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ABSTRACT 

 

Yufei Su: Quantifying Uncertainties and Risks Associated with 

Hydrometerological Variables for Bulk Electric Power Systems and Market 

Participants. 

(Under the direction of Greg Characklis and Jordan Kern) 

 
 

The electrical power industry is changing rapidly. From the deregulation of power markets 

to the rapid increase of renewable energy penetration, over the past decade power systems have 

witnessed major shifts in technology, regulation and policy. These rapid transitions make the use 

of historical performance data a fundamentally unreliable approach to evaluate reliability and 

financial risks for industry participants, including utilities. This is especially true with respect to 

performance risks stemming from uncertainty in hydrometeorological conditions (e.g., 

temperature, precipitation, wind, solar irradiance), which is itself difficult to characterize due to 

relatively short historical records. Hydrometeorological conditions are known to influence the 

operations of bulk electric power systems and wholesale markets for electricity, creating a source 

of risk for system participants. Streamflow is the “fuel” for hydropower generation, wind speeds 

and solar irradiance dictate the availability of wind and solar power production, and air 

temperatures strongly affect heating and cooling demands. Yet, despite growing concern about the 

vulnerability of power systems to hydrometeorological uncertainty, few studies have been able to 

experimentally study the full extent of the supply and financial risks that hydrometerological 
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factors impose on power systems. This research focuses on quantitative characterization of the 

physical, environmental and financial risks posed by uncertain hydrometerological variables in a 

major segment of the U.S. power sector. Using the U.S. West Coast bulk power system as a test 

bed, this dissertation first develops an open source simulation framework capable of simulating 

the operations of California’s wholesale market under hydrometeorological uncertainty, including 

events outside the historical record. The second part of this dissertation uses a 1000-year stochastic 

simulation of the power model to probabilistically explore the market risks associated with 

hydrometerological variables at annual, daily and hourly timesteps.  Quantification of system wide 

risks then enables detailed investigation of the effects of hydrometeorological risk on a major 

system participant. The third part of this dissertation selects the high-profile power utility Pacific 

Gas and Electric (PG&E) and investigates the effects of rapid retail load defection on the utility’s 

financial exposure to hydrometerological risk. The collective results provide novel information 

that can contribute to the development of improved weather risk management strategies in the 

electric power sector.  
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CHAPTER 1: INTRODUCTION 

 

In bulk electric power systems and wholesale markets for electricity, a number of weather-

based uncertainties impact system operations on a daily basis by directly influencing electricity 

demand, supply availability (including hydropower and renewable energy), and even fuel prices 

at fossil fuel power plants (Pesch et al., 2015; Eyer and Wichman, 2018; Zhou, Voisin and Fu, 

2018; Turner et al., 2019). Other risks, such as market and technological changes, add additional 

sources of uncertainty for power systems as a whole and individual grid participants, including 

utilities (Hemmati, Hooshmand and Khodabakhshian, 2014; Kern, Patino-Echeverri and 

Characklis, 2014; Denholm et al., 2015a; Su et al., 2019).  

Yet, quantifying these risks remains an outstanding challenge, requiring a deep 

understanding of the physical and economic systems at work, and sufficient data to accurately 

assess the probability of damaging events. Ongoing technological changes in the power industry 

render much of the historical record of power system performance uninformative, particularly 

when assessing systems’ exposure to hydrometeorological uncertainties. In addition to rapid 

increase of renewable energy, changes in policy and market structure may be altering the manner 

in which power system participants experience weather risk. These uncertainties create a 

challenging environment for decision makers in the power sector to navigate and – at the same 

time –introduce several analytical challenges that must be overcome to understand how 

uncertainties and extreme events propagate through power systems (Stoutenburg et al., 2013; 

Denholm et al., 2015b). Developing new and improved approaches for understanding the 
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interactions among hydrometeorological uncertainty, physical system performance, and market 

outcomes will help system operators and utilities make better operational decisions and long-term 

resource plans.   

The overarching goal of this doctoral research is to characterize weather-based 

uncertainties in bulk power systems and wholesale markets for electricity, and understand how 

these uncertainties affect a range of power system participants. For the most part, the research is 

focused on the U.S. West Coast bulk power system, especially California.  In order to better 

understand the complexities of how hydrometeorological uncertainty influences California’s 

power market, I first develop a new modeling tool to simulate system behavior. Chapter 1 presents 

a system-based framework to simulate the power system of California and the larger West Coast 

region. This framework is the methodological foundation of doctoral work and serves as the 

primary model and simulation tool for the rest of the chapters. The model I developed is called the 

California and West Coast Power (CAPOW) system model. It covers most of the states of 

California, Oregon and Washington, including two major wholesale electricity market, the Mid-

Columbia (Mid-C) market in the Pacific Northwest and the California Independent System 

Operator (CAISO). A major contribution of CAPOW in the power systems community is the 

inclusion of a comprehensive synthetic weather generator. The synthetic weather generator 

produces stochastic time series records of spatially distributed air temperatures, wind speeds, 

streamflow and solar irradiance, such that the statistical and time series characteristics of the 

historical record are reproduced, while also allowing for the simulation of extreme events outside 

recent history. The model is Python-based and all components of the model is open source under 

the MIT free software license.  
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Using CAPOW it is possible to isolate the effects of hydrometeorological uncertainty and 

extremes on power systems across different time scales. Hydrometeorological conditions can 

influence operations of bulk electric power systems and the wholesale markets for electricity in 

several ways. For example, streamflow is the ‘fuel’ for hydropower generation, wind speed and 

solar irradiance directly dictate the availability of wind and solar power respectively. Air 

temperatures strongly influence heating and cooling demands, which are major sources of 

electricity consumption. Chapter 2 of this dissertation explores the impacts of hydrometeorological 

variables on power system performance at different time scales. A 1000-year synthetic weather 

dataset is pushed through CAPOW and system performance is evaluated in terms of wholesale 

electricity prices and emissions, two metrics importance for market participants and policy 

developers.  

After quantifying the how hydrometeorological uncertainty creates risks for the larger West 

Coast power system as a whole, I zoom in to one major decision maker. I investigate the evolving 

weather risks faced by a major incumbent power utility in California, Pacific Gas and Electric 

(PG&E) by coupling CPOW with a model that simulate the utility’s financial operations. Chapter 

3 explores PG&E’s financial exposure to hydrometeorological uncertainty, particularly 

fluctuations in streamflow (hydropower production), air temperatures (demand), and 

corresponding effects on market prices. In particular, I focus on how PG&E’s exposure to weather 

risk is interacting with longer term declines in their retail customer base, or “load defection”. The 

cause of this decline can be attributed to a combination of regulatory mandates, retail competition, 

and cheaper customer owned renewable energy. Chapter 3 investigates how the sensitivity of 

PG&E’s financial performance to hydrometeorological uncertainty is being directly impacted by 

the continued defection of customers. I specifically highlight impacts to the strength of the 
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correlations between weather variables and financial performance and, in some cases, changes in 

the actual direction of exposure and the types of weather events that are most harmful. 
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CHAPTER 2: AN OPEN SOURCE MODEL FOR QUANTIFYING RISKS IN BULK 

ELECTRIC POWER SYSTEMS FROM SPATICALLY AND TEMPORALLY 

CORRELATED HYDROMETEROLOGICAL PROCESSES 1 

 
 

2.1 INTRODUCTION 

In recent years, interest has grown in exploring the effects of hydrometeorological 

variability, and especially extreme events, on the operations of bulk power systems (large, 

interconnected systems of generation, transmission and load (demand)) (Franco and Sanstad, 2008; 

Forster and Lilliestam, 2011; van Vliet et al., 2012, 2016; Tarroja, AghaKouchak and Samuelsen, 

2016; Kern and Characklis, 2017; Collins et al., 2018; Staffell and Pfenninger, 2018; Voisin et al., 

2018; Turner et al., 2019). Both droughts and floods compromise the operations of hydroelectric 

dams (Tarroja, AghaKouchak and Samuelsen, 2016; Gleick, 2017; Su, Kern and Characklis, 

2017), while droughts in particular can also impact thermal power plants that are dependent on 

cooling water (van Vliet et al., 2012, 2016). Air temperatures influence a range of system 

components, most notably electricity demand for heating and cooling (Franco and Sanstad, 2008). 

In addition, as variable energy resources like wind and solar expand their share of the power mix, 

the grid is becoming more sensitive to fluctuations in wind speeds and solar irradiance (Collins et 

al., 2018; Staffell and Pfenninger, 2018). By influencing supply and demand for electricity, 

hydrometeorological processes have direct impacts on pollution (e.g., increased greenhouse gas  

 

 

 

1 Published in Environmental Modelling and Software. Su, Y., Kern, Jordan D., et al. (2020) ‘An 

open source model for quantifying risks in bulk electric power systems from spatially and 

temporally correlated hydrometeorological processes’, Environmental Modelling and Software. doi: 

10.1016/j.envsoft.2020.104667. 
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emissions (Tarroja, AghaKouchak and Samuelsen, 2016; Hardin et al., 2017; Collins et al., 2018)),  

wholesale electricity prices (Boogert and Dupont, 2005; Collins et al., 2018; Seel et al., 2018), and 

the financial standing of suppliers of electricity (e.g., retail utilities, renewable energy producers) 

and consumers (Boogert and Dupont, 2005; Foster, Kern and Characklis, 2015; Kern, Characklis 

and Foster, 2015; Kern and Characklis, 2017; Bain and Acker, 2018).   

However, with few exceptions (Turner et al., 2019), previous investigations fall short in 

assessing the holistic influence of hydrometeorological variability on bulk power systems. Past 

research efforts assess operational and financial risks from exposure to variability in a more limited 

set of hydrometeorological processes (Kern, Characklis and Foster, 2015; Collins et al., 2018) 

(e.g., streamflow and temperatures, or wind speeds and solar irradiance;); do not consider these 

effects within the context of large, interconnected power systems (Kern and Characklis, 2017); 

and/or do not assess impacts probabilistically (Hardin et al., 2017). These shortcomings may be 

partly attributable to the challenges of modeling bulk electric power systems at sufficient scale and 

resolution to simulate system operations in a realistic way, and over sufficient time horizons to 

explore joint uncertainty in multiple, correlated input variables.   

Interconnected power systems span areas so large that system operators often have some 

ability to deal with spatially heterogeneous stressors. For example, a localized power supply 

shortfall caused by drought in one area might be managed by importing power from other areas 

where water, and thus electricity from hydropower production and water-cooled generators, is 

more abundant. From a modeling perspective, this necessitates adopting system topologies that 

extend beyond a single watershed, state, and region. Hydrometeorological uncertainty and power 

system risks can also manifest on different time scales. Extreme meteorological and hydrological 

conditions can have durations on the order of days (floods (Najibi and Devineni, 2017), heat 
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waves), weeks to months (wind “droughts”), and years (hydrological droughts (Andreadis et al., 

2005)), whereas power system modeling requires an hourly or sub-hourly time step (Pandzžić et 

al., 2014). Although stochastic modeling approaches can be used to create large synthetic records 

of hydrometeorological processes in order to explore risks from extreme events (Reed et al., 2013; 

Brown et al., 2015), this poses a direct challenge to the use of computationally expensive integer 

programming within power system models (Pandzžić et al., 2014), making large ensemble Monte 

Carlo simulations less tractable. Adding to these challenges is the potential presence of significant 

spatial and temporal covariance among key hydrometeorological processes (Jimenez et al., 2011; 

Woodhouse et al., 2016). If significant correlations exist, an increased number of model runs may 

be required to characterize the probability of coincident extremes (e.g., widespread simultaneous 

hydrological drought, a wind drought, and a heat wave) that may be of particular concern to power 

system operators (Mazdiyasni and AghaKouchak, 2015; Turner et al., 2019). 

The modeling scales, resolutions, and ensemble sizes required in exploring the risks to bulk 

electric systems from hydrometeorological variability present a challenge, and few (if any) models 

capable of performing this type of analysis are publically available. Given recent increased interest 

among the research community in modeling interconnected systems (e.g., food-energy-water 

(Logan, 2015)), a generalizable and open source modeling framework for simulating the influence 

of correlated hydrometeorological processes on power system dynamics at decision relevant scales 

would be a valuable addition.  

The goal of this paper is to present such a framework: the newly developed California and 

West Coast Power (CAPOW) systems model. CAPOW was designed by the authors to explore a 

high profile test-bed-- the West Coast of the conterminous United States (U.S.). The bulk electric 

power systems covering most of the states of California, Oregon and Washington are included, as 
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well as the two major wholesale electricity markets active across these states (current gaps in 

coverage are the PacifiCorp West, Sacramento Municipal Utility District, Los Angeles Department 

of Water and Power balancing authorities). CAPOW is comprehensive in its treatment of 

stochastic weather and streamflow, simulation of relevant infrastructure (reservoir networks, 

power systems), and evaluation of outcomes (system costs, prices, etc.). While focused on the U.S. 

West Coast, the steps required in building and executing the CAPOW model (as well as much of 

the code) are fairly generalizable and can be transferred to other systems and interconnections of 

interest (Chowdhury et al., 2019). Most grid specific information used in the model is publically 

available anywhere in the U.S. (generator size, location, fuel type, prime mover type, average heat 

rate, etc.). Hydrometeorological data used to simulate electricity demand, wind, solar and 

hydropower production are also available throughout the U.S.; as well as hourly records of 

renewable energy production in each balancing authority through the EIA. Analogous transmission 

grid information (bi-directional capacities) is publically available for all WECC areas, and for 

many (if not all) sub-regions in the eastern interconnection. Note that to transfer the model to other 

regions, additional capabilities that are not currently in CAPOW may be required (e.g., 

representing impacts of extreme cold, air temperatures (Henry and Pratson, 2016), and a lack of 

cooling water availability due to low streamflow and temperatures (van Vliet et al., 2012, 2016; 

Miara et al., 2017) on thermal power plant functionality). The model is Python-based; all code and 

data required to run the CAPOW model, as well as some documentation of the model, is available 

at https://github.com/romulus97/CAPOW_PY36 under the MIT free software license. 

2.2 METHODS 

Our description of methods parallels the CAPOW model’s work flow (Figure 1), beginning 

with a discussion of surface water and electric power system topologies, including key physical 

assets (e.g., power plants, dams/reservoirs) and their connections (i.e., water routing between 

https://github.com/romulus97/CAPOW_PY36


10  

reservoirs, high voltage transmission pathways). This is followed by a description of CAPOW’s 

unit commitment and economic dispatch (UC/ED) model, which is used to simulate actual power 

system operations. The methods section ends with a description of our approach for stochastically 

generating model inputs from historical weather and streamflow data.  

 

Figure 1. Model workflow. Topologies of relevant electric power and surface water infrastructure are defined first, 

and then synthetic time series inputs are used to drive stochastic simulation of a power system (unit 

commitment/economic dispatch) model. Model outputs include the least cost generation schedule, total system costs, 

estimated wholesale prices, and emissions.  

 

2.2.1 System Topology 

2.2.1.1Electric Power 

In order to model the West Coast grid (the case study explored here), we first adopt a 21-

zone topology of the Western Electricity Coordinating Council (WECC), a regulatory body 

charged with reducing risks to the Western grid by enforcing standards and assessing reliability 

(Figure 2). This topology, which has been used in the past by WECC and other researchers to assist 

in long term planning exercises (Mkarov et al., 2010; Ho et al., 2016), groups balancing authorities 

(utility footprints) into multiple zones that are connected via aggregated transmission pathways 
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throughout the region. Each zone-to-zone transmission pathway is associated with bi-directional 

capacities (i.e., maximum limits on zone-to-zone transfers of electricity) estimated from publically 

available data (Western Electricity Coordinating Council, 2016).  

 

Figure 2. Power system topology used in the CAPOW modeling framework. The five red zones, comprising 

collections of balancing authorities (load centers and generation assets), are mechanistically modeled using unit 

commitment economic dispatch (UC/ED) models. Blue lines represent exchanges (imports/exports) of electricity with 

adjacent zones that are represented statistically. Black dots represent zones in the WECC system that are not currently 

represented in CAPOW.  
 

Each zone in the network consists of: 1) the load (electricity demands) of its member 

balancing authorities, which fluctuate on hourly, daily, seasonal and annual time scales; and 2) a 

portfolio of co-located generation resources with which to meet those demands. Comprehensive 

databases of generators located in each node of the 21-zone WECC topology are publically 

available from multiple sources (U.S. EPA, 2015; Western Electricity Coordinating Council 

System Adequacy Planning Department, 2015). These also contain information on relevant 

operating characteristics for each generator (e.g., fuel type, capacity, average heat rate) that are 

used to formulate the UC/ED simulation model. 

There are two major trading hubs for wholesale electricity on the U.S. west coast: 1) the 

Mid-Columbia (Mid-C) market that serves as a hub for much of the Pacific Northwest region; and 
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2) the California Independent System Operator (CAISO), a competitive wholesale market that 

manages approximately 80% of California’s electricity flow. The 21-zone WECC topology shown 

in Figure 2 includes five nodes (red, numbered) that directly correspond to these markets: node 1 

(Pacific Northwest) corresponds to the Mid-C market, and nodes 2-5 correspond to the CAISO 

market. Nodes 2-5 also represent the service areas of three major utilities: Pacific Gas and Electric 

(PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). Currently 

only these five zones (and power flows among them) are modeled mechanistically using a UC/ED 

model. No UC/ED models exist outside these five zones. Neighboring zones are considered only 

in terms of their exchanges of electricity with the core UC/ED zones, and these exchanges are 

modeled statistically (see Supplemental Material).  

2.2.1.2 Dams and Reservoirs 

Recent analyses of the impacts of drought on power generation in the Western U.S. (Harto 

et al., 2011) suggest that cooling water issues from low streamflow and high water temperatures 

pose a minor threat to thermal power plants in the region. Rather, the primary mechanism through 

which hydrologic extremes can impact power system operations is through variability in 

hydropower generation. Within the WECC topology shown in Figure 2, hydropower capacity 

makes up 58% of installed generating capacity in zone 1 (Pacific Northwest), 18% of generating 

capacity in zone 2 (PG&E Valley), and 4% of capacity in zone 3 (SCE) (US Environmental 

Protection Agency, 2018). Figure S2 in the Supplemental Material section maps major (>5MW) 

hydroelectric dams that participate in balancing authorities located within the five numbered zones 

that make up the UC/ED model. These dams primarily fall within the Columbia River Basin, which 

spans several Northwestern U.S. states and Canada, as well as the Sacramento River, San Joaquin 

River, and Tulare Lake basins in California.  

Publicly available hydrologic mass balance models exist for 85% of the hydropower 
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capacity in the Pacific Northwest (versions of HYSSR, developed by the U.S. Army Corps of 

Engineers to simulate the Federal Columbia River Power System; and a ResSim model that 

simulates the operations of Federal dams in the Willamette River Basin). Models exist for only 

12% of the hydropower capacity in California (the ORCA model (Herman and Cohen, 2019), 

which simulates the operations of major storage/flood control dams). In California, much of the 

state’s hydropower capacity is privately owned and located in high altitude areas of the Sierra 

Nevada Mountains. Little information about the operation of these dams is publicly available, so 

hydropower production at these projects is simulated via an alternative approach in which 

hydropower production at upstream dams is predicted using observed streamflow downstream. 

First, for major high altitude hydroelectric dam in the Sierra Nevada Mountains, a corresponding 

downstream storage reservoir or stream gauge on the same river is identified. In order to predict 

upstream hydropower generation at a given dam using observed streamflow downstream, the 

calendar year is broken into four seasons: winter, spring, summer, and fall. Each season is assumed 

to follow a different set of “operating rules” that translate observed downstream flows into 

estimates of upstream hydropower production. Rules are fitted using the differential evolution 

algorithm in the SciPy library of Python, based on root mean squared error (RMSE) between 

observed and simulated hydropower production for each upstream dam.  

About 15% of hydropower capacity in the Pacific Northwest and 20% of hydropower 

capacity in California are within the five core WECC zones that make up the UC/ED model but 

fall outside the four river basins mentioned above and are not associated with publicly available 

models. These projects are modeled by scaling hydropower generation from nearby dams. A more 

detailed description of how hydropower production is simulated on a daily basis can be found in 

the Supplemental Material. 
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2.2.2 Unit Commitment and Economic Dispatch Model 

The power system and reservoir network topologies described above form the basis of a 

unit commitment/economic dispatch (UC/ED) model that we use to simulate the operation of the 

five numbered WECC zones in Figure 2, which include the Mid-C and CAISO markets. 

Simulating the UC/ED model for a single year at an hourly time step takes approximately 6 hours 

using the CPLEX solver on a 16-core machine with 2.5GHz processors using a Linux operating 

system. What follows is a general overview of the model’s structure and functionality. A 

mathematical formulation of the UC/ED model can be found in the Supplemental Material.  

We coded the UC/ED model in Python using the Pyomo mathematical optimization 

package, structuring it as an iterative, mixed integer linear program. Over a user-defined operating 

horizon (e.g., 48 hours), deterministic optimization is used to minimize the cost of meeting demand 

for electricity and operating reserves (including unit start costs, no load costs, fuel costs, and 

penalties associated with transferring electricity between zones), subject to constraints on 

individual generators and transmission paths. Costs are minimized by strategically “dispatching” 

(scheduling) generation from flexible generation resources (natural gas power plants, hydroelectric 

dams and system imports) on an hourly basis. Variable renewable energy (wind and solar) are not 

dispatchable (they can be consumed only when available); as such, they are typically treated as 

“electricity demand reduction” within a zone, but can be also curtailed during periods of 

oversupply. 

A single iteration of the UC/ED model yields system costs and the least cost generating 

schedule over the operating horizon (e.g., hours 1-48); however, only the first 24 hours of the 

solution is stored. The remaining solution (hours 25-48) is discarded, and the whole process shifts 

one day into the future. The next iteration of the model identifies a solution for the hours 25-48, 

while again looking 48 hours into the future (i.e., at hours 25-72). This ensures that the model does 
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not have perfect foresight over unreasonably long time horizons when making decisions with path 

dependency (e.g., turning on baseload power plants with high “minimum up” times). 

 Simulation of the UC/ED model creates hourly time series outputs that track provision of 

electricity and operating reserves by each generator, the flow of electricity among zones, plant 

specific and system wide emissions of CO2, total operating costs, and wholesale electricity prices. 

CO2 emissions from each power plant are calculated using historical EPA eGrid data that are used 

to estimate the kg CO2 per MWh emissions for each plant. Note that total operating costs 

essentially refers to the value of the objective function in each hour (the cumulative start, no load, 

and fuel costs across every power plant in every hour). On the other hand, wholesale electricity 

prices ($/MWh) are dynamic measures of the marginal value of electricity in each market, i.e., 

how much generators would be paid to sell their electricity in each hour. Within the optimization, 

wholesale prices are estimated for each zone as the shadow cost of an energy balance constraint at 

each zone (i.e., the change in objective function value associated with a 1MWh increase in demand 

at each zone). Calculating the shadow costs requires the UC/ED model to first be solved in mixed 

integer form, and then resolved as a linear program (keeping all binary variables fixed from the 

integer solution) in order to access dual values for relevant constraints in Pyomo. This yields a 

separate time series of wholesale electricity prices for each of the five WECC zones represented 

in the core UC/ED model. Prices in the Mid-C market are assumed to be equivalent to prices for 

the Pacific Northwest zone. To represent the CAISO market, prices for the four relevant zones in 

California (PG&E Valley, PG&E Bay, SCE, and SDG&E) are weighted to determine an overall 

price for the market, with the weights fitted via regression (R2 = 0.75, p < 1e-3) on observed values 

over the period 2012-2016. 
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2.2.3 Stochastic Input 

The primary stochastic inputs to the UC/ED model are electricity demand (hourly), wind 

and solar power production (hourly), and available hydropower production (daily) for each 

numbered zone in Figure 2. Several hydrometeorological processes (air temperatures, wind speeds, 

solar irradiance and streamflow) in turn drive these power system inputs. In the following section, 

we describe our approach for generating synthetic hydrometeorological time series.  

2.2.3.1 Hydrometerological Variables 

2.2.3.1.1 Air Temperature, Wind Speeds, and Solar Irradiance 

We collect observed air temperatures, wind speeds, and solar irradiance data within major 

cities (where electricity demand is highest) and in areas known to have large amounts of installed 

wind and solar power capacity. Records of daily average temperature and wind speed over the 

period 1998-2017 come from NOAA’s Global Historical Climatological Network (GHCN) for 

seventeen meteorological stations distributed throughout the Western U.S. (Table 1). Global 

horizontal irradiance data come from the National Renewable Energy Laboratory’s National Solar 

Radiation Database (NSRDB) (Sengupta et al., 2018); both “clear sky” and observed irradiance 

data are acquired at a 30-minute resolution and then aggregated to daily sums. 
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Table 1. Seventeen weather stations in the Global Historical Climatological Network and National Solar Resource 

Database that provide daily mean air temperature and wind speed data used in development of stochastic inputs. 

 

 

Station ID Name Variables Latitude Longitude 

USW00024232 SALEM AIRPORT MCNARY FIELD, OR  Wind/temps 44.90° N 123.00° W 

USW00024221 EUGENE MAHLON SWEET FIELD, OR  Wind/temps 44.12° N 123.21° W 

USW00024233 SEATTLE TACOMA INTERNATIONAL AIRPORT, WA  Wind/temps 47.45° N 122.30° W 

USW00024131 BOISE AIR TERMINAL, ID  Wind/temps 43.56° N 116.22° W 

USW00024242 PORTLAND TROUTDALE AIRPORT, OR  Wind/temps 45.54° N 122.39° W 

USW00024157 SPOKANE INTERNATIONAL AIRPORT, WA  Wind/temps 47.62° N 117.53° W 

USW00024163 PASCO TRI CITIES AIRPORT, WA  Wind/temps 46.26° N 119.11° W 

USW00093193 FRESNO YOSEMITE INTERNATIONAL, CA  Wind/temps 36.77° N 119.71° W 

USW00023230 OAKLAND METRO INTERNATIONAL AIRPORT, CA  Wind/temps 37.71° N 122.21° W 

USW00023174 LOS ANGELES INTERNATIONAL AIRPORT, CA  Wind/temps 33.94° N 118.40° W 

USW00023188 SAN DIEGO INTERNATIONAL AIRPORT, CA  Wind/temps 32.73° N 117.19° W 

USW00023232 SACRAMENTO EXECUTIVE AIRPORT, CA  Wind/temps 38.51° N 121.49° W 

USW00023293 SAN JOSE, CA  Wind/temps 37.33° N 121.88° W 

USW00023234 SAN FRANCISCO INTERNATIONAL AIRPORT, CA  Wind/temps 37.62° N 122.37° W 

USW00023160 TUCSON INTERNATIONAL AIRPORT, AZ  Wind/temps 32.11° N 110.93° W 

USW00023183 PHOENIX AIRPORT, AZ  Wind/temps 33.43° N 112.00° W 

USW00053123 LAS VEGAS AIR TERMINAL, NV  Wind/temps 36.21° N 115.19° W 

NSRDB 154166 NATIONAL SOLAR RESOURCE DATABASE #1 Irradiance 40.45° N 121.66° W 

NSRDB 13631 NATIONAL SOLAR RESOURCE DATABASE #2 Irradiance 38.57° N 121.7° W 

NSRDB 111895 NATIONAL SOLAR RESOURCE DATABASE #3 Irradiance 36.81° N 119.38° W 

NSRDB 93873 NATIONAL SOLAR RESOURCE DATABASE #4 Irradiance 35.09° N 117.3° W 

NSRDB 83553 NATIONAL SOLAR RESOURCE DATABASE #5 Irradiance 34.05° N 118.38° W 

NSRDB 82442 NATIONAL SOLAR RESOURCE DATABASE #6 Irradiance 33.93° N 115.9° W 

NSRDB 77068 NATIONAL SOLAR RESOURCE DATABASE #7 Irradiance 33.33° N 114.7° W 
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Each weather station provides the data necessary to generate 365-day profiles of average 

temperature and wind speed for their respective locations. We use solar irradiance data to created 

365-day profiles of average “clear sky” (cloudless) conditions (Figure 3). 

 

𝑇𝑃𝑛 =
1

𝑌
 ∑ 𝑇𝑛,𝑦

𝑌
𝑦=1           (1) 

𝑊𝑃𝑛 =
1

𝑌
 ∑ 𝑊𝑆𝑛,𝑦

𝑌
𝑦=1         (2) 

𝑆𝑃𝑛 =
1

𝑌
 ∑ 𝑆𝑛,𝑦

𝑌
𝑦=1          (3) 

 

Where,  

𝑇𝑃𝑛 = average temperature on calendar day 𝑛 across 𝑌 years (℃) 

𝑇𝑛,𝑦 = observed temperature on calendar day 𝑛 in year 𝑦 (℃) 

𝑊𝑃𝑛 = average wind speed on day 𝑛 across 𝑌 years (m/s) 

𝑊𝑆𝑛,𝑦 = observed wind speed on day 𝑛 in year 𝑦 (m/s) 

𝑆𝑃𝑛 = average clear sky irradiance on day 𝑛 across 𝑌 years (W/m2) 

𝑆𝑛,𝑦 = observed clear sky irradiance on day 𝑛 in year 𝑦 (W/m2) 
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Figure 3. (A) Daily average and observed temperatures for USW00024232 (Salem, OR). (B) Daily average clear sky 

conditions and one year of observed irradiance for NSRDB 11895. 

 

Synthetic values of air temperatures, wind speeds, and solar irradiance are then generated 

by combining these average profiles (e.g. blue series in panel A of Figure 3) with stochastic 

representation of the autocorrelated “residuals” that deviate from these repeating signals (e.g. the 

gray series in panel A of Figure 3). Average temperature and wind profiles are subtracted from 

observed temperature and wind speed values; this yields a daily record of zero-mean residuals (i.e., 

deviations from average temperature and wind speed for each calendar day over the period 1998-

2017). Observed irradiance is subtracted from average clear sky irradiance, yielding a daily record 

of “losses” due to cloud effects. 

 

𝑅𝑇𝑑 = 𝑇𝑑 −  𝑇𝑃𝑛            (4) 

𝑅𝑊𝑑 = 𝑊𝑆𝑑 −  𝑇𝑊𝑛           (5) 

𝐼𝐿𝑑 = 𝑆𝑃𝑛 − 𝐼𝑑        (6)  

 

Where,  

𝑅𝑇𝑑 = residual temperature on day 𝑑 (℃) 
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𝑅𝑊𝑑 = residual wind speed on day 𝑑 (m/s) 

𝐼𝐿𝑑 = irradiance “losses” on day 𝑑 (W/m2) 

 

 Residual temperatures and wind speeds, as well as irradiance losses, are then mean-shifted 

to eliminate negative values and log-transformed to approximate a Gaussian distribution. The 

residuals/losses for each calendar day of the year are then divided by their respective standard 

deviations, in order to control for seasonal heteroscedasticity.  

 

𝑊𝑅𝑇𝑑 = 𝑅𝑇�̂�/𝜎𝑇𝑛            (7) 

𝑊𝑅𝑊𝑑 = 𝑅𝑊�̂�/𝜎𝑊𝑛              (8) 

𝑊𝐼𝐿𝑑 = 𝐼𝐿�̂�/𝜎𝐼𝐿𝑛              (9) 

 

Where,  

𝑊𝑅𝑇𝑑 = whitened residual temperature on day 𝑑 

𝑊𝑅𝑊𝑑 = whitened residual wind speed on day 𝑑 

𝑊𝐼𝐿𝑑 = whitened irradiance losses on day 𝑑 

𝑅𝑇�̂� = mean shifted, log-transformed residual temperature on day 𝑑 (℃) 

𝑅𝑊�̂� = mean shifted, log-transformed residual wind speed on day 𝑑 (m/s) 

𝐼𝐿�̂� = mean shifted, log-transformed irradiance losses on day 𝑑 (W/m2) 

𝜎𝑇𝑛 = standard deviation of transformed temperature residuals on calendar day 𝑛 

𝜎𝑊𝑛 = standard deviation of transformed wind speed residuals on calendar day 𝑛 

𝜎𝐼𝐿𝑛 = standard deviation of transformed irradiance losses on calendar day 𝑛 
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We then model the resultant “whitened” residuals and irradiance losses using a vector 

autoregressive (VAR) model, in order to capture observed covariance across variables. VAR 

models describe the behavior of a set of 𝑘 variables over a given time period as a linear function 

of their past values and random samples from a multivariate normal distribution. Simulated values 

of each variable are stored in a 𝑘 ×  1 vector, 𝑦𝑡, which has as its 𝑖𝑡ℎ element, 𝑦𝑖,𝑡, the value of 

the 𝑖𝑡ℎ  variable at time 𝑡. The “lag” of the model (i.e., the number of previous time steps that are 

accounted for when estimating values in 𝑦𝑡) is denoted by the parameter 𝑝.  

 

𝑦𝑡 = 𝐶 +  𝐴1𝑦𝑡−1 +  𝐴2𝑦𝑡−2 + ⋯ +  𝐴𝑝𝑦𝑡−𝑝 + 𝜀𝑡     (10) 

 

Where, 

𝐶 = 𝑘 𝑥 1 vector of constants 

𝐴𝑖 = 𝑘 𝑥 𝑘 matrix of coefficients 

𝜀𝑡 = 𝑘 𝑥 1 vector of error terms 

𝑡 = time period 

𝑝 = model lag 

 

Simulation of  𝑦𝑡  proceeds through random sampling of noise (𝜀𝑡) from a multivariate 

normal distribution with a covariance matrix estimated from whitened residuals and irradiance 

losses for the period 1998-2017. The number of lags considered is determined via the Akaike 

Information Criteria.  

A fitted VAR model is used to simulate daily, whitened temperature and wind speed 

residuals and irradiance losses for each GHCN and NSRDB site considered, for as many years as 
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desired. Simulated values are then “un-whitened” by reversing Equations 7, 8, and 9 (thus restoring 

heteroscedasticity and non-normality); they are then added back to the 365-day profiles (reversing 

Equations 4, 5, and 6), yielding synthetic daily records of temperature and wind speeds.  

2.2.3.1.2 Streamflow 

Streamflow patterns on the west coast of the U.S. are driven by runoff from precipitation as 

rain and, largely, the melting of snow accumulated during the winter. Both total annual streamflow 

and the within year distribution of streamflow experienced in this region are known to be 

influenced by temperatures (Null, Viers and Mount, 2010). At the same time, there are significant 

correlations among the 85 separate, spatially distributed streamflow gauges that drive CAPOW’s 

simulation of dam operations and hydropower production.  

 We make use of a Gaussian Copula to preserve the relationship between total annual 

streamflow and temperatures in stochastically generated samples. First, observed daily average 

temperatures (1953-2008) at the seventeen meteorological stations are converted to heating and 

cooling degree days, which measures deviations from 18.33 degrees C (65 degrees F). 

 

𝐻𝐷𝐷𝑑,𝑠 = max(18.33 − 𝑇𝑑,𝑠, 0)      (11) 

𝐶𝐷𝐷𝑑,𝑠 = max(𝑇𝑑,𝑠 − 18.33, 0)       (12) 

 

Where, 

𝐻𝐷𝐷𝑑,𝑠 = heating degree days on day 𝑑 at station s 

𝐶𝐷𝐷𝑑,𝑠 = cooling degree days on day 𝑑 at station s 

𝑇𝑑,𝑠 = average near surface air temperature on day 𝑑 (℃) at station s 
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 Total annual HDDs and CDDs are calculated, providing coarse measures of the “hotness” 

of a given year’s summer and the “coldness” of a given year’s winter. Total annual HDDs and 

CDDs and total annual streamflow are then transformed into quantile space by calculating the 

empirical cumulative probability distribution for each variable. 

 

𝑃 = P(𝑄 ≥ 𝑞)         (13) 

 

Where,  

𝑄 = total annual streamflow or degree days at a given site  

 

 Empirical probabilities are transformed again into a uniform distribution ranging from -1 

to 1 as follows, ensuring a mean of 0 across every variable.  

 

𝑌 = 2(𝑃 − 0.5)        (14) 

 

 The covariance matrix 𝐶  across all the variables at every site is estimated, and then 

synthetic records of total annual streamflow and total annual HDDs and CDDs are generated by 

taking random samples from a multivariate normal distribution with mean 0 and covariance matrix 

𝐶, then back-transforming (reversing equations 13 and 14).  

 The next step is to match total annual streamflow and total annual HDDs and CDDs 

simulated via the Copula method with the synthetic daily temperatures generated in the previous 

section using a vector-autoregressive (VAR) approach. Synthetic daily temperatures simulated 

using the VAR approach are converted to total annual HDDs and CDDs. For each year of synthetic 
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data desired, we select a single year of total annual HDDs and CDDs generated using the VAR 

approach, and then calculate the weighted average across every GHCN station. Weights are 

determined by the fraction of average annual flow across the 85 stream gauges that is contained 

within each GHCN station’s surrounding area: 

 

  𝑊𝑇𝑠 =  
∑ 𝐴𝑉𝐹𝑔

𝐺
𝑔=1

𝐴𝑉𝑇
        (15) 

 

Where,  

𝑊𝑇𝑠 = weight assigned to meteorological station 𝑠  

𝐴𝑉𝐹𝑔 = average annual flow at gauge site 𝑔 closest to station 𝑠 

𝐴𝑉𝑇 = average annual flow across all 85 stream gauges 

 

The weighted total annual HDDs and CDDs from the VAR model are compared alongside 

pairs of weighted total annual HDDs and CDDs generated using the Copula method. The smallest 

mean squared error difference is identified; then the total annual streamflow values generated via 

the Copula method are paired with the corresponding daily temperatures (and also wind speeds 

and solar irradiance) generated via VAR.  

Disaggregating total annual streamflow values down to a daily time step must be done in a 

manner that considers the potential influence of temperatures on the timing of streamflow 

throughout the year. For example, Figure 4 shows the relationship between winter and spring 

temperatures and the timing of streamflow at two major reservoirs in California. The top panel (A) 

shows 19 years (1997-2015) of weighted average temperatures across the GHCN stations, 

calculated using weights from Equation 15. Lines are colored according to the mean temperature 
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experienced over the first 24 weeks of the year; the dark red line indicates the year with the hottest 

temperatures over this period (2015), and the dark blue line indicates the year with the coolest 

temperatures (2010). In panels B and C, those same line colors are then used to plot 

contemporaneous “full natural” (unregulated) flows at Folsom Dam (panel B) and Oroville Dam 

(panel C) in California (two large storage dams for which there are long historical flow records). 

Flows are shown in terms of standardized “fractions” that are created by dividing by total annual 

flows at each site. At the top of panels B and C, swarm plots identify the week of maximum 

streamflow. For both dams, years with higher average winter and spring temperatures (red hued 

circles) tend to be associated with earlier peak streamflow, indicating earlier snowmelt and/or 

major precipitation events. 
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Figure 4. (A) Weighted average temperatures for the period 1997-2015, colored according to mean temperatures 

experienced during the first 24 weeks of the year; (B) associated unregulated daily flow fraction profiles for Folsom 

Dam, with a swarm plot indicating the week of maximum unregulated streamflow; (C) similar data for Oroville Dam.  

 

In order to capture these dependencies between the timing of streamflow and temperatures, 

we follow a nearest neighbor clustering approach, similar to Nowak et al. (Nowak et al., 2010). 

The weights generated in Equation 15 are used to create composite time series of temperatures 

across the 17 GHCN stations, for both historical and simulated temperature data. For each 

simulated year, the historical record is searched for a past year that exhibited the most similar 

winter/spring temperature profile, in terms of mean squared error. The identified historical year is 

then selected as the basis for determining daily flow fractions at each streamflow gauge site. For 
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the historical year selected, daily flow fractions are calculated as follows: 

 

𝐹𝐹𝑑,𝑔 =  
𝐷𝐹𝑑,𝑔

𝐴𝐹𝑔
          (16) 

 

Where, 

𝐹𝐹𝑑,𝑠 = flow fraction for day 𝑑 at streamflow gauge site 𝑔 

𝐷𝐹𝑑,𝑠 = observed flow on day 𝑑 at streamflow gauge site 𝑔 

𝐴𝐹𝑔 = total annual flow observed at gauge site 𝑔 

 

Flow fractions for each gauge site are then multiplied by simulated total annual flows to 

yield a synthetic record of daily flows across the study area.  

2.2.4 Power System Inputs 

The stochastic scenario generation framework permits the exploration of large ensembles 

of time series for temperatures, wind speeds, solar irradiance, and streamflow. These data are then 

converted to associated power system inputs for the UC/ED model (time series for each zone of 

hourly electricity demand, wind and solar availability, daily hydropower production and imports 

of electricity from other areas in the Western U.S.). Table 2 provides an overview of the different 

approaches taken to translate raw hydrometeorological variables into power system inputs, as well 

as their accuracies. Multi-variate regression is used to simulate daily electricity demand, solar and 

wind power production, and system imports (power flows along WECC Paths listed in Table 2). 

Daily values are disaggregated down to an hourly time step by sampling from historical profiles. 

Daily values of available hydropower production are created by passing synthetic streamflow 

records through mass-balance hydrologic models of dams in the Columbia River basin and major 
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storage reservoirs in California, as well as through a machine learning representation of high 

altitude hydropower production in California. Detailed descriptions of all models used to translate 

raw hydrometeorological variables into power system inputs can be found in the Supplemental 

Material.  

 
Table 2. Model results for power system inputs. R2 values are based on daily fit for all inputs except hydropower 

production (weekly). In all cases, regression p-values are less than .01. 

Power System Input R2 Value Predictive/Independent Variables Years 

CAISO Solar Power 0.92 Irradiance 
2011-
2016 

Pacific Northwest Wind 
Power 

0.71 Wind speed 
2011-
2016 

CAISO Wind Power 0.71 Wind speed 
2011-
2016 

Pacific Northwest  
Electricity Demand 

0.89 Temperature, wind speed, day-of-week 
2010-
2016 

PG&E Valley Electricity 
Demand 

0.90 Temperature, wind speed, day-of-week 
2010-
2016 

PGE&E Bay Electricity 
Demand 

0.79 Temperature, wind speed, day-of-week 
2010-
2016 

SCE Electricity Demand 0.89 Temperature, wind speed, day-of-week 
2010-
2016 

SDG&E Electricity 
Demand 

0.80 Temperature, wind speed, day-of-week 
2010-
2016 

WECC Path 8 0.83 Temperature, wind speed, day-of-week, Pacific Northwest hydropower 
2010-
2012 

WECC Path 14 0.79 Temperature, wind speed, day-of-week, Pacific Northwest hydropower 
2010-
2012 

WECC Path 3 0.63 Temperature, wind speed, day-of-week, Pacific Northwest hydropower 
2010-
2012 

WECC Path 65 0.85 
Temperature, wind speed, day-of-week, Pacific Northwest hydropower, Path 8, 

Path 14, Path 3 
2010-
2012 

WECC Path 66 0.89 
Temperature, wind speed, day-of-week, Pacific Northwest hydropower, Path 8, 

Path 14, Path 3 
2010-
2012 

WECC Path 46 0.76 Temperature, wind speed, day-of-week, Path 65, Path 66 
2010-
2012 

WECC Path 45 0.88 Temperature, wind speed, day-of-week, Path 46, Path 65, Path 66 
2010-
2012 

WECC Path 24 0.84 Temperature, wind speed, day-of-week, Path 46, Path 65, Path 66 
2010-
2012 

WECC Path 61 0.85 Temperature, wind speed, day-of-week, Path 46, Path 65, Path 66 
2010-
2012 

WECC Path 42 0.90 Temperature, wind speed, day-of-week, Path 46,  Path 65, Path 66 
2010-
2012 

Pacific Northwest 
Hydropower 

0.61 Streamflow 
2003-
2006 

CAISO Hydropower 0.85 Streamflow 

2001, 
2005, 
2010, 
2011 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Validation of UC/ED Formulation 

This paper proceeds with a validation of the UC/ED model’s ability to reproduce observed 

power system dynamics (in particular, wholesale electricity prices). Wholesale prices, which are 

driven by changes in supply and demand, can be viewed as aggregate measures of system 

performance (high prices can indicate scarcity, and low prices point to abundance). We focus on 

an extended period of drought that occurred in California over the years 2012-2016. During this 

period, in-state hydropower generation decreased by an average of 40% (Gleick, 2017), forcing 

the state to rely significantly more on electricity from natural gas power plants. There has been 

considerable interest in exploring the impacts of this recent drought on pollutant emissions (Hardin 

et al., 2017), as well as system costs and prices for retail electricity consumers (Gleick, 2017). 

Particularly when determining the latter, an understanding of impacts on wholesale electricity 

prices is necessary. Retail distribution companies in California (PG&E, SCE, and SDGE) all 

purchase electricity from the CAISO market. If the CAPOW model is able simulate observed 

wholesale electricity prices over 2012-2016 with accuracy, then the model could also be used to 

conduct controlled experiments designed to isolate the role of drought (and/or other 

hydrometorological extremes) on wholesale prices, revenues/costs for utilities, and, ultimately, 

retail prices for consumers. Natural gas price data used to validate the model (i.e. compare 

historical CAISO prices across the years 2012-2016) were obtained from EIA’s natural gas hub 

dataset; although these data do not represent the exact price paid by power plants, they do represent 

dynamic prices at major gas trading hubs. These day-to-day fluctuations in gas prices are extremely 

important to capture. EIA’s data on the delivered price of natural gas for power plants is typically 

listed on a monthly/annual time step, which would not allow us to capture more short term, severe 

price spikes. 
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Figure 5. Daily observed vs. simulated wholesale electricity prices in the CAISO market over the period 2012-2016. 

 

Figure 5 compares observed daily average electricity prices in the CAISO market alongside 

prices simulated by the UC/ED model, showing strong agreement (R2 = 0.75). For the purposes of 

validating the UC/ED model, we used historical records of temperatures, wind speeds, solar 

irradiance and streamflow at the sites listed in Table 2. Thus, discrepancies between observed and 

simulated prices are entirely due to the UC/ED formulation itself and/or discrepancies in fuel 

prices experienced. In general, the model accurately captures variation in electricity prices on daily 

time scales and above; although model outputs include hourly prices, hourly price dynamics (e.g., 

“peak” and “off-peak” patterns) are not as well represented. This is expected for a model reliant 

on a somewhat abstracted representation of the transmission network.  

2.3.1.1 Validation of stochastic inputs 

The UC/ED model’s ability to capture more than 70% of daily variability in CAISO 

electricity prices suggests that coupling it with stochastic simulations of weather and hydrology 

would enable probabilistic assessment of a broad set of hydrometeorological risks in wholesale 
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electricity markets. Before using CAPOW in this manner, however, the model’s underlying 

“stochastic engine” (i.e., the suite of approaches used to simulate weather and hydrological 

variables and relevant power system inputs) must be validated.  

2.3.1.2 Hydrometeorological variables 

Given the large geographical extent considered, as well as the highly interconnected nature 

of the U.S. West Coast grid, it is important that stochastically generated meteorological and 

hydrological inputs exhibit the same statistical dependencies as the historical record. Figure 6 

shows correlation matrices calculated using historical data from the 17 GHCN stations and 7 

NSRDB sites (top left), as well as historical data from the 85 stream gauges (bottom left). These 

are compared alongside correlation matrices calculated using 1000 years of corresponding 

stochastic data generated using the approaches described in section 2.3. 

 

 

Figure 6. Historical and simulated covariance matrices for weather variables (top) across the 17 GHCN stations and 

streamflow (bottom) across the 85 stream gauges considered. Pockets of high values in the bottom figures indicate 

stream gauges within the same watershed. 
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Lighter areas show positive correlation (two locations/variables that are more likely to both 

experience high/low values simultaneously); dark areas show negative correlations. In general, 

results show a high degree of fidelity between historical and simulated covariance across variables 

and space. For example, historical and simulated streamflow correlation matrices both show the 

same pockets of light values, which are associated with highly correlated stream gauges located 

within the same watershed. Overall, these results suggest that CAPOW, when run in stochastic 

mode, is able to capture spatial heterogeneities in weather and hydrological processes (e.g., the 

likelihood of experiencing high/low temperatures/wind speeds/irradiance/streamflow 

simultaneously at sites distributed across the entire region).   

Equally important, the underlying stochastic engine of CAPOW is able to reproduce 

observed statistical moments (e.g., mean, standard deviation) in hydrometeorological conditions. 

Figure 7 shows close agreement between historical and simulated temperatures and wind speeds 

across the 17 GHCN stations, in terms of percentile (1st, 50th, and 99th), while also demonstrating 

the stochastic model’s ability to occasionally generate more extreme min/max values than the 

historical record.  
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Figure 7.  Historical and simulated temperatures and wind speeds across the 17 GHCN stations, distinguished by 

percentile (1st, 50th, and 99th) and min/max value. 

 

In Figure 8, a similar comparison is shown using streamflow data. Each panel includes 

historical (blue/red circles) and simulated (black line) values for each of the 85 stream gauges 

considered. Red circles represent gauges in California (mostly the Sierra Nevada Mountains) and 

blue circles represent gauges in the Pacific Northwest (mostly the Columbia River Basin). Each 

panel represents a different percentile (1st/50th/99th) as well as min/max values. Note that in some 

cases, negative values are shown. This is an artifact of our use of BPA’s modified flow dataset, 

which consists of historical flows at gauge sites in the Columbia River Basin with modern human 

withdrawals applied. At certain gauge sites, this results in negative flow values (water is subtracted 

from reservoir storage). In general, results suggest close agreement between the distributions of 

historical and stochastically generated streamflow values, while also demonstrating the stochastic 

model’s ability to occasionally generate more extreme min/max values than the historical record. 
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Figure 8.  Historical and simulated streamflows across the 85 stream gauges considered, distinguished by percentile 

(1st, 50th, and 99th) and min/max values. 
 

2.3.2 Power system inputs 

A suite of models is used to translate raw temperatures, wind speeds, solar irradiance and 

streamflows into power system inputs, including multivariate regression (wind and solar power, 

electricity demand, system imports/exports) and hydrologic mass-balance operational models of 

reservoirs (hydropower). Coupled with our stochastic weather and streamflow generation 

techniques, these models yield realistic time series of power system inputs that mimic historical 

data on seasonal, daily and hour time scales (Table 2).  

For example, Figure 9 (panel A) shows historical (blue) and simulated (red) seasonality in 

wind power “capacity factor” (a unitless number between 0 and 1 corresponding to the average 

hourly output of a wind farm as a fraction of installed capacity), aggregated for the entire CAISO 

system. The simulated data is produced by coupling stochastically generated wind speeds at 

GHCN stations with a multivariate regression model of system-wide wind power availability based 
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on wind speeds (Table 2), and then adding in a record of synthetic residuals (model errors). Results 

indicate alignment with historical data on a monthly basis, with highest capacity factors occurring 

in the summer and lowest during winter.   

 

Figure 9. (A) Capacity factors for aggregate wind power production in the CAISO market; (B) daily autocorrelation 

in daily wind power production in the CAISO market; (C) capacity factors for aggregate solar power production in 

the CAISO market; (D) hourly capacity factors for a sample period in the CAISO market. Red = simulated; blue = 

historical. 

 

This approach is also able to reproduce hourly and daily time series characteristics for wind 

power production. Figure 9 (panel B) shows close agreement between historical and simulated 

daily autocorrelation in wind power production, suggesting the model does an adequate job 

preserving any statistically significant “memory” in daily wind power production.  

Figure 9 (panel C) shows historical and simulated seasonality in solar power capacity for 

the CAISO system. The simulated data is produced by coupling stochastically generated solar 

irradiance (minus cloud effects) at seven NSRDB sites with a multivariate regression model of 
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system-wide solar power availability based on site-specific irradiance. Results indicate alignment 

with historical data on a monthly basis, again with highest capacity factors occurring in the summer 

months and lowest during winter. This approach is also able to reproduce hourly and daily time 

series characteristics for solar power production. Figure 9 (panel D) compares hourly capacity 

factors produced using historical irradiance data for a week in Summer 2006 alongside 

stochastically generated solar power data for the same calendar week (with differences being due 

to simulated cloud effects). 

 Consideration was also given to volume of simulations required to achieve statistical 

“convergence” between historical and simulated power system inputs. A primary motivating factor 

in developing the underlying framework of the CAPOW model is to explore the impacts of 

hydrometeorological uncertainty, especially extreme events, on power systems and electricity 

markets. To be useful in this regard, the stochastic engine of CAPOW, as well as the UC/ED 

model, must be run over a sufficiently large number of years to produce the kind of low probability, 

high magnitude “tail” events that are concerning to grid participants (e.g., episodes of extreme 

shortfalls or overabundance in supply). Considering the high computational requirements of the 

UC/ED model, which relies on mixed integer programming, a relevant question is “how many 

years are enough”?  

Figure 10 explores this question for the CAPOW model. Each panel shows data for a 

different input in the CAISO system: hydropower production, wind power production, load 

(electricity demand), and “net load”, defined here as load minus total renewable energy (wind, 

solar, and hydropower) and resources considered to be “must run”, like nuclear and geothermal. 

Net demand is an important metric because it represents the amount of electricity that would need 

to be met by dispatchable generators (coal and natural gas).  
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Figure 10. Absolution deviations between historical and simulated inputs to the CAISO system in terms of their 1st 

and 99th percentile values, tracked as a function of the volume of simulation years.  
 

The colored lines measure the absolute difference between the historical record and 

synthetically generated values as a function of simulation volume. For example, in the bottom left 

panel (load), the red line tracks the difference between the historical record and stochastically 

simulated values, in terms of the 99th percentile of hourly electricity demand. At low simulation 

volumes, this difference starts at around 280MWh (average hourly demand in the CAISO market 

is more than 25,000MWh, indicating an error of less than 1%). As the number of simulated years 

increases, the absolute difference first increases but then stabilizes, appearing to asymptotically 

approach a value close to 220 MWh. Stabilization occurs when increasing the number of 

simulation years has a negligible impact on the difference between historical and simulated values. 

Figure 10 shows that simulations from CAPOW’s stochastic engine tend to converge statistically 

after about 1000 years, suggesting this would be a reasonable lower bound on simulation volume 

to run through the UC/ED model. 
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Overall, our results suggest that CAPOW’s stochastic engine is able to reproduce historical 

statistical characteristics across multiple hydrometeorological variables and power system inputs, 

needing approximately 1000 simulation years to achieve stable distributions. A final validation 

step is to evaluate whether the stochastic engine creates an expanded distribution of system 

states—in other words, does simulation over 1000 years cause extreme events outside the historical 

record to emerge from joint uncertainties in individual system processes? Without directly running 

the UC/ED model, a preliminary analysis of this kind can be conducted using net load as a metric 

of interest, since this typically correlates strongly with electricity prices and would be a key 

indicator of the potential for system shortfalls (extremely high net demand) and oversupply 

(extremely low net load).  

Figure 11 evaluates net load in the CAISO system under different scenarios. The shaded 

areas show the distribution of net load over the period 1953-2008, simulated using historical 

hydrometeorological data. Colors correspond to different percentiles of net load (ranging from 1st 

to 99th) as well as the min/max values for this time period. Net load simulated using 

hydrometeorological data from 1953-2008 is then compared alongside actual historical net load 

recorded for a recent year, 2016, which is represented with a black line. For the most part, actual 

net load for 2016 is enveloped by the distribution of values simulated using 1953-2008 

hydrometeorological data. Figure 11 also shows minimum and maximum values acquired from 

1000 years of synthetic runs produced by the stochastic engine of CAPOW (blue dotted lines). 

Min/max values produced by the stochastic engine suggest that the CAPOW model, by exploring 

joint uncertainties in hydrometeorolgical variables at sufficiently high simulation values, is able to 

access rare extreme events outside the historical record. The additional information provided by 

stochastic modeling appears to be especially valuable during late summer, when net load is the 
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highest and the stochastic model produces maximum values that are considerably larger than the 

highest values simulated using weather and hydrology from 1953-2008. These more extreme 

synthetic values are likely to include rare but plausible “compound” events in which combinations 

of high electricity demand, and low renewable energy availability create extremely high net load, 

with associated risks for reliability and high market prices.  

 

Figure 11. Simulated net demand for the California wholesale market. Shaded areas represent uncertainty driven by 

historical (1953-2008) hydrometeorological time series. Actual historical net demand for a single year (2016) is also 

shown in black. Enveloping the simulations forced by historical hydrometeorology are minimum and maximum values 

acquired from 1000s of synthetic runs produced by the stochastic model.  

 
2.4 CONCLUSION 

Despite growing interest in the potential vulnerabilities of bulk electric power systems to 

hydrometeorological variability (and extremes), there are few (if any) open source modelling 

packages capable of exploring this issue in a comprehensive manner. This paper presents a new 

model, CAPOW, which we specifically designed to explore the influence of joint uncertainties in 

temperatures, wind speeds, solar irradiance and streamflow on bulk power systems and wholesale 

electricity markets. CAPOW couples synthetic generation of hydrometeorological variables with 
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simulation models of relevant infrastructure (dams, power plants), allowing for in depth 

exploration of the role of weather and hydrology on system outcomes. The model is free and 

downloadable via public online repositories. 

The CAPOW model uses a topological representation of the conterminous U.S. West Coast 

power system to form a unit commitment and economic dispatch (UC/ED) model that simulates 

system operations and tracks performance (system costs, prices, etc.) on an hourly basis. When 

using historical weather and streamflow data as inputs to the model, it is able to capture 75% of 

the variability in daily electricity prices in the CAISO market. Although designed specifically with 

the U.S. West Coast in mind, the steps taken to construct CAPOW, as well as much of the code 

base, can be extended to other systems of interest. However, some critical functionalities may need 

to be added. For example, CAPOW does not currently represent thermal power plant curtailments 

due to inadequate cooling water supplies caused by low streamflows and high temperatures. 

When run in stochastic mode, CAPOW couples the UC/ED model with a “stochastic 

engine” that creates synthetic records of temperatures, wind speeds, solar irradiance and 

streamflow for a group of 17 meteorological stations, 7 solar resource assessment sites, and 85 

stream gauges distributed throughout the West Coast. Stochastically generated 

hydrometeorological variables are used to predict electricity demand (via temperatures, wind 

speeds), wind power production (via wind speeds), solar power production (via irradiance) and 

hydropower availability (via streamflows), which then drive the UC/ED model. The statistical 

properties (moments, cross correlations, time series characteristics) of synthetic data produced 

mirror those of the historical record, while also allowing for the generation of more extreme (but 

plausible) events. Exploring the joint uncertainty in relevant hydrometeorological variables is 

computationally tractable, with the statistics of stochastic simulations converging with the 
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historical record after approximately 1000 simulation years. Overall, our framework –which is also 

easily transferrable across systems and geographic areas—simulates the operations of bulk electric 

power systems and wholesale markets at sufficient scales and resolutions to simulate system 

operations in a realistic way, and over sufficient time horizons to explore joint uncertainty across 

multiple, correlated variables of interest. As such, it should prove to be a valuable future resource 

for direct grid participants as well as the research community, particularly in answering questions 

related to the vulnerability of the grid to future changes in hydroclimate, as well as the sensitivity 

of variable renewable energy dominated grids to stationary hydrometeorological uncertainty.  
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CHAPTER 3: COMPOUND HYDROMETEROLOGICAL EXTREMES ACROSS 

MULTIPLE TIMESCALES DRIVE VOLATILITY IN CALIFORNIA ELECTRICITY 

MARKET PRICES AND EMISSIONS2 

 

3.1 INTRODUCTION 

Hydrometeorological conditions influence the operations of bulk electric power systems 

and wholesale markets for electricity. Streamflow is the “fuel” for hydropower generation, wind 

speeds and solar irradiance dictate the availability of wind and solar power production, and air 

temperatures affect heating and cooling demands. Despite growing concern about the vulnerability 

of power systems to hydrometeorological uncertainty, including “compound” extremes (multiple 

extremes occurring simultaneously)(Mazdiyasni and AghaKouchak, 2015; Zscheischler et al., 

2018), quantifying baseline probabilistic risks remains difficult even without factoring in climate 

change. Here, we use newly developed power system simulation software(Su et al., 2020) to show 

how uncertainties in spatially and temporally correlated hydrometeorological processes affect 

market prices and greenhouse gas emissions in California’s wholesale electricity market. Results 

highlight the need for larger synthetic datasets to access rare, yet plausible system states that have 

not occurred in the recent historical record.  We find that time scale strongly controls which 

combinations of hydrometeorological variables cause extreme outcomes. Although scarcity caused 

by low streamflows and high air temperatures has long been considered a primary concern in 

Western power markets(Hardin et al., 2017; Turner et al., 2019), market prices are more impacted 

 

 

2 Published in Applied Energy. Su, Y., Kern, Jordan D, et al. (2020) ‘Compound hydrometeorological 

extremes across multiple timescales drive volatility in California electricity market prices and emissions’, 

Applied Energy. Elsevier, 276(April), p. 115541. doi: 10.1016/j.apenergy.2020.115541.  
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 by weather and streamflow conditions that lead to an overabundance of energy.  

Variability in hydrometeorological processes is known to affect electricity supply and 

demand(Staffell and Pfenninger, 2018), with corresponding impacts on emissions of greenhouse 

gases and other air pollutants, system cost(Gleick, 2016) and reliability(Van Vliet et al., 2016; 

Voisin et al., 2016, 2018; Zhou, Voisin and Fu, 2018; Turner et al., 2019), and market prices(Woo 

et al., 2017; Jordehi, 2018; Mureddu and Meyer-Ortmanns, 2018). However, limited number of 

extreme events are captured by historical observations of weather and streamflow, necessitating 

the use of large stochastic simulations to assess associated risks. Stochastic simulations can enable 

higher fidelity characterization of the possible combinations of extreme hydrometeorological 

states and rare, yet plausible, events outside recorded observations, but care must be taken to 

reconstruct spatial and temporal statistical dependencies among multiple hydrometeorological 

variables and across scales. Risk characterization must also consider the interconnected topologies 

of bulk electric power systems, which give system operators some ability to manage spatially 

explicit hydrometeorological stress(Scorah, Sopinka and van Kooten, 2012). Previous efforts to 

quantify the impacts of hydrometeorological extremes on large, interconnected power systems 

have not fully captured the joint uncertainties that occur in spatially distributed weather and 

streamflow processes(Harto et al., 2011; Voisin et al., 2016; Kern and Characklis, 2017; Turner 

et al., 2019) or adequately explored the role of timescale in controlling which phenomena drive 

extreme grid outcomes. In this study, we focus on the California Independent System Operator 

(CAISO) system, through which 80% of California’s electricity flows(CAISO, 2018). There is 

increased interest in the effects of drought and extreme events on the California grid(Franco and 

Sanstad, 2008; Stoutenburg et al., 2013; Hardin et al., 2017; Forrest et al., 2018; Zohrabian and 

Sanders, 2018), but at present no study has characterized electricity price and emissions outcomes 
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probabilistically under hydrometerological uncertainty.  

We employ a new open source simulation framework designed specifically to evaluate 

performance of the CAISO system under uncertainties in multiple spatially and temporally 

correlated hydrometeorological processes. The core of the model is a stochastic “engine” that 

Figure 12: (a) Topology of the power system model used and map of existing generators; (b) Average 

temperatures (by weather station) during the highest price year; (c) Average temperatures during the lowest 

price year; (d) Streamflows gauge status during the highest price year; (e) Streamflows during the lowest price 

year; (f) Below the maps, a parallel coordinate plot of the 2 system performance metrics and 5 state variables 

for all 1000 simulation realizations. The highest, lowest, 5th and 95th percentiles are highlighted in color. 



48  

generates synthetic daily records of temperatures, wind speeds, solar irradiance and unregulated 

streamflow at more than 100 monitoring stations distributed throughout the West Coast. The 

statistical properties (moments, cross correlations, spatial and temporal structure) of the synthetic 

hydrometeorological data mirror those of the historical record, and the large number of synthetic 

records (i.e., capable of observing hundreds or thousands of replicate worlds) allows for a better 

characterization of plausible compound extreme events. The augmented synthetic records of 

hydrometeorological variables are used to simulate hourly electricity demand, wind power 

production, solar power production and hydropower availability. These synthetic power system 

inputs drive a multi-zone unit commitment and economic dispatch model that simulates the hourly 

operation of the West Coast bulk electric power system, including the CAISO market (Figure 12a), 

outputting corresponding hourly time series of power plant emissions and market prices for 

electricity. We quantify risks associated with compound hydrometeorological extremes by 

simulating system behavior over 1000 synthetic years, which previous results(Su et al., 2020) 

suggest is a sufficient simulation length to capture uncertainty in the multivariate state space and 

produce higher fidelity estimates of plausible compound extreme events relative to the historical 

record. For comparison, we also simulated the model using historical hydrometeorological data 

from the years 2000-2017.  

3.2 METHODS 
 

In this study we make use of the California and West Coast Power System (CAPOW) 

model, an open source simulation framework for evaluating risks from correlated 

hydrometeorological processes in bulk power systems and wholesale electricity markets. The 

modeling framework is Python-based and all code and data are freely available via online public 

repositories. 

CAPOW accurately reproduces historical price dynamics in CAISO, while also offering 
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unique capabilities for stochastic simulation that are well suited to the challenge of isolating the 

role of hydrometeorological uncertainty (including compound extreme events) on electricity 

market outcomes. The following sections provide details about the two core components of the 

model: a simulation model for relevant electric power system infrastructure, and a stochastic 

“engine” that generates synthetic records of hydrometeorological variables. Full mathematical 

descriptions of the CAPOW model’s core components, as well as extensive validation, can be 

found in a separate paper by the authors(Su et al., 2020).  

3.2.1 Power Systems Model 

The model’s geographical scope covers nearly the entirety of the U.S. West Coast bulk 

electric power system (Figure 1a), including most of the states of Washington, Oregon and 

California and the operations of two wholesale electricity markets, the Mid-Columbia (Mid-C) 

market in the Pacific Northwest and the California Independent System Operator (CAISO) in 

California. The modeled system topology is comprised of 5 major zones (1 in the Pacific 

Northwest, and 4 in California), which are linked via aggregated high voltage transmission 

pathways. Interregional connectivity is also captured between California and the Southwest (power 

flows are modeled statistically). Each zone is associated with a portfolio of generating resources 

and a separate time series of electricity demand. We simulate power system operations using a 

multi-zone unit commitment and economic dispatch (UC/ED) model formulated as a mixed integer 

linear program. The model’s objective function is to minimize the cost of meeting demand for 

electricity and operating reserves in the two major markets represented, and its solution is 

constrained by limits on individual generators, the capacity of transmission pathways linking 

zones, and others.   

The primary inputs to the model are time series of hourly electricity demand, available 
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wind and solar power production in each zone, and available hydropower production on a daily 

basis, which the optimization program dispatches according to its least cost objectives. Measured 

outputs are hourly zonal electricity prices ($/MWh) and cumulative system wide emissions of CO2 

(tons). In a given hour, we estimate the market price of electricity for each zone as the shadow 

price of an energy balance constraint. The overall market price for CAISO is calculated using a 

weighted regression among prices for the four California zones, trained on historical (2012-2016) 

zonal price data. In this study, we assume 2016 grid resources, including thermal generators, 

hydroelectric dams, installed wind/solar power capacity, and high voltage transmission pathways. 

Power plant emissions (tracked in terms of CO2 equivalents) are calculated on the individual 

generator level using the simulated generation amount (MWh) and an emission coefficient for each 

plant (kg/MWh) developed from the U.S. EPA eGrid(EPA, 2018) database.  

3.2.2 Stochastic engine 

The use of historical hydrometeorological observations to evaluate critical infrastructure 

performance has a long history of misrepresenting risks from extreme events(Lall and Sharma, 

1996; Sahin and Sen, 2001; Herman et al., 2016). This practice is particularly problematic when 

considering risks associated with compound events. Very long simulations may be needed to 

adequately explore complex joint uncertainties that exist across variables, time and space, and 

produce rare combinations of system states that are especially hazardous(Borgomeo, Farmer and 

Hall, 2015; Herman et al., 2016). Thus, in this study we rely on an expanded (1000-year) synthetic 

dataset of relevant hydrometeorological variables and power system inputs, which is created as 

follows. 

First, historical records of daily average temperature and wind speed data at 17 major 

airports (Figures 12d and 12e, Figure S1 in the Supplemental Information) across the U.S. West 
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Coast are gathered from the NOAA Global Historical Climatological Network(NOAA, no date). 

Temperature data cover the period of 1970-2017, whereas wind data only cover 1998-2017. 

Missing wind data (1970-1998) at each site are filled by bootstrapping historical data, conditioned 

on minimizing the RMSE of daily temperatures. Concurrent records of global horizontal irradiance 

are taken from 6 sites (Figure S1 in the Supplemental Information) in the National Renewable 

Energy Laboratory’s National Solar Radiation Database (NSRDB)(Sengupta et al., 2018). 

Observed daily streamflow for 108 sites (Figures 12b and 12c) throughout the Pacific Northwest 

and California are taken for 1954-2008 from the BPA Modified Streamflow database((BPA) 

Bonneville Power Administration, no date) and the California Data Exchange Center (CDEC) 

(CDEC, no date). 

Synthetic hydrometeorological data is created in a manner that maintains the statistical 

moments for each individual process, as well as spatiotemporal and cross correlations among 

variables on multiple time scales (annual, seasonal, daily, hourly). Using the hourly historical data 

for temperatures and wind speeds described above, we generate an average 365-day profile for 

each observation site. Similarly, historical irradiance data is used to create a profile of average 

‘clear sky’ conditions. The period 1998-2017 is selected to ensure contemporaneous records across 

variables. Then residuals of the temperature and wind profiles are generated by subtracting the 

average profile from observed data. A similar operation is done for irradiance data to calculate 

“losses” in irradiance from cloud coverage. All of the residuals are transformed to approximate 

Gaussian distributions, and then the transformed residuals are used to parameterize a vector 

autoregressive (VAR) model to capture both autocorrelation and covariance across variables. The 

error terms in the VAR model are generated from a multivariate Gaussian distribution whose 

covariance matrix is calculated from the historical residual dataset. The number of lags is 
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determined using the Akaike Information Criteria (AIC). Synthetic residuals for temperatures, 

wind speeds and irradiance are then “un-whitened”, back-transformed and added to the average 

profiles to simulate daily temperature, wind speed and irradiance values.  

Creating synthetic streamflow records is a two-step process. First, Gaussian Copulas are 

used to capture observed statistical dependences among total annual streamflow at each gauge site, 

and between total annual streamflow and average air temperatures. To do this, a longer observed 

temperature record (1953-2008) at seven meteorological stations is transformed into heating and 

cooling degree days (HDDs and CDDs, respectively), which are measures of deviation from 18.33 

degrees Celsius (65 degrees Fahrenheit). Then total annual HDDs and CDDs are calculated by 

summing the daily HDDs and CDDs for each year, providing a coarse measure of each historical 

year’s “hotness” and “coolness”. Historical annual HDDs, CDDs and total annual streamflow for 

all sites are then transformed into quantile space by calculating empirical cumulative probability 

distribution of each variable: 

 

𝑃 = P(𝑄 ≥ 𝑞)         (1) 

 

Where,  

𝑄 = variable of interest (total annual streamflow, annual HDDs, annual CDDs) 

 

 The empirical distribution is transformed again into a uniform distribution between -1 and 

1 to ensure a zero-mean coherent dataset: 

 

𝑌 = 2(𝑃 − 0.5)        (2) 
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 Random samples are then drawn from a multivariate Gaussian distribution with mean 0 

and covariance matrix 𝑪  calculated across all sites and values of HDDs, CDDs and annual 

streamflow. The sampled data is then transformed back by reversing equations 1 and 2.  

The next step is to disaggregate total annual flows down to a daily time step. The synthetic 

samples of HDDs, CDDs and annual streamflow produced using the Gaussian Copula approach 

are matched with daily temperatures generated using the VAR model described above. For each 

year of synthetic data desired, a single year of HDDs and CDDs generated using the VAR model 

is selected via mean squared error. The corresponding daily temperatures are then compared 

alongside the historical record to find the year with the most similar spring and summer 

temperatures. Daily flow fractions for this historical year are then multiplied by total annual flows 

simulated via Gaussian Copula to produce a synthetic record of streamflow at each gauge site. 

This approach ensures that synthetic streamflow capture observed correlations across sites, as well 

as relationships with temperatures, on multiple time scales.   

 After synthetic records of hydrometeorological variables (temperatures, wind speeds, solar 

irradiance and streamflow) are created, these time series are translated into corresponding records 

of power system inputs. Using multi-variate regression models fitted to historical data, we use 

synthetic hydrometeorological data to create daily records of zonal electricity demand (via 

temperatures and wind speeds); wind power generation (via wind speeds); and solar power 

production (via irradiance), with regression residuals then represented using VAR processes. 

Hourly values are resampled from historical datasets maintained by BPA and CAISO.  

 Daily values of available hydropower production are created by passing synthetic 

streamflow records through mass-balance hydrologic models of dams in the Columbia River basin 

and major storage reservoirs in in California, as well as through a machine learning representation 
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of high altitude hydropower production in California; a small amount of remaining hydropower 

capacity is also represented via scaled model outputs. Daily hydropower availability is then 

dispatched optimally on an hourly basis by the UC/ED model. Detailed descriptions of all models 

used to translate raw hydrometeorological variables into power system inputs can be found in Su 

et al(Su et al., 2020).  

 Synthetic records of zonal electricity demand, hydropower availability, and variable 

renewable energy production are then pushed through the UC/ED model, resulting in 1000-year 

empirical distributions of prices and emissions. In order to isolate the role of hydrometeorological 

uncertainty and compound extremes on system outcomes, we initially fix the price of natural gas 

at $4.5/MMBtu. Thus, when we refer in this paper to prices in specific historical years (e.g. 2011), 

this should be interpreted as prices calculated by the model using observed 2011 

hydrometeorological data, assuming a natural gas price of $4.5/MMBtu.  

3.3 RESULTS AND DISCUSSION 
 

The results of this study add new insights to what is already known about the California 

grid’s vulnerability to hydrometeorological extremes. In an average year, 15% of California’s 

electricity demand is met by hydropower produced within the state(California Energy 

Commission, 2019). Moreover, additional hydropower is imported from the Pacific Northwest and 

Southwest, making California particularly exposed to periodic West Coast-wide drought(Wise, 

2016). There is also growing evidence that climate change is increasing the likelihood that 

precipitation deficits in California are associated with elevated temperatures (including heat waves 

(Diffenbaugh, Swain and Touma, 2015; Mote et al., 2016; Zscheischler and Seneviratne, 2017)), 
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potentially leading to more frequent periods of low hydropower production and high electricity 

demand occurring simultaneously. Compound hydrometeorological extremes can also create an 

overabundance of energy on the California grid. As its dependence on variable renewable energy 

grows(California Energy Commission, 2015), California is experiencing more frequent periods of 

oversupply during which the available supply of renewable and must-run generation eclipses the 

grid’s demand for electricity. A notable example occurred in early 2017, when California 

experienced an extreme wet period initiated by several atmospheric rivers, leading to high 

streamflow, an abundance of hydropower and, in combination with wind and solar, frequent 

negative prices and renewable energy curtailment throughout February and March (Trabish, 2017).  

Figure 13: Above diagonal: pair plots for the two performance metrics (wholesale prices and CO2 emissions) and 

five system state variables. Annual values from the stochastic simulation (colored dots) are plotted alongside 

annual values using historical hydrometeorology (black dots). Diagonal: distributions of power system state 

variables and performance metrics produced using historical (black) and synthetic (gray) hydrometeorological 

data. Below diagonal: 3D scatter plot for demand, California hydropower and PNW imports on an annual basis. 

Size of the dots correlate to the value of PNW imports. The diagonal plots are the distribution for each 

variable using either historical or synthetic datasets. Bottom half, color coded correlation for all 

variables. 
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We have structured the discussion of our results by time scale, beginning with annual and 

then proceeding to seasonal, daily and hourly time steps. On an annual time scale, we find that 

simultaneous extremes in temperatures and streamflow occurring across the entire West Coast 

causes the largest swings in market prices and CO2 emissions. We also find that extremes in 

emissions and prices are strongly positively correlated. The year with the highest average price 

($48/MWh) out of the 1000 synthetic realizations is an extremely “hot and dry” year (see Figure 

12b and 21d). High air temperatures increase demand for electricity in California, while low 

streamflow across the West Coast decreases the availability of hydropower in California as well 

as the availability of hydropower imports from the Pacific Northwest (PNW). The green line in 

panel Figure 12f tracks performance metrics (prices, emissions) and state variables for the same 

highest-price year that is depicted in Figures 12b and 12d. This connection between “hot and dry” 

years and high average prices is largely consistent among years with prices at or above the 95th 

percentile (gold lines in Figure 12f). The lowest price year ($36/MWh) is on average extremely 

“cool and wet” (Figure 12c and 12e). These conditions correspond to low electricity demand, 

plentiful hydropower in California, and abundant hydropower imports from the Pacific Northwest 

(red line in Figure 12f). The connection between “cool and wet” conditions and low prices is 

largely consistent among years that experience prices at or below the 5th percentile (blue lines in 

Figure 12f).  

 The 3D scatter plot in the lower diagonal of Figure 13 shows how CAISO prices respond 

to different combinations of in-state hydropower production, PNW imports, and electricity demand 

over the 1000-year synthetic dataset. Note that the min and max price years (the same ones shown 

in Figure 12) correspond to simultaneous extremes in these three state variables. The pair plots in 

the upper right show that the stochastic synthetic records capture historical correlations among key 
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state variables and performance metrics on an annual basis. Figure 13 highlights the importance 

of utilizing the expanded synthetic dataset to capture plausible compound extreme events that are 

not well represented within the limited length of the available historical record. In each plot along 

the diagonal, the stochastic results capture a wider range of decision relevant outcomes than what 

is produced by the historical data. 

In particular, we find that using historical hydrometeorological data alone yields a 

systematic bias that underrepresents years in which the CAISO market could frequently experience 

“oversupply” (i.e., when available hydropower, variable renewable energy and must run resources 

exceed demand) and extremely low market prices. The lowest-price year from the historical dataset 

is 2011— a wet year with relatively cool temperatures and an average price of $41.28/MWh. That 

price is equivalent to the 10th percentile of the 1000-year synthetic dataset, meaning there are many 

plausible combinations of hydrometeorological variables that force both prices (and emissions) 

considerably lower than 2011 (Table 3). In contrast, recent historical hydrometeorological data 

provide a better approximation of extreme scarcity on the California grid, thanks in part to the state 

having recently experienced a very extreme historic drought during 2012-2016 (an event with an 

estimated return period of between 1-in-500 and 1-in-1200 years)(Griffin and Anchukaitis, 2014; 

Belmecheri et al., 2016).  

Table 3. Comparison of annual power system performance metrics and state variables among the highest 
and lowest price years from the 1000-year synthetic dataset and historical dataset (1970-2017).  

Simulation Price Emissions Demand 
Hydro 

CA 

PNW 

Imports 
Solar Wind 

Synthetic 

(MAX) 
99.999% 99.40% 96.30% 2.60% 0.40% 67.10% 99.30% 

Synthetic 

(MIN) 
0.001% 0.20% 6.30% 99.80% 99.20% 37.10% 71.90% 

Historical 

(2015) 
98.34% 98.26% 92.19% 2.74% 16.45% 38.12% 26.33% 

Historical 

(2011) 
10.30% 9.30% 32.56% 89.04% 83.47% 75.83% 24.09% 
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We also find positive correlations between hydropower availability in California and PNW 

imports (which consist mostly of hydropower) (upper diagonal of Figure 13), confirming a finding 

from previous studies(Ryu et al., 2010; Pathak et al., 2018) that these two regions, whose 

electricity systems are interdependent, are more likely to experience dry or wet hydrologic 

conditions simultaneously. Additionally, in California, dry conditions (low hydropower 

availability) and hot conditions (high electricity demand) are more likely to occur simultaneously. 

Thus, for the CAISO system, covariance among a few key hydrometeorological state variables 

across space, acts as a risk multiplier. 

In Figures 14 and 15 (and throughout our discussion of sub-annual time scales), we focus 

Figure 14: (a) Distributions of daily wholesale prices in CAISO produced using historical hydrometeorological 

inputs. (b) Distributions of daily wholesale prices in CAISO produced synthetic inputs.  (c) First order sensitivity 

for power system state variables. (d) Power system state variables for yearly extremes. (e) Power system state 

variables for daily extremes. (f) Power system state variables for hourly extremes. 
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on our evaluation of the CAISO system’s performance in terms of wholesale prices and not CO2 

emissions. There are two reasons for not considering CO2 emissions: 1) prices and emissions show 

a very strong positive correlation (see Figure 13), so high/low prices can be viewed as an indicator 

of high/low emissions; and 2) sub-annual dynamics in emissions are likely to pose smaller 

environmental and/or economic consequences for grid participants relative to volatility in market 

prices.  

Moving from annual to seasonal, daily and hourly time scales, we find important nuances 

in how different combinations of hydrometeorological states affect system performance. The 

distribution of daily electricity prices produced using historical (1970-2017) hydrometeorological 

data (Figure 3a) shows low prices (as low as $5/MWh) are more likely to occur during the spring 

snowmelt (May-June). In the May-June period hydropower is produced in California and PNW 

imports are abundant. Historically observed high prices (as high as $68/MWh) are most likely to 

occur in late summer, when peak snowmelt (hydropower production) has subsided and 

temperatures (electricity demand) remain very high.  

Prices produced using historical data alone (Figure 14a) are a strongly biased 

underrepresentation of the higher order statistical moments for pricing in CAISO, especially at 

extreme outer quantiles. Although there is general agreement in terms of mean, seasonality, 

correlation among state variables, etc., the system’s internal variability as captured in the 1000-

year synthetic dataset yields a much wider range of extremes in market prices (empirical 

“min/max” values) (Figure 14b). Underlying these wider extremes are rare but plausible 

combinations of hydrometeorological conditions that, while reflective of stationary uncertainty 

(i.e., no climate change), collectively fall outside the recent historical record. 

Delta moment-independent sensitivity analysis(Borgonovo, 2007; Plischke, Borgonovo 
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and Smith, 2013) highlights the dominant  factors that influence daily prices (Figure 14c). We find 

that the first order sensitivity of daily prices to uncertainty in power system state variables 

(especially electricity demand and West Coast-wide hydropower availability) peaks during spring. 

This is a notable result, and one that contributes insights beyond previous studies, which have 

focused mostly on the potential for supply shortfalls to occur in late summer(Miller et al., 2008; 

Tarroja et al., 2019) (typically a hot, dry period). While we also find greater potential for scarcity 

(and higher prices) during late summer (Figure 14c), our results strongly suggest that 

hydrometeorological uncertainty is a more important driver of market price volatility during 

periods of relative abundance (spring). There are two root causes for this phenomenon. First, 

hydrometeorological uncertainty is greater during spring months (e.g., timing and amount of 

snowmelt in California and the Pacific Northwest). Second, it is a product of electricity markets’ 

clearing mechanism and the evolving structure of power system supply curves, the bottom of 

which are increasingly made up of $0/MWh marginal cost wind and solar. During extremely wet 

years with low spring demand (mild temperatures), hydropower and variable renewables can 

combine to displace higher marginal cost, fossil-fuel power plants from the market. This causes 

daily prices to fall sharply.  

Time scale is important for understanding how compound hydrometeorological extremes 

lead to price extremes (Figures 14d-14f). The violin plots across different time scales 

(annual/daily/hourly) capture extremely high/low prices (defined as 95th/5th percentile at an annual 

time step; 99th/1st percentile at daily/hourly time steps) as well as density maps for the five different 

power system state variables. The progression from annual (Figure 14d) to daily (Figure 14e) and 

then hourly price extremes (Figure 14f) directly illustrates the relative importance of changes in 

each state variable.  
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At the annual scale (Figures 12f and 12d), extreme high prices are driven by low 

hydropower availability across the West Coast and high electricity demand; low prices experience 

the opposite. Transitioning to the daily time scale (Figure 14e), very high demand days (e.g., heat 

waves in late summer) and very low demand days (e.g., 68°F in May) are the most consistent 

predictors of extreme prices. Extremely low daily prices also consistently map to very high values 

of California hydropower and PNW imports (often occurring during spring snowmelt), and the 

availability of wind and solar. Hourly extremes paint a somewhat different picture (Figure 14f). In 

particular, a significant number of high price hours coincide with very high California hydropower 

production and hydropower imports from the PNW. This apparent flip in the response of price to 

hydropower production results because much of the West Coast’s hydropower capacity is operated 

strategically as a “peaking” resource in order to maximize its value. Inexpensive (but finite) 

hydropower generation is deliberately aligned with hours of high marginal value (prices).  

Generation mix dynamics at finer (daily and hourly) resolutions (Figure 15) provide a more 

detailed mapping for how system operations and market prices are influenced by electricity 

demand and dynamic resource availability.  Note that “imports” shown in Figure 15 are not limited 

to those from the PNW; they also include some generation imported from the Southwest. The 
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generation mix for the two synthetic years with the lowest (Figure 15a) and highest (Figure 15b) 

average wholesale price (also discussed in Figures 1-2) show substantial differences. Periods of 

high demand and low hydropower availability (e.g., August in Figure 15b) increase the need for 

generation from fossil fuel power plants (mostly natural gas); as this happens, the market price 

(system “shadow cost”) increases. Periods of low demand and plentiful hydropower and variable 

renewable energy (e.g., beginning of June in Figure 4a) have the opposite effect, with prices falling 

to $5/MWh when there is a glut of low marginal cost hydropower and renewable energy.  

Overall one of the most pronounced differences in the monthly generation mix between the 

highest and lowest price synthetic years relates to the amount of hydropower and fossil fuel 

generation used. In the highest price year (Figure 15b), the CAISO market meets 42.4% of its 

electricity demand using fossil fuel-based power plants, 7% from in-state hydropower and 21.5% 

Figure 15: (a) Daily generation mix for the synthetic year with the lowest average price; (b) Daily generation mix 

for the year with the highest average price; Electricity demand in each day/hour is equal to the (stacked) sum total 

of all active generation resources. The pie plots in the top right corner of each panel signify the average generation 

mix used during the period. (c) hourly generation mix for two week period selected from lowest price year; (d) 

hourly generation mix for two week period selected from highest price year. On both a daily and hourly level, low 

demand and high hydropower drive prices down; high demand and low hydropower lead to high prices. Renewable 

generation exerts more control on prices on an hourly scale.   
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is imported. In the lowest price year (Figure 15a), CAISO only uses fossil fuel-based generation 

to meet 20% of its electricity demand, 24% comes from in-state hydropower and 26.2% from 

imports (including a greater amount of imported hydropower from the Pacific Northwest).  

Zooming into two critical weeks of the highest and lowest price years, we distinguish how 

changes in the generation mix shape acute price conditions. In a particularly low price 2-week 

period (Figure 15c) during the spring of the lowest-price synthetic year, depressed electricity 

demand (driven by mild temperatures) coincides with high streamflow (an abundance of 

hydropower), must run generation, and variable renewable energy.  

Some fossil-fuel generation remains online, primarily to provide operational reserves, but 

most is forced out of the market. As a result, the price of electricity frequently falls to $5/MWh, 

especially during hours when solar irradiance is highest (the “belly” of California’s “duck 

curve”(Denholm et al., 2015)).  

Also note that despite lower wholesale prices on average, hourly and daily price patterns 

during the two-week period in the lowest-price year (Figure 15c) are significantly more volatile 

than those in a dry, hot period in late summer in the highest-price year (Figure 15d). Natural gas 

power plants must be turned on and ramped up quickly in the early evening as solar power 

production declines. In the course of a few hours, prices can jump from near $0/MWh to close to 

$50/MWh.  

3.4 CONCLUSION 

There is growing awareness of the economic and environmental hazards that 

hydrometeorological uncertainty, including compound extreme events, pose for grid operators and 

electricity market participants. However, previous efforts to characterize these risks 

probabilistically have fallen short in their consideration of interconnected system topologies and 

joint uncertainties across correlated variables.  For the first time, we isolate the impacts of multiple 
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hydrometeorological drivers on California’s major wholesale electricity market and investigate 

how compound extremes translate to instances of extreme prices and carbon emissions on the grid. 

In the course of doing so, we also show that assessing risks associated with compound 

hydrometeorological events necessitates the use of larger synthetic datasets to access rare, yet 

plausible system states that have not occurred in the historical record. Controlling for the price of 

natural gas, we find that time scale strongly effects which combinations of hydrometeorological 

variables cause extreme prices and emissions. At an annual time scale, simultaneous “hot and dry” 

or “wet and cool” conditions occurring across the West Coast result in the highest and lowest 

price/emissions outcomes, respectively. At a daily time scale, we find that very high demand 

(typically caused by heat waves) drives high price events, while extreme low daily prices are 

associated with a combinations of low demand (mild temperatures), high hydropower availability, 

and abundant wind and solar power production. Our modeling confirms a finding in previous 

studies that West Cost power systems experience the highest prices and greatest threats to 

reliability during combined hot and dry periods in late summer. However, we find that the market’s 

response to compound hydrometeorological extremes (in terms of altered prices) is most 

pronounced during spring snowmelt, when demand is typically low (temperatures mild) and there 

is often an overabundance of power, especially from renewable energy, available on the grid.  

It is important to note that the role that different hydrometeorological variables play in 

power system dynamics today is likely to change in the future as more variable renewable energy 

is added into the grid. An outstanding challenge remains understanding how future grid 

configurations, likely comprised of much larger shares of renewable energy, will be vulnerable to 

compound hydrometeorological extremes. In addition, future work should incorporate growing 

risks to power systems from discrete events such as coastal and inland flooding and wildfire. 
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3.5 DATA AVAILIABILITY 

The data that were used in this analysis are available at the GitHub repository: 
https://github.com/romulus97/CAPOW_PY36 

 

https://github.com/romulus97/CAPOW_PY36
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CHAPTER 4: THE EFFECTS OF RETAIL LOAD DEFECTION ON A MAJOR 

ELECTRIC UTILITY’S EXPOSURE TO WEATHER RISK 

 

 

4.1 INTRODUCTION 
 

In the electric power sector, hydrometeorological uncertainty and extremes can negatively 

impact the functionality of generation resources and cause large changes in customer 

demand(Pappas et al., 2008; J Kern and Characklis, 2017). Streamflow, which acts as a ‘fuel’ for 

hydropower production and a critical coolant for thermal power plants, is subject to hydrologic 

variability. Electricity demand, which is strongly affected by heating and cooling needs, is directly 

influenced by deviations in air temperatures above and below the human comfort range (18.3 

degrees C or 65 degrees F), with heat waves and cold snaps typically causing spikes in demand. 

By affecting both supply and demand for electricity, variation in hydrometeorological conditions 

can also be a source of financial stress for power system participants(Deng, 1999; Deng and Oren, 

2006). For example, hydrologic conditions directly influence revenues for hydropower-owning 

utilities and, in combination with air temperatures, can significantly influence prices in wholesale 

electricity markets. Utilities have traditionally made use of a wide range of tools to manage 

exposure to these risks, ranging from heating/cooling degree-day hedging contracts that protect 

against air temperature deviations from expected levels to “parametric” insurance that protects 

against hydrologic variability(Foster, Kern and Characklis, 2015; Kern, Characklis and Foster, 

2015).   

Similar to other businesses, electric utilities are also exposed to market and regulatory 

risks(Taminiau et al., 2019; Deng et al., 2020). For example, in recent years, the combination of 
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policy pressure, market deregulation and falling renewable energy costs have led to a steady 

transition away from fossil fuel based generation in many U.S. power markets(Denholm et al., 

2015a; Su, Kern and Characklis, 2017). This has created many new risks for some incumbent 

utilities, including reduced market share. Ostensibly, risks for utilities from weather and the energy 

transition may seem independent, requiring separate management strategies, however, it is 

possible (perhaps likely) that these risks interact in complex ways, with underlying changes in one 

area leading to altered exposure in the other. For example, increased reliance on wind and solar 

power could increase a utility’s exposure to uncertainties in wind speeds and solar 

irradiance(Collins et al., 2018). Financial distress caused by harmful weather and climate events 

(e.g. wildfire in California) can also result in lower credit ratings and an increased cost of 

borrowing, potentially leading to higher costs for new renewable energy projects(BlackRock, 

2019; McKinsey Global Institute, 2020).  

A less well-understood example is the interplay between a utility’s exposure to weather 

risk and “load defection”, i.e., the gradual diminution of a utility’s retail load base (demand) due 

to customer use of energy efficiency measures or increased use of self- or third-party owned solar 

panels.  Utility competition with community choice aggregations (CCAs), local government 

entities that procure electricity on behalf of retail customers within a certain geographical area can 

also have an impact. While participation in CCAs is voluntary, in eight U.S. states (CA, IL, MA, 

NJ, NY, OH, RI and VA) they directly compete with incumbent utilities for customers. By 

sidestepping a traditional utility’s generation portfolio, CCAs and their customers can (in theory) 

purchase their electricity from less polluting sources, including wind and solar farms. 

The potential negative effects of load defection on incumbent utilities’ financial standing 

have been noted previously(Gunther and Bernell, 2019; O’Shaughnessy et al., 2019). However, 
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no consideration has yet been given to the effects defections can have on an electric utility’s 

exposure to weather risk – and vice versa. Utilities participating in competitive markets for 

electricity generally have three main revenue sources: 1) a generation business that sells electricity 

produced from the utility’s own power plants into a wholesale market); 2) a transmission business 

that charges grid participants for the use of utility-owned high voltage transmission lines; and 3) a 

retail distribution business that purchases electricity from the wholesale market and sells this to 

end users(Bryant, Straker and Wrigley, 2018). If utilities’ retail electricity businesses contract due 

to load defection, the relative importance of other revenues sources (i.e. transmission and/or 

wholesale generation) may increase. For some utilities, this could alter exposure to weather risk 

by strengthening or weakening the correlation between hydrometeorological conditions and 

financial outcomes, and/or by increasing weather-caused financial variability as a proportion of a 

utility’s (shrinking) overall business.  

Given the rapid rates at which load defection is now occurring at some utilities, significant 

changes in utilities’ financial exposure to weather risk may occur quite quickly (in a matter of a 

few years(JOHN, 2017; Kennedy and Rosen, 2020)). At least in terms of rate-of-change, this is 

somewhat in contrast to the projected impacts of climate change, which are expected to increase 

utilities’ physical and financial exposure to weather phenomena over decades(Franco and Sanstad, 

2007; Sautter and Twaite, 2009; Nierop, 2014; Omid Mazdiyasni and AghaKouchak, 2015; Bartos 

et al., 2016; Dominique Bain and Acker, 2018; Kraft, 2018). Here, we perform a series of 

computational modeling experiments to better understand the effects of load defection on a major 

utility’s financial exposure to weather risk. The broader value of this work is in showing how 

changing revenue structures and business models can impact a utility’s exposure to 

hydrometeorological uncertainty and extremes. Our results highlight new complexities involved 
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in helping utilities to find the most effective ways to hedge risk to maintain their financial stability. 

4.2 METHODS 

4.2.1 Test Bed  

 

We focus our analysis on Pacific Gas and Electric (PG&E), the largest power and transmission 

utility in California. PG&E participates in the deregulated wholesale market administered by the 

California Independent System Operator (CAISO), technically as three separate entities, all owned 

by the same holding company: 1) a generation business that sells electricity produced from PG&E-

owned power plants, and electricity procured from other sources, into a competitive wholesale 

electricity market. Generation sold in this manner is valued at a floating price determined by the 

interaction between supply and demand in the wholesale market; 2) a transmission business that 

delivers electricity to end users; and 3) a retail business, which purchases electricity from the 

wholesale market (also at the wholesale price) and sells it to its own retail customers(Pacific Gas 

and Electric Company, 2019).  Since 2014, PG&E has been experiencing retail load defection from 

customer uptake of rooftop solar and competition from CCAs(Gunther and Bernell, 2019; 

O’Shaughnessy et al., 2019; Kennedy and Rosen, 2020), and it is projected that PG&E could lose 

over 80% of its retail load within three to five years(JOHN, 2017). If PG&E does lose a majority 

of its retail load, risks in PG&E’s wholesale generation and transmission businesses may begin to 

exert greater influence on the utility’s revenues and measures of its financial stability (e.g. credit 

rating), which have direct bearing on critical factors such as borrowing power and interest rates.  

Weather risk is already a key concern in both PG&E’s transmission and wholesale generation 

businesses. Air temperatures strongly influence demand for electricity in PG&E’s footprint, thus 

also driving demand for transmission services. In PG&E’s wholesale generation business, its 

largest source of self-owned capacity is a fleet of hydroelectric dams located in California’s Sierra 

Nevada Mountains. These dams provide operationally flexible (i.e. they can be ramped up/down 
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with little penalty), low carbon generation, however, they are also highly dependent on hydrologic 

conditions, with high/low snowpack years leading to more/less hydropower production. As 

PG&E’s retail business shrinks, the relative importance of its transmission and wholesale 

generation businesses will grow. There is particular interest in understanding how the utility’s 

overall exposure to hydrometeorological conditions (including hydrologic extremes) could 

change– not due to changes in air temperatures and streamflow dynamics, per se (although this is 

likely to occur as well due to climate change) – but rather, an evolving marketplace.  

4.2.2 Modelling Framework and Experimental Design 

 

 

We use a system-based modelling approach to simulate CAISO market operations and the 

financial operations of PG&E’s electricity businesses (wholesale generation, transmission and 

retail distribution) (Figure 16). To simulate the CAISO wholesale electricity market, we use the 

California and West Coast Power system (CAPOW) model, which is an open source stochastic 

simulation framework designed specifically for evaluating the effects of hydrometeorological 

 

Figure 16: Modelling framework including data inputs/outputs and model modules 
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variables on the U.S. West Coast bulk power system. CAPOW is Python-based and all source code 

and data are freely available online; validation and application of the model in other studies can 

be found in Su et al. (2020a)(Su et al., 2019), Kern et al. (2020)(Kern, Su and Hill, 2020) and Su 

et al., (2020b)(Su, Jordan D Kern, et al., 2020).  We couple the CAPOW model with a 

representation of PG&E’s business operations to simulate utility financial performance under 

hydrometeorological uncertainty. We run CAPOW and then the PG&E business model in a 

sequential fashion, first capturing the effects of weather and streamflow conditions on system-

wide supply, demand, and wholesale prices in the CAISO market. CAPOW also simulates the 

hourly dispatch of all generating units participating in CAISO, including those owned and 

contracted by PG&E. We then model PG&E’s costs and revenues across the three core components 

of its business. In this work, we focus on PG&E’s “net revenue” as the primary financial 

performance metric. Net revenue is defined as the difference between annual revenues and costs 

(costs include debt service and a 10% return on equity for shareholders).  

The aim of this work is to investigate how PG&E’s financial exposure to 

hydrometeorological variables will change as their customer base declines, but their generating 

capacity remains constant as a result of long-term investments in generation assets. To achieve 

this, we simulate PG&E’s operations under three different retail load scenarios: 2018 levels 

(assumed to be 0% load defection), 50% load defection, and 90% load defection. We choose 2018 

load levels as a starting point instead of 2019 due to increased sectoral data availability. In our 

modeling, we assume load defection comes only from competition with CCAs, as opposed to 

customer owned/sited distributed energy resources (e.g., solar). This assumption aligns with 

observed historical data (see Figure A2 in the Appendix). We evaluate PG&E’s net revenues on 

an annual basis, tracking the correlation between weather variables and financial performance to 
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determine if these statistical relationships change under possible future levels of load defection. 

We focus on PG&E’s exposure to uncertainty and extremes in air temperatures and streamflow, 

as previous research suggests that wind speeds and solar irradiance do not (yet) influence market 

prices on an annual scale at current installed wind and solar power levels(Su, Jordan D Kern, et 

al., 2020). 

4.2.3 California and West Coast Power (CAPOW) model 

The geographical scope of the CAPOW model covers two wholesale power markets 

including CAISO, which covers most of the California, and the Mid-Columbia (Mid-C) power 

market, which covers much of the U.S. Pacific Northwest. CAPOW has 2 core components:1) a 

stochastic engine; and 2) a zonal unit commitment economic dispatch (UC/ED) model(Su et al., 

2019).  

The stochastic engine takes historical hydrometeorological timeseries from multiple sites 

and uses these data and a range of statistical and stochastic modeling approaches to generate an 

expanded 1000-year synthetic time series. Historical data come from 17 major regional airports in 

Figure 17: (a) An example of temperature effects on system demand. Higher temperature corresponds to higher 

electricity demand due to cooling needs whereas low temperature increases electricity demand by increase heating 

needs. (b) Validation of the simulated PG&E valley (PG&E footprint outside of San Francisco Bay Area) demand 

using temperature against historical observations. 
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the NOAA Global Historical Climatological Network (air temperature and wind speed data), 7 

different National Solar Resource Database sites (irradiance) and 105 streamflow gauges 

throughout the West Coast. The stochastic engine, which has been thoroughly validated in our 

previous research(Su, Jordan D. Kern, et al., 2020), is able to produce synthetic time series that 

capture the statistical properties (moments, spatial and temporal autocorrelation) across all 

variables (More details in the Appendix). The advantage of using synthetic time series is that the 

expanded dataset can capture uncertainties and extremes outside the limited historical record.  

Synthetic air temperature and wind speed data are then used to simulate daily peak and 

hourly electricity demand in the CAISO market, including the PG&E footprint, using multivariate 

regressions (Figure 17). Errors are represented by vector autoregressive models that capture spatial 

and temporal correlations across demand sites. Similar methods are used to simulate wind and 

solar power generation on a zonal level at an hourly time step. Hydropower production is modelled 

using a hydrologic mass balance model for the dam-reservoirs in the Federal Columbia River 

Power System (Pacific Northwest), Willamette River basin (Oregon), and Sacramento, San 

Joaquin and Tulare Lake basins (California). A large portion of the California dams do not, 

however, have publicly available rule curves; thus we use a differential evolutionary algorithm to 

search for the best fitting rule curve for those dams(Su et al., 2019).  

Given the time series inputs described above, CAPOW then simulates the hourly dispatch 

of every power plant in the system by minimizing the system wide production cost associated with 

meeting hourly demand for electricity and operating reserves, subject to generator-specific and 

system-wide operating constraints. The UC/ED model is structured as an iterative Mixed Integer 

Programming (MIP) with an operating (“look-out”) horizon of 48 hours. Simulating the UC/ED 

component of the model generates hourly zonal electricity prices in terms of $/MW, plant level 
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carbon emissions (tons of CO2) and hourly plant level generation amounts (MW). 

4.2.4 PG&E business model 

The PG&E business model simulates the utility’s financial operations using publicly 

available data from its annual financial reports(Pacific Gas and Electric Company, 2017, 2019). 

PG&E’s electricity business is comprised of three quasi-independent entities: 1) a wholesale 

generation business; 2) a transmission business; and 3) a retail distribution business. We model 

dynamic costs and revenues for each. PG&E’s wholesale generation business can be subdivided 

into: 1) self-owned generation (i.e. electricity produced by power plants that PG&E owns); and 2) 

third party contracts (e.g. long-term procurement of generation from assets owned by other entities, 

most in the form of power purchase agreements (PPAs) for renewable energy). PG&E owns 

several hydroelectric dams totaling 2860 MW, two natural gas power plants (1100 MW) and 1 

nuclear plant (2240 MW) (Table 4). In this study, we assume PG&E’s 2019 third party contracts, 

at least in terms of the volume and types of resources involved. Notably, PG&E’s renewable 

energy PPAs tend to be much more expensive than the average simulated market price in CAISO 

(about $45/MW), with many contracts priced at roughly $140/MW(Dudziak, Ewing and Horn, 

2019). For PG&E’s remaining third party contracts, the exact terms and price structure for those 

contracts are not public, so we initially assume flat rates of $45/MW for electricity procured in this 

way, which is the average wholesale price over our 1000 synthetic runs with natural gas prices 

fixed at $4.5/MMBtu.  
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Even if a majority (or all) of the generation produced by PG&E’s generation assets (both 

self-owned and third party contracts) is ultimately purchased by its retail distribution business, 

PG&E technically must first sell generation from its power plants into the wholesale market, where 

it competes with other generators all of whom set their bids into the market on the basis of cost 

then purchase the power back from wholesale market to meet its own customers retail demand. 

The detailed cash and electricity flow can be seen on Figure 18. To model PG&E’s generation 

business, we identify the generation assets owned by PG&E and thermal generation plants 

associated with third party contracts in the CAPOW model. We model production from PG&E’s 

Figure 18: Power and cash flow in the wholesale and retail system. The relationship of 3 parts of the PG&E 

business, namely wholesale generation, retail and transmission are shown.  The CCAs outcompetes PG&E retail 

business due to cheaper renewable contracts signed in recent years.  
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wind, solar and hydropower PPAs proportional to overall production of these resources in the 

larger CAISO system. Based on CAISO prices and modeled dispatch results, we calculate costs 

(e.g. fuel) and revenues associated with PG&E selling electricity into the wholesale market.  

 

Table 4. PG&E’s generation assets and third party contracts for 2019. 

Self-Owned Generation Mix 

Type Capacity (MW) Number of Units 

Nuclear 2240 2 

Hydroelectric dams 2680 103 

Pump Storage 1212 3 

Fossil Fuel-fired 1100 12 

Photovoltaic 152 13 

Third Party Contracts (GWh) 

 2019 

Renewable 9276 

Non-Renewable 4530 

Large Hydroelectric 1797 

 

PG&E’s transmission revenues come from distribution of electricity to its own retail 

customers as well as CCA customers living within PG&E’s geographical footprint. Each customer 

that receives electricity from a PG&E owned line is charged a flat rate of $0.126/kWh for the use 

of PG&E’s transmission infrastructure (Table 4). PG&E’s revenues from its transmission business 

accrue at this rate based on its delivery of electricity to customers in its territory. PG&E’s own 

customers pay for both electricity and transmission service, proportional to their own demand; 
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CCA customers only pay for transmission service, also proportional to their own demand. 

PG&E’s retail distribution business earns revenue from the sale of electricity to customers 

across its four major customer classes (commercial, industrial, residential, agricultural). Demand 

from each sector is disaggregated from total PG&E demand based on historical monthly demand 

fractions. PG&E’s retail rate structure is complex, with roughly 100 different rate structures across 

different customer groups and use cases. In our model, we assume the most common seasonal rate 

structures for each customer class (Table 5). PG&E defines summer as the months of May, June, 

July, August, September, and October; they define winter as January, February, March, April, 

November and December. The summer rate is generally higher than the winter rate across the four 

sectors. The only exception is the industrial sector rate, which is the same throughout the year.  

We also model the five main cost components of PG&E: 1) fuel costs from its generation 

assets; 2) payments to third party generation contracts; 3) purchases from the wholesale market; 

4) operation and maintenance costs (O&M); and 5) debt service and 10% return on equity for 

shareholders, assuming a depreciated asset base of $30 billion(Pacific Gas and Electric Company, 

2019). Fuel costs are calculated based on generator unit heat rates and dispatched generation 

simulated from CAPOW. Payments to third party contracts are assumed to accrue at a flat rate 

($140/MW for renewables and $45/MW for other sources). Purchases from the wholesale market 

are calculated as PG&E’s calculated retail demand in every hour multiplied by the floating market 

price in the CAISO market. Lastly, O&M, debt service payments and return on equity for 

shareholders are fixed equal to values reported by PG&E for 2019(Pacific Gas and Electric 

Company, 2019). From 2016-2019, these reported values from PG&E changed little year-to-year. 

In our modeling, we assume that these values would also remain static under future load defection 

levels. 
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Electricity Rate ($/kwh) 

 Summer (May-Oct) Winter (Jan-Apr, Nov, Dec) 

Residential 0.27029 0.21024 

Commercial 0.25069 0.19024 

Agriculture 0.3076 0.23722 

Industry 0.1055 0.1055 

 

 Transmission Rate ($/kwh)  

Transmission rate 0.127 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Changes in costs and revenues  

Figure 19 breaks down PG&E’s average cost and revenue components under three different 

customer load levels: 2018 load levels, following 50% load defection, and following 90% load 

defection. The “outer” circles of pie charts shown in Figure 19 represent PG&E’s revenue sources; 

“inner” circles represent cost components. Figures 19d and 19e, which correspond to load 

defection of 50% and 90%, respectively, show how the contributing fraction of each revenue and 

cost component changes, relative to current load levels. Note that these pie charts assume that 

PG&E’s retail rates stay the same (i.e. they are not increased by the utility to compensate for lower 

retail demand).  

Table 5. Rate structure used to model the business operation of PG&E. 
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Our modeling results confirm that load defection could cause significant changes in the 

make-up of PG&E’s cost and revenue components. Retail revenues are currently PG&E’s second 

largest source of revenue after transmission revenue. Unsurprisingly, when 90% of PG&E’s 

customers leave the system, the utility’s retail business becomes its smallest source of revenue. At 

the same time, load defection increases the relative importance of its wholesale generation and 

Figure 19: PG&E revenue and cost breakdown for current load levels, 50% load defection and 90% load 

defection scenarios. 
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transmission businesses, even as revenues from wholesale generation and transmission stay 

roughly the same in an absolute sense (see Figure 20)Wholesale revenue is selling self-generated 

electricity to the market is independent from load defection, because the underlying generating 

assets in PG&E remain the same. Thus the ability to sell electricity to wholesale market is 

unaffected. Transmission revenue on the other hand, depends the electricity demand in the entire 

region, which also is not affected by load defection. Overall regional demand can be reduced if the 

distributed generation resources becomes more popular.  

Figure 20 also shows impacts to PG&E’s cost components. Purchases from the wholesale 

market decrease in both a relative and absolute sense. As PG&E’s retail load decreases, the utility 

transitions from being (on average) a net buyer of electricity in the wholesale market to a net seller. 

In other words, as PG&E’s retail load decreases, the utility more frequently experiences a 

“surplus” of wholesale generation from its self-owned and contracted resources. We also see that, 

third party contracts and fixed costs (O&M, debt service, etc.) increase as a percentage of total 

costs, despite not increasing in an absolute sense. 

One of the most important effects of load defection is the reduction in overall revenue for 

Figure 20: Overall revenue decline as load defection increases 



85  

PG&E (Figure 20). The reduction in retail revenue experienced by PG&E outweighs a slight 

increase in revenues from wholesale generation, leading to an overall decline in revenue from 

around $16 billion at current load levels to $13 billion with 90% load defection. In theory, PG&E 

aims to be net revenue natural ($0 net revenue) after accounting for all the costs and shareholder’s 

return on equity (ROE). Losses of this magnitude would put considerable financial pressure on the 

utility to raise rates on customers so that they could maintain a reasonable return on equity for 

shareholders, a topic explored in the next section. 

4.3.2 Increasing rates and increasing uncertainty  

Traditionally, regulated electric utilities (acting with approval from utility commissions) 

have been able increase electricity rates on customers to counter revenue deficits(California Public 

Utilites Commission, 2020). It is not clear, however, that this will be a viable strategy in the future 

if/when more and more customers defect from PG&E. In Figure 21, we demonstrate the potential 

effects from retail customer losses on PG&E’s average retail rates. At each level of load defection 

and for each simulation year considered, we calculate the $/kWh retail electricity rate required to 

cover PG&E’s annual operating costs (including debt service and a 10% return on equity). No 

changes are assumed for PG&E’s transmission rate, because PG&E’s revenues from its 

transmission service remain unchanged as long as customers continue have power on PG&E lines, 

even if that electricity is sold by a CCA.  

The blue boxplots in Figure 21 represent the distribution of electricity rates required to 

reach net revenue neutral at each load level across 1000 single-year model realizations. As load 

defection increases, PG&E’s electricity rates need to increase dramatically to counter the 

associated decline in retail revenues. Our results indicate that at 90% load defection levels, 

customers remaining in PG&E’s pool would need to pay electricity rates of over $210 /MWh (i.e. 
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$0.21/kWh), which is 328% of current electricity rate ($64 /MWh or 0.064 /kWh), on average to 

compensate for PG&E’s reduced retail revenue. Adding associated transmission costs 

($0.127/kWh) would bring the overall retail rate for PG&E customers to around $0.337/kWh. Such 

substantial increases in electricity rate will driver more people to choice cheaper options such as 

joining CCAs and/or adopting distributed energy system by installing solar panel on their roofs. 

The further depleted customer base would raise the prices even higher which continues the positive 

feedback loop. Such phenomenon is part of the  widely discussed “death spiral”(Castaneda et al., 

2017; Laws et al., 2017).  

Another important pattern we see is that year-to-year variation in the rate required (i.e. the 

range of the “whiskers”) increases significantly as a function of load defection. This increase in 

uncertainty is also quantified using a coefficient of variation measure on the secondary y-axis. At 

Figure 21: Simulated rate change as customer base decreases. The rate needs to increase in an exponential way 

to counter act the decreased retail demand. The rate variation and coefficient of variance will also increase 

dramatically.  
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any given load level, variability in the rate required is purely a function of uncertainty in weather 

(especially air temperatures and streamflows), which directly influences CAISO market prices and 

PG&E’s costs and revenues. It is important to note that the increase in financial uncertainty shown 

in Figure 21 is not caused by an increase in the year-to-year fluctuations in PG&E’s costs and 

revenues. Rather, due to PG&E’s shrinking retail business, as shown in equation 1, even as net 

revenue variation maintains the similar level, the electricity rate variation will increase. . 

Consequently, each remaining customer in PG&E’s system needs to shoulder a greater share of 

this variability. In theory, this could lead to greater year-to-year swings in electricity prices for 

remaining customers. In reality, PG&E may be somewhat limited in its ability to immediately 

raise/lower retail rates to address unexpected revenue surpluses/shortfalls caused by its exposure 

to weather risk. Thus, it could be reasonably assumed that a significant share of share of this 

financial uncertainty would fall on shareholders, as opposed to customers alone.  This makes 

understating the changing nature of PG&E’s financial exposure, especially as it relates to weather 

risk, much more important.   

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑦 𝑟𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝑁𝑒𝑡 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑣𝑎𝑟𝑎𝑖𝑡𝑖𝑜𝑛

𝑅𝑒𝑡𝑎𝑖𝑙 𝑙𝑜𝑎𝑑
                                                   (1) 

4.3.3 Net revenue and weather variables  

In the following sections, we explore how load defection could fundamentally alter 

PG&E’s financial exposure to hydrometeorological uncertainty, including extremes. Previous 

studies(Mureddu and Meyer-Ortmanns, 2018; Su, Jordan D Kern, et al., 2020) have shown that 

air temperatures (which drive interannual variability in demand) and hydrologic conditions (which 

control the availability of hydropower) are the most dominant environmental factors that influence 

operations and market prices in the CAISO system. Previous studies have also shown that 

PG&E(Kern, Su and Hill, 2020) is strongly influenced by both air temperatures and streamflows. 
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Thus, our analysis focuses on PG&E’s changing financial exposure to these two weather variables.  

In the remaining analysis, we assume that PG&E is able to recover retail revenue losses 

Figure 22: PG&E system demand’s effect on PG&E net revenue. The correlation between system demand and 

net revenue increases as customers leave the system.  
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caused by load defection. As PG&E’s retail load declines, we add a fixed fee for all retail and 

transmission customers to ensure that at any load level, the utility’s net revenue (after making debt 

service payments and issuing a 10% return on equity to shareholders) is $0 on average, across 

1000 single year simulations. By ‘guaranteeing’ PG&E’s cost recovery in an average year, we can 

then isolate the effects of hydrometeorological uncertainty on their financial performance at 

different load levels without introducing any confounding variables.  

Figure 22 shows the relationship between total system demand in the PG&E footprint (x-

axis) and modeled annual net revenues for PG&E (y-axis) under the three different load levels 

considered (current, 50% defection, 90% defection). Note that demand here includes electricity 

consumed by CCA customers who are within the PG&E footprint, even though PG&E does not 

sell to those customers. At current load levels (Figure 7a), net revenues are positively correlated 

with system demand, i.e. higher demand corresponds to higher net revenues and lower demand 

corresponds to lower net revenues. Note that when we control for a given level of electricity 

demand (take a vertical transect of Figure 22a), lower market prices are generally better for net 

revenue. This actually reflects PG&E’s exposure to hydrology (wet years simultaneously decrease 

market prices and increase hydropower production at PG&E’s dams) and wholesale prices. At a 

given demand level, lower wholesale price means that it is cheaper to purchase electricity from the 

market to meet the retail demand. At the same time, this reflects more hydropower revenue 

generated from PG&E’s hydroelectric facilities (see Appendix for additional exploration of 

relationship between hydrologic conditions, hydropower production, and market prices in 

CAISO). The additional sales from hydro in wet years more than compensate for the reduction in 

wholesale revenue that resulted from the lower prices. More detailed discussion on hydrologic 
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exposure is presented later in this section. 

However, as PG&E’s retail customer base declines (going from Figure 22a to Figure 22c), 

vertical stratification due to market prices (hydrology) collapses and the correlation between 

CAISO system demand and PG&E’s net revenues becomes stronger (R2 changes from 0.22 to 

0.56). This indicates that air temperatures (which drives electricity demand in the PG&E footprint) 

will become a better indicator of net revenue.  Recall Figures 19 and 20 where load defection 

Figure 23: Density plots of electricity demand, hydropower production and wholesale electricity prices of 

extreme net revenue simulations (5th and 95th percentile) under current, 50% and 90% load defection levels. 
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would lead to transmission revenue accounting for an even higher percentage of overall revenue 

(over 75% on average); this directly contributes to the increased correlation between demand 

within PG&E’s footprint and its net revenue.   

Figure 23 shows density plots of electricity demand, hydropower production, and 

wholesale electricity prices under the three different load defection levels. These plots only show 

simulation years with extremely high (95th percentile) PG&E net revenues and extremely low (5th 

percentile) net revenues, colored in red and blue respectively. Looking only at the distributions of 

electricity demand in the PG&E footprint, we see that with increasing load defection (going from 

Figure 8a to Figure 8c) years of extremely high/low net revenues gradually concentrate around 

years of extremely high/low demand. The reason for this gradual change is PG&E’s shifting 

revenue and cost structure (Figures 19 and 20). At higher levels of load defection, revenues from 

PG&E’s wholesale generation and transmission businesses become more important, with 

transmission revenues becoming the utility’s single largest revenue source. Both of these revenue 

streams benefit from higher overall demand in the CAISO system (i.e. hot years), which leads to 

a greater volume of electricity being distributed on PG&E’s transmission facilities (a service for 

which even CCA customers in PG&E’s territory pay, see Table 5). Despite the overall positive 

(and strengthening) relationship between annual demand and net revenues for PG&E, the very 

lowest net revenues actually occur in years when demand is moderate and wholesale prices are 

high. These years, which will be discussed next, are associated with drought and very low PG&E 

hydropower production.  

Figure 24 shows the relationship between PG&E hydropower production (x-axis) and 

modeled annual net revenue (y-axis) under the three different load levels considered (current, 50% 

defection, 90% defection). Under current retail load levels, there is a strong positive correlation 
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between hydropower output at PG&E’s dams and net revenue, with wet years being the most 

profitable. There are two reasons for this relationship. First, wet years result in greater production 

from PG&E’s hydroelectric facilities, leading to higher revenues despite the lower wholesale 

prices.  

Figure 24: PG&E hydropower production and PG&E net revenues. The correlation between hydropower 

production and net revenues weakens as customers leave the system. Note that PG&E becomes financially exposed 

to extreme wet years at 90% load defection levels. 
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Second, wet years in California tend to experience lower wholesale electricity prices, due 

to a greater abundance of low marginal cost hydropower in the market. At current load levels, 

PG&E is usually a net buyer of electricity from the wholesale market, and lower prices during wet 

years would make it less expensive for the utility to meet its demand, increasing net revenues (this 

is also apparent in Figure 23a). Note however, that for any given level of hydropower production 

(take a vertical transect of Figure 24a), higher prices are generally better for net revenue.  This 

actually reflects PG&E’s exposure to air temperatures (hot years simultaneously increase market 

prices and increase demand in the PG&E footprint, which has a positive impact on net revenues). 

The positive linear relationship between PG&E’s hydropower production and its net 

revenues begins to break down as customers defect (Figure 24b and Figure 24c). While PG&E’s 

negative financial exposure to very dry years remains steady, extremely high and low (95th/5th 

percentile) net revenue years become associated with a much wider range of hydrologic conditions 

(this can also be seen Figures 23b and Figure 23c). As load leaves the system, even extremely wet 

years (historically a boon to PG&E and its fleet of hydroelectric dams) actually start to appear in 

the lower 5th percentile of net revenue outcomes. These years are generally cooler years as well, 

experiencing low demand and thus contributing to very low market prices. As PG&E becomes a 

net seller into the CAISO market, these years of low demand (transmission revenues) and low 

wholesale prices become a liability. 

As noted, a key element of PG&E’s exposure to weather risk is not simply how temperature 

and streamflows affect demand and hydropower availability within the PG&E footprint, but also 

how these factors influence wholesale prices in the CAISO market. As PG&E experiences load 

defection, we see their exposure to wholesale price extremes change as well. Under current load 

levels, years of very high net revenues tend to concentrate around years of very low wholesale 
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prices (Figure 23a). Again, this is because of PG&E’s current role as a net buyer of electricity; low 

prices make it cheaper to meet their retail demand. Low wholesale prices are also an indicator of 

high hydropower output, which is generally beneficial to PG&E.  However, as PG&E experiences 

more load defection and transitions to a being a net seller in CAISO, their exposure to wholesale 

prices changes dramatically– nearly reversing (see Figures 23b and 23c). Another key to 

understanding this altered exposure is PG&E’s reliance on long term PPAs for renewable energy, 

which were initiated as part of its efforts to comply with California’s ambitious renewable energy 

portfolio standards. The reported average prices for these PPAs are around $140 per MW(Dudziak, 

Ewing and Horn, 2019) (a price that is typically much higher than the price in the CAISO market). 

As PG&E experiences load defection and transitions from a net buyer in the CAISO market to a 

net seller, PG&E is still contractually obligated by their PPAs. They continue to purchase 

renewable energy at a high price (re-selling it into CAISO for much less), a loss that becomes more 

damaging without the ability to pass these costs on to retail consumers. Consequently, very wet 

years that cause the market price to drop considerably) begin to represent a new liability for PG&E 

(Figures 23c and 24c). 

4.4 CONCLUSION 
 

Year-to-year fluctuations in streamflow and air temperatures are known to impact the 

operations of electricity markets like CAISO and financial outcomes of electricity utilities 

participating in those markets. Here, for the first time, we demonstrate that for one major utility, 

exposure to weather risk, including extremes, may change – and in a matter of years—not due to 

the effects of climate change, but due to retail load defection. As customers increasingly exert 

more control over the source of their electricity customer losses for incumbent utilities could 

disrupt their traditional business models, leading to changes in the relative importance of different 

cost and revenue components. These changes may significantly alter the very nature of a utility’s 
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risk profile, including their exposure to weather.  

In this study we use PG&E as a case study to demonstrate how its financial wellbeing is 

subject to uncertainty in two hydrometeorological variables, air temperatures and streamflow, 

which collectively influence electricity demand and hydropower output as well as wholesale prices 

in the CAISO market. We demonstrate how PG&E’s exposure to uncertainty and extremes in each 

variable are likely to change as a function of retail load defection. Temperature will exhibit higher 

levels of correlation with net revenue. Streamflow’s (hydropower output) relationship with net 

revenue remains the same during dry years, but wet years, which correlate with high net revenue 

years at current load levels, can even be harmful.   This is caused by alteration in PG&E’s business 

model from three aspects, 1) the relative weight of PG&E’s revenue and cost sources will change; 

2) PG&E transform from a net buyer into a net seller and 3) legal obligation to purchase renewable 

energy from the long term power purchase agreements.  

There are a number of limitations in this work mostly related to a lack of detailed data 

about PG&E’s business, including a lack of information about the exact structure of PG&E’s active 

PPAs. In addition, we use a simplistic representation of PG&E electricity business, including a 

single rate structure for each customer class. We also assume that PG&E’s fixed costs (O&M, debt 

service, etc.) are static, when in fact some year-to-year changes do occur (and may in the future as 

load defection increases). Lastly, we assume all load defection is caused by the formation of CCAs 

as opposed to DERs. This assumption is largely true based on historical data pattern. However, the 

implication of customer switching to DERs is different form load defect towards CCAs. The 

biggest difference is that CCA customers would still pay for transmission whereas DER owner do 

not and may even require PG&E to pay for their generation through net metering programs.  

Nonetheless, the results of this work strongly suggest that utilities experiencing load 
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defection could experience altered exposure to weather risk. This could put additional pressure on 

utilities to rapidly adapt their risk management strategies. For PG&E in particular, this may 

represent an important challenge given its recent bankruptcy and precarious financial state. 

Although this work uses PG&E as a case study, other utilities that face load defection may 

experience similarly large alterations in their weather risk exposure, depending on their underlying 

generation portfolio, reliance on third party contracts, and the underlying causes of load defection.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

 Hydrometerological variability can have significant impacts on power systems’ operations 

by impacting both the supply of and demand for electricity. Hydrologic conditions, wind speeds 

and irradiance directly impact the availability of hydropower, wind power and solar power, 

respectively. On the demand side, air temperatures strongly influence electricity consumption for 

heating and cooling needs. Large fluctuations in these hydrometeorological forcings can influence 

wholesale electricity prices, GHG emissions and even system reliability across multiple time 

scales. This work evaluates risk for the electricity sector and specific system participants resulting 

from fluctuations in spatially and temporally correlated hydrometerological conditions, focusing 

on California and the U.S. West Coast. 

 In California, air temperatures and hydrologic conditions are the main environmental 

drivers of wholesale market prices on an annual level.  However, zooming in from annual to daily 

and hourly time steps, the effects of variable renewable energy (wind and solar) on extreme power 

prices becomes more important. Extreme low prices on both a daily and hourly time scale are 

routinely caused by a combination of low demand and an abundance of renewable energy. Extreme 

high price daily events are likely to occur in mid to late August due to the reduced hydropower 

capacity (diminishing post snowmelt streamflow conditions) and a high potential for heat waves. 

On an hourly basis, extreme high price events are likely to occur around sunset, when the system 

struggles to replace rapidly diminishing solar power. 

 The risks and uncertainties in the West Coast bulk power system and wholesale electricity 
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markets are experienced uniquely by different system participants and can interact with others 

sources of risk as well. In California in particular, competition in retail electricity markets is 

profoundly impacting incumbent utilities— drastically reducing revenues from utilities’ retail 

businesses and in the process, altering utilities’ exposure to weather risk. Using Pacific Gas and 

Electric (PG&E) as an example, load defection makes the utility’s transmission revenue more 

important, which in turn make’s PG&E’s financial performance more contingent on system-wide 

demand. As a result, air temperatures become a better proxy for variability in PG&E’s net revenues 

on an annual basis. At the same time, load defection changes PG&E’s financial exposure to 

hydrologic conditions. Dry years remain harmful, however, very wet years (associated with an 

overabundance of hydropower and low wholesale prices) also become a source of risk as PG&E 

becomes a “net seller” into the wholesale market. 

 This work clearly illustrates that significant risks are caused by hydrometerological 

uncertainty and extremes, and goes further to rigorously quantify these risks. Moving forward, 

there are many other sources of uncertainty that warrant further investigation in the power system 

sector. Relative to this analysis which focused largely on stationary hydrometerological 

uncertainties, climate change is one of the biggest outstanding questions for power systems 

participants. Climate change is altering average weather conditions and, perhaps just as 

importantly, exacerbating the magnitude of some extreme events, leading to potentially much more 

severe consequences for power system participants.  

 In addition, the underlying generation mix is also changing. For example, the West Coast 

power system has already witnessed rapid increases in renewable penetration in the last few years 

and this trend is likely to continue. Even more substantial changes are expected in the coming 5-

10 years, most notably the addition of battery storage in the system, more renewable energy and 
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the retirement of fossil fuel-based generation assets. On the demand side, the historically well-

defined demand pattern is likely to evolve due to the electrification of the transportation sector. 

These are all changes that are likely to interact in complex ways with weather uncertainty. 

 This work also explores the effect that changes in regulation and market structure can have 

on utility’s financial risk exposure, but there are a number of other regulations and policies that 

can affect utilities’ business models and investment in infrastructure. These must also be explored. 

 Future research should seek to address the potential for these sources of uncertainty to 

impact the power sector individually and in combination. Given the diversity of market settings, 

regulatory institutions and underlying generation mixes that exist across regions and countries, 

dedicated research for each market/region may be required in some cases.  

 Uncertainty characterization is not the end goal. Risk management strategies need to be 

developed to deal with the uncertainties uncovered in the system. Future research in this area 

should use improved characterization of risks to design and implement optimal portfolios of 

hedging strategies that can be adapted as exposure changes. For example, results from Chapter 4 

suggest that maintaining the same weather-based hedging strategies as utilities lose retail 

customers will not be effective, and could even become harmful to the utilities’ financial well-

being. Hedging strategies must be adapted (perhaps on an annual basis) as weather exposure 

changes due to retail load defection. One approach would be a Multi-Objective Direct Policy 

Search framework. This method would use an evolutionary algorithm to search for optimal 

hedging policies, which could include a combination of heating and cooling degree day contracts, 

snowpack index insurance, the use of a contingency fund, debt, and power price derivatives. Better 

management of risks is in turn likely to facilitate better infrastructure investment decisions.  

 While the focus of this work is primarily on the West Coast grid, specifically California 
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and PG&E, some lessons from this research easily extend to other electricity systems and utilities 

in the U.S., as well as globally. The same fundamental weather risks (impacts on supply and 

demand) exist elsewhere, which ultimately translate to dynamically changing prices and 

greenhouse gas emissions. The deregulation of retail markets, which is also happening elsewhere 

in the U.S. and the rest of the world, is widely expected to change the existing business model for 

the incumbent utilities. The insights and knowledge gained from California utilities can be applied 

to other utilities in different settings.  

 Significant changes in power sector are expected to come in the next few decades. A better 

understanding of how weather risk with interact with these changes, both from a system operator’s 

perspective and individual participant’s perspective, can facilitate better decision making related 

to long-term capital investment and short-term operations. In turn, better-managed electricity 

systems will significantly improve the efficiency of decarbonization efforts to combat climate 

change.  


