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ABSTRACT

Yuzixuan Zhu: Preprocessing and First-Order Primal-Dual Algorithms for Convex Optimization
(Under the direction of Gábor Pataki and Quoc Tran-Dinh)

This thesis focuses on two topics in the field of convex optimization: preprocessing algorithms

for semidefinite programs (SDPs), and first-order primal-dual algorithms for convex-concave saddle-

point problems.

In the first part of this thesis, we introduce Sieve-SDP, a simple facial reduction algorithm

to preprocess SDPs. Sieve-SDP inspects the constraints of the problem to detect lack of strict

feasibility, deletes redundant rows and columns, and reduces the size of the variable matrix. It

often detects infeasibility. It does not rely on any optimization solver: the only subroutine it needs

is Cholesky factorization, hence it can be implemented in a few lines of code in machine precision.

We present extensive computational results on several problem collections from the literature, with

many SDPs coming from polynomial optimization.

In the second part, we develop two first-order primal-dual algorithms to solve a class of convex-

concave saddle-point problems involving non-bilinear coupling function, which includes SDP as one

of the many special cases. Both algorithms are single-loop and have low per-iteration complexity.

Our first algorithm can achieve O
(

1
k

)
convergence rates on the duality gap in both ergodic (aver-

aging) sense and semi-ergodic sense, i.e., non-ergodic (last-iterate) on the primal, and ergodic on

the dual. This rate can be further improved on non-ergodic primal objective residual using a new

parameter update rule. Under strong convexity assumption, our second algorithm can boost these

convergence rates to no slower than O
(

1
k2

)
. Our results can be specified to handle general convex

cone constrained problems. We test our algorithms on applications such as two-player games and

image processing to compare our algorithms with existing methods.
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CHAPTER 1

INTRODUCTION

1.1 Background

The broad field of optimization studies the following three main aspects:

• Modeling: To describe a real-world problem as an optimization model;

• Theory: To build or discover mathematical structures or properties of optimization models;

• Algorithms: To develop efficient methods to solve optimization models.

The use of optimization modeling is prevalent in many areas of modern science and technology,

for example, statistics, queueing, scheduling, portfolio, transportation, network flows, signal pro-

cessing, and machine learning, just to name a few. Once an optimization model is developed, one

can apply appropriate optimization algorithms to solve the model to optimum or near-optimum.

The resulting solution in turn guides the decision-making of the original real-world problem. In

order to design correct and efficient algorithms, one needs theoretical knowledge on the structure of

the optimization models, such as duality theory. This relationship between Modeling, Theory, and

Algorithms is summarized in Figure 1.1, where the dashed frame denotes the regime of optimization

and where it lies in the process of real-world decision-making.

In regards of the above-mentioned three components of optimization, this thesis focuses on the

aspect of Algorithms.

Specifically, this thesis seek to design efficient algorithms to preprocess or to solve a special type

of optimization models: convex program, which is to minimize a convex function over a convex set.

We look at the problem of the form:

min
x∈Rp

F (x) +H (g(x)) , (P)

where F : Rp → R ∪ {+∞} and H : Rm → R ∪ {+∞} are closed and convex; the vector function
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Figure 1.1: Optimization’s components and its role in decision-making

g : Rp → Rm is such that H ◦ g is convex.

The example below lists some applications of problem (P), roughly sorted from more general

to more specific.

Example 1.1. 1. General finite-dimensional convex program. When H (g(x)) = H(x) = δC(x),

where C ⊆ Rp, then (P) becomes the general form min
x∈C

F (x), which is to minimize a convex

function F over the finite-dimensional convex set C.

2. Saddle-point form. Writing H (g(x)) = max
y
{〈g(x), y〉−H∗(y)}, then we obtain an equivalent

saddle-point form of (P):

min
x

max
y

F (x) + 〈g(x), y〉 −H∗(y). (SP)

This problem is convex in x and convex in y, and by minimizing over x and maximizing over

y, the resulting saddle-point can be understood as the strategies that lead to Nash equilibrium

in a two-player game.

For many applications, it is beneficial to cast the problem (P) into this saddle-point

form; see, e.g., machine learning [2, 41, 54, 57, 65, 72, 143], optimal transport [105], robust

convex optimization [7, 111], and signal processing [65]. More applications are presented in

the book [40]. Furthermore, (SP) can serve as the subproblems in algorithms for non-convex

optimization problems [10, 127].

3. Linear g. When g(x) = Ax is linear, we obtain a special problem of minimizing F (x)+H(Ax).

While being a special case, it already covers various applications in signal and image pro-
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cessing [20, 26, 38, 52, 95], machine learning [36], and statistics [52, 58]. More applications

are presented in the books [5, 50].

4. Cone-constrained program. When H∗ ≡ δK∗, the indicator of the dual cone of a proper cone,1

then (P) becomes

min
x∈Rp

F (x) s.t. g(x) ∈ −K. (1.1)

It is a convex program, since the assumption that H ◦ g being convex ensures that g is K-

convex. It generalizes conic programming, as the objective function F is not necessarily linear.

It includes many widely used special cases, as seen below.

5. Product-of-cones constraints. In (1.1), let K = {0}n × Rm+ , then we obtain

min
x∈Rp

F (x) s.t. Ax = b, g(x) ≤ 0, (1.2)

where A ∈ Rn×p, and g : Rp → Rm is convex. This setting is very common in classical

nonlinear programming literature. In particular, if both F and g are quadratic, then we

obtain a quadratically constrained quadratic program (QCQP).

6. Semidefinite program (SDP). In (1.1), let K := Sn+, the cone of symmetric positive semidefi-

nite (PSD) matrices of order n, and let g(x) :=
∑p

l=1 xlAl −C for some symmetric matrices

A1, . . . , Ap, C ∈ Sn, then clearly g is Sn+-convex (since g is linear), and we obtain linear ma-

trix constraint in (1.1): C −
∑p

l=1 xlAl � 0. If addition F is linear, then we obtain an SDP

in the dual form.

Alternatively, in (P), let the variable be X ∈ Sn, and let F := 〈C,X〉+ δSn+(X), H ≡ δb,

and g(X) := A(X), where A(X) := (〈A1, X〉, . . . , 〈Am, X〉)> is a linear operator, then we

obtain an SDP in the primal form:

min
X∈Sn+

〈C,X〉 s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m. (1.3)

For detail of the primal-dual relationship and the notations used here, see Section 2.1.

SDPs are some of the most versatile, useful, and widespread optimization problems of the

last three decades. They find applications in integer programming/combinatorial optimization

1Recall that a cone is proper if it is closed, convex, solid, and pointed.
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[51, 82], polynomial optimization [73, 97], machine learning [72, 118, 119], and control theory

[16, 127], to name just a few areas.

7. Linear program (LP). In (1.3), if all matrices are diagonal, then we obtain the LP:

min
x∈Rp

c>x s.t. Ax = b, x ≥ 0.

Clearly, it can also be obtained from (1.2).

LP is perhaps the most classical type of optimization problems. Over a century, it has

proven to be extremely powerful in areas such as transportation, energy, economics, and en-

gineering, just to name a few. It is also used as subproblems in optimization problems that

are nonlinear. �

Example 1.1 shows that the model (P) actually covers a very wide range of optimization prob-

lems. Given this fact, this thesis deals with two separate tasks:

• Task 1: To develop an algorithm to preprocess the SDP (1.3), before solving it using any

given SDP solver;

• Task 2: To develop algorithms to solve the composite convex program (P), or its saddle-point

form (SP).

We will further introduce the existing work, its limitations, and our achievements on these two

tasks in Sections 1.2 and 1.3, respectively.

1.2 Existing Work and Our Contributions on Task 1: Preprocessing SDPs

Existing work. Given the wide applications of SDPs ((1.3) and its dual), several open-source or

commercial solvers have been developed to solve them: SeDuMi [120], SDPT3 [134], PENNON

[66], SDPA [47, 48], SDPNAL [149, 151], SDPNAL+ [123], and MOSEK [84], just to name a few.

However, these solvers are usually slow and inaccurate for large SDPs, and erroneous for “messy”

(e.g., non-strictly feasible or weakly infeasible) SDPs.

Therefore, it is useful to reduce the redundancy and to detect lack of strict feasibility of an

SDP in the preprocessing stage. The resulting SDP would be smaller and cleaner, thus much easier

for the solvers to handle, and to yield a more accurate solution with less computational effort. This
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idea of reduction is called facial reduction [11, 12, 99, 100, 138], originally for more general conic

linear programs, then specified for SDPs in [133]. It finds the face of PSD cone: F ⊆ Sn+ so that

it contains the original feasible region: F ∩ {X | A(X) = b} = Sn+ ∩ {X | A(X) = b}; since F is

smaller, the reduced problem is easier to solve. However, finding such a face F is non-trivial, and

sometimes as hard as solving the original SDP.

Thus, some simplified and implementable versions of facial reduction algorithms have been

proposed, and theoretical studies have been conducted; see, e.g., [34, 35, 46, 67, 103, 104, 124].

Our contributions. In this thesis, we propose a version of facial reduction algorithm, called

Sieve-SDP, which differs in several aspects from the above-mentioned algorithms:

• It is extremely simple, and it works in machine precision.

• Unlike the algorithms in [104], it does not rely on any optimization solver.

• We have developed Sieve-SDP as a software package in MATLAB, and thus it is ready to use

and to be integrated into solvers that can be called from MATLAB.

• Finally, we present extensive computational results on general SDPs, which, to the best of

our knowledge, are not yet available for such a simple algorithm.

1.3 Existing Work and Our Contributions on Task 2: Solving (P) or (SP)

Existing work. As shown in Example 1.1, the prototype (P) covers a very wide range of opti-

mization problems, as broad as general finite-dimensional convex programming (Item 1), and as

special as LP (Item 7). Therefore, we do not exhaust all the existing algorithms for each special

type of problems, but refer to books [1, 5, 8, 9, 17, 44, 45, 93, 94, 109, 114, 116], some of which are

classical textbooks, for a comprehensive treatment.

Here, we limit our brief review to the work that are closely related to ours, i.e., we focus on

the the regime of first-order primal-dual algorithms for solving the composite problem (P) or its

saddle-point form (SP). This deserves some remarks:

• First-order algorithms. Optimization algorithms tend to be iterative: analytical solution, in

most cases, is either unavailable due to the complexity of objective function or the feasible

region; or, the problem size is very large, and thus computing the analytical solution is
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too expensive. Therefore, an optimization algorithm would start from an initial point x0,

then generate a sequence of iterates {xk}, where k is the iteration counter, such that the

corresponding objective values approach the true objective value.

In iteration k, the algorithm queries some information, called oracle or feedback, to

proceed and generate the next iterate xk+1. The so-called first-order algorithms are the

algorithms that requires only the first-order information: the values, gradients, and proximal

points of objective or constraint functions at current or previous iterative points. Unlike

second-order methods, which requires computing (approximate) Hessians, first-order methods

have much lower per-iteration complexity, which is favorable in the big data era, where many

optimization problems are too large to allow the expensive computation of Hessians.

• Primal-dual algorithms. It is usually beneficial to design primal-dual algorithms for the

saddle-point form, (SP), using duality theory. These algorithms provide primal iterates {xk}

and dual iterates {yk}, in order to (in a sense) decrease the primal objective value and

increase the dual objective value. The problem (SP) is considered solved if the duality gap is

sufficiently small.

With above remarks, we are ready to review the following limitations of existing related work:

• Strong model assumptions. Although some existing methods [57, 64, 88] apply to seemingly

more general problems than (SP), i.e., when the coupling term Φ(x, y) has a more general

form instead of just 〈g(x), y〉. However, strong assumptions are imposed - they require y in

(SP) to be bounded, which excludes many important cases such as (1.1). Furthermore, many

methods have been developed to solve only some special cases listed in Example 1.1, and thus

they are not able to tackle the general template (P):

– For Item 3 of Example 1.1 where g is linear, it is common to use splitting methods

or smoothing techniques, see [20, 21, 25, 27, 28, 38, 39, 49, 52, 59, 60, 69–71, 85–

87, 90, 91, 106, 107, 125, 126, 128, 132, 135, 150], or books such as [50] for more compre-

hensive review. The most well-known algorithm in this category is perhaps the so-called

alternating direction method of multipliers, or ADMM [15, 32, 37, 53, 80], although its

performance varies depending on different applications.

– There are few algorithms dedicated to the cone program (1.1) of Item 4. More often,
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the existing literature discusses the special case when g is linear (see above), or when K

is special (see below).

– For Item 5, see, e.g., [8, 76–78, 115, 144–147].

– SDP in Item 6 is often solved using second-order methods such as interior-point methods;

see Section 1.2. There exist first-order methods [68, 141], which are often applications

of the general solvers for Item 3.

– LP in Item 7, due to its simple form, can be solved using zero-order methods. However,

in the big data era, first-order methods as mentioned above are more and more popular

when solving large-scale LPs.

• High per-iteration complexity. Several methods, including [79, 148], require double loops,

where the inner loop approximately solves an inner problem, e.g., the maximization problem

in y, and the outer loop handles the minimization problem; hence, the complexity of each

outer iteration is often high. Another drawback of using double-loop is that the involved

parameters are hard to tune.

• Inconsistency between theoretical convergence guarantees and empirical solutions. Existing

work [57, 64, 88, 92, 144] for general problem (P) can only show the convergence rates on the

ergodic (or, the averaging) sequences {x̄k} defined as

x̄k :=
1

k

k∑
j=1

xj ,

or its weighted variants, via, e.g., primal objective residual: P(x̄k)−P? = O
(

1
k

)
, where P(x)

is the objective value of problem (P) at point x̄k, and P? is the optimal objective value. The

primal-dual gap function is also often used. However, in practical implementation, researchers

and users often adopt the non-ergodic (or, the last-iterate) sequence, which is the {xk} itself,

output by the algorithm after each iteration;2 it is because:

– The non-ergodic iterates often perform better (i.e., converge faster) empirically;

– By taking the average over the past iterates, the ergodic iterates destroys the special

structures sometimes desired of the solution such as sparsity in feature selection, sharp-

2In the literature, “ergodic” and “averaging” are used interchangeably; same goes for “non-ergodic” and “last-
iterate”. In this thesis, we will mainly use “ergodic”, “non-ergodic”, and sometimes “semi-ergodic”.
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edgedness in images, and low-rankness in matrix approximation.

Unfortunately, as far as we know, there have not been an algorithm in the literature for

the general problem (P) with theoretical convergence guarantees based on the last-iterate

sequence {xk}.

Our contributions. Faced with the above limitations in the existing literature, we develop two

first-order primal-dual algorithms with the following features:

• Mild model assumptions. Our algorithms are designed for the general problem (P) or its

saddle-point form (SP), and with mild assumptions. Therefore, all special cases listed in

Example 1.1 are covered.

• Low per-iteration complexity. Our algorithms has only single-loop, thus the per-iteration com-

plexity is low: They only require gradient computations, proximal operations, and function

evaluations, at most twice each in each iteration.

• Consistency between theoretical convergence guarantees and empirical solutions. Our algo-

rithms have non-ergodic primal and ergodic dual convergence rates. It means that for problem

(P), we have convergence guarantees on P(xk)−P?, which is consistent with the solution for

practical use. If g is linear, than by seeing the dual as primal, we would also have non-ergodic

rate on the dual.

• Optimal and faster convergence rates. When problem size p satisfies k = O(p), our non-

ergodic convergence rate is the optimal O
(

1
k

)
, which can be achieved by existing algo-

rithms only via ergodic sequence. When k > O(p), our method achieves an even faster

min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
convergence rate. When F in (P) is strongly convex, we can boost

this rate to min
{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
.

1.4 Outline

This thesis is organized as follows.

In Chapter 2, we address Task 1 introduced in Section 1.2, and describe the algorithm Sieve-

SDP to preprocess SDPs, and present the numerical experiments. This chapter is based on the

following paper:
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[153] Yuzixuan Zhu, Gábor Pataki, and Quoc Tran-Dinh. Sieve-SDP: A simple facial reduction
algorithm to preprocess semidefinite programs. Mathematical Programming Computation,
11(3):503–586, 2019.

In Chapter 3, we address Task 2 introduced in Section 1.3, and propose the two first-order

primal-dual algorithms to solve composite convex programs. This chapter is based on the following

two papers:

[130] Quoc Tran-Dinh and Yuzixuan Zhu. Non-stationary first-order primal-dual algorithms with
fast non-ergodic convergence rates. arXiv preprint arXiv:1903.05282, 2020. Accepted by
SIAM Journal on Optimization.

[152] Yuzixuan Zhu, Deyi Liu, and Quoc Tran-Dinh. Accelerated primal-dual algorithms for a class
of convex-concave saddle-point problems with non-bilinear coupling term. arXiv preprint
arXiv:2006.09263, 2020. Submitted to Mathematical Programming.

Here, [130] discusses the case where g is linear in (P), and developes some important techniques.

Then, [152] generalizes the theory and algorithms in [130] for nonlinear g. Since [152] is more

general, it is the major component of Chapter 3.

Finally, we put supplemental content for Chapters 2 and 3, such as extended experiment results

and technical proofs, into Appendices A and B, respectively.

9



CHAPTER 2

SIEVE-SDP: A SIMPLE FACIAL REDUCTION ALGORITHM TO PREPRO-
CESS SEMIDEFINITE PROGRAMS

2.1 Introduction

We introduce Sieve-SDP, a simple facial reduction algorithm to preprocess semidefinite pro-

grams (SDPs). Sieve-SDP inspects the constraints of the problem to detect lack of strict feasibility,

deletes redundant rows and columns, and reduces the size of the variable matrix. It often detects

infeasibility. It does not rely on any optimization solver: the only subroutine it needs is Cholesky

factorization, hence it can be implemented in a few lines of code in machine precision. We present

extensive computational results on several problem collections from the literature, with many SDPs

coming from polynomial optimization.

This chapter is based on [153], a joint work with Dr. Gábor Pataki and Dr. Quoc Tran-Dinh.

2.1.1 Problem statement and the preprocessing algorithm

Consider an SDP in the form

inf
X

C ·X

s.t. Ai ·X = bi, i = 1, . . . ,m,

X � 0,

(P)

where the Ai and C are n×n symmetric matrices, the bi are scalars, X � 0 means that X is in Sn+,

the set of symmetric, positive semidefinite (PSD) matrices, and the · inner product of symmetric

matrices is the trace of their regular product, which is also the sum of element-wise products.

Sometimes, the inner product C ·X is also written as 〈C,X〉.

SDPs are some of the most versatile, useful, and widespread optimization problems of the last

three decades. They find applications in control theory, integer programming, and combinatorial
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optimization, to name just a few areas. Several good solvers are available to solve SDPs: see

for example SeDuMi [120], SDPT3 [134], PENNON [66], SDPA [47, 48], SDPNAL [149, 151],

SDPNAL+ [123], and MOSEK [84].

SDPs – as all optimization problems – often have redundant variables and/or constraints. The

redundancy we address is lack of strict feasibility, i.e., when there is no feasible positive definite X

in (P). Figure 2.1 shows the feasible region of a 2-by-2 SDP where the linear space does not pass

through the interior of the PSD cone. When (P) is not strictly feasible, the optimal value of (P)

and of its dual may differ, and the latter may not be attained.1 Hence, when attempting to solve

such an SDP, solvers often struggle or fail.

Figure 2.1: The feasible region of a non-strictly feasible SDP

It is, therefore, useful to detect lack of strict feasibility in a preprocessing stage. This chapter

describes a very simple preprocessing algorithm for SDPs, called Sieve-SDP, which belongs to the

class of facial reduction algorithms [12, 34, 35, 67, 99, 100, 104, 133, 138]. Sieve-SDP can detect

lack of strict feasibility, reduce the size of the problem, and can be implemented in a few lines of

code in machine precision.

To motivate our algorithm, let us consider an example.

1More precisely, when (P) is strictly feasible, strong duality holds between (P) and its dual, i.e., their values agree
and the latter is attained.
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Example 2.1. The SDP instance (with an arbitrary objective function)


1 0 0

0 0 0

0 0 0

 ·X = 0,


0 0 1

0 1 0

1 0 0

 ·X = −1, X � 0, (2.1)

is infeasible. Indeed, suppose X = (xij)
3
i,j=1 is feasible in (2.1). Then x11 = 0, hence the first row

and column of X are zero by PSD-ness, so the second constraint implies that x22 = −1, which is a

contradiction. �

Note that if we replace −1 in the second constraint of (2.1) by a positive number, then (2.1)

can be restated over the set of PSD matrices with first row and column equal to zero. Thus, even

if we do not detect infeasibility, such preprocessing is still useful.

Our algorithm Sieve-SDP repeats the Basic Step shown in Figure 2.2. Hereafter D � 0 means

that a symmetric matrix D is positive definite.

Basic Step

1. Find i ∈ {1, . . . ,m} (if any) such that the i-th constraint of (P), after permuting rows and
columns, and possibly multiplying both sides by −1, is of the form(

Di 0
0 0

)
·X = bi, (2.2)

where Di � 0, and bi ≤ 0. If there is no such i, STOP; problem (P) cannot be preprocessed
further.

2. If bi < 0, then STOP; (P) is infeasible.

3. If bi = 0, then delete this constraint. Also delete all rows and columns in the other con-
straints that correspond to rows and columns of Di.

Figure 2.2: The Basic Step of Sieve-SDP

Example 2.2 (Example 2.1 continued). When we first execute the Basic Step on (2.1), we find

the first constraint, delete it, and also delete the first row and column from the second constraint

matrix. Next, we find the constraint

1 0

0 0

 ·X = −1,
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and declare that (2.1) is infeasible. �

We call our algorithm in Figure 2.2 Sieve-SDP, since by shading the deleted rows and columns

in the variable matrix X (and the coefficient matrices Ai’s), we obtain a sieve-like structure, as

shown in Figure 2.3.

Figure 2.3: The sieve structure

Sieve-SDP is easy to implement: it only needs an incomplete Cholesky factorization subroutine

to check positive definiteness. We can delete rows and columns using fast matrix operations. Even

the worst case complexity of Sieve-SDP is reasonable: an easy calculation shows that it can fully

preprocess (P) using O(min{m,n}n3m) arithmetic operations.

Sieve-SDP is heuristic: it does not always detect infeasibility, or lack of strict feasibility. For

example, it would not work on problem (2.1), if we apply a similarity transformation T>(·)T to all

Ai’s, where T is a random invertible matrix.

Given the simplicity of Sieve-SDP, it is natural to ask whether it can work in practice. Precisely,

the main question we address is: Can Sieve-SDP help us compute more accurate solutions and

reduce the computing time on a broad range of SDPs?

We will answer this question in the affirmative.

2.1.2 Related work

Our algorithm belongs to the family of facial reduction algorithms, which we now describe. If

(P) is not strictly feasible, one can replace the constraint X ∈ Sn+ by
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X ∈ F,

where F is a proper face of Sn+.2 Since any such face can be written as (see e.g. [98])

F = V Sr+V >, (2.3)

where r < n, and V is an n × r matrix, the reduced problem can be restated over a smaller PSD

cone. Facial reduction algorithms – for more general conic programs – originated in the papers

[11, 12]. Later simplified, more easily implementable variants were given in [99, 100, 138], and in

[133] for the SDP case. A recent, very concise version with a short proof of convergence is in [81].

Facial reduction algorithms, when applied to (P), find face F by solving a sequence of SDP

subproblems, which may be as hard to solve as (P) itself. Thus one is led to seek simpler alternatives.

Simplified and implementable versions of facial reduction is described in [104], where the algo-

rithms reduce the feasible set of (P) (or of an SDP in a different shape) by solving linear programs

(LPs) instead of SDPs. Thus they do not find all reductions, but still simplify the SDPs in many

cases. They are available as public domain codes, and we will compare them with Sieve-SDP in

Section 2.2. A facial reduction algorithm embedded in an interior point method was implemented

in [103].

The idea of reducing SDPs by simply inspecting constraints appears in several papers. For

example, [46] notes that if A · X = 0 is a constraint in (P) with A � 0, then we can restrict X

to belong to a face of the form (2.3), where V spans the nullspace of A. A similar idea was used

in [67] to reduce Euclidean distance matrix completion problems. For a rigorous derivation of the

algorithm in [67], see [35], which used an intermediate step of analyzing the semidefinite completion

problem. For follow-up work, see [34] on the noisy version of the same problem; and [124] for a

more theoretical study.

We finally mention two very accurate SDP solvers, which do not rely on facial reduction. The

first is SDPA-GMP [47], which uses the GMP library and computes solutions of (P) and of its

dual using several hundred digits of accuracy. We will use SDPA-GMP in Subsection 2.3.6 to check

accuracy of the solutions computed by Sieve-SDP and MOSEK. Another solver is SPECTRA [63],

2That is, F 6= Sn+, F is convex, and X,Y ∈ Sn+, 1
2
(X + Y ) ∈ F implies that X and Y are in F .

14



which computes a feasible solution of (P) in exact arithmetic. Although these methods cannot

handle large SDPs, they can solve small ones accurately.

2.1.3 Our contributions

Sieve-SDP differs in several aspects from the above-mentioned algorithms:

• It needs only Cholesky factorization as a subroutine, and, unlike the algorithms in [104], it

does not rely on any optimization solver.

• It detects very simple redundancies, which are easy to explain even to a user not trained in

optimization, and can help him/her better formulate other problems.

• As soon as Sieve-SDP finds a reducing constraint, it deletes this constraint, and it also

deletes the corresponding rows and columns from the constraint matrices. Hence errors do

not accumulate. Thus Sieve-SDP is as accurate as Cholesky factorization, which works in

machine precision [131, Theorem 23.2].

• Sieve-SDP can also detect infeasibility.

• It is easy to run in a safe mode (explained in Section 2.2) to even better safeguard against

numerical errors.

• Finally, we present extensive computational results on general SDPs, which, to the best of

our knowledge, are not yet available for such a simple algorithm.

2.1.4 Chapter organization

The rest of this chapter is organized as follows. In Section 2.2 we describe how we implemented

Sieve-SDP, the computational setup, and the criteria for comparison with competing codes. In this

section, we also give a small SDP with a positive duality gap in Example 2.3, and show how to

construct a pair of primal-dual solutions with arbitrarily small constraint violation and arbitrarily

small duality gap.

In Section 2.3 we comment in detail on the results on some of the problems, and on the strengths

and weaknesses of the preprocessors. For example, we examine whether they help to find the correct

solution of numerically difficult SDPs, and how fast they are on large-scale problems.

In Section 2.4 we summarize the preprocessing results, and conclude the paper.
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We have four appendices. In Appendix A.1 we present very detailed computational results on

all problems. In Appendix A.2 we give the core MATLAB code of Sieve-SDP, containing only about

40-80 lines. In Appendix A.3 we provide the definition of the DIMACS errors for completeness. In

Appendix A.4 we discuss the issue of recovering an optimal solution of the dual of (P) from the

optimal solution of the dual of the reduced problem.

2.2 The Setup for Numerical Experiments

Implementation and computing. We implemented Sieve-SDP in MATLAB R2015a, using the

standard Cholesky factorization (subroutine chol) to check positive definiteness. We ran both

Sieve-SDP and the competing preprocessors on a MacBook Pro with processor Intel Core i5 running

at 2.7GHz, and with 8GB of RAM.

Safe mode. To safeguard against numerical errors, we use a safe mode. We set

ε := 2−52 ≈ 2.2204 · 10−16,

which is the machine precision in MATLAB. In the Basic Step in Figure 2.2, if we find a constraint

of type (2.2), then, instead of checking bi < 0 we check whether

bi < −
√
εmax{1, ‖b‖∞}.

If this test fails, then instead of checking bi = 0 we check whether

bi > −εmax{1, ‖b‖∞}.

This step is correct, because in the Basic Step we already ensured bi ≤ 0.

Preprocessors used for comparison. We compare Sieve-SDP with the algorithms proposed by

Permenter and Parrilo in [104]. Their algorithms solve LP subproblems to reduce the size of an

SDP. They can work either on the problem (P), which we call the primal ; or on its dual :

sup
y

m∑
i=1

yibi

s.t.
m∑
i=1

yiAi � C.

(D)
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They can use either diagonal, or diagonally dominant reductions (for details, see [104]).

Thus, there are four algorithms from [104] that we tested: pd1, pd2, dd1 and dd2. Here, pd1

stands for primal diagonal; pd2 for primal diagonally dominant; dd1 for dual diagonal; and dd2 for

dual diagonally dominant.

Remark 2.1. In the theoretical description of the preprocessing in [104] the SDP called the primal

is actually our dual (D). However, in their implementation and their code posted on the github

website, their primal is the same as our primal (P).

The datasets. We tested Sieve-SDP and competing methods on five datasets, which contain 771

problems overall:

• The Permenter-Parrilo (PP) dataset from [104], which contains 68 problems originally from

[4, 14, 18, 24, 31, 42, 102, 108, 110, 136, 137, 139]. Although a few problems in this dataset

are randomly generated, most come from applications. This dataset contains problems that

are notoriously difficult for SDP solvers, and some are known to be not strictly feasible. We

have excluded two problems from [104]: “copos 5” and “cprank 3”, since they were too large

to be solved by MOSEK on our computer.

• The Mittelmann dataset obtained from Hans Mittelmann’s website, which we call the Milt-

telmann dataset. It contains 31 problems.

• The Dressler-Illiman-de Wolff (DIW) dataset, a collection of SDP relaxations of polynomial

optimization based on the paper [33]. It contains 155 problems.

• The Henrion-Toh dataset kindly provided to us by Didier Henrion and Kim-Chuan Toh. It

contains 98 problems.

• The Toh-Sun-Yang dataset kindly provided to us by Kim-Chuan Toh. It contains 419 prob-

lems, whose description is in [122] and [149].

Our datasets contain many different types of SDPs and, not surprisingly, the performance of

the preprocessors on them varies widely. Many SDPs that come from applications may be strictly

feasible, and on these SDPs even more sophisticated preprocessors would not find reductions. For

example, on the Toh-Sun-Yang dataset the preprocessors did not find any reductions. However,

Sieve-SDP and pd1 only took a negligible amount of time to deliver the “no reduction found” result,

so it did not hurt to preprocess.
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Yet, even in the datasets other than the PP dataset, many SDPs were reduced by some prepro-

cessor. In the Henrion-Toh dataset, pd1, pd2, and Sieve-SDP all reduced 18 problems, whereas dd1

and dd2 reduced none. In the Mittelmann dataset, pd1, pd2, and Sieve-SDP reduced 8 problems;

dd1 and dd2 reduced none.

Strikingly, in the DIW dataset Sieve-SDP proved infeasibility of 59 problems out of 155, and

reduced total solving time by a factor of more than a hundred! The method pd1 did slightly worse.

For illustration, we refer to Figure 2.4, which shows the size and sparsity structure of the

problem “ex4.2 order20”3 before (on the left) and after (on the right) applying Sieve-SDP. Each

row in corresponds to an Ai matrix stretched out as a vector. Red dots correspond to positive

entries, blue dots correspond to negative entries, and white areas correspond to zero entries.

Figure 2.4: Problem “ex4.2 order20”: size and sparsity before and after preprocessing

Internal format and input/output format. Internally we store the Ai matrices as an n×(nm)

3This SDP is from the DIW dataset.
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sparse matrix of the form (
A1 A2 · · · Am

)
(i.e., the Ai’s are stored side-by-side), and C as an n× n sparse matrix. The input and the output

format of the preprocessors is the widely used Mosekopt format.

The choice of the SDP and LP solver. For all preprocessors we use MOSEK 8.1.0.27 (from

now on, simply “MOSEK”) as SDP solver: we solve the SDPs with MOSEK before and after

preprocessing. We also solve the LP subproblems in the algorithms of [104] by MOSEK. We

consider MOSEK as the best choice, since it is a reliable commercial SDP and LP solver, and it is

being actively developed and improved.

Our settings are different from the ones used in [104], where SeDuMi [120] format is used as

input format, MOSEK as LP solver, and SeDuMi as SDP solver. With our settings, the algorithms

of [104] work faster, because MOSEK is much faster than SeDuMi. Although we must convert the

data from Mosekopt format to SeDuMi format (to do the preprocessing), and then back (to solve

the preprocessed problem with MOSEK), the total conversion time is negligible: for each of pd1,

pd2, dd1 and dd2 it is less than 100 seconds on all 771 SDPs. To be fair, in the detailed comparison

tables of Appendix A.1 we list conversion time and preprocessing time separately.

Criteria for comparison. Let us recall the main question addressed in the paper: Can Sieve-

SDP help us compute more accurate solutions and reduce the computing effort on a broad range

of SDPs?

To answer this question, we propose the following criteria, in order of priority:

1. Does preprocessing help detect infeasibility? If not, does it help find a correct optimal solution?

Precisely, suppose MOSEK reports an incorrect optimal value of an SDP before preprocessing.

Does MOSEK find a correct optimal value after preprocessing (assuming that the optimal

value of the SDP is known analytically)?

2. Does preprocessing reduce computing time? This criterion is secondary, since preprocessing is

often essential to computing an accurate solution: see Subsections 2.3.1 through 2.3.3. Thus,

we believe that we should always do preprocessing, as long as it is with very high precision,

even if preprocessing increases the solving time.
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3. Does preprocessing improve numerical accuracy measured by the six DIMACS errors [102]?

Precisely, let

DIMACSbefore and DIMACSafter

be the largest absolute value of the DIMACS errors before and after preprocessing, respec-

tively. We say that a method improves the DIMACS error, if it does not detect infeasibility,

and

DIMACSbefore > 10−6 and
DIMACSafter

DIMACSbefore
<

1

10
.

This last criterion must be taken with a grain of salt. While the DIMACS errors are very

natural (they measure constraint violation and duality gap), Example 2.3 below shows that

they do not always measure accurately how good a solution is. In fact, a larger DIMACS

error may correspond to a better solution!

Example 2.3. Consider the SDP

min
X


1 0 0

0 1 0

0 0 0

 ·X

s.t.


1 0 0

0 0 0

0 0 0

 ·X = 0,


0 0 1

0 1 0

1 0 0

 ·X = 1, X = (xij) � 0,

(2.4)

and its dual

max
y

y2

s.t. y1


1 0 0

0 0 0

0 0 0

+ y2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0

 .
(2.5)

We claim that the duality gap between them is 1. Indeed, let X be a feasible solution of (2.4). Since

x11 = 0, the first row and column of X must be zero, hence
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X =


0 0 0

0 1 0

0 0 0


is an optimal solution with objective value 1. In turn, in (2.5) we have y2 = 0 for all feasible y, so

its optimal value is 0.

Next, let ε > 0 and define Mε > 0 so that

Xε :=


ε 0 1−ε

2

0 ε 0

1−ε
2 0 Mε


is positive semidefinite. Then Xε is an approximate solution of (2.4), which violates only the first

constraint (by ε) and has objective value 2ε.

If we feed the pair (2.4)-(2.5) to MOSEK, it returns a solution with DIMACS errors

0.5000, 0, 0.7071, 0, −5.5673× 10−9, 5.9077× 10−17.

The first and third errors are large, so we cannot conclude the problem has been “solved”.

However, let us apply a similarity transformation T>(·)T to all matrices in (2.4) with

T =


3 5 −2

4 1 1

−4 −4 5

 .

Then the resulting primal-dual pair still has a duality gap of 1. However, MOSEK now returns a

solution with DIMACS errors

1.6093× 10−6, 0, 5.2111× 10−9, 3.287× 10−12, −8.1484× 10−5, 3.0511× 10−5,

which may seem “essentially all zero” to a user. �

Such “fake” solutions can arise in any SDP pair with positive duality gap. Indeed, suppose
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D? < P?,

where P? is the optimal objective value of (P), and D? is that of (D). Then by the theory of

asymptotic duality [112, Chapter 3], there is a sequence {Xε � 0 | ε > 0} such that Xε violates

each primal constraint by at most ε, and

〈C,Xε〉 → D? as ε→ 0.

As Example 2.3 shows, such “fake” or approximate solutions are sometimes indeed found by some

SDP solvers.

We note that [24] also presented computational results on SDPs with positive duality gaps,

and noted that SeDuMi often gave an incorrect solution on such problems. However, [24] did not

report the DIMACS errors.

2.3 Detailed Comments on Some Preprocessing Results

We now report in detail how the preprocessors perform on some of the problems. We examine

them from several angles: for example, can they help to find known optimal solutions of difficult

SDPs? How do they perform on large-scale SDPs? How fast are they when they do not reduce an

SDP by much, or at all?

We first look at how the preprocessors perform on the “Compact”, “unbound”, and “Example”

problems, for which the exact optimal values are known, but are hard to compute. (These problems

are from the PP dataset.) We examine whether preprocessing helps to find these optimal values.

We note that Sieve-SDP does not change the optimal value of (P), since it deletes rows and

columns from the variable matrix X that are always zero anyway. However, when it deletes rows

and columns in the constraint matrices, in the dual (D) we require only a principal minor of

C −
∑m

i=1 yiAi to be PSD. Thus applying Sieve-SDP may increase the optimal value of (D).

To make this argument more precise, let us write (Pr) and (Dr) for the primal and dual problems

after preprocessing by Sieve-SDP, respectively. Then,

D? ≤ D?r ≤ P?r = P?, (2.6)
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where P?r and D?r are optimal objective values of (Pr) and (Dr), respectively. For example, in

Example 2.3 Sieve-SDP deletes the first row and first column in all constraint matrices, and it is

easy to check that the corresponding optimal values are 0 < 1 = 1 = 1, respectively. In detail, for

this example (Dr) is

supy2 y2

s.t. y2

1 0

0 0

 �
1 0

0 0

 ,
(2.7)

whose optimal value is 1. On the other hand, suppose P? = D?. Then (2.6) implies that Sieve-SDP

changes neither the primal, nor the dual optimal values.

We should also expect the primal optimal value (but not that of the dual) to remain the same,

if we preprocess (P) by pd1 and pd2, since these algorithms also reduce the primal. On the other

hand, algorithms dd1 and dd2 reduce the dual problem (D), so they keep the optimal value of the

dual (D) the same. However, they may change the optimal value of the primal (P).

In all tables we use the following convention: among the reported objective values the first is

the primal and the second is the dual.

2.3.1 “Compact” problems – 10 problems from [137]

These instances are weakly infeasible, i.e., the affine subspace

H = {X | Ai ·X = bi, i = 1, . . . ,m}

does not intersect Sn+, but the distance of H to Sn+ is zero. Weakly infeasible SDPs are particularly

challenging to SDP solvers. However, we refer to a recent algorithm in [63], which can detect

(in)feasibility of small SDPs in exact arithmetic; and to [81] for an algorithm that is tailored to

detect weak infeasibility.

On these problems pd1 and pd2 produced the same results, while dd1 and dd2 reduced none of

them; pd1 and pd2 combined with MOSEK correctly detected primal infeasibility of all problems,

while Sieve-SDP correctly proved their primal infeasibility without using MOSEK. (Since it found

the primal infeasibility, we did not compute a dual solution.)

The results are in Table 2.1.
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Table 2.1: Results on the “Compact” problems

Problem Correct obj (P, D) Before prep. After pd1/pd2 After dd1/dd2 After Sieve-SDP

CompactDim2R1 Infeas, +∞ 3.79e+06, 4.20e+06 Infeas, 1 3.79e+06, 4.20e+06 Infeas, -
CompactDim2R2 Infeas, +∞ 6.41e-10, 6.81e-10 Infeas, 2 6.41e-10, 6.81e-10 Infeas, -
CompactDim2R3 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R4 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R5 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R6 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R7 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R8 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R9 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R10 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -

correctness % 100%, 100% 0%, 0% 100%, 0% 0%, 0% 100%, -

We mention here another set of (weakly) infeasible SDPs. They were

presented in [81], and are available from http://gaborpataki.web.unc.edu/

infeasible-and-weakly-infeasible-sdps/. Some of these SDPs are classified as “clean”

and some of them as “messy”. In the “clean” instances the structure that proves infeasibility is

apparent, while in the “messy” instances that structure was obscured by two kinds of operations:

random elementary row operations on the constraints and a random similarity transformation.

Indeed, in our testing all clean instances were found infeasible by Sieve-SDP, pd1 and pd2. In

contrast, no messy instances were reduced by any of the preprocessing methods.

2.3.2 “Unbound” problems – 10 problems from [139]

The mathematically correct optimal values of both the primal and the dual are 0 in this problem

collection. However, before preprocessing MOSEK returned wrong optimal values for 6 out of 10

problems. Although MOSEK found solutions with almost correct optimal value in problems 2, 3

and 4, these solutions are inaccurate, as the DIMACS errors are of the order 10−1 (this is marked

by “*” symbols in Table 2.2).

In summary, 9 out of 10 problems in this dataset need preprocessing to obtain a reasonable

solution. Sieve-SDP, pd1 and pd2 corrected all objective values, as Table 2.2 shows.

The authors in [139] computed the correct optimal solution of these instances using SDPA-

GMP [47], a high-precision SDP solver that carries several hundred significant digits. However,

doing so is more time consuming than running MOSEK combined with Sieve-SDP.
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Table 2.2: Results on the “unbound” problems

Problem Correct obj (P, D) Before prep. After pd1/pd2 After dd1/dd2 After Sieve-SDP

unboundDim1R1 0, 0 1.33e-09, -7.05e-10 1.33e-09, -7.05e-10 1.33e-09, -7.05e-10 0, 0
unboundDim1R2 0, 0 -8.19e-15*, -8.01e-15* 0, 0 -8.19e-15*, -8.01e-15* 0, 0
unboundDim1R3 0, 0 -2.04e-11*, -2.02e-11* 0, 0 -2.04e-11*, -2.02e-11* 0, 0
unboundDim1R4 0, 0 -2.34e-10*, -2.32e-10* 0, 0 -2.34e-10*, -2.32e-10* 0, 0
unboundDim1R5 0, 0 -1, -1 0, 0 -1, -1 0, 0
unboundDim1R6 0, 0 -1, -1 0, 0 -1, -1 0, 0
unboundDim1R7 0, 0 -1, -1 0, 0 -1, -1 0, 0
unboundDim1R8 0, 0 -1, -1 0, 0 -1, -1 0, 0
unboundDim1R9 0, 0 -1, -1 0, 0 -1, -1 0, 0
unboundDim1R10 0, 0 -1, -1 0, 0 -1, -1 0, 0

correct% 100%, 100% 10%, 10% 100%, 100% 10%, 10% 100%, 100%

2.3.3 “Example” problems – 8 problems from [24]

The mathematically correct objective values are reported in [24, Table 12.1]. (In [24], our

primal is considered as the dual, and vice versa, so that table must be read accordingly.)

Table 2.3 shows the objective values before and after preprocessing. We consider an objective

value correct if it is less than 10−6 away from the true optimal value.

Table 2.3: Results on the “Example” problems

Problem Correct (P, D) Before prep. After pd1/pd2 After dd1/dd2 After Sieve-SDP

Example1 0, 0 0, 0 0, 0 0, 0 0, 0
Example2 1, 0 3.33e-01, 3.33e-01 1, 1 4.73e-15, 1.82e-14 1, 1
Example3 0, 0 3.33e-01, 3.33e-01 1.17e-07, 1.69e-07 4.73e-15, 1.82e-14 1.17e-07, 1.69e-07
Example4 Infeas, 0 Infeas, 3.74e-07 Infeas, 1 0, 0 Infeas, -
Example6 1, 1 1, 1 1, 1 1, 1 1, 1
Example7 0, 0 0, 0 0, 0 0, 0 0, 0
Example9size20 Infeas, 0 Infeas, 3.39e-01 Infeas, 1 0, 0 Infeas, -
Example9size100 Infeas, 0 Infeas, 3.43e-01 Infeas, 1 0, 0 Infeas, -

correctness % 100%, 100% 75%, 50% 100%, 50% 50%, 100% 100%, 50%

We excluded “Example5” of [24] from this table, since in [24, Table 12.1] the optimal value

is not reported. For all other problems, except for “Example9size20” and “Example9size100”, we

manually verified the correctness of the optimal values in exact arithmetic.

Note that the comparison in Table 2.3 is somewhat unfair to Sieve-SDP: if it found a problem

infeasible, it did not compute a dual solution.
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2.3.4 “Finance” problems – 4 problems from [14]

The PP dataset contains four “finance” problems: “leverage limit”, “long only”, “sec-

tor neutral” and “unconstrained”. We report on these problems in detail, since these are the

largest in the PP dataset. For example, “long only” has 100 semidefinite variable blocks of order

91 and another 100 of order 30.

Table 2.4 shows how much the preprocessors reduced these SDPs: here npsd is the total size

of the semidefinite blocks; nnonneg is the total number of nonnegative variables; nfree is the total

number of free variables; m is the total number of constraints; and Nnz is the total number of

nonzero entries in the constraints.

Table 2.4: Results on the “finance” problems

Method npsd nnonneg nfree m Nnz

None 60,400 51,100 0 251,777 2,895,756
pd1 60,400 51,100 0 251,777 2,895,756
pd2 60,280 51,100 0 249,797 2,880,876
dd1 27,429 51,100 2,286,000 251,777 2,844,756
dd2 36,400 51,100 2,521,005 251,777 2,605,807
Sieve-SDP 56,766 50,873 0 215,210 2,466,573

While dd1 and dd2 significantly reduced the size of the PSD blocks, they added many free

variables. Sieve-SDP reduced the size of the PSD blocks without adding free variables, and it elim-

inated the most constraints. We mention here that after preprocessing with dd2, MOSEK detected

that problem “leverage limit” is “dual infeasible”. This may be due to numerical instability.

We remark that preprocessing actually increased the solving time on these problems, though

not by much. For example, the total time spent on preprocessing with Sieve-SDP plus solving with

MOSEK is about 21% higher than the solving time with MOSEK without preprocessing. Still,

since the primary goal of preprocessing is to improve solution accuracy, we believe that we should

do it whenever we can.

Furthermore, on these instances Sieve-SDP performed a large number of iterations, and deleted

only a small submatrix in each one. Thus, we could easily reduce the time spent by Sieve-SDP by

limiting the maximum number of iterations it is allowed to perform. We do not report results with

such a setting, since we do not want to “overtune” our code.
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2.3.5 Dressler-Illiman-de Wolff dataset (155 problems)

Let us consider the polynomial optimization problem

min
x

f(x)

s.t. gi(x) ≥ 0, i = 1, . . . ,m,
(2.8)

where f and the gi are multivariate polynomials.

As shown in the seminal work of Lasserre [73], the optimal value of (2.8) can be lower bounded

by solving SDPs. Under suitable conditions the lower bounds obtained from these SDPs converge

to the optimal value of (2.8), as the so-called Lasserre relaxation order increases. See [97] for a

related scheme to construct SDP relaxations of (2.8). However, no useful lower bound is obtained

when the SDPs are infeasible.

Since solving the Lasserre SDPs can be challenging, Dressler, Illiman and de Wolff [33] proposed

an alternative relaxation based on so-called nonnegative circuit polynomials, and they compared

their approach with the SDP-based one.

We constructed the SDPs in the DIW dataset by taking the polynomial optimization problems

from [33] and using GloptiPoly 3 [62] to generate their SDP relaxations. We describe our SDPs

in Table 2.5 with their Lasserre relaxation order, which ranges from the lowest possible (half the

degree of the highest degree monomial in the polynomial) to 20. For example, the SDP named

“ex3.3 order4” is obtained by applying the Lasserre relaxation of order 4 to [33, Example 3.3].

Table 2.5: Relaxation orders for examples in [33]

Examples 3.3 4.1 4.2 4.3 4.4 5.4 5.5 5.6 5.7

Relaxation orders 6, . . . , 20 3, . . . , 20 6, . . . , 20 2, . . . , 20 3, . . . , 20 5, . . . , 20 4, . . . , 20 4, . . . , 20 5, . . . , 20

Table 2.6 shows the results. Here, “n” is the sum of the orders of all PSD and nonnegative

blocks, and column “m” is the sum of the number of constraints in all problems.

The results are quite striking. Sieve-SDP, pd1, and pd2 ran fast, reduced all problems in this

collection, detected infeasibility of more than a third, and reduced overall computing time by a

factor of more than a hundred! Sieve-SDP was the best in all aspects, with pd1 a close second. On

the other hand, without preprocessing, MOSEK failed to detect infeasibility of any of these SDPs.

These results are somewhat surprising, since [33] solved some of these SDPs to approxi-
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Table 2.6: Results on the DIW dataset

Method # Reduced n m Preprocessing (s) Solving (s) # Infeas

None - 53,523 186,225 - 139,493.56 -
pd1 155 1,450 3,278 1632.43 128.46 56
pd2 155 1,450 3,278 10,831.32 124.44 56
dd1 0 53,523 186,225 65.18 139,493.56 0
dd2 0 53,523 186,225 22,152.57 139,493.56 0
Sieve-SDP 155 1,385 3,204 1,232.27 87.53 59

mate optimality, and managed to extract approximate optimal solutions of the original polynomial

optimization problems. Similar results for similar SDPs were obtained earlier in [61]. In fact,

[61] took the view that numerical inaccuracy of the SDP solvers actually helps find near-optimal

solutions of the polynomial optimization problems. See [74] for a more recent and thorough study

of the same issue. We remark that these SDPs are likely to be weakly infeasible.

We were thus motivated to double check that Sieve-SDP indeed reduced these SDPs correctly.

Precisely, we verified that in the Basic Step in Figure 2.2 it only eliminated constraints that were

in one of the following forms: either of the form

D 0

0 0

 ·X = 0,

where D is positive definite diagonal of order 1 or 2, and the smallest diagonal element is 1 or 0.5

or 1/3 = 0.3333 . . . ; or of the form

O ·X = 0,

where O is the zero matrix. Furthermore, Sieve-SDP always detected infeasibility by finding a

constraint of the form D 0

0 0

 ·X = β,

where D is as above, and β = −3 or −8.

The zeroes in all these constraints are zero in absolute machine precision, i.e., in the sparse

SDPs returned by GloptiPoly 3, these entries do not appear at all. Thus Sieve-SDP performed all

reductions correctly.
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2.3.6 Henrion-Toh dataset (98 problems)

This dataset was kindly provided to us by Didier Henrion and Kim-Chuan Toh. The problems

come mostly from polynomial optimization.

Among these problems, 18 were reduced by pd1, pd2, or Sieve-SDP, and none by dd1 or dd2.

Table 2.7 shows the time details in seconds. The last column “Pre. vs. Solve” shows the time

spent on preprocessing as a percentage of time spent on solving. It is

preprocessing time

solving time without preprocessing
× 100%. (2.9)

Table 2.7: Time results on the Henrion-Toh dataset

Method Preprocessing (s) Solving (s) Pre. vs. solve

None - 1420.02 -
pd1 10.27 1373.70 0.72%
pd2 49.84 1374.31 3.51%
dd1 3.93 1420.02 0.28%
dd2 29.24 1420.02 2.06%
Sieve-SDP 4.58 1376.27 0.32%

On this dataset the preprocessors are less successful: pd1, pd2, and Sieve-SDP detected infea-

sibility of only one problem (of “sedumi-l4”) and they reduced solving time only a little. However,

the preprocessing times are small, or even negligible: for example, Sieve-SDP spent only about

0.3% of the time that it took for MOSEK to solve the problems.

In Figure 2.5 we illustrate how Sieve-SDP works on the problem instance “sedumi-fp32”: we

show the sparsity structure of the constraints of the original problem (on the left), and after we

applied Sieve-SDP (on the right). Just like in Figure 2.4, each row corresponds to an Ai matrix

stretched out as a vector. Red dots correspond to positive entries, blue dots correspond to negative

entries, and white areas correspond to zero entries.

Here, we also discuss problem “sedumi-fp33” on which preprocessing by Sieve-SDP makes the

DIMACS error worse. Since this is the only such instance, we looked at it in more detail. The

worst DIMACS error (of a solution computed by MOSEK) before Sieve-SDP is 3.36× 10−7, which

is acceptable. After Sieve-SDP the worst error is about 0.0928, which is unacceptable.

We also solved this instance using the high accuracy SDP solver SDPA-GMP [47]. The DIMACS

errors were
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Figure 2.5: Problem “sedumi-fp32”: size and sparsity before and after preprocessing.

2.3497× 102, 0.0000, 1.8552× 101, 0.0000, −9.9999× 10−1, 8.5173× 10−2

before Sieve-SDP, and

3.4075× 102, 0.0000, 1.9636× 101, 0.0000, −9.9999× 10−1, 6.1901× 10−1

after Sieve-SDP. In both cases, the largest error is unacceptably large. Given the high accuracy

of SDPA-GMP, this problem seems not to be accurately solved by current fast SDP solvers, and

the worse DIMACS error returned by MOSEK after Sieve-SDP alerts the user to this fact: this

problem may actually have a positive duality gap (cf. Example 2.3).

2.3.7 Toh-Sun-Yang dataset (419 problems) from [122, 149]

Although none of the five methods reduced the SDPs in this collection, we still comment on

them in detail, since pd1, dd1 and Sieve-SDP spent only a negligible amount time on preprocessing.

Thus, using these three methods it does not hurt to preprocess: see Table 2.8. The last column

“Pre. vs. Solve” defined in (2.9) shows the time spent on preprocessing as a percentage of time
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spent on solving. Pd2 and dd2, on the other hand, spent considerably more time on preprocessing.

Table 2.8: Time results on the Toh-Sun-Yang dataset

Method Preprocessing (s) Solving (s) Pre. vs. solve

pd1 220.18 27,635.46 0.80%
pd2 4,029.61 27,635.46 14.58%
dd1 134.64 27,635.46 0.49%
dd2 2,428.82 27,635.46 8.79%
Sieve-SDP 152.14 27,635.46 0.55%

2.4 Conclusions

We now give an overall comparison of all methods in Tables 2.9, 2.10 and 2.11.

Table 2.9: Infeasibility detection and error reduction on all 771 problems

Method # Reduced # Infeas detected # DIMACS error improved Crashed

pd1 209 67 74 0
pd2 230 67 78 6
dd1 14 0 2 0
dd2 21 0 4 4
Sieve-SDP 216 73 74 0

Table 2.10: Time results on all 771 problems

Method Preprocessing (s) Solving (s) Prep vs. solve Time reduction

None - 272,427.23 - -
pd1 2,486.51 132,356.63 0.91% 50.50%
pd2 23,323.07 131,636.47 8.56% 43.12%
dd1 587.93 272,244.62 0.22% -0.15%
dd2 35,984.45 272,031.04 13.21% -13.16%
Sieve-SDP 2,170.13 131,837.25 0.80% 51.81%

Table 2.11: Size reduction on all 771 problems

Method # Reduced Red. on n Red. on m Extra free vars Nnz

none - - - - 300,989,332
pd1 209 15.47% 17.79% 0 211,299,702
pd2 230 15.59% 18.23% 0 211,257,726
dd1 14 6.74% 0.00% 2,293,495 300,936,120
dd2 21 9.28% 0.00% 2,315,849 299,272,012
Sieve-SDP 216 16.55% 20.66% 0 206,061,059

In Table 2.9 the second column shows how many problems were reduced. The third column

shows how many problems were detected to be infeasible. The fourth column shows on how many
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instances the preprocessing improved the DIMACS errors, as we discussed in Section 2.2. The last

column “Crashed” shows how many times a method crashed or ran out of memory: this happened

with pd2 six times and with dd2 four times. To ensure fair reporting, we reran these methods on

the same instances on a machine with 24 GB RAM, and the results were the same.

Table 2.10 shows the preprocessing and solving times in seconds. The second column shows the

preprocessing time and the third shows the solving time by MOSEK after preprocessing. Column

“Prep vs. solve” shows the relative speed of the preprocessors; see (2.9). The last column, “Time

reduction”, displays by how much preprocessing reduced the solving time. It is

solving time w/o preprocessing − (preprocessing time + solving time after preprocessing)

solving time w/o preprocessing
×100%.

Of course, the higher this percentage, the more a preprocessor reduces solving time. A negative

percentage means that preprocessing actually increased the total time.

Finally, Table 2.11 shows by “how much” the problems were reduced. As in Table 2.9, the

second column shows the number of problems reduced by each method. To explain the other

columns, let us fix an SDP in the primal form (P) with potentially several PSD block variables

(some of which may be of order 1, i.e., nonnegative variables). Let nbefore and nafter be the total

size of the PSD blocks before and after reduction. We define the reduction rate on n as

∑
nbefore −

∑
nafter∑

nbefore
,

where the sum is over all 771 problems. Similarly, let mbefore and mafter be the number of constraints

in a problem before and after reduction. We define the reduction rate on m as

∑
mbefore −

∑
mafter∑

mbefore
,

where the sum is again taken over all 771 problems. Methods dd1 and dd2 added free variables,

and the fifth column in Table 2.11 shows how many. The sixth column “Nnz” shows the total

number of nonzeros in the constraint matrices.

Given these tables, we now summarize the findings. In all aspects Sieve-SDP is competitive

with the other preprocessing methods. In detail:
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• It is competitive considering the number of problems reduced.

• It is competitive in computing known optimal solutions; see Tables 2.1, 2.2 and 2.3.

• The time spent on preprocessing with Sieve-SDP vs. solving is negligible. It is also negligible

for pd1 and dd1, but less so for pd2 and dd2. See Table 2.10.

In several aspects Sieve-SDP is the best.

• It is best in detecting infeasibility; see Table 2.9. It is important that Sieve-SDP detects in-

feasibility without using any optimization solver, whereas the other methods rely on MOSEK.

• It reduced solving time the most, with pd1 a close second; see Table 2.10.

• It reduced the size of the instances the most: see Table 2.11.

• It needs very little additional memory, precisely O(nm); see Appendix A.2.

• It is as accurate as Cholesky factorization, which works in machine precision. Sieve-SDP is

also easily implemented in a safe mode; see Section 2.2.

• It is the simplest: the core code consists of only 40-80 lines; see Appendix A.2.

The code is available from

https://github.com/unc-optimization/SieveSDP
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CHAPTER 3

ACCELERATED PRIMAL-DUAL ALGORITHMS FOR A CLASS OF
CONVEX-CONCAVE SADDLE-POINT PROBLEMS

3.1 Introduction

We develop two new first-order primal-dual algorithms to solve a class of convex-concave saddle-

point problems involving non-bilinear coupling function, which covers many existing and brand-new

applications as special cases. Our approach relies on a novel combination of non-convex augmented

Lagrangian and Nesterov’s accelerated schemes, and homotopy strategy. Both algorithms are single-

loop and only require one or at most two proximal operators of the objective function, one gradient

of the coupling function, and possibly one gradient of the smooth objective term per iteration.

They do not require to solve any complex subproblem as in standard augmented Lagrangian or

penalty methods.

When the objective function is merely convex, our first algorithm can achieveO
(

1
k

)
convergence

rates through three different criteria (primal objective residual, dual objective residual, and primal-

dual gap), on either the ergodic sequence or the non-ergodic sequence. This rate can potentially

be even faster than O
(

1
k

)
on non-ergodic primal objective residual using a new parameter update

rule. If the objective function is strongly convex, our second algorithm can boost these convergence

rates to no slower than O
(

1
k2

)
. To the best of our knowledge, these are the first algorithms that

can achieve such fast convergence rates on non-ergodic sequences for non-bilinear convex-concave

saddle-point problems.

As a by-product, we specify our results to handle general cone-constrained convex problems.

We test our algorithms on quadratically constrained quadratic programs, convex-concave game

problems, and image processing problems, to verify the algorithms’ performance as well as to

compare them with existing methods.

This chapter is based on papers [129, 130, 152], the joint works with Dr. Quoc Tran-Dinh and
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Deyi Liu. Here, [129] develops some basic proof techniques, and provides the numerical experiments

on image processing. Then [130] discusses the case where the coupling term is bilinear, and improves

the convergence rates. Finally, [152] generalizes the theory and algorithms in [130] for non-bilinear

coupling terms. The last paper considers the most general problem, and thus it is the major

component of this chapter.

Problem statement. Our goal is to develop novel first-order primal-dual algorithms to solve the

following convex-concave saddle-point problem involving non-bilinear coupling function:

min
x∈Rp

max
y∈Rm

{
L̃(x, y) := F (x) + 〈g(x), y〉 −H∗(y)

}
, (SP)

where functions F : Rp → R ∪ {+∞} and H : Rm → R ∪ {+∞} are proper, closed, and convex,

but not necessarily smooth, H∗ is the Fenchel conjugate of H, and g : Rp → Rm is a smooth vector

function such that 〈g(x), y〉 is convex for all y ∈ domH∗. Under this assumption on g, we have

that H ◦ g is convex in x, and we can formulate (SP) into the following primal composite convex

minimization problem:

P? := min
x∈Rp

{
P(x) := F (x) + max

y∈Rm
{〈g(x), y〉 −H∗(y)} ≡ F (x) +H (g(x))

}
. (P)

The corresponding dual problem is also convex and can be written as

D? := max
y∈Rm

{
D(y) := min

x∈Rp
{F (x) + 〈g(x), y〉} −H∗(y)

}
. (D)

The saddle-point problem (SP) and its primal form (P) has numerous applications, as described

in Example 1.1 in Section 1.1. Among them, an important special case (1.1) is when H∗ ≡ δK∗ ,

the indicator of the dual cone of a proper cone, and (P) becomes

min
x∈Rp

F (x) s.t. g(x) ∈ −K. (3.1)

It is a convex program, and it generalizes conic programming, as the objective function F is not

necessarily linear.

For a review of the existing methods for solving (SP) or (P), see Section 1.3, where we have
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pointed out that existing methods have three types of limitations:

• Strong model assumptions;

• High per-iteration complexity; and

• Inconsistency between theoretical convergence guarantees and empirical solutions.

Our contributions. Faced with the above limitations in the existing literature, we develop two

first-order primal-dual algorithms with the following features:

1. Mild model assumption. Our algorithms are designed for the general problem (P) or its

saddle-point form (SP), and with mild assumptions. Unlike [57, 64, 79], the domain of y in

(SP) can be assumed to be unbounded.

2. Low per-iteration complexity. Our algorithms have only single loop, thus the per-iteration

complexity is low - they only require gradient computations, proximal operations, and function

evaluations, at most twice each for each iteration.

3. Optimal O
(

1
k

)
ergodic and semi-ergodic convergence rates when k = O(p).1

• We specify a parameter update rule for Algorithm 1 and establish its O
(

1
k

)
ergodic

convergence rate on the duality gap.

• We establish O
(

1
k

)
convergence rate on the primal non-ergodic and dual ergodic se-

quences of Algorithm 1. We call this the semi-ergodic rate. Unlike existing works, we

characterize three different criteria: gap function, primal objective residual, and dual

objective residual.

4. Faster min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
primal non-ergodic convergence rate when k > O(p). We

modify the parameter update rule of Algorithm 1 to achieve both O
(

1
k

)
and o

(
1

k
√

log k

)
non-

ergodic convergence rates for (P). To the best of our knowledge, this is the first time that a

first-order method for (P) attains such fast convergence rates.

5. Boosted convergence rates when F is strongly convex. When function F in (SP) is

strongly convex, Algorithm 2 can boost the rates in Items 3 and 4 up to O
(

1
k2

)
and

min
{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
, resp.

1The O and the soon-to-appear o notations will be defined in (3.2)-(3.3).
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The above contributions in terms of convergence rates, specified by Items 3-5, are summarized

in Table 3.1. Here, P(x) − D(y) and GX×Y(x, y) are both gap functions to be defined in Section

3.2.3; {xk} and {x̄k} denote the primal non-ergodic (last-iterate) and ergodic (averaging) sequences,

respectively, and {ȳk} is the dual ergodic sequence.

Table 3.1: Summary of our main contributions

Algorithm Parameter update rule Convergence criteria Convergence rate Theorem

Algorithm 1 option 1: (3.43) (3.44) P(x̄k)−D(ȳk), GX×Y(x̄k, ȳk) O
(
1
k

)
Theorem 3.1

option 2: (3.50) (3.51) P(xk)−D(ȳk), GX×Y(xk, ȳk) O
(
1
k

)
Theorem 3.2

option 3: (3.54) (3.55) P(xk)− P? min
{
O
(
1
k

)
, o
(

1
k
√
log k

)}
Theorem 3.3

Algorithm 2 option 1: (3.72) (3.73) P(x̄k)−D(ȳk), GX×Y(x̄k, ȳk) O
(

1
k2

)
Theorem 3.4

option 2: (3.79) (3.80) P(xk)−D(ȳk), GX×Y(xk, ȳk) O
(

1
k2

)
Theorem 3.5

option 3: (3.86) (3.87) P(xk)− P? min
{
O
(

1
k2

)
, o
(

1
k2
√
log k

)}
Theorem 3.6

Our approach. Our approach relies on a novel combination of the following techniques:

• We utilize an augmented Lagrangian function to penalize the constraints of (3.10). Different

from standard augmented Lagrangian methods [8, 115, 144–147], our augmented Lagrangian

function is globally non-convex, but locally convex in x. This function plays a role as a merit

function to measure the optimality.

• We apply Nesterov’s accelerated methods [89] to minimize the augmented Lagrangian function

w.r.t. the primal variable x, in order to achieve the optimal O
(

1
k

)
and O

(
1
k2

)
convergence

rates, resp. for merely convex and strongly convex F .

• We exploit homotopy strategy in [126, 130] to simultaneously update penalty parameter and

stepsizes, making the algorithms converge with optimal rates in the primal non-ergodic sense.

• We use the techniques in [3] to develop the even faster o-rates.

Chapter organization. The rest of this chapter is organized as follows.

In the main text, Section 3.2 recalls some basic concepts, and defines our augmented Lagrangian

function and characterizes its property. Section 3.3 develops our first algorithm, Algorithm 1, for

solving (SP), and discusses how its three variants lead to different types of convergence guarantees.

In Section 3.4, we develop the second algorithm, Algorithm 2, to handle the strongly convex case,

and we prove the algorithm’s convergence rates. Section 3.5 specifies our methods to solve cone-

constrained convex problem (3.1). Section 3.6 provides several numerical examples to verify our
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theoretical results. Finally, we draw the conclusions in Section 3.7.

For the clarity of presentation, we put some supplemental proofs in the appendices. Appendix

B.1 presents a useful basic lemma. Appendices B.2 and B.3 provide supplenmental proofs for the

key lemmas and theorems in Sections 3.3 and 3.4, respectively.

3.2 Fundamental Assumptions and Mathematical Tools

Let us first recall some basic notations and concepts, and describe our assumptions imposed

on (SP). Then, we state the optimality condition and introduce the gap functions. Finally, we

reformulate (SP) into a non-convex constrained problem and introduce the associated non-convex

augmented Lagrangian function. We also prove a key property of this function, which will be used

in the sequel.

3.2.1 Basic notations and concepts

We work with Euclidean spaces Rp and Rm equipped with standard inner product 〈x,w〉 :=∑
i xiwi and norm ‖x‖ := 〈x, x〉1/2. For any nonempty, closed, and convex set X in Rp, we use riX

to denote the relative interior of X , and δX to denote the indicator of X . If K is a proper cone,

then K∗ := {w ∈ Rp | 〈w, x〉 ≥ 0, ∀x ∈ K} denotes its dual cone.

For any proper, closed, and convex function f : Rp → R ∪ {+∞}, let domf :=

{x ∈ Rp | f(x) < +∞} be its (effective) domain, let f∗(w) := sup
x
{〈w, x〉 − f(x)} be its Fenchel

conjugate, let ∂f(x) := {w ∈ Rp | f(x′) − f(x) ≥ 〈w, x′ − x〉, ∀x′ ∈ domf} be the

subdifferential of f at x, and let ∇f be the gradient or subgradient of f . We also denote

proxf (x) := argmin
x′
{f(x′) + 1

2‖x
′ − x‖2} as the proximal operator of f at x. If f is the indi-

cator of a convex set X , then proxf reduces to the projection projX onto X . For a vector function

g : Rp → Rm, we use ∇g ∈ Rm×p to denote its Jacobian.

A function f : Rp → Rm is called Mf -Lipschitz continuous on domf with a Lipschitz constant

Mf ∈ [0,+∞) if ‖f(x) − f(x′)‖ ≤ Mf‖x − x′‖ for all x, x′ ∈ domf . If f is differentiable on domf

and ∇f is Lipschitz continuous with a Lipschitz constant Lf ∈ [0,+∞), i.e., ‖∇f(x)−∇f(x′)‖ ≤

Lf‖x − x′‖ for x, x′ ∈ domf , then we say that f is Lf -smooth. If f(·) − µf
2 ‖ · ‖

2 is still convex

for some µf > 0, then we say that f is µf -strongly convex with a strong convexity parameter µf .
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Clearly, if µf = 0, then f is merely convex.

Finally, R+ and R++ are the sets of nonnegative and positive real numbers, respectively, and

N is the set of nonnegative integers. We use O(·), o(·) and Ω(·) to denote the order of complexity

as usual: for two sequences of scalars {uk} ⊆ R+ and {vk} ⊆ R++, we say



uk = O(vk), if lim sup
k→∞

uk
vk
<∞,

uk = o(vk), if lim
k→∞

uk
vk

= 0,

uk = Ω(vk), if lim inf
k→∞

uk
vk
> 0.

(3.2)

We further define a new o(·) notation as follows:

uk = o(vk) if lim inf
k→∞

uk
vk

= 0, (3.3)

that is, there is a subsequence {kj} ⊆ N such that ukj = o(vkj ).

3.2.2 Fundamental assumptions

Throughout this chapter, we will rely on the following two assumptions imposed on (SP) to

develop our algorithms and analyze their convergence guarantees.

Assumption 3.1. The set of saddle-points X ?×Y? of (SP) is nonempty, i.e., there exists (x?, y?) ∈

X ? × Y? such that:

L̃(x?, y) ≤ L̃(x?, y?) ≤ L̃(x, y?), ∀(x, y) ∈ Rp × Rm. (3.4)

Assumption 3.1 is standard in saddle-point problems. With this, we can show the following

connection between the objective values of the primal (P) and of its dual (D):

D(y) ≤ D(y?) = D? = P? = P(x?) ≤ P(x), ∀(x, y) ∈ Rp × Rm, (3.5)

where P and D are the primal and dual objectives defined in (P) and (D), respectively.2

2Indeed, P? := P(x?)
(P)
= maxy L̃(x?, y) = L̃(x?, y?)

(3.4)

≤ L̃(x, y?) ≤ maxy L̃(x, y)
(P)
= P(x). The dual direction

can be proved analogously.
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We also impose the following assumption on (SP).

Assumption 3.2. The functions F , H, and g in (SP) satisfy the following conditions:

1. The function F (x) = f(x) +h(x) is defined on Rp, where both f and h are proper, closed and

convex, and f is Lf -smooth for some Lipschitz constant Lf ∈ [0,∞).

2. The function H : Rm → R ∪ {+∞} is proper, closed, and convex.

3. The function g is such that 〈g(x), y〉 is convex in x for any y ∈ domH∗, and:

(a) Function g is Mg-uniformly Lipschitz continuous for some Mg ∈ [0,∞)m, i.e.,

‖g(x)− g(x′)‖ ≤ ‖Mg‖‖x− x′‖ = Mg‖x− x′‖, ∀x, x′ ∈ domP, (3.6)

where Mg := ‖Mg‖.

(b) For any y ∈ domH∗, function [∇g(·)]>y is Lg(y)-Lipschitz continuous for some Lg(y) ∈

[0,+∞) depending on y, i.e.,

∥∥∥[∇g(x)]>y − [∇g(x′)]
>
y
∥∥∥ ≤ [Lg(y)]‖x− x′‖, ∀x, x′ ∈ domP.

In addition, Lg(y) satisfies 0 ≤ Lg(y) ≤ Lg‖y‖ for some Lg ∈ [0,+∞).

The condition (3.6) is equivalent to the Mgi-Lipschitz continuity of gi, where Mgi is the i-th

component of Mg, and gi is the i-th component of mapping g, where i = 1, . . . ,m. Clearly, if

g(x) = Ax is bilinear, then it automatically satisfy Assumption 3.2(3). Assumption 3.2 is standard

in primal-dual methods for solving (SP) as used in [57, 64, 79]. However, unlike these works,

Lg(y) in Assumption 3.2 can depend on y, which allows us to cover cone constrained problem (3.1)

without requiring the boundedness of domF or domH∗. Note that in item 3, the convexity and

Lg(y)-smoothness of 〈g(x), y〉 imply that

0 ≤ 〈y, g(x′)− g(x)− [∇g(x)](x′ − x)〉 ≤ Lg(y)

2
‖x′ − x‖2, ∀x, x′ ∈ domP. (3.7)

In particular, if domP is nonempty, convex, and compact, and g is continuously differentiable on

domP, then g is Mg-Lipschitz continuous and 〈g(x), y〉 is Lg(y)-smooth on domP. Some existing

works [6, 71, 147] impose these conditions, but we do not require domP to be bounded.
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3.2.3 Optimality condition and gap functions

Optimality condition. In view of Assumption 3.1 and the Fermat’s rule, there exists a pair of

optimal solutions (x?, y?) ∈ Rp×Rm to the primal problem (P) and its dual formulation (D), which

satisfies the following optimality condition:

0 ∈ ∂F (x?) + [∇g(x?)]>y? and 0 ∈ g(x?)− ∂H∗(y?). (3.8)

Gap function. We consider two types of duality gap functions at a pair of solutions (x, y). The

first one is the standard primal-dual gap P(x)−D(y), which is nonnegative due to the weak duality

as shown in (3.5), and it vanishes, i.e., P(x) − D(y) = 0, if and only if (x, y) is a saddle point of

(SP) due to strong duality, by Assumption 3.1.

Another gap function is defined as

GX×Y(x, y) := sup
x′∈X ,y′∈Y

{
L̃(x, y′)− L̃(x′, y)

}
= sup

y′∈Y
L̃(x, y′)− inf

x′∈X
L̃(x′, y). (3.9)

When X × Y contains a saddle-point, it is clear that

GX×Y(x, y) ≥ L̃(x, y?)− L̃(x?, y)
(3.4)

≥ L̃(x?, y?)− L̃(x?, y?) = 0.

Moreover, when (x, y) is a saddle-point, GX×Y(x, y) = 0.3 This gap function is widely used in the

literature on primal-dual convergence theory [13, 20, 28, 88].

It is clear that GX×Y(x, y) ≤ GRp×Rm(x, y) = P(x) − D(y). In our analysis, we will have

convergence guarantees on both types of duality gaps. For the gap P(x)−D(y), we would require

additional conditions such as the Lipschitz continuity on H and/or F ∗; in contrast, convergence

guarantees on GX×Y do not require such conditions.

3.2.4 The augmented Lagrangian function and its properties

Non-convex constrained reformulation. To solve (SP), we can write (P) as

3To be more specific, GX×Y could also vanish at non-saddle-points. However, if (x, y) is in the interior of X ×Y,
then GX×Y(x, y) = 0 if and only if (x, y) is a saddle-point of (SP) [20].
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min
(x,s)∈Rp×Rm

{F (x) +H(−s) s.t. g(x) + s = 0}, (3.10)

where s is the slack variable. If g is non-affine, then (3.10) is non-convex. Moreover, the Lagrange

function associated with (3.10) can be written as

L(x, s, y) := F (x) +H(−s) + 〈y, g(x) + s〉, (3.11)

where y ∈ Rm is a Lagrange multiplier. If (x?, y?) is optimal to (SP), i.e., satisfies (3.8), then

(x?, y?, s?) is optimal to (3.10), where s? = −g(x?). Thus (3.8) can be written as

0 ∈ ∂F (x?) + [∇g(x?)]>y? and − g(x?) = s? ∈ −∂H∗(y?). (3.12)

By the Fenchel theorem, we have H(−s) +H∗(y) ≥ −〈s, y〉, where the equality holds if and only if

s ∈ −∂H∗(y), or equivalently, y ∈ ∂H(−s). Therefore, it holds that

L̃(x, y) ≤ L(x, s, y) and L̃(x, y) = L(x, s, y) iff s ∈ −∂H∗(y). (3.13)

Consequently, for any (x, s, y) ∈ Rp × Rm × Rm, (3.4) implies that

L̃(x?, y) ≤ L(x?, s?, y) = L̃(x?, y?) = L(x?, s?, y?) ≤ L̃(x, y?) ≤ L(x, s, y?). (3.14)

Augmented Lagrangian function. The augmented Lagrangian of (3.10) is defined as

Lρ(x, s, y) := L(x, s, y) + ρ
2‖g(x) + s‖2

(3.11)
= F (x) +H(−s) + 〈y, g(x) + s〉+ ρ

2‖g(x) + s‖2,
(3.15)

where the scalar ρ > 0 is a penalty parameter. Note that if g is not affine, then Lρ is not convex

in x. Some existing works [144–147] minimize Lρ over s to obtain a standard convex augmented

Lagrangian function, first proposed in [113]; however, such formulation does not allow linear updates

in y, preventing a clear analysis when applying Nesterov’s acceleration technique. Therefore, we

preserve s and keep the non-convex form of Lρ, so that it is linear in y. As will be shown, in our

analysis, we do not need the global convexity, but rather the local convexity of Lρ in x. We can
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view this function as a smoothed approximation of the constrained reformulation (3.10) of (P),

where the smoothness parameter is in fact the penalty parameter [91].

Augmented Lagrangian term. Let us introduce

φρ(x, s, y) := 〈y, g(x) + s〉+
ρ

2
‖g(x) + s‖2. (3.16)

Then, by (3.15), we have Lρ(x, s, y) = F (x) + H(−s) + φρ(x, s, y). It is easy to see that at an

optimal solution, i.e., a (x?, s?, y?)-tuple that satisfies (3.12), we have φρ(x
?, s?, y?) = 0. Moreover,

we can directly compute the first-order derivatives of φρ as


∇xφρ(x, s, y) = [∇g(x)]> (y + ρ[g(x) + s]) ,

∇sφρ(x, s, y) = y + ρ[g(x) + s],

∇yφρ(x, s, y) = g(x) + s,

(3.17)

where ∇g(x) ∈ Rm×p is the Jacobian of g at x. For d ∈ Rp, the Hessian of φρ in x to the direction

of d is given by

∇2
xφρ(x, s, y)[d, d] = ρ‖∇g(x)[d]‖2 +

m∑
i=1

(yi + ρ[gi(x) + si])∇2gi(x)[d, d].

By Assumption 3.2(3), when y′ := y+ ρ[g(x) + s] ∈ domH∗, we have that 〈g(x), y′〉 is convex in x,

i.e., the last term in the last equality is nonnegative, and thus φρ(x, s, y
′) is locally convex in x. If

we view φρ as a function of g, then it is convex and ρ-smooth in g.

These important properties of φρ leads to Lemma 3.1, which will be used to prove descent

lemmas in Sections 3.3 and 3.4.

Lemma 3.1. Let φρ be as in (3.16). For any x, x′ ∈ Rp, s, s′ ∈ Rm and y ∈ Rm such that

y + ρ[g(x) + s] ∈ domH∗, we define the residual ∆ρ of a linearization of φρ at (x, s, y) as

∆ρ(x
′, s′;x, s, y) := φρ(x

′, s′, y)− φρ(x, s, y)

−〈∇xφρ(x, s, y), x′ − x〉 − 〈∇sφρ(x, s, y), s′ − s〉.
(3.18)

Then, we have the following estimate:
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0 ≤ ∆ρ(x
′, s′;x, s, y)− ρ

2
‖[g(x′) + s′]− [g(x) + s]‖2 ≤ Lg (y + ρ[g(x) + s])

2
‖x′ − x‖2, (3.19)

where Lg (y + ρ[g(x) + s]) is the Lipschitz modulus defined by Assumption 3.2(3c).

Proof. By definition of ∆ρ in (3.18), we can use the definition of φρ(x, s, y) in (3.16) and its partial

gradients w.r.t. x and s in (3.17) to explicitly write ∆ρ as

∆ρ(x
′, s′;x, s, y) = 〈y, [g(x′) + s′]− [g(x) + s]〉+ ρ

2

(
‖g(x′) + s′‖2 − ‖g(x) + s‖2

)
−〈y + ρ[g(x) + s], [∇g(x)](x′ − x) + (s′ − s)〉

= 〈y + ρ[g(x) + s], g(x′)− g(x)− [∇g(x)](x′ − x)〉+ ρ
2‖[g(x′) + s′]− [g(x) + s]‖2.

(3.20)

By the Lg(·)-smoothness of 〈·,∇g(x)〉 w.r.t. x, and that y + ρ[g(x) + s] ∈ domH∗, we can apply

(3.7) with y ← y + ρ[g(x) + s] to get

0 ≤
〈
y + ρ[g(x) + s], g(x′)− g(x)− [∇g(x)](x′ − x)

〉
≤ Lg (y + ρ[g(x) + s])

2
‖x′ − x‖2. (3.21)

Combining (3.20) and (3.21), we immediately get


∆ρ(x

′, s′;x, s, y) ≥ ρ
2‖[g(x′) + s′]− [g(x) + s]‖2

∆ρ(x
′, s′;x, s, y) ≤ ρ

2‖[g(x′) + s′]− [g(x) + s]‖2 +
Lg(y+ρ[g(x)+s])

2 ‖x′ − x‖2,

which is exactly (3.19).

3.3 Our First Primal-Dual Algorithm: General Convex-Concave Case

In this section, we develop a novel algorithm to solve (SP) under the general convexity-concavity

assumption, i.e., F and H∗ are convex, but not necessarily strongly convex.

3.3.1 The derivation and the complete algorithm

Our main idea is to exploit the augmented Lagrangian Lρ defined in (3.15) as a merit function

to measure the progress of the iterate sequence
{

(xk, yk)
}

. Since this function not only involves x

but also the dual variable y and the slack variable s, we also need to update them accordingly. To
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accelerate, we inject Nesterov’s accelerated steps [89] in x. Recall that φρ is not convex in x, but

thanks to Lemma 3.1, we can still utilize its local convexity.

Step by step, we derive our scheme to solve (SP) as follows.

1. We first update the slack variable sk+1 by minimizing Lρk(x̂k, s, ỹk) w.r.t. s:

sk+1 := arg min
s∈Rm

{
H(−s) + 〈ỹk, g(x̂k) + s〉+

ρk
2
‖g(x̂k) + s‖2

}
= −proxH/ρk

(
ỹk

ρk
+ g(x̂k)

)
.

(3.22)

2. To update xk+1, we would attempt to minimize Lρk(x, sk+1, ỹk) w.r.t. x. However, since

minimizing this function directly is difficult, we instead linearize f and φρk(·, sk+1, ỹk) at

point x̂k, respectively:

 f(x) ≈ f(x̂k) + 〈∇f(x̂k), x− x̂k〉+
Lfk
2 ‖x− x̂

k‖2,

φρk(x, sk+1, ỹk) ≈ φρk(x̂k, sk+1, ỹk) + 〈∇xφρk(x̂k, sk+1, ỹk), x− x̂k〉+
Lφk
2 ‖x− x̂

k‖2,

for some Lfk > 0 and Lφk > 0, respectively. Writing βk := 1

Lfk+Lφk
, we can combine the above

two approximations and update xk+1 as

xk+1 := argmin
x∈Rp

{
h(x) + 〈∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk), x− x̂k〉+ 1

2βk
‖x− x̂k‖2

}
= proxβkh

(
x̂k − βk[∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk)]

)
.

(3.23)

Here, the actual value of βk > 0 will be appropriately updated in our analysis.

3. To accelerate the descent progress on the primal variable, we update x̂k by applying Nesterov’s

acceleration technique [89]:

x̂k+1 := xk+1 +
τk+1(1− τk)

τk
(xk+1 − xk),

where the step-size τk ∈ (0, 1] will be updated appropriately.

4. We update the dual variable ỹk as follows:

ỹk+1 := projBk

(
ỹk + ηk

(
[g(xk+1) + sk+1]− (1− τk)[g(xk) + sk]

))
, (3.24)
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where Bk ⊆ Rm is a norm ball, which will be specified later.

5. Finally, we define the dual variable

yk+1 := proxρkH∗
(
ỹk + ρkg(x̂k)

)
. (3.25)

However, by Moreau’s identity,

ρks
k+1 (3.22)

= proxρkH∗
(
ỹk + ρkg(x̂k)

)
− [ỹk + ρkg(x̂k)] = yk+1 − [ỹk + ρkg(x̂k)]. (3.26)

Thus, we can in fact eliminate variable sk+1 from the expression of xk+1 in (3.23) by noting

that ∇xφρk(x̂k, sk+1, ỹk) = [∇g(x̂k)]
>
yk+1. Similarly, the presence of sk and sk+1 in the

update of ỹk+1 in (3.24) can also be eliminated. In this way, we can make our algorithm into

the primal-dual form [20, 38].

Combining the above steps, we arrive at our complete algorithm as in Algorithm 1.

Algorithm 1 Our first primal-dual algorithm: General convex-concave case

1: Initialization: Choose an initial primal-dual point (x0, y0) ∈ Rp × Rm.
2: Set x̂0 := x0, ỹ0 := y0, and Θ0 := 0.
3: Choose appropriate initial parameters, according to (3.43), (3.50), or (3.54).
4: For k = 0 to kmax

5: Update the parameters according to (3.44), (3.51), or (3.55), consistent with Step 3.
6: Update (xk, x̂k, yk, ỹk) as follows:

yk+1 := proxρkH∗
(
ỹk + ρkg(x̂k)

)
,

xk+1 := proxβkh

(
x̂k − βk

(
∇f(x̂k) + [∇g(x̂k)]

>
yk+1

))
,

x̂k+1 := xk+1 +
τk+1(1−τk)

τk
(xk+1 − xk),

Θk+1 := g(xk+1)− g(x̂k) + 1
ρk

(yk+1 − ỹk),

ỹk+1 := projBk
(
ỹk + ηk[Θk+1 − (1− τk)Θk]

)
.

(3.27)

7: EndFor

Per-iteration complexity. We analyze the per-iteration complexity of Step 6 in Algorithm 1.

The dominate computation includes:

1. The first line requires one function evaluation of g and a proximal operation of H∗.

2. The second line needs to compute one Jacobian ∇g(x̂k), one gradient ∇f , and one proximal
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operation of h.

3. The fourth line essentially uses one function evaluation of g at xk+1.

4. The fifth line requires one projection on Bk if necessary, i.e., when Bk 6= Rm.

This break-down of complexity shows that Algorithm 1 essentially has the same complexity as other

state-of-the-art algorithms of the same type [57, 64, 88]. However, [64] assumes strong convexity of

f , and [57, 88] does not separate functions f and h, thus their subproblems corresponding to the

second line of (3.27) could be non-trivial to solve.

3.3.2 Convergence rate analysis

The following lemma provides a recursive inequality based on scheme (3.27), and will serve as

a key estimate to analyze the global convergence rates of Algorithm 1.

Lemma 3.2. Define L as in (3.11), Lρ as in (3.15), and Lf , Mg, and Lg as in Assumption 3.2.

Let {(xk, x̂k, yk, ỹk)} be generated by (3.27) with τk ∈ (0, 1] and ρk > ηk. Let {sk} be defined in

(3.22). Further introduce

Lk := Lg(y
k+1), x̃k :=

1

τk
[x̂k − (1− τk)xk], and y̆k+1 := (1− τk)y̆k + τky

k+1. (3.28)

Then, for all k ∈ N and for any (x, s, y) ∈ Rp × Rm × Bk, it holds that

Lρk(xk+1, sk+1, y)−L(x, s, y̆k+1) ≤ (1− τk)[Lρk−1
(xk, sk, y)− L(x, s, y̆k)]

+
τ2k

2βk
(‖x̃k − x‖2 − ‖x̃k+1 − x‖2) + 1

2ηk
(‖ỹk − y‖2 − ‖ỹk+1 − y‖2)

− (1−τk)[ρk−1−(1−τk)ρk]
2 ‖g(xk) + sk‖2 − 1

2

(
1
βk
− Lk − Lf −

ρ2kM
2
g

ρk−ηk

)
‖xk+1 − x̂k‖2.

(3.29)

Proof. For readability, we first claim that for any (x, s) ∈ Rp × Rm,

Lρk(xk+1, sk+1, ỹk) ≤ Lρk(x, s, ỹk) + 1
βk
〈xk+1 − x̂k, x− xk+1〉

−ρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2 +

Lk+Lf+ρkM
2
g

2 ‖xk+1 − x̂k‖2.
(3.30)

The proof of this claim is deferred as Lemma B.2 in Appendix B.2.

Plugging (x, s) := (xk, sk) in (3.30), we obtain
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Lρk(xk+1, sk+1, ỹk) ≤ Lρk(xk, sk, ỹk) + 1
βk
〈xk+1 − x̂k, xk − xk+1〉

−ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2 +

Lk+Lf+ρkM
2
g

2 ‖xk+1 − x̂k‖2.

Now, multiplying the above estimate above by 1 − τk ∈ [0, 1), and (3.30) by τk ∈ (0, 1], and then

summing up the results, we get

Lρk(xk+1, sk+1, ỹk) ≤ (1− τk)Lρk(xk, sk, ỹk) + τkLρk(x, s, ỹk) +
τ2k
βk
〈x̃k+1 − x̃k, x− x̃k+1〉

− (1−τk)ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2

− τkρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2 +

Lk+Lf+ρkM
2
g

2 ‖xk+1 − x̂k‖2,

(3.31)

where we have used (1− τk)xk + τkx− xk+1 = τk(x− x̃k+1) and xk+1− x̂k = τk(x̃
k+1− x̃k) derived

from the definition of x̃k in (3.28).

Next, by the definition of Lρk , for any y ∈ Bk, we have

Lρk(xk+1, sk+1, y)−(1− τk)Lρk(xk, sk, y)

=Lρk(xk+1, sk+1, ỹk)− (1− τk)Lρk(xk, sk, ỹk)

+ 〈y − ỹk, [g(xk+1) + sk+1]− (1− τk)[g(xk) + sk]〉︸ ︷︷ ︸
T1

.

(3.32)

To analyze the last term T1 in (3.32), we denote

uk+1 := ηk

(
[g(xk+1) + sk+1]− (1− τk)[g(xk) + sk]

)
(3.26)

= ηk[Θk+1 − (1− τk)Θk]. (3.33)

Then, by the update of ỹk+1 in (3.27) and the fact that y ∈ Bk, we can use the non-expansive

property of the projection projBk to get

‖ỹk+1 − y‖ = ‖projBk(ỹk + uk+1)− projBk(y)‖ ≤ ‖ỹk + uk+1 − y‖. (3.34)

Therefore, T1 becomes

T1
(3.33)

= 1
ηk
〈y − ỹk, uk+1〉 = 1

ηk
〈ỹk − y, (y − uk+1)− y〉

= 1
2ηk

(
‖ỹk − y‖2 + ‖y − uk+1 − y‖2 − ‖ỹk + uk+1 − y‖2

)
(3.34)

≤ 1
2ηk

(‖ỹk − y‖2 − ‖ỹk+1 − y‖2 + ‖uk+1‖2).

(3.35)
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Substituting (3.35) into (3.32), and then combining with (3.31), we can further derive

Lρk(xk+1, sk+1, y) ≤

T2︷ ︸︸ ︷
(1− τk)Lρk(xk, sk, y)

+ τkLρk(x, s, ỹk)− τkρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2︸ ︷︷ ︸

T3

+
τ2k
βk
〈x̃k+1 − x̃k, x− x̃k+1〉+

Lk+Lf+ρkM
2
g

2 ‖xk+1 − x̂k‖2︸ ︷︷ ︸
T4

+ 1
2ηk

(‖ỹk − y‖2 − ‖ỹk+1 − y‖2) + 1
2ηk
‖uk+1‖2

− (1−τk)ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2.

(3.36)

We now estimate the terms T2, T3, and T4 above. It is easy to see that

T2 = (1− τk)
[
Lρk−1

(xk, sk, y) +
ρk − ρk−1

2
‖g(xk) + sk‖2

]
. (3.37)

By (3.26) as well as definition of y̆k+1 in (3.28), we have

T3 = L(x, s, y̆k+1)− (1− τk)L(x, s, y̆k)− τkρk
2
‖g(x̂k) + sk+1‖2. (3.38)

Using the relation x̃k+1 − x̃k = 1
τk

(xk+1 − x̂k), we further have

T4 =
τ2k

2βk
(‖x̃k − x‖2 − ‖x̃k+1 − x‖2 − ‖x̃k+1 − x̃k‖2) +

Lk+Lf+ρkM
2
g

2 ‖xk+1 − x̂k‖2

=
τ2k

2βk
(‖x̃k − x‖2 − ‖x̃k+1 − x‖2)− 1

2

(
1
βk
− Lk − Lf − ρkM2

g

)
‖xk+1 − x̂k‖2.

(3.39)

Substituting (3.37)-(3.39) into (3.36), we get

Lρk(xk+1, sk+1, y)−L(x, s, y̆k+1) ≤ (1− τk)[Lρk−1
(xk, sk, y)− L(x, s, y̆k)]

+
τ2k

2βk
(‖x̃k − x‖2 − ‖x̃k+1 − x‖2)

+ 1
2ηk

(‖ỹk − y‖2 − ‖ỹk+1 − y‖2)

−1
2

(
1
βk
− Lk − Lf − ρkM2

g

)
‖xk+1 − x̂k‖2 + T5,

(3.40)

where
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T5 := 1
2ηk
‖uk+1‖2 +

(1−τk)(ρk−ρk−1)
2 ‖g(xk) + sk‖2 − τkρk

2 ‖g(x̂k) + sk+1‖2

− (1−τk)ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2

= 1
2ηk
‖uk+1‖2 − ρk

2 ‖[g(x̂k) + sk+1]− (1− τk)[g(xk) + sk]‖2

− (1−τk)[ρk−1−(1−τk)ρk]
2 ‖g(xk) + sk‖2

≤ ρkηk
2(ρk−ηk)‖g(xk+1)− g(x̂k)‖2 − (1−τk)[ρk−1−(1−τk)ρk]

2 ‖g(xk) + sk‖2
(3.6)

≤ ρkηkM
2
g

2(ρk−ηk)‖x
k+1 − x̂k‖2 − (1−τk)[ρk−1−(1−τk)ρk]

2 ‖g(xk) + sk‖2,

(3.41)

where in the first inequality (second to last line) above, we have used Lemma B.1(1) and ρk > ηk.

Substituting (3.41) into (3.40), we eventually get

Lρk(xk+1, sk+1, y)−L(x, s, y̆k+1) ≤ (1− τk)[Lρk−1
(xk, sk, y)− L(x, s, y̆k)]

+
τ2k

2βk
(‖x̃k − x‖2 − ‖x̃k+1 − x‖2) + 1

2ηk
(‖ỹk − y‖2 − ‖ỹk+1 − y‖2)

−1
2

(
1
βk
− Lk − Lf − ρkM2

g −
ρkηkM

2
g

ρk−ηk

)
‖xk+1 − x̂k‖2

− (1−τk)[ρk−1−(1−τk)ρk]
2 ‖g(xk) + sk‖2,

which is exactly (3.29).

Now, we analyze the convergence rates of Algorithm 1 for three parameter initialization (Step 3)

and update (Step 6) options. To abbreviate the notation, given x0 ∈ Rp, y0 ∈ Rm, and β0, η0 > 0,

we frequently use the following quantity:

R2
0(x, y) :=

1

β0
‖x0 − x‖2 +

1

η0
‖y0 − y‖2 (3.42)

to characterize the weighted square-distance from the initial point (x0, y0) to (x, y).

3.3.2.1 The O
(

1
k

)
ergodic convergence rate

The following theorem shows the O
(

1
k

)
ergodic convergence rate of Algorithm 1.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold for (SP). Let
{

(xk, yk)
}
k≥0

be generated by

Algorithm 1 with the following parameter configurations:

• Initialization: Choose ρ, β, η, C > 0, and γ ∈ (0, 1) such that
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 β := γ
γLf+ρ(γC+M2

g )
, η := (1− γ)ρ,

Lg[‖y?‖+ (
√
η + ρ

√
βMg)R0(x?, y?)] ≤ ρC.

(3.43)

• Update: For all k ∈ N, fix the parameters at

τk ≡ 1, ρk ≡ ρ, βk ≡ β, ηk ≡ η, and Bk ≡ Rm. (3.44)

Let
{

(x̄k, ȳk)
}
k≥1

be the ergodic sequence defined as

(x̄k, ȳk) :=
1

k

k∑
j=1

(xj , yj). (3.45)

Then, for all k ≥ 1, the following bounds hold:



GX×Y(x̄k, ȳk) ≤ 1
2k sup

(x,y)∈X×Y
R2

0(x, y),

P(x̄k)− P? ≤ 1
2k

[
‖x0−x?‖2

β + (‖y0‖+MH)
2

η

]
,

D? −D(ȳk) ≤ 1
2k

[
(‖x0‖+MF∗ )

2

β + ‖y0−y?‖2
η

]
,

P(x̄k)−D(ȳk) ≤ 1
2k

[
R2

0(x?, y?) + (‖x0‖+MF∗ )
2

β + (‖y0‖+MH)
2

η

]
,

(3.46)

where R0 is defined by (3.42), and the MH , MF ∗ ∈ [0,∞] are the Lipschitz constants of H and

F ∗, respectively.

As a result, Algorithm 1 has O
(

1
k

)
ergodic convergence rate on the primal objective residual,

the dual objective residual, and the primal-dual gaps.

Proof. For readability, we first claim that for all k ∈ N,

Lg(‖y?‖+ ‖ỹk − y?‖+ ρMg‖xk − x?‖) ≤ ρC. (3.47)

The proof of this claim is deferred as Lemma B.3 in Appendix B.2.

By (3.47), we can follow the same lines as (B.8) and (B.9) to show that 1
β −Lk−Lf −

ρ2M2
g

ρ−η ≥ 0.

Therefore, similar to (B.10), for any y ∈ Rm and any j ∈ N, we have

L(xj+1, sj+1, y)− L(x, s, yj+1) ≤ 1

2β
(‖xj − x‖2 − ‖xj+1 − x‖2) +

1

2η
(‖ỹj − y‖2 − ‖ỹj+1 − y‖2).
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Summing up this inequality from j := 0 to j := k − 1, we get

k−1∑
j=0

[L(xj+1, sj+1, y)− L(x, s, yj+1)] ≤ 1

2

(
1

β
‖x0 − x‖2 +

1

η
‖y0 − y‖2

)
=
R2

0(x, y)

2
.

Dividing the above inequality by k ≥ 1, and using the convexity of L in x and s, and its concavity

in y, with x̄k and ȳk defined in (3.45) and s̄k := 1
k

∑k
j=1 s

j , we get

L(x̄k, s̄k, y)− L(x, s, ȳk)
(3.45)

≤ 1

k

k∑
j=1

[L(xj , sj , y)− L(x, s, yj)] ≤ R
2
0(x, y)

2k
. (3.48)

Now, by (3.13), we have L̃(x̄k, y) ≤ L(x̄k, s̄k, y) and L̃(x, ȳk) = L(x, s̆k, ȳk) for s̆k ∈ −∂H∗(ȳk).

Hence, L̃(x̄k, y)−L̃(x, ȳk) ≤ L(x̄k, s̄k, y)−L(x, s̆k, ȳk). Substituting s := s̆k and this inequality into

(3.48), we obtain L̃(x̄k, y) − L̃(x, ȳk) ≤ R2
0(x,y)
2k . Taking the supremum on both sides over X × Y

and recalling the definition of GX×Y in (3.9), we prove the first assertion of (3.46).

Next, if H is MH -Lipschitz continuous, then we let y̆k := MH

‖g(x̄k)+s̄k‖ [g(x̄k) + s̄k], and substitute

(x, s, y) := (x?, s?, y̆k) in (3.48) to get

P(x̄k)− P? (P)
= F (x̄k) +H(g(x̄k))− P? ≤ F (x̄k) +H(−s̄k) + |H(g(x̄k))−H(−s̄k)| − P?

≤ F (x̄k) +H(−s̄k) +MH |g(x̄k) + s̄k| − P?

= F (x̄k) +H(−s̄k) + 〈y̆k, g(x̄k) + s̄k〉 − P? ≤ L(x̄k, s̄k, y̆k)− P?
(3.48)

≤ R2
0(x?,y̆k)

2k .

Using ‖y0− y̆k‖2 ≤ (‖y0‖+‖y̆k‖)2 = (‖y0‖+MH)
2

to upper bound R2
0(x?, y̆k) in the last estimate,

we obtain the second assertion of (3.46).

On the other hand, let x̆k satisfy 0 ∈ [∇g(x̆k)]
>
ȳk + ∂F (x̆k), then by the form of (D), we have

D(ȳk) = L̃(x̆k, ȳk) = L(x̆k, s̆k, ȳk) for s̆k ∈ −∂H∗(ȳk). Moreover, notice that D? = L(x?, s?, y?) ≤

L(x̄k, s̄k, y?) in (3.14). Therefore, substituting (x, s, y) := (x̆k, s̆k, y?) into (3.48), we can derive

D? −D(ȳk) ≤ L(x̄k, s̄k, y?)− L(x̆k, s̆k, ȳk)
(3.48)

≤ R2
0(x̆k, y?)

2k
.

Since 0 ∈ [∇g(x̆k)]
>
ȳk + ∂F (x̆k), we have x̆k ∈ ∂F ∗

(
−[∇g(x̆k)]

>
ȳk
)

. If F ∗ is MF ∗-Lipschitz

continuous, then ‖x̆k‖ =
∥∥∥∇F ∗ (−[∇g(x̆k)]

>
ȳk
)∥∥∥ ≤ MF ∗ , thus ‖x0 − x̆k‖2 ≤ (‖x0‖+MF ∗)

2
.

Substituting this into R2
0(x̆k, y?) of the last inequality leads to the third assertion of (3.46).
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Finally, combining the second and third assertions of (3.46), we have immediately proved the

last assertion on the primal-dual gap P(x̄k)−D(ȳk).

The first convergence guarantee on GX×Y in (3.46) is independent of MH and MF ∗ , while the

last one depends on both MH and MF ∗ . Note that under the update rule (3.44), Step 6 of Algorithm

1 can be simply written as


yk+1 := proxρH∗

(
ỹk + ρg(xk)

)
,

xk+1 := proxβh

(
xk − β

(
∇f(xk) + [∇g(xk)]

>
yk+1

))
,

ỹk+1 := ỹk + η
[
g(xk+1)− g(xk) + 1

ρ(yk+1 − ỹk)
]
.

This scheme requires one proximal operation of H∗ and h each, one evaluation of g, one evaluation

of gradient ∇f and one evaluation of Jocobian ∇g. If H = δRm+×{0}n , the indicator of Rm+ × {0}n,

then this scheme is similar to [144, Algorithm 1] for solving (1.2). However, our dual step ỹk is still

different from the algorithm in [144].

Remark 3.1 (Initialization in (3.43)). In fact, for any choice of ρ > 0 and γ ∈ (0, 1), we can find

C > 0 that satisfies (3.43). For example, we can simply set

ρ := 1, γ :=
1

2
, and C := max{Lf + 2M2

g + 2, LgD(LgD + 4Mg + 2)}, (3.49)

where D ≥ max{‖x0 − x?‖, ‖y0 − y?‖, ‖y?‖} is an upper estimate. As shown in Appendix B.2,

the choice given in (3.49) is feasible to (3.43). Notice that C presented in (3.49) is not tight, since

we have loosened this estimate to get simple expressions. One may choose different ρ’s and smaller

C’s, which also solve (3.43), for better practical performance. �

Remark 3.2 (Optimal rate). It was shown in [75, Section 5] and [142, Theorem 1] that, under

Assumption 3.1, the rate O
(

1
k

)
is optimal, in the sense that for any algorithm A for solving (P),

in order to achieve the bound P(xk) − P? < ε, there exists an instance of functions F , H and g,

with their arguments’ dimensions p and m dependent on ε, such that A makes Ω
(

1
ε

)
queries to the

first-order oracle of F and H ◦ g. In other words, the convergence rate of A can not exceed O
(

1
k

)
rate under Assumption 3.1 when the problem dimensions p and m are much larger than the number

of iterations k. Consequently, Algorithm 1 indeed achieves optimal convergence rate. �
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3.3.2.2 The O
(

1
k

)
semi-ergodic convergence rate

The following theorem shows O
(

1
k

)
semi-ergodic convergence rate of Algorithm 1 for solving

(SP) using the last-iterate sequence {xk} and on the averaging sequence {ȳk}.

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold for (SP), and assume

1. ‖g(x)‖ ≤ Bg for all x ∈ domg ∩ domF for some Bg ∈ [0,∞] such that LgBg < +∞. In

particular, if g is affine, then Lg = 0, and we allow Bg =∞ (i.e., in this case, no boundedness

on g is required).

2. there exist y∗ ∈ ∂H(0) and s∗ ∈ −∂H∗(0).

Let {(xk, yk)}k≥0 be generated by Algorithm 1 with the following parameter configurations:

• Initialization: Choose

ρ0 > 0 and γ ∈ (0, 1). (3.50)

• Update: For all k ∈ N, fix Bk ≡ Rm, and update


τk := 1

k+1 , ρk := ρ0
τk
, ηk := (1− γ)ρk, and

βk := γ

γ(Lf+2Lg‖y∗‖)+ρk
(
Lg
[
‖y0‖
ρ0

+(2−γ)Bg+2(1−γ)‖s∗‖
]
+M2

g

) . (3.51)

Let {ȳk}k≥1 be the ergodic sequence defined in (3.45). Then, for k ≥ 1, the following holds:



GX×Y(xk, ȳk) ≤ 1
2k sup

(x,y)∈X×Y
R2

0(x, y),

P(xk)− P? ≤ 1
2k

[
‖x0−x?‖2

β0
+ (‖y0‖+MH)

2

η0

]
,

D? −D(ȳk) ≤ 1
2k

[
(‖x0‖+MF∗ )

2

β0
+ ‖y0−y?‖2

η0

]
,

P(xk)−D(ȳk) ≤ 1
2k

[
R2

0(x?, y?) + (‖x0‖+MF∗ )
2

β0
+ (‖y0‖+MH)

2

η0

]
,

where R0 is defined in (3.42), and the MH , MF ∗ ∈ [0,∞] are the Lipschitz constants of H and F ∗,

respectively.

As a result, Algorithm 1 has O
(

1
k

)
non-ergodic convergence rate on primal objective residual,

ergodic rate on dual objective residual, and semi-ergodic rate on primal-dual gaps.

Proof. For readability, we first claim that for k ∈ N,
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‖ỹk‖
ρk
≤ 1

γ

[
‖y0‖
ρ0

+ 2(1− γ)(Bg + ‖s∗‖)
]
. (3.52)

The proof of this claim is deferred as Lemma B.4 in Appendix B.2.

By definition of y∗, we have y∗ = proxρkH∗(y∗) for any ρk > 0. Using this relation, the non-

expansiveness of proxρkH∗ , and (3.52), we can prove that

Lk
(3.28)

= Lg(y
k+1)

(3.25)

≤ Lg‖proxρkH∗
(
ỹk + ρkg(x̂k)

)
‖

= Lg‖proxρkH∗
(
ỹk + ρkg(x̂k)

)
− proxρkH∗(y∗) + y∗‖

≤ Lg
(
2‖y∗‖+ ‖ỹk + ρkg(x̂k)‖

)
(3.52)

≤ Lg

(
2‖y∗‖+ ρkBg + ρk

γ

[
‖y0‖
ρ0

+ 2(1− γ)(Bg + ‖s∗‖)
])
.

(3.53)

Therefore, by the update rule of βk and ηk in (3.51), and (3.53), we can easily show that

1
βk
−Lk − Lf −

ρ2kM
2
g

ρk−ηk ≥
ρk
γ

[
Lg

(
‖y0‖
ρ0

+ (2− γ)Bg + 2(1− γ)‖s∗‖
)

+M2
g

]
Lf + 2Lg‖y∗‖ − Lg

[
2‖y∗‖+ ρk

γ

(
‖y0‖
ρ0

+ (2− γ)Bg + 2(1− γ)‖s∗‖
)]
− Lf −

ρkM
2
g

γ

= ρk
γ

[
Lg

(
‖y0‖
ρ0

+ (2− γ)Bg

)
+M2

g − Lg
(
‖y0‖
ρ0

+ (2− γ)Bg

)
−M2

g

]
= 0.

Furthermore, other conditions in (3.51) ensure that

ρk > ηk,
1

2ηk
=

1− τk
2ηk−1

, ρk−1 − (1− τk)ρk = 0, and
τ2
k

2βk
≤

(1− τk)τ2
k−1

2βk−1
.

Utilizing these relations, we can simplify estimate (3.29) of Lemma 3.2 to get

Lρk(xk+1, sk+1, y)−L(x, s, ȳk+1) +
τ2k

2βk
‖x̃k+1 − x‖2 + 1

2ηk
‖ỹk+1 − y‖2

≤ (1−τk)
[
Lρk−1

(xk, sk, y)− L(x, s, ȳk) +
τ2k−1

2βk−1
‖x̃k−x‖2 + 1

2ηk−1
‖ỹk−y‖2

]
,

for any (x, s, y) ∈ Rp ×Rm ×Rm. Here, we have used the fact that ȳk as defined in (3.45) is equal

to y̆k as defined in (3.28), since τk = 1
k+1 . By induction, this inequality implies that

L(xk, sk, y)−L(x, s, ȳk) ≤ Lρk−1
(xk, sk, y)− L(x, s, ȳk)

≤
[∏k−1

j=1(1− τj)
] [
Lρ0(x1, s1, y?)− L(x, s, ȳ1) +

τ20
2β0
‖x̃1 − x‖2 + 1

2η0
‖ỹ1 − y‖2

]
(3.29)(3.51)

≤ 1
k

(
(1− τ0)[Lρ0(x0, s0, y?)− L(x, s, y0)] +

τ20
2β0
‖x̃0 − x‖2 + 1

2η0
‖y0 − y‖2

)
τ0=1
= 1

2k

(
1
β0
‖x0 − x‖2 + 1

η0
‖y0 − y‖2

)
=
R2

0(x,y)
2k .
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Take s̆k ∈ −∂H∗(yk). Using the argument immediately following (3.48), we can show that

L̃(xk, y)− L̃(x, ȳk) ≤ L(xk, sk, y)− L(x, s̆k, ȳk) ≤ R
2
0(x, y)

2k
.

The rest of the proof of Theorem 3.2 is similar to the lines after (3.48) in the proof of Theorem 3.1,

except that we replace x̄k there by xk. Thus we omit the verbatim here.

Remark 3.3. Condition 1 in Theorem 3.2 is not a strong assumption. When H∗ is separable in

y, e.g., when H∗(y) = δRm+ (y), the indicator of non-negative orthant, then condition LgBg < +∞

can be relaxed to
∑m

i=1 LgiBgi < +∞, where Lgi is the Lipschitz smoothness modulus of gi, and

Bgi is the bound for gi. Therefore, our condition allows both linear (where Lgi = 0) and bounded

nonlinear constraint functions. �

Remark 3.4 (Symmetry). If g is linear, then the primal-dual problems (P) and (D) are symmet-

ric. Therefore, to obtain a non-ergodic convergence rate on the dual problem (D), we could apply

Algorithm 1 to the dual-primal pair instead of the primal-dual pair. �

3.3.2.3 The min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
non-ergodic convergence rate

We show in Theorem 3.3 that if we modify the update rule of τk, then we can boost the

convergence rate of Algorithm 1 up to min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
in the non-ergodic sense on the

primal objective residual, where o(·) is defined in (3.3). Here, since o-rate is not necessarily strictly

faster than O-rate, we use the “min” to imply that our rate is no slower than O
(

1
k

)
.4

Theorem 3.3. Suppose Assumptions 3.1 and 3.2 hold for (SP), and assume

1. ‖g(x)‖ ≤ Bg for all x ∈ domg ∩ domF for some Bg ∈ [0, ∞] such that LgBg < +∞. In

particular, if g is affine, then Lg = 0, and we allow Bg =∞.

2. there exists y∗ ∈ ∂H(0).

Let {(xk, yk)}k≥0 be generated from Algorithm 1 with the following parameter configurations:

• Initialization: Choose

4In fact, the numerical experiments in Section 3.6 shows that the parameter update provided in Theorem 3.3
greatly boosts the performance of Algorithm 1.
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ρ0 > 0, γ ∈ (0, 1), c > 1, and Ry ≥
‖y?‖
ρ0

. (3.54)

• Update: For k ∈ N, set


τk := c

k+c , ρk := ρ0
τk
, ηk := (1− γ)ρk, Bk := {y | ‖y‖ ≤ ρkRy},

and βk := γ

γ(Lf+2Lg‖y∗‖)+ρk[γLg(Ry+Bg)+M2
g ]
.

(3.55)

Then, the following bounds hold:

P(xk)− P? ≤
R2
P

k + c− 1
for ∀k ≥ 1 and lim inf

k→∞
k
√

log k[P(xk)− P?] = 0, (3.56)

where R2
P := ∆2

0 +
√

2c/ρ0(‖y?‖+MH)∆0, where ∆2
0 := (c− 1)

[
P(x0)− P?

]
+ c

2R
2
0(x?, y?), R0 is

defined in (3.42), and MH ∈ [0,∞] is the Lipschitz constant of H.

As a result, Algorithm 1 for solving (P) has min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
non-ergodic convergence

rate on the primal objective residual.

Proof. By the definition of Bk in (3.55) and the projection step of ỹk, we have ‖ỹk‖ ≤ ρk−1Ry.

Similar to (3.53), by definition of y∗, we can show that

Lk ≤ Lg
(
2‖y∗‖+ ‖ỹk + ρkg(x̂k)‖

)
≤ Lg(2‖y∗‖+ ρk−1Ry + ρkBg)

≤ Lg[2‖y∗‖+ ρk(Ry +Bg)],
(3.57)

Thus, by the update of βk and ηk in (3.55), one can show that

1
βk
− Lk − Lf −

ρ2kM
2
g

ρk−ηk ≥
[
Lf + 2Lg‖y∗‖+ ρkLg(Ry +Bg) +

ρkM
2
g

γ

]
−Lg[2‖y∗‖+ ρk(Ry +Bg)]− Lf −

ρkM
2
g

γ = 0.

Using this inequality and the update rules from (3.55) onto (3.29) of Lemma 3.2, we derive

L(xk+1, sk+1, y)−L(x, s, y̆k+1) + k+c
c ·

ρ0
2 ‖g(xk+1) + sk+1‖2

≤ k
k+c

[
L(xk, sk, y)− L(x, s, y̆k) + k+c−1

c · ρ02 ‖g(xk) + sk‖2
]

+ c
k+c ·

τk
2βk

(‖x̃k − x‖2 − ‖x̃k+1 − x‖2)

+ c
k+c ·

1
2η0

(‖ỹk − y‖2 − ‖ỹk+1 − y‖2)− (c−1)k
c(k+c) ·

ρ0
2 ‖g(xk) + sk‖2.

(3.58)
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Note that y? ∈ B0 ⊆ Bk by (3.54) and (3.55). Thus, we can substitute (x, s, y) := (x?, s?, y?) into

(3.58) while introducing the following notations:

 a2
k := ρ0

2 ‖g(xk) + sk‖2, b2k := τk
2βk
‖x̃k − x?‖2 + 1

2η0
‖ỹk − y?‖2, and

G̃k := L(xk, sk, y?)− L(x?, s?, y̆k) = L(xk, sk, y?)− P? ≥ 0.
(3.59)

Then, we can simplify (3.58) as:

G̃k+1 + k+c
c a2

k+1 ≤
k
k+c

(
G̃k + k+c−1

c a2
k

)
− (c−1)k

c(k+c)a
2
k

+ c
k+c

[
b2k − b2k+1 + c

2βk

(
1

k+c+1 −
1
k+c

)
‖x̃k+1 − x?‖2

]
≤ k

k+c

(
G̃k + k+c−1

c a2
k

)
− (c−1)k

c(k+c)a
2
k + c

k+c(b
2
k − b2k+1).

Multiplying both sides of the last inequality by k + c and rearranging the result, we get

(c− 1)
(
G̃k + k+c−1

c a2
k

)
≤ (c− 1)

(
G̃k + 2k+c−1

c a2
k

)
≤
[
(k + c− 1)G̃k + (k+c−1)2

c a2
k + cb2k

]
−
[
(k + c)G̃k+1 + (k+c)2

c a2
k+1 + cb2k+1

]
.

(3.60)

Since c > 1, G̃k ≥ 0, and a2
k ≥ 0, the inequality (3.60) implies that

(k + c)G̃k+1 +
(k + c)2

c
a2
k+1 + cb2k+1 ≤ (k + c− 1)G̃k +

(k + c− 1)2

c
a2
k + cb2k.

By induction, we can show that

(k + c− 1)G̃k + (k+c−1)2

c a2
k + cb2k ≤ (c− 1)G̃0 + (c−1)2

c a2
0 + cb20

= (c− 1)[P(x0)− P?] + cR2(x?,y?)
2 = ∆2

0,

where in the second line we have used ‖g(x0)+s0‖ = ‖Θ0‖ = 0 as initialized in Step 2 of Algorithm

1. As a result,

L(xk, sk, y?)− P? = G̃k ≤
∆2

0

k + c− 1
and ‖g(xk) + sk‖ = ak

√
2

ρ0
≤
√

2c/ρ0∆0

k + c− 1
. (3.61)

Consequently, if H is MH -Lipschitz continuous, then we can show that
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P(xk)− P? = F (xk) +H
(
g(xk)

)
− P? ≤ F (xk) +H(−sk) +MH‖g(xk) + sk‖ − P?

≤ L(xk, sk, y?)− P? + (‖y?‖+MH) ‖g(xk) + sk‖
(3.61)

≤ ∆2
0

k+c−1 +

√
2c/ρ0∆0(‖y?‖+MH)

k+c−1 ,

(3.62)

which is the first assertion of (3.56).

Next, summing up (3.60) from j := 0 to j := k, we get

(c− 1)
∑k

j=0

[
G̃j + j+c−1

c a2
j

]
≤
[
(c− 1)G̃0 + (c−1)2

c a2
0 + cb20

]
−
[
(k + c)G̃k+1 + (k+c)2

c a2
k+1 + cb2k+1

]
≤ ∆2

0.

Since c > 1 and G̃j ≥ 0, we can apply Lemma B.1(2) to show that

lim inf
k→∞

(k log k)

(
G̃k +

ka2
k

c

)
= 0, (3.63)

Combining this limit with (3.61) and (3.62), and applying Lemma B.1(3a), we can easily prove the

second assertion of (3.56).

3.4 Our Second Primal-Dual Algorithm: Strongly Convex-Concave Case

Recall that F := f + h as defined in Assumption 3.2, where f is Lf -smooth, and h is not

necessary smooth. In this section, we additionally impose the following assumption:

Assumption 3.3. The function h in Assumption 3.2(1) is µh-strongly convex with µh > 0.

Note that even if h is not strongly convex, but f is µf -strongly convex with µf > 0, then we

can let ĥ(x) := h(x) +
µf
2 ‖x‖

2, and f̂(x) := f(x)− µf
2 ‖x‖

2. In this way, we have µĥ = µf . Hence,

Assumption 3.3 still holds for ĥ, and we can apply the algorithms in this section to solve (SP) with

the same objective term F (x) = f̂(x) + ĥ(x).

3.4.1 The derivation and the complete algorithm

Under Assumptions 3.1, 3.2, and 3.3, we modify the scheme (3.27) by replacing Nesterov’s

acceleration steps by Tseng’s steps [132], i.e., the xk+1-update in (3.23) is broken into the following

two lines of updates:
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 x̃k+1 := prox(βk/τk)h

(
x̃k − βk

τk
[∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk)]

)
,

xk+1 := proxαkh
(
x̂k − αk[∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk)]

)
,

in order to achieve the faster O
(

1
k2

)
and o

(
1

k2
√

log k

)
non-ergodic convergence rates. The slack

variable sk+1 is still defined as in (3.22). Meanwhile, the yk+1-, ỹk+1-, and Θk+1-updates, as well

as the relation x̂k = (1− τk)xk + τkx̃
k in (3.28), are the same as before.

Using the expression of partial derivative ∇xφ in (3.17), we present the resulting algorithm as

Algorithm 2.

Algorithm 2 Our second primal-dual algorithm: Strongly convex-concave case

1: Initialization: Choose an initial primal-dual point (x0, y0) ∈ Rp × Rm.
2: Set x̃0 := x̂0 := x0, ỹ0 := y0, and Θ0 := 0.
3: Choose appropriate initial parameters, according to (3.72), (3.79), or (3.86).
4: For k = 0 to kmax

5: Update parameters according to (3.73), (3.80), or (3.87), consistent with Step 3.
6: Update (x̃k, xk, x̂k, yk, ỹk) as follows:

yk+1 := proxρkH∗
(
ỹk + ρkg(x̂k)

)
,

x̃k+1 := prox(βk/τk)h

(
x̃k − βk

τk

(
∇f(x̂k) + [∇g(x̂k)]

>
yk+1

))
,

xk+1 := proxαkh

(
x̂k − αk

(
∇f(x̂k) + [∇g(x̂k)]

>
yk+1

))
,

x̂k+1 := (1− τk+1)xk+1 + τk+1x̃
k+1,

Θk+1 := g(xk+1)− g(x̂k) + 1
ρk

(yk+1 − ỹk),

ỹk+1 := projBk
(
ỹk + ηk [Θk+1 − (1− τk)Θk]

)
.

(3.64)

7: EndFor

Per-iteration complexity. The per-iteration complexity of Algorithm 2 is the same as that of

Algorithm 1, except for one additional proximal operator of h at line 2 of Step 6.

3.4.2 Convergence rate analysis

Parallel to Subsection 3.3.2, let us first present a key recursive estimate to analyze the conver-

gence of Algorithm 2.

Lemma 3.3. Define L as in (3.11), Lρ as in (3.15), and Lf , Mg, and Lg as in Assumption 3.2. Let

{(xk, x̂k, x̃k, yk, ỹk)} be generated by (3.64) with τk ∈ [0, 1], ρk > ηk, and αk > βk. Furthermore,

define {sk} as in (3.22), and define Lk and {y̆k} as in (3.28). Then, for all k ∈ N and any

60



(x, s, y) ∈ Rp × Rm × Bk, it holds that:

Lρk(xk+1, sk+1, y)−L(x, s, y̆k+1) ≤ (1− τk)[Lρk−1
(xk, sk, y)− L(x, s, y̆k)]

+
τ2k

2βk
‖x̃k − x‖2 − τk(τk+βkµh)

2βk
‖x̃k+1 − x‖2

+ 1
2ηk

(‖ỹk − y‖2 − ‖ỹk+1 − y‖2)

− (1−τk)[ρk−1−(1−τk)ρk]
2 ‖g(xk) + sk‖2

−1
2

[
1
αk

(
1− βk

αk

)
+ 1

αk
− Lk − Lf −

ρ2kM
2
g

ρk−ηk

]
‖xk+1 − x̂k‖2.

(3.65)

Proof. Define x̆k+1 := (1− τk)xk + τkx̃
k+1. For readability, we first state two claims: for all k ∈ N

and any (x, s, y) ∈ Rp × Rm × Bk, we have

F (xk+1) +H(−sk+1) ≤ (1− τk)[F (xk) +H(−sk)] + τk[F (x) +H(−s)]

+〈∇xφρk(x̂k, sk+1, ỹk), (1− τk)xk + τkx− xk+1〉

+〈∇sφρk(x̂k, sk+1, ỹk), (1− τk)sk + τks− sk+1〉

+
τ2k

2βk
‖x̃k − x‖2 − τk(τk+βkµh)

2βk
‖x̃k+1 − x‖2 − 1

2

(
1
αk
− Lf

)
‖xk+1 − x̂k‖2

−1
2

(
1
αk

+ µh

)
‖x̆k+1 − xk+1‖2 − 1

2

(
1
βk
− 1

αk

)
‖x̆k+1 − x̂k‖2,

(3.66)

and

φρk(xk+1, sk+1, ỹk) ≤ (1− τk)φρk(xk, sk, ỹk) + τkφρk(x, s, ỹk) +
Lk+ρkM

2
g

2 ‖xk+1 − x̂k‖2

+〈∇xφρk(x̂k, sk+1, ỹk), xk+1 − (1− τk)xk − τkx〉

+〈∇sφρk(x̂k, sk+1, ỹk), sk+1 − (1− τk)sk − τks〉

− (1−τk)ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2

− τkρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2,

(3.67)

the proofs of which are deferred as Lemma B.5 and Lemma B.6 in Appendix B.3.

Summing up the estimates (3.66) and (3.67), we get

Lρk(xk+1, sk+1, ỹk)
(3.15)

= F (xk+1) +H(−sk+1) + φρk(xk+1, sk+1, ỹk)

(3.66)(3.67)

≤ (1− τk)Lρk(xk, sk, ỹk) + τkLρk(x, s, ỹk)

+
τ2k

2βk
‖x̃k − x‖2 − τk(τk+βkµh)

2βk
‖x̃k+1 − x‖2

−1
2

(
1
αk
− Lk − Lf − ρkM2

g

)
‖xk+1 − x̂k‖2

−1
2

(
1
βk
− 1

αk

)
‖x̆k+1 − x̂k‖2 − 1

2

(
1
αk

+ µh

)
‖x̆k+1 − xk+1‖2

− (1−τk)ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2

− τkρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2.

(3.68)
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Since y ∈ Bk, by the same analysis as the proof for Lemma 3.2, one can easily check that (3.32)-

(3.35) and (3.37)-(3.38) still hold. Substituting them into (3.68), we can further expand it as

Lρk(xk+1, sk+1, y)−L(x, s, y̆k+1) ≤ (1− τk)[Lρk−1
(xk, sk, y)− L(x, s, y̆k)]

+
τ2k

2βk
‖x̃k − x‖2 − τk(τk+βkµh)

2βk
‖x̃k+1 − x‖2

−1
2

(
1
βk
− 1

αk

)
‖x̆k+1 − x̂k‖2 − 1

2

(
1
αk

+ µh

)
‖x̆k+1 − xk+1‖2

+ 1
2ηk

(
‖ỹk − y‖2 − ‖ỹk+1 − y‖2

)
−1

2

(
1
αk
− Lk − Lf − ρkM2

g

)
‖xk+1 − x̂k‖2 + T1,

(3.69)

where

T1 := ηk
2 ‖[g(xk+1) + sk+1]− (1− τk)[g(xk) + sk]‖2 +

(1−τk)(ρk−ρk−1)
2 ‖g(xk) + sk‖2

− (1−τk)ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2 − τkρk

2 ‖g(x̂k) + sk+1‖2
(3.41)

≤ ρkηkM
2
g

2(ρk−ηk)‖x
k+1 − x̂k‖2 − (1−τk)[ρk−1−(1−τk)ρk]

2 ‖g(xk) + sk‖2.

(3.70)

Moreover, applying Lemma B.1(1) with t1 := 1
2

(
1
βk
− 1

αk

)
> 0 and t2 := 1

2

(
1
αk

+ µh

)
, we can

easily show that

−1
2

(
1
βk
− 1

αk

)
‖x̆k+1 − x̂k‖2 −1

2

(
1
αk

+ µh

)
‖x̆k+1 − xk+1‖2 ≤ − t1t2

t1+t2
‖xk+1 − x̂k‖2

=− 1
2(1/βk+µh)

(
1
βk
− 1

αk

)(
1
αk

+ µh

)
‖xk+1 − x̂k‖2

≤− 1
2αk

(
1− βk

αk

)
‖xk+1 − x̂k‖2,

(3.71)

where in the last inequality we used αk > βk. Substituting (3.70) and (3.71) into (3.69), we

eventually obtain (3.65).

Now, we establish three types of convergence rates for Algorithm 2. Each type of convergence

rate is obtained by specifying the initialization and update rule for the parameters such as τk, ρk,

and Bk.

3.4.2.1 The O
(

1
k2

)
ergodic convergence rate

We first prove in Theorem 3.4 that Algorithm 2 enjoys O
(

1
k2

)
ergodic rate without assuming

the boundedness of g or Bk.
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Theorem 3.4. Suppose Assumptions 3.1, 3.2 and 3.3 hold for (SP). Let {(xk, yk)}k≥0 be generated

by Algorithm 2 with the following parameter configurations:

• Initialization: Choose ρ0, β0, η0, M̂ > 0, and γ, Γ ∈ (0, 1) such that


β0 := Γ

Lf+ρ0M̂2
, η0 := (1− γ)ρ0, and

Lg[‖y?‖+ (
√
η0 + ρ0

√
β0Mg)R0(x?, y?)] ≤ ρ0

[
(2− Γ)M̂2 − M2

g

γ

]
.

(3.72)

• Update: For all k ∈ N, set Bk ≡ Rm, and update


τk ≡ 1, αk := 1

Lf+ρkM̂2
, ηk := (1− γ)ρk,

θk+1 := 1√
1+µhβk

, ρk+1 := ρk
θk+1

, and βk+1 := θk+1βk.
(3.73)

Let {(x̄k, ȳk)}k≥1 be an ergodic sequence defined as

(x̄k, ȳk) :=
1

Σk

k−1∑
j=0

ρj(x
j+1, yj+1), where Σk :=

k−1∑
j=0

ρj . (3.74)

Then, for any k ≥ 2, the following bounds hold:



GX×Y(x̄k, ȳk) ≤ 1
(
√

1+µhβ0−1)k(k−1)
sup

(x,y)∈X×Y
R2

0(x, y),

P(x̄k)− P? ≤ 1
(
√

1+µhβ0−1)k(k−1)

[
‖x0−x?‖2

β0
+ (‖y0‖+MH)

2

η0

]
,

D? −D(ȳk) ≤ 1
(
√

1+µhβ0−1)k(k−1)

[
(‖x0‖+MF∗ )

2

β0
+ ‖y0−y?‖2

η0

]
,

P(x̄k)−D(ȳk) ≤ 1
(
√

1+µhβ0−1)k(k−1)

[
R2

0(x?, y?) + (‖x0‖+MF∗ )
2

β0
+ (‖y0‖+MH)

2

η0

]
,

(3.75)

where R0 is defined in (3.42), and MH , MF ∗ ∈ [0,∞] are the Lipschitz constants of H and F ∗,

respectively.

As a result, Algorithm 2 for solving (SP) has O
(

1
k2

)
ergodic convergence rate on the primal

objective residual, the dual objective residual, and the primal-dual gaps.

Proof. We firstly need two claims as below:


βk ≤ Γ

Lf+ρkM̂2
, ρk ≥ ρ0 + (

√
1 + µhβ0 − 1)ρ0k,

1+µhβk
βk

= 1
θk+1βk+1

, 1
ρk

= 1
θk+1ρk+1

, and 1
ηk

= 1
θk+1ηk+1

,
(3.76)
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and

Lg(‖y?‖+ ‖ỹk − y?‖+ ρkMg‖x̃k − x?‖) ≤ ρk

[
(2− Γ)M̂2 −

M2
g

γ

]
. (3.77)

The proofs of these two claims are deferred as Lemma B.7 and Lemma B.8, resp., in Appendix B.3.

Note that the proof of (3.77) has utilized (3.76).

Since (3.77) holds for all k ∈ N, we can use the same lines from (B.30) to (B.32) to get for all

j ∈ N and any (x, s, y) ∈ Rp × Rm × Rm that

L(xj+1, sj+1, y)− L(x, s, yj+1)
τk≡1
= L(xj+1, sj+1, y)− L(x, s, y̆j+1)

≤
(

1
2βj
‖x̃j − x‖2 + 1

2ηj
‖ỹj − y‖2

)
− 1
θj+1

(
1

2βj+1
‖x̃j+1 − x‖2 + 1

2ηj+1
‖ỹj+1 − y‖2

)
.

Multiplying this inequality by 2ρj and noticing that
ρj
θj+1

= ρj+1, we have

2ρj [L(xj+1, sj+1, y)− L(x, s, yj+1)] ≤ ρj

(
1
βj
‖x̃j − x‖2 + 1

ηj
‖ỹj − y‖2

)
−ρj+1

(
1

βj+1
‖x̃j+1 − x‖2 + 1

ηj+1
‖ỹj+1 − y‖2

)
.

Summing up this inequality from j := 0 to j := k − 1, we obtain

k−1∑
j=0

ρj [L(xj+1, sj+1, y)− L(x, s, yj+1)] ≤ ρ0

2

(
1

β0
‖x0 − x‖2 +

1

η0
‖y0 − y‖2

)
=
ρ0R2

0(x, y)

2
.

Dividing it by
∑k−1

j=0 ρj , and using the convexity of L in x and s, the concavity in y, the {(x̄k, ȳk)}

defined by (3.74), and s̄k := (
∑k−1

j=0 ρj)
−1∑k−1

j=0 ρjs
j+1, we get

L(x̄k, s̄k, y)− L(x, s, ȳk)
(3.74)

≤ 1∑k−1
j=0 ρj

k−1∑
j=0

ρj [L(xj+1, sj+1, y)− L(x, s, yj+1)] ≤ ρ0R2
0(x, y)

2
∑k−1

j=0 ρj
.

By the second inequality in (3.76), we have

k−1∑
j=0

ρj ≥ kρ0 +
1

2
(
√

1 + µhβ0 − 1)ρ0k(k − 1) ≥ 1

2
(
√

1 + µhβ0 − 1)ρ0k(k − 1).

Combining the above two inequalities, we eventually get
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L(x̄k, s̄k, y)− L(x, s, ȳk) ≤ R2
0(x, y)

(
√

1 + µhβ0 − 1)k(k − 1)
.

Therefore, we can use the same lines as in the proof of Theorem 3.1 to prove (3.75).

Remark 3.5 (Initial parameters in (3.72)). As shown in Appendix B.3, the following parameter

values are feasible to (3.72):


ρ0 := 1, γ := Γ := 1

2 , and

M̂2 := max

{
Lf + 1,

8L2
gD

2

9 +
4(2M2

g+LgD+
√

2LgDMg)

3

}
,

(3.78)

where D is defined in Remark 3.1. This bound is relatively loose in pursuit of a simple expression,

thus, one can choose tighter values for these parameters that satisfy (3.72) in order to achieve better

practical performance. �

Remark 3.6 (Optimal rate). As shown in [142, Theorem 2], the O
(

1
k2

)
convergence rate of Algo-

rithm 2 is optimal in the sense of Remark 3.2. �

Remark 3.7. Alternatively, if we let τk ≡ 1 and αk ≡ βk (i.e., Γ := 1), then scheme (3.64) is

simplified as 
yk+1 := proxρkH∗

(
ỹk + ρkg(xk)

)
,

xk+1 := proxβkh

(
xk − βk

(
∇f(xk) + [∇g(xk)]

>
yk+1

))
,

ỹk+1 := ỹk + ηk

[
g(xk+1)− g(xk) + 1

ρk
(yk+1 − ỹk)

]
,

with only one proximal operation. Now, if we combine the initialization condition (3.43) (with

(ρ, β, η) there replaced by (ρ0, β0, η0)) and the update rule (3.73) (except for the absence of αk),

then we would still achieve the same O
(

1
k2

)
ergodic convergence rates. This can be proved using

similar lines as the proofs of Lemma 3.3 and Theorem 3.4. �

3.4.2.2 The O
(

1
k2

)
semi-ergodic convergence rate

Next, we analyze the semi-ergodic convergence rate of Algorithm 2 via Theorem 3.5.

Theorem 3.5. Suppose Assumptions 3.1, 3.2 and 3.3 hold for (SP), and assume

1. ‖g(x)‖ ≤ Bg for all x ∈ domg ∩ domF for some Bg ∈ [0, ∞] such that LgBg < +∞.
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2. There exists s∗ ∈ −∂H∗(0), and there exists y∗ ∈ ∂H(0) such that ‖y∗‖ ≤
(1−Γ)Lf

2Lg
, where Γ

will be chosen below.

Let {(xk, yk)}k≥1 be generated by Algorithm 2 with y0 := 0 and the following configurations:

• Initialization: Set τ0 := 1. Choose ρ0, M̂ > 0, and γ, Γ ∈ (0, 1) such that

M2
g + Lg[(2− γ)Bg + 2(1− γ)‖s∗‖]

γ(2− Γ)
≤ M̂2 ≤ Γµh

2ρ0
. (3.79)

• Update: For k ∈ N, fix Bk ≡ Rm, and update


ρk := ρ0

τ2k
, αk := 1

Lf+ρkM̂2
, βk := Γαk,

ηk := (1− γ)ρk, and τk+1 := τk
2

(√
τ2
k + 4− τk

)
.

(3.80)

Let {ȳk}k≥0 be the ergodic sequence defined as ȳk+1 := (1 − τk)ȳk + τky
k+1. Then, for all k ≥ 0,

the following bounds hold:



GX×Y(xk, ȳk) ≤ 2
(k+1)2

sup
(x,y)∈X×Y

R2
0(x, y),

P(xk)− P? ≤ 2
(k+1)2

[
‖x0−x?‖2

β0
+ (‖y0‖+MH)

2

η0

]
,

D? −D(ȳk) ≤ 2
(k+1)2

[
(‖x0‖+MF∗ )

2

β0
+ ‖y0−y?‖2

η0

]
,

P(xk)−D(ȳk) ≤ 2
(k+1)2

[
R2

0(x?, y?) + (‖x0‖+MF∗ )
2

β0
+ (‖y‖0+MH)

2

η0

]
,

(3.81)

where R0 is as defined in (3.42), and the MH , MF ∗ ∈ [0,∞] are the Lipschitz constants of H and

F ∗, respectively.

As a result, Algorithm 2 for solving (SP) has O
(

1
k2

)
non-ergodic rate on the primal objective

residual, ergodic rate on the dual objective residual, and semi-ergodic rate on the primal-dual gap.

Proof. Firstly, the update of {τk} in (3.80) leads to

τ2
k = (1− τk)τ2

k−1 and
1

k + 1
≤ τk ≤

2

k + 2
. (3.82)

Thus ρk−1 = ρ0
τ2k−1

= (1−τk)ρ0
τ2k

= (1− τk)ρk, which implies
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ρk > ηk, ρk ≥ ρ0,
1

2ηk
=

1− τk
2ηk−1

, and ρk−1 − (1− τk)ρk = 0. (3.83)

By the equality in (3.79), the updates in (3.80), and (3.82), for k ≥ 1, we have

τ2k
2βk

(3.80)
=

τ2k (Lf+ρkM̂
2)

2Γ

(3.83)
=

τ2k [Lf+(ρk−1+τkρk)M̂2]
2Γ =

τ2k (Lf+ρk−1M̂
2)

2Γ +
τ3kρkM̂

2

2Γ

(3.80)
=

τ2k
2βk−1

+ τkρ0M̂
2

2Γ

(3.79)
=

τ2k
2βk−1

+ τkµh
4

(3.82)

≤ (1−τk)τ2k−1

2βk−1
+

(1−τk)τk−1µh
2

=
(1−τk)τk−1(τk−1+βk−1µh)

2βk−1
.

(3.84)

Moreover, by definitions of s∗ and y∗, it is easily shown that (3.53) of Lemma B.4 still holds.

Therefore, by the first inequality of (3.79) and y0 := 0, we can derive that

1
αk

(
1− βk

αk

)
+ 1
αk
− Lk − Lf −

ρ2kM
2
g

ρk−ηk
(3.80)(3.53)

≥ (1− Γ)(Lf + ρkM̂
2) + ρkM̂

2 − ρkM
2
g

γ

−Lg
(

2‖y∗‖+ ρk
γ [(2− γ)Bg + 2(1− γ)‖s∗‖]

)
= ρk

(
(2− Γ)M̂2 − 1

γ [M2
g + (2− γ)BgLg + 2(1− γ)‖s∗‖Lg]

)
+(1− Γ)Lf − 2Lg‖y∗‖

(3.79)

≥ 0,

(3.85)

Combining (3.83), (3.84) and (3.85), we can simplify the relation (3.65) in Lemma 3.3 as

Lρk(xk+1, sk+1, y)−L(x, s, ȳk+1) + τk(τk+βkµh)
2βk

‖x̃k+1 − x‖2 + 1
2ηk
‖ỹk+1 − y‖2

≤ (1− τk)
[
Lρk−1

(xk, sk, y)− L(x, s, ȳk)

+
τk−1(τk−1+βk−1µh)

2βk−1
‖x̃k − x‖2 + 1

2ηk−1
‖ỹk − y‖2

]
.

Here, we have used the fact that the y̆k defined in (3.28) is equal to the ergodic iterate ȳk defined

in the statement of Theorem 3.5, thus we replace y̆k by ȳk. By induction, this inequality implies

L(xk, sk, y)−L(x, s, ȳk) ≤ Lρk−1
(xk, sk, y)− L(x, s, ȳk)

≤
[∏k−1

j=1(1−τj)
] [
Lρ0(x1, s1, y)− L(x, s, ȳ1) + τ0(τ0+β0µh)

2β0
‖x̃1−x‖2 + 1

2η0
‖ỹ1−y‖2

]
(3.65)(3.82)

=

(∏k−1
j=1

τ2j
τ2j−1

)(
τ20
2β0
‖x̃0 − x‖2 + 1

2η0
‖ỹ0 − y‖2

)
(3.82)

≤ 2
(k+1)2

(
1
β0
‖x0 − x‖2 + 1

η0
‖y0 − y‖2

)
=

2R2
0(x,y)

(k+1)2
.

Using the last estimate we can prove (3.81) in a similar manner as in the proof of Theorem 3.2.
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We therefore omit the details here.

3.4.2.3 The min
{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
non-ergodic convergence rate

Finally, using a different update rule for parameters, we establish a potentially faster

min
{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
convergence rate of Algorithm 2 in Theorem 3.6 below.

Theorem 3.6. Suppose that Assumptions 3.1, 3.2, and 3.3 hold for (SP), and assume

1. ‖g(x)‖ ≤ Bg for all x ∈ domg ∩ domF for some Bg ∈ [0, ∞] such that LgBg < +∞.

2. There exists y∗ ∈ ∂H(0) such that ‖y∗‖ ≤
(1−Γ)Lf

2Lg
, where Γ will be chosen below.

Let {(xk, yk)}k≥0 be generated by Algorithm 2 using the following parameter configurations:

• Initialization: Choose ρ0, M̂ , Ry > 0, c > 2, and γ, Γ ∈ (0, 1), such that

M2
g + γLg(Ry +Bg)

γ(2− Γ)
≤ M̂2 ≤ c2Γµh

(2c+ 1)ρ0
and ρ0Ry ≥ ‖y?‖. (3.86)

• Update: For all k ∈ N, update


τk := c

k+c , ρk := ρ0
τ2k
, αk := 1

Lf+ρkM̂2
, βk := Γαk,

ηk := (1− γ)ρk, and Bk := {y | ‖y‖ ≤ ρk−1Ry} .
(3.87)

Then,

P(xk)− P? ≤
R2
p

(k + c− 1)2 for ∀k ≥ 0, and lim inf
k→∞

k2
√

log k[P(xk)− P?] = 0, (3.88)

where R2
P := ∆2

0 + c
√

2/ρ0(‖y?‖ + MH)∆0, where ∆2
0 := (c− 1)2[P(x0) − P?] +(

c− 1 + cµhβ0
2

)
c−1
2β0
‖x0−x?‖2+ c2

2η0
‖y0−y?‖2, and MH ∈ [0,∞] is the Lipschitz continuous constant

of H.

As a result, Algorithm 2 for solving (P) has min
{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
non-ergodic conver-

gence rate on the primal objective residual.

Proof. Since ỹk is projected onto Bk−1, we can use the definition of y∗ and similar arguments as

(3.57) to show that Lk ≤ Lg[2‖y∗‖+ ρk(Ry + Bg)]. Now, by the first inequality in (3.86), and the
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update of αk and βk in (3.87), we can show that

1
αk

(
1− βk

αk

)
+ 1
αk
− Lk − Lf −

ρ2kM
2
g

ρk−ηk

(3.87)

≥ (1− Γ)(Lf + ρkM̂
2) + ρkM̂

2 − Lg [2‖y∗‖+ ρk(Ry +Bg)]−
ρkM

2
g

γ

= ρk

[
(2− Γ)M̂2 − M2

g

γ − Lg(Ry +Bg)
]

+ (1− Γ)Lf − 2Lg‖y∗‖
(3.86)

≥ 0.

Utilizing this inequality and the update rules (3.87) into (3.65) of Lemma 3.3, we can derive

L(xk+1, sk+1, y)−L(x, s, y̆k+1) +
(
k+c
c

)2 · ρ02 ‖g(xk+1) + sk+1‖2

≤ k
k+c

[
L(xk, sk, y)− L(x, s, y̆k) +

(
k+c−1
c

)2 · ρ02 ‖g(xk) + sk‖2
]

+
τ2k

2βk
‖x̃k − x‖2 − τk(τk+βkµh)

2 ‖x̃k+1 − x‖2

+
(

c
k+c

)2
· 1

2η0
(‖ỹk − y‖2 − ‖ỹk+1 − y‖2)− k[(k+c−1)2−k(k+c)]

c2(k+c)
· ρ02 ‖g(xk) + sk‖2.

(3.89)

Since y? ≤ ρ0Ry, we have y? ∈ B0 ⊆ Bk. We can then substitute (x, s, y) := (x?, s?, y?) into (3.89),

and then abbreviate a2
k := ρ0

2 ‖g(xk) + sk‖2, b2k := c2

2βk
‖x̃k − x?‖2, d2

k := 1
2η0
‖ỹk − y?‖2, and

G̃k := L(xk, sk, y?)− L(x?, s?, y̆k) = L(xk, sk, y?)− P? ≥ 0.
(3.90)

Then, we can simplify (3.89) as:

G̃k+1 +
(
k+c
c

)2
a2
k+1 ≤

k
k+c

[
G̃k +

(
k+c−1
c

)2
a2
k

]
+

b2k
(k+c)2

− τk(τk+βkµh)
2βk

‖x̃k+1 − x?‖2

+
(

c
k+c

)2
(d2
k − d2

k+1)− k[(k+c−1)2−k(k+c)]
c2(k+c)

a2
k

≤ k
k+cG̃k +

(
k
c

)2
a2
k + 1

(k+c)2
(b2k − b2k+1) +

(
c

k+c

)2
(d2
k − d2

k+1),

(3.91)

where in the second inequality we have used the definition of b2k+1 in (3.90) and that

τk(τk+βkµh)
2βk

− c2

2(k+c)2βk+1
= cµh

2(k+c) + c2

2(k+c)2

(
1
βk
− 1

βk+1

)
(3.87)

= cµh
2(k+c) −

[2(k+c)+1]ρ0M̂2

2(k+c)2Γ

≥ 1
2(k+c)

(
cµh − (2c+1)ρ0M̂2

cΓ

) (3.86)

≥ 0,

which implies that τk(τk+βkµh)
2βk

‖x̃k+1 − x?‖2 ≥ 1
(k+c)2

b2k+1. Multiplying both sides of (3.91) by

(k + c)2 and rearranging the result, we get
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∆2
k+1 := (k + c)2G̃k+1 + (k+c)4

c2
a2
k+1 + b2k+1 + c2d2

k+1

≤ k(k + c)G̃k + k2(k+c)2

c2
a2
k + b2k + c2d2

k

≤
[
(k + c− 1)2 − (c− 2)(k + c− 1)

]
G̃k

+
(

(k+c−1)4

c2
− (c−2)(k+c−1)3

c2

)
a2
k + b2k + c2d2

k

= ∆2
k − (c− 2)

[
(k + c− 1)G̃k + (k+c−1)3

c2
a2
k

]
.

(3.92)

where we have used c > 2 and the following elementary facts:

 k(k + c) ≤ (k + c− 1)2 − (c− 2)(k + c− 1),

k2(k + c)2 ≤ (k + c− 1)4 − (c− 2)(k + c− 1)3.

Using (3.92), and by induction, we can deduce (k + c− 1)2G̃k + (k+c−1)4

c2
a2
k ≤ ∆2

k ≤ ∆2
0. In

particular, we obtain

L(xk, sk, y?)− P? = G̃k ≤
∆2

0

(k+c−1)2
and ‖g(xk) + sk‖ = ak

√
2
ρ0
≤ c
√

2/ρ0∆0

(k+c−1)2
. (3.93)

Furthermore, summing up (3.92) from j := 0 to j := k, we also get

(c− 2)
k∑
j=0

[
(j + c− 1)G̃j +

(j + c− 1)3

c2
a2
j

]
≤

k∑
j=0

(∆2
j −∆2

j+1) ≤ ∆2
0 < +∞.

Since c > 2 and G̃j ≥ 0, if we apply Lemma B.1(2), then we can easily show that

lim inf
k→∞

(k2 log k)

[
G̃k +

(
kak
c

)2
]

= 0. (3.94)

Since (3.93) and (3.94) are the parallel counterparts of (3.61) and (3.63) in proof Theorem 3.3.

Therefore, the remaining proof of Theorem 3.6 is similar to the one in Theorem 3.3, and we omit

the verbatim here.

Remark 3.8 (Initial parameters in (3.79) and (3.86)). The initializations in Theorems 3.5 and

3.6 are both feasible. For simplicity, one may set γ := Γ := 1
2 , then choose M̂2 such that the

first inequality in (3.79) or (3.86) is tight, and then choose ρ0 according to the second inequality.

In order to fulfill the second inequality in (3.86), one can easily solve a quadratic equation for
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c > 2, after setting the values for M̂2 and ρ0. However, the user may choose other feasible initial

parameters for better practical performance. �

3.5 Application to Cone-Constrained Convex Optimization

One important special case of (SP) is the cone-constrained convex optimization problem (3.1).

In this section, we specify our algorithms and their convergence results to handle (3.1).

For the convenience of reference, let us recall (3.1) as follows:

min
x∈Rp

{F (x) := f(x) + h(x) s.t. g(x) ∈ −K} . (CP)

By Assumption 3.2(3), since 〈g(x), y〉 is convex in x for any y ∈ K∗, g is K-convex, i.e., for all

x, x′ ∈ domg and t ∈ [0, 1], it holds that (1 − t)g(x) + tg(x′) − g ((1− t)x+ tx′) ∈ K. Thus, the

constraint in (CP) is convex. Some important special cases of (CP) have been listed in Example

1.1 of Section 3.1.

To develop special variants of Algorithms 1 and 2 for solving (CP) and to establish their

convergence guarantees, we redefine the associated Lagrange function as

L(x, s, y) := F (x) + 〈y, g(x) + s〉, (3.95)

where s ∈ K is again the slack variable, and y ∈ K∗ is the Lagrange multiplier.

The following theorem tailors both Algorithms 1 and 2 to (CP), and provides their convergence

rate guarantees on both the primal objective value and the feasibility gap.

Theorem 3.7. To solve (CP), let us

specify the update yk+1 := proxρkH∗
(
ỹk + ρkg(x̂k)

)
as yk+1 := projK∗

(
ỹk + ρkg(x̂k)

)

in Step 6 of Algorithms 1 and 2, and define

E(x) := max {|F (x)− F ?|, dist−Kg(x)} and R2
1 := ‖x0−x?‖2

β0
+ (‖y0‖+‖y?‖+1)

2

η0
, (3.96)

71



where E(x) denotes the combined primal objective residual and primal feasibility violation at x.

Then, for all k ≥ 1, the following statements hold:

1. Under the conditions of Theorem 3.1, we have E(x̄k) ≤ R
2
1

2k .

2. Under the conditions of Theorem 3.2, we have E(xk) ≤ R
2
1

2k .

3. Under the conditions of Theorem 3.3, we have

E(xk) ≤
∆2

0 +
√

2c/ρ0‖y?‖∆0

k + c− 1
and lim inf

k→∞
k
√

log k · E(xk) = 0,

where ∆0 := (c− 1)[F (x0)− F ?] + c
2R

2
0(x?, y?).

4. Under the conditions of Theorem 3.4, we have E(x̄k) ≤ R2
1

(
√

1+µhβ0−1)(k−1)k
.

5. Under the conditions of Theorem 3.5, we have E(xk) ≤ 2R2
1

(k+1)2
.

6. Under the conditions of Theorem 3.6, we have

E(xk) ≤
∆2

0 +
√

2c/ρ0‖y?‖∆0

(k + c− 1)2 and lim inf
k→∞

k2
√

log k · E(xk) = 0,

where ∆0 := (c− 1)2[F (x0)− F ?] + c2

2 R
2
0(x?, y?).

As a result, Algorithm 1 for solving (CP) is convergent on both the objective resid-

ual and the feasibility violation, with convergence rate O
(

1
k

)
in ergodic sense, and rate

min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
in non-ergodic sense. Algorithm 2 for solving (CP) boosts these rates to

O
(

1
k2

)
and min

{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
, respectively.

Proof. Using the same lines as in the proof of Theorem 3.1, we can see that (3.48) still holds with

L defined in (3.95). Substituting (x, s) := (x?, s?) into (3.48), we get

F (x̄k) + 〈y, g(x̄k) + s̄k〉 − F ? ≤ R
2
0(x?, y)

2k
.

Let R0(y) := R2
0(x?, y), then for any fixed r > 0, we have

F (x̄k)− F ? ≤ F (x̄k)− F ? + r‖g(x̄k) + s̄k‖ ≤ 1

2k
sup{R0(y) | ‖y‖ ≤ r}. (3.97)

On the other hand, by the saddle-point relation (3.14), we have
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F (x̄k) + 〈y?, g(x̄k) + s̄k〉 = L(x̄k, s̄k, y?) ≥ L(x?, s?, y?) = F ?.

By the Cauchy-Schwarz inequality, the last estimate leads to

F (x̄k)− F ? ≥ −〈y?, g(x̄k) + s̄k〉 ≥ −‖y?‖‖g(x̄k) + s̄k‖. (3.98)

Substituting (3.98) into (3.97), we get

(r − ‖y?‖)‖g(x̄k) + s̄k‖ ≤ 1

2k
sup{R2

0(y) | ‖y‖ ≤ r}.

Let us choose r := ‖y?‖+ 1. Notice that s̄k ∈ K due to (3.22), domH = −K, and that K is convex.

Therefore, the last inequality becomes

dist−Kg(x̄k) = inf
s∈K
‖g(x̄k) + s‖ ≤ ‖g(x̄k) + s̄k‖ ≤ 1

2k
sup{R2

0(y) | ‖y‖ ≤ ‖y?‖+ 1}
(3.42)

≤ 1
2k

[
1
β0
‖x0 − x?‖2 + 1

η0
(‖y0‖+ ‖y?‖+ 1)

2
]
,

(3.99)

Combining (3.97), (3.98), and (3.99), we have proved Statement 1 of Theorem 3.7.

Statement 2 can be proved in a similar way as above, thus we omit the verbatim.

The first part of Statement 3 follows from (3.61). For the second part, notice that (3.63) still

holds. Applying Lemma B.1(3b) with uk := G̃k, vk := ak, t1 := 1
c , and t2 := ‖y?‖+ 1, we get

lim infk→∞ k
√

log k[|F (xk)− F ?|+ ‖g(xk) + sk‖]

≤ lim infk→∞ k
√

log k[L(xk, sk, y?)− F ? + (‖y?‖+ 1)‖g(xk) + sk‖] = 0,
(3.100)

which is exactly the second part of Statement 3.

The last three statements: Statements 4, 5, and 6, can be proved the same way as the first

three statements. We therefore omit the details.

3.6 Numerical Experiments

In this section, we aim at testing our algorithms on four numerical examples. The first one is a

special case of quadratically constrained quadratic programming (QCQP) in Subsection 3.6.1. We

use this example to verify the theoretical convergence rates of our algorithms. The second example
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is a convex-concave min-max game in Subsection 3.6.2. The other two examples focus on the case

where g is linear. In Subsection 3.6.3, we consider a bilinear min-max game; in Subsection 3.6.4,

we use our algorithms to conduct image rocessing and reconstruct noisy, blurry, or lost image data.

We suggest the following tips when implementing our algorithms in order to obtain faster

performance. These tips are guided by our theoretical results.

• As briefly discussed in Remark 3.3, when H∗ is separable (or block-separable) in y, which

is often the case, such as QCQP, instead of using the product such as LgMg in (3.43), we

can tighten it as
∑m

i=1 LgiMgi . In this case, Theorem 3.1 still holds. Similarly, the product

LgBg can be replaced by
∑m

i=1 LgiBgi in the expressions of parameter initialization updates,

e.g., in (3.51) and (3.79), and the theorems still hold true. Therefore, it is useful to use such

replacements in implementation.

• One can tune the initial parameters, such as ρ0 and β0, in order to improve the performance.

These parameters trade-off the dependence of the right-hand-side convergence bounds on the

primal and dual initial points x0 and y0, resp.; see the definition of R2
0 in (3.42).

• We can directly use use Lk := Lg(y
k+1), and adaptively update the parameter

βk :=
1

Lf + Lk +
ρkM2

g

γ

in Algorithm 1. In this case, the last term in (3.29) of Lemma 3.2 diminishes with the

largest possible βk, which often improves the algorithm’s practical performance by taking

more aggressive primal steps. Similarly, in Algorithm 2, we can let

αk :=
1

Lf + 1
2−Γ

(
Lk +

ρkM2
g

γ

) .
• Restarting the parameters by periodically setting, e.g., x0 := xk, and τk := 1, in the context

of Theorems 3.2, 3.3, 3.5, and 3.6. In this way, we can avoid the primal stepsizes βk and αk

from becoming too small after many iterations. While restarting technique can significantly

boost the algorithms’ performance [43, 96], we did not implement it for this section due to

the lack of theoretical guarantee.
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In this section, in order to address our six algorithmic variants, we use Algorithm 1 (v1) to

denote the variant combining Algorithm 1 and parameter initialization/update rules specified in

(3.43)-(3.44) in Theorem 3.1. Similarly, we call the other two variants Algorithm 1 (v2) and

Algorithm 1 (v3), respectively. The three variants of Algorithm 2 are named accordingly.

3.6.1 Verifying theoretical guarantees via a special case of QCQP

We consider the following problem of computing the square distance from a given point a0 to

the intersection of m given balls centered at ai of radius ri, where i = 1, . . . ,m:


min
x∈Rp

‖x− a0‖2,

s.t. ‖x− ai‖2 ≤ r2
i , i = 1, . . . ,m,

(3.101)

where ai ∈ Rp for i = 0, 1, . . . ,m, and ri > 0 is a scalar for each i = 1, . . . ,m. Problem (3.101) fits

the special case (CP) of our template with f(x) := 0, h(x) := ‖x − a0‖2, gi(x) := ‖x − ai‖2 − r2
i ,

and K := Rm+ . Here, h is strongly convex with µh = 2.

We first fix the problem size as p := 400 and m = 1000. Next, we generate problem instances

of (3.101) by drawing all entries of ai’s from uniform distribution in (−1, 1), where i = 0, 1, . . . ,m.

Then we define r2
i := ‖ai‖2 + εi, where εi > 0 is a scalar drawn from uniform distribution in (0, 1).

Clearly, 0 is a strictly feasible solution to (3.101).

To test our algorithms, we generate 30 random problem instances of the same size. For each

instance, we run all six algorithmic variants up to 104 iterations. Without over-tuning, we simply

set ρ0 := 5 × 10−4 for all three variants of Algorithm 1, as well as Algorithm 2 (v1); we set

ρ0 := 5 × 10−5, and M̂ := 103 for Algorithm 2 (v1) and (v2). Furthermore, we set c := 2 for

Algorithm 1 (v3), and c := 4 for Algorithm 2 (v3).

The performance of six algorithmic variants is shown in Figure 3.1, where the relative objective

residual and the relative feasibility residual, defined by

|F (x)− F ?|
max{1, |F ?|}

and
‖g(x)+‖

max{1, ‖g(x?)+‖}
,

are shown on the left and right, respectively, in log-scale. Here, x? and value F ? appearing in the
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figure is computed by CVX [55, 56] with the MOSEK solver [84] at the highest precision. For each

algorithmic variant, we plot its theoretically convergent sequence:

• For Algorithm 1 (v1), the blue curve is based on the ergodic (averaging) sequence {x̄k} defined

by (3.45) in Theorem 3.1.

• For Algorithm 1 (v2), the red curve is based on the non-ergodic (last-iterate) sequence {xk}.

• For Algorithm 1 (v3), the green curve is based on the so-called “best-iterate” sequence {xk},

defined as the minimizer of the quantity F (xj) + 1
2‖[g(xj)]+‖ over 0 ≤ j ≤ k, guided by

definition of E in (3.96).

• The curves (black, pink, and yellow) of Algorithm 2 are similarly based on their respective

iterate sequences.

Since we generate 30 different random problem instances, we use the thick line to indicate the mean

value, and use the shaded area to describe the range over all instances.

Figure 3.1: Average performance of our six algorithmic variants on 30 instances of QCQP (3.101)

From Figure 3.1, we observe that Algorithm 1 indeed behaves with O
(

1
k

)
convergence rate,

in terms of both the objective value and the cone constraint violation. Among the three variants,

Algorithm 1 (v3), with theoretical min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
convergence rate, is the fastest. On

the other hand, Algorithm 1 (v1), whose theoretical rate is based on the averaging iterate, has
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the worst performance.5 Moreover, since problem (3.101) is strongly convex, the three variants

of Algorithm 2 indeed took advantages of this property, and boosted the performance to O
(

1
k2

)
.

Again, as theoretically predicted, the yellow curve for the “best-iterate” sequence is the best, which

exhibits an empirically faster min
{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
rate.

3.6.2 Convex-concave min-max game

In this subsection, we consider a convex-concave min-max game between two players, where

Player 1 chooses strategy x ∈ ∆p := {x ∈ Rp |
∑p

j=1 xj = 1} to minimize cost function F (x), and

simultaneously, Player 2 chooses strategy y ∈ ∆m := {y ∈ Rm |
∑m

i=1 yi = 1} to minimize cost

function H∗. In addition, Player 1 has to pay “loss function” 〈g(x), y〉 to Player 2.

Let p = m, and define the following function:

 F (x) := f(x) + h(x), f(x) :=
∑n

j=1 log(1 + ea
>
j x), h(x) := δ∆m(x),

gi(x) := bi
1+xi

, g(x) := (g1(x), . . . , gm(x))>, H∗(y) := δ∆m(y),
(3.102)

where A = (a1, . . . , an) ∈ Rm×n and b ∈ Rm. We can model the two persons min-max game model

into the following problem, which fits well our template (SP):

min
x∈∆m

max
y∈∆m


n∑
j=1

log(1 + ea
>
j x) +

m∑
i=1

biyi
1 + xi

 . (3.103)

This problem is similar to the one in [23, Section 4.3], but our coupling term is linear in y. It is

easy to compute that Lf = ‖A‖2
4 , and Lgi = 2|bi|, Mgi = Bgi = |bi| for each i ∈ {1, . . . ,m}.

Since f in (3.102) is not strongly convex, we solve (3.103) using three variants of Algorithm

1: Algorithm 1 (v1) and (v2) both have O
(

1
k

)
convergence guarantees on the primal-dual gap;

although Algorithm 1 (v3) does not have dual convergence guarantee, it does have a potentially

faster min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
primal convergence rate. For (v1), the theoretically convergent

gap is based on the averaging sequences; for (v2), the convergence of gap P(xk) − D(ȳk) is based

on primal last-iterate sequence and the dual averaging sequence; for (v3), however, the primal

5We remark here that first-order methods with such constant stepsizes usually perform well empirically using the
non-ergodic (last-iterate) sequence. However, only the ergodic (averaging) sequence possesses theoretical convergence
guarantees as proved in existing literature.
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residual P(xk) − P? is based on the last-iterate sequence, and there is a diminishing subsequence

of {k
√

log k[P(xk)− P?]}, which indicates a potentially faster rate on the primal.

We compare our algorithmic variants with two existing algorithms: the Accelerated Primal-Dual

(APD) algorithm proposed by [57], and the Mirror descent method in [88]. Similar to Algorithm

1 (v1), they both have the O
(

1
k

)
rate on duality gap based on averaging sequences. Note that

APD does not write F (x) as two separate functions as in (3.102), thus it has to solve a non-trivial

subproblem at each iteration k to update xk:

xk+1 := arg min
x∈∆m

β
n∑
j=1

log(1 + ea
>
j x) +

1

2

∥∥∥x− β (xk − [∇g(xk)]
>
yk+1

)∥∥∥2

 . (3.104)

We have implemented restarted FISTA [121] to solve this problem with stopping criterion: ‖xkj+1−

xkj ‖ < εmax{1, ‖xkj ‖}, where {xkj }∞j=0 is the iterates for the subproblem (3.104), and we set

ε := 10−6. On the other hand, note that Mirror descent is double-loop, and in each inner iteration,

it solves two subproblems that are slightly easier than (3.104), where we again employ a restarted

FISTA routine. To compute the projection onto the simplex, we use the method in [140] for all

algorithmic variants.

To generate problem instances, we set p = m := 1000, and n := 500, and simply draw all

entries of A and b from standard Gaussian distribution, and A is sparse with 20% nonzero entries.

For APD, we set the primal stepsize as β := 1
Lg+M2

g
, and the dual stepsize as ρ := 1, as suggested

in [57, Remarks 2.3 and 2.4]. For Mirror descent, we set the primal-dual stepsizes as (β, ρ) :=(
1√

2Mg
, 1√

2(Lf+Lg)

)
, as suggested in [88, eqn. (3.2)]. For both of our variants Algorithm 1 (v1) and

(v2), we simply set γ := 1
2 and ρ0 := 1, without over-tuning. For Algorithm 1 (v3), we set ρ0 = 2

and c = 2.

We generate 30 problem instances; for each instance, we run each algorithm up to 500 iterations.

The performance is shown in Figure 3.2: on the left, we plot the duality gap against the number of

iterations; and on the right, we plot the duality gap against time. The curves are all based on each

method’s theoretical iterations, i.e., they are based on ergodic (averaging) iterates {x̄k} and {ȳk}

for Algorithm 1 (v1), APD, and Mirror descent. However, for Algorithm 1 (v2), we use the last

(non-ergodic) iterates {xk}. For Algorithm 1 (v3), given the theory, the most suitable sequence to
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plot is the smallest gap min1≤j≤k[P(xj)−D(yj)] up until the current iteration k.6
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Figure 3.2: Average performance of five methods on 30 instances of min-max game (3.103) with problem
size (m,n) = (1000, 500)

As in Subsection 3.6.1, we take the mean over all 30 instances to plot as thick curves, and take

the range of duality gaps over all 30 instances to plot as shaded areas. We make some comments:

• Algorithm 1 (v1) and Mirror descent have relatively similar behavior, while our method,

Algorithm 1 (v1), is still slightly faster.

• Algorithm 1 (v2) converges faster than Algorithm 1 (v1), Mirror descent, and APD, since it is

the only method in these four that reduces the duality gap below 10−3. However, it exhibits

the most oscillation, shown through both the mean curve and the shaded range area. This is

a normal behavior since it uses the last-iterate sequence, and thus is less smooth than other

curves, which use an averaging sequence.

• Algorithm 1 (v3) is the fastest. The mean curve over the 30 random instances shows a

higher than 10−5 accuracy, more than twice as good as other methods (except for the second

fastest Algorithm 1 (v2)). It suggests that this variant’s theoretical min{O(·), o(·)} rate may

6Recall Theorem 3.3 that for Algorithm 1 (v3), the convergence guarantee is P(xk) − P? =
min{O(1/k), o

(
1/(k
√

log k)
)
}. By definition, this rate also holds for P(xk) − P(x?); and by the definition of

o(·) rate in (3.3), using sequence {xk} fits the theory better than simply {xk}. For (v3), we do not have convergence
rate on the dual, and thus for simplicity we use the primal-dual sequence in terms of the best gap. We remark
that if g is linear, then our algorithm applied to the dual would have the convergence rate on the dual residual:
D? −D(yk) = min{O(1/k), o

(
1/(k
√

log k)
)
}.
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practically be the faster o(·) rate.

• APD takes the longest time to run, since it has to solve the expensive subproblem (3.104). It

is approximately 100 times slower than Algorithm 1 variants, as can be seen on the time axis

of the right plot of Figure 3.2.

In order to further solidify our conclusions, we also conducted experiment on another 30 problem

instances with larger size (m,n) := (1500, 750). Indeed, the resulting performance shown in Figure

3.3 verified the fast speed of our proposed methods in terms of both number of iterations and the

CPU time seen in Figure 3.2.
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Figure 3.3: Average performance of five methods on 30 instances of min-max game (3.103) with problem
size (m,n) = (1500, 750)

3.6.3 Bilinear min-max game

Consider the following matrix min-max game problem studied in [91]:

min
x∈Rp

max
y∈Rm

〈Ax, y〉. (3.105)

where A ∈ Rm×p. It is a special case of problem (3.103) (except that here p 6= m), where f(x) ≡ 0,

and g(x) := Ax is linear.

We will compare the performance of Algorithm 1 and Nesterov’s smoothing algorithm in [91]
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(Smoothing) on problem (3.105). Note that Smoothing would not work on problem (3.103), because

it is specified for problems with bilinear coupling term. For the three variants of Algorithm 1, we

compare the same types of iterates as in Subsection 3.6.2. For Smoothing, we use the semi-ergodic

iterates, i.e., non-ergodic on the primal, and ergodic on the dual, as they are the iterates that the

convergence guarantee is based on; see [91].

We set (p,m) = (2000, 1000), and generate matrix A ∈ Rm×p uniformly from interval (−1, 1),

then normalize it such that ‖A‖ = 1. We set four values for accuracy ε = 10−1, 10−2, 10−3 and

10−4, and accordingly set the numbers of iterations kmax = 4× 101, 4× 102, 4× 103 and 4× 104,

resp.; see [91, (4.8)]. We then set the following configurations for the two algorithms:

• For Algorithm 1 (v1) and (v2), we simply choose γ := 1
2 and ρ0 := 1. For (v3), we set ρ0 := 1

4

and c := 2.

• For Smoothing, we follow the same configurations as in [91] for Euclidean distance smoothing.

In particular, for a fixed accuracy ε > 0, the recommended smoothing parameter is ρ∗ =

2(1−1/m)
ε . On top of this value we test the variants where ρ = ρ∗

5 and ρ = 5ρ∗ in order observe

the dependency of Smoothing on the smoothing parameter.

The performance of Smoothing is measured by the semi-ergodic duality gap P(xk)−D(ȳk) as

in the theory [91], and the performance of Algorithm 1 is measured by the same types of iterates

as in Subsection 3.6.2. In Figure 3.4, we observe that overall Algorithm 1 behaves faster than

Smoothing. We can see that Smoothing depends heavily on the smoothing parameter: it works

best when ρ = ρ∗ is set by theory, but not as good with greater or smaller values. Even if ρ is set

by theory, the performance of Smoothing (pink curve) is still losing to variants of Algorithm 1. On

the other hand, our Algorithm 1 (v3) gets significantly faster compared with other methods, when

the number of iterations goes up. It suggests that this variant’s min{O(·), o(·)} rate may actually

be the faster o(·) rate. This result is consistent with what we have seen in Subsection 3.6.2.

3.6.4 Image reconstruction using TV-norm

In this subsection, we apply our algorithms on image processing problems, which is to recon-

struct noisy, blurry or lost image data. This type of problems can be modeled as:
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Figure 3.4: Performance of Algorithm 1 and Smoothing on a bilinear min-max game problem with four
different configurations

P? := min
x∈X
{P(x) := f(x) + ‖x‖TV} , (3.106)

where the primal space X := [0, 1]N1×N2×N3 contains the image data, where N1×N2 is the number

of pixels (length and height, resp.), and N3 is the number of channels, e.g.,

N3 =


1, if the image is black and white,

3, if the image is in RGB color.
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The function f in (3.106) is a convex data fidelity function, enforcing that the difference between

the solution image and the deteriorated image is small. The problem (3.106) fits our template (P)

with H (g(x)) := ‖x‖TV, the isotropic total variation (TV) norm, where g(x) = (g(1), g(2)) := Ax ∈

RN1×N2×N3×2 is the discrete gradient vector defined as

g
(1)
i,j,k :=


xi+1,j,k − xi,j,k, if i < N1,

0, if i = N1,

and g
(2)
i,j,k :=


xi,j+1,k − xi,j,k, if j < N2,

0, if j = N2,

which is essentially the horizontal and vertical differences, resp., between two neighboring pixels.

It is shown in [19, Theorem 3.1] that Mg = ‖A‖ =
√

8. Now, writing function H with argument g,

the isotropic TV-norm in (3.106) is defined as

H(g) =

N1∑
i=1

N2∑
j=1

N3∑
k=1

√(
g

(1)
i,j,k

)2
+
(
g

(2)
i,j,k

)2
.

Notice the handling of multiple channels is to use channel-summation instead of channel-coupling,

see [83], i.e., we assume that different channels are independent; if we instead use channel-coupling,

then the resulting image would tend to be black and white. It is easy to see that the TV-norm

‖x‖TV := H (Ax) enforces the similarity between pixels that are next to each other, which is a

common requirement for successful image reconstruction.

We will run Algorithm 1 or Algorithm 2, depending on whether f is strongly convex. To

compare, we will also run the first-order primal-dual algorithms CP [20, Algorithm 1] or CP-scvx

[20, Algorithm 2], depending on whether f is strongly convex.7 Finally, we run ADMM [15, eqn.

(3.2)-(3.4)] on three types of image processing problems: de-noising, de-blurring and in-painting.

We will consider the ergodic sequence {x̄k} of Algorithm 1 (v1), Algorithm 2 (v1), CP and ADMM,

since these algorithms all have ergodic convergence rate; for the same reason, we consider the non-

ergodic sequence
{
xk
}

of our variant v2 and the best-iterate sequence {xk} of our variant (v3),

where xk is such that P(xk) = min1≤j≤k P(xj).

For each type of image processing problem, we run each algorithm on four standard benchmark

images: “house”, “lena”, “mandril”, and “peppers”; all of them has resolution N1 = N2 = 512.

7The ergodic convergence rate of [20, Algorithm 2] in terms of objective value is not shown until in a followup
work [21].
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Since they are RGB images, N3 = 3. We run each algorithm for 500 iterations. The three criteria

we consider are: objective value of (3.106) corresponding to the output of the algorithm, peak

signal-to-noise ratio (PSNR) of the output image of the algorithm, and the running time of the

algorithm. An algorithm with better performance would have small objective value, high PSNR,

and short running time.

3.6.4.1 Image denoising

Suppose that u ∈ X is a given noisy image. If we let

f(x) :=
λ

2
‖x− u‖2F ,

where ‖·‖F is the tensor Frobenius norm, then solving (3.106) would reconstruct a less noisy image

close to the given data, i.e., with high fidelity. The regularizer λ determines the desired fidelity

level. This model is called the ROF model pioneered by Rudin, Osher and Fatemi [117].

We corrupt each clean image with 20% salt and pepper noise, and set λ := 4. For best perfor-

mance of all algorithms, we do a slight tuning, and simply set the following algorithm parameter

configurations for all problems:

• For Algorithm 2, set γ := 0.5, Γ := 0.99 and ρ0 := 0.5; for (v3), set c := 3;

• For CP-scvx, set ρ := 0.125 as recommended in [20, Section 6.2].

• For ADMM, we use the trick in [22] to split the problem into three variables to avoid the

expensive subproblem, and we solve the underlying linear system with at most either 20

conjugate gradient iterations or up to 10−5 accuracy. We find that ADMM works best with

ρ := 10.

Table 3.2 shows the performance of the algorithms. We observe that

• The objective values of the three variants of Algorithm 2 are comparable to CP-scvx, and

Algorithm 2 (v2) has objective values slightly better than those of the others; ADMM performs

the worst in this aspect.

• The PSNR performance of the five algorithm variants are very similar, and CP-scvx is slightly

better than the others.
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• In terms of time, CP-scvx is the fastest, since it has the simplest scheme. Algorithm 2 is

slower since it has an additional proximal operation. ADMM is the slowest as expected due

to its computationally expensive subproblem.

Figure 3.5 show the effect of running Algorithm 2 (v3) to reconstruct noisy images. Here, each

column represents an image tested; the first row shows clean images, the second row shows noisy

images, and the last row shows the effect of denoising. The title above each figure shows the PSNR.

We can see that by running Algorithm 2 we have indeed largely recovered the quality of figures.

Figure 3.5: Visual outcome of Algorithm 2 (v3) on four noisy images

3.6.4.2 Image deblurring

Suppose that u ∈ X is a given blurry image, which can be obtained from linear operator A,

the convolution with the point spread function (PSF), as studied in [19]. Let

85



T
a
b

le
3
.2

:
R

es
u

lt
s

of
fi

ve
a
lg

o
ri

th
m

ic
va

ri
a
n
ts

o
n

fo
u

r
im

a
g
e

d
en

o
is

in
g

p
ro

b
le

m
s

a
ft

er
5
0
0

it
er

a
ti

o
n

s

h
o
u

se
le

n
a

m
a
n

d
ri

l
p

ep
p

er
s

M
et

h
o
d

P
5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e

N
o
n

e
(n

o
is

y
im

a
g
e)

2
5
7
9
0
5
.0

0
1
2
.1

2
2
0

-
2
5
2
6
1
3
.4

4
1
2
.1

9
1
7

-
2
8
9
7
1
1
.9

1
1
2
.1

9
5
0

-
2
5
7
0
0
1
.0

1
1
1
.9

0
9
4

-
A

lg
o
ri

th
m

2
(v

1
)

1
0
0
3
4
1
.9

7
2
1
.1

4
4
4

8
1
.9

8
9
5
6
4
6
.6

5
2
2
.8

5
5
2

7
4
.2

1
1
0
4
1
5
4
.2

9
1
8
.9

2
3
4

7
4
.4

2
1
0
1
3
0
4
.0

3
2
1
.8

6
4
8

6
9
.0

6
A

lg
o
ri

th
m

2
(v

2
)

1
0
0
3
3
4
.8

1
2
1
.1

2
6
3

7
7
.8

7
9
5
6
3
8
.7

9
2
2
.8

4
0
5

7
2
.2

9
1
0
4
1
4
7
.4

9
1
8
.9

0
6
6

7
3
.5

9
1
0
1
2
9
7
.1

3
2
1
.8

5
5
5

7
2
.1

7
A

lg
o
ri

th
m

2
(v

3
)

1
0
0
3
3
3
.4

6
2
1
.1

3
5
3

8
0
.0

6
9
5
6
3
7
.5

8
2
2
.8

4
3
3

8
8
.6

3
1
0
4
1
4
6
.0

9
1
8
.9

1
3
8

7
6
.2

0
1
0
1
2
9
5
.7

8
2
1
.8

5
5
5

7
5
.2

0
C

P
-s

cv
x

1
0
0
3
3
5
.2

0
2
1
.1

5
0
0

4
6
.2

4
9
5
6
3
9
.2

8
2
2
.8

5
5
8

4
6
.1

7
1
0
4
1
4
7
.9

0
1
8
.9

2
7
8

4
4
.2

3
1
0
1
2
9
7
.3

8
2
1
.8

6
3
9

4
3
.0

2
A

D
M

M
1
0
0
8
4
1
.3

9
2
1
.1

0
9
3

2
0
0
.2

5
9
6
1
7
8
.3

0
2
2
.7

8
3
1

2
1
0
.8

1
1
0
4
7
3
7
.8

4
1
8
.9

3
3
9

1
8
6
.9

0
1
0
1
7
6
7
.9

7
2
1
.7

8
3
5

1
9
0
.5

8

T
a
b

le
3
.3

:
R

es
u

lt
s

of
fi

ve
a
lg

o
ri

th
m

ic
va

ri
a
n
ts

o
n

fo
u

r
im

a
g
e

d
eb

lu
rr

in
g

p
ro

b
le

m
s

a
ft

er
5
0
0

it
er

a
ti

o
n

s

h
o
u

se
le

n
a

m
a
n

d
ri

l
p

ep
p

er
s

M
et

h
o
d

P
5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e

N
o
n

e
(b

lu
rr

y
im

a
g
e)

2
8
5
6
7
0
.6

0
1
2
.0

9
9
0

-
3
0
8
7
8
3
.7

6
8
.2

0
3
0

-
3
0
8
8
9
8
.0

0
8
.2

0
3
0

-
3
0
6
4
7
1
.0

5
7
.7

1
6
2

-
A

lg
o
ri

th
m

2
(v

1
)

8
3
8
4
6
.1

9
2
0
.5

0
3
2

9
8
.7

0
8
2
9
5
7
.6

3
1
9
.0

9
2
8

1
0
0
.3

6
8
3
1
2
1
.8

5
1
9
.0

9
3
9

1
0
6
.6

1
7
3
0
7
9
.9

3
2
2
.6

7
9
6

1
0
6
.0

8
A

lg
o
ri

th
m

2
(v

2
)

4
6
5
0
1
.9

7
2
4
.2

8
4
5

9
9
.1

1
5
3
9
0
1
.9

5
2
0
.6

9
4
6

1
0
2
.6

9
5
3
9
7
2
.0

6
2
0
.6

9
4
7

1
1
3
.8

6
4
1
7
2
1
.4

3
2
7
.4

6
0
7

1
1
4
.4

4
A

lg
o
ri

th
m

2
(v

3
)

4
6
2
7
5
.0

5
2
4
.4

6
7
3

1
0
6
.0

8
5
3
7
7
9
.6

2
2
0
.7

1
9
3

1
3
1
.1

7
5
3
8
4
9
.6

8
2
0
.7

1
9
3

1
1
2
.9

9
4
1
5
3
4
.9

6
2
7
.7

0
4
3

1
0
9
.5

4
C

P
-s

cv
x

4
8
8
4
4
.7

1
2
3
.7

5
7
8

6
8
.8

7
5
6
2
7
3
.9

6
2
0
.8

7
1
7

7
2
.8

1
5
6
3
4
2
.4

1
2
0
.8

7
2
5

7
1
.7

3
4
3
7
4
8
.2

0
2
6
.3

1
0
7

7
5
.6

8
A

D
M

M
4
5
9
4
9
.4

1
2
5
.0

6
1
7

2
2
1
.6

1
5
3
6
5
7
.0

8
2
0
.7

8
7
7

2
1
2
.0

8
5
3
7
2
8
.1

8
2
0
.7

8
7
7

2
1
7
.5

1
4
1
3
3
4
.2

2
2
8
.3

0
6
7

2
4
3
.5

3

T
a
b

le
3
.4

:
R

es
u

lt
s

of
fi

ve
a
lg

o
ri

th
m

ic
va

ri
a
n
ts

o
n

fo
u

r
im

a
g
e

in
p

a
in

ti
n

g
p

ro
b

le
m

s
a
ft

er
5
0
0

it
er

a
ti

o
n

s

h
o
u

se
le

n
a

m
a
n

d
ri

l
p

ep
p

er
s

M
et

h
o
d

P
5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e
P

5
0
0

P
S

N
R

ti
m

e

N
o
n

e
(l

in
es

m
is

si
n

g
)

4
4
5
7
7
.0

8
4
.6

0
1
0

-
5
2
1
9
4
.4

9
6
.1

7
8
2

-
5
5
6
8
8
.5

8
6
.6

6
6
4

-
6
3
3
7
3
.9

2
6
.9

3
3
5

-
A

lg
o
ri

th
m

1
(v

1
)

1
2
1
2
8
.2

6
1
9
.6

7
0
3

6
9
.1

4
9
9
2
9
.6

4
2
5
.0

9
1
1

7
7
.4

6
2
2
1
2
4
.5

1
1
9
.4

6
8
7

6
1
.2

2
1
1
0
7
7
.7

0
2
3
.4

7
2
0

5
4
.0

7
A

lg
o
ri

th
m

1
(v

2
)

1
1
5
8
3
.6

1
1
9
.0

6
5
4

7
5
.8

7
9
4
0
3
.1

9
2
5
.0

2
0
1

1
0
2
.9

5
2
1
7
1
6
.4

0
1
9
.4

1
8
1

7
3
.7

1
1
0
4
2
5
.0

4
2
3
.1

1
6
6

6
8
.1

4
A

lg
o
ri

th
m

1
(v

3
)

1
1
5
9
0
.9

2
1
8
.9

3
9
0

7
5
.3

7
9
4
2
1
.8

8
2
4
.9

9
6
6

1
0
4
.6

9
2
1
7
2
6
.8

4
1
9
.4

1
9
2

7
8
.6

0
1
0
4
4
4
.2

4
2
3
.0

5
7
5

7
1
.5

4
C

P
1
1
6
2
3
.6

7
1
9
.1

1
8
0

4
4
.4

0
9
4
6
8
.9

6
2
5
.1

4
6
9

4
9
.8

8
2
1
7
7
3
.1

2
1
9
.4

6
3
2

4
8
.7

7
1
0
4
9
9
.1

3
2
3
.2

7
2
6

4
4
.7

1
A

D
M

M
1
1
6
7
6
.9

3
1
9
.1

1
7
3

2
8
0
.5

2
9
5
2
2
.3

7
2
4
.9

8
7
7

2
7
6
.1

1
2
1
7
5
0
.0

0
1
9
.4

1
7
6

2
2
9
.5

9
1
0
6
2
4
.7

8
2
3
.1

1
5
7

2
5
0
.5

8

86



f(x) =
λ

2
‖A(x)− u‖2F , (3.107)

where ‖·‖F is the tensor Frobenius norm, then the solution to (3.106) would be a less blurry image.

Due to the special structure of A, the proximal operator proxγf (x) can be computed in a closed

form using fast Fourier transform (FFT) [19, 22]. For each image, we apply a convolution filter to

approximate the linear motion of a camera with length 30 pixels and angle 45o (counter-clockwise),

followed by Gaussian noise with standard deviation 0.01. We set λ := 720. The configuration

is similar to that in Subsubsection 3.6.4.1, except that we set ρ0 := 1 for CP-scvx and all three

variants of Algorithm 2.

Table 3.3 shows the performance of the algorithms. We observe that

Figure 3.6: Visual outcome of Algorithm 2 (v3) on four blurry images
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• The objective value of Algorithm 2 (v1) is the largest, followed by CP-scvx. Algorithm 2

(v2), (v3), and ADMM has the smallest objective values.

• The PSNR performance of Algorithm 2 (v1) is the worst, and there is not much difference

for the other algorithmic variants in this aspects.

• As in Subsubsection 3.6.4.1, CP-scvx is the fastest in CPU time, and ADMM is the slowest.

The reason is the same as in the denoising example in Subsubsection 3.6.4.1.

We include Figure 3.6 to present the visual outcome of Algorithm 2 (v3). It shows that the

images have been reconstructed to a great extent.

3.6.4.3 Image inpainting

Suppose that u ∈ X is a given deteriorated image with lost pixels at index set I ⊆ {1, 2, ..., N1}×

{1, 2, ..., N2}. If we let

f(x) :=
λ

2

∑
i,j /∈I

∑
k

(xi,j,k − ui,j,k)2,

then solving (3.106) would reconstruct an image with the un-deteriorated pixels close to the given

un-deteriorated data.

We set λ := 32 in f with 80% missing lines. Notice that f is not strongly convex – it does

not involve the entries where (i, j) ∈ I. Therefore, we apply Algorithm 1, CP from [20, Algorithm

1], and ADMM. The configuration is again similar to that in Subsubsection 3.6.4.1, except that

ρ0 := 1 for CP and all three variants of Algorithm 1.

Table 3.4 shows the performance of the algorithms. We observe that

• The objective values of Algorithm 1 (v1) is the largest. The other algorithmic variants have

similar performance in this aspect.

• The performance on PSNR is very similar for all methods, but Algorithm 1 (v1) is slightly

better than the rest.

• In terms of CPU time, ADMM is the slowest, and CP is the fastest. It takes ADMM around

four times longer time to run than CP.

We include Figure 3.7 to present the performance of Algorithm 1 (v3).

88



Figure 3.7: Visual outcome of Algorithm 1 (v3) on four images with 80% lines missing

3.7 Conclusions

In this chapter, we have studied a class of convex-concave saddle-point problems (SP) involving

non-bilinear coupling function. We have developed two novel primal-dual algorithms to solve (SP)

and its primal-dual pair reformulation (P)-(D). Our algorithms have single-loop, where all the

parameters are updated with explicit formulas. The first algorithm, Algorithm 1, achieves both

ergodic and semi-ergodic optimalO
(

1
k

)
convergence rates on the duality gap, and can be boosted up

to min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
non-ergodic primal convergence rate. Under strong convexity of F , our

second algorithm, Algorithm 2, can be accelerated to have O
(

1
k2

)
and min

{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
convergence rates. To the best of our knowledge, these are the first algorithms that achieve such

fast rates for non-bilinear saddle-point problems.
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CHAPTER 4

CONCLUSIONS AND OUTLOOK

4.1 Conclusions

In this thesis, we have addressed two research questions brought up in Section 1.1:

1. To developing a preprocessing algorithm for SDPs (1.3);

2. To developing first-order primal-dual algorithms to solve the composite convex program (P),

or its saddle-point form (SP).

For the first research question, we proposed a facial reduction algorithm, Sieve-SDP, to prepro-

cess SDPs. It is extremely simple, works in machine precision, and does not rely on any optimization

solver. We have developed Sieve-SDP as a software package in MATLAB, and thus it is ready to use

and to be integrated into solvers that can be called from MATLAB. Finally, we present extensive

computational results on general SDPs to show it competitiveness compared to existing methods.

To answer the second research question, we developed two novel primal-dual algorithms. They

have mild assumptions, low per-iteration complexity, and all the parameters are updated with

explicit formulas. The first algorithm achieves both ergodic and semi-ergodic optimal O
(

1
k

)
con-

vergence rates on the duality gap, and can be boosted up to min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
non-ergodic

primal convergence rate. Under strong convexity, our second algorithm can be accelerated to have

O
(

1
k2

)
and min

{
O
(

1
k2

)
, o
(

1
k2
√

log k

)}
convergence rates. To the best of our knowledge, these are

the first algorithms that achieve such fast rates for non-bilinear saddle-point problems.

4.2 Outlook

We first address possible future works on Sieve-SDP. Since the first version of [153] was available

online, we have been reached out by researchers on questions arisen when they apply Sieve-SDP

software to preprocess SDPs in their research. Apparently, it is beneficial to maintain the software
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and upgrade it to cater non-standard datatypes. Furthermore, it is interesting to look into more

efficient and effective ways to recover dual solution, and whether there is a certificate when dual

solution recovery is impossible.

As for developing first-order primal-dual algorithms for the saddle-point problem

min
x

max
y

F (x) + 〈g(x), y〉 −H∗(y), (SP)

here are several directions worth exploring.

• Is it possible to generalize our algorithms and their convergence guarantees for problems with

the coupling term 〈g(x), y〉 in (SP) replaced by more general function Φ(x, y), which is convex

in x and concave in y?

• Currently, our semi-ergodic and non-ergodic convergence guarantees assume linearity or

boundedness of g. Is it possible to relax this boundedness condition?

• Our first algorithm enjoys min
{
O
(

1
k

)
, o
(

1
k
√

log k

)}
non-ergodic convergence rate. Is it pos-

sible to improve this rate to at least o
(

1
k

)
? Currently, the most related work has proved

o
(

1√
k

)
rate when g is linear [28–30].

• Stochastic or coordinate descent techniques can be very efficient when the problem size is

very large. Therefore, we believe that our algorithms’ performance can be further boosted

using such techniques.

• With restarting techniques, the empirical performance of our algorithms would be much bet-

ter. The theoretical guarantees could be derived by combining our theory with the techniques

in [125].
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APPENDIX A

SUPPLEMENTAL CONTENT FOR CHAPTER 2

A.1 Very Detailed Results

We now give very detailed computational results on problems from five datasets. We only give

results on problems that were reduced by at least one of the five preprocessors.

In all tables the first column gives the number of the SDP, the second gives the name, and the

third gives the names of the preprocessing methods.

The next two columns describe the size of the problem. The entry “f; l; s” describes the size of

the variables of the problem, where

• the number “f” is the number of free variables;

• the number “l” is the number of linear nonnegative variables;

• the number, or numbers “s” describes the size of the PSD variable blocks, possibly with

multiplicity.

For example, the tuple 3; 5; 6, 53 means that a problem has 3 free variables; 5 linear nonnegative

variables; and four PSD matrix variable blocks, which are of order 6, 5, 5, 5, respectively. The

number m is the number of constraints.

In the next three columns, we put information about the preprocessors. In the column “Red.”

we put 1 if a preprocessor reduced a problem, and 0 if it did not. In this column under Sieve-SDP,

we put the same entries, except if Sieve-SDP actually proved infeasibility, then we entered “infeas”

there. The number tprep is the time spent on preprocessing, and the number tconv is the time spent

on converting from MOSEK format to SeDuMi format and back (for the methods pd1, pd2, dd1,

dd2, as they preprocessing using SeDuMi format).

In the next four columns we show how MOSEK performed. In the column “Infeas” we have a 1

if MOSEK detected infeasibility, and 0 if it did not. The column “Obj (P, D)” shows the objective

values (primal and dual, respectively). The column DIMACS contains the greatest absolute value

of the DIMACS errors.

In the last column we show help codes, which show whether a preprocessor helped or hurt to
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solve an SDP. Although the help codes can be deduced from the previous columns, they still help

to quickly evaluate the preprocessors. A positive help code means that a preprocessor helped, and

a negative one means that it hurt. In detail, let us recall from Section 2.2 that DIMACSbefore

(DIMACSafter) is the greatest absolute value of the DIMACS error before (after) preprocessing.

Furthermore, we let objbefore (objafter) be the primal objective values before (after) preprocessing.

Given this notation, the help code is

• Code 1, if

– Sieve-SDP detects infeasibility, or

– MOSEK does not detect infeasibility before preprocessing, but does detect infeasibility

after preprocessing;

• Code −1, if MOSEK detects infeasibility before preprocessing, but does not detect infeasibility

after preprocessing;

• Code 2, if it is not ±1 and preprocessing improved the DIMACS error, i.e.,

DIMACSbefore > 10−6 and
DIMACSafter

DIMACSbefore
<

1

10
;

• Code −2, if it is not ±1 and preprocessing worsened the DIMACS error, i.e.,

DIMACSafter > 10−6 and
DIMACSafter

DIMACSbefore
> 10;

• Code 3, if preprocessing shifted the objective function, i.e., if help codes ±1 and −2 do not

apply, and

|objbefore − objafter|
1 + |objbefore|

> 10−6;

• Code “MM”, if a code ran out of memory or crashed.

A.1.1 Detailed results on the Permenter-Parrilo dataset

This dataset has 68 problems, 59 of which were reduced by at least one of the five preprocessing

methods. There is one problem where pd2 crashed.

93



Table A.1: Detailed results on PP dataset, part 1 of 5

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

1 CompactDim2R1

none 0; 3; 3 5 0 3.79e+06, 4.20e+06 2.22e+01 3.02
pd1 0; 3; 1 3 1 0.05 0.00 1 0.00e+00, 1.00e+00 7.07e-01 0.64 1
pd2 0; 3; 1 3 1 0.04 0.00 1 0.00e+00, 1.00e+00 7.07e-01 0.69 1
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP infeas 0.01 0.00 1

2 CompactDim2R2

none 0; 0; 6, 33 14 0 6.41e-10, 6.81e-10 7.07e-01 3.16
pd1 0; 0; 13 2 1 0.11 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.13 1
pd2 0; 0; 13 2 1 0.09 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.04 1
dd1 0 0.03 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.01 0.00 1

3 CompactDim2R3

none 0; 0; 10, 63 27 0 1.50e+00, 1.50e+00 1.15e-07 2.03
pd1 0; 0; 13 2 1 0.14 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.07 1
pd2 0; 0; 13 2 1 0.13 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.09 1
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP infeas 0.01 0.00 1

4 CompactDim2R4

none 0; 0; 15, 103 44 0 1.50e+00, 1.50e+00 1.13e-07 2.07
pd1 0; 0; 13 2 1 0.20 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.09 1
pd2 0; 0; 13 2 1 0.17 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.09 1
dd1 0 0.03 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.02 0.00 1

5 CompactDim2R5

none 0; 0; 21, 153 65 0 1.50e+00, 1.50e+00 1.83e-07 2.05
pd1 0; 0; 13 2 1 0.25 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.06 1
pd2 0; 0; 13 2 1 0.27 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.07 1
dd1 0 0.02 0.00
dd2 0 0.05 0.00
Sieve-SDP infeas 0.03 0.00 1

6 CompactDim2R6

none 0; 0; 28, 213 90 0 1.50e+00, 1.50e+00 2.70e-07 2.06
pd1 0; 0; 13 2 1 0.32 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.10 1
pd2 0; 0; 13 2 1 0.38 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.03 1
dd1 0 0.05 0.00
dd2 0 0.05 0.00
Sieve-SDP infeas 0.04 0.00 1

7 CompactDim2R7

none 0; 0; 36, 283 119 0 1.50e+00, 1.50e+00 3.66e-07 2.13
pd1 0; 0; 13 2 1 0.41 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.08 1
pd2 0; 0; 13 2 1 0.59 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.06 1
dd1 0 0.03 0.00
dd2 0 0.07 0.00
Sieve-SDP infeas 0.06 0.00 1

8 CompactDim2R8

none 0; 0; 45, 363 152 0 1.50e+00, 1.50e+00 5.61e-07 2.07
pd1 0; 0; 13 2 1 0.56 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.02 1
pd2 0; 0; 13 2 1 0.86 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.05 1
dd1 0 0.03 0.00
dd2 0 0.09 0.00
Sieve-SDP infeas 0.08 0.00 1

9 CompactDim2R9

none 0; 0; 55, 453 189 0 1.50e+00, 1.50e+00 6.27e-07 2.11
pd1 0; 0; 13 2 1 0.71 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.08 1
pd2 0; 0; 13 2 1 1.28 0.00 1 1.00e+00, 2.00e+00 7.07e-01 1.05 1
dd1 0 0.03 0.00
dd2 0 0.14 0.00
Sieve-SDP infeas 0.11 0.00 1

10 CompactDim2R10

none 0; 0; 66, 553 230 0 1.50e+00, 1.50e+00 5.17e-07 2.28
pd1 0; 0; 13 2 1 0.86 0.01 1 1.00e+00, 2.00e+00 7.07e-01 1.17 1
pd2 0; 0; 13 2 1 1.90 0.01 1 1.00e+00, 2.00e+00 7.07e-01 1.09 1
dd1 0 0.04 0.01
dd2 0 0.18 0.01
Sieve-SDP infeas 0.15 0.00 1

11 Example1

none 0; 0; 3 2 0 0.00e+00, 0.00e+00 0.00e+00 1.72
pd1 0; 0; 2 1 1 0.06 0.01 0 0.00e+00, 0.00e+00 0.00e+00 1.05
pd2 0; 0; 2 1 1 0.05 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.96
dd1 5; 0; 1 2 1 0.07 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.96
dd2 5; 0; 1 2 1 0.06 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.96
Sieve-SDP 0; 0; 2 1 1 0.03 0 0.00e+00, 0.00e+00 0.00e+00 1.63

12 Example2

none 0; 0; 3 2 0 3.33e-01, 3.33e-01 5.05e-02 1.73
pd1 0; 0; 2 1 1 0.05 0.01 0 1.00e+00, 1.00e+00 0.00e+00 0.94 2,3
pd2 0; 0; 2 1 1 0.05 0.00 0 1.00e+00, 1.00e+00 0.00e+00 0.97 2,3
dd1 3; 0; 2 2 1 0.05 0.00 0 4.73e-15, 1.82e-14 2.75e-14 1.01 2,3
dd2 3; 0; 2 2 1 0.02 0.00 0 4.73e-15, 1.82e-14 2.75e-14 1.01 2,3
Sieve-SDP 0; 0; 2 1 1 0.01 0 1.00e+00, 1.00e+00 0.00e+00 2.61 2,3

94



Table A.2: Detailed results on PP dataset, part 2 of 5

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

13 Example3

none 0; 0; 3 4 0 3.33e-01, 3.33e-01 6.90e-02 1.79
pd1 0; 0; 2 1 1 0.03 0.00 0 1.17e-07, 1.69e-07 5.14e-08 1.44 2,3
pd2 0; 0; 2 1 1 0.03 0.00 0 1.17e-07, 1.69e-07 5.14e-08 1.48 2,3
dd1 3; 0; 2 4 1 0.02 0.01 0 4.73e-15, 1.82e-14 2.75e-14 1.00 2,3
dd2 3; 0; 2 4 1 0.03 0.00 0 4.73e-15, 1.82e-14 2.75e-14 0.99 2,3
Sieve-SDP 0; 0; 2 1 1 0.01 0 1.17e-07, 1.69e-07 5.14e-08 1.59 2,3

14 Example4

none 0; 0; 3 3 1 0.00e+00, 3.74e-07 5.00e-01 1.43
pd1 0; 0; 1 1 1 0.03 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.64
pd2 0; 0; 1 1 1 0.03 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.63
dd1 5; 0; 1 3 1 0.03 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.96 -1
dd2 5; 0; 1 3 1 0.04 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.99 -1
Sieve-SDP infeas 0.00 0.00 1

15 Example6

none 0; 0; 8 8 0 1.00e+00, 1.00e+00 1.95e-08 0.66
pd1 0; 0; 5 4 1 0.04 0.00 0 1.00e+00, 1.00e+00 0.00e+00 0.99
pd2 0; 0; 5 4 1 0.04 0.00 0 1.00e+00, 1.00e+00 0.00e+00 0.98
dd1 26; 0; 4 8 1 0.02 0.00 0 1.00e+00, 1.00e+00 9.75e-09 1.02
dd2 26; 0; 4 8 1 0.02 0.00 0 1.00e+00, 1.00e+00 9.75e-09 1.19
Sieve-SDP 0; 0; 5 4 1 0.01 0 1.00e+00, 1.00e+00 0.00e+00 0.56

16 Example7

none 0; 0; 5 3 0 0.00e+00, 0.00e+00 0.00e+00 0.60
pd1 0; 0; 4 2 1 0.02 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.96
pd2 0; 0; 4 2 1 0.03 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.97
dd1 14; 0; 1 3 1 0.03 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.98
dd2 14; 0; 1 3 1 0.03 0.00 0 0.00e+00, 0.00e+00 0.00e+00 1.00
Sieve-SDP 0; 0; 4 2 1 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.54

17 Example9size20

none 0; 0; 20 20 1 0.00e+00, 3.39e-01 5.00e-01 2.58
pd1 0; 0; 1 1 1 0.06 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.63
pd2 0; 0; 1 1 1 0.04 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.62
dd1 209; 0; 1 20 1 0.19 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.95 -1
dd2 209; 0; 1 20 1 0.24 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.97 -1
Sieve-SDP infeas 0.00 0.00 1

18 Example9size100

none 0; 0; 100 100 1 0.00e+00, 3.43e-01 5.00e-01 0.83
pd1 0; 0; 1 1 1 0.04 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.64
pd2 0; 0; 1 1 1 0.19 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.63
dd1 5049; 0; 1 100 1 1.33 0.00 0 0.00e+00, 0.00e+00 0.00e+00 1.01 -1
dd2 5049; 0; 1 100 1 3.50 0.00 0 0.00e+00, 0.00e+00 0.00e+00 1.00 -1
Sieve-SDP infeas 0.00 0.00 1

19 RandGen6

none 0; 0; 320 140 0 3.95e-06, 3.24e-06 2.29e-05 24.07
pd1 0 3.64 1.00
pd2 0 16.39 1.00
dd1 0 0.75 1.00
dd2 19985; 0; 250 140 1 37.13 2.14 0 1.68e-07, 1.26e-11 8.00e-07 5.88 2,3
Sieve-SDP 0; 0; 120 70 1 2.10 0 3.73e-06, 3.04e-06 9.17e-06 2.32

20 RandGen7

none 0; 0; 40 27 0 9.42e-07, 4.22e-07 4.69e-06 0.67
pd1 0 0.03 0.01
pd2 0; 0; 28 14 1 0.10 0.02 0 9.85e-07, 4.53e-07 3.27e-06 1.04
dd1 0 0.02 0.01
dd2 649; 0; 18 27 1 0.11 0.01 0 2.65e-11, 4.69e-16 7.21e-11 1.08 2
Sieve-SDP 0; 0; 28 14 1 0.02 0 9.85e-07, 4.53e-07 3.27e-06 0.72

21 RandGen8

none 0; 0; 60 40 0 5.41e-09, 2.44e-09 9.31e-08 0.83
pd1 0 0.04 0.01
pd2 0 0.22 0.01
dd1 0 0.02 0.01
dd2 1269; 0; 33 40 1 0.33 0.02 0 2.15e-15, 2.78e-19 6.90e-14 1.05
Sieve-SDP 0; 0; 30 20 1 0.03 0 1.52e-09, 6.33e-10 9.04e-09 0.69

22 copos 1

none 0; 0; 35 210 0 0.00e+00, 1.11e-08 4.40e-07 0.66
pd1 0 0.02 0.00
pd2 0; 0; 25 160 1 0.06 0.02 0 0.00e+00, -3.86e-10 2.12e-08 1.01
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0 0.02

23 copos 2

none 0; 0; 120 1716 0 0.00e+00, 5.76e-11 1.69e-08 1.83
pd1 0 0.03 0.00
pd2 0; 0; 96 1524 1 0.57 0.11 0 0.00e+00, -2.31e-13 6.38e-11 1.72
dd1 0 0.02 0.00
dd2 0 0.13 0.00
Sieve-SDP 0 0.09

24 copos 3

none 0; 0; 286 8008 0 0.00e+00, -4.93e-10 1.59e-07 44.68
pd1 0 0.10 0.01
pd2 0; 0; 242 7524 1 37.41 0.57 0 0.00e+00, -4.51e-11 1.26e-08 30.28
dd1 0 0.06 0.01
dd2 0 0.85 0.01
Sieve-SDP 0 0.46
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25 copos 4

none 0; 0; 560 27132 0 0.00e+00, -9.00e-11 7.21e-08 1526.50
pd1 0 0.46 0.06
pd2 0; 0; 490 26152 1 26.16 1.98 0 0.00e+00, -1.70e-10 6.56e-08 1139.18
dd1 0 0.36 0.06
dd2 0 5.09 0.06
Sieve-SDP 0 1.80

26 cprank 1

none 9; 0; 19, 10, 9 46 0 -3.00e+00, -3.00e+00 3.50e-08 1.32
pd1 0 0.08 0.00
pd2 0 0.03 0.00
dd1 30; 0; 17, 8, 9 46 1 0.07 0.01 0 -3.00e+00, -3.00e+00 4.62e-08 1.16
dd2 30; 0; 17, 8, 9 46 1 0.06 0.01 0 -3.00e+00, -3.00e+00 3.88e-08 1.17
Sieve-SDP 0 0.01

27 cprank 2

none 1296; 0; 181, 82, 81 3322 0 -9.00e+00, -9.00e+00 6.62e-08 15.40
pd1 0 0.08 0.00
pd2 0 0.18 0.00
dd1 3456; 0; 149, 50, 81 3322 1 0.14 0.31 0 -9.00e+00, -9.00e+00 6.64e-09 10.50
dd2 3456; 0; 149, 50, 81 3322 1 0.50 0.32 0 -9.00e+00, -9.00e+00 1.51e-09 9.75
Sieve-SDP 0 0.06

28 hinf12

none 0; 0; 62, 12 43 0 -1.45e-13, -1.17e-13 1.80e+00 1.38
pd1 0 0.03 0.00
pd2 0; 0; 6, 2, 6 22 1 0.04 0.00 0 -2.64e-15, -1.77e-15 1.79e+00 1.69
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0 0.01

29 horn2

none 0; 0; 4 7 0 0.00e+00, 6.69e-13 9.06e-13 2.03
pd1 0 0.02 0.00
pd2 0; 0; 2 3 1 0.06 0.00 0 0.00e+00, 0.00e+00 1.57e-16 0.99
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0 0.01

30 horn3

none 0; 0; 10 28 0 0.00e+00, 1.46e-07 8.62e-07 2.00
pd1 0 0.02 0.00
pd2 0; 0; 6 16 1 0.05 0.00 0 0.00e+00, 3.53e-09 2.65e-08 0.99
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0 0.00

31 horn4

none 0; 0; 20 84 0 0.00e+00, 1.13e-07 1.90e-06 2.14
pd1 0 0.02 0.00
pd2 0; 0; 14 60 1 0.07 0.01 0 0.00e+00, 7.11e-09 7.44e-08 1.07 2
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 0 0.01

32 horn5

none 0; 0; 35 210 0 0.00e+00, 1.07e-08 2.69e-07 2.05
pd1 0 0.02 0.00
pd2 0; 0; 25 160 1 0.08 0.01 0 0.00e+00, -2.28e-09 2.35e-07 0.99
dd1 0 0.03 0.00
dd2 0 0.04 0.00
Sieve-SDP 0 0.03

33 hornD2

none 0; 0; 4 3 0 -5.25e-08, 0.00e+00 5.25e-08 2.04
pd1 0 0.02 0.00
pd2 0 0.03 0.00
dd1 0 0.03 0.00
dd2 7; 0; 2 3 1 0.05 0.00 0 -1.88e-16, 0.00e+00 1.78e-15 1.00
Sieve-SDP 0 0.00

34 hornD3

none 0; 0; 10 27 0 -5.58e-08, 0.00e+00 8.62e-07 2.01
pd1 0 0.03 0.00
pd2 0 0.02 0.00
dd1 0 0.03 0.00
dd2 34; 0; 6 27 1 0.05 0.00 0 -8.68e-10, 0.00e+00 1.88e-08 1.13
Sieve-SDP 0 0.01

35 hornD4

none 0; 0; 20 126 0 1.77e-07, 0.00e+00 1.02e-06 2.04
pd1 0 0.02 0.00
pd2 0 0.04 0.00
dd1 0 0.02 0.00
dd2 105; 0; 14 126 1 0.06 0.01 0 7.49e-08, 0.00e+00 2.38e-07 1.12
Sieve-SDP 0 0.02

36 hornD5

none 0; 0; 35 420 0 2.32e-08, 0.00e+00 1.83e-07 2.06
pd1 0 0.03 0.00
pd2 0 0.04 0.00
dd1 0 0.03 0.00
dd2 305; 0; 25 420 1 0.09 0.03 0 5.58e-10, 0.00e+00 2.00e-09 1.26
Sieve-SDP 0 0.04
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37 hybridLyap

none 860; 0; 6, 108, 1110 3093 0 0.00e+00, 7.29e-07 2.11e-04 7.85
pd1 860; 0; 6, 56, 11, 12, 11, 12, 112 1607 1 0.16 0.09 0 0.00e+00, 3.48e-07 6.61e-05 1.49
pd2 860; 0; 6, 34, 8, 12, 8, 12, 9, 7 1173 1 1.02 0.05 0 0.00e+00, 4.24e-09 4.86e-07 1.23 2
dd1 0 0.05 0.00
dd2 0 0.14 0.00
Sieve-SDP 0 0.05

38 leverage limit

none 0; 18100; 151100, 30100 68195 0 -8.75e+01, -8.75e+01 1.53e-05 278.60
pd1 0 2.10 0.17
pd2 0; 18100; 15199, 121, 30100 67700 1 120.98 7.87 0 -8.75e+01, -8.75e+01 5.63e-06 150.78 3
dd1 958500; 18100; 61100, 30100 68195 1 3.87 7.20 0 -8.75e+01, -8.75e+01 2.45e-05 250.27
dd2 1193505; 18100; 199, 31 68195 1 291.58 1.39 -1 -3.35e+00, 0.00e+00 1.03e+01 1.97 -2
Sieve-SDP 0; 18100; 14397, 1413, 2698, 252 56196 1 253.43 0 -8.74e+01, -8.74e+01 1.73e-05 179.26 3

39 long only

none 0; 9000; 91100, 30100 59095 0 -4.13e+01, -4.13e+01 5.23e-06 373.38
pd1 0 1.18 0.17
pd2 0; 9000; 9199, 61, 30100 58600 1 24.33 6.91 0 -4.13e+01, -4.13e+01 4.64e-07 205.50 2,3
dd1 229500; 9000; 61100, 30100 59095 1 1.77 6.96 0 -4.13e+01, -4.13e+01 6.47e-06 246.03 3
dd2 229500; 9000; 61100, 30100 59095 1 531.60 6.94 0 -4.13e+01, -4.13e+01 2.80e-06 315.18 3
Sieve-SDP 0; 8573; 8397, 813, 2698, 252 46670 1 190.92 0 -4.13e+01, -4.13e+01 1.64e-06 94.12 3

40 sector neutral

none 0; 12000; 121100, 30100 62392 0 -1.21e+02, -1.21e+02 8.35e-05 152.27
pd1 0 1.84 0.26
pd2 0; 12000; 12199, 91, 30100 61897 1 183.96 7.17 0 -1.21e+02, -1.21e+02 2.79e-04 150.19 3
dd1 549000; 12000; 61100, 30100 62392 1 2.79 7.05 0 -1.21e+02, -1.21e+02 8.23e-05 154.78 3
dd2 549000; 12000; 61100, 30100 62392 1 217.62 7.13 0 -1.21e+02, -1.21e+02 1.24e-04 140.83 3
Sieve-SDP 0; 12000; 12199, 111, 30100 62247 1 52.25 0 -1.21e+02, -1.21e+02 1.76e-04 151.52 3

41 unconstrained

none 0; 12000; 121100, 30100 62095 0 -1.33e+02, -1.33e+02 7.89e-05 279.82
pd1 0 1.52 0.15
pd2 0; 12000; 12199, 91, 30100 61600 1 38.70 6.95 0 -1.33e+02, -1.33e+02 1.42e-05 282.87 3
dd1 549000; 12000; 61100, 30100 62095 1 2.63 6.74 0 -1.33e+02, -1.33e+02 3.34e-05 258.89 3
dd2 549000; 12000; 61100, 30100 62095 1 505.61 6.70 0 -1.33e+02, -1.33e+02 3.64e-05 260.11 3
Sieve-SDP 0; 12000; 11397, 1113, 2698, 252 50097 1 213.04 0 -1.28e+02, -1.28e+02 1.64e-05 185.98 3

42 unboundDim1R1

none 0; 2; 2 2 0 1.33e-09, -7.05e-10 4.38e-09 2.89
pd1 0 0.05 0.01
pd2 0 0.03 0.01
dd1 0 0.03 0.01
dd2 0 0.02 0.01
Sieve-SDP 0; 1; 1 1 1 0.01 0 0.00e+00, 0.00e+00 0.00e+00 2.25

43 unboundDim1R2

none 0; 0; 3, 22 4 0 -8.91e-15, -8.01e-15 7.07e-01 4.52
pd1 0; 0; 12 1 1 0.11 0.01 0 0.00e+00, 0.00e+00 0.00e+00 0.43 2
pd2 0; 0; 12 1 1 0.10 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.47 2
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.00 0 0.00e+00, 0.00e+00 0.00e+00 2.39 2

44 unboundDim1R3

none 0; 0; 4, 32 6 0 -2.04e-11, -2.02e-11 7.07e-01 4.17
pd1 0; 0; 12 1 1 0.12 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.50 2
pd2 0; 0; 12 1 1 0.11 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.47 2
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.01 0 0.00e+00, 0.00e+00 0.00e+00 2.31 2

45 unboundDim1R4

none 0; 0; 5, 42 8 0 -2.34e-10, -2.32e-10 7.07e-01 3.79
pd1 0; 0; 12 1 1 0.14 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.43 2
pd2 0; 0; 12 1 1 0.14 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.43 2
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.01 0 0.00e+00, 0.00e+00 0.00e+00 2.41 2

46 unboundDim1R5

none 0; 0; 6, 52 10 0 -1.00e+00, -1.00e+00 9.88e-08 2.74
pd1 0; 0; 12 1 1 0.16 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.43 3
pd2 0; 0; 12 1 1 0.20 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.42 3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.01 0 0.00e+00, 0.00e+00 0.00e+00 2.32 3

47 unboundDim1R6

none 0; 0; 7, 62 12 0 -1.00e+00, -1.00e+00 2.15e-07 2.78
pd1 0; 0; 12 1 1 0.20 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.50 3
pd2 0; 0; 12 1 1 0.22 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.49 3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.01 0 0.00e+00, 0.00e+00 0.00e+00 2.24 3

48 unboundDim1R7

none 0; 0; 8, 72 14 0 -1.00e+00, -1.00e+00 5.11e-08 2.82
pd1 0; 0; 12 1 1 0.21 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.45 3
pd2 0; 0; 12 1 1 0.23 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.44 3
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.02 0 0.00e+00, 0.00e+00 0.00e+00 2.32 3
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Table A.5: Detailed results on PP dataset, part 5 of 5

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

49 unboundDim1R8

none 0; 0; 9, 82 16 0 -1.00e+00, -1.00e+00 5.43e-08 2.29
pd1 0; 0; 12 1 1 0.52 0.02 0 0.00e+00, 0.00e+00 0.00e+00 0.44 3
pd2 0; 0; 12 1 1 0.53 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.45 3
dd1 0 0.07 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 12 1 1 0.13 0 0.00e+00, 0.00e+00 0.00e+00 1.74 3

50 unboundDim1R9

none 0; 0; 10, 92 18 0 -1.00e+00, -1.00e+00 6.50e-08 2.09
pd1 0; 0; 12 1 1 0.31 0.01 0 0.00e+00, 0.00e+00 0.00e+00 0.43 3
pd2 0; 0; 12 1 1 0.30 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.64 3
dd1 0 0.04 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.05 0 0.00e+00, 0.00e+00 0.00e+00 1.60 3

51 unboundDim1R10

none 0; 0; 11, 102 20 0 -1.00e+00, -1.00e+00 1.41e-07 2.76
pd1 0; 0; 12 1 1 0.28 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.44 3
pd2 0; 0; 12 1 1 0.32 0.00 0 0.00e+00, 0.00e+00 0.00e+00 0.45 3
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 12 1 1 0.04 0 0.00e+00, 0.00e+00 0.00e+00 2.33 3

52 vamos 5 34

none 0; 0; 52 721 0 0.00e+00, -4.18e-09 5.21e-08 2.10
pd1 0 0.07 0.00
pd2 MM MM
dd1 0 0.05 0.00
dd2 0 0.07 0.00
Sieve-SDP 0 0.06

53 wei wagner F7 minus 4

none 0; 0; 8 31 0 0.00e+00, -9.60e-13 1.11e-11 1.87
pd1 0 0.02 0.00
pd2 0; 0; 5 14 1 0.08 0.01 0 0.00e+00, -5.80e-11 2.12e-10 0.99
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0 0.01

54 wei wagner P7

none 0; 0; 8 32 0 0.00e+00, -1.46e-08 9.09e-08 1.99
pd1 0 0.02 0.00
pd2 0; 0; 4 10 1 0.05 0.00 0 0.00e+00, -3.02e-10 1.31e-09 1.04
dd1 0 0.03 0.00
dd2 0 0.04 0.00
Sieve-SDP 0 0.01

55 wei wagner W3Plus

none 0; 0; 8 31 0 0.00e+00, -6.06e-09 5.47e-08 1.95
pd1 0 0.02 0.00
pd2 0; 0; 3 6 1 0.05 0.00 0 0.00e+00, -4.77e-09 1.11e-08 1.01
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0 0.00

56 wei wagner W3 PlusE

none 0; 0; 9 38 0 0.00e+00, -9.18e-09 5.53e-08 1.98
pd1 0 0.02 0.00
pd2 0; 0; 5 15 1 0.06 0.00 0 0.00e+00, -7.21e-09 3.21e-08 1.02
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0 0.00

57 wei wagner nP minus 1 24

none 0; 0; 12 64 0 0.00e+00, -5.50e-09 8.80e-08 2.03
pd1 0 0.02 0.00
pd2 0; 0; 6 21 1 0.07 0.00 0 0.00e+00, -1.08e-11 5.60e-11 1.02
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0 0.01

58 wei wagner nP minus 9 12

none 0; 0; 12 64 0 0.00e+00, -3.92e-09 4.87e-08 1.98
pd1 0 0.02 0.00
pd2 0; 0; 5 15 1 0.05 0.00 0 0.00e+00, -4.11e-15 2.34e-14 1.02
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0 0.01

59 wei wagner vamos 12

none 0; 0; 16 103 0 0.00e+00, -1.59e-08 1.38e-07 2.10
pd1 0 0.02 0.00
pd2 0; 0; 13 74 1 0.06 0.01 0 0.00e+00, -2.54e-10 1.62e-09 1.03
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0 0.01
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A.1.2 Detailed results on the Mittelmann dataset

This dataset has 31 problems, 8 of which were reduced by at least one of the five preprocessing

methods. There were 5 problems where pd2 or dd2 ran out of memory/crashed.

Table A.6: Detailed results on Mittelmann dataset, part 1 of 2

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

1 diamond patch

none 0; 0; 5477 5478 0 1.63e+01, 1.63e+01 3.56e-04 10854.97
pd1 0 31.05 0.06
pd2 MM MM
dd1 0 27.94 0.06
dd2 0 3008.86 0.06
Sieve-SDP 0 1.12

2 e moment stable 17 0.5 2 2

none 0; 342; 171, 1817 5984 0 -1.98e-01, -1.98e-01 1.14e-05 38.53
pd1 0; 342; 1818 1139 1 0.71 0.16 0 -1.98e-01, -1.98e-01 8.44e-06 1.64
pd2 0; 342; 1818 1139 1 0.86 0.13 0 -1.98e-01, -1.98e-01 8.44e-06 1.66
dd1 0 0.08 0.01
dd2 0 0.34 0.01
Sieve-SDP 0; 342; 1818 1139 1 0.52 0 -1.98e-01, -1.98e-01 8.44e-06 1.63

3 ice 2.0

none 0; 0; 8113 8113 0 6.81e+03, 6.81e+03 4.58e-07 17680.82
pd1 0 65.58 0.01
pd2 MM MM
dd1 0 64.03 0.01
dd2 MM MM
Sieve-SDP 0 0.80

4 G60 mb

none 0; 0; 7000 7001 0 1.93e+03, 1.93e+03 6.64e-05 29138.79
pd1 0 107.66 10.87
pd2 MM MM
dd1 0 72.76 10.87
dd2 MM MM
Sieve-SDP 0 22.42

5 maxG60

none 0; 0; 7000 7000 0 -1.52e+04, -1.52e+04 6.73e-07 5217.88
pd1 0 47.47 0.01
pd2 MM MM
dd1 0 45.65 0.01
dd2 MM MM
Sieve-SDP 0 0.47

6 neu3

none 0; 2; 418 7364 0 7.10e-08, 1.12e-08 2.01e-06 153.03
pd1 0; 2; 87 1152 1 0.94 0.11 0 4.69e-08, 3.50e-08 1.94e-07 3.01 2
pd2 0; 2; 87 1152 1 5.41 0.10 0 4.69e-08, 3.50e-08 1.94e-07 2.97 2
dd1 0 0.16 0.02
dd2 0 2.29 0.02
Sieve-SDP 0; 2; 87 1152 1 2.34 0 4.69e-08, 3.50e-08 1.94e-07 2.99 2

7 neu3g

none 0; 0; 462 8007 0 4.58e-08, -2.89e-09 8.67e-07 151.22
pd1 0; 0; 87 1151 1 1.32 0.11 0 8.91e-08, 5.65e-08 2.91e-07 3.00
pd2 0; 0; 87 1151 1 10.68 0.11 0 8.91e-08, 5.65e-08 2.91e-07 3.09
dd1 0 0.19 0.03
dd2 0 2.66 0.03
Sieve-SDP 0; 0; 87 1151 1 2.26 0 8.91e-08, 5.65e-08 2.91e-07 3.03

8 p auss2 3.0

none 0; 0; 9115 9115 0 8.62e+03, 8.62e+03 2.36e-07 25651.19
pd1 0 93.91 0.02
pd2 MM MM
dd1 0 97.11 0.02
dd2 MM MM
Sieve-SDP 0 0.76

9 rose13

none 0; 0; 105 2379 0 1.20e+01, 1.20e+01 1.65e-06 7.63
pd1 0; 0; 92 1911 1 0.11 0.14 0 1.20e+01, 1.20e+01 4.86e-07 5.26
pd2 0; 0; 80 1523 1 0.51 0.11 0 1.20e+01, 1.20e+01 1.98e-07 2.94
dd1 0 0.05 0.01
dd2 0 0.12 0.01
Sieve-SDP 0; 0; 92 1911 1 0.39 0 1.20e+01, 1.20e+01 4.86e-07 5.28

10 rose15

none 0; 2; 135 3860 0 -3.11e-06, -2.94e-06 1.83e-05 19.47
pd1 0; 2; 121 3181 1 0.08 0.24 0 -3.52e-07, -1.52e-07 5.07e-05 11.73 3
pd2 0; 2; 107 2593 1 0.66 0.19 0 -1.59e-09, -1.57e-09 1.10e-08 5.74 2,3
dd1 0 0.07 0.00
dd2 0 0.18 0.00
Sieve-SDP 0; 2; 121 3181 1 0.52 0 -3.52e-07, -1.52e-07 5.07e-05 11.71 3

11 taha1a

none 0; 0; 252, 563, 12610 3002 0 -1.00e+00, -1.00e+00 9.39e-07 37.54
pd1 0; 0; 126, 563, 12610 2001 1 10.57 0.72 0 -1.00e+00, -1.00e+00 1.20e-07 21.55
pd2 0; 0; 126, 563, 12610 2001 1 18.98 0.75 0 -1.00e+00, -1.00e+00 1.20e-07 21.50
dd1 0 0.21 0.06
dd2 0 21.47 0.06
Sieve-SDP 0; 0; 126, 563, 12610 2001 1 1.75 0 -1.00e+00, -1.00e+00 1.20e-07 21.70
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Table A.7: Detailed results on Mittelmann dataset, part 2 of 2

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

12 taha1b

none 0; 3; 286, 6620 8007 0 -7.73e-01, -7.73e-01 1.59e-07 148.99
pd1 0; 3; 6621 3002 1 13.97 0.87 0 -7.73e-01, -7.73e-01 1.32e-07 34.29
pd2 0; 3; 6621 3002 1 18.37 0.85 0 -7.73e-01, -7.73e-01 1.32e-07 33.03
dd1 0 0.16 0.04
dd2 0 1.82 0.04
Sieve-SDP 0; 3; 6621 3002 1 1.97 0 -7.73e-01, -7.73e-01 1.32e-07 32.97

13 taha1c

none 0; 0; 462, 1263, 25210 6187 0 -1.00e+00, -1.00e+00 3.12e-07 314.61
pd1 0; 0; 252, 1263, 25210 4367 1 148.36 2.11 0 -1.00e+00, -1.00e+00 4.37e-07 178.22
pd2 0; 0; 252, 1263, 25210 4367 1 187.99 2.01 0 -1.00e+00, -1.00e+00 4.37e-07 177.80
dd1 0 0.75 0.25
dd2 0 156.72 0.25
Sieve-SDP 0; 0; 252, 1263, 25210 4367 1 10.85 0 -1.00e+00, -1.00e+00 4.37e-07 182.86

A.1.3 Detailed results on the Dressler-Illiman-de Wolff dataset

This is a collection of 155 SDP relaxations from polynomial optimization generated by Glop-

tiPoly 3 [62] based on paper [33].

Table A.8: Detailed results on DIW dataset, part 1 of 14

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

1 ex3.3 order4

none 0; 1; 15 44 0 3.54e-10, 3.56e-10 6.87e-01 1.69
pd1 0; 1; 2 3 1 0.10 0.00 1 0.00e+00, 5.00e-01 5.27e-01 0.63 1
pd2 0; 1; 2 3 1 0.35 0.00 1 0.00e+00, 5.00e-01 5.27e-01 0.73 1
dd1 0 0.04 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.03 0.00 1

2 ex3.3 order5

none 0; 0; 21, 3 65 0 6.16e-02, 6.16e-02 1.18e-06 1.25
pd1 0; 0; 2, 1 3 1 0.15 0.00 1 0.00e+00, 5.00e-01 5.27e-01 0.64 1
pd2 0; 0; 2, 1 3 1 0.15 0.00 1 0.00e+00, 5.00e-01 5.27e-01 0.75 1
dd1 0 0.04 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.03 0.00 1

3 ex3.3 order6

none 0; 0; 28, 6 90 0 6.16e-02, 6.16e-02 1.60e-06 1.00
pd1 0; 0; 8, 2 22 1 0.10 0.00 0 6.16e-02, 6.16e-02 4.23e-08 1.08 2
pd2 0; 0; 8, 2 22 1 0.16 0.00 0 6.16e-02, 6.16e-02 4.23e-08 0.69 2
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 8, 2 22 1 0.03 0 6.16e-02, 6.16e-02 4.23e-08 0.69 2

4 ex3.3 order7

none 0; 0; 36, 10 119 0 6.16e-02, 6.16e-02 3.07e-06 0.65
pd1 0; 0; 10, 4 31 1 0.13 0.00 0 6.16e-02, 6.16e-02 6.03e-08 0.59 2,3
pd2 0; 0; 10, 4 31 1 0.24 0.00 0 6.16e-02, 6.16e-02 6.03e-08 0.65 2,3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 10, 4 31 1 0.05 0 6.16e-02, 6.16e-02 6.03e-08 0.59 2,3

5 ex3.3 order8

none 0; 0; 45, 15 152 0 6.16e-02, 6.16e-02 2.45e-06 1.46
pd1 0; 0; 12, 6 38 1 0.25 0.01 0 6.16e-02, 6.16e-02 5.23e-08 0.65 2,3
pd2 0; 0; 12, 6 38 1 0.37 0.01 0 6.16e-02, 6.16e-02 5.23e-08 0.67 2,3
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 12, 6 38 1 0.07 0 6.16e-02, 6.16e-02 5.23e-08 0.58 2,3

6 ex3.3 order9

none 0; 0; 55, 21 189 0 6.16e-02, 6.16e-02 4.63e-06 0.94
pd1 0; 0; 13, 7 41 1 0.18 0.01 0 6.16e-02, 6.16e-02 5.54e-08 0.60 2,3
pd2 0; 0; 13, 7 41 1 0.36 0.01 0 6.16e-02, 6.16e-02 5.54e-08 0.61 2,3
dd1 0 0.02 0.00
dd2 0 0.05 0.00
Sieve-SDP 0; 0; 13, 7 41 1 0.09 0 6.16e-02, 6.16e-02 5.54e-08 0.69 2,3

7 ex3.3 order10

none 0; 0; 66, 28 230 0 6.16e-02, 6.16e-02 4.33e-06 1.29
pd1 0; 0; 14, 8 44 1 0.33 0.03 0 6.16e-02, 6.16e-02 6.73e-08 1.06 2,3
pd2 0; 0; 14, 8 44 1 0.56 0.01 0 6.16e-02, 6.16e-02 6.73e-08 1.00 2,3
dd1 0 0.06 0.00
dd2 0 0.08 0.00
Sieve-SDP 0; 0; 14, 8 44 1 0.15 0 6.16e-02, 6.16e-02 6.73e-08 1.24 2,3
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Table A.9: Detailed results on DIW dataset, part 2 of 14

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

8 ex3.3 order11

none 0; 0; 78, 36 275 0 6.16e-02, 6.16e-02 1.12e-05 1.38
pd1 0; 0; 16, 10 53 1 0.31 0.01 0 6.16e-02, 6.16e-02 9.05e-08 1.06 2,3
pd2 0; 0; 16, 10 53 1 0.70 0.01 0 6.16e-02, 6.16e-02 9.05e-08 1.06 2,3
dd1 0 0.04 0.00
dd2 0 0.10 0.00
Sieve-SDP 0; 0; 16, 10 53 1 0.18 0 6.16e-02, 6.16e-02 9.05e-08 1.22 2,3

9 ex3.3 order12

none 0; 0; 91, 45 324 0 6.16e-02, 6.16e-02 2.34e-05 1.50
pd1 0; 0; 18, 12 60 1 0.38 0.01 0 6.16e-02, 6.16e-02 1.12e-07 1.38 2,3
pd2 0; 0; 18, 12 60 1 1.17 0.01 0 6.16e-02, 6.16e-02 1.12e-07 0.63 2,3
dd1 0 0.04 0.00
dd2 0 0.11 0.00
Sieve-SDP 0; 0; 18, 12 60 1 0.22 0 6.16e-02, 6.16e-02 1.12e-07 0.68 2,3

10 ex3.3 order13

none 0; 0; 105, 55 377 0 6.15e-02, 6.15e-02 3.47e-05 1.38
pd1 0; 0; 19, 13 63 1 0.45 0.01 0 6.16e-02, 6.16e-02 1.21e-07 0.61 2,3
pd2 0; 0; 19, 13 63 1 1.50 0.01 0 6.16e-02, 6.16e-02 1.21e-07 0.59 2,3
dd1 0 0.03 0.01
dd2 0 0.15 0.01
Sieve-SDP 0; 0; 19, 13 63 1 0.28 0 6.16e-02, 6.16e-02 1.21e-07 0.57 2,3

11 ex3.3 order14

none 0; 0; 120, 66 434 0 6.16e-02, 6.16e-02 1.41e-05 1.50
pd1 0; 0; 20, 14 66 1 0.58 0.01 0 6.16e-02, 6.16e-02 1.31e-07 0.57 2,3
pd2 0; 0; 20, 14 66 1 2.07 0.01 0 6.16e-02, 6.16e-02 1.31e-07 1.39 2,3
dd1 0 0.05 0.00
dd2 0 0.22 0.00
Sieve-SDP 0; 0; 20, 14 66 1 0.38 0 6.16e-02, 6.16e-02 1.31e-07 1.27 2,3

12 ex3.3 order15

none 0; 0; 136, 78 495 0 6.16e-02, 6.16e-02 1.06e-05 2.72
pd1 0; 0; 22, 16 75 1 0.73 0.01 0 6.16e-02, 6.16e-02 1.47e-07 1.06 2,3
pd2 0; 0; 22, 16 75 1 2.89 0.02 0 6.16e-02, 6.16e-02 1.47e-07 1.06 2,3
dd1 0 0.05 0.00
dd2 0 0.24 0.00
Sieve-SDP 0; 0; 22, 16 75 1 0.47 0 6.16e-02, 6.16e-02 1.47e-07 1.10 2,3

13 ex3.3 order16

none 0; 0; 153, 91 560 0 6.16e-02, 6.16e-02 1.18e-05 3.64
pd1 0; 0; 24, 18 82 1 0.92 0.01 0 6.16e-02, 6.16e-02 1.79e-07 0.95 2,3
pd2 0; 0; 24, 18 82 1 3.88 0.01 0 6.16e-02, 6.16e-02 1.79e-07 0.92 2,3
dd1 0 0.05 0.00
dd2 0 0.29 0.00
Sieve-SDP 0; 0; 24, 18 82 1 0.58 0 6.16e-02, 6.16e-02 1.79e-07 0.93 2,3

14 ex3.3 order17

none 0; 0; 171, 105 629 0 6.15e-02, 6.15e-02 2.84e-05 4.62
pd1 0; 0; 25, 19 85 1 1.16 0.02 0 6.16e-02, 6.16e-02 1.89e-07 0.94 2,3
pd2 0; 0; 25, 19 85 1 5.37 0.02 0 6.16e-02, 6.16e-02 1.89e-07 0.94 2,3
dd1 0 0.06 0.01
dd2 0 0.41 0.01
Sieve-SDP 0; 0; 25, 19 85 1 0.73 0 6.16e-02, 6.16e-02 1.89e-07 0.92 2,3

15 ex3.3 order18

none 0; 0; 190, 120 702 0 6.15e-02, 6.15e-02 6.51e-05 6.29
pd1 0; 0; 26, 20 88 1 1.55 0.02 0 6.16e-02, 6.16e-02 1.98e-07 0.93 2,3
pd2 0; 0; 26, 20 88 1 7.78 0.02 0 6.16e-02, 6.16e-02 1.98e-07 0.58 2,3
dd1 0 0.05 0.01
dd2 0 0.50 0.01
Sieve-SDP 0; 0; 26, 20 88 1 0.94 0 6.16e-02, 6.16e-02 1.98e-07 0.61 2,3

16 ex3.3 order19

none 0; 0; 210, 136 779 0 6.15e-02, 6.15e-02 2.92e-04 10.01
pd1 0; 0; 28, 22 97 1 2.18 0.02 0 6.16e-02, 6.16e-02 2.10e-07 1.22 2,3
pd2 0; 0; 28, 22 97 1 10.34 0.03 0 6.16e-02, 6.16e-02 2.10e-07 0.69 2,3
dd1 0 0.06 0.01
dd2 0 0.60 0.01
Sieve-SDP 0; 0; 28, 22 97 1 1.31 0 6.16e-02, 6.16e-02 2.10e-07 0.67 2,3

17 ex3.3 order20

none 0; 0; 231, 153 860 0 6.15e-02, 6.15e-02 2.95e-04 21.36
pd1 0; 0; 30, 24 104 1 2.68 0.03 0 6.16e-02, 6.16e-02 2.16e-07 1.10 2,3
pd2 0; 0; 30, 24 104 1 13.41 0.03 0 6.16e-02, 6.16e-02 2.16e-07 1.09 2,3
dd1 0 0.09 0.02
dd2 0 0.86 0.02
Sieve-SDP 0; 0; 30, 24 104 1 1.35 0 6.16e-02, 6.16e-02 2.16e-07 1.31 2,3

18 ex4.1 order3

none 0; 1; 10 27 0 1.24e-09, 1.30e-09 8.29e-01 1.20
pd1 0; 1; 1 2 1 0.07 0.00 1 1.18e-12, 4.80e+00 8.28e-01 0.79 1
pd2 0; 1; 1 2 1 0.06 0.00 1 1.18e-12, 4.80e+00 8.28e-01 0.62 1
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP infeas 0.01 0.00 1

19 ex4.1 order4

none 0; 0; 15, 3 44 0 2.55e-09, 2.60e-09 8.29e-01 0.84
pd1 0; 0; 1 1 1 0.10 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.35 1
pd2 0; 0; 1 1 1 0.08 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.66 1
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP infeas 0.02 0.00 1
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Table A.10: Detailed results on DIW dataset, part 3 of 14

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

20 ex4.1 order5

none 0; 0; 21, 6 65 0 3.08e-09, 3.12e-09 8.29e-01 0.94
pd1 0; 0; 1 1 1 0.10 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.39 1
pd2 0; 0; 1 1 1 0.11 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.34 1
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP infeas 0.02 0.00 1

21 ex4.1 order6

none 0; 0; 28, 10 90 0 1.00e+00, 1.00e+00 6.31e-07 0.85
pd1 0; 0; 1 1 1 0.14 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.39 1
pd2 0; 0; 1 1 1 0.15 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.36 1
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP infeas 0.02 0.00 1

22 ex4.1 order7

none 0; 0; 36, 15 119 0 1.00e+00, 1.00e+00 1.00e-06 0.61
pd1 0; 0; 1 1 1 0.17 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.34 1
pd2 0; 0; 1 1 1 0.21 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.61 1
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP infeas 0.04 0.00 1

23 ex4.1 order8

none 0; 0; 45, 21 152 0 1.00e+00, 1.00e+00 1.42e-06 0.68
pd1 0; 0; 1 1 1 0.19 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.39 1
pd2 0; 0; 1 1 1 0.27 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.35 1
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.05 0.00 1

24 ex4.1 order9

none 0; 0; 55, 28 189 0 1.00e+00, 1.00e+00 1.10e-06 0.87
pd1 0; 0; 1 1 1 0.26 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.39 1
pd2 0; 0; 1 1 1 0.45 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.39 1
dd1 0 0.02 0.00
dd2 0 0.05 0.00
Sieve-SDP infeas 0.07 0.00 1

25 ex4.1 order10

none 0; 0; 66, 36 230 0 1.00e+00, 1.00e+00 9.94e-07 0.69
pd1 0; 0; 1 1 1 0.32 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.39 1
pd2 0; 0; 1 1 1 0.50 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.33 1
dd1 0 0.02 0.00
dd2 0 0.06 0.00
Sieve-SDP infeas 0.09 0.00 1

26 ex4.1 order11

none 0; 0; 78, 45 275 0 1.00e+00, 1.00e+00 2.60e-06 0.93
pd1 0; 0; 1 1 1 0.33 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.38 1
pd2 0; 0; 1 1 1 0.71 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.34 1
dd1 0 0.02 0.00
dd2 0 0.09 0.00
Sieve-SDP infeas 0.13 0.00 1

27 ex4.1 order12

none 0; 0; 91, 55 324 0 1.00e+00, 1.00e+00 2.29e-06 1.06
pd1 0; 0; 1 1 1 0.50 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.34 1
pd2 0; 0; 1 1 1 1.02 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.41 1
dd1 0 0.02 0.00
dd2 0 0.11 0.00
Sieve-SDP infeas 0.16 0.00 1

28 ex4.1 order13

none 0; 0; 105, 66 377 0 1.00e+00, 1.00e+00 6.83e-06 1.00
pd1 0; 0; 1 1 1 0.52 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.77 1
pd2 0; 0; 1 1 1 1.55 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.37 1
dd1 0 0.03 0.00
dd2 0 0.14 0.00
Sieve-SDP infeas 0.19 0.00 1

29 ex4.1 order14

none 0; 0; 120, 78 434 0 1.00e+00, 1.00e+00 2.19e-06 1.59
pd1 0; 0; 1 1 1 0.81 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.43 1
pd2 0; 0; 1 1 1 2.20 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.38 1
dd1 0 0.03 0.00
dd2 0 0.20 0.00
Sieve-SDP infeas 0.25 0.00 1

30 ex4.1 order15

none 0; 0; 136, 91 495 0 1.00e+00, 1.00e+00 4.32e-06 1.66
pd1 0; 0; 1 1 1 0.87 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.36 1
pd2 0; 0; 1 1 1 2.79 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.35 1
dd1 0 0.04 0.00
dd2 0 0.24 0.00
Sieve-SDP infeas 0.29 0.00 1

31 ex4.1 order16

none 0; 0; 153, 105 560 0 1.00e+00, 1.00e+00 7.99e-07 2.41
pd1 0; 0; 1 1 1 1.10 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.36 1
pd2 0; 0; 1 1 1 4.06 0.00 1 0.00e+00, 3.00e+00 7.50e-01 0.53 1
dd1 0 0.04 0.00
dd2 0 0.31 0.00
Sieve-SDP infeas 0.37 0.00 1
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32 ex4.1 order17

none 0; 0; 171, 120 629 0 1.00e+00, 1.00e+00 1.45e-06 3.23
pd1 0; 0; 1 1 1 1.27 0.01 1 0.00e+00, 3.00e+00 7.50e-01 0.34 1
pd2 0; 0; 1 1 1 5.29 0.01 1 0.00e+00, 3.00e+00 7.50e-01 0.37 1
dd1 0 0.05 0.01
dd2 0 0.44 0.01
Sieve-SDP infeas 0.47 0.00 1

33 ex4.1 order18

none 0; 0; 190, 136 702 0 1.00e+00, 1.00e+00 2.43e-06 4.52
pd1 0; 0; 1 1 1 1.72 0.01 1 0.00e+00, 3.00e+00 7.50e-01 0.37 1
pd2 0; 0; 1 1 1 6.99 0.01 1 0.00e+00, 3.00e+00 7.50e-01 0.46 1
dd1 0 0.08 0.01
dd2 0 0.52 0.01
Sieve-SDP infeas 0.67 0.00 1

34 ex4.1 order19

none 0; 0; 210, 153 779 0 1.00e+00, 1.00e+00 2.76e-06 6.04
pd1 0; 0; 1 1 1 2.01 0.01 1 0.00e+00, 3.00e+00 7.50e-01 0.37 1
pd2 0; 0; 1 1 1 9.39 0.01 1 0.00e+00, 3.00e+00 7.50e-01 0.37 1
dd1 0 0.06 0.01
dd2 0 0.69 0.01
Sieve-SDP infeas 0.87 0.00 1

35 ex4.1 order20

none 0; 0; 231, 171 860 0 1.00e+00, 1.00e+00 5.65e-06 8.86
pd1 0; 0; 1 1 1 2.68 0.02 1 0.00e+00, 3.00e+00 7.50e-01 0.35 1
pd2 0; 0; 1 1 1 12.71 0.02 1 0.00e+00, 3.00e+00 7.50e-01 0.34 1
dd1 0 0.07 0.02
dd2 0 0.87 0.02
Sieve-SDP infeas 0.88 0.00 1

36 ex4.2 order4

none 0; 1; 15 44 0 1.00e-09, 1.01e-09 7.07e-01 0.81
pd1 0; 1; 1 2 1 0.08 0.00 0 1.00e+00, 1.00e+00 5.00e-01 0.57 3
pd2 0; 1; 1 2 1 0.09 0.00 0 1.00e+00, 1.00e+00 5.00e-01 0.61 3
dd1 0 0.04 0.00
dd2 0 0.05 0.00
Sieve-SDP infeas 0.03 0.00 1

37 ex4.2 order5

none 0; 0; 21, 3 65 0 5.53e-01, 5.53e-01 9.19e-08 1.85
pd1 0; 0; 1 1 1 0.15 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.65 1
pd2 0; 0; 1 1 1 0.14 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.44 1
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.03 0.00 1

38 ex4.2 order6

none 0; 0; 28, 6 90 0 5.53e-01, 5.53e-01 3.24e-07 0.65
pd1 0; 0; 8, 2 22 1 0.09 0.00 0 5.53e-01, 5.53e-01 7.64e-09 0.63
pd2 0; 0; 8, 2 22 1 0.14 0.00 0 5.53e-01, 5.53e-01 7.64e-09 0.62
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 8, 2 22 1 0.03 0 5.53e-01, 5.53e-01 7.64e-09 0.74

39 ex4.2 order7

none 0; 0; 36, 10 119 0 5.53e-01, 5.53e-01 2.87e-07 0.65
pd1 0; 0; 9, 3 25 1 0.13 0.00 0 5.53e-01, 5.53e-01 4.89e-09 0.57
pd2 0; 0; 9, 3 25 1 0.16 0.00 0 5.53e-01, 5.53e-01 4.89e-09 0.55
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 9, 3 25 1 0.04 0 5.53e-01, 5.53e-01 4.89e-09 0.68

40 ex4.2 order8

none 0; 0; 45, 15 152 0 5.53e-01, 5.53e-01 1.08e-06 0.64
pd1 0; 0; 10, 4 28 1 0.17 0.00 0 5.53e-01, 5.53e-01 3.90e-08 0.58 2
pd2 0; 0; 10, 4 28 1 0.23 0.00 0 5.53e-01, 5.53e-01 3.90e-08 0.57 2
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 10, 4 28 1 0.06 0 5.53e-01, 5.53e-01 3.90e-08 0.70 2

41 ex4.2 order9

none 0; 0; 55, 21 189 0 5.53e-01, 5.53e-01 1.10e-06 0.67
pd1 0; 0; 10, 4 28 1 0.22 0.00 0 5.53e-01, 5.53e-01 3.90e-08 0.58 2
pd2 0; 0; 10, 4 28 1 0.33 0.00 0 5.53e-01, 5.53e-01 3.90e-08 0.57 2
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 10, 4 28 1 0.08 0 5.53e-01, 5.53e-01 3.90e-08 0.71 2

42 ex4.2 order10

none 0; 0; 66, 28 230 0 5.53e-01, 5.53e-01 1.42e-06 0.74
pd1 0; 0; 10, 4 28 1 0.39 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.71 2,3
pd2 0; 0; 10, 4 28 1 0.56 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.60 2,3
dd1 0 0.02 0.00
dd2 0 0.06 0.00
Sieve-SDP 0; 0; 10, 4 28 1 0.13 0 5.53e-01, 5.53e-01 3.90e-08 0.76 2,3

43 ex4.2 order11

none 0; 0; 78, 36 275 0 5.53e-01, 5.53e-01 1.61e-06 1.66
pd1 0; 0; 10, 4 28 1 0.49 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.80 2,3
pd2 0; 0; 10, 4 28 1 0.82 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.73 2,3
dd1 0 0.03 0.00
dd2 0 0.10 0.00
Sieve-SDP 0; 0; 10, 4 28 1 0.16 0 5.53e-01, 5.53e-01 3.90e-08 0.70 2,3
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44 ex4.2 order12

none 0; 0; 91, 45 324 0 5.53e-01, 5.53e-01 2.77e-06 1.23
pd1 0; 0; 10, 4 28 1 0.51 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.68 2,3
pd2 0; 0; 10, 4 28 1 1.06 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.57 2,3
dd1 0 0.03 0.00
dd2 0 0.12 0.00
Sieve-SDP 0; 0; 10, 4 28 1 0.19 0 5.53e-01, 5.53e-01 3.90e-08 0.70 2,3

45 ex4.2 order13

none 0; 0; 105, 55 377 0 5.53e-01, 5.53e-01 4.58e-06 1.53
pd1 0; 0; 10, 4 28 1 0.51 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.68 2,3
pd2 0; 0; 10, 4 28 1 1.54 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.62 2,3
dd1 0 0.03 0.00
dd2 0 0.15 0.00
Sieve-SDP 0; 0; 10, 4 28 1 0.25 0 5.53e-01, 5.53e-01 3.90e-08 0.73 2,3

46 ex4.2 order14

none 0; 0; 120, 66 434 0 5.53e-01, 5.53e-01 1.61e-06 2.24
pd1 0; 0; 10, 4 28 1 0.82 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.73 2,3
pd2 0; 0; 10, 4 28 1 2.36 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.76 2,3
dd1 0 0.03 0.00
dd2 0 0.26 0.00
Sieve-SDP 0; 0; 10, 4 28 1 0.32 0 5.53e-01, 5.53e-01 3.90e-08 0.61 2,3

47 ex4.2 order15

none 0; 0; 136, 78 495 0 5.53e-01, 5.53e-01 3.52e-06 2.90
pd1 0; 0; 10, 4 28 1 1.08 0.01 0 5.53e-01, 5.53e-01 3.90e-08 1.50 2,3
pd2 0; 0; 10, 4 28 1 3.81 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.86 2,3
dd1 0 0.04 0.01
dd2 0 0.34 0.01
Sieve-SDP 0; 0; 10, 4 28 1 0.59 0 5.53e-01, 5.53e-01 3.90e-08 0.57 2,3

48 ex4.2 order16

none 0; 0; 153, 91 560 0 5.53e-01, 5.53e-01 2.54e-06 4.55
pd1 0; 0; 10, 4 28 1 1.50 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.67 2,3
pd2 0; 0; 10, 4 28 1 4.37 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.60 2,3
dd1 0 0.04 0.01
dd2 0 0.37 0.01
Sieve-SDP 0; 0; 10, 4 28 1 0.50 0 5.53e-01, 5.53e-01 3.90e-08 0.62 2,3

49 ex4.2 order17

none 0; 0; 171, 105 629 0 5.52e-01, 5.52e-01 1.06e-04 4.96
pd1 0; 0; 10, 4 28 1 1.52 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.57 2,3
pd2 0; 0; 10, 4 28 1 5.71 0.01 0 5.53e-01, 5.53e-01 3.90e-08 0.63 2,3
dd1 0 0.05 0.01
dd2 0 0.50 0.01
Sieve-SDP 0; 0; 10, 4 28 1 0.59 0 5.53e-01, 5.53e-01 3.90e-08 0.62 2,3

50 ex4.2 order18

none 0; 0; 190, 120 702 0 5.52e-01, 5.52e-01 1.70e-04 9.65
pd1 0; 0; 10, 4 28 1 2.01 0.02 0 5.53e-01, 5.53e-01 3.90e-08 0.62 2,3
pd2 0; 0; 10, 4 28 1 8.06 0.02 0 5.53e-01, 5.53e-01 3.90e-08 0.65 2,3
dd1 0 0.06 0.01
dd2 0 0.65 0.01
Sieve-SDP 0; 0; 10, 4 28 1 0.78 0 5.53e-01, 5.53e-01 3.90e-08 0.62 2,3

51 ex4.2 order19

none 0; 0; 210, 136 779 0 5.52e-01, 5.52e-01 9.26e-04 11.00
pd1 0; 0; 10, 4 28 1 2.40 0.02 0 5.53e-01, 5.53e-01 3.90e-08 0.59 2,3
pd2 0; 0; 10, 4 28 1 9.99 0.02 0 5.53e-01, 5.53e-01 3.90e-08 0.60 2,3
dd1 0 0.06 0.02
dd2 0 0.80 0.02
Sieve-SDP 0; 0; 10, 4 28 1 0.93 0 5.53e-01, 5.53e-01 3.90e-08 0.75 2,3

52 ex4.2 order20

none 0; 0; 231, 153 860 0 5.49e-01, 5.49e-01 4.36e-03 17.65
pd1 0; 0; 10, 4 28 1 2.93 0.03 0 5.53e-01, 5.53e-01 3.90e-08 0.58 2,3
pd2 0; 0; 10, 4 28 1 12.77 0.03 0 5.53e-01, 5.53e-01 3.90e-08 0.57 2,3
dd1 0 0.07 0.02
dd2 0 0.94 0.02
Sieve-SDP 0; 0; 10, 4 28 1 1.11 0 5.53e-01, 5.53e-01 3.90e-08 0.68 2,3

53 ex4.3 order2

none 0; 1; 10 34 0 1.73e-07, 1.83e-07 9.09e-01 4.39
pd1 0; 1; 4 10 1 0.14 0.03 1 0.00e+00, 8.00e+00 9.09e-01 1.24 1
pd2 0; 1; 4 10 1 0.34 0.00 1 0.00e+00, 8.00e+00 9.09e-01 1.30 1
dd1 0 0.08 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.52 0.00 1

54 ex4.3 order3

none 0; 0; 20, 4 83 0 6.22e-09, 6.48e-09 9.09e-01 3.78
pd1 0; 0; 1 1 1 0.19 0.01 1 0.00e+00, 8.00e+00 8.89e-01 1.29 1
pd2 0; 0; 1 1 1 0.13 0.00 1 0.00e+00, 8.00e+00 8.89e-01 1.28 1
dd1 0 0.05 0.00
dd2 0 0.04 0.00
Sieve-SDP infeas 0.05 0.00 1

55 ex4.3 order4

none 0; 0; 35, 10 164 0 2.50e-09, 2.53e-09 9.09e-01 3.88
pd1 0; 0; 1 1 1 0.11 0.00 1 0.00e+00, 8.00e+00 8.89e-01 1.31 1
pd2 0; 0; 1 1 1 0.13 0.00 1 0.00e+00, 8.00e+00 8.89e-01 1.29 1
dd1 0 0.03 0.00
dd2 0 0.05 0.00
Sieve-SDP infeas 0.04 0.00 1
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56 ex4.3 order5

none 0; 0; 56, 20 285 0 5.18e-09, 5.22e-09 9.09e-01 3.30
pd1 0; 0; 1 1 1 0.15 0.00 1 0.00e+00, 8.00e+00 8.89e-01 1.24 1
pd2 0; 0; 1 1 1 0.20 0.00 1 0.00e+00, 8.00e+00 8.89e-01 1.22 1
dd1 0 0.04 0.00
dd2 0 0.08 0.00
Sieve-SDP infeas 0.06 0.00 1

57 ex4.3 order6

none 0; 0; 84, 35 454 0 1.60e+01, 1.60e+01 3.34e-06 3.20
pd1 0; 0; 1 1 1 0.21 0.00 1 0.00e+00, 8.00e+00 8.89e-01 1.16 1
pd2 0; 0; 1 1 1 0.41 0.00 1 0.00e+00, 8.00e+00 8.89e-01 1.20 1
dd1 0 0.05 0.00
dd2 0 0.13 0.00
Sieve-SDP infeas 0.10 0.00 1

58 ex4.3 order7

none 0; 0; 120, 56 679 0 1.60e+01, 1.60e+01 5.26e-06 4.45
pd1 0; 0; 1 1 1 0.30 0.01 1 0.00e+00, 8.00e+00 8.89e-01 1.23 1
pd2 0; 0; 1 1 1 0.83 0.01 1 0.00e+00, 8.00e+00 8.89e-01 1.19 1
dd1 0 0.06 0.01
dd2 0 0.23 0.01
Sieve-SDP infeas 0.17 0.00 1

59 ex4.3 order8

none 0; 0; 165, 84 968 0 1.60e+01, 1.60e+01 5.17e-06 9.40
pd1 0; 0; 1 1 1 0.48 0.01 1 0.00e+00, 8.00e+00 8.89e-01 0.65 1
pd2 0; 0; 1 1 1 2.05 0.01 1 0.00e+00, 8.00e+00 8.89e-01 0.71 1
dd1 0 0.05 0.01
dd2 0 0.45 0.01
Sieve-SDP infeas 0.27 0.00 1

60 ex4.3 order9

none 0; 0; 220, 120 1329 0 1.60e+01, 1.60e+01 5.88e-06 17.62
pd1 0; 0; 1 1 1 0.85 0.02 1 0.00e+00, 8.00e+00 8.89e-01 0.56 1
pd2 0; 0; 1 1 1 4.46 0.02 1 0.00e+00, 8.00e+00 8.89e-01 0.59 1
dd1 0 0.07 0.02
dd2 0 0.88 0.02
Sieve-SDP infeas 0.53 0.00 1

61 ex4.3 order10

none 0; 0; 286, 165 1770 0 1.60e+01, 1.60e+01 3.92e-05 42.57
pd1 0; 0; 1 1 1 1.66 0.04 1 0.00e+00, 8.00e+00 8.89e-01 0.35 1
pd2 0; 0; 1 1 1 9.01 0.04 1 0.00e+00, 8.00e+00 8.89e-01 0.34 1
dd1 0 0.09 0.04
dd2 0 1.79 0.04
Sieve-SDP infeas 0.87 0.00 1

62 ex4.3 order11

none 0; 0; 364, 220 2299 0 7.85e-06, 7.85e-06 9.09e-01 116.27
pd1 0; 0; 1 1 1 3.12 0.07 1 0.00e+00, 8.00e+00 8.89e-01 0.34 1
pd2 0; 0; 1 1 1 17.61 0.07 1 0.00e+00, 8.00e+00 8.89e-01 0.34 1
dd1 0 0.16 0.07
dd2 0 18.38 0.07
Sieve-SDP infeas 1.51 0.00 1

63 ex4.3 order12

none 0; 0; 455, 286 2924 0 2.62e-06, 2.62e-06 9.09e-01 330.94
pd1 0; 0; 1 1 1 5.71 0.11 1 0.00e+00, 8.00e+00 8.89e-01 0.52 1
pd2 0; 0; 1 1 1 34.17 0.11 1 0.00e+00, 8.00e+00 8.89e-01 0.36 1
dd1 0 0.25 0.11
dd2 0 39.81 0.11
Sieve-SDP infeas 2.90 0.00 1

64 ex4.3 order13

none 0; 0; 560, 364 3653 0 4.85e-07, 4.85e-07 9.09e-01 814.60
pd1 0; 0; 1 1 1 10.54 0.18 1 0.00e+00, 8.00e+00 8.89e-01 0.34 1
pd2 0; 0; 1 1 1 61.06 0.18 1 0.00e+00, 8.00e+00 8.89e-01 0.35 1
dd1 0 0.40 0.18
dd2 0 74.87 0.18
Sieve-SDP infeas 5.29 0.00 1

65 ex4.3 order14

none 0; 0; 680, 455 4494 0 1.01e+01, 1.01e+01 9.40e-02 1178.45
pd1 0; 0; 1 1 1 17.38 0.27 1 0.00e+00, 8.00e+00 8.89e-01 0.34 1
pd2 0; 0; 1 1 1 109.31 0.27 1 0.00e+00, 8.00e+00 8.89e-01 0.47 1
dd1 0 0.63 0.27
dd2 0 146.45 0.27
Sieve-SDP infeas 9.73 0.00 1

66 ex4.3 order15

none 0; 0; 816, 560 5455 0 8.94e+00, 8.94e+00 1.76e-01 2010.36
pd1 0; 0; 1 1 1 33.32 0.41 1 0.00e+00, 8.00e+00 8.89e-01 0.50 1
pd2 0; 0; 1 1 1 192.22 0.41 1 0.00e+00, 8.00e+00 8.89e-01 0.70 1
dd1 0 0.99 0.41
dd2 0 303.20 0.41
Sieve-SDP infeas 16.20 0.00 1

67 ex4.3 order16

none 0; 0; 969, 680 6544 0 7.95e+00, 7.95e+00 2.23e-01 3158.88
pd1 0; 0; 1 1 1 46.39 0.55 1 0.00e+00, 8.00e+00 8.89e-01 1.43 1
pd2 0; 0; 1 1 1 295.70 0.55 1 0.00e+00, 8.00e+00 8.89e-01 1.33 1
dd1 0 1.49 0.55
dd2 0 485.30 0.55
Sieve-SDP infeas 29.21 0.00 1
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No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

68 ex4.3 order17

none 0; 0; 1140, 816 7769 0 7.45e+00, 7.45e+00 2.00e-01 5618.65
pd1 0; 0; 1 1 1 71.92 0.81 1 0.00e+00, 8.00e+00 8.89e-01 1.34 1
pd2 0; 0; 1 1 1 472.15 0.81 1 0.00e+00, 8.00e+00 8.89e-01 1.33 1
dd1 0 2.13 0.81
dd2 0 949.49 0.81
Sieve-SDP infeas 49.63 0.00 1

69 ex4.3 order18

none 0; 0; 1330, 969 9138 0 7.16e+00, 7.16e+00 2.14e-01 11769.31
pd1 0; 0; 1 1 1 112.46 1.13 1 0.00e+00, 8.00e+00 8.89e-01 1.40 1
pd2 0; 0; 1 1 1 753.21 1.13 1 0.00e+00, 8.00e+00 8.89e-01 1.47 1
dd1 0 3.05 1.13
dd2 0 1624.34 1.13
Sieve-SDP infeas 81.60 0.00 1

70 ex4.3 order19

none 0; 0; 1540, 1140 10659 0 6.82e+00, 6.82e+00 2.63e-01 22830.51
pd1 0; 0; 1 1 1 171.19 1.62 1 0.00e+00, 8.00e+00 8.89e-01 1.26 1
pd2 0; 0; 1 1 1 1177.71 1.60 1 0.00e+00, 8.00e+00 8.89e-01 1.23 1
dd1 0 4.53 1.60
dd2 0 2852.27 1.60
Sieve-SDP infeas 134.13 0.00 1

71 ex4.3 order20

none 0; 0; 1771, 1330 12340 0 6.52e+00, 6.52e+00 3.66e-01 38786.88
pd1 0; 0; 1 1 1 375.53 2.81 1 0.00e+00, 8.00e+00 8.89e-01 1.09 1
pd2 0; 0; 1 1 1 2479.13 2.79 1 0.00e+00, 8.00e+00 8.89e-01 0.64 1
dd1 0 6.68 2.79
dd2 0 6408.87 2.79
Sieve-SDP infeas 260.68 0.00 1

72 ex4.4 order3

none 0; 0; 20, 10 83 1 9.88e-02, 1.18e-01 8.66e-01 1.72
pd1 0; 0; 1 1 1 0.09 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.60
pd2 0; 0; 1 1 1 0.10 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.53
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP infeas 0.01 0.00 1

73 ex4.4 order4

none 0; 0; 35, 20 164 1 1.73e-05, 1.84e-05 8.66e-01 2.17
pd1 0; 0; 1 1 1 0.12 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.54
pd2 0; 0; 1 1 1 0.14 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.60
dd1 0 0.02 0.00
dd2 0 0.07 0.00
Sieve-SDP infeas 0.03 0.00 1

74 ex4.4 order5

none 0; 0; 56, 35 285 0 5.66e-08, 5.85e-08 8.66e-01 2.11
pd1 0; 0; 1 1 1 0.14 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.60 1
pd2 0; 0; 1 1 1 0.25 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.59 1
dd1 0 0.03 0.00
dd2 0 0.14 0.00
Sieve-SDP infeas 0.04 0.00 1

75 ex4.4 order6

none 0; 0; 84, 56 454 0 1.49e-08, 1.50e-08 8.66e-01 3.11
pd1 0; 0; 1 1 1 0.20 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.53 1
pd2 0; 0; 1 1 1 0.47 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.55 1
dd1 0 0.03 0.00
dd2 0 0.43 0.00
Sieve-SDP infeas 0.08 0.00 1

76 ex4.4 order7

none 0; 0; 120, 84 679 0 6.64e-09, 6.68e-09 8.66e-01 4.44
pd1 0; 0; 1 1 1 0.30 0.01 1 0.00e+00, 1.00e+00 5.00e-01 0.58 1
pd2 0; 0; 1 1 1 0.96 0.01 1 0.00e+00, 1.00e+00 5.00e-01 0.57 1
dd1 0 0.04 0.01
dd2 0 1.12 0.01
Sieve-SDP infeas 0.17 0.00 1

77 ex4.4 order8

none 0; 0; 165, 120 968 0 1.80e-09, 1.80e-09 8.66e-01 12.00
pd1 0; 0; 1 1 1 0.61 0.01 1 0.00e+00, 1.00e+00 5.00e-01 0.61 1
pd2 0; 0; 1 1 1 2.09 0.01 1 0.00e+00, 1.00e+00 5.00e-01 0.55 1
dd1 0 0.05 0.01
dd2 0 3.86 0.01
Sieve-SDP infeas 0.32 0.00 1

78 ex4.4 order9

none 0; 0; 220, 165 1329 0 4.13e-10, 4.14e-10 8.66e-01 31.08
pd1 0; 0; 1 1 1 1.18 0.03 1 0.00e+00, 1.00e+00 5.00e-01 0.80 1
pd2 0; 0; 1 1 1 5.85 0.03 1 0.00e+00, 1.00e+00 5.00e-01 0.76 1
dd1 0 0.12 0.03
dd2 0 8.18 0.03
Sieve-SDP infeas 0.53 0.00 1

79 ex4.4 order10

none 0; 0; 286, 220 1770 0 2.65e-10, 2.65e-10 8.66e-01 71.26
pd1 0; 0; 1 1 1 2.24 0.07 1 0.00e+00, 1.00e+00 5.00e-01 0.69 1
pd2 0; 0; 1 1 1 10.10 0.06 1 0.00e+00, 1.00e+00 5.00e-01 0.56 1
dd1 0 0.12 0.06
dd2 0 13.87 0.06
Sieve-SDP infeas 0.89 0.00 1
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No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

80 ex4.4 order11

none 0; 0; 364, 286 2299 0 1.60e-05, 1.61e-05 4.44e-05 64.15
pd1 0; 0; 1 1 1 4.21 0.10 1 0.00e+00, 1.00e+00 5.00e-01 0.62 1
pd2 0; 0; 1 1 1 22.13 0.08 1 0.00e+00, 1.00e+00 5.00e-01 0.63 1
dd1 0 0.20 0.08
dd2 0 30.60 0.08
Sieve-SDP infeas 1.77 0.00 1

81 ex4.4 order12

none 0; 0; 455, 364 2924 0 1.93e-07, 1.78e-07 2.52e-06 115.81
pd1 0; 0; 1 1 1 5.82 0.13 1 0.00e+00, 1.00e+00 5.00e-01 1.05 1
pd2 0; 0; 1 1 1 32.88 0.13 1 0.00e+00, 1.00e+00 5.00e-01 1.07 1
dd1 0 0.31 0.12
dd2 0 53.13 0.12
Sieve-SDP infeas 2.99 0.00 1

82 ex4.4 order13

none 0; 0; 560, 455 3653 0 1.45e-08, 2.31e-09 1.10e-06 238.42
pd1 0; 0; 1 1 1 9.81 0.19 1 0.00e+00, 1.00e+00 5.00e-01 1.18 1
pd2 0; 0; 1 1 1 61.06 0.19 1 0.00e+00, 1.00e+00 5.00e-01 1.02 1
dd1 0 0.49 0.19
dd2 0 100.91 0.19
Sieve-SDP infeas 5.35 0.00 1

83 ex4.4 order14

none 0; 0; 680, 560 4494 0 -1.06e-08, -3.67e-08 1.87e-06 455.22
pd1 0; 0; 1 1 1 16.86 0.30 1 0.00e+00, 1.00e+00 5.00e-01 0.46 1
pd2 0; 0; 1 1 1 107.61 0.30 1 0.00e+00, 1.00e+00 5.00e-01 0.45 1
dd1 0 0.68 0.30
dd2 0 169.13 0.30
Sieve-SDP infeas 9.68 0.00 1

84 ex4.4 order15

none 0; 0; 816, 680 5455 0 -1.65e-08, -4.13e-08 1.79e-06 923.64
pd1 0; 0; 1 1 1 28.95 0.45 1 0.00e+00, 1.00e+00 5.00e-01 0.50 1
pd2 0; 0; 1 1 1 182.62 0.45 1 0.00e+00, 1.00e+00 5.00e-01 0.44 1
dd1 0 1.13 0.45
dd2 0 284.93 0.45
Sieve-SDP infeas 17.79 0.00 1

85 ex4.4 order16

none 0; 0; 969, 816 6544 0 -2.21e-08, -4.65e-08 1.75e-06 1906.07
pd1 0; 0; 1 1 1 45.76 0.63 1 0.00e+00, 1.00e+00 5.00e-01 0.53 1
pd2 0; 0; 1 1 1 301.76 0.63 1 0.00e+00, 1.00e+00 5.00e-01 0.46 1
dd1 0 1.70 0.63
dd2 0 476.46 0.63
Sieve-SDP infeas 30.87 0.00 1

86 ex4.4 order17

none 0; 0; 1140, 969 7769 0 -7.69e-09, -1.50e-08 5.48e-07 3654.29
pd1 0; 0; 1 1 1 69.43 0.88 1 0.00e+00, 1.00e+00 5.00e-01 1.18 1
pd2 0; 0; 1 1 1 474.62 0.89 1 0.00e+00, 1.00e+00 5.00e-01 1.22 1
dd1 0 2.52 0.88
dd2 0 823.92 0.88
Sieve-SDP infeas 51.79 0.00 1

87 ex4.4 order18

none 0; 0; 1330, 1140 9138 0 -9.27e-09, -1.60e-08 4.84e-07 7063.56
pd1 0; 0; 1 1 1 103.53 1.24 1 0.00e+00, 1.00e+00 5.00e-01 1.55 1
pd2 0; 0; 1 1 1 723.31 1.23 1 0.00e+00, 1.00e+00 5.00e-01 1.69 1
dd1 0 3.71 1.23
dd2 0 1328.75 1.23
Sieve-SDP infeas 86.64 0.00 1

88 ex4.4 order19

none 0; 0; 1540, 1330 10659 0 -2.12e-08, -3.68e-08 1.22e-06 12500.09
pd1 0; 0; 1 1 1 150.44 1.70 1 0.00e+00, 1.00e+00 5.00e-01 1.47 1
pd2 0; 0; 1 1 1 1128.87 1.70 1 0.00e+00, 1.00e+00 5.00e-01 1.64 1
dd1 0 5.13 1.69
dd2 0 2112.63 1.69
Sieve-SDP infeas 140.48 0.00 1

89 ex4.4 order20

none 0; 0; 1771, 1540 12340 0 -3.07e-08, -5.42e-08 2.04e-06 25422.27
pd1 0; 0; 1 1 1 249.05 2.70 1 0.00e+00, 1.00e+00 5.00e-01 0.61 1
pd2 0; 0; 1 1 1 1889.89 2.69 1 0.00e+00, 1.00e+00 5.00e-01 0.63 1
dd1 0 7.15 2.69
dd2 0 3796.27 2.69
Sieve-SDP infeas 256.35 0.00 1

90 ex5.4 order5

none 0; 0; 21 65 0 2.28e+00, 2.28e+00 5.89e-07 0.90
pd1 0; 0; 10 31 1 0.07 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.86
pd2 0; 0; 10 31 1 0.09 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.78
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0; 0; 10 31 1 0.02 0 2.28e+00, 2.28e+00 6.97e-08 0.77

91 ex5.4 order6

none 0; 0; 28 90 0 2.28e+00, 2.28e+00 1.89e-06 0.95
pd1 0; 0; 10 31 1 0.09 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.78 2,3
pd2 0; 0; 10 31 1 0.11 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.77 2,3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 10 31 1 0.03 0 2.28e+00, 2.28e+00 6.97e-08 0.84 2,3
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No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

92 ex5.4 order7

none 0; 0; 36 119 0 2.28e+00, 2.28e+00 2.55e-06 0.98
pd1 0; 0; 10 31 1 0.10 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.78 2,3
pd2 0; 0; 10 31 1 0.13 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.81 2,3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 10 31 1 0.04 0 2.28e+00, 2.28e+00 6.97e-08 0.82 2,3

93 ex5.4 order8

none 0; 0; 45 152 0 2.28e+00, 2.28e+00 2.86e-06 0.96
pd1 0; 0; 10 31 1 0.11 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.77 2,3
pd2 0; 0; 10 31 1 0.17 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.78 2,3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 10 31 1 0.04 0 2.28e+00, 2.28e+00 6.97e-08 0.85 2,3

94 ex5.4 order9

none 0; 0; 55 189 0 2.28e+00, 2.28e+00 4.47e-06 0.95
pd1 0; 0; 10 31 1 0.13 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.78 2,3
pd2 0; 0; 10 31 1 0.23 0.00 0 2.28e+00, 2.28e+00 6.97e-08 0.85 2,3
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 10 31 1 0.05 0 2.28e+00, 2.28e+00 6.97e-08 0.77 2,3

95 ex5.4 order10

none 0; 0; 66 230 0 2.28e+00, 2.28e+00 2.08e-06 1.98
pd1 0; 0; 10 31 1 0.21 0.01 0 2.28e+00, 2.28e+00 6.97e-08 1.59 2,3
pd2 0; 0; 10 31 1 0.33 0.00 0 2.28e+00, 2.28e+00 6.97e-08 1.62 2,3
dd1 0 0.05 0.00
dd2 0 0.07 0.00
Sieve-SDP 0; 0; 10 31 1 0.10 0 2.28e+00, 2.28e+00 6.97e-08 1.62 2,3

96 ex5.4 order11

none 0; 0; 78 275 0 2.28e+00, 2.28e+00 9.31e-06 3.15
pd1 0; 0; 10 31 1 0.23 0.00 0 2.28e+00, 2.28e+00 6.97e-08 3.16 2,3
pd2 0; 0; 10 31 1 0.43 0.00 0 2.28e+00, 2.28e+00 6.97e-08 2.25 2,3
dd1 0 0.04 0.00
dd2 0 0.09 0.00
Sieve-SDP 0; 0; 10 31 1 0.12 0 2.28e+00, 2.28e+00 6.97e-08 1.91 2,3

97 ex5.4 order12

none 0; 0; 91 324 0 2.28e+00, 2.28e+00 1.09e-05 2.52
pd1 0; 0; 10 31 1 0.29 0.01 0 2.28e+00, 2.28e+00 6.97e-08 1.72 2,3
pd2 0; 0; 10 31 1 0.54 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.82 2,3
dd1 0 0.03 0.00
dd2 0 0.16 0.00
Sieve-SDP 0; 0; 10 31 1 0.20 0 2.28e+00, 2.28e+00 6.97e-08 1.20 2,3

98 ex5.4 order13

none 0; 0; 105 377 0 2.28e+00, 2.28e+00 4.58e-06 2.22
pd1 0; 0; 10 31 1 0.42 0.00 0 2.28e+00, 2.28e+00 6.97e-08 1.13 2,3
pd2 0; 0; 10 31 1 0.76 0.00 0 2.28e+00, 2.28e+00 6.97e-08 1.22 2,3
dd1 0 0.02 0.00
dd2 0 0.10 0.00
Sieve-SDP 0; 0; 10 31 1 0.13 0 2.28e+00, 2.28e+00 6.97e-08 1.23 2,3

99 ex5.4 order14

none 0; 0; 120 434 0 2.28e+00, 2.28e+00 1.14e-05 1.78
pd1 0; 0; 10 31 1 0.31 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.87 2,3
pd2 0; 0; 10 31 1 0.98 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.84 2,3
dd1 0 0.03 0.00
dd2 0 0.12 0.00
Sieve-SDP 0; 0; 10 31 1 0.15 0 2.28e+00, 2.28e+00 6.97e-08 0.77 2,3

100 ex5.4 order15

none 0; 0; 136 495 0 2.28e+00, 2.28e+00 6.12e-06 2.11
pd1 0; 0; 10 31 1 0.43 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.79 2,3
pd2 0; 0; 10 31 1 1.34 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.75 2,3
dd1 0 0.03 0.00
dd2 0 0.16 0.00
Sieve-SDP 0; 0; 10 31 1 0.18 0 2.28e+00, 2.28e+00 6.97e-08 0.74 2,3

101 ex5.4 order16

none 0; 0; 153 560 0 2.28e+00, 2.28e+00 6.71e-06 3.38
pd1 0; 0; 10 31 1 0.53 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.83 2,3
pd2 0; 0; 10 31 1 1.84 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.85 2,3
dd1 0 0.03 0.00
dd2 0 0.20 0.00
Sieve-SDP 0; 0; 10 31 1 0.23 0 2.28e+00, 2.28e+00 6.97e-08 0.80 2,3

102 ex5.4 order17

none 0; 0; 171 629 0 2.28e+00, 2.28e+00 4.57e-06 4.32
pd1 0; 0; 10 31 1 0.62 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.77 2,3
pd2 0; 0; 10 31 1 2.50 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.95 2,3
dd1 0 0.03 0.00
dd2 0 0.26 0.00
Sieve-SDP 0; 0; 10 31 1 0.27 0 2.28e+00, 2.28e+00 6.97e-08 1.28 2,3

103 ex5.4 order18

none 0; 0; 190 702 0 2.27e+00, 2.27e+00 3.25e-03 7.00
pd1 0; 0; 10 31 1 0.93 0.01 0 2.28e+00, 2.28e+00 6.97e-08 1.14 2,3
pd2 0; 0; 10 31 1 4.02 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.81 2,3
dd1 0 0.08 0.01
dd2 0 0.33 0.01
Sieve-SDP 0; 0; 10 31 1 0.33 0 2.28e+00, 2.28e+00 6.97e-08 0.79 2,3
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No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

104 ex5.4 order19

none 0; 0; 210 779 0 2.23e+00, 2.23e+00 2.09e-02 8.09
pd1 0; 0; 10 31 1 0.98 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.77 2,3
pd2 0; 0; 10 31 1 4.38 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.77 2,3
dd1 0 0.04 0.00
dd2 0 0.61 0.00
Sieve-SDP 0; 0; 10 31 1 0.67 0 2.28e+00, 2.28e+00 6.97e-08 1.66 2,3

105 ex5.4 order20

none 0; 0; 231 860 0 2.14e+00, 2.15e+00 5.08e-02 10.64
pd1 0; 0; 10 31 1 1.19 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.75 2,3
pd2 0; 0; 10 31 1 6.78 0.01 0 2.28e+00, 2.28e+00 6.97e-08 0.99 2,3
dd1 0 0.08 0.01
dd2 0 0.65 0.01
Sieve-SDP 0; 0; 10 31 1 0.48 0 2.28e+00, 2.28e+00 6.97e-08 0.75 2,3

106 ex5.5 order4

none 0; 0; 15 44 0 1.62e-01, 1.62e-01 2.66e-06 0.88
pd1 0; 0; 7 20 1 0.05 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.81 2,3
pd2 0; 0; 7 20 1 0.07 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0; 0; 7 20 1 0.02 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3

107 ex5.5 order5

none 0; 0; 21 65 0 1.62e-01, 1.62e-01 1.73e-06 0.83
pd1 0; 0; 7 20 1 0.07 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
pd2 0; 0; 7 20 1 0.08 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0; 0; 7 20 1 0.02 0 3.07e-01, 3.07e-01 1.08e-07 0.92 2,3

108 ex5.5 order6

none 0; 0; 28 90 0 1.62e-01, 1.62e-01 2.59e-06 0.88
pd1 0; 0; 7 20 1 0.08 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
pd2 0; 0; 7 20 1 0.10 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 7 20 1 0.02 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3

109 ex5.5 order7

none 0; 0; 36 119 0 1.62e-01, 1.62e-01 4.17e-06 0.90
pd1 0; 0; 7 20 1 0.09 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
pd2 0; 0; 7 20 1 0.13 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 7 20 1 0.03 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3

110 ex5.5 order8

none 0; 0; 45 152 0 1.62e-01, 1.62e-01 1.97e-06 0.96
pd1 0; 0; 7 20 1 0.12 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
pd2 0; 0; 7 20 1 0.18 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.77 2,3
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 7 20 1 0.04 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3

111 ex5.5 order9

none 0; 0; 55 189 0 1.62e-01, 1.62e-01 1.33e-06 0.92
pd1 0; 0; 7 20 1 0.14 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.77 2,3
pd2 0; 0; 7 20 1 0.22 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 7 20 1 0.05 0 3.07e-01, 3.07e-01 1.08e-07 0.74 2,3

112 ex5.5 order10

none 0; 0; 66 230 0 1.62e-01, 1.62e-01 1.21e-05 0.94
pd1 0; 0; 7 20 1 0.17 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.86 2,3
pd2 0; 0; 7 20 1 0.29 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
dd1 0 0.02 0.00
dd2 0 0.05 0.00
Sieve-SDP 0; 0; 7 20 1 0.06 0 3.07e-01, 3.07e-01 1.08e-07 0.74 2,3

113 ex5.5 order11

none 0; 0; 78 275 0 1.62e-01, 1.62e-01 5.86e-06 1.06
pd1 0; 0; 7 20 1 0.19 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.92 2,3
pd2 0; 0; 7 20 1 0.39 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.81 2,3
dd1 0 0.02 0.00
dd2 0 0.06 0.00
Sieve-SDP 0; 0; 7 20 1 0.08 0 3.07e-01, 3.07e-01 1.08e-07 1.13 2,3

114 ex5.5 order12

none 0; 0; 91 324 0 1.62e-01, 1.62e-01 5.58e-06 1.49
pd1 0; 0; 7 20 1 0.35 0.00 0 3.07e-01, 3.07e-01 1.08e-07 1.03 2,3
pd2 0; 0; 7 20 1 0.55 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.82 2,3
dd1 0 0.02 0.00
dd2 0 0.08 0.00
Sieve-SDP 0; 0; 7 20 1 0.09 0 3.07e-01, 3.07e-01 1.08e-07 0.85 2,3

115 ex5.5 order13

none 0; 0; 105 377 0 1.62e-01, 1.62e-01 1.01e-05 1.24
pd1 0; 0; 7 20 1 0.29 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.88 2,3
pd2 0; 0; 7 20 1 0.76 0.00 0 3.07e-01, 3.07e-01 1.08e-07 1.26 2,3
dd1 0 0.04 0.00
dd2 0 0.17 0.00
Sieve-SDP 0; 0; 7 20 1 0.15 0 3.07e-01, 3.07e-01 1.08e-07 0.77 2,3
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116 ex5.5 order14

none 0; 0; 120 434 0 1.62e-01, 1.62e-01 2.12e-05 1.54
pd1 0; 0; 7 20 1 0.34 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.83 2,3
pd2 0; 0; 7 20 1 1.15 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
dd1 0 0.03 0.00
dd2 0 0.12 0.00
Sieve-SDP 0; 0; 7 20 1 0.15 0 3.07e-01, 3.07e-01 1.08e-07 0.96 2,3

117 ex5.5 order15

none 0; 0; 136 495 0 1.62e-01, 1.62e-01 4.22e-05 1.85
pd1 0; 0; 7 20 1 0.44 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.77 2,3
pd2 0; 0; 7 20 1 1.39 0.00 0 3.07e-01, 3.07e-01 1.08e-07 0.79 2,3
dd1 0 0.03 0.00
dd2 0 0.17 0.00
Sieve-SDP 0; 0; 7 20 1 0.19 0 3.07e-01, 3.07e-01 1.08e-07 0.88 2,3

118 ex5.5 order16

none 0; 0; 153 560 0 1.62e-01, 1.62e-01 4.38e-05 2.43
pd1 0; 0; 7 20 1 0.52 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
pd2 0; 0; 7 20 1 1.93 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
dd1 0 0.03 0.01
dd2 0 0.22 0.01
Sieve-SDP 0; 0; 7 20 1 0.22 0 3.07e-01, 3.07e-01 1.08e-07 0.77 2,3

119 ex5.5 order17

none 0; 0; 171 629 0 1.62e-01, 1.62e-01 6.83e-06 3.24
pd1 0; 0; 7 20 1 0.63 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.74 2,3
pd2 0; 0; 7 20 1 2.52 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.75 2,3
dd1 0 0.03 0.00
dd2 0 0.26 0.00
Sieve-SDP 0; 0; 7 20 1 0.28 0 3.07e-01, 3.07e-01 1.08e-07 0.79 2,3

120 ex5.5 order18

none 0; 0; 190 702 0 1.62e-01, 1.62e-01 4.05e-06 4.51
pd1 0; 0; 7 20 1 0.92 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.89 2,3
pd2 0; 0; 7 20 1 3.45 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.89 2,3
dd1 0 0.04 0.00
dd2 0 0.34 0.00
Sieve-SDP 0; 0; 7 20 1 0.33 0 3.07e-01, 3.07e-01 1.08e-07 0.80 2,3

121 ex5.5 order19

none 0; 0; 210 779 0 1.62e-01, 1.62e-01 4.64e-05 7.12
pd1 0; 0; 7 20 1 1.41 0.01 0 3.07e-01, 3.07e-01 1.08e-07 1.23 2,3
pd2 0; 0; 7 20 1 5.53 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.82 2,3
dd1 0 0.04 0.01
dd2 0 0.43 0.01
Sieve-SDP 0; 0; 7 20 1 0.39 0 3.07e-01, 3.07e-01 1.08e-07 0.80 2,3

122 ex5.5 order20

none 0; 0; 231 860 0 1.62e-01, 1.62e-01 6.34e-05 8.90
pd1 0; 0; 7 20 1 1.22 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
pd2 0; 0; 7 20 1 5.88 0.01 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3
dd1 0 0.05 0.01
dd2 0 0.52 0.01
Sieve-SDP 0; 0; 7 20 1 0.46 0 3.07e-01, 3.07e-01 1.08e-07 0.76 2,3

123 ex5.6 order4

none 0; 0; 15 44 0 3.04e-01, 3.04e-01 1.15e-07 1.01
pd1 0; 0; 8 21 1 0.07 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.94
pd2 0; 0; 8 21 1 0.08 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.84
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0; 0; 8 21 1 0.02 0 3.04e-01, 3.04e-01 1.01e-08 1.02

124 ex5.6 order5

none 0; 0; 21 65 0 3.04e-01, 3.04e-01 1.74e-07 1.10
pd1 0; 0; 8 21 1 0.07 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.84
pd2 0; 0; 8 21 1 0.07 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.90
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0; 0; 8 21 1 0.02 0 3.04e-01, 3.04e-01 1.01e-08 0.92

125 ex5.6 order6

none 0; 0; 28 90 0 3.04e-01, 3.04e-01 3.45e-07 0.89
pd1 0; 0; 8 21 1 0.07 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.78
pd2 0; 0; 8 21 1 0.09 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.86
dd1 0 0.03 0.00
dd2 0 0.07 0.00
Sieve-SDP 0; 0; 8 21 1 0.05 0 3.04e-01, 3.04e-01 1.01e-08 2.02

126 ex5.6 order7

none 0; 0; 36 119 0 3.04e-01, 3.04e-01 3.21e-07 1.17
pd1 0; 0; 8 21 1 0.12 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.96
pd2 0; 0; 8 21 1 0.17 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.85
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 8 21 1 0.03 0 3.04e-01, 3.04e-01 1.01e-08 1.39

127 ex5.6 order8

none 0; 0; 45 152 0 3.04e-01, 3.04e-01 4.51e-07 0.91
pd1 0; 0; 8 21 1 0.12 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.79
pd2 0; 0; 8 21 1 0.16 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.94
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 8 21 1 0.04 0 3.04e-01, 3.04e-01 1.01e-08 0.74

110



Table A.19: Detailed results on DIW dataset, part 12 of 14

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

128 ex5.6 order9

none 0; 0; 55 189 0 3.04e-01, 3.04e-01 7.42e-07 0.93
pd1 0; 0; 8 21 1 0.14 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.79
pd2 0; 0; 8 21 1 0.24 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.82
dd1 0 0.03 0.00
dd2 0 0.05 0.00
Sieve-SDP 0; 0; 8 21 1 0.06 0 3.04e-01, 3.04e-01 1.01e-08 0.82

129 ex5.6 order10

none 0; 0; 66 230 0 3.04e-01, 3.04e-01 7.57e-07 0.87
pd1 0; 0; 8 21 1 0.16 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.77
pd2 0; 0; 8 21 1 0.28 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.74
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 8 21 1 0.06 0 3.04e-01, 3.04e-01 1.01e-08 0.75

130 ex5.6 order11

none 0; 0; 78 275 0 3.04e-01, 3.04e-01 6.11e-07 0.90
pd1 0; 0; 8 21 1 0.18 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.74
pd2 0; 0; 8 21 1 0.40 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.76
dd1 0 0.02 0.00
dd2 0 0.06 0.00
Sieve-SDP 0; 0; 8 21 1 0.08 0 3.04e-01, 3.04e-01 1.01e-08 0.76

131 ex5.6 order12

none 0; 0; 91 324 0 3.04e-01, 3.04e-01 9.01e-07 1.02
pd1 0; 0; 8 21 1 0.23 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.75
pd2 0; 0; 8 21 1 0.54 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.75
dd1 0 0.02 0.00
dd2 0 0.08 0.00
Sieve-SDP 0; 0; 8 21 1 0.10 0 3.04e-01, 3.04e-01 1.01e-08 0.74

132 ex5.6 order13

none 0; 0; 105 377 0 3.04e-01, 3.04e-01 7.94e-07 1.20
pd1 0; 0; 8 21 1 0.28 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.77
pd2 0; 0; 8 21 1 0.71 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.84
dd1 0 0.03 0.00
dd2 0 0.11 0.00
Sieve-SDP 0; 0; 8 21 1 0.13 0 3.04e-01, 3.04e-01 1.01e-08 0.79

133 ex5.6 order14

none 0; 0; 120 434 0 3.04e-01, 3.04e-01 1.19e-06 1.31
pd1 0; 0; 8 21 1 0.34 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.82 2
pd2 0; 0; 8 21 1 1.01 0.00 0 3.04e-01, 3.04e-01 1.01e-08 0.74 2
dd1 0 0.02 0.00
dd2 0 0.13 0.00
Sieve-SDP 0; 0; 8 21 1 0.15 0 3.04e-01, 3.04e-01 1.01e-08 0.79 2

134 ex5.6 order15

none 0; 0; 136 495 0 3.04e-01, 3.04e-01 8.76e-07 1.62
pd1 0; 0; 8 21 1 0.43 0.00 0 3.04e-01, 3.04e-01 1.01e-08 1.27
pd2 0; 0; 8 21 1 1.45 0.01 0 3.04e-01, 3.04e-01 1.01e-08 1.21
dd1 0 0.04 0.00
dd2 0 0.16 0.00
Sieve-SDP 0; 0; 8 21 1 0.19 0 3.04e-01, 3.04e-01 1.01e-08 0.76

135 ex5.6 order16

none 0; 0; 153 560 0 3.04e-01, 3.04e-01 1.79e-06 1.81
pd1 0; 0; 8 21 1 0.52 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.75 2
pd2 0; 0; 8 21 1 1.91 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.74 2
dd1 0 0.03 0.00
dd2 0 0.21 0.00
Sieve-SDP 0; 0; 8 21 1 0.22 0 3.04e-01, 3.04e-01 1.01e-08 0.76 2

136 ex5.6 order17

none 0; 0; 171 629 0 3.04e-01, 3.04e-01 1.78e-06 2.29
pd1 0; 0; 8 21 1 0.60 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.83 2
pd2 0; 0; 8 21 1 2.47 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.84 2
dd1 0 0.03 0.00
dd2 0 0.26 0.00
Sieve-SDP 0; 0; 8 21 1 0.28 0 3.04e-01, 3.04e-01 1.01e-08 0.74 2

137 ex5.6 order18

none 0; 0; 190 702 0 3.04e-01, 3.04e-01 2.53e-06 2.68
pd1 0; 0; 8 21 1 0.75 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.76 2
pd2 0; 0; 8 21 1 3.24 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.83 2
dd1 0 0.04 0.00
dd2 0 0.31 0.00
Sieve-SDP 0; 0; 8 21 1 0.33 0 3.04e-01, 3.04e-01 1.01e-08 0.74 2

138 ex5.6 order19

none 0; 0; 210 779 0 3.04e-01, 3.04e-01 2.54e-06 3.34
pd1 0; 0; 8 21 1 1.06 0.01 0 3.04e-01, 3.04e-01 1.01e-08 1.52 2
pd2 0; 0; 8 21 1 4.87 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.89 2
dd1 0 0.05 0.00
dd2 0 0.45 0.00
Sieve-SDP 0; 0; 8 21 1 0.50 0 3.04e-01, 3.04e-01 1.01e-08 0.92 2

139 ex5.6 order20

none 0; 0; 231 860 0 3.04e-01, 3.04e-01 3.35e-06 5.55
pd1 0; 0; 8 21 1 1.48 0.01 0 3.04e-01, 3.04e-01 1.01e-08 1.02 2
pd2 0; 0; 8 21 1 6.57 0.01 0 3.04e-01, 3.04e-01 1.01e-08 0.91 2
dd1 0 0.07 0.01
dd2 0 0.58 0.01
Sieve-SDP 0; 0; 8 21 1 0.53 0 3.04e-01, 3.04e-01 1.01e-08 1.02 2
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140 ex5.7 order5

none 0; 1; 21 65 0 8.52e-09, -5.99e-09 7.10e-08 0.93
pd1 0; 1; 8 22 1 0.08 0.00 0 1.81e-08, -2.87e-09 5.26e-08 1.20
pd2 0; 1; 8 22 1 0.14 0.00 0 1.81e-08, -2.87e-09 5.26e-08 1.12
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 0; 1; 8 22 1 0.03 0 1.81e-08, -2.87e-09 5.26e-08 1.17

141 ex5.7 order6

none 0; 0; 28, 3 90 0 2.28e-08, -2.32e-09 7.80e-08 0.97
pd1 0; 0; 10, 2 28 1 0.09 0.00 0 7.23e-09, -4.48e-09 2.43e-08 1.07
pd2 0; 0; 10, 2 28 1 0.18 0.00 0 7.23e-09, -4.48e-09 2.43e-08 0.93
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 10, 2 28 1 0.03 0 7.23e-09, -4.48e-09 2.43e-08 1.02

142 ex5.7 order7

none 0; 0; 36, 6 119 0 2.01e-08, -9.32e-09 1.19e-07 0.89
pd1 0; 0; 11, 3 33 1 0.14 0.00 0 7.70e-09, -4.95e-09 2.93e-08 0.89
pd2 0; 0; 11, 3 33 1 0.18 0.00 0 7.70e-09, -4.95e-09 2.93e-08 0.91
dd1 0 0.02 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 11, 3 33 1 0.04 0 7.70e-09, -4.95e-09 2.93e-08 0.95

143 ex5.7 order8

none 0; 0; 45, 10 152 0 1.43e-08, -1.11e-08 1.17e-07 0.93
pd1 0; 0; 12, 4 36 1 0.16 0.00 0 2.24e-08, -2.72e-09 7.97e-08 0.91
pd2 0; 0; 12, 4 36 1 0.26 0.00 0 2.24e-08, -2.72e-09 7.97e-08 1.02
dd1 0 0.02 0.00
dd2 0 0.04 0.00
Sieve-SDP 0; 0; 12, 4 36 1 0.07 0 2.24e-08, -2.72e-09 7.97e-08 1.00

144 ex5.7 order9

none 0; 0; 55, 15 189 0 6.00e-09, -4.83e-09 5.61e-08 1.24
pd1 0; 0; 13, 5 41 1 0.24 0.01 0 2.15e-08, -3.69e-09 8.53e-08 1.19
pd2 0; 0; 13, 5 41 1 0.39 0.01 0 2.15e-08, -3.69e-09 8.53e-08 0.89
dd1 0 0.02 0.00
dd2 0 0.05 0.00
Sieve-SDP 0; 0; 13, 5 41 1 0.10 0 2.15e-08, -3.69e-09 8.53e-08 0.88

145 ex5.7 order10

none 0; 0; 66, 21 230 0 1.30e-08, -1.43e-08 1.69e-07 0.91
pd1 0; 0; 13, 5 41 1 0.31 0.01 0 2.15e-08, -3.69e-09 8.53e-08 0.95
pd2 0; 0; 13, 5 41 1 0.53 0.01 0 2.15e-08, -3.69e-09 8.53e-08 1.58
dd1 0 0.03 0.00
dd2 0 0.07 0.00
Sieve-SDP 0; 0; 13, 5 41 1 0.15 0 2.15e-08, -3.69e-09 8.53e-08 0.94

146 ex5.7 order11

none 0; 0; 78, 28 275 0 1.71e-08, -1.50e-08 2.11e-07 1.11
pd1 0; 0; 14, 6 45 1 0.36 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.91
pd2 0; 0; 14, 6 45 1 0.75 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.93
dd1 0 0.02 0.00
dd2 0 0.07 0.00
Sieve-SDP 0; 0; 14, 6 45 1 0.17 0 1.73e-08, -3.62e-09 8.09e-08 0.95

147 ex5.7 order12

none 0; 0; 91, 36 324 0 5.85e-09, -6.21e-09 7.87e-08 1.04
pd1 0; 0; 14, 6 45 1 0.44 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.91
pd2 0; 0; 14, 6 45 1 1.04 0.01 0 1.73e-08, -3.62e-09 8.09e-08 1.03
dd1 0 0.03 0.00
dd2 0 0.12 0.00
Sieve-SDP 0; 0; 14, 6 45 1 0.24 0 1.73e-08, -3.62e-09 8.09e-08 1.50

148 ex5.7 order13

none 0; 0; 105, 45 377 0 2.13e-08, -2.19e-08 3.23e-07 1.15
pd1 0; 0; 14, 6 45 1 0.49 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.90
pd2 0; 0; 14, 6 45 1 1.56 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.95
dd1 0 0.03 0.00
dd2 0 0.14 0.00
Sieve-SDP 0; 0; 14, 6 45 1 0.31 0 1.73e-08, -3.62e-09 8.09e-08 1.05

149 ex5.7 order14

none 0; 0; 120, 55 434 0 2.24e-08, -2.28e-08 3.72e-07 1.69
pd1 0; 0; 14, 6 45 1 0.77 0.01 0 1.73e-08, -3.62e-09 8.09e-08 1.07
pd2 0; 0; 14, 6 45 1 2.39 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.94
dd1 0 0.03 0.01
dd2 0 0.22 0.01
Sieve-SDP 0; 0; 14, 6 45 1 0.37 0 1.73e-08, -3.62e-09 8.09e-08 0.88

150 ex5.7 order15

none 0; 0; 136, 66 495 0 2.09e-08, -2.22e-08 3.87e-07 1.56
pd1 0; 0; 14, 6 45 1 0.82 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.84
pd2 0; 0; 14, 6 45 1 2.80 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.86
dd1 0 0.03 0.01
dd2 0 0.26 0.01
Sieve-SDP 0; 0; 14, 6 45 1 0.45 0 1.73e-08, -3.62e-09 8.09e-08 1.38

151 ex5.7 order16

none 0; 0; 153, 78 560 0 1.87e-08, -1.91e-08 3.70e-07 2.13
pd1 0; 0; 14, 6 45 1 1.13 0.01 0 1.73e-08, -3.62e-09 8.09e-08 0.97
pd2 0; 0; 14, 6 45 1 3.91 0.01 0 1.73e-08, -3.62e-09 8.09e-08 1.41
dd1 0 0.04 0.01
dd2 0 0.34 0.01
Sieve-SDP 0; 0; 14, 6 45 1 0.60 0 1.73e-08, -3.62e-09 8.09e-08 1.43
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152 ex5.7 order17

none 0; 0; 171, 91 629 0 1.84e-08, -1.83e-08 3.89e-07 2.56
pd1 0; 0; 14, 6 45 1 1.47 0.02 0 1.73e-08, -3.62e-09 8.09e-08 0.92
pd2 0; 0; 14, 6 45 1 5.58 0.02 0 1.73e-08, -3.62e-09 8.09e-08 1.13
dd1 0 0.05 0.01
dd2 0 0.46 0.01
Sieve-SDP 0; 0; 14, 6 45 1 0.95 0 1.73e-08, -3.62e-09 8.09e-08 1.47

153 ex5.7 order18

none 0; 0; 190, 105 702 0 1.76e-08, -1.75e-08 4.12e-07 3.01
pd1 0; 0; 14, 6 45 1 1.76 0.02 0 1.73e-08, -3.62e-09 8.09e-08 0.84
pd2 0; 0; 14, 6 45 1 7.46 0.02 0 1.73e-08, -3.62e-09 8.09e-08 1.15
dd1 0 0.07 0.01
dd2 0 0.58 0.01
Sieve-SDP 0; 0; 14, 6 45 1 0.94 0 1.73e-08, -3.62e-09 8.09e-08 1.36

154 ex5.7 order19

none 0; 0; 210, 120 779 0 1.68e-08, -1.67e-08 4.25e-07 4.46
pd1 0; 0; 14, 6 45 1 2.49 0.02 0 1.73e-08, -3.62e-09 8.09e-08 1.09
pd2 0; 0; 14, 6 45 1 10.47 0.02 0 1.73e-08, -3.62e-09 8.09e-08 0.89
dd1 0 0.05 0.02
dd2 0 0.84 0.02
Sieve-SDP 0; 0; 14, 6 45 1 1.11 0 1.73e-08, -3.62e-09 8.09e-08 1.01

155 ex5.7 order20

none 0; 0; 231, 136 860 0 1.54e-08, -1.69e-08 4.40e-07 5.84
pd1 0; 0; 14, 6 45 1 3.28 0.03 0 1.73e-08, -3.62e-09 8.09e-08 1.02
pd2 0; 0; 14, 6 45 1 13.67 0.03 0 1.73e-08, -3.62e-09 8.09e-08 1.17
dd1 0 0.08 0.02
dd2 0 1.04 0.02
Sieve-SDP 0; 0; 14, 6 45 1 1.71 0 1.73e-08, -3.62e-09 8.09e-08 0.86

A.1.4 Detailed results on the Henrion-Toh dataset

This dataset has 98 problems from polynomial optimization, 18 of which were reduced by at

least one of the five preprocessing methods.

Table A.22: Detailed results on Henrion dataset, part 1 of 2

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

1 sedumi-brown

none 925; 0; 56 461 0 -7.34e-09, 0.00e+00 3.75e-07 0.93
pd1 925; 0; 21 251 1 0.15 0.05 0 -9.33e-11, 0.00e+00 6.25e-09 0.80
pd2 925; 0; 21 251 1 0.23 0.02 0 -9.33e-11, 0.00e+00 6.25e-09 0.78
dd1 0 0.03 0.00
dd2 0 0.06 0.00
Sieve-SDP 925; 0; 21 251 1 0.04 0 -9.33e-11, 0.00e+00 6.25e-09 0.79

2 sedumi-conform3

none 630; 0; 56 285 0 2.05e-08, 0.00e+00 4.54e-07 0.66
pd1 630; 0; 53 273 1 0.04 0.02 0 2.51e-08, 0.00e+00 4.90e-07 0.71
pd2 630; 0; 53 273 1 0.11 0.03 0 2.51e-08, 0.00e+00 4.90e-07 0.73
dd1 0 0.03 0.00
dd2 0 0.06 0.00
Sieve-SDP 630; 0; 53 273 1 0.02 0 2.51e-08, 0.00e+00 4.90e-07 0.68

3 sedumi-conform4

none 1890; 0; 84 454 0 -2.51e-08, 0.00e+00 5.57e-06 0.84
pd1 1890; 0; 81 442 1 0.07 0.04 0 -6.47e-09, 0.00e+00 1.74e-06 0.81
pd2 1890; 0; 81 442 1 0.26 0.04 0 -6.47e-09, 0.00e+00 1.74e-06 0.88
dd1 0 0.02 0.00
dd2 0 0.08 0.00
Sieve-SDP 1890; 0; 81 442 1 0.02 0 -6.47e-09, 0.00e+00 1.74e-06 0.77

4 sedumi-fp23

none 0; 0; 28, 713 209 0 2.13e+02, 2.13e+02 3.97e-06 1.50
pd1 0; 0; 714 83 1 0.09 0.02 0 2.13e+02, 2.13e+02 9.96e-07 1.60 3
pd2 0; 0; 714 83 1 0.13 0.02 0 2.13e+02, 2.13e+02 9.96e-07 1.44 3
dd1 0 0.05 0.00
dd2 0 0.06 0.00
Sieve-SDP 0; 0; 714 83 1 0.04 0 2.13e+02, 2.13e+02 9.96e-07 1.33 3

5 sedumi-fp24

none 0; 0; 105, 1435 2379 0 1.95e+02, 1.95e+02 9.68e-08 6.36
pd1 0; 0; 1436 559 1 0.32 0.21 0 1.95e+02, 1.95e+02 1.74e-10 1.77
pd2 0; 0; 1436 559 1 0.82 0.20 0 1.95e+02, 1.95e+02 1.74e-10 1.90
dd1 0 0.06 0.00
dd2 0 0.25 0.00
Sieve-SDP 0; 0; 1436 559 1 0.23 0 1.95e+02, 1.95e+02 1.74e-10 1.78
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Table A.23: Detailed results on Henrion dataset, part 2 of 2

No. Name Method f; l; s m Red. tprep tconv Infeas Obj (P, D) DIMACS tsol Help

6 sedumi-fp25

none 0; 0; 28, 715 209 0 1.10e+01, 1.10e+01 6.63e-06 1.39
pd1 0; 0; 716 83 1 0.12 0.03 0 1.10e+01, 1.10e+01 1.39e-07 1.46 2,3
pd2 0; 0; 716 83 1 0.17 0.05 0 1.10e+01, 1.10e+01 1.39e-07 1.28 2,3
dd1 0 0.05 0.00
dd2 0 0.07 0.00
Sieve-SDP 0; 0; 716 83 1 0.03 0 1.10e+01, 1.10e+01 1.39e-07 1.30 2,3

7 sedumi-fp26

none 0; 0; 66, 1131 1000 0 2.68e+02, 2.68e+02 3.74e-08 2.11
pd1 0; 0; 1132 285 1 0.17 0.16 0 2.68e+02, 2.68e+02 1.18e-07 1.46
pd2 0; 0; 1132 285 1 0.53 0.15 0 2.68e+02, 2.68e+02 1.18e-07 1.48
dd1 0 0.08 0.00
dd2 0 0.46 0.00
Sieve-SDP 0; 0; 1132 285 1 0.11 0 2.68e+02, 2.68e+02 1.18e-07 1.53

8 sedumi-fp27

none 0; 0; 66, 1125 1000 0 3.90e+01, 3.90e+01 1.96e-10 2.50
pd1 0; 0; 1126 285 1 0.16 0.10 0 3.90e+01, 3.90e+01 3.98e-09 1.50
pd2 0; 0; 1126 285 1 0.39 0.11 0 3.90e+01, 3.90e+01 3.98e-09 1.45
dd1 0 0.05 0.01
dd2 0 0.30 0.01
Sieve-SDP 0; 0; 1126 285 1 0.11 0 3.90e+01, 3.90e+01 3.98e-09 1.46

9 sedumi-fp32

none 0; 0; 165, 4522 3002 0 -7.05e+00, -7.05e+00 2.79e-07 47.43
pd1 0; 0; 454, 93, 4516 1286 1 2.17 0.56 0 -7.05e+00, -7.05e+00 2.50e-06 8.58 3
pd2 0; 0; 454, 93, 4516 1286 1 4.55 0.57 0 -7.05e+00, -7.05e+00 2.50e-06 9.26 3
dd1 0 0.11 0.02
dd2 0 9.78 0.02
Sieve-SDP 0; 0; 454, 93, 4516 1286 1 1.21 0 -7.05e+00, -7.05e+00 2.50e-06 12.14 3

10 sedumi-fp33

none 0; 0; 21, 616 125 0 -1.01e+04, -1.01e+04 3.36e-07 0.75
pd1 0; 0; 13, 616 105 1 0.10 0.04 0 -1.01e+04, -1.01e+04 3.01e-07 0.94
pd2 0; 0; 13, 616 105 1 0.20 0.03 0 -1.01e+04, -1.01e+04 3.01e-07 1.32
dd1 0 0.04 0.00
dd2 0 0.12 0.00
Sieve-SDP 0; 0; 14, 616 111 1 0.03 0 -1.18e+04, -1.18e+04 9.28e-02 1.05 -2

11 sedumi-fp34

none 0; 0; 28, 716 209 0 1.72e+02, 1.72e+02 8.10e-07 0.94
pd1 0; 0; 7, 12, 714 83 1 0.14 0.04 0 1.72e+02, 1.72e+02 3.11e-07 0.88
pd2 0; 0; 7, 12, 714 83 1 0.11 0.03 0 1.72e+02, 1.72e+02 3.11e-07 0.73
dd1 0 0.03 0.00
dd2 0 0.07 0.00
Sieve-SDP 0; 0; 7, 12, 714 83 1 0.02 0 1.72e+02, 1.72e+02 3.11e-07 0.78

12 sedumi-fp35

none 0; 0; 35, 208 164 0 4.00e+00, 4.00e+00 5.76e-06 0.86
pd1 0; 0; 208, 10 119 1 0.16 0.04 0 4.00e+00, 4.00e+00 5.66e-07 0.80 2,3
pd2 0; 0; 208, 10 119 1 0.36 0.05 0 4.00e+00, 4.00e+00 5.66e-07 0.85 2,3
dd1 0 0.03 0.00
dd2 0 0.28 0.00
Sieve-SDP 0; 0; 208, 10 119 1 0.05 0 4.00e+00, 4.00e+00 5.66e-07 0.89 2,3

13 sedumi-fp44

none 0; 0; 4, 32 6 0 4.44e+02, 4.44e+02 4.67e-08 1.02
pd1 0; 0; 33 5 1 0.04 0.00 0 4.44e+02, 4.44e+02 1.55e-08 0.87
pd2 0; 0; 33 5 1 0.04 0.00 0 4.44e+02, 4.44e+02 1.55e-08 0.82
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 33 5 1 0.01 0 4.44e+02, 4.44e+02 1.55e-08 0.77

14 sedumi-fp46

none 0; 0; 10, 62 27 0 6.70e-08, -2.54e-07 4.78e-07 0.89
pd1 0; 0; 5, 3, 2 11 1 0.13 0.00 0 1.54e-07, -2.20e-08 2.22e-07 0.76
pd2 0; 0; 5, 3, 2 11 1 0.14 0.00 0 1.54e-07, -2.20e-08 2.22e-07 0.69
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 0; 0; 5, 3, 2 11 1 0.01 0 1.54e-07, -2.20e-08 2.22e-07 0.76

15 sedumi-fp49

none 1; 0; 6, 34 14 0 1.67e+01, 1.67e+01 5.98e-08 1.04
pd1 1; 0; 4, 34 10 1 0.05 0.00 0 1.67e+01, 1.67e+01 1.40e-08 0.62
pd2 1; 0; 4, 34 10 1 0.06 0.00 0 1.67e+01, 1.67e+01 1.40e-08 0.58
dd1 0 0.02 0.00
dd2 0 0.02 0.00
Sieve-SDP 1; 0; 4, 34 10 1 0.01 0 1.67e+01, 1.67e+01 1.40e-08 0.60

16 sedumi-fp210

none 66; 0; 66, 1110 1000 0 3.75e-01, 3.75e-01 2.15e-07 1.59
pd1 66; 0; 1111 285 1 0.12 0.05 0 3.75e-01, 3.75e-01 2.55e-08 1.35
pd2 66; 0; 1111 285 1 0.17 0.03 0 3.75e-01, 3.75e-01 2.55e-08 1.28
dd1 0 0.05 0.00
dd2 0 0.09 0.00
Sieve-SDP 66; 0; 1111 285 1 0.05 0 3.75e-01, 3.75e-01 2.55e-08 1.31

17 sedumi-fp410

none 1; 0; 6, 34 14 0 1.67e+01, 1.67e+01 5.98e-08 0.87
pd1 1; 0; 4, 34 10 1 0.08 0.01 0 1.67e+01, 1.67e+01 1.40e-08 0.81
pd2 1; 0; 4, 34 10 1 0.08 0.00 0 1.67e+01, 1.67e+01 1.40e-08 0.90
dd1 0 0.03 0.00
dd2 0 0.03 0.00
Sieve-SDP 1; 0; 4, 34 10 1 0.02 0 1.67e+01, 1.67e+01 1.40e-08 0.81

18 sedumi-l4

none 0; 0; 45 152 0 3.70e-02, 3.70e-02 7.10e-08 0.83
pd1 0; 0; 1 1 1 0.15 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.44 1
pd2 0; 0; 1 1 1 0.19 0.00 1 0.00e+00, 1.00e+00 5.00e-01 0.42 1
dd1 0 0.02 0.00
dd2 0 0.05 0.00
Sieve-SDP infeas 0.04 0.00 1
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A.2 Core MATLAB Code

In this section, we provide our core MATLAB code of Sieve-SDP (excluding input, output, and

dual solution recovery) with some comments. In our code, we physically delete rows and columns

of the Ai and of C only at the very end. During the execution of the algorithm we only mark such

rows, columns and constraints as deleted.

We use two arrays to keep track of what has been marked deleted:

1. The m-vector undeleted, whose i-th entry is 1 if constraint i has not been deleted, and 0 if

it has been deleted.

2. The sparse array I ∈ {0, 1}n×(m+1) with entries defined as follows.

• For all i and for 1 ≤ j ≤ m,

I(i, j) =


0, if in Aj the i-th row and column are all zero or have been deleted;

1, otherwise.

• For all i,

I(i, m+ 1) =


0, if in all Aj ’s the i-th row and column have been deleted;

1, otherwise.

1 function[Ar, br, Cr, info] = SieveSDP(A, b, C, EPS)

2 % Inputs:

3 % A: n-by -n*m sparse matrix (m symmetric n-by -n matrices side by side)

4 % b: the vector of rhs in R^m, and b <= 0;

5 % C: the objective coefficient n-by -n matrix;

6 % EPS: accuracy for safe mode , with default value eps

7 % Outputs:

8 % Ar , br , cr: Reduced data after preprocessing

9 % info: A structure containing preprocessing info

10

11 if nargin < 4, EPS = eps; end

12 sqrtEPS = sqrt(EPS);

13 Ar = []; br = []; Cr = []; n = size(C, 1); m = length(b);

115



14 I = true(n, m + 1); % initial nonzero indices

15 for i = 1:m, I(:, i) = any(A(:, (n*(i - 1) + 1):(n*i)), 2); end

16

17 not_done = 1; % 1 means preprocessing not done

18 undeleted = ones(m, 1); % keep track of deleted constraints

19 constr_ind = (1:m); % indices or undeleted constraints

20 mr = m; % reduced number of constraints

21 info.infeas = 0; % infeasibility detected?

22 info.red = 0; % any reduction?

23 bn = -sqrtEPS*max(1, norm(b, inf));

24 % b < 0 if b < -sqrt(epsilon)*max{1, ||b||}

25 bz = bn*sqrtEPS; % b = 0 if -epsilon*max{1, ||b||} < b <= 0

26

27 % Preprocessing

28 while not_done

29 not_done = 0;

30 for ii = 1:mr

31 i = constr_ind(ii);

32 Ii = I(:, i); % indicates undeleted vars in matrix i

33 Ai = A(Ii , n*(i - 1) + find(Ii)); % nonzero submatrix

34 Iaux = any(Ai, 2);

35 if find(Iaux == false , 1),

36 I(Ii , i) = Iaux; Ii = I(:, i); Ai = Ai(Iaux , Iaux);

37 end

38 if isempty(Ai)

39 if b(i) < bn, info.infeas = 1; return; end

40 % Ai = 0 and bi < 0 => infeasible

41 if b(i) > bz, undeleted(i) = 0; continue; end

42 % Ai = 0 and bi = 0 => reduce

43 end

44 if b(i) < bn

45 [~, pd_check] = chol(Ai);

46 if pd_check == 0, info.infeas = 1; return; end

47 % Ai PD and bi < 0 => infeasible

48 else

49 if b(i) > bz
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50 [~, pd_check] = chol(Ai);

51 if pd_check == 0

52 I(Ii , :) = false; undeleted(i) = 0; not_done = 1;

53 % Ai PD and bi = 0 => reduce

54 else

55 [~, nd_check] = chol(-Ai);

56 if nd_check == 0

57 I(Ii, :) = false; undeleted(i) = 0; not_done = 1;

58 % Ai ND and bi = 0 => reduce

59 end

60 end

61 end

62 end

63 end

64 constr_ind = find(undeleted); mr = length(constr_ind);

65 end

66

67 % Undeleted rows/columns marked in I(:, m + 1); now physically delete

68 if mr == m, Ar = A; br = b; Cr = C; info.red = 0; return; end

69 info.red = 1;

70 I_nonzero = I(:, m + 1); nr = nnz(I_nonzero); Ar = sparse(nr , nr*mr);

71 for ii = 1:mr

72 i = constr_ind(ii);

73 Ar(:, (nr*(ii - 1) + 1):(nr*ii)) ...

74 = A(I_nonzero , n*(i - 1) + find(I_nonzero));

75 end

76 br = b(constr_ind); Cr = C(I_nonzero , I_nonzero);

77

78 end

A.3 The DIMACS Errors

For completeness, we describe the DIMACS errors, which are commonly used to measure the

accuracy of approximate solutions X of (P) and y of (D).

Define the operator A : Rm → Sn and its adjoint as
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A(X) = (A1 ·X, . . . , Am ·X)> and A∗(y) =
m∑
i=1

yiAi.

Suppose that we are given an approximate primal solution X of (P) and an approximate dual

solution y of (D). For brevity, define the slack variable Z := C −A∗(y). Then the DIMACS error

measures are defined as follows: err1 = ‖A(X)−b‖2
1+‖b‖∞ , err2 = max

{
0, −λmin(X)

1+‖b‖∞

}
, err3 = ‖A∗(y)+Z−C‖F

1+‖C‖∞ ,

err4 = max
{

0, −λmin(Z)
1+‖C‖∞

}
, err5 = b>y−C·X

1+|C·X|+|b>y| , err6 = Z·X
1+|C·X|+|b>y| .

Here, ‖ · ‖F is the Frobenius norm, ‖ · ‖∞ is the infinity norm, and λmin(·) denotes the smallest

eigenvalue of a square matrix.

A.4 Dual Solution Recovery

In this section we address the following question: suppose we preprocessed the problem (P) by

Sieve-SDP, then computed an optimal solution of the reduced SDP, (Pr) and of its dual, (Dr). Can

we compute an optimal solution of the original primal (P) and of its dual (D)? The answer to the

first question (primal solution recovery) is easy, while the issue of dual solution recovery is much

more subtle.

First let us look at primal solution recovery. Since Sieve-SDP deletes rows and columns from

the variable matrix X that are zeros anyway, if Xr is an optimal solution of (P-R), then by simply

padding Xr with zeroes we obtain an optimal solution of (P).

Next we discuss dual solution recovery. For simplicity assume that Sieve-SDP performed just

one iteration. Further, let us also assume that in the Basic Step in Figure 2.2 it eliminated the

constraint A1 ·X = 0, where

A1 =

D 0

0 0

 ,

where D � 0, and let r be the order of D. After this one iteration of preprocessing, the reduced

dual problem becomes:
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max
y∈Rm−1

∑m
i=2 biyi

s.t.

Z11 Z>21

Z21 Z22

 = Z := C −
∑m

i=2 yiAi ∈

× ×

× ⊕

 ,
(Dr)

where the notation ⊕ means that the lower right (n− r)× (n− r) principal block of slack variable

Z is PSD, and the rest is arbitrary. Thus clearly

D? ≤ D?r , (A.1)

since (Dr) has a feasible region that is at least as large as that of (D) (and usually it is larger).

Assume that yr = (yr
2, . . . , y

r
m) and Zr is an optimal solution of (Dr). Our recovery procedure,

which we call Basic-Recovery, fixes yr and seeks y1 such that (y1, y
r) is feasible in (D), i.e.,

Zr − y1A1 � 0. (A.2)

We do this by a very basic line-search: we first try the values y1 = 0, −1 and −2. If these

all fail, then we try y1 = −100. If we fail with y1 = −100, we stop; otherwise we test y1 =

−3,−4, . . . , and find the y1 with the smallest magnitude such that (A.2) holds, where we test

whether Zr − y1A1 + 10−6I � 0 holds by Cholesky factorization.

When Sieve-SDP deletes multiple constraints, we run Basic-Recovery to find the corresponding

yi’s sequentially. For simplicity, assume that Sieve-SDP deleted constraints 1, 2, . . . , k and we found

an optimal primal and dual solution of the resulting SDP (using MOSEK). We then attempt to

find an optimal dual solution of the SDP obtained by deleting only constraints 1, . . . , k − 1; then

to the SDP obtained by deleting only constraints 1, . . . , k − 2; and so on.

Basic-Recovery is inspired by the dual solution recovery procedure in [104], which builds on the

ideas in [101], and it assumes that the dual problem (D) is the one that is reduced.1

A.4.1 Conditions to ensure successful dual solution recovery

The procedure Basic-Recovery may fail. To see why, first assume that it succeeds, i.e.,

1See Remark 2.1 about how the primal and dual are defined in [104].
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it computes a feasible solution of (D). Since y1 has zero objective coefficient in (D), this solution

has objective value D?r , hence by inequality (A.1), it is optimal in (D), thus D? = D?r . Conversely,

if D? < D?r , then Basic-Recovery must fail.

Example A.1 (Example 2.3 continued). When we apply Sieve-SDP to the SDP (2.4), it deletes

the first row and first column in all matrices and it also deletes the first constraint. Let us write

out (Dr) again for this problem (i.e., repeat the SDP (2.7)):

max
y

y2

s.t. y2

1 0

0 0

 �
1 0

0 0

 ,
(A.3)

whose optimal solution is yr2 = 1. Thus, Basic-Recovery seeks y1 such that

y1


1 0 0

0 0 0

0 0 0

+


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0

 ,

and clearly there is no such y1. �

For completeness, we state two conditions, given by [104], that ensure successful dual solution

recovery for one iteration. While [104] states the conditions in the dual direction, we here use the

notation and the block structure of (Dr). Condition A.1 is equivalent to successful dual recovery,

and Condition A.2 is a strong sufficient condition.

Condition A.1. R(Z21) ⊆ R(Z22).

Condition A.2. Any X of the form

X =

 0 X>21

X21 X22

 ,

that satisfies

Ai ·X = bi, i = 2, . . . ,m

has X21 = 0.
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We remark here that if Condition A.2 holds, and (Dr) has optimal solution (yr, Zr), where

Zr
22 � 0, then there exists an optimal solution of (Dr) of the form

yr, new := yr + ŷ and Zr, new =

Zr
11 + Ẑ11 0

0 Zr
22

 .

Therefore, in view of Condition A.1, dual solution recovery succeeds.

However, Condition A.2 is very strong, and none of the reduced problems in our datasets

satisfies it. Thus, it may only have conceptual value.

A.4.2 Computational results on dual solution recovery

As discussed in the last Subsection (and Subsection A.4.3), we point out that dual solution

recovery is much more difficult in SDP than in LP. We thus implemented an “ideal” recovery

procedure, which we call Ideal-Recovery. It works as follows. Suppose yr = (yr
k+1, . . . , y

r
m) is an

optimal dual solution of the SDP obtained by deleting constraints 1, . . . , k. Ideal-Recovery fixes yr,

then calls MOSEK to find a feasible solution (y1, . . . , yk) of the semidefinite feasibility problem

k∑
i=1

yiAi +
m∑

i=k+1

yr
iAi � C. (A.4)

Table A.24 shows on how many instances methods pd1+Basic-Recovery, pd2+Basic-Recovery,

Sieve-SDP+Basic-Recovery and Sieve-SDP+Ideal-Recovery succeeded. (Note that these three pre-

processors succeeded on overlapping, but different problem sets, as a preprocessor may reduce an

SDP, while another preprocessor may not reduce the same SDP. We do not report results with dd1

and dd2, since they preprocess from the dual direction and only reduced a very small proportion

of the problems.)

Table A.24: Dual solution recovery by four methods

Method # Reduced feasible # Success # Failure Success rate Time (s)

pd1 + Basic-Recovery 137 23 114 16.8% 154.75
pd2 + Basic-Recovery 158 39 119 24.7% 172.13
Sieve-SDP + Basic-Recovery 143 25 118 17.5% 12.62
Sieve-SDP + Ideal-Recovery 143 103 40 72.0% 1313.57

121



For pd1+Basic-Recovery and pd2+Basic-Recovery, success means that their dual solution re-

covery code reported success. For Sieve-SDP+Basic-Recovery, success means that it succeeded in

every iteration: it computed the yi for every deleted constraint. For Sieve-SDP+Ideal-Recovery it

means that MOSEK did not report that (A.4) is infeasible.

Next, we make the criterion of “success” more rigorous: we redefined “success” as returning a

pair of primal-dual optimal solutions whose greatest DIMACS error in absolute value is at most

10−6. Table A.25 shows the results: now Sieve-SDP+Basic-Recovery is the winner, as it beats the

supposedly perfect Sieve-SDP+Ideal-Recovery procedure. The success rates of pd1+Basic-Recovery

and pd2+Basic-Recovery have also dropped.

Table A.25: Dual solution recovery assuming the tightest standard for “success”

Method # Reduced feasible # Success # Failure Success rate Time (s)

pd1 + Basic-Recovery 137 19 118 13.9% 154.75
pd2 + Basic-Recovery 158 34 124 21.5% 172.13
Sieve-SDP + Basic-Recovery 143 25 118 17.5% 12.62
Sieve-SDP + Ideal-Recovery 143 17 126 11.9% 1313.57

Nevertheless, none of the methods do very well, and dual solution recovery in facial reduction

remains a challenge, and is an interesting area for further research.

A.4.3 Case study: Failure of dual solution recovery on “unbound” problems

These 10 “unbound” problems, originally from [139], are part of the PP dataset and were

discussed in Subsection 2.3.2. During preprocessing, pd1 and pd2 reduced the last 9 out of 10

problems, and Sieve-SDP reduced all 10 problems. However, none of these methods were able to

recover the dual solution for any of the last 9 problems using Basic-Recovery or Ideal-Recovery

introduced in the last Subsection. Therefore, we take a closer look at these problems.

For each r ∈ {1, . . . , 10}, the r-th problem in this dataset is

min
X∈S3r+1

+

C ·X, s.t. A1 ·X = 1, Ai ·X = 0, i = 2, 3, . . . , 2r,

where C and Ai are the following diagonal block matrices:
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C =


E0

Or

−F0

 , Ai =


Ei

Fi−1

Fi−2 − Fi

 , i = 2, 3, . . . , 2r − 2,

A1 =


E1

F0

−F1

 , A2r−1 =


E2r−1

F2r−2

F2r−3

 , A2r =


E2r

Or

F2r−2

 ,

where all the empty blocks mean zeros, and Ej and Fj are defined as:

(Ej)α,β =


1, if α+ β = j + 2,

0, o/w,

and (Fj)α,β =


1, if α+ β = j + 2,

0, o/w,
(A.5)

where 1 ≤ α, β ≤ r+1 for Ej ∈ Sr+1 (j = 0, 1, . . . , 2r), and 1 ≤ α, β ≤ r for Fj (j = 0, 1, . . . , 2r−2).

During Sieve-SDP preprocessing, by the structure shown in (A.5), in the k-th iteration, A2r−k+1

is the reducing certificate, k = 1, 2, . . . , 2r − 1. If k is odd, the
(

2r−k+3
2 , 2r−k+3

2

)
-entry of the first

diagonal block and the
(

2r−k+1
2 , 2r−k+1

2

)
-entry of the third diagonal block are deleted, i.e., the

corresponding rows and columns of X become 0; if k is even, the
(

2r−k+2
2 , 2r−k+2

2

)
-entry of the

second diagonal block is deleted. In the end, the only constraint left is A1 ·X = 1, and the fully

reduced primal problem is

min
X∈S3r+1



1

Or

Or

−1

Or−1


·X,
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s.t.



0 1

1 0

Or−1

1

Or−1

0 −1

−1 0

Or−2



·X = 1,

X =



x11 x21

Or

x21 x22

Or−1

Or


,

 x11 x21

x21 x22

 � 0,

where we have explicitly partitioned the block structure, and x11, x21, and x22 are scalars. The

fully reduced dual problem is

max
y∈R2r, Z∈S3r+1

y1

s.t. Z =



1 −y1

−y1 0

Or−1

−y1

Or−1

−1 y1

y1 Or−1



,

 1

−y1

 � 0,

with optimal solution
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yr
1 = 0, Zr =



1

Or

Or

−1

Or−1


.

In the first iteration of dual solution recovery, the reducing certificate is A2, and the “deleted”

rows (or columns) are the second row of the first diagonal block and the first row of the third

diagonal block. In this iteration, the slack matrix is

Zr − y2A2 =



1 0 −y2

0 −y2 0

−y2 0 0

Or−2

0 −y2

−y2 0

Or−2

−1− y2 0 y2

0 y2 0

y2 0 0

Or−3



,

and we seek y2 is such that 

1 0

0 −y2

0

−1− y2


� 0,

i.e., y2 ≤ −1.

In the second iteration of dual solution recovery, the reducing certificate is A3, and the “deleted”

row (column) is the second row of the second diagonal block. The resulting slack variable is shown
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as (A.6), where we seek y2 ≤ −1 and y3 such that



1 0

0 −y2

0 −y2

−y2 −y3

−1− y2


� 0.

However, it is impossible, since the second block being PSD requires y2 = 0, contradicting with our

result y2 ≤ 1 from the previous iteration. Thus we have shown that dual solution recovery always

fails for “unbound” problems with r ≥ 2.

By [139, Theorem 1 and Proposition 1], we know that this set of problems indeed have dual

objective value 0, but they do not have strong duality when r ≥ 2, and in this case the optimal

objective value of the dual is not attained. Therefore, we were not able to recover the original dual

solution since we started with a reduced dual solution with an attained objective value 0.
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Z
r
−
y 2
A

2
−
y 3
A

3
=

                                          

0
0

−
y 2
−
y 3

0
−
y 2
−
y 3

0

−
y 2
−
y 3

0
0

−
y 3

0
0

0

O
r
−

3

0
−
y 2
−
y 3

−
y 2
−
y 3

0

−
y 3

0
0

O
r
−

3

−
1
−
y 2
−
y 3

y 2
y 3

−
y 3

y 2
y 3

0

y 2
y 3

0
0

y 3
0

0
0

O
r
−

4

                                          

(A
.6

)
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APPENDIX B

SUPPLEMENTAL CONTENT FOR CHAPTER 3

B.1 A Preliminary Lemma

This appendix provides a lemma with some elementary results, which are useful in our analysis

in Chapter 3.

Lemma B.1. The following statements hold:

1. For any u, v, w ∈ Rp and t1, t2 ∈ R with t1 + t2 6= 0, it holds that

t1‖u− w‖2 + t2‖v − w‖2 = (t1 + t2)

∥∥∥∥w − t1u+ t2v

t1 + t2

∥∥∥∥2

+
t1t2
t1 + t2

‖u− v‖2.

2. Let {uk} be a nonnegative sequence. If
∑∞

k=1 uk <∞, then lim infk→∞(k log k)uk = 0.

3. Let {uk} and {vk} be two nonnegative sequences and t1, t2 > 0 be two constants.

(a) If lim infk→∞(k log k)(uk + t1kv
2
k) = 0, then lim infk→∞ k

√
log k(uk + t2vk) = 0.

(b) If lim infk→∞(k2 log k)(uk + t1k
2v2
k) = 0, then lim infk→∞ k

2
√

log k(uk + t2vk) = 0.

Proof. 1. It is elementary, and we skip its proof.

2. Since uk ≥ 0, and the lim inf of a lower bounded sequence always exists, we set ū :=

lim infk→∞(k log k)uk ≥ 0. Assume that ū > 0. Then, by definition, for any ε > 0 such that

ū−ε > 0, there exists integer kε ≥ 2 such that for any k ≥ kε it holds that (k log k)uk ≥ ū−ε.

This leads to

+∞ >
∞∑
k=1

uk ≥
∞∑

k=kε

uk ≥
∞∑

k=kε

ū− ε
k log k

= (ū− ε)
∞∑

k=kε

1

k log k
= +∞,

which is a contradiction. Hence, we must have ū = 0, which proves that

lim infk→∞(k log k)uk = 0.

3. For the first part (a) of item 3, since lim infk→∞(k log k)(uk + t1kv
2
k) = 0, there exists a

subsequence {(kj log kj)(ukj + t1kjv
2
kj

)}j≥0 that converges to 0, i.e., for any ε > 0, there exists

jε ≥ 0 such that for any j ≥ jε, it holds that
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(kj log kj)(ukj + t1kjv
2
kj

) < min

{
ε

2
,
t1ε

2

4t22

}
.

Thus, we have

 kj
√

log kjukj ≤ (kj log kj)ukj <
ε
2 , and

t2kj
√

log kjvkj = t2√
t1

√
t1(k2

j log kj)v2
kj
< t2√

t1

√
t1ε2

4t22
= ε

2 ,

which implies that kj
√

log kj(ukj + t2vkj ) <
ε
2 + ε

2 = ε, which proves the first part (a) of item

3. The second part (b) of item 3 can be proved analogously. �

B.2 Supplemental Proofs in Section 3.3: General Convex-Concave Case

This appendix provides the supplemental proofs of technical results in Section 3.3. Firstly,

we prove the following claim used in Lemma 3.2 in Subsection 3.3.2 for one-iteration analysis of

Algorithm 1.

Lemma B.2. Let
{

(xk, ỹk)
}

be generated by scheme (3.27), and {sk} be given by (3.22). Then,

for any (x, s) ∈ Rp × Rm, it holds that

Lρk(xk+1, sk+1, ỹk) ≤ Lρk(x, s, ỹk) + 1
βk
〈xk+1 − x̂k, x− xk+1〉

−ρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2 +

Lk+Lf+ρkM
2
g

2 ‖xk+1 − x̂k‖2.
(B.1)

Proof. First, the optimality condition of the xk+1-subproblem in the second line of (3.27), which is

equivalent to (3.23), can be written as

0 = βk∇h(xk+1) + βk∇f(x̂k) + βk∇xφρk(x̂k, sk+1, ỹk) + xk+1 − x̂k, (B.2)

for some ∇h(xk+1) ∈ ∂h(xk+1). Next, by convexity of h and Lf -smoothness of f , for any x ∈ domP

we have  h(xk+1) ≤ h(x) + 〈∇h(xk+1), xk+1 − x〉,

f(xk+1) ≤ f(x) + 〈∇f(x̂k), xk+1 − x〉+
Lf
2 ‖x

k+1 − x̂k‖2.

Combining these two inequalities and then using (B.2) and F := f + h, we can derive
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F (xk+1) ≤ F (x)− 〈∇xφρk(x̂k, sk+1, ỹk), xk+1 − x〉+
Lf
2 ‖x

k+1 − x̂k‖2

− 1
βk
〈xk+1 − x̂k, xk+1 − x〉.

(B.3)

Similarly, by the sk+1-subproblem (3.22) and the convexity of H, we have

H(−sk+1) ≤ H(−s) + 〈∇sφρk(x̂k, sk+1, ỹk), s− sk+1〉. (B.4)

Furthermore, combining (3.26) and the definition of Lk in (3.28), we have Lk =

Lg
(
ỹk + ρk[g(x̂k) + sk+1]

)
. Thus, we can use (3.19) in Lemma 3.1, for any (x, s) ∈ Rp × Rm,

to get



φρk(xk+1, sk+1, ỹk) ≤ φρk(x̂k, sk+1, ỹk) + 〈∇xφρk(x̂k, sk+1, ỹk), xk+1 − x̂k〉

+ρk
2 ‖g(xk+1)− g(x̂k)‖2 + Lk

2 ‖x
k+1 − x̂k‖2,

φρk(x, s, ỹk) ≥ φρk(x̂k, sk+1, ỹk) + 〈∇xφρk(x̂k, sk+1, ỹk), x− x̂k〉

+〈∇sφρk(x̂k, sk+1, ỹk), s− sk+1〉+ ρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2.

(B.5)

By (3.6), the above two inequalities imply

φρk(xk+1, sk+1, ỹk) ≤ φρk(x, s, ỹk) + 〈∇xφρk(x̂k, sk+1, ỹk), xk+1 − x〉

+〈∇sφρk(x̂k, sk+1, ỹk), sk+1 − s〉+
Lk+ρkM

2
g

2 ‖xk+1 − x̂k‖2

−ρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2.

(B.6)

Now, combining (B.3)-(B.6), we can derive

Lρk(xk+1, sk+1, ỹk) = F (xk+1) +H(−sk+1) + φρk(xk+1, sk+1, ỹk)

≤ F (x) +H(−s) + φρk(x, s, ỹk) + 1
βk
〈xk+1 − x̂k, x− xk+1〉

−ρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2 +

Lk+Lf+ρkM
2
g

2 ‖xk+1 − x̂k‖2,

which proves (B.1).

The following lemma shows the boundedness of {‖ỹk − y?‖} and {‖xk − x?‖}. It is used in the

proof of Theorem 3.1 in Subsubsection 3.3.2.1 for proving the O
(

1
k

)
ergodic rate of Algorithm 1.

Lemma B.3. Let {(xk, ỹk)} be generated by Algorithm 1, where the parameters, including ρ and
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C, are set as in (3.43) and (3.44). Then, for all k ∈ N, we have

Lg(‖y?‖+ ‖ỹk − y?‖+ ρMg‖xk − x?‖) ≤ ρC. (B.7)

Proof. We prove (B.7) by induction. For k = 0, (B.7) holds due to the choice of C in (3.43). Suppose

that (B.7) holds for all k ∈ {0, 1, . . . ,K} for some K ≥ 0, i.e., Lg(‖y?‖+‖ỹk−y?‖+ρMg‖xk−x?‖) ≤

ρC, we now prove that (B.7) also holds for K + 1. Indeed, using y? = proxρH∗ (y? + ρg(x?)) from

(3.12), for 0 ≤ k ≤ K we have

Lk
(3.28)

= Lg(y
k+1)

(3.27)
= Lg

(
proxρH∗

(
ỹk + ρg(xk)

))
(3.12)

= Lg
(
proxρH∗

(
ỹk + ρg(xk)

)
− proxρH∗ (y? + ρg(x?)) + y?

)
≤ Lg

[
‖proxρH∗

(
ỹk + ρg(xk)

)
− proxρH∗ (y? + ρg(x?)) ‖+ ‖y?‖

]
≤ Lg

(
‖[ỹk + ρg(xk)]− [y? + ρg(x?)]‖+ ‖y?‖

)
≤ Lg

(
‖y?‖+ ‖ỹk − y?‖+ ρMg‖xk − x?‖

)
≤ ρC,

(B.8)

where in the third line we applied Assumption 3.2(3), in the fourth line we used the non-

expansiveness of proximal operators, and the last inequality is due to induction assumption. Now,

by definitions of β and η in (3.43), for 0 ≤ k ≤ K, we have

1

β
− Lk − Lf −

ρ2M2
g

ρ− η
(3.43)(B.8)

≥
γLf + ρ(γC +M2

g )

γ
− ρC − Lf −

ρ2M2
g

γρ
= 0. (B.9)

Using this estimate, we substitute τk := 1 and x̃k := xk into (3.29) of Lemma 3.2 to obtain for any

(x, s, y) ∈ Rp × Rm × Rm that

Lρ(xk+1, sk+1, y)− L(x, s, yk+1) ≤ 1
2β

(
‖xk − x‖2 − ‖xk+1 − x‖2

)
+ 1

2η

(
‖ỹk − y‖2 − ‖ỹk+1 − y‖2

)
.

(B.10)

By (3.14), we have Lρ(xk+1, sk+1, y?)− L(x?, s?, yk) ≥ 0. Hence,(B.10) implies that

1

β
‖xk+1 − x?‖2 +

1

η
‖ỹk+1 − y?‖2 ≤ 1

β
‖xk − x?‖2 +

1

η
‖ỹk − y?‖2.

Since the above inequality holds for all 0 ≤ k ≤ K, we can show that

131



1
β‖x

K+1 − x?‖2 + 1
η‖ỹ

K+1 − y?‖2 ≤ 1
β‖x

K − x?‖2 + 1
η‖ỹ

K − y?‖2

≤ 1
β‖x

0 − x?‖2 + 1
η‖y

0 − y?‖2 (3.42)
= R2

0(x?, y?).

The last inequality leads to ‖xK+1− x?‖ ≤
√
βR0(x?, y?) and ‖ỹK+1− y?‖ ≤ √ηR0(x?, y?). Using

these bounds and (3.43), we can derive

Lg(‖y?‖+ ‖ỹK+1 − y?‖+ ρMg‖xK+1 − x?‖) ≤ Lg[‖y?‖+ (
√
η + ρ

√
βMg)R0(x?, y?)]

(3.43)

≤ ρC.

Hence, we prove that (B.7) also holds for K + 1. By induction, it holds for all k ∈ N.

The following proof shows that the parameter initialization (3.49) in Remark 3.1 indeed satisfies

the condition (3.43) in Theorem 3.1.

Proof for Remark 3.1. For simplicity, we set ρ := 1 and γ := 1
2 . Substituting them into the

expression of β, η, and R2
0(x?, y?), we get

β =
1

Lf + C + 2M2
g

, η =
1

2
, and R2

0(x?, y?) ≤ (Lf + C + 2M2
g + 2)D2, (B.11)

where D ≥ max{‖x0 − x?‖, ‖y0 − y?‖, ‖y?‖} is defined in Remark 3.1. Substituting the above

expressions for ρ, β, η, γ, and R2
0(x?, y?) into the second line of (3.43), we only need the following

inequality in order for (3.43) to hold:

1 +
√

Lf+C
2 +M2

g + 1 +Mg

√
1 + 2

Lf+C+2M2
g

= 1 +

(
1√
2

+
Mg√

Lf+C+2M2
g

)√
Lf + C + 2M2

g + 2 ≤ C
LgD

.
(B.12)

Let

C ≥ Lf + 2M2
g + 2, (B.13)

then
Lf+C

2 +M2
g + 1 ≤ C and 2

Lf+C+2M2
g
≤ 3. Substituting them into the left-hand-side in (B.12),

we only need the following inequality in order for (B.12) to hold:

1 +
√
C + 2Mg ≤

C

LgD
,

which can be solved as
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√
C ≥

√
LgD(LgD + 4Mg + 2), (B.14)

where we have used t1+t2
2 ≤

√
t21+t22

2 to simplify the expression. Combining (B.13) and (B.14), we

finally get (3.49).

The lemma below bounds the term
{
Lk
ρk

}
. It is used in the proof of Theorem 3.2 in Subsub-

section 3.3.2.2 for proving the O
(

1
k

)
semi-ergodic rate of Algorithm 1.

Lemma B.4. Let
{
ỹk
}

be generated by Algorithm 1, where the parameters, including ρk and γ,

are defined in (3.50) and (3.51). Let Bg and s∗ be defined in Theorem 3.2. Then for k ∈ N,

‖ỹk‖
ρk
≤ 1

γ

[
‖y0‖
ρ0

+ 2(1− γ)(Bg + ‖s∗‖)
]
. (B.15)

Proof. Since Bk ≡ Rm, i.e., there is no projection, the ỹk+1-update in Algorithm 1 becomes ỹk+1 :=

ỹk + ηk[Θk+1 − (1− τk)Θk]. Thus

ỹk+1 − ηkΘk+1 = ỹk − (1− τk)ηkΘk
(3.51)

= ỹk − ηk−1Θk.

By induction, for all k ∈ N, we obtain

ỹk+1 − ηkΘk+1 = ỹ1 − η0Θ1 = ỹ0 − (1− τ0)η0Θ0 = y0. (B.16)

Next, by definition of s∗, we have −s∗ = proxH/ρk(−s∗) for any ρk > 0. By the update of sk+1 in

(3.22), the definition of Bg, and the non-expansiveness of proxH/ρk , we have

‖sk+1‖ =
∥∥∥proxH/ρk

(
ỹk

ρk
+ g(x̂k)

)
− proxH/ρk(−s∗)− s∗

∥∥∥
≤
∥∥∥ ỹkρk + g(x̂k) + s∗

∥∥∥+ ‖s∗‖ ≤ ‖ỹ
k‖
ρk

+Bg + 2‖s∗‖.

Furthermore, by the Θk+1-update in (3.27) and the connection between yk+1 and sk+1 described

by (3.26), we have

‖Θk+1‖ = ‖g(xk+1) + sk+1‖ ≤ Bg + ‖sk+1‖ ≤ 2Bg + 2‖s∗‖+
‖ỹk‖
ρk

. (B.17)
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Now, we can prove (B.15) by induction. For k = 0, it is true since γ ∈ (0, 1) and ỹ0 = y0.

Suppose that (B.15) holds for some K ≥ 0. We prove that it also holds for K + 1. Indeed, using

(B.16), (B.17), ρK+1 ≥ ρ0, and the induction hypothesis, we have

‖ỹK+1‖
ρK+1

(B.16)
= 1

ρK+1
‖y0 + ηKΘK+1‖

(3.51)

≤ ‖y0‖
ρ0

+ (1− γ)‖ΘK+1‖
(B.17)

≤ ‖y0‖
ρ0

+ (1− γ)
(

2Bg + 2‖s∗‖+ ‖ỹK‖
ρK

)
≤ ‖y0‖

ρ0
+ (1− γ)

(
2Bg + 2‖s∗‖+ 1

γ

[
‖y0‖
ρ0

+ 2(1− γ)(Bg + ‖s∗‖)
])

= 1
γ

[
‖y0‖
ρ0

+ 2(1− γ)(Bg + ‖s∗‖)
]
.

This shows that (B.15) also holds for K + 1. Therefore, by induction, we conclude that (B.15)

holds for all k ∈ N.

B.3 Supplemental Proofs in Section 3.4: Strongly Convex-Concave Case

This section provides the supplemental proofs of technical results in Section 3.4. Firstly, we

prove the following two lemmas used in Lemma 3.3 in Subsection 3.4.2 for one-iteration analysis of

Algorithm 2.

Lemma B.5. Let
{

(xk, x̃k, x̂k, ỹk)
}

be generated by (3.64) with τk ∈ [0, 1], and {sk} be defined in

(3.22). Let us define

x̆k+1 := (1− τk)xk + τkx̃
k+1. (B.18)

Then, for any (x, s) ∈ Rp × Rm,

F (xk+1) +H(−sk+1) ≤ (1− τk)[F (xk) +H(−sk)] + τk[F (x) +H(−s)]

+〈∇xφρk(x̂k, sk+1, ỹk), (1− τk)xk + τkx− xk+1〉

+〈∇sφρk(x̂k, sk+1, ỹk), (1− τk)sk + τks− sk+1〉

+
τ2k

2βk
‖x̃k − x‖2 − τk(τk+βkµh)

2βk
‖x̃k+1 − x‖2 − 1

2

(
1
αk
− Lf

)
‖xk+1 − x̂k‖2

−1
2

(
1
αk

+ µh

)
‖x̆k+1 − xk+1‖2 − 1

2

(
1
βk
− 1

αk

)
‖x̆k+1 − x̂k‖2.

(B.19)

Proof. Firstly, from the optimality condition of the x̃k+1-subproblem in the second line of (3.64),

there exists ∇h(x̃k+1) ∈ ∂h(x̃k+1) such that
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∇h(x̃k+1) = − τk
βk

(x̃k+1 − x̃k)− [∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk)],

where we have used the expression of ∇xφ in (3.17). Combining this expression and (B.18), and

using the µh-strong convexity of h, we can derive

h(x̆k+1) ≤ (1− τk)h(xk) + τkh(x) + τk〈∇h(x̃k+1), x̃k+1 − x〉

− τkµh
2 ‖x̃

k+1 − x‖2 − τk(1−τk)µh
2 ‖x̃k+1 − xk‖2

= (1− τk)h(xk) + τkh(x)− τk〈∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk), x̃k+1 − x〉

− τ2k
βk
〈x̃k+1 − x̃k, x̃k+1 − x〉 − τkµh

2 ‖x̃
k+1 − x‖2 − τk(1−τk)µh

2 ‖x̃k+1 − xk‖2.

(B.20)

Next, by the xk+1-subproblem in the third line of (3.64) and the µh-strong convexity of h, we can

show that

h(xk+1) + 1
2αk
‖xk+1 − x̂k‖2 + 〈∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk), xk+1 − x̂k〉

≤ h(x̆k+1) + 1
2αk
‖x̆k+1 − x̂k‖2

+〈∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk), x̆k+1 − x̂k〉 −
(

1
2αk

+ µh
2

)
‖x̆k+1 − xk+1‖2.

(B.21)

Combining (B.18), (B.20), and (B.21), and using x̆k+1 − x̂k = τk(x̃
k+1 − x̃k), we further derive

h(xk+1)
(B.21)

≤ h(x̆k+1) + 〈∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk), x̆k+1 − xk+1〉

+ 1
2αk

(‖x̆k+1 − x̂k‖2 − ‖xk+1 − x̂k‖2 − ‖x̆k+1 − xk+1‖2)− µh
2 ‖x̆

k+1 − xk+1‖2

(B.20)

≤ (1− τk)h(xk) + τkh(x)− τ2k
βk
〈x̃k+1 − x̃k, x̃k+1 − x〉 − τkµh

2 ‖x̃
k+1 − x‖2

+〈∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk), x̆k+1 − xk+1 − τk(x̃k+1 − x)〉

+ 1
2αk

(‖x̆k+1 − x̂k‖2 − ‖xk+1 − x̂k‖2 − ‖x̆k+1 − xk+1‖2)

− τk(1−τk)µh
2 ‖x̃k+1 − xk‖2 − µh

2 ‖x̆
k+1 − xk+1‖2

(B.18)

≤ (1− τk)h(xk) + τkh(x) +
τ2k

2βk
‖x̃k − x‖2 − τk(τk+βkµh)

2βk
‖x̃k+1 − x‖2

+〈∇f(x̂k) +∇xφρk(x̂k, sk+1, ỹk), (1− τk)xk + τkx− xk+1〉

−1
2

(
1
βk
− 1

αk

)
‖x̆k+1 − x̂k‖2 − 1

2αk
‖xk+1 − x̂k‖2 − 1

2

(
1
αk

+ µh

)
‖x̆k+1 − xk+1‖2.

(B.22)

On the other hand, by the Lf -smoothness and the convexity of f , one can show that
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f(xk+1) ≤ f(x̂k) + 〈∇f(x̂k), xk+1 − x̂k〉+
Lf
2 ‖x

k+1 − x̂k‖2

≤ (1− τk)f(xk) + τkf(x) + 〈∇f(x̂k), xk+1 − (1− τk)xk − τkx〉

− (1−τk)τkµf
2 ‖xk − x‖2 +

Lf
2 ‖x

k+1 − x̂k‖2.

(B.23)

Moreover, by the sk+1-subproblem in (3.22), we get exactly (B.4) again, which implies

H(−sk+1) ≤ (1− τk)H(−sk) + τkH(−s)

+〈∇sφρk(x̂k, sk+1, ỹk), (1− τk)sk + τks− sk+1〉.
(B.24)

Finally, combining (B.22)-(B.24), we obtain (B.19).

Lemma B.6. Let
{

(xk, yk)
}

be generated by (3.64) with τk ∈ [0, 1], and {sk} be defined in (3.22),

then, for any (x, s) ∈ Rp × Rm, we have

φρk(xk+1, sk+1, ỹk) ≤ (1− τk)φρk(xk, sk, ỹk) + τkφρk(x, s, ỹk) +
Lk+ρkM

2
g

2 ‖xk+1 − x̂k‖2

+〈∇xφρk(x̂k, sk+1, ỹk), xk+1 − (1− τk)xk − τkx〉

+〈∇sφρk(x̂k, sk+1, ỹk), sk+1 − (1− τk)sk − τks〉

− (1−τk)ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2

− τkρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2.

(B.25)

Proof. Combining (3.26) and the definition of Lk in (3.28), we have Lk = Lg
(
ỹk + ρk[g(x̂k) + sk]

)
.

Thus we can use (3.19) in Lemma 3.1 and the Mg-Lipschitz continuity of g to get



φρk(xk+1, sk+1, ỹk) ≤ φρk(x̂k, sk+1, ỹk) + 〈∇xφρk(x̂k, sk+1, ỹk), xk+1 − x̂k〉

+
Lk+ρkM

2
g

2 ‖xk+1 − x̂k‖2,

φρk(x, s, ỹk) ≥ φρk(x̂k, sk+1, ỹk) + 〈∇xφρk(x̂k, sk+1, ỹk), x− x̂k〉

+〈∇sφρk(x̂k, sk+1, ỹk), s− sk+1〉+ ρk
2 ‖[g(x) + s]− [g(x̂k) + sk+1]‖2.

(B.26)

Letting (x, s) := (xk, sk) in the second inequality of (B.26), we get

φρk(xk, sk, ỹk) ≥ φρk(x̂k, sk+1, ỹk) + 〈∇xφρk(x̂k, sk+1, ỹk), xk − x̂k〉

+〈∇sφρk(x̂k, sk+1, ỹk), sk − sk+1〉

+ρk
2 ‖[g(xk) + sk]− [g(x̂k) + sk+1]‖2.

(B.27)
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Multiplying the second inequality of (B.26) by τk, multiplying (B.27) by 1 − τk, and then adding

them to the first inequality of (B.26), we arrive at (B.25).

To prove Theorem 3.4 for deriving the O
(

1
k2

)
ergodic rate of Algorithm 2, we need the following

two technical lemmas.

Lemma B.7. Let ρk, βk, and ηk be defined by (3.72) and (3.73) of Theorem 3.4. Then, for all

k ∈ N, we have


βk ≤ Γ

Lf+ρkM̂2
, ρk ≥ ρ0 + (

√
1 + µhβ0 − 1)ρ0k,

1+µhβk
βk

= 1
θk+1βk+1

, 1
ρk

= 1
θk+1ρk+1

, and 1
ηk

= 1
θk+1ηk+1

.
(B.28)

Proof. We prove the first inequality in (B.28) by induction. First, it holds with equality for k = 0

due to the definition of β0. Furthermore, if it holds for k ≥ 0, then

βk+1
(3.73)

= θk+1βk ≤
θk+1Γ

Lf + ρkM̂2
=

Γ
Lf
θk+1

+ ρk
θk+1

M̂2

(3.73)

≤ Γ

Lf + ρk+1M̂2
.

Thus the first inequality of (B.28) is also true for k+ 1. By induction, the first inequality in (B.28)

holds for all k ∈ N.

To prove the second inequality of the first line in (B.28), we notice that (3.73) implies

ρk+1
(3.73)

= ρk
√

1 + µhβk = ρk

(
1 + µhβk

1+
√

1+µhβk

)
(3.73)

= ρk + µhβ0ρ0
1+
√

1+µhβk
βk≤β0
≥ ρk + µhβ0ρ0

1+
√

1+µhβ0
= ρk + (

√
1 + µhβ0 − 1)ρ0.

The desired inequality is then achieved via induction.

The first statement of the second line in (B.28) holds since

1 + µhβk
βk

(3.73)
=

1

θ2
k+1βk

(3.73)
=

1

θk+1βk+1
.

The last two equations of (B.28) directly follow from the update of ηk and ρk in (3.73).

Lemma B.8. Let ρk be defined by (3.72) and (3.73) of Theorem 3.4. Then, for all k ∈ N,

Lg(‖y?‖+ ‖ỹk − y?‖+ ρkMg‖x̃k − x?‖) ≤ ρk

[
(2− Γ)M̂2 −

M2
g

γ

]
. (B.29)
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Proof. We prove (B.29) by induction. For k = 0, the inequality (B.29) holds due to the second line

in (3.72). Suppose (B.29) holds for all k ∈ {0, 1, . . . ,K} for some K ∈ N. Then by the definition

of Lk in Lemma 3.3 and the same lines as (B.8), for all k ∈ {0, 1, . . . ,K}, we can show that

Lk
(B.8)

≤ Lg(‖y?‖+ ‖ỹk − y?‖+ ρkMg‖x̃k − x?‖) ≤ ρk

[
(2− Γ)M̂2 −

M2
g

γ

]
. (B.30)

By the update of αk, ηk and βk in (3.73), the first inequality of (B.28), and (B.30), we have

1
αk

(
1− βk

αk

)
+ 1
αk
− Lk − Lf −

ρ2kM
2
g

ρk−ηk
(3.73)(B.28)

≥ (1− Γ)(Lf + ρkM̂
2) + ρkM̂

2 − Lk −
ρkM

2
g

γ
(B.30)

≥ (2− Γ)ρkM̂
2 − ρkM

2
g

γ − ρk
[
(2− Γ)M̂2 − M2

g

γ

]
= 0.

(B.31)

Using this inequality, τk := 1, and (x, s, y) := (x?, s?, y?) into (3.65) of Lemma 3.3, we get

0 ≤ Lρk(xk+1, sk+1, y?)− P?
(3.65)(B.31)

≤ 1
2βk
‖x̃k − x?‖2 − 1+βkµh

2βk
‖x̃k+1 − x?‖2

+ 1
2ηk

(‖ỹk − y?‖2 − ‖ỹk+1 − y?‖2)

(B.28)
=

(
1

2βk
‖x̃k − x?‖2 + 1

2ηk
‖ỹk − y?‖2

)
− 1
θk+1

(
1

2βk+1
‖x̃k+1 − x?‖2 + 1

2ηk+1
‖ỹk+1 − y?‖2

)
.

(B.32)

Multiplying (B.32) by 2ρk, and noticing that ρk ≤ ρk
θk+1

= ρk+1, we get

ρk

(
1

βk+1
‖x̃k+1 − x?‖2 + 1

ηk+1
‖ỹk+1 − y?‖2

)
≤ ρk+1

(
1

βk+1
‖x̃k+1 − x?‖2 + 1

ηk+1
‖ỹk+1 − y?‖2

)
≤ ρk

(
1
βk
‖x̃k − x?‖2 + 1

ηk
‖ỹk − y?‖2

)
.

By induction, the above holds for k ∈ {0, 1, . . . ,K}. Consequently, one has

1

βk+1
‖x̃k+1 − x?‖2 +

1

ηk+1
‖ỹk+1 − y?‖2 ≤ 1

β0
‖x0 − x?‖2 +

1

η0
‖y0 − y?‖2 = R2

0(x?, y?),

which implies that ‖x̃k+1 − x?‖ ≤
√
βk+1R0(x?, y?) and ‖ỹk+1 − y?‖ ≤ √ηk+1R0(x?, y?). Finally,

using the above estimates, we can easily deduce
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1
ρK+1

(‖y?‖+ ‖ỹK+1 − y?‖+ ρK+1Mg‖x̃K+1 − x?‖)

≤ 1
ρK+1
‖y?‖+

(√
ηK+1

ρK+1
+Mg

√
βK+1

)
R0(x?, y?)

(3.73)

≤ 1
ρ0
‖y?‖+

(√
η0
ρ0

+Mg
√
β0

)
R0(x?, y?)

(3.72)

≤ 1
Lg

[
(2− Γ)M̂2 − M2

g

γ

]
.

This inequality shows that (B.29) also holds for K + 1. By induction, we have thus proved that

(B.29) holds for all k ∈ N.

The following proof shows that the parameter initialization (3.78) in Remark 3.5 indeed satisfies

the condition (3.72) in Theorem 3.4.

Proof for Remark 3.5. For simplicity, we set ρ0 := 1, and γ := Γ := 1
2 . Using the same lines as

(B.11) and (B.12) in the proof for Remark 3.1, it is clear that we only need the following inequality

for (3.72) to hold:

LgD

(
1 +

√
Lf + M̂2 + 1 +Mg

√
1 +

1

Lf + M̂2

)
≤ 3M̂2

2
− 2M2

g . (B.33)

Let

M̂2 ≥ Lf + 1, (B.34)

then
√
Lf + M̂2 + 1 ≤

√
2M̂ and 1

Lf+M̂2
≤ 1. Substituting these into (B.33), we can see that

(B.33) holds if

LgD(1 +
√

2M̂ +
√

2Mg) ≤
3M̂2

2
− 2M2

g ,

which can be solved as

M̂ ≥ 2

3

√
2L2

gD
2 + 3(2M2

g + LgD +
√

2LgDMg). (B.35)

Combining (B.34) and (B.35), we finally get (3.78).
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