
b

OH
c

OH

b c

1 mol% [1-iPr18c6b]
2 mol% NaBArF

4

50 oC, DCE
ba c+

O

O

O

O

O

O

a

216

216

–

Na+

5% 93% (10:1) 3%

3% 93% (2.5:1) 4%

30 : 1

20 : 1

2
b c

O O O

b:cIsomer Distribution % (E:Z)Time (hr)Salt



 

 161 

(Figure 5.4). 

 
Figure 5.3. Speciation of 1-iPr18c6a in CD2Cl2. 
 

 

Figure 5.4. Proposed structure of 5-iPr18c6a.  
 

Given the slow isomerization seen when 4c builds up in previous isomerization attempts 

and the full conversion of 1-iPr18c6a to a substrate bound species, the formation of this species 

is proposed to explain the sluggish reactivity in Lewis basic functionalized systems. The 

stabilization of substrate binding through cation-crown interaction has been previously 

demonstrated to gate the binding of fluorinated benzonitrile towards Ni pincer-crown ethers;23 a 
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similar phenomenon is believed to be operating here. Chelation of a Lewis basic functional 

group and the olefin leads to a new, more stable resting state that significantly inhibits the rate of 

isomerization. 

 The role of Na+ in stabilizing the adduct explains the inhibition of catalysis under high 

salt loadings (Figure 5.2); increasing the salt concentration favors the formation of 5-iPr18c6a 

and inhibits catalysis. Li+ has a lower binding affinity for 1-aza-18-crown-6 based pincer-crown 

ethers than Na+; this could serve to destabilize the chelated olefinic species and allow some 

conversion to the thermodynamic regioisomer. The increased % of 2c at 216 hrs under high Li+ 

loadings supports this hypothesis (Figure 5.2) and demonstrates the role the cation can plays in 

switchable selectivity. 

A similar study was done with the previously reported [k4-

(18c6NCOPiPr)Ir(H)(OH2)][BArF
4] (6-iPr18c6a, Chapter 4.2). Without Na+, the resting state is 

observed to remain at 6-iPr18c6a. Upon the addition of Na+, a broad species at -27.6 

corresponding to 5-iPr18c6a is observed alongside a broadened peak corresponding to 6-

iPr18c6a. This led to the proposal that 6-iPr18c6a and the methoxy blocked variant [k4-

(18c6NCOPiPr)Ir(H)(OH2)][BArF
4] (6-iPr18c6b) may afford faster catalysis given the increased 

resistance to substrate substitution. To test this hypothesis, isomerizations of 2a and 4a by 6-

iPr18c6a were explored. After reacting substrate and catalyst for 24 hours with 10 equiv. of Na+ 

at rt, 10% of isomer 2c was observed. Reactions with 4a showed similar behavior, with 4c 

growing in at early timepoints, but requiring long reaction times to push the distribution towards 

greater concentrations of 4c. No aldehyde – the expected thermodynamic product – is observed 

in solution. 

 Repeating isomerization at 50 oC with 6-iPr18c6b with 2a and 3a both with and without Na+ 

shows increased conversion to the c regioisomer. While the regioselectivity towards the b 
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regiosiomer is able to be dramatically reduced (in contrast of what is seen with 1-iPr18c6b), full 

conversion to the expected thermodynamic regioisomer is not observed on a reasonable 

timescale.   

 

Table 5.3. Isomerization of substituted olefins with 6-iPr18c6b. 

 

Isomerization in Long Chain Olefins 

 Long chain olefins represent interesting substrates for screening substrate chelation. If chelation 

is responsible for deactivation of the catalyst, moving to longer chain olefins should allow 

isomerization to occur until a chelatable species is reached, inhibiting catalysis (Scheme 5.1). 

Long chain olefins themselves are substrates of interest for transforming fatty acids into higher 

value chemical feedstocks and biofuels.24,25
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Scheme 5.1. Isomerization and chelation of substrate. 

 

 

Model substrates ethyl heptenoate (7a) and 9-decen-2-one (8a), and undecylenic 

aldehyde (9a) were chosen as long chain model complexes. 7a has a chain length with 5 

regioisomers available, including the starting material. Isomerization of 7a with 1-ipr18c6b and 

Na+ yields 5% 7c after 120 hours at 50 oC. While greater than the yield of the shorter chain ester 

substrate, 3c, 7b is still the dominant product. Isomerization of a longer chain substrate, 8a (7 

regioisomers, including the starting material), 1-iPr18c6b, and Na+, shows conversion to internal 

regioisomer 8c and 8d in modest yields at 50 oC after 120 h. In the absence of cation, the major 

product is still the one bond isomerization product, 8b (95% yield). Isomerizing an even longer 

chain olefin, 9a (9 regioisomers available, including the terminal olefin), increasingly favors 

isomerization to internal olefins (9c + 9d), with the reaction proceeding with good conversion at 

room temperature.  

 

L
Ir L

Ir
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Table 5.4. Isomerization of long-chain functionalized olefins. 
*Sum of 9d and other internal olefins. 

 
 

 This study shows that proximity of the functional group is the chief inhibition of catalytic 

activity in Lewis basic olefins; increasing distance between the olefinic group increase catalytic 

activity and allows access to internal olefinic products. This result raises the intriguing possibility 

of switchable regioselective olefin isomerization selective for internal olefins. Catalysis of long chain 

functionalized olefins from terminal positions has been demonstrated with alkene “zippers”, 

impressive feats of isomerization over 30+ bonds to a thermodynamic sink,26,27 or demonstrate 

selectivity for the one bond isomerization products; access a framework that is both switchable 

and has selectivity towards internal olefins of long chain substrates makes this system a unique 

example. 

 

III. Synthetic Attempts to Disfavor Chelation 
 

Changing Phosphinite Substitution

  Having proposed that chelated Lewis basic substrates result in the sluggish cation-induced 

isomerization observed, attempts were made to disfavor chelation through synthetic 

modification. New ligand scaffolds were generated by phosphinite substitution with a sterically 
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less bulky and electronically distinct diphenyl group and increasing the sterics around the metal 

center through the incorporation of bulky t-butyl groups (Scheme 5.2).  

 

Scheme 5.2. Synthesis of new phenyl phosphinite ligands. 

 

 Reaction of the phenolic preligand with diphenylchlorophosphine yields the desired phenyl 

substituted phosphinite, (MeO-18c6NCOPPh)H (10, Scheme 5.2). Phosphination of the t-butyl 

substituted base requires a stronger base, 1,8-Diazabicyclo[5.4. 0]undec-7-ene (DBU) to 

synthesize (MeO-18c6NCOPtBu)H (11) in 89% yield (Scheme 5.2). 

 Metalation of 10 with [Ir(COD)Cl]2 at 90 oC yields the expected tetradentate iridium complex, k4-

(MeO-18c6NCOPPh)Ir(H)(Cl) (12-Ph18c6b) in a 55% yield post recrystallization (Scheme 5.3). XRD 

suitable crystals were grown by layering pentanes over a solution of 12-Ph18c6b dissolved in 

toluene (8:1 pentane:toluene, Figure 5.5).  
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Scheme 5.3. Metalation and ligand modification of new catalysts. 

 

 Following methodologies of halide abstraction outlined in Chapter 4.2 for 1-aza-18-crown-6 

containing pincer complexes, the aquated cation pincer complex [k4-(MeO-

18c6NCOPPh)Ir(H)(OH2)][BArF
4] in a 94% yield (6-Ph18c6b, Scheme 5.3). XRD suitable crystals 

were grown from by layering a solution of 6-Ph18c6b in Et2O with pentanes (Figure 5.5). 

Heating the complex at 140 oC for 24 h under vacuum yields the desired water-free, cationic 

complex, [k5-(MeO-18c6NCOPPh)Ir(H)][BArF
4] (1-Ph18c6b) in a 99% yield.  

 Metalation of 8 with [Ir(COD)Cl]2 at 120 oC yields the expected tetradentate iridium complex, 

k4-(MeO-18c6NCOPtBu)Ir(H)(Cl) (12-tBu18c6b) in a 68% yield, post recrystallization (Scheme 5.3). 

Incorporation of the methoxy blocking group on the ligand framework is key for successful 

metalation; initial attempts to synthesize the bulky t-butyl analogues without the blocking group 

were unsuccessful. 12-tBu18c6b was dissolved in CH2Cl2 and the halide abstracted with 

NaBArF
4 according to previously outlined methods, yielding the aquated complex, [k4-(MeO-

18c6NCOPtBu)Ir(H)(OH2)][BArF
4] (6-tBu18c6b). XRD suitable crystals were grown from a 

solution of 6-tBu18c6b dissolved in Et2O and layered with pentanes (2:1 pentanes:Et2O, Figure 

5.5). 

Heating the 6-tBu18c6b at 140 oC for 24 h under vacuum yields the desired water-free, 
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cationic complex, [k5-(MeO-18c6NCOPtBu)Ir(H)][BArF
4] (1-tBu18c6b) in a 96% yield.  

 
Figure 5.5. Structural representation of new complexes. 
Ellipsoids shown at the 50% probability level; counteranions and hydrogens are hidden for 
clarity. Top: 12-Ph18c6b; Bottom, left: 6-Ph18c6b; Bottom, right: 6-tBu18c6b. Disorder in the 
methoxy group was successfully treated as a two-site disorder, with both thermal ellipsoids 
shown in the figure. 
 

Structural Studies of New Complexes 

 With new complexes in hand, the spectroscopic and structural characteristics of the newly 

synthesized substituted phosphinite complexes were explored. Comparing the spectrum of the 

previously reported (18c6NCOPipr)Ir(H)(Cl) (12-iPr18c6b)28 with the newly synthesized chloride 

complexes, 12-Ph18c6b and 12-tBu18c6b, shows that, aside from the shifts corresponding to 

the new functional groups, the crown and arene regions are very similar. The largest influence on 

chemical shift is observed in the hydride; a 3.5 ppm difference in chemical shift is observed 
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between 12-Ph18c6b and 12-tBu18c6b (Figure 5.6). 

 
Figure 5.6. NMR comparison of new tetradentate chloride iridium complexes in CD2Cl2. 

 

To explore the steric influence of phosphinite substitution on iridium pincer-crown ether 

complexes in more detail, the aqua complexes structural and spectroscopic features were 

compared. A diagnostic peak is the 2H peak corresponding to bound water that shows up 

around 5.34 ppm (blue box, Figure 5.7). The aqua peak is shifted upfield slightly of 6-iPr18c6b 

upon substitution with the more electron rich tert-butyl group29 in 6-tBu18c6b, while in the 

more electron deficient phenyl substituted complex, 6-Ph18c6b the aqua protons are shifted 

downfield of 6-iPr18c6b. This observation suggests the aqua chemical shift may be a useful 

marker of electron density on the iridium center – in the absence of other competing donors or 

cations – though given the steric differences in the studied phosphines, synthesis of additional 

systems would be required to confirm this trend. 

Halide abstraction to the cationic aqua complexes causes an upfield shift the hydride 
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peak in the studied complexes. Once again the tert-butyl substituted aqua complex, 6-tBu18c6b 

demonstrates the most downfield hydride shift at -36.9 ppm. Hydride chemical shifts show a 

strong dependence on the identity of the trans ligand,30,31 indicating a difference in the Ir-O bond 

in solution. 

 
Figure 5.7. NMR comparison of new tetradentate chloride iridium complexes in CD2Cl2. 
 

 Structural studies of the aqua complexes 6-Ph18c6b and 6-tBu18c6b show similar structural 

features of the parent aqua complex, 6-iPr18c6b. The crown completely encompasses the 

bound aqua ligand; bond distances between oxygen atoms in the crown and hydrogens on the 

water ligand suggest hydrogen bonding interactions are occurring (Figure 5.8). The aqua ligand 

of 6-Ph18c6b shows the same hydrogen bonding partners as the parent isopropyl complex (O2 

and O5). In contrast, 6-tBu18c6b shows closest contact with a O2 and O4. Significant 

distortion of the crown-ether binding is observed in 6-tBu18c6b, resulting in a 0.28 Å 

lengthening of the Ir-crown bond (Figure 5.9), which may explain this observation. Given the 

sensitivity of hydride chemical shifts to trans ligands, the lengthening of the crown ether bond 
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likely explains the significant upfield shifting of the hydride in the presence of tert-butyl 

containing complex. Stronger donors move the hydride downfield,19 while weaker donors, such 

as an elongated Ir-crown bond move upfield. Overlaying the aquated crystal structures 

demonstrate steric effects of the substituents on phosphorus; the crown ether of 6-tBu18c6b is 

visibly pushed away from the tert-butyl group, while minimal differences are seen in the phenyl 

phosphonite backbone (Figure 5.9). 

 
Figure 5.8. Comparison of hydrogen bonding in iridium-aqua complexes. 
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Figure 5.9. Structural overlay and key crystallographic feature of iridium-aqua complexes. 

 

 Heating the aquated complexes at high temperatures under vacuum removes the water ligand 

yielding the proposed high-coordinate, k5 complexes. While 1-Ph18c6b and 1-tBu18c6b were 

not characterized in the solid state, the complexes exhibit dynamic behavior, downfield shift of 

the hydride, and loss of the water ligand characteristic of this transformation (see Experimental 

Details). 

 

Reactivity Studies of New Complexes  

To compare the reactivity of new iridium pincer complexes with previously studied 

complexes, an isomerization with 4-phenyl-1-butene (13a) was undertaken (Figure 5.10). At 

room temperature, the less sterically bulky 1-iPr18c6b and 1-Ph18c6b showed similar levels of 

activity. Incorporation of a tert-butyl group, however, greatly decreased the rate of 

isomerization; an over 100-fold decrease in the rate of isomerization of 13a was observed with 1-

tBu18c6b. Increasing steric bulk of the phosphine group may disfavor coordination of the olefin 
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to the active site of the metal, even in the presence of Na+ and significantly slowing the rate of 

isomerization. Isomerization of 13a with and 1-iPr18c6b and 1-Ph18c6b demonstrates 13b with 

a thermodynamic E:Z ratio of 4:1, and 1-tBu18c6b shows an E:Z ratio of 5:1.While controlling 

sterics has been a powerful method to enforce regio- and stereoselectivity,5,32 previous reports 

have shown increasing steric bulk can hamper reactivity towards substrates.33   

 

 
Figure 5.10. Consumption of 4-phenyl-1-butene over time by new iridium complexes. 

 

Despite the poor reactivity towards of 1-tBu18c6b for 13a, isomerization of 2a was 

studied as a representative reaction with a Lewis basic functionalized olefin to probe for 

favorable reactivity towards a thermodynamic product. New catalysts showed limited selectivity 

for 2c; while the phenyl substituted, 1-Ph18c6b showed similar activity as 1-iPr18c6b, the 

aquated 6-Ph18c6b did not produce 2c in significant yield. The tert-butyl substituted 1-

tBu18c6b showed poor conversion of 13a, indicating inhibition of substrate binding due to the 

increased steric bulk of the catalytic framework. The aquated analogue, 6-tBu18c6b showed 

additional inhibition of the rate. While not demonstrating cation-induced isomerization initially 

targeted in the synthetic project, interesting changes to stereoselectivity were observed. 
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Calculated thermodynamic values suggest a thermodynamic distribution of 4:1 E:Z (Chapter 

4.2), whereas a slightly lower E:Z ratio of 2:1 is observed in a previous thermodynamic 

distribution with Pd based catalysts.32 The ratios observed in the isomerization 2a with 1-

iPr18c6b and Na+, which has previously accessed thermodynamic distributions of olefins at long 

timepoints (See Chapter 4.2) also show an E:Z ratio of about 2:1 at long time points, indicating a 

thermodynamic distribution under this condition.  

The aquated isopropyl substituted complex, 6-iPr18c6b, shows higher E selectivity than 

the 1-iPr18c6b in the isomerization of 2a to 2b, whereas the phenyl substituted complexes 1-

Ph18c6b and 6-Ph18c6b show increased selectivity for the Z isomer, even at long timepoints.  

While the modulation of stereoselectivity is interesting, the highest conversion to the 

thermodynamic 2c regioisomer was observed in the parent isopropyl substituted aquo, 6-

iPr18c6b. Other donors were sought to modify the primary coordination sphere to increase 

isomerization to thermodynamic products.  

 

Table 5.5. Comparison of 5-hexen-2-one regioselectivity with iridium complexes. 
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IV. Using Additives to Change Catalytic Reactivity  
 

Addition of Competing Donors to Solution  

Given that the highest selectivity for the c regioisomer upon the addition of salt 6-

iPr18c6b, stronger donors were sought that might compete with substrate chelation of the metal 

center and allow isomerization to proceed towards thermodynamic distributions. Towards this 

goal, an ammonia coordinated analogue to 6-iPr18c6 was synthesized by stirring a solution of 

12-iPr18c6b with NaBArF
4  in CH2Cl2  with an excess of 30% aqueous NH3 solution (Figure 

5.11), yielding the cationic ammonia complex, [k4-(MeO-18c6NCOPPh)Ir(H)(NH3)][BArF
4]  (14-

iPr18c6b) in a 65% yield. Crystals suitable for X-ray characterization were grown by layering 

pentanes over a solution of 14-iPr18c6b in Et2O (Figure 5.11). Like the previous synthesized 

aqua complex, the crown ether is observed to encompass the bound ammine, indicating 

hydrogen bonding interactions were present in this complex.  Other donors were also screened 

as additives to reactions to catalysis of 2a with 1-iPr18c6b to turn on cation gated switchable 

regioselectivity; in each case 1 mol % (1 equiv relative to catalyst) was added to the reaction 

solution (Table 5.6).  
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Figure 5.11. Synthesis and structural representation of 14-iPr18c6b. 
Ellipsoids are shown at the 50% probability level. 
 

14-iPr18c6b showed 62% conversion of 2a after 120 hrs, indicating significant inhibition 

by the ammine donor. The strong nitrogen donor coupled with an additional hydrogen bonding 

interaction with the crown likely competes with substrate coordination, preventing fast catalysis 

even in the presence of Na+. Worse conversion is seen when pyridine is added to the reaction 

solution, with only 2% of 2b observed after 216 hrs. Increasing substitution of pyridine additives 

improves conversion from 2a. Greatest yield of 2c among the studied additives is seen in the 

presence of lutidine. Increasing the bulk of added donors further with 2,6-di-tert-butylpyridine 

does not enhance the formation of 2c; the distribution with this additive is very similar to 1-

iPr18c6b and Na+ alone, indicating 2,6-di-tert-butylpyridine is not significantly interacting with 

the catalyst (Table 5.6).  
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Table 5.6. Isomerization of 5-hexen-2-one with added donors. 

 
The poor activity seen in the presence of strong Lewis basic additives indicates that the 

preferred binding site for the additives is cis to the hydride, inhibiting substrate binding to the 

metal insertion and disfavoring subsequent insertion into the metal hydride. The best conversion 

to 2c is seen with the initially studied 6-iPr18c6b.  

 

Changing Stereoselectivity with Donors 

While showing poor conversion to the thermodynamic regioisomer, the 1-iPr18c6b 

showed moderately tunable stereoselectivity using external additives. The following E:Z ratios 

correspond to observed yields of E-2b and Z-2b. The 1-iPr18c6 features a strong E preference 

in the absence of cation at 24 hrs (E:Z = 14:1) which decays to 12:1 over 216 hours; in the 

presence of cation, an E:Z ratio of 1.3:1 is observed at 24 hrs, which increases to 2.6:1 over 216 

hrs. 6-iPr18c6 demonstrates an E:Z ratio of 6:1 in the absence of Na+; in the presence of Na+, 

the E:Z ratio is 1.2:1 at 24 hrs, which inreases to 2.6:1 over 216 hours. The increased Z 

selectivity in the Na+ conditions likely stems from substrate chelation; comparison with other 

substrates previously studied typically shows near thermodynamic values in the presence of 

cation (See Chapter 4.2). 

O2a 2b 2cDCE, 50 oC

1 mol% [Ir]
5 eq NaBArF

4

OO
+

pyridine
2-picoline
lutidine

2,6-di-tertbutylpyridine

Isomer Distribution % (E:Z)Time (hr)

216

Catalyst

33%
9%

98%
11%
<1%

3%

86% (1.5:1)
62% (1.9:1)

2%

84% (1.9:1)
92% (1.7:1)
93% (2.4:1) 3%

8%
5%

<1%

5%
6%

a b c

NaI
MeCN

14-iPr18c6b120 62% 29% (1.4:1) 9%

3% 98% (2.3:1) 4%THF

Additive

1-iPr18c6b

–

216

1-iPr18c6b
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Adding external donors can decrease the Z selectivity in the system. Upon the addition 

of 1 equiv of MeCN, an E:Z ratio of 1.5:1 is observed across all timepoints. This trend is 

observed in presence of strong donors – NaI and 2-picoline also show a stable E:Z ratio (1.9:1) 

over 216 hours. Weaker donors show the same decay observed with 1-iPr18c6b and Na+; 

lutidine shows an E:Z ratio of 1.3:1 at 48 hrs, which decays to 1.7:1 at 216 hours.  THF and 2,6-

di-tert-butylpyridine show the same ratios as 1-iPr18c6b alone, likely indicating that these 

donors are not strongly interacting with the metal center. 

 

V. Conclusions and Outlook 
 

 Switchable isomerization of sterically unencumbered Lewis basic olefins was targeted by 

synthetic modification of the ligand scaffold and additives to modify the primary coordination 

sphere of the iridium pincer complex. Modest switchable selectivity was achieved using the 

aquated iridium complex, 6-iPr18c6b, allowing regioselectivity to be switched from >88% 2b,3b 

in the absence of Na+, to >30% 2c,3c in the presence of Na+. While modest, this is a significant 

increase from the 3% conversion observed in the parent 1-iPr18c6b used in previous studies. 

 The sluggish reactivity is explained with an olefin-Lewis base chelate that is capable of binding 

the metal center in the presence of cation; this new resting state of catalysis is significantly less 

active towards olefin isomerization and is driven by Na+ coordination with the crown. 

Exploration of this chelate with longer chain olefins yields an interesting example of switchable 

catalysis: moving from selectivity to the b isomer in the absence of cation to internal isomers in 

long chain olefin in the presence of cation. This is a particularly interesting reaction given the 

small number of catalysts capable of this isomerization. 

 While high yielding switchable catalysis to thermodynamic products and internal olefins is 

elusive, this work lays the foundation for continuing efforts to increase the scope of switchable 



 

 179 

olefin isomerization to functionalized olefins. 

 

VI. Experimental  
 

General Considerations 

All compounds were manipulated using standard vacuum line or Schlenk techniques or 

in a glovebox under a nitrogen atmosphere. NMR scale reaction mixtures were prepared under 

nitrogen in a glovebox and kept in Teflon-sealed tubes. 1H, 31P, and 13C NMR spectra were 

recorded on 400, 500, and 600 MHz spectrometers. NMR characterization data are reported at 

298 K, unless specified otherwise. All NMR solvents and isotopically labeled reagents were 

purchased from Cambridge Isotope Laboratories, Inc. 1,2-dichloroethane-d4 (C2D4Cl2) and 

methylene chloride-d2 (CD2Cl2) were freeze−pump−thaw degassed three times before drying by 

passage through a small column of activated alumina. Chemical shifts for 1H and heteronuclear 

spectra are reported in ppm and referenced relative to residual proteo solvent impurity.35 

Single-crystal X-ray diffraction data were collected on a Bruker APEX-II CCD diffractometer at 

150 K with Cu Kα radiation (λ = 1.54175 Å). The structure was solved using Superflip36 and 

refined (full-matrix-least squares) using the Oxford University Crystals for Windows system.37 

The charge-flipping solution provided most non-hydrogen atoms from the E-map. Full-matrix 

least squares / difference Fourier cycles were performed, which located the remaining non-

hydrogen atoms.  

 

General Procedure for Heated Shaker Catalysis Studies

Solutions of 0.2 M 2a, 3a, 4a, 1 mol% catalyst, and various equivalents of salt were 

heated at 50 oC in gas chromatography vials in a 24-well shaker. Aliquots were taken at 24, 48, 

120, and 216 hrs. Each aliquot was immediately quenched with excess PPNCl in CDCl3 to 
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convert 2-18c6b to chloride complex 1-18c6b and halt the reaction.38 Independent tests of 1-

18c6b and substrate showed no observable olefin isomerization, and monitoring of the 

quenched aliquots show insignificant change in the isomer distributions after quenching. The 

quenching solution also contained mesitylene as an internal standard for quantification by 

integration of NMR spectra. 

 

Characterization of [k3-( 18c6NCOPipr)Ir(H)(3-hexen-1-ol)@Na][BArF
4]2 (5-iPr18c6b) 

 
Figure 5.12. 1H NMR of 5-iPr18c6b in CD2Cl2.
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Figure 5.13. 1H–1H COSY NMR of 5-iPr18c6b in CD2Cl2. 
 

 
Figure 5.14. 1H-13C HSQC spectrum of 5-iPr18c6b in CD2Cl2. 
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Spectra of Long Chain Olefin Isomerizations 

 
Figure 5.15. 1H NMR of 7 isomers after heating for 216 hours in DCE-d4. 

 
Figure 5.16. 1H NMR time course of 8 isomers after heating for 216 hours in DCE-d4. 
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Figure 5.17. 1H NMR of 9 isomers after heating for 120 hours in DCE-d4. 
 

Synthesis and Characterization of (MeO-18c6NCOPPh)H (10) 

(MeO-18c6NCOH)H (100.7 mg, 252 mmol) and triethylamine (45.8 mg, 454 mmol) were 

dissolved in 4mL of THF.  Diphenylchlorophosphine (56.2 mg, 255 mmol) was dissolved in a 

separate vial of 4 mL of THF. Both solutions were cooled to -30 oC, then the chlorophosphine 

solution was added dropwise to ligand and base solution while stirring vigorously. The reaction 

stirred for 2 hours; the THF was removed and the product extract with diethyl ether (1 mL x 3) 

and passed through a short alumina plug. The product was concentrated to a clear oil (130.7 mg, 

88.9% yield). 

1H NMR (400 MHz, CD2Cl2): d 2.67 (t, J = 5.9, N(CH2)2), 3.40-3.63 (m, 22H, crown-

CH2, benzylic-CH2), 3.78 (s, 3H, OCH3), 6.76 (d, J = , 1H, aryl-CH), 6.96 (d, J = 8.4 , 1H, aryl-

CH), 7.03 (t, J = 1.9, 1H, arylCH), 7.40 (m, 6H, P-arylCH), 7.63 (m, 4H, P-arylCH). 31P{1H} 

NMR (162 MHz, CD2Cl2): d 115.4.  
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Figure 5.18. 1H NMR of (MeO-18c6NCOPPh)H (10). 

 
Figure 5.19. 31P{1H} NMR of (MeO-18c6NCOPPh)H (10). 
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Synthesis and Characterization of (MeO-18c6NCOPtBu)H (11) 

(MeO-18c6NCOH)H (101.2mg, 253 mmol) and DBU (45.4 mg, 279 mmol) were dissolved 

in 4mL of THF.  Ditertbutylchlorophosphine (46 mg, 253 mmol) was dissolved in a separate vial 

of 4 mL of THF. Both solutions were cooled to -30 oC, then the chlorophosphine solution was 

added dropwise to ligand and base solution. The reaction stirred for 72 hours; the THF was 

removed and the product extract with diethyl ether (1 mL x 3) and passed through a short 

alumina plug. The product was concentrated to a clear oil (120mg, 87% yield). 

1H NMR (400 MHz, CD2Cl2): d 1.20 (d, J = 11.7, 18H, C(CH3)3), 2.75 (t, J = 5.7, 4H, 

N(CH2)2), 3.56-3.68 (m, 22H, crown-CH2, benzylic-CH2), 3.85 (s, 3H, OCH3), 6.86 (m, 2H, aryl-

CH), 7.27 (s, 1H, arylCH). 31P{1H} NMR (162 MHz, CD2Cl2): d 159.5.  

 

 

Figure 5.20. 1H NMR of (MeO-18c6NCOPtBu)H in CD2Cl2. 
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Figure 5.21. 31P{1H} NMR of (MeO-18c6NCOPtBu)H in CD2Cl2. 
 

Synthesis and Characterization of k4-(18c6NCOPPh)Ir(H)(Cl) (12-Ph18c6b) 

10 (130.7mg, 224 mmol) and [Ir(COD)Cl]2 (68.4 mg, 102 mmol) were dissolved in toluene (10 

mL). The reaction was heated in a teflon-sealed pressure vessel for 48 hours at 90 oC, during 

which the reaction solution turned bright yellow). Toluene was removed under vacuum, and the 

product extracted with DCM (3 mL) and layered with pentane (8 mL), yielding yellow crystals 

(90.6 mg, 54.9 % yield). Crystals were of sufficient quality to be submitted for X-Ray analysis.  

1H NMR (600 MHz, CD2Cl2) δ -29.99 (d, J = 27.5 Hz, 1H, Ir-H) 2.78 (dd, J = 13.7, 6.3 Hz, 1H, 

crown-CH2), 2.85 (dd, J = 12.1, 6.2 Hz, 1H, crown-CH2), 2.92 (dd, J = 14.1, 8.6 Hz, 1H, crown-

CH2), 3.14 (td, J = 13.7, 13.0, 6.3 Hz, 2H, crown-CH2), 3.20 – 3.29 (m, 2H, crown-CH2), 3.33 – 

3.63 (m, 11H, crown-CH2), 3.80 – 3.69 (m, 2H, crown-CH2), 3.87 (s, 3H, OCH3), 3.91 (m, 1H, 

crown-CH2), 4.02 (dd, J = 12.2, 9.4 Hz, 1H, crown-CH2), 4.16 (ddd, J = 11.3, 8.6, 2.2 Hz, 1H, 

crown-CH2), 4.25 (d, J = 14.1 Hz, 1H, benzylic-CH2), 4.52 (dd, J = 14.2, 3.9 Hz, 1H, benylic-
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CH2), 4.70 (dd, J = 15.6, 9.4 Hz, 1H, crown-CH2), 6.45 (d, J = 8.0 Hz, 1H, aryl-CH), 6.68 (d, J = 

8.1 Hz, 1H, aryl-CH), 7.50 – 7.32 (m, 6H, P-arylH), 7.83 (ddd, J = 12.8, 7.5, 2.1 Hz, 2H, P-

arylH), 7.94 – 8.05 (m, 2H, P-arylH). 31P{1H} NMR (243 MHz, CD2Cl2): δ 102.6. 

 

Figure 5.22. 1H NMR of k4-(18c6NCOPPh)Ir(H)(Cl) (12-Ph18c6b) in CD2Cl2. 

  

 

Figure 5.23. 31P{1H} NMR of k4-(18c6NCOPPh)Ir(H)(Cl) (12-Ph18c6b) in CD2Cl2.
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Table 5.7. Crystallographic Information for k4-(18c6NCOPPh)Ir(H)(Cl) (12-Ph18c6b). 

 

Synthesis and Characterization of k4-(18c6NCOPtBu)Ir(H)(Cl) (12-tBu18c6b) 

11 (122.3mg, 225 mmol) and [Ir(COD)Cl]2 (69 mg, 103 mmol) were dissolved in toluene (10 

mL). The reaction was heated in a teflon-sealed pressure vessel for 48 hours at 90 oC, then 120 

Empirical formula  C32 H42 Cl1 Ir1 N1 O7 P1 

Formula weight  811.33 

Crystal color, shape, size  yellow block,  0.200 x 0.200 x 0.100 mm3 

Temperature  150 K 

Wavelength  1.54178 Å 

Crystal system, space group  Triclinic, P-1 

Unit cell dimensions a = 9.6600(3) Å a= 78.1486(9)°. 

 b = 11.8568(3) Å b= 89.4800(13)°. 

 c = 14.2939(4) Å g = 88.8261(10)°. 

Volume 1601.92(8) Å3 

Z 2 

Density (calculated) 1.682 Mg/m3 

Absorption coefficient 9.704 mm-1 

F(000) 812 

 

Data collection 

Diffractometer Bruker Apex Kappa Duo, Bruker 

Theta range for data collection 3.159 to 72.413°. 

Index ranges -11<=h<=11, -14<=k<=14, -17<=l<=17 

Reflections collected 31912 

Independent reflections 6153 [R(int) = 0.023] 

Observed Reflections 6080 

Completeness to theta = 25.344° 99.5 %  

 

Solution and Refinement 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.38 and 0.14 

Solution Charge-Flipping methods 

Refinement method Full-matrix least-squares on F2 

Weighting scheme w = [s2Fo2+ AP2+ BP]-1, with  

 P = (Fo2+ 2 Fc2)/3, A = 0.034, B = 2.690 

Data / restraints / parameters 6128 / 1 / 388 

Goodness-of-fit on F2 1.1243 

Final R indices [I>2sigma(I)] R1 = 0.0235, wR2 = 0.0609 

R indices (all data) R1 = 0.0239, wR2 = 0.0611 

Largest diff. peak and hole 1.55 and -0.57 e.Å-3 
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oC for an additional 8 hrs. Slight darkening of solution was observed. Toluene was removed 

under vacuum, and the product extracted with toluene (3 mL) and layered with pentane (10 mL), 

yielding red/orange crystals (106.7 mg, 67.6 % yield).  

1H NMR (600 MHz, CD2Cl2) δ -33.34 (d, J = 24.9 Hz, 1H, Ir-H), 1.19 (d, J = 14.0 Hz, 9H, 

C(CH3)3), 1.43 (d, J = 14.1 Hz, 9H, C(CH3)3), 2.96 – 3.03 (m, 1H, crown-CH2), 3.27 (dd, J = 

15.1, 5.2 Hz, 1H, crown-CH2), 3.40 – 3.64 (m, 14H, crown-CH2), 3.66 – 3.74 (m, 2H, crown-

CH2), 3.80 (s, 3H, OCH3), 3.84 (ddd, J = 14.5, 7.8, 5.0 Hz, 2H, crown-CH2), 3.91 – 3.99 (m, 2H, 

crown-CH2), 4.25 – 4.34 (m, 2H, benzylic-CH2, crown-CH2), 4.42 (dd, J = 14.8, 3.1 Hz, 1H, 

benzylic-CH2), 4.56 (dd, J = 15.4, 8.8 Hz, 1H, crown-CH2), 6.37 (d, J = 8.1 Hz, 1H, aryl-CH), 

6.56 (d, J = 8.1 Hz, 1H, aryl-CH). 

 
Figure 5.24. 1H NMR of k4-(18c6NCOPtBu)Ir(H)(Cl) (12-tBu18c6b) in CD2Cl2. 
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Figure 5.25. 31P{1H} NMR of k4-(18c6NCOPtBu)Ir(H)(Cl) (12-tBu18c6b) in CD2Cl2. 
 

Synthesis and Characterization of [k4-(MeO-18c6NCOPPh)Ir(H)(OH2)][BArF
4] (6-Ph18c6b) 

12-Ph18c6b (52 mg, 59 µmol) and 1.01 equiv of NaBArF
4 (59 mg, 62 µmol) were dissolved in 

DCM (5 mL). The orange solution was layered with an equal volume of water (5 mL), and the 

biphasic reaction stirred vigorously over night.  The organic layer was washed 3x with 2.5 mL of 

HPLC water, then the organic layer was passed through an alumina plug and concentrated by 

rotary evaporator to yield a very pale yellow solid  (108.3 mg, 93.5 % yield). 

X-ray quality crystals were grown by dissolution of solid in diethyl ether (1 mL) and layering with 

pentanes (2 mL) , yielding colorless crystals. 

1H NMR (400 MHz, CD2Cl2) δ -30.65 (d, J = 27.3 Hz, 1H, Ir-H), 2.49 – 2.75 (m, 2H, crown-

CH2), 2.81 – 2.93 (m, 1H, crown-CH2), 3.03 (d, J = 13.8 Hz, 1H, crown-CH2), 3.13 – 3.34 (m, 

3H, crown-CH2), 3.47 – 3.69 (m, 8H, crown-CH2), 3.71 – 3.97 (m, 12H, crown-CH2, OCH3, 

benzylic-CH2), 4.18 (t, J = 11.4 Hz, 1H, crown-CH2), 4.31 (d, J = 14.4 Hz, 1H, benzylic-CH2), 
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5.94 (s, 2H, OH2), 6.52 (d, J = 8.1 Hz, 1H, aryl-CH), 6.69 (d, J = 8.1 Hz, 1H, aryl-CH), 7.30 – 

7.59 (m, 12H, p-B-Ar-H, P-arylCH), 7.71 (s, 8H, o-B-Ar-H), 7.95 (dd, J = 12.9, 7.4 Hz, 2H, P-

arylCH). 31P{1H} NMR (162 MHz, CD2Cl2): δ 103.0. 

 

 
Figure 5.26. 1H NMR of [k4-(MeO-18c6NCOPPh)Ir(H)(OH2)][BArF

4] (6-Ph18c6b) in CD2Cl2. 
 

 
Figure 5.27. 31P{1H} NMR [k4-(MeO-18c6NCOPPh)Ir(H)(OH2)][BArF

4] (6-Ph18c6b) in CD2Cl2. 
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Table 5.8. Crystallographic Information for [k4-(MeO-18c6NCOPPh)Ir(H)(OH2)][BArF
4] (6-

Ph18c6b). 

 

  

Empirical formula  C64 H56 B1 F24 Ir1 N1 O8 P1 

Formula weight  1657.11 

Crystal color, shape, size  yellow plate fragment,  0.150 x 0.150 x 0.050 mm3 

Temperature  150 K 

Wavelength  1.54180 Å 

Crystal system, space group  Triclinic, P-1 

Unit cell dimensions a = 14.4788(2) Å a= 97.5152(12)°. 

 b = 14.8467(3) Å b= 106.6746(14)°. 

 c = 15.9951(3) Å g = 90.9051(11)°. 

Volume 3260.32(10) Å3 

Z 2 

Density (calculated) 1.688 Mg/m3 

Absorption coefficient 5.317 mm-1 

F(000) 1648 

 

Data collection 

Diffractometer Bruker Apex Kappa Duo, Bruker 

Theta range for data collection 2.913 to 70.243°. 

Index ranges -17<=h<=17, -18<=k<=18, -19<=l<=19 

Reflections collected 66689 

Independent reflections 12068 [R(int) = 0.066] 

Observed Reflections 10821 

Completeness to theta = 25.288° 99.4 %  

 

Solution and Refinement 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.77 and 0.45 

Solution Charge-Flipping methods 

Refinement method Full-matrix least-squares on F2 

Weighting scheme w = [s2Fo2+ AP2+ BP]-1, with  

 P = (Fo2+ 2 Fc2)/3, A = 0.056, B = 6.320 

Data / restraints / parameters 12015 / 99 / 940 

Goodness-of-fit on F2 1.0076 

Final R indices [I>2sigma(I)] R1 = 0.0378, wR2 = 0.0945 

R indices (all data) R1 = 0.0433, wR2 = 0.0983 

Largest diff. peak and hole 2.35 and -1.16 e.Å-3 
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Synthesis and Characterization of [k4-(MeO-18c6NCOPtBu)Ir(H)(OH2)][BArF
4] (6-tBu18c6b) 

12-tBu18c6b (49 mg, 63.5 mmol) and 1.01 equiv of NaBArF
4 (59 mg, 64 mmol) were weighted 

out and dissolved in DCM (2.5 mL). The orange solution was layered with an equal volume of 

water (2.5 mL), and the biphasic reaction stirred vigorously for 2 hrs. Washed 3x with 2.5 mL of 

HPLC water, then the organic layer was passed through an alumina plug and concentrated by 

rotary evaporator to yield a yellow powder (67.4 mg, 64.3 % yield). 

X-ray quality crystals were grown by dissolution in diethyl ether (1 mL) and layering with 

pentanes (2 mL), yielding yellow crystals. 

1H NMR (400 MHz, CD2Cl2) δ -36.89 (d, J = 24.2 Hz, 1H, Ir-H), 1.28 (d, J = 13.7 Hz, 9H, 

C(CH3)), 1.44 (d, J = 14.3 Hz, 9H, C(CH3)), 2.97 (dd, J = 28.9, 13.3 Hz, 2H, crown-CH2), 3.29 

(d, J = 10.8 Hz, 2H, crown-CH2), 3.43 (q, J = 7.1 Hz, 1H, crown-CH2), 3.48 – 3.71 (m, 14H, 

crown-CH2), 3.80 (s, 3H, OCH3), 3.80 (m, 2H, crown-CH2), 3.96 – 4.07 (m, 2H, crown-CH2, 

benzylic-CH2), 4.20 (t, J = 11.4 Hz, 2H, crown-CH2, benzylic-CH2), 4.41 (t, J = 12.7 Hz, 1H, 

crown-CH2), 5.54 (s, 2H, OH2), 6.45 (d, J = 8.2 Hz, 1H, aryl-CH), 6.61 (d, J = 8.2 Hz, 1H, aryl-

CH), 7.56 (s, 4H, o-B-Ar-H), 7.69 – 7.75 (t, 8H, p-B-Ar-H). 31P{1H} NMR (162 MHz, CD2Cl2): δ 

154.6.  
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Figure 5.28. 1H NMR for [k4-(MeO-18c6NCOPtBu)Ir(H)(OH2)][BArF

4] (6-tBu18c6b) in CD2Cl2. 
 

 

Figure 5.29. 31P{1H} NMR for [k4-(MeO-18c6NCOPtBu)Ir(H)(OH2)][BArF
4] (6-tBu18c6b) in CD2Cl2. 
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Table 5.9. Crystallographic information for [k4-(MeO-18c6NCOPtBu)Ir(H)(OH2)][BArF
4] (6-

tBu18c6b). 

 

Empirical formula  C64 H74 B1 F24 Ir1 N1 O9 P1 
Formula weight  1691.25 
Crystal color, shape, size  yellow block,  0.050 x 0.050 x 0.050 mm3 
Temperature  150 K 
Wavelength  1.54180 Å 
Crystal system, space group  Triclinic, P-1 
Unit cell dimensions a = 13.0170(2) Å a= 101.0114(7)°. 
 b = 14.0927(2) Å b= 97.9651(8)°. 
 c = 20.4466(3) Å g = 98.1983(10)°. 
Volume 3590.68(9) Å3 
Z 2 
Density (calculated) 1.564 Mg/m3 
Absorption coefficient 4.845 mm-1 
F(000) 1700.000 
 
Data collection 
Diffractometer Bruker Apex Kappa Duo, Bruker 
Theta range for data collection 2.234 to 72.231°. 
Index ranges -16<=h<=16, -17<=k<=17, -25<=l<=25 
Reflections collected 84221 
Independent reflections 13748 [R(int) = 0.031] 
Observed Reflections 13058 
Completeness to theta = 25.281° 99.5 %  
 
Solution and Refinement 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.62 and 0.62 
Solution Charge-Flipping methods 
Refinement method Full-matrix least-squares on F2 
Weighting scheme w = [s2Fo2+ AP2+ BP]-1, with  
 P = (Fo2+ 2 Fc2)/3, A = 0.045, B = 10.870 
Data / restraints / parameters 13688 / 383 / 1096 
Goodness-of-fit on F2 1.0217 
Final R indices [I>2sigma(I)] R1 = 0.0405, wR2 = 0.1006 
R indices (all data) R1 = 0.0423, wR2 = 0.1019 
Largest diff. peak and hole 1.38 and -1.64 e.Å-3 
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Synthesis and Characterization of [k5-(MeO-18c6NCOPPh)Ir(H)][BArF
4] (1-Ph18c6b) 

6-Ph18c6b (300 mg, 184 mmol)  was heated under high vacuum at 140 oC on a schlenk line. 

P2O5 was placed on the same line to aid in water removal. After heating for 24 hours, the solid 

was cooled and transferred to a Nitrogen atmosphere box, yielding the off-white product phk5 

(295 mg, 99% yield). 

1H NMR (500 MHz, CD2Cl2) δ -28.23 (d, J = 26.3 Hz, 1H, Ir-H), 2.89 (m, 1H, crown-CH2), 

3.11 (m, 2H, crown-CH2), 3.29 (m, 2H, crown-CH2), 3.52 – 3.77 (m, 8H, crown-CH2), 3.80 (s, 

3H, OCH3), 3.85 – 4.14 (m, 10H, crown-CH2), 4.39 – 4.58 (m, 3H, benzylic-CH2, crown-CH2), 

6.52 (d, J = 8.2 Hz, 1H, aryl-CH), 6.66 (d, J = 8.3 Hz, 1H, aryl-CH), 7.51 – 7.63 (m, 12H, o-B-

Ar-H, P-arylCH), 7.69 – 7.80 (m, 10H, t, 8H, p-B-Ar-H, P-arylCH). 31P{1H} NMR (500 MHz, 

CD2Cl2): δ 106.9. Anal. Calcd for C64H54BF24IrNO7P: C, 46.9; H, 3.32; N, 0.85. Found: C, 

46.4; H, 2.24; N, 0.79. H measurement is low, perhaps due to NaBArF
4 contamination in sample, 

excess BArF
4 is not observed by NMR. 
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Figure 5.30. 1H NMR of [k5-(MeO-18c6NCOPPh)Ir(H)][BArF

4] (1-Ph18c6b) in CD2Cl2. 
 

 

Figure 5.31. 31P{1H} NMR of [k5-(MeO-18c6NCOPPh)Ir(H)][BArF
4] (1-Ph18c6b) in CD2Cl2. 
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Synthesis and Characterization of [k5-(MeO-18c6NCOPtBu)Ir(H)][BArF
4] (1-tBu18c6b) 

6-tBu18c6b (45 mg, 28 mmol) was heated under high vacuum at 140 oC on a schlenk line. P2O5 

was placed on the same line to aid in water removal. After heating for 24 hours, the solid was 

cooled and transferred to a dry box, yielding the off-white product tbuk5 (41 mg,  92% yield).  

1H NMR (600 MHz, CDCl3) δ -31.27 (bs, 1H, Ir-H), 1.07 – 1.30 (d, J = 14.4 9H, ), 1.43 (d, J = 

14.4 Hz, 9H), 3.09 (bd, J = 13.9 Hz, 1H, crown-CH2), 3.35 – 4.23 (m, 25H, crown-CH2, OCH3), 

4.31 – 4.45 (m, 3H, benzylic-CH2, crown-CH2), 6.49 (d, J = 8.3 Hz, 1H, aryl-CH), 6.55 (d, J = 

8.2 Hz, 1H, aryl-CH), 7.56 (s, 4H, o-B-Ar-H), 7.72 (bt, 9H, p-B-Ar-H). 31P{1H} NMR (243 MHz, 

CDCl3): δ 149.9. Anal. Calcd for C60H62BF24IrNO7P: C, 45.1; H, 3.91; N, 0.89. Found: C, 44.9; 

H, 3.71; N, 0.90.  

 

 
Figure 5.32. 1H NMR of [k5-(MeO-18c6NCOPtBu)Ir(H)][BArF

4] (1-tBu18c6b) in CD2Cl2. 
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Figure 5.33. 31P{1H} NMR of [k5-(MeO-18c6NCOPtBu)Ir(H)][BArF

4] (1-tBu18c6b) in CD2Cl2. 
Even after 200 scans on a 600 MHz instrument, the fluxional behavior of the complex 
broadened the 31P peak into the baseline. 

 

Synthesis and Characterization of [k4-(MeO-18c6NCOPiPr)Ir(H)(NH3)][BArF
4] (14-iPr18c6b) 

12-iPr18c6b (57.2 mg, 77.0 mmol) was dissolved in DCM (2 mL). 2 mL of 30% aqueous 

ammonia solution was added, and the biphasic mixture n stirred vigorously for 2 hr. The 

aqueous layer was removed and the organic layer washed with HPLC water (3 x 3mL). The 

DCM layer was passed through an alumina plug, and concentrated to a pale yellow oil. 

Subsequent trituration with pentanes yielded the product as an off-white solid (80.4 mg, 64.5% 

yield). X-ray quality crystals were grown by dissolution in diethyl ether (1 mL) and layering with 

pentanes (2 mL). 

1H NMR (600 MHz, CD2Cl2): δ -32.58 (d, J = 27.1 Hz, 1H, Ir-H), 0.78 (dd, J = 15.2, 6.9 Hz, 

3H, CH(CH3)2), 1.01 (dd, J = 19.5, 6.9 Hz, 3H, CH(CH3)2), 1.32 (dd, J = 17.9, 7.5 Hz, 3H, 

CH(CH3)2), 1.42 (dd, J = 13.2, 6.9 Hz, 3H, CH(CH3)2), 2.48 (m, 1H, CH(CH3)2), 2.61 (m, 1H, 
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CH(CH3)2), 2.88 (ddd, J = 11.4, 5.9, 2.9 Hz, 1H, crown-CH2), 3.02 – 3.14 (m, 1H, crown-CH2), 

3.15 – 3.23 (m, 1H, crown-CH2), 3.23 – 3.30 (m, 2H, crown-CH2), 3.39 – 3.46 (m, 1H, crown-

CH2), 3.47 (bs, 3H, NH3), 3.51 – 3.66 (m, 11H), 3.72 (ddd, J = 11.0, 7.5, 3.7 Hz, 1H, crown-

CH2), 3.77 – 3.87 (m, 7H, crown-CH2, OCH3), 3.99 – 4.07 (m, 2H, crown-CH2m, benzylic-CH2), 

4.11 (ddd, J = 13.5, 11.7, 2.6 Hz, 1H, crown-CH2), 4.24 (d, J = 14.2 Hz, 1H, benzylic-CH2), 6.44 

(d, J = 8.1 Hz, 1H), 6.67 (d, J = 8.1 Hz, 1H), 7.56 (s, 4H), 7.72 (dt, J = 5.0, 2.3 Hz, 9H). 31P{1H} 

NMR (243 MHz, CD2Cl2) δ 140.5.   

 

 
Figure 5.34. 1H NMR of [k4-(MeO-18c6NCOPiPr)Ir(H)(NH3)][BArF

4] (14-iPr18c6b) in CD2Cl2. 
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Figure 5.35. 31P{1H} NMR of [k4-(MeO-18c6NCOPiPr)Ir(H)(NH3)][BArF
4] (14-iPr18c6b) in CD2Cl2. 

 

 
Figure 5.36. 1H-15N HSQC of [k4-(MeO-18c6NCOPiPr)Ir(H)(NH3)][BArF

4] (14-iPr18c6b) in CD2Cl2. 
Referenced to nitromethane.  
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