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ABSTRACT

Eric D. Van Buren: Improved Methods for the Analysis of single-cell RNA-Sequencing and
Imaging Data

(Under the direction of Yun Li and Di Wu)

Two key challenges in the analysis of single cell RNA-seq (scRNA-seq) data are excess

zeros due to “drop-out” events and substantial overdispersion due to stochastic and systematic

differences. Association analysis of scRNA-seq data is further confronted with the possible de-

pendency introduced by measuring multiple single cells from the same biological sample. To

address these three challenges, the first chapter of this work proposes TWO-SIGMA: a TWO-

component SInGle cell Model-based Association method for differential expression analysis

of scRNA-seq data. The first component models the drop-out probability with a mixed-effects

logistic regression, and the second component models the (conditional) mean read count with a

mixed-effects negative binomial regression. Simulation studies and real data analysis show advan-

tages in type-I error control and power enhancement over alternative approaches including MAST

and a zero-inflated negative binomial model without random effects.

The second chapter of this dissertation expands the first to Gene set testing (GST). Here, we

propose TWO-SIGMA-geneset to conduct competitive gene set testing, in which the genes in

a given set are compared to the remaining collection of genes. Previous work has demonstrated

that inter-gene correlation can substantially inflate type-I error. We provide an adjustment for

inter-gene correlation, which is estimated using the residuals from the gene-level TWO-SIGMA

model. Simulation studies show that type-I error is well controlled in a variety of representative

scenarios, with or without inter-gene correlation present. Power is improved over state-of-the-art

methods, including CAMERA, for a variety of scenarios consistent with real single-cell RNA-seq

data.
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Finally, the third chapter of this work studies chromosomal interactions at the single-cell

level. First, we discuss the Hi-C technology for analyzing genome-wide chromosomal interac-

tions. In particular, we focus on peak calling, in which the aim is to separate interactions between

loci that are due to random chance from interactions that are not random. Second, we discuss

state-of-the-art methods for single-cell imaging. We then show an example of a way to combine

information from Hi-C and imaging data from Drosophilia embryos for peak calling using the

Cauchy Combination Test. We conclude by discussing potential future research in this context.
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CHAPTER 1: LITERATURE REVIEW

1.1 Sequencing Background

1.1.1 Bulk RNA-sequencing

High-throughput sequencing has allowed researchers to study the impact of the transcriptome

on the molecular underpinnings of biological processes and diseases. Many such sequencing

methods have been developed for a variety of purposes, but perhaps the most popular over the

past decade has been bulk RNA-sequencing (“RNA-seq”). RNA-seq has become a fundamental

tool in understanding of biological processes and genomic functions (Stark et al., 2019; Conesa

et al., 2016). Initial steps in the pipeline are performed in a laboratory: RNA is extracted from

a sample and messenger RNA (mRNA), which is usually of interest, is amplified to distinguish

it from the less relevant ribosomal RNA. Sequencing follows and computational techniques

are used to align read fragments to the genome, perform quality control, and produce a dataset

consisting of read counts giving the amount of each gene that was observed. Samples consist-

ing of thousands or tens of thousands of cells are pooled together, giving the aforementioned

name “bulk” RNA-sequencing. Such pooling of the cells from a biological sample means that

the expression levels studied constitute an average over cells that may have very different tran-

scriptomic profiles due to many factors, such as cell type or cell cycle. Conclusions drawn using

various computational and statistical techniques are then only generalizable to the aggregated

population of cells.
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1.1.2 Single-cell RNA-sequencing

Recently, single-cell RNA-sequencing (“scRNA-seq”) technologies have been developed

to allow sequencing of mRNA on each cell individually. In capturing transcriptomic variation

at its fundamental level, this technology allows researchers to (i) study how cellular heterogene-

ity plays a role in disease etiology, (ii) discover new cell types, (iii) and make predictions of

cellular development trajectories, among other items (Van den Berge et al., 2018). Some of the

most popular platforms for conducting single-cell sequencing include Drop-seq (Macosko et al.,

2015), Fluidigm C1 (https://www.fluidigm.com/products/c1-system), and the Chromium system

from 10x Genomics (https://www.10xgenomics.com/solutions/single-cell/). Like RNA-seq, non-

negative counts are produced. These counts tend to exhibit two major diverging characteristics

from RNA-seq, however: larger variation and an excess of zero counts (Bacher and Kendziorski,

2016). This large variability is often imprecisely called “overdispersion”—more accurately the

counts often exhibit excess variance relative to the Poisson distribution. It is well understood that

only 10-30% of the mRNA expressed in a given cell will be captured successfully, and that distor-

tions of the underlying truth likely occur as a consequence of this low capture rate (Hwang et al.,

2018; Yuan et al., 2017; Haque et al., 2017; Kelsey et al., 2017; Buettner et al., 2015). One such

distortion is this presence of an excess number of zero read counts, relative to both what might

be reasonably modeled using common discrete distributions and particularly as compared to bulk

RNA-seq (Hicks et al., 2017a; Bacher and Kendziorski, 2016; Chen et al., 2019). One common

approach in the literature to conceptualize zeros as being from two main sources: the first source

is “biological,” in that zero expression measurements occur due to stochastic biological factors

(e.g. transcriptional bursting, cell cycle). The second source, commonly called “drop-out,” is

zeros that are mistakenly observed as a consequence of technical factors. (Wills et al., 2013;

Bacher and Kendziorski, 2016). These drop-out events tend to occur most often in genes with

low mean expression, and also tend to differ in prevalence across different biological samples

(Kharchenko et al., 2014). This formulation of the source of observed zeros in scRNA-seq data

will be discussed in more detail throughout this proposal.
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One technical development of note is the development of Unique Molecular Identifiers

(UMIs), which attach a unique barcode to each cell prior to sequencing (Chen et al., 2018). UMIs

can reduce the impact of biases created by repeated amplification of mRNA done before quantifi-

cation, and may help to minimize the influence of these drop-out events in scRNA-seq data (Sena

et al., 2018; Townes et al., 2019). Recent work has even suggested that if data was collected

using UMI-based sequencing, droplet-based scRNA-seq data may not contain the excess zeros de-

scribed above and further may contain very few drop-out events (Svensson, 2020). Nevertheless,

there have been many methods developed which aim to borrow information and impute drop-out

events based on the read counts of similar cells and/or genes prior to downstream analyses (Lin

et al., 2017; Gong et al., 2018; Li and Li, 2018; Huang et al., 2018; Tracy et al., 2019). Although

we do not focus on these methods extensively, they are important to consider and can be viewed

as a supplement, rather than a competitor, to methods which use only observed expression values

depending on the goals of the analysis.

The cellular detection rate (CDR) is defined in (Finak et al., 2015) as the percentage of genes

expressed over some background level of expression (often chosen to be zero). The CDR there-

fore has a biological interpretation as a cellular scaling factor and is a surrogate for both technical

and biological variation. This confirms the conclusions of others that the CDR can explain a sub-

stantial proportion of observed expression variability and should be included in any association

analysis of scRNA-seq data (Hicks et al., 2017b). As such, including CDR as a covariate in a re-

gression modelling framework using scRNA-seq data can help to control for unwanted technical

variation and provide better estimates of effects of interest.

scRNA-seq datasets typically contain thousands of cells sequenced from a much smaller pool

of individuals. This creates the potential for a repeated measures correlation that exists because

multiple cells are sequenced from the same individual. This correlation will be discussed in more

detail in the proposal section, however we find a gap in literature relating to methods that can

specifically accommodate this correlation structure. At the gene level, such a within-subject

correlation structure is additionally conflated with the gene-gene correlation that has been shown
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to exist in scRNA-seq data (Buettner et al., 2015). Consequences of such gene-gene correlation

in tests of sets of genes in RNA-seq or scRNA-seq datasets will be discussed later in section 1.5

of this proposal.

1.2 Zero-Inflated Models for Count Data

Perhaps the most popular methods designed for data with an excess zeros are zero-inflated

models, which have been applied to count data for nearly 30 years (Lambert, 1992; Greene,

1994). These models use zero-inflated distributions, which are a mixture of a point mass at zero

and some second distribution, which can be discrete or continuous. For count-based sequencing

studies, two of the most useful mixing distributions are Poisson and negative binomial. Following

the notation used elsewhere (Greene, 1994; Hilbe, 2011), we can specify these two distributions

in a nested fashion. Consider the following parameterization of the negative binomial probability

mass function (p.m.f.) at a non-negative integer y:

PrpY “ yq “ fpy;µ, φq

“

Γ
´

y ` φ
¯

Γpy ` 1qΓ
´

φ
¯

˜

1

1` 1
φ
µ

¸φ˜ 1
φ
µ

1` 1
φ
µ

¸y

, y “ 0, 1, 2, . . . (1.1)

With this parameterization, E(Y ) = µ and Var(Y q “ µ ` 1
φ
µ2, such that φ governs the amount of

extra-Poisson variation and is thus called the “overdispersion” parameter (φ ą 0). This parame-

terization is appealing for interpretability because as 1
φ
Ñ 0`, the density above approaches the

Poisson density with mean µ. Thus, the Poisson and negative binomial distributions are asymp-

totically nested (and nearly identical for large values of φ). One can test H0 : 1
φ
“ 0 versus

Ha : 1
φ
ą 0 using the likelihood ratio test, in which p-values come from a 50:50 mixture of χ2

1

and a point mass at zero because the parameter 1
φ

is being tested on the boundary of the param-

eter space (Hilbe, 2011). Such a test is a useful way to increase model parsimony by using the

Poisson distribution when the data does not suggest significant deviation from it.
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Let p and µ be the probability of belonging to the degenerate zero component, and the mean

read count conditional on being sampled from the non-zero component, respectively. The p.m.f.

of one observation Y under the zero-inflated negative binomial (ZINB) distribution is given by:

PpY “ 0q “ p` p1´ pqfp0;µ, φq

PpY “ yq “ p1´ pqfpy;µ, φq, y “ 1, 2, 3, . . . (1.2)

In this framework, observed zeros can therefore be thought of as being sampled from the (degen-

erate) point mass at zero with probability p or the negative binomial distribution f with proba-

bility 1 ´ p. The ZINB distribution thus assumes that there are two sources of zeros in the data:

the first source is the process that governs the “excess” zeros (called in the general literature

“structural zeros”) and the second source is from the negative binomial process (also called “sam-

pling zeros”). Interpretations from the zero-inflated negative binomial model are quite natural

for single-cell gene expression data because, as described earlier, it is reasonable to assume that

some observed zeros are biological in origin while other zeros are drop-out events due to tech-

nical factors. Note that in such a mixture distribution the underlying source of any zero is an

unknown, random variable. It is therefore not possible to use these models naively to determine

whether a given zero is degenerate or random in nature, rather only to estimate a probability an

observed zero is sampled from the point mass instead of the negative binomial distribution. Al-

though semantic, the distinction regarding the source of zeros affects the interpretation of model

coefficients and is important because these models are often misinterpreted by researchers as pro-

viding marginalized means when they actually provide means conditional on being in the second

component (Preisser et al., 2012; Todem et al., 2016).

1.3 Generalized Linear Mixed Models

The generalized linear model (GLM) extends the standard linear regression model to distri-

butions beyond the normal distribution with the use of various well-chosen link functions. These
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models are used extensively in the analysis of genomic data and a variety of methods which em-

ploy GLMs will be discussed below. The generalized linear mixed model (GLMM) extends the

GLM to include random effect terms, which allow model regression parameters to vary over, for

example, different biological samples. Random effect terms are usually assumed to be distributed

normally with mean zero and a variance that is referred to as a “variance component.” Variance

component(s) summarize the extent to which the model’s intercept, for example, differs system-

atically across individuals. A large variance component suggests that individual heterogeneity

in a given parameter exists, and a value of zero (or nearly zero) suggests that individuals do not

deviate from the fixed effect parameter. GLMs assume that values from different samples are

independent of one another. Including random effect terms via a GLMM relaxes this assumption,

and helps to control for within-sample correlation when samples are not independent. The use of

a GLMM can thereby improve mean parameter and standard error estimation to provide better

control of type-I error (Fitzmaurice et al., 2003).

1.3.1 Zero-Inflated Mixed Effects Models

A zero-inflated negative binomial mixed effects model (ZINBMEM) has previously been

proposed for modelling count data (Min and Agresti, 2005). For the analysis of compositional

microbiome data, a zero-inflated two-component mixed effects beta regression model has also

been specified (Chen and Li, 2016). Both applications involve repeated measures data in which

the number of repeated measures per individual is small relative to the number of individuals.

This is in contrast to scRNA-seq datasets which include far more repeated measures (cells) than

samples. Section 2.1 of this proposal will discuss how the performance of the ZINBMEM differs

as the nature of the repeated measures data varies between these two extremes.

1.3.2 Different Ways to Account for Repeated Measures

In scRNA-seq datasets, which include a small number of biological samples relative to cells,

it would be reasonable to alternatively consider controlling for biological sample as a fixed effect
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rather than with a random effect. Most generally, there are two reasons to prefer incorporating a

random effect to a fixed effect approach. First, it is often of interest to estimate a variance com-

ponent that can apply to all samples in the population. This estimate can directly help to quantify

the degree of heterogeneity in a population. Second, random effect terms explicitly help to con-

trol for the within-sample correlation, rather than providing only adjusted parameter estimates for

included covariates. An alternative approach to accounting for such sample-level repeated mea-

sures using GLMMs would be to fit a marginal model with the generalized estimating equations

(GEE) approach instead of a mixed effects model (Agresti, 2013). There are two main reasons

to prefer incorporating random effect terms to a GEE approach: first, GEE-based models can-

not be used for sample-level prediction, which can be a scientifically relevant task in the cellular

context. Second, given that many scRNA-seq experiments are conducted over a small number of

samples, it is likely that the empirical (sandwich) covariance estimate would underestimate the

true standard errors and could thereby inflate type-I error (Agresti, 2013).

1.3.3 Evaluating the Need for Random Effect Terms

Evaluating the need for a random effect term in a GLMM typically involves a hypothesis

test of whether the corresponding variance component(s) equal zero. Although Wald and score

tests are possible, we will focus on the likelihood ratio test (LRT) to help with results discussed

in section 2. Use of the LRT requires fitting the model under both the null and the alternative

hypotheses, but is a preferred method to determine whether the random effect terms significantly

improve model fit. In the linear mixed model, the asymptotic distribution of the LRT statistic

for testing one variance component is a 50:50 mixture of χ2
0 and χ2

1 (Fitzmaurice et al., 2003).

P-values are then calculated as half of the usual p-value using the χ2
1 distribution. This result

holds in one-component GLMMs as well (Zhang and Lin, 2008), and in the case of testing one

variance component in the ZINBMEM. To my knowledge the distribution when using the LRT

to test two non-independent variance components in the ZINBMEM model has not been derived.

One conservative choice is to use χ2
2 as the reference distribution, although the true distribution is
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likely a mixture of chi-square distributions as in other cases involving a GLMM (Zhang and Lin,

2008). This will be discussed more in section 2.1.

Other post-fitting options to compare models with and without random effects include infor-

mation criteria like AIC and BIC or Wald tests of the variance components (Fitzmaurice et al.,

2003). Critically, all options discussed require fitting the “full” model including the random ef-

fect terms. As mentioned, the scRNA-seq application is distinct from typical repeated measures

analyses in that the number of repeated measures (cells) typically far exceeds the number of sam-

ples. Such designs can entail more extensive computational time for each gene over scenarios

involving a smaller number of repeated measures from a modest number of individuals. These

computational burdens are especially relevant given that scRNA-seq data typically include thou-

sands or tens of thousands of genes. In the proposal section we will discuss an ad hoc procedure

that can bypass the need to fit the “full” model to identify the genes that are most likely to need

the random effect terms in a computationally efficient manner.

1.4 Differential Expression Analysis

A task of primary interest in analyzing any high throughput sequencing that produces non-

negative read counts, including RNA-seq and scRNA-seq, is to compare gene expression mea-

surements across conditions of scientific or experimental interest. Identifying genes with different

expression profiles between subjects with and without disease, for example, is a first step in ex-

plaining disease etiology and understanding phenotypic variation. This type of association is

commonly referred to as differential expression (DE). Differential expression is a very general

term, in that whether or not a gene is described as significantly differentially expressed depends

on several factors, including the model used, its associated estimated measure (e.g. log fold

change from a GLM), whether the data is represented on the original or a transformed scale, and

the threshold used for judging significance.
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1.4.1 Existing Methods for DE Analysis in Bulk RNA-seq

DE analysis is one of the most popular uses of RNA-seq data (Stark et al., 2019). The first

step in most methods developed for bulk RNA-seq data is typically some normalization of the

read counts using one of many different methods. Quantile normalization was originally designed

for microarray data, and uses observed quantiles to match distributions of observed counts across

different sequencing runs (Smyth, 2005). The trimmed mean of M-values normalization method

estimates scale factors between samples that can be used in DE pipelines without modifying

the original data (Robinson and Oshlack, 2010). Other methods transform the count data into

differing quantities such as Transcripts per Million (TPM) or FPKM (Fragments Per Kilobase

per Million mapped reads) to account for technical biases including batch effects (Soneson and

Delorenzi, 2013). The goal of all such transformations is to normalize the data across factors

that could produce misleading results, such as transcript length, library size, or sequencing batch.

We will revisit these transformations throughout the proposal. After such transformations, count-

based distributions cannot be used.

Early methods designed for DE in microarray data, including voom and limma, consider the

observed data (or some normalized and scaled version of it) to be from a log-normal distribution

and use linear models for analysis (Law et al., 2014; Smyth, 2005). While this distributional

assumption may be suitable for the intensities measured in microarray experiments, it may be

less realistic for RNA-seq data, which inherently measures a discrete count. Subsequent methods

developed specifically for RNA-seq data most commonly use either the Poisson or negative

binomial distribution to preserve the scale and properties of the data as much as possible. Perhaps

the two most popular such methods are DESeq2 (encompassing its predecessor DESeq) and

edgeR (Love et al., 2014; Anders and Huber, 2010; Robinson et al., 2009). Both methods employ

negative binomial GLMs using a log link. Such models are advantageous for several reasons:

(i) the negative binomial distribution captures the variability in expression observed with many

biological replicates through its overdispersion parameter, (ii) the regression framework allows

for the analysis of both simple and complex experiments, and (iii) the coefficients produced can
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be interpreted naturally as log-fold changes. DESeq2 and edgeR differ in some default choices

for filtering and outlier removal, and the normalization procedures used; DESeq2 normalizes data

using the median of the ratio of the read count to the geometric mean read count across all genes

while edgeR uses the TMM method described above. Many review papers have shown DESeq2

and edgeR to have excellent performance, which is particularly reassuring given that they seem

to constitute the majority of DE analyses in RNA-seq data (Schurch et al., 2016; Soneson and

Delorenzi, 2013; Seyednasrollah et al., 2013). As such, these negative binomial models constitute

a well-supported starting point for DE methods for scRNA-seq data, and are sometimes used to

benchmark DE methods designed for scRNA-seq data (Sekula et al., 2019).

1.4.2 Existing Methods for DE Analysis in scRNA-seq Data

The excess zeros detailed in section 1.1.2, combined with the considerable biological and

technical variation seen in scRNA-seq data, demand customized approaches for DE testing. As

such, naively applying the methods described in section 1.4.1 is therefore considered insufficient

(Bacher and Kendziorski, 2016) or at best equivalent to methods customized for scRNA-seq data

(Soneson and Robinson, 2018). Many such methods have been developed for differential expres-

sion analysis in scRNA-seq data. Some early innovative Bayesian methods include SCDE, which

utilizes a two-component negative binomial mixture method and scDD, which uses a Dirichlet

mixture process (Kharchenko et al., 2014; Korthauer et al., 2016). Although both methods show

strong performance in test cases, the former is limited to a two-group comparison, and the latter

can only adjust for confounding covariates indirectly through a residualized analysis. DESingle

employs a zero-inflated negative binomial distribution to detect differential expression (DE) in

scRNA-seq data (Miao et al., 2018). DESingle is also designed for DE detection with only a

two-level grouping variable and does not employ a regression modeling framework to control

for other covariates or account for within-sample correlation. Benchmarking papers typically

limit themselves to two-group comparisons because most popular methods are limited to this case

(Wang et al., 2019; Soneson and Robinson, 2018).
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ZINB-WaVE was designed for unsupervised settings in which a zero-inflated negative bino-

mial model is used for dimension reduction (Risso et al., 2018). One application of this method is

to construct observation-level weights that can be incorporated into the generalized linear models

mentioned earlier in the DESeq2 or edgeR packages (Van den Berge et al., 2018, 2017). The

log transformations applied by these methods to the read counts have the benefit of reducing

noise, which can mask true underlying biological signal, but may come at the expense of reduced

interpretability when performing differential expression because the data is no longer perfectly

in the gene space (Luecken and Theis, 2019). The ability to avoid transforming scRNA-seq data

is particularly desirable given recent evidence which suggests that log transformation can distort

many scRNA-seq datasets by specifically producing false variability and exaggerate the influence

of zero counts (Townes et al., 2019; Lun, 2018). Further recommendations suggest single-cell DE

be analyzed using measured data while including relevant technical covariates such as the CDR

or batch information as covariates in a regression model (Luecken and Theis, 2019).

MAST was introduced as a hurdle regression model for the analysis of scRNA-seq data

(Finak et al., 2015). Hurdle models are two-component models which mix a degenerate zero

component with a distribution that is either continuous or left-truncated at zero for the positive

expression component (Mullahy, 1986). Specifically, MAST models the log of TPM as normally

distributed using a linear regression model, and separately models zero counts with a logistic

regression model. As applied to sequencing data, the hurdle model thus does not allow zero

expression measurements due to biological variation, and restricts zeros to derive from the degen-

erate zero distribution. This is in contrast to the zero-inflated negative binomial model mentioned

above, which allows zeros to result from both components. Given the variability in the transcrip-

tome that has been demonstrated to exist at the single-cell level, this restriction may sacrifice

plausibility for some datasets. As discussed above, because the mean expression component in-

volves a log transformation, there is further potential to distort the true biological signal present

(Townes et al., 2019). Although the ability to include random effect terms in either component

of MAST is mentioned, they do not prioritize their inclusion in the model formulation and do
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not evaluate the impact of random effects on the model’s performance. MAST is considered

to be one of the preferred methods for performing DE in scRNA-seq data given its regression

modelling flexibility (Luecken and Theis, 2019).

Finally, a Bayesian hurdle model with cellular-level random effects was introduced for DE

analysis of scRNA-seq data (Sekula et al., 2019). This method is innovative in that it allows the

cellular-level random effects to be either correlated with one-another via a compound symmetric

structure or independent. Specifically, random effect terms are assumed correlated when the cells

are assumed to come from the same latent subpopulation. These subpopulations are designed to

represent unobserved groupings such as cell type and can be determined by a technique such as

clustering before fitting the Bayesian hurdle model. When assumed independent, each cell has a

random effect which is assumed to have mean zero and a common variance with other cells. This

Bayesian hurdle model is somewhat restrictive, however, in that it does not allow for covariates

other than CDR and a two-group treatment. Therefore, more complex experimental designs may

not be fully analyzable using this method.

1.5 Gene Set Testing Background

Analyses of RNA-seq or scRNA-seq data typically begin at the gene level where, for exam-

ple, one can generate test statistics summarizing the evidence of DE and rank all genes by the

strength of such evidence. Most biological phenomena are understood to occur via interactions

of many different genes (Barry et al., 2005). Gene set analysis, also known as pathway analy-

sis, therefore aims to put results in a broader biological context by studying expression changes

in sets of genes. The purpose of these analyses is not to cluster genes into sets—this must be

done a priori—but rather to put gene-level results into a biologically interpretable context. These

analyses fundamentally require the constructed gene sets to represent meaningful biological path-

ways, and therefore require well curated and scientifically justified sets (Barry et al., 2005). The

Molecular Signatures Database (mSigDB) (Subramanian et al., 2005; Liberzon et al., 2015) pro-

vides the most extensive collection of gene sets aggregated from many different contributors and
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categorized into eight major collections: hallmark (H), positional (c1), curated (c2), motif (c3),

computational (c4), GO (c5), oncogenic (c6), and immunologic (c7). Sets are available for a vari-

ety of organisms, but of particular interest to this work are humans and mice. Typical sets consist

of tens or hundreds of genes, but sizes can vary from two genes to over two thousand genes.

There are several reasons for researchers to use set-level analyses as an addition to the gene-level

analysis. First, because sets are constructed to represent shared annotations or functions, anal-

yses can utilize previous biological knowledge in a useful manner. Second, in sharing strength

across many genes, set-based analyses can improve statistical power and reduce the detection

of spurious associations as compared to gene-level tests (Efron and Tibshirani, 2007; Gaynor

et al., 2019). Third, set-level analyses can increase reproducibility across experiments, which is

often lower than desired due to the biological and technical variability present in RNA-seq and

scRNA-seq data (Efron and Tibshirani, 2007; Gaynor et al., 2019).

Broadly, set testing methods have two main steps. First, gene-level statistics are collected

for all genes in the dataset. Second, the gene-level statistics are aggregated into some set-level

(or “global”) statistic which is used to calculate a set-level p-value. Two primary differences that

exist between early gene set testing methods are the definition of the null hypothesis and calcu-

lation of the set-level p-value (Goeman and Buhlmann, 2007). It is now common to distinguish

between “competitive” and “self-contained” tests and based on the null hypotheses of interest.

Competitive tests compare the evidence of differential expression of a gene set to the evidence in

some other reference set of genes; typically this reference set consists of either all other genes or

a random sample of them. Self-contained tests, in contrast, compare the gene set to some fixed

standard (usually the case of no DE) that does not incorporate the information from other genes.

Competitive tests therefore compare the relative significance of gene sets to one another and

thereby rank biological pathways by importance to the phenotype. Self-contained tests are most

relevant for determining the significance of an individual biological pathway without making a

relative comparison to other pathways (Wu and Smyth, 2012). Many early self-contained testing

procedures are vulnerable to the scenario in which a larger test set leads to smaller p-values, even

13



in the cases where genes are chosen at random (Barry et al., 2008; Khatri et al., 2012). For this

reason, combined with interpretability and method availability, competitive tests are far more

common in the literature today (Wu and Smyth, 2012; Goeman and Buhlmann, 2007).

Most competitive methods permute either samples or genes to construct a sampling distri-

bution and calculate set-level p-values (Goeman and Buhlmann, 2007). Inherently, permutation

choice is linked to type of null hypothesis being tested. Sample permutation constructs a sam-

pling distribution by randomly permuting sample-level variables, for example treatment arm,

within the same set of genes. Such a within-set sampling distribution is useful to test a gene set

in isolation, as in self-contained tests. Gene permutation, in contrast, constructs a sampling distri-

bution by randomly allocating genes to the test set without permuting the samples. This is useful

for a comparison between gene sets, as in competitive testing (Wu et al., 2010; Wu and Smyth,

2012). Using such a gene-based permutation distribution to estimate p-values is equivalent to

assuming independence between genes. This assumption is critically flawed and unrealistic, even

in well-controlled microarray, RNA-seq, and scRNA-seq data (Wu and Smyth, 2012; Wu et al.,

2010; Goeman and Buhlmann, 2007; Finak et al., 2015). It is particularly unreliable for gene set

testing because sets are explicitly constructed to represent biological pathways, and it is natural to

assume that genes in a given pathway are more correlated than a random collection of genes (Wu

and Smyth, 2012). The presence of such an inter-gene correlation (IGC) can dramatically inflate

type-I error or the false discovery rate (FDR) through inducing a correlation in the marginal gene-

level statistics (Barry et al., 2008; Gatti et al., 2010; Wu and Smyth, 2012; Efron and Tibshirani,

2007). It is therefore essential that any method for gene set testing adequately account for the

IGC to provide statistically rigorous set-level p-values.

1.6 Existing Methods for Gene Set Testing

Some of the earliest methods for gene set testing looked for over-representation of genes

deemed significant in the test set using, for example, Fisher’s exact test and a 2x2 table (Barry

et al., 2008). This approach is limited because it requires a hard cutoff to call a gene as DE or not
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and is therefore highly sensitive to the cutoff choice. This kind of approach also does not use the

strength of association, except to the extent that it passes the chosen threshold, and completely

ignores any IGC present.

GSEA was developed as one of the first gene set testing methods developed for two-group

comparisons of expression data (Subramanian et al., 2005). The method has proven incredible

popular, as seen by the fact that it has been citepd over 19,000 times. First, an enrichment score

is calculated using the Kolmogorov-Smirnov statistic to represent the extent to which a given

test set is over-represented at the extremes of the ranked list of genes. At the set-level, a hybrid

of the competitive and self-contained null hypotheses is tested via sample permutation followed

by comparison of the set-level statistic to those of other gene sets. One weakness of GSEA is

that the null hypothesis being tested is not straightforward to precisely define given its hybrid

nature. Larger gene sets can often be more significant, and other gene sets not being tested can

influence results in ways that are counterintuitive (Damian and Gorfine, 2004; Tian et al., 2005).

Further work extended GSEA beyond reliance on the Kolmogorov-Smirnov statistic to include

other more general test statistics, and to one-way ANOVA designs (Efron and Tibshirani, 2007;

Oron et al., 2008). A further extension, later implemented in a function called sigPathway,

used a similar formulation as GSEA but used refined normalization for the set-level statistics

before using gene permutation to estimate p-values (Tian et al., 2005). Although an improvement

to GSEA, some studies have shown that sigPathway can fail to preserve the FDR or type-I

error rate (Tarca et al., 2008; Wu and Smyth, 2012). SAFE was developed shortly after GSEA

for a two-group comparison using an ordinary t-test or some related variant, the Wilcoxon test,

or the F-test from ANOVA to get gene-level statistics (Barry et al., 2005). Sample permutation

was then used to estimate set-level p-values while accounting for IGC. Follow-up review studies

have demonstrated that SAFE preserves type-I error and FDR but suffers from lower power than

competing methods (Mathur et al., 2018; Tarca et al., 2008). All of the methods described here

are limited to simple experiments in which test statistics relate to a categorical group comparison

(two-group only except SAFE).
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CAMERA was proposed as a method for competitive gene set testing method for microarray

or RNA-seq data (Wu and Smyth, 2012). Gene-level statistics are first constructed using a linear

model, with options including the usual t-statistic or a moderated t-statistic designed to provide

more reliable estimates of the variance of the coefficients. The use of the linear model means that

CAMERA can accommodate complex experimental designs beyond a two-group comparison.

Set-level p-values are then computed using modifications of the t-test or Wilcoxon rank-sum test

that allow for a common pairwise correlation in the test set. An efficiently computed estimate of

the variance inflation factor is used to estimate this common pairwise correlation. Rather than

use the raw data for this calculation, CAMERA uses the residuals from the linear model. Using

the residuals means that the variation in gene expression explained by the covariates is removed,

helping to give the most reliable estimate of the correlation between the gene-level statistics in

the test set. By avoiding permutation, and unlike some early approaches, CAMERA provides

a statistically valid, computationally efficient test of a precisely defined and fully specified null

hypothesis (Goeman and Buhlmann, 2007). The hypothesis corresponds to a test that the aver-

age absolute value of each coefficient in the test set is larger in magnitude as compared to the

reference set.

MAST, which was developed for scRNA-seq DE analysis and discussed in section 1.4.2,

has an extension to allow for competitive gene set testing comparing a test set to its complement

(Finak et al., 2015). This extension is quite flexible given the regression-based framework em-

ployed by MAST. Once the gene-level statistics are collected, the bootstrap is used to estimate

the inter-gene correlation of the regression coefficients. Set-level tests are conducted using the

Z-test and computed separately for the two components of the hurdle model. The use of the boot-

strap is computationally intensive and subject to variability based on the number of bootstrap

samples used. Only single regression coefficients are testable using MAST’s competitive gene set

procedure.

Finally, I will briefly discuss several methods that have been recently developed for gene

set analysis with a different emphasis to the set-level DE detection we discussed above. A deep
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learning framework was proposed for gene set inference (Lukassen et al., 2019). The method is a

broad tool which can simultaneously integrate gene set inference and batch effect correction. One

limitation of this deep learning framework is that rigorous statistical testing of gene sets, similar

to that of CAMERA, for example, is not readily available. The PAGODA method was developed

as an extension of the SCDE method discussed in section 1.4.2 to search for gene sets that exhibit

coordinated overdisperion (Fan et al., 2016). It can utilize both previously annotated gene sets

or de novo gene sets. Similarly, the SCENIC method was developed for single-cell regulatory

network construction (Aibar et al., 2017). The primary focus of these methods is to analyze

variance patterns in search of transcriptional heterogeneity and not detecting sets of genes that

show systematic differential expression.

1.7 Hi-C and Imaging Methods for 3D Structure Recovery

Analyzing spatial interactions within chromatin can help researchers understand the interac-

tions between genomic loci that are close in three-dimensional (3D) distance but may be farther

in linear (genomic) distance. These interactions can be used to reconstruct 3D structures, learn

about gene regulation and epigenetic signatures, and compartmentalize genomic regions into

active or closed chromatin regions (Varoquaux et al., 2014; Oluwadare et al., 2019; Hu et al.,

2013). Pairs of regions/loci that interact frequently are thought of as “close” to one another in

distance in the 3D space, although there is not always a clear relationship between these two

ideas (Lajoie et al., 2015; Fudenberg and Imakaev, 2017). One of the earliest techniques to un-

derstand 3D chromosomal structure was a microscopic method called multicolor fluorescent in

situ hybridization (FISH). As an imaging based approach, FISH can directly record spatial dis-

tance in single-cells to reconstruct 3D structure. FISH relies on prior specification to identify

regions to study and has difficulty detecting cis interactions that occur within 100 kilobases due

to low-resolution, low-throughput data (Oluwadare et al., 2019; Hu et al., 2013). Furthermore, a

genome-wide analysis is currently not feasible using FISH (Fudenberg and Imakaev, 2017).
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Early sequencing-based techniques, referred to as chromosome confirmation capture (CCC)

methods, included 3C, 4C, and 5C. All of these innovative techniques have practical restric-

tions on either the genomic loci analyzed or the size of the region in which to investigate any

chromatin-chromatin interaction (Lajoie et al., 2015). “Hi-C” is a more recent technique that

uses high-throughput sequencing to simultaneously reveal genome-wide pairwise interactions be-

tween loci. Both CCC methods and Hi-C are used to identify topicologically associated domains

(TADs), which are megabase-long self-interacting regions of the genome that tend to exhibit

more intra-region interactions than inter-region interactions (Mateo et al., 2019; Pal et al., 2019;

Oluwadare et al., 2019). TADs are considered a fundamental piece of proper gene regulatory

functioning, and are highly reproducible across different Hi-C experiments (Finn et al., 2019). It

has thus been hypothesized that TADs comprise micro-environments within which promoters in-

teract with enhancers (Spielmann et al., 2018; Lajoie et al., 2015). Disruption of TAD boundaries

has been associated with many negative health outcomes such as cancer, limb deformities, and

adult-onset degradation of brain white matter (Spielmann et al., 2018; Krumm and Duan, 2019).

It is therefore of scientific interest to understand and discover TADs.

Typically, data from a Hi-C experiment is represented as a symmetric matrix (often called

the “contact matrix”) which gives the number of interactions (or contacts) between loci. Differing

loci are usually binned into fixed-sized genomic intervals ranging from 40 kB to 1 MB to reduce

sparsity and increase coverage, with some recommendations suggesting that all bins should have

at least 1,000 reads (Varoquaux et al., 2014; Lajoie et al., 2015). The bin size can vary depend-

ing on the objectives of the analysis, which can vary from genome-wide searches to studies of

specific small-scale regions. There are many systematic biases that impact the quality and map-

pability of Hi-C data, included restriction enzyme cutting frequencies, GC content, and sequence

uniqueness (Yaffe and Tanay, 2011; Hu et al., 2012).

In Hi-C, interactions are measured over some aggregated population of cells. Thus, it is

impossible to distinguish interaction pairs that only occur simultaneously in a given cell, are

mutually exclusive in an individual cell, or are somewhere in between (Lajoie et al., 2015). Se-
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quencing and analysis pipelines have been developed to extend Hi-C to single-cells to the study

of cell-to-cell variability in chromatin structure and spatial genome organization (Nagano et al.,

2013). As compared to bulk approaches, however, single-cell Hi-C data suffers from low reso-

lution (as measured by a low number of total reads), with state-of-the-art single-cell approaches

typically covering only 5-10% of the genome (Mateo et al., 2019; Zhou et al., 2019). When re-

ported as a two-dimensional contact matrix, this means that less than 1% of all possible contacts

can be captured at the single-cell level. Methods specifically designed to analyze single-cell Hi-C

data are somewhat limited, although recent work showed promise in clustering single-cell Hi-C

data to form constituent cell types for further downstream analyses (Zhou et al., 2019).

Evidence from imaging studies, Hi-C studies, and integrative analyses of both suggests that

cell-to-cell variability in spatial genome organization is substantial across space and time, even in

cell populations that would appear to be functionally homogeneous (Zhou et al., 2019; Ramani

et al., 2020; Finn et al., 2019; Mateo et al., 2019). Therefore, understanding this variability re-

quires techniques that can provide data at the cellular level. Optical reconstruction of chromatin

architecture (ORCA) was developed as one option for identifying new TADs with Hi-C while

simultaneously using the high resolution and tissue imaging information information provided by

FISH (Mateo et al., 2019). In using microscopy, the chromatin structure of a few thousand single

cells can be simultaneously analyzed to investigate chromatin structure and detect interactions

between enhancers and promoters at a fine resolution. Cell types can be determined through the

simultaneous measurement of mRNA and nascent transcription, and thousands of cells can be

processed quickly.

Previous work in Hi-C has demonstrated the counterintuitive result that, for some loci, phys-

ical distance and contact frequency may not always be inversely related as expected (Fudenberg

and Imakaev, 2017). This work concluded that contact frequency and spatial distance should be

considered separately in integrative analyses of Hi-C and FISH data. Further integrative analyses

of physical distance and interaction frequency suggest that genomic distance is not sufficient to

explain all interactions observed (Finn et al., 2019). This analysis suggested that gene dense re-
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gions seem to display a larger amount of cell-to-cell heterogeneity in interaction frequencies than

gene poor regions.
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CHAPTER 2: TWO-SIGMA: A TWO-COMPONENT SINGLE CELL
MODEL-BASED ASSOCIATION METHOD FOR SINGLE-CELL RNA-SEQ DATA

2.1 TWO-SIGMA for DE Analysis in scRNA-seq Data

Let i “ 1, ..., n index biological sample (individuals) and j “ 1, ..., ni index the single cells

associated with each biological sample. Following the notation in section 1.2, we will use a zero-

inflated negative binomial GLMM to model the probability of dropout pij and the conditional

mean read count µij . Our proposed TWO-component SInGle cell Model-based Association

method (TWO-SIGMA) for single-cell RNA-seq data is given by:

logitppijq “ zTijα` ai, ai „ Np0, σ2
aq

logpµijq “ xTijβ ` bi, bi „ Np0, σ2
b q, assume ai KK bi (2.1)

The model is fit for each gene individually, so all parameters are gene-specific. α and β are fixed

effect coefficient vectors and the corresponding vectors of sample-level and/or cell-level covari-

ates zij and xij can be different. ai and bi are sample-specific intercepts (discussed more in the

next section). Prediction of sample-specific intercepts and estimation of the variance compo-

nents σ2
a and σ2

b allow us to investigate heterogeneity among individuals, and tests of whether

the variance components equal zero allow us to separately (or jointly) evaluate the need for ran-

dom effects. Separate variance components are estimated because the different link functions in

the two components correspond to linear predictors with different scales. Including the random

intercept terms also helps control for any within-sample correlation, providing more accurate

estimates and standard errors of fixed effect parameters.
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As part of our twosigma R package, we employ the glmmTMB package (Brooks et al.,

2017) to fit the model specified in equation (2). This package is well-suited to fit generalized

linear mixed models (GLMMs) because the user can easily specify an arbitrarily complex model

composed of fixed and random effects. The marginal likelihood Lpα,β, φ, σ2
a, σ

2
b q of the TWO-

SIGMA model is given by

n
ź

i“1

ż 8

´8

ż 8

´8

ni
ź

j“1

ˆ

rPpYij “ 0qsIpyij“0qrPpYij “ yijqs
Ipyiją0q ˆ gpai, bi | σ

2
a, σ

2
b qdaidbi

˙

where gpai, bi | σ2
a, σ

2
b q is the product of two normal densities (assuming ai KK bi), and P pYijq is as

in equation (1.2) substituting pij and µij for p and µ, respectively.

Because no analytic solutions to this integral are available, the marginal likelihood must be ap-

proximated to obtain parameter estimates. Models that include many random effects can be fit

efficiently using the implementation in the twosigma package because the Laplace approxima-

tion is used to integrate out random effects and automatic differentiation is used to compute gra-

dients (Skaug and Fournier, 2006). It can be shown that the Laplace approximation is equivalent

to using Gaussian quadrature with one quadrature point (Fitzmaurice et al., 2003). Although esti-

mates can be biased, the Laplace approximation often performs well for count response variables

(Diggle et al., 2002). For further comments on situations in which the Laplace approximation

performs suitably well in practical applications, including the analysis of count data, see (Breslow

and Clayton, 1993). Finally, others have demonstrated that the Laplace approximation works

quite well in non-linear mixed-effects models (Pinheiro and Bates, 1995). This framework also

does not require balanced data, as is sometimes assumed for mixed-effects models; for instance,

balanced data are implicitly included in the setup of (Chen and Li, 2016).

The likelihood ratio test can be used to test several types of hypotheses in equation (2.1). As

mentioned in sections 1.2 and 1.3.3, respectively, one can use the LRT in testing φ “ 0 and either

of the variance components marginally (either H0 : σa “ 0 or H0 : σb “ 0) with p-values coming
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from an equal mixture of the χ2
0 and χ2

1 distributions. A joint test of the variance components

given by H0 : σa “ σb “ 0 is conservative if taking p-values from the χ2
2 distribution.

To summarize, TWO-SIGMA can control for different covariates in each component, in-

corporate random effects to accommodate within-sample dependency, analyze unbalanced data,

and allows for zero-inflated and overdispersed counts. The regression modelling framework con-

trols for additional covariates and provides the ability to examine any DE hypothesis that can

be expressed as a contrast of regression coefficients. The implementation of the model strikes a

balance between computational accuracy and efficiency, even as the number of random effects

(number of samples in the context of the scRNA-seq data) or the number of single cells per sam-

ple increases.

2.1.1 Performance of TWO-SIGMA

To evaluate the performance of TWO-SIGMA, we simulated data in a variety of scenarios.

Although many methods exist for DE in scRNA-seq data, as described in section 1.4.2, we chose

to focus our comparison to MAST because, like TWO-SIGMA, it is designed using a regression

modeling framework that is suitable for complex designs beyond a two-group comparison and

can incorporate multiple cell-level and subject-specific covariates. We also compare to a ZINB

model without random effects to highlight the impact random effect terms can have on model per-

formance. Simulated additional covariates included age and the CDR (discussed in section 1.1.2)

to mimic our real data analysis. Values of α and β were designed to represent realistic parame-

ter values observed in our pancreatic data analysis. Models were evaluated using the likelihood

ratio test on the joint null hypothesis that a binary disease status indicator is not associated with

expression through either drop-out probability or the conditional mean, H0 : α1 “ β1 “ 0. We

consider two different ways of simulating data: one in which the number of samples far exceeds

the number of cells per sample, as is typical in most repeated measures contexts, and the other in

which the number of cells far exceeds the number of samples, as is the case in scRNA-seq data.
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In each scenario we simulated 10,000 genes, each with 50,000 cells, and used 0.05 as the nominal

significance rate to evaluate type-I error and power.

Table 2.1: Type-I error evaluations in simulated data: Shows type-I error using the LRT to test the joint null
hypothesis of a simulated binary disease status indicator, H0 : α1 “ 0, β1 “ 0 versus Ha : α1 ‰ 0 or β1 ‰ 0, with a
significance level of 0.05. “T-S” refers to TWO-SIGMA, ZINB refers to a zero-inflated negative binomial model
without random effects and MAST refers to the model described in Finak et al. (2015). 10,000 genes were simulated.

Case 1 in Supplement: Case 3 in Supplement: Case 4 in Supplement:

Sim Params 50 Cells per 1000 Ind. 500 Cells per 100 Ind. 2000 Cells per 25 Ind.

φ σa σb T-S ZINB MAST T-S ZINB MAST T-S ZINB MAST

No
R.E.

10 0 0 0.049 0.051 0.089 0.042 0.050 0.090 0.041 0.052 0.090
2 0 0 0.048 0.051 0.080 0.038 0.044 0.079 0.041 0.052 0.086
1 0 0 0.048 0.052 0.081 0.044 0.051 0.087 0.042 0.051 0.090

Small
R.E.

10 0.1 0.1 0.051 0.132 0.144 0.056 0.534 0.313 0.077 0.795 0.487
2 0.1 0.1 0.051 0.078 0.089 0.057 0.323 0.176 0.072 0.643 0.361
1 0.1 0.1 0.049 0.066 0.095 0.053 0.224 0.174 0.075 0.548 0.361

Large
R.E.

10 0.5 0.5 0.051 0.621 0.290 0.055 0.941 0.716 0.076 0.984 0.875
2 0.5 0.5 0.053 0.505 0.275 0.056 0.909 0.685 0.076 0.974 0.857
1 0.5 0.5 0.050 0.404 0.247 0.053 0.873 0.649 0.074 0.964 0.827

Table 2.1 shows results from simulations in which the true values of the overdispersion pa-

rameter φ and the variance components σa, σb vary. Type-I error is well-controlled for TWO-

SIGMA in the scenarios involving more individuals than cells. When the number of cells in-

creases, type-I errors from TWO-SIGMA are slightly inflated over the nominal rate of 5%, but

consistently remain superior to the results from the ZINB model or MAST in the presence of

non-zero variance components. For example, the last row of table 2.1 shows that, when φ “ 1

and σa “ σb “ 0.5, type-I error for TWO-SIGMA increases from 0.05 to 0.053 to 0.074 as the

number of individuals decreases from 1000 to 100 to 25. In contrast, the ZINB model and MAST

have inflated type-I errors in every scenario that increase to nearly 1 as the number of individu-

als decreases. This is not surprising because both of the latter methods cannot account for any

within-sample dependency structure among the single cells from the same sample. Ignoring the

dependency introduced by even a moderate random effect size can thus have a drastic impact

on the type-I error. When true variance components are zero, both TWO-SIGMA and the ZINB

model preserve type-I error while MAST consistently has higher type-I error, as seen in the first

three rows of table 2.1. Coverage of confidence intervals for α, β, and φ always approaches the
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nominal level (see tables A.1-A.4 in section A.1.1 of the appendix). The reason for the slightly

inflated type-I error for TWO-SIGMA observed in the scenario with 25 individuals is worth men-

tioning briefly. The smaller number of individuals (25) provides less information to estimate the

sample-specific variance components σa and σb and fewer unique values of the simulated binary

disease status indicator. The slightly lower coverage for variance components in the last 6 sets

of case 4 in the appendix (table A.4) is one illustration of the (relative) difficulty in getting pre-

cise variance component estimates. TWO-SIGMA outperforms MAST or the ZINB model in

preserving type-I error and estimating parameters under a variety of sample size breakdowns and

with a variety of true parameter values. Figures A.3 and A.4 in section A.1.1 of the appendix con-

firm that type-I error is preserved across more stringent significance thresholds for representative

scenarios.

2.1.1.1 Power Improvement under a variety of scenarios

Because the ZINB model and MAST both have heavily inflated type-I errors in many cases,

using raw (or “apparent”) power does not provide a fair comparison for these two methods. For

each method and each simulation setting under the null, we therefore calculate the empirical

significance threshold, defined as the test statistic value at the quantile associated with 1 minus

the significance level. A percentage of statistics equal to the nominal significance level will then

be larger than this threshold. For various alternative hypotheses, we calculate “true” power for

MAST and the ZINB model by using the empirical significance threshold from the correspond-

ing setting under the null as the rejection threshold instead of a usual theoretical threshold (e.g.

5.9915 from χ2
2 at the .05 level). Figure 2.1 plots raw power for TWO-SIGMA and true power for

MAST in the ZINB model in the following four scenarios: effect in both components, in either

the same or opposite directions, and effects in only one of the two components. In the first three

scenarios, MAST consistently has the lowest power, while TWO-SIGMA and the ZINB model

have very similar power in the first two scenarios, beginning at around 20% and increasing to

nearly 100%. The ZINB model has higher power than TWO-SIGMA in the third scenario but the
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Figure 2.1: Power evaluations in simulated data: Shows the power to test H0 : α1 “ β1 “ 0 by varying the effect
size with 500 cells from each of 100 individuals. Values of φ, σa, and σb were all set to 0.1 to mimic the “Small R.E.”
section of table 2.1 and 10,000 genes were simulated. Because of the type-I error inflation from the ZINB model and
MAST seen in table 2.1, true power was calculated and plotted for these methods using the empirical significance
threshold from the corresponding setting under the null. TWO-SIGMA can bypass the need for computationally
expensive resampling procedures needed to generate true power because it preserves the type-I error as seen in table
2.1. See the discussion in section A.1.2 of the appendix for more details about computing true power and discussion
regarding power trends across the different methods.
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lowest power in the fourth scenario. In simulation, computing the empirical significance thresh-

olds and true power is straightforward and computationally included when evaluating type-I error.

In real data settings, however, computationally intensive resampling approaches are needed for re-

liable estimates of the empirical significance thresholds. Because TWO-SIGMA preserves type-I

error, we can rely on raw power and can therefore bypass the need for any resampling approach

for valid inference. This is a key advantage and shows that TWO-SIGMA is more robust and

flexible than the ZINB model while both preserving the type-I error and retaining high power

without any additional computation. When the effect is only in the zero-inflation component,

power is lower for all methods than in the first three scenarios. Such effects present only in the

zero-inflation component are known to be more difficult to detect, as seen in (Chen and Li, 2016).

For full power results, including more detailed comparisons to the ZINB model with additional

discussion, see section A.1.2 of the appendix.

2.1.2 ad hoc approach

One primary methodological contribution of TWO-SIGMA for scRNA-seq data analysis is

the inclusion of random effect terms in each of the two components, which is a well-established

technique to account for within-sample correlation. As mentioned in section 1.3, ignoring ran-

dom effects in TWO-SIGMA is equivalent to assuming that cells from the same sample/individ-

ual are independent. This assumption can lead to underestimated standard errors and thus inflated

type-I errors. An example is given in table 2.3 in the real data analysis section.

We utilize the following ad hoc approach to determine whether random effects are needed:

using a one-way ANOVA, we regress the Pearson residuals from a zero-inflated negative bino-

mial regression model without random effects on the sample label and take the p-value from

the overall ANOVA F test. This p-value serves as a rudimentary measure of whether the residu-

als tend to differ across samples. If they do, this is evidence that residuals are not exchangeable

across samples. The full TWO-SIGMA specification including random effects will then be fit to

more formally evaluate the need for random effect terms. In contrast, when the residuals show
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Figure 2.2: Presence of overdispersion in real data: Shows the need of a non-linear mean-variance relationship in the
pancreatic islet data. Each point represents the mean-variance relationship for one gene. In the legend φ represents
the overdispersion parameter of the negative binomial distribution and p represents the drop-out probability.

no tendency of differing across samples, we do not have evidence to believe that they are struc-

tured/clustered within samples and thus will not fit the full model with random effects. Through

simulations we found that this procedure is very effective in identifying the need for random

effects. Results from applying this proposed method to a real dataset of pancreatic islet cells

are given in the data analysis section. In simulations, computation runtime was the longest for

models attempting to fit random effects when variance components were truly zero (see tables

A.1–A.4 in the appendix). Therefore, as discussed more in section A.1 of the appendix, the ad

hoc method can dramatically reduce overall computation time over many genes in addition to

increasing model parsimony where most appropriate.

2.1.3 Pancreas real data analysis

For illustrative purposes we applied TWO-SIGMA to a dataset of pancreatic islet cells iso-

lated from nine individuals (see (Fang et al., 2019) for full details on the data processing and

generation steps). To focus on the most informative cells and genes, we applied rather aggressive
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filtering of the data to keep the top 2,000 genes by number of transcripts observed and only keep

cells with more than 1000 transcripts across these genes. After merging across all nine individ-

uals, we were left with 1,290 genes and 10,269 single cells of which we used only the 7,774 for

which cell type information was available based on the expression of signature genes. Here we

focus our attention on alpha and beta cells, which compose the majority (55% and 34%, respec-

tively) of the cells in our dataset. Type-II diabetes (T2D) status and age were used as sample-

specific covariates in all analyses. The CDR was computed for each cell and included in all analy-

ses, which were further stratified by cell type.

Figure 2.2 plots the relationship of mean versus variance for the 1,290 genes we used in our

analysis. It shows that the Poisson and zero-inflated Poisson models cannot adequately account

for the overdispersion observed in many genes. In contrast, TWO-SIGMA can accommodate

these mean-variance pairs in a quadratic relationship via the overdispersion parameter φ. Be-

cause we have only nine individuals, we chose to focus on analyses excluding the zero-inflation

random effect terms ai to improve convergence and overall model fit. Some genes still showed

convergence issues. This is partly indicative of a misspecified or overparameterized model and

partly due to the small number of cells and samples in the dataset. As a general guideline, users

with concerns or limited computational resources begin including random effects in the mean

component only, and scale upwards to include random effects in the zero-inflation component if

performance is satisfactory.

Table 2.2 shows the proportions of genes showing statistically significant results at the .05

level for three types of hypothesis tests: the joint test of significance for the binary disease indica-

tor H0 : α1 “ β1 “ 0, the test of the mean model variance component H0 : σb = 0, and the test for

the presence of overdispersion H0 : 1
φ
“ 0. For example, when fitting the TWO-SIGMA model

without the zero-inflation variance component to alpha cells, 73.8% of genes had statistically

significant variance components in the mean model. Most genes showed the need for a random

effect term or the negative binomial distribution (or both).
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Table 2.2: Rejection summaries from the pancreas data: Shows the proportion of genes in the pancreatic islet data
with rejected nulls for various hypotheses related to T2D. The TWO-SIGMA model as specified in equation (2.1)
was fit with no zero-inflation variance component (no ZIVC).

Hypothesis Alpha Cells Beta Cells
No ZIVC No ZIVC

Overall Disease Status 0.161 0.111
Overall R.E. Test 0.738 0.724
NB vs. Poisson 0.627 0.555

2.1.3.1 Impact of ignoring within-sample correlation

Table 2.3: Influence of failing to include needed random effects: Gives mean component estimates for gene RPS29
with (top panel) and without (bottom panel) random effects.

Effect Estimate Std. Error z value p-value
Intercept 0.521 0.207 2.515 0.012

T2D -0.349 0.292 -1.197 0.231
age -0.284 0.256 -1.109 0.267

CDR 0.394 0.011 36.284 ă.001
σb 0.490

Intercept 0.833 0.021 40.094 ă.001
T2D -0.605 0.032 -19.090 ă.001
age -0.057 0.017 -3.324 ă.001

CDR 0.390 0.015 26.611 ă.001

Models for genes that mistakenly exclude the bi random effect term often show highly signif-

icant results for covariates; this significance can disappear when including the random intercept

term—possibly indicative of a false positive due to failing to account for within-sample corre-

lation. For example, gene RPS29 demonstrates this pattern in alpha cells. Table 2.3 shows that

failing to include random effects—and thereby assuming independence of all single cells—can

lead to vastly underestimated standard errors. T2D status and age change from highly significant

to insignificant when including a random intercept term. The standard error for the coefficient

of T2D increases by a factor of 9 from 0.032 to 0.292, and the magnitude of the point estimate

is halved from -0.605 to -0.349. Individual covariates such as T2D can thus exhibit dramatically

increased type-I error when random effects are incorrectly ignored. In contrast, the coefficient

and associated standard error for the cellular detection rate (CDR) are nearly identical in the two
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models. This result is expected given that CDR is a cell-level covariate and shows that including

sample-specific random effects leads to very minor changes in the estimation of any covariates

that are not sample-specific. Our emphasis in this section is not to draw conclusions about any

association between RPS29 and T2D, but rather to illustrate that ignoring random effects has the

potential to alter scientific conclusions.

We also used alpha cells to test the overall effect of T2D using both TWO-SIGMA to MAST.

Table 2.4 shows that MAST rejects in many more instances than TWO-SIGMA. Of the 273 genes

that were rejected with MAST but not with TWO-SIGMA, 234 have statistically significant

variance components in TWO-SIGMA. This further illustrates the possibility that fixed effect

coefficients can be mistakenly deemed significant in the presence of within-sample correlation.

2.1.3.2 Cell-type specific genes often show a need for random effect inclusion

Table 2.4: Agreement between TWO-SIGMA and MAST: Shows the agreement in rejecting the omnibus null
hypothesis of an association between T2D status and gene expression in alpha cells using a Bonferroni adjusted
significance level of 5ˆ10´5.

TWO-SIGMA MAST

No Reject Reject
No Reject 1013 273

Reject 1 3

We matched 234 and 120 genes in our data that were identified in previous studies as cell-

type specific in alpha or beta cells, respectively. ((Lawlor et al., 2017), supplementary table 10).

After stratifying the data by cell type and removing genes with more than 90% or less than 10%

zeros, we fit TWO-SIGMA (excluding ai as mentioned previously) to the remaining 222 alpha

cell-specific and 111 beta cell-specific genes to alpha cells and beta cells, respectively. Of these,

93 alpha cell-specific genes and 85 beta cell-specific genes had statistically significant variance

components σb. This suggests that non-negligible between-sample variation—not attributable to

cell-type—is present for these cell-type specific genes. As discussed in (Lawlor et al., 2017), cell-

type specific expression profiles are often of primary interest to study (dis)function at the cellular
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level and reveal novel approaches to treat and manage diseases such as T2D. Thus, it is critical

to have reliable inference for these genes. As seen in the previous section, incorrectly excluding

random effect terms can provide very misleading results and can thereby misdirect attempts to

understand disease etiology at a cellular level.

2.1.3.3 The ad hoc method successfully separates genes that need random effects

Finally, we used all 1,290 genes from the islet dataset to demonstrate the usefulness of the

ad hoc method to determine the need for the random effects terms bi. Figure 2.3 shows that like-

lihood ratio statistics from formal testing of bi are consistently larger for genes selected by the

procedure than those not selected. This pattern suggests that the ad hoc procedure described ear-

lier can effectively identify genes that will exhibit non-zero variance components in real data.

2.1.4 Discussion of TWO-SIGMA

TWO-SIGMA builds on the well-established literature in both zero-inflated models and

generalized linear mixed models. It keeps the data on the original scale while simultaneously

allowing for zero-inflation, overdispersion, and random effects to account for within-sample

correlation. As compared to existing methods, its flexibility is demonstrated both in the use of

random effect terms and the ability to test any hypothesis of DE that can be expressed as a con-

trast of regression coefficients while controlling for multiple sample-level and individual-level

covariates.

Incorrectly excluding random effects and assuming independence of cells can lead to under-

estimated standard errors of fixed effects and can therefore increase the type-I error of hypothesis

tests relating to fixed effects parameters. See table 2.3 for an example. If the random effect terms

do not contribute to the model fit, as judged by a statistical test or practical significance, they

can be removed easily within the general framework of TWO-SIGMA. Random intercepts can

also be useful even when they are not of direct interest: they often capture the effects of omitted
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Figure 2.3: Ability of the ad hoc method to identify genes in need of random effects: Shows boxplots of the LR
statistics from the joint test of the need for random effects, H0 : σa “ σb “ 0, using TWO-SIGMA. Genes that our
ad hoc procedure suggests need random effects (“Need RE”) and genes the procedure suggests do not (“Don’t Need
RE”) are compared. Both panels were created using TWO-SIGMA as specified in equation (2.1) but with no
zero-inflation variance component (no ZIVC).

sample-specific covariates, and can limit the bias of fixed effect coefficients caused by misspec-

ification. For example, if cell-type information is missing, and varies between individuals, a

random intercept term can limit the resulting bias and p-value inflation observed in fixed effects

parameters. Our ad hoc method proves to be a useful tool to both (i) select genes that could ben-

efit from including random effect terms and (ii) reduce overall computation time by suggesting

genes that do not need to be fit including random effect terms.

Because we expect a priori that zero-inflation will occur in scRNA-seq, it is beneficial to

include a component dedicated to it. The zero-inflation component in TWO-SIGMA is flexible
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in that it allows for a different set of covariates from the mean model, or no covariates at all.

For example, one might be interested in using zero-inflation only to improve mean parameter

estimation. In this scenario, a constant probability of drop-out could be assumed via an intercept-

only regression model. This would prevent coefficient estimates in the mean model from being

overly shrunk towards zero, as would occur if drop-out was not accounted for, but would also

limit the total number of parameters estimated and maximize model parsimony. Even if the data

are not truly generated from a zero-inflated process, or if drop-out is viewed as a “nuisance,”

using the two component model in equation (2.1) can be a convenient choice to improve model

fit and fixed effect parameter estimation. As a point of comparison, MAST requires covariates in

each component to be identical and therefore could not fit such an intercept-only zero-inflation

component.

Finally, our experience suggests that variance component estimates are often much smaller in

the zero-inflation component than in the mean component. Therefore, as we did in the real data

analysis, it might be a pragmatic choice to exclude random effects from the zero-inflation compo-

nent of TWO-SIGMA. A key strength of TWO-SIGMA is the flexibility to easily customize the

model within the general framework either a priori or via iterative removal based on statistical

hypothesis tests of features such as random effects, overdispersion, or the drop-out component.
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CHAPTER 3: TWO-SIGMA-G: A TWO-COMPONENT SINGLE CELL
MODEL-BASED ASSOCIATION METHOD FOR SINGLE-CELL RNA-SEQ GENESET TEST-

ING

3.1 TWO-SIGMA-G

We further extend our TWO-SIGMA method to competitive gene set testing via TWO-

SIGMA-Geneset (TWO-SIGMA-G). First, gene-level statistics are collected for test and ref-

erence set genes. In a similar vein to CAMERA, we choose to compare the test and reference set

statistics using the two-sample Wilcoxon rank-sum test. In using ranks, we can provide robust-

ness against the influence of very large gene-level statistics.

As mentioned, IGC can inflate type-I error in competitive gene set testing (Wu and Smyth,

2012). Assuming a common pairwise correlation ρ in the test set of size m1 and no correlation in

the reference set of size m2, it can be shown that the variance of the two-group Wilcoxon rank-

sum statistic is given by:

m1m2

2π

˜

sin´11` pm2 ´ 1qsin´1
1

2
` pm1 ´ 1qpm2 ´ 1qsin´1

ρ

2
` pm1 ´ 1qsin´1

ρ` 1

2

¸

Using this variance formula, we can compute p-values using the usual normal approximation to

the Wilcoxon rank-sum statistic. The reference set used in TWO-SIGMA-G can be chosen in one

of two ways: either using a random sample of other genes of size m1, or as the collection of all

genes not in the test set under consideration. Previous studies have cautioned that set size can in-

flate the type-I error of some gene set testing procedures (Damian and Gorfine, 2004; Tian et al.,

2005). For larger gene sets, which are likely of more interest scientifically, the difference be-

tween these two approaches for choosing a reference set diminishes. We will discuss the choice
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of reference set in more detail in section 3.2 and in the context of a real data example in section

3.3.

Cell-level covariates such as the cellular detection rate (CDR) have been previously demon-

strated to be highly influential to observed expression levels (Finak et al., 2015). Subject-specific

covariates, such as disease status or race, can further create an additional correlation structure in

the raw data. Gene-level DE statistics will be adjusted for the effects of these covariates When

they are included in a regression model. Using the raw data to estimate IGC can therefore over-

estimate the correlation that remains between the gene-level statistics, and can thereby lead to

conservative set-level inference. Residuals, in contrast, remove covariate effects and can better

represent the correlation in the gene-level statistics.

We therefore estimate the inter-gene correlation of a given gene set using the residuals from

the TWO-SIGMA model as follows: Define the (ni ˆ 1) vector of residuals for gene s from individ-

ual i as ris “ Yis ´ pYis. Then, by individual, construct the ni ˆ s matrixRi “ trisu consisting

of the residuals for all genes in the test set. Given these residual matrices, we can compute the

(s ˆ s) correlation matrix Ci, which contains s choose 2 unique non-diagonal elements. These

elements give the pairwise correlation between residuals of two different genes in the test set.

We average these (s choose 2) values to produce one average pairwise correlation ρ̂i per indi-

vidual. Finally, our overall correlation estimate is taken as the average of these values such that

ρ̂ “
řn
i“1 ρ̂i{n. We found in simulations that this IGC estimate preserves type-I error in a conser-

vative manner while still producing improved power in a variety of realistic scenarios. Our IGC

procedure therefore builds off of the advantages of a residualized approach while further using

individual-level calculations to help mitigate the impacts of the large individual heterogeneity

often seen in scRNA-seq datasets. Additionally, use of the residuals also removes the correlation

explained by sample-specific random effects terms if included at the gene-level.

As compared to other methods, TWO-SIGMA-G has several key advantages in applicability

and interpretability. First, it is explicitly tailored to scRNA-seq data at the gene-level in that it can

flexibly and optionally include zero-inflation, overdispersion, and within-subject random effect
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terms to account for with-subject correlation. Second, the use of a regression modeling frame-

work at the gene-level enables the analysis of complex designs including multiple confounding

covariates as will be displayed further in the real data analysis of section 3.3. Third, as in CAM-

ERA, estimating the IGC using residuals allows us to remove the effects of included sample-level

and cell-level covariates. Our approach adds another step in first stratifying by individual in the

IGC calculation then averaging over individuals to produce an overall estimate. Finally, like

CAMERA, the estimate of the IGC is virtually free computationally in that the model is not refit

via permutation or bootstrapping.

3.2 Performance of TWO-SIGMA-G

Extensive simulation studies were conducted to evaluate the performance of TWO-SIGMA-

G. A total of six different settings were constructed which varied both the amount of inter-gene

correlation induced and the presence of other covariates in the model, which can create additional

complex correlation structures between cells and genes. For each setting, we aggregated over

ten biological replicates consisting of differing cell populations to minimize the impact of initial

cell population on results. Settings were repeated using reference sets of size 30 and 100. See

section B1 in appendix for more details regarding the simulation procedure and the settings used.

TWO-SIGMA-G was compared to two other methods for competitive testing: CAMERA, the

leading method for bulk RNA-seq and thus for competitive testing, and the procedure in MAST,

which is one of the most popular packages for scRNA-seq data analysis. Methods designed for

self-contained testing, a hybrid of self-contained and competitive testing, or other aspects of gene

set testing, such as ROAST (Wu et al., 2010), GSEA (Subramanian et al., 2005), sigPathway

(Tian et al., 2005), and PAGODA (Fan et al., 2016) were not included because they are testing

fundamentally different null hypotheses. We had difficulties obtaining reliable p-values from

iDEA for the main simulations. We believe this is because our simulations were calibrated using

gene-level statistics summarizing evidence from both components, while iDEA uses only the

effect size from the mean component. TWO-SIGMA-G, CAMERA, and MAST all utilize the
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Figure 3.1: Shows the set-level type-I error of CAMERA, MAST, and TWO-SIGMA-G for genes simulated with
IGC. Two scenarios are presented: using reference set sizes of 100 and 30. Within each scenario, both unadjusted
and adjusted set-level p-values are plotted (unadjusted p-values are unavailable for MAST). Each boxplot aggregates
6 different settings which vary both the magnitude of the average inter-gene correlation in the test set and the nature
of the correlation structure via the introduction of other individual-level covariates. Such settings are meant to
represent the diversity seen in real data sets to paint an accurate picture of testing properties over a wide range of
gene sets. Each of the 6 settings is further composed of 10 replicates which vary only random seed to mimic the
impact of a different starting pool of cells from which genes were simulated. See appendix section B1 for more
details regarding the simulation procedure.

raw data and as such can capture general set-level enrichment coming from expression changes

in zero proportion or mean value. iDEA does not use the raw data and uses only the summary

statistics from the mean component, however. Thus, in Figure B5 of the appendix, we provide a

meaningful comparison to iDEA using data simulated to emphasize the mean component effect,

and show that TWO-SIGMA-G shows comparable power with gains in some scenarios.

3.2.1 Set-Level Type-I Error Control

Figure 3.1 shows the type-I error performance of TWO-SIGMA-G, CAMERA, and MAST

across the six simulated settings. Unadjusted p-values demonstrate the implications of ignored

IGC—type-I error is consistently inflated without adjustment. After p-value adjustment, both

TWO-SIGMA-G and MAST tend to preserve type-I error at the 5% level. In contrast, CAMERA

suffers from inflated type-I error after IGC adjustment. Differences between the three methods
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are likely partially due to a combination of factors that lead to a misspecified model for the fea-

tures of scRNA-seq data. First, CAMERA and MAST use a log transformation of the data, which

may distort true signals, particularly in the presence of many zero counts (Townes et al., 2019;

Lun, 2018). Second, unlike TWO-SIGMA-G and MAST, CAMERA does not separately model

the excess zeros in the data and may underestimate parameters relating to mean expression as

a result. Performance of MAST and CAMERA tends to be the worst in scenarios involving ad-

ditional covariates which create more complex correlation structures. The procedure used in

TWO-SIGMA-G to estimate and adjust for IGC is well-calibrated and produces valid set-level

inference.

Additional analyses showed that the type-I error from TWO-SIGMA-G is preserved or ap-

proximately preserved in the presence of non-zero gene-level random effect terms, whether or

not they are included in the gene-level models (Appendix Figure B1). For both CAMERA and

MAST, however, type-I error tends to be inflated on average and the variance in the type-I er-

ror across the six settings tends to increase in the presence of gene-level random effects. Per-

formance for these methods tends to once again be the worst in settings involving the largest

inter-gene correlation. For both methods, however, this inflation is much lower in magnitude than

at the gene-level (Van Buren et al., 2020). This highlights an advantage of competitive testing:

because it makes a relative comparison to a reference set of genes, it is partially robust to the

consequences of a systematic, gene-level misspecification. The real data analysis in section 3.3

further shows large agreement in set-level results from TWO-SIGMA-G regardless of random

effect inclusion in the gene-level model.

Results seen in figure 3.1 and Appendix Figure B1 suggest,that the null distribution of all

three methods are nearly identical with a larger reference set size. In the interest of being conser-

vative, however, we will evaluate performance using results in which the test and reference sets

are of equal size.

Figure S2 in the appendix shows the type-I error at alternative set-level null hypotheses, in

which an equal percentage of genes in the test and reference sets are DE (with the same gene-
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Figure 3.2: Shows the set-level power of TWO-SIGMA-G and CAMERA for genes simulated with IGC. Two
scenarios are presented: using reference set sizes of 100 and 30. Within each scenario, the percentage of genes that
are differentially expressed (with the same effect size) in the test and reference set is varied. For example, “T80,R50”
corresponds to the configuration under the alternative hypothesis in which 80% of test set genes are DE and 50% of
reference set genes are DE. Each boxplot aggregates 6 different settings which vary both the magnitude of the
average inter-gene correlation in the test set and the nature of the correlation structure via the introduction of other
individual-level covariates. Such settings are meant to represent the diversity seen in real data sets to paint an
accurate picture of testing properties over a wide range of gene sets. Each of the 6 settings is further composed of 10
replicates which vary only random seed to mimic the impact of a different starting pool of cells from which genes
were simulated. See section B1 of the appendix for more details regarding the simulation procedure.

level effect size). Generally, TWO-SIGMA-G and MAST tend to both become more conservative

as more DE genes are introduced, both without gene-level random effects and when they are

mistakenly absent. The type-I error of MAST tends to become inflated once the background

percentage of DE genes increases, particularly when gene-level random effects are mistakenly

excluded.

3.2.2 Set-Level Power Improvement

Figure 3.2 shows the power of CAMERA, MAST, and TWO-SIGMA-G on simulated data.

Different configurations are presented which involves a differing proportion of DE genes (with

the same effect size) in the test and reference set. For example, “T100,R50” corresponds to the

configuration in which 100% of genes in the test set are DE and 50% of genes in the reference set

are DE. Scenarios which combine DE and non-DE genes in both the test and reference set are the
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most informative to study because it is unlikely in real data to have a completely null reference

set and/or a completely alternative test set. Our simulations demonstrate several interesting find-

ings. First, TWO-SIGMA-G is consistently the most powerful method. Second, power depends

primarily on the proportion difference in DE between the test and reference set, and less on the

precise composition of the test and reference sets. For example, the “T80,R50” and “T50,R20”

configurations have the same difference in percentage of DE genes, and similar power profiles

for all methods. Third, using a reference set of size 100 tends to improve power for both methods

and particularly for TWO-SIGMA-G. As discussed in the previous section, this power increase

does not seem to be a consequence of an increase in type-I error. This provides some evidence

in favor of using a larger reference set in lieu of a balanced reference set. We will revisit this

topic in the real data analysis of section 3.3. Figure B3 in the appendix shows power when truly

present gene-level random effects are included or mistakenly excluded from the gene-level model.

In either case, power is only slightly reduced versus the case without gene-level random effects.

Thus, if interested primarily in set-level inference, gene-level random effect terms and the asso-

ciated increase in computational cost may not be necessary for valid and powerful inference. If

gene-level inference is simultaneously of interest, however, this power loss may be acceptable

to prevent the massive type-I error inflation that has been shown to occur at the gene-level when

random effects are mistakenly absent (Van Buren et al., 2020). Figure B4 in the appendix varies

the magnitude of DE, with half of genes having twice the effect size of the other half. Set-level

power is improved, as expected, but the relative positions of each configuration remain as in

figure 3.2, suggesting that power results presented are applicable to alternative DE breakdowns.

3.3 Real Data Analysis

We demonstrate our TWO-SIGMA-G method on two real datasets. The first is a dataset of

15,351 single-cells collected from 6 donor mice, three of which were infected HIV and three

were given a mock treatment. As with other UMI-based scRNA-seq data, we found that this data

was not consistent with zero-inflation, and thus we fit the TWO-SIGMA model without the zero-
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inflation component at the gene-level. Cells were typed, and for our analysis we will consider

the 11 cell types which had cells both with and without HIV. Because the primary interest is in

comparisons between HIV and mock cells within a cell type, we categorize the remaining 14,354

cells into one of 2*11 = 22 mutually exclusive groups. Many cell types are quite rare, and thus an

ANCOVA model additionally adjusting for CDR was fit as a way to improve estimation for the

very rare cell types. TWO-SIGMA-G is ideal for this analysis because gene-level statistics can

come from a test of such an arbitrary contrast matrix. Gene-level statistics for each cell type are

Z-statistics contrasting the mean values in observed expression between the two treatment groups

within a cell type. Gene sets were taken from the Molecular Signatures Database (Subramanian

et al., 2005; Liberzon et al., 2015) version 7, c2 collection, accessed via the msigdf R package

(https://github.com/ToledoEM/msigdf). After filtering to keep sets with at least two genes present

in the data, a total 4,630 genes and 5,011 sets were analyzed. Each gene set has an associated set-

level p-value for each of the 11 cell types. Figure 3.3 shows a heatmap of average set-level log

fold-changes and associated p-values from the HIV dataset. Hierarchical clustering groups the

gene sets into to main groups: the rightmost group represents sets that are biologically expected

responses to virus introduction. These sets tend to display consistent effect sizes across all 11 cell

types.

The second dataset we analyzed consists of 80,660 single cells sequenced from 48 human

donors Mathys et al. (2019). Half of these donors have clinically diagnosed Alzheimer’s disease

(AD), categorized into early and late stages (12 individuals each), and the other half are control

patients without an Alzheimer’s diagnosis. Our geneset analysis was conducted analogously to

the HIV dataset: a one-component ANCOVA model was fit including cell-type and AD status

jointly, with age at death, sex, and the CDR used as an additional covariates. Once again, the

gene-level statistics were contrasts of the difference in expression between AD stages within

cell-type. For the analysis, we were left with six cell types: excitatory neurons (Ex), inhibitory

neurons (In), microglia (Mic), astrocytes (Ast), oligodendrocytes (Oli), and oligodendrocyte pro-
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genitor cells (Opc). In total, filtering genes expressed in at least 10% of all cells and restricting to

these cell types left us with 6,048 genes and 70,634 cells for analysis.

Results were generated comparing AD patients (early or late stage) to control, early stage

AD patients to control, late stage AD patients to control, and late stage AD patients to early stage

AD patients. Appendix B shows the complete results, but here we focus on the comparison be-

tween early stage AD patients and controls, seen in figure 3.4. Many of the top sets are down-

regulated in all cell types and involved in cellular respiration, such as “MOOTHA VOXPHOS”

and “KEGG OXIDATIVE PHOSPHORYLATION.” Previous studies have suggested that dys-

function in mitochondrial functioning, particularly in cellular respiration as caused by oxidative

damage, is among the earlist events in Alzheimer’s disease (Nunomura et al., 2001). As figure

3.4 demonstrates, we replicate this finding with particularly strong and robust downregulation

seen in respiration related pathways in neuronal cells. Previous differential expression analyses of

AD patients have suggested that the trend of decreased expression in genes associated with cellu-

lar respiration may reverse over time (Nunomura et al., 2001; Manczak et al., 2004). We observe

this pattern in our set-level analyses as well: sets of genes functionally annotated to be related to

cellular respiration are significantly downregulated comparing early stage AD patients to control,

significantly upregulated comparing late stage to early stage AD patients, and upregulated but

not among the most significant sets comparing late stage AD patients to control. Thus, it would

seem that as the disease progresses, the initial downregulation in these gene sets is reversed over

time, possibly due to cellular degeneration and an increasing demand for energy in remaining

cells (Nunomura et al., 2001).

Cell-type specific heterogeneity is also revealed by our analysis. For example, microglia

cells exhibit stronger and more significant downregulation of pathways involved in immune

response, such as “ while showing less of an impact in pathways related to cellular respiration.

Given the nature of microglia cells as the immune defenders, this is not a surprising finding.

In different contexts, the ability to identify cell-type specific variability can reveal previously

unknown functional differences.
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Heatmap of Set-Level Average Log FC by Cell Type
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Heatmap of Set-Level Average Log FC by Cell Type (Early Stage AD vs. Control Patients)
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Figure 3.4: Shows cell-type specific variation in set-level significance for the Alzheimer’s data. Sets which are
significant after FDR-adjustment are bolded.
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CHAPTER 4: INTEGRATIVE ANALYSIS OF HI-C AND SINGLE-CELL
IMAGING DATA

4.1 Exploratory Analysis of Hi-C and single-cell Imaging Data

As discussed in Section 1.7, there is substantial evidence which suggests that the physical

distance between two genetic loci will be correlated with the contact frequency in three dimen-

sions (3D) between the two regions. Loci closer in physical distance would naturally be assumed

to be closer in 3D distance, however recent evidence has been suggested physical distance and

3D distance cannot be assumed as perfect substitutes for one another. Therefore, it would be

advantageous to collect both measures of interactions separately. As part of an introductory inves-

tigation into the prospects of integrating single-cell imaging data and Hi-C data, we first analyze

the two data sources separately. Single-cell imaging data originally published in (Mateo et al.,

2019) was collected from the common fruit fly (Drosophila). The data structure consists of cells

sequenced from eight embryos for a total of 646 cells. For each cell, 70 probes were placed every

10 kilobases (kb) over a 700kb region (from position 12200000 to 12900000 on chromosome

3R), and microscopic imaging captured the relative 3D positions of these probes. For technical

reasons, the coordinates of some probes will be missing. Therefore, we first perform linear inter-

polation to fill in coordinates of missing probes. Such an approach naturally involves some loss

of precision, and could be refined by supervised methods in future work.

With an interpolated and complete dataset, for two probes i and j in the same cell, we can

compute the pairwise Euclidean distances dij between their 3D coordinates pxi, yi, ziq and pxj, yj, zjq

as follows:

dij “
b

pxi ´ xjq2 ` pyi ´ yjq2 ` pzi ´ zjq2
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Figure 4.1: Visualizes the average distances between distant genetic loci. Larger edges in the top row correspond to
a closer 3D distance, and two representative embryos from the single-cell imaging data are plotted. The bottom row
shows heatmaps created from classifying a contact based on a distance within 150nm.

First, we can directly analyze such distances to investigate regions that are relatively far in ge-

nomic distance but relatively close in 3D distance. Figure 4.1 plots the average distances between

probes in two representative embryos. Proximal probes are the closest in distance, but other pat-

terns emerge: such as the connections involving probes 13 and 28 and other non-adjacent probes.

Such plots can represent the distance data in a quasi-continuous way, but are still aggregating all
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cells from a given embryo. The heatmaps below show similar patterns, but also reveal several

possible Topologically Associated Domains (TAD)s within the data.

As a first step in combining the imaging and Hi-C data, we can categorize a contact based on

an observed distance between probes of 150nm or less, as was done in Mateo et al. (2019). Doing

so, we can produce analogous heatmaps as seen in the bottom row of 4.1. This is in a sense a loss

of information, because the distance matters only to the extent of its relation to the threshold of

150nm. Using this approach, however, we can combine the information between the imaging and

Hi-C data using the following procedure:

1. Compute the pairwise distances between each probe combination in each cell

2. Categorize contacts based on the Euclidean distance (as specified above) being within

150nm

3. Add these counts over all cells to get total contacts

4. Standardize Hi-C contacts and distance-based contacts to contacts per million

5. Add the two sources of contacts and multiply by one million

Figure 4.2 displays corresponding heatmaps for the Hi-C data and the combined Hi-C and imag-

ing data. In general, the signal presented by both data sources is similar, but some differences do

exist in certain regions. In the next section we will focus on the task of peak calling. Evaluating

the sensitivity of possible TADs, for example, would be an interesting application that we do not

explore here.
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Figure 4.2: Heatmaps of contacts between probes. Larger edges correspond to a closer 3D distance, and two
representative embryos from the single-cell imaging data are plotted.
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4.2 Integrating Hi-C and Imaging Data for Peak Calling
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Figure 4.3: Shows estimated posterior peak probabilities from the Bayesian HMRF Model of Xu et al. (2015) for
the Hi-C and imaging data.

One of the most commonly performed tasks with Hi-C data is peak calling. The goal of these

analyses is to determine which interactions observed are due to random chance, and which in-

teractions are not random. Although many methods exist for peak calling, we choose to focus

on a Bayesian method utilizing Hidden Markov Random Fields (HMRF) first proposed in Xu

et al. (2015). HMRFs are an extension of Hidden Markov Models (HMMs) to two dimensions

by creating an underlying Markov random field. The Markov property explicitly accounts for

the dependency between neighboring genetic loci (in genetic distance). Unlike many competitor

methods, information is thus borrowed from neighboring regions to improve peak calling. As

input, the Bayesian HMRF takes in the observed contact counts, and an estimate of expected in-

teraction counts. Although there are a number of ways to get these expected counts, here we use

a modification of the Fit-Hi-C package Ay et al. (2014). As output, the method produces a pos-

terior peak probability estimate for each pairwise interaction combination. Figure 4.3 shows the

output of the Bayesian HMRF caller for the same 70kb region separately in the Hi-C and imaging

data. The left panel in particular shows a broad peak near the end of the region studied. The low
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expected number of interaction counts seems to be the primary driver of this pattern. Our next

goal is to combine the estimated posterior probabilities from the Hi-C and imaging data to pro-

duce consensus peak probability estimates. This task must be undertaken with caution because

the peak probability estimates from the two data sources are necessarily correlated. The nature of

this dependency is unknown. Therefore, to combine the probabilities, we use the Cauchy Com-

bination test, which was recently articulated to combine dependent p-values Liu and Xie (2020).

Although we are combining probabilities and not strictly p-values, the method itself can still be

applied. The CCT statistic is given by:

T pp1, ..., pjq “
j
ÿ

i“1

ωjtantπp.5´ piqu

where
ř

j ωj “ 1. As discussed more in Liu and Xie (2020), this quantity can be approximated

using the standard Cauchy distribution.

Let pi be the peak probability from the imaging data for a given loci, and ph be the peak

probability from the Hi-C data for a given loci. Then, we can calculate the combined posterior

peak probability as follows:

pc “ 1´ FCpT pph, piqq “ .5´
1

π
arctantT pph, piqu

where FC is the c.d.f. of the standard Cauchy distribution. Figure 4.4 shows pc as applied to the

integration of the Hi-C and imaging data. As expected, it generally paints a kind of “average” of

the two heatmaps in figure 4.3, but should be more robust to the dependency between these two

heatmaps. Follow-up analysis can aim to improve the biological interpretation of these called

peaks.

Future work in this context can focus on a number of possible improvements. First, poten-

tial alternatives to producing expected count estimates for input to the Bayesian HMRF can be

explored. These may reduce the seemingly strange pattern observed in the left panel of figure 4.3.

Second, the distance from the imaging data could be applied in a continuous manner, rather than
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used only to create a binarized interaction count. Such approaches could include a joint model

that aims to use all observed distances from every cell to define interactions. Third, such integra-

tion of different datasets could be applied to other common tasks involving Hi-C data, such as

TAD calling or 3D structure modelling. Finally, and perhaps most importantly, the ultimate use-

fulness in imaging methods will be in an ability to refine prediction in genomic regions that are

not imaged. For example, the null distribution of interactions or peak posterior probabilities could

be refined using the imaging data where it is available. Then, adjustments to regions outside of

those imaged could be made to leverage the imaging data to its fullest potential.

52



Cauchy Combination Test
Posterior Peak Probability

Fragment Index

F
ra

gm
en

t I
nd

ex

70
64

58
52

46
40

34
28

22
16

10
5

1

1 6 12 19 26 33 40 47 54 61 68

0

0.2

0.4

0.6

0.8

1

Figure 4.4: Shows the estimated posterior peak probability from the Bayesian HMRF Model of Xu et al. (2015) for
the Hi-C and imaging data.
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CHAPTER 5: CONCLUSION

In this work, we discuss topics related to the analysis of single-cell genomic data. In the first

chapter, we discuss a general framework for DE testing of single-cell RNA-sequencing data. This

is one of the most common, and most important, statistical tasks performed on scRNA-seq data.

Considerable attention from researchers has lead to the development of a number of methods for

DE analysis. Here, we introduce TWO-SIGMA, which builds on these methods by accommo-

dating some novel features and some aspects of previously developed work. TWO-SIGMA is

a general two-component mixed-effects zero-inflated negative binomial regression framework.

As such, it can accommodate zero-inflated and overdispersed counts while keeping the data on

its original scale. Random effect terms can be used to adjust standard error estimates for the

within-sample correlation that may exist by the nature of scRNA-seq experimental designs, which

sequence many cells from a much smaller number of donors. The regression modelling frame-

work can control for different and arbitrary covariates in each component and test general DE

beyond a two-group comparison as we demonstrated in this dissertation. Users can also remove

the zero-inflation component or reduce the negative binomial distribution to the Poisson distri-

bution if supported by the data. Our results suggest quite strongly that the presence of even a

moderate within-sample correlation can radically inflate type-I error in some genes.

The second chapter of this work extends TWO-SIGMA to geneset testing with TWO-SIGMA-

G. At the gene-level, TWO-SIGMA-G retains the advantages of TWO-SIGMA. At the set-level,

TWO-SIGMA-G proposes a competitive framework that adjusts for the inter-gene correlation

expected within pathways given their construction to represent genes with biologically similar

functions. Our adjustment is necessary to protect set-level type-I error, as shown in simulations,
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and is computationally efficient because no bootstrap or permutation is required. TWO-SIGMA-

G is one of the first competitive testing methods for scRNA-seq data, and shows great perfor-

mance as compared to other methods designed for geneset testing in either bulk or single-cell

RNA-sequencing data. The real data analysis demonstrates the ability of TWO-SIGMA-G to

test complex gene-level hypotheses and revealed some novel findings regarding gene expression

profiles in Alzheimer’s patients.

Finally, the third chapter of this dissertation begins to bridge the gap between single-cell

imaging data and Hi-C data for understanding the 3D structure of the genome. The ultimate goal

of the research began here is to fully leverage the cell-type heterogeneity and the resolution pro-

vided by imaging methods to contribute to a refined understanding of the 3D genome, and how

its architecture can vary in different cells. Hopefully, the kind of imaging data can be improved

to cover larger genomic regions, and leveraged effectively to also improve statistical inference in

genomic regions that are not imaged.
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APPENDIX A: ADDITIONAL RESULTS FOR CHAPTER 2

A.1 More Results from the TWO-SIGMA ad hoc procedure
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Figure A.1: ad hoc procedure with zero variance components: Shows the distribution of p-values from the ad hoc
method described in the main text when variance components are zero under some representative scenarios.

For each of the simulation results discussed in the main text and summarized in the tables below,

we also calculated the p-values from the ad hoc method for determining if random effects are

needed. Figures A.1 and A.2 show histograms of p-values from representative scenarios when

variance components are zero and non-zero, respectively. When variance components are zero, p-

values are close to uniformly distributed, meaning that most genes will not be flagged as in need

of random effects. When variance components are non-zero, the method produces small p-values

which can successfully flag the need to include random effects using a p-value cutoff threshold of,

for example, 0.05 or 0.10.
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Figure A.2: ad hoc procedure with non-zero variance components: Shows the distribution of p-values from the ad
hoc method described in section 3 of the main text when variance components are non-zero under some
representative scenarios.

57



A.1.1 Extended TWO-SIGMA Type-I Error Simulation Results

Tables A.1–A.4 give more detailed results for the type-I error simulations at the 0.05 level.

Each setting has results from three models: TWO-SIGMA, the zero-inflated negative binomial

model (without random effects) “ZINB,” and MAST Finak et al. (2015). Parameters α1 and β1

correspond to the coefficients on a binary disease status indicator, and are set to 0 under the null

and are non-zero under some alternative hypothesis. Other coefficients in both components in-

clude an intercept (α0, β0), coefficients from simulated age values (α2, β2) and coefficients from

simulated CDR values (α3, β3). Parameter values were designed to mimic realistic values ob-

served in the pancreas data analysis. “LRT” refers to the likelihood ratio statistic (on 2 d.f.), and

the combined χ2 statistic is defined as the sum of the squared z-statistics from each of the two

coefficients related to the binary disease status indicator. Coverage is given for parameters α1 and

β1, φ, and σa and σb. Note that confidence intervals for the variance components are computed on

the log scale and exponentiated. Therefore, the intervals will not contain zero and thus coverage

for σa and σb when equal to zero is not entirely meaningful. Finally, note that the average time

column includes the average over all genes of the time needed for two runs of TWO-SIGMA,

MAST, and the ZINB model (each with and without the coefficients corresponding to the bi-

nary disease status indicator) and to simulate the data as well as process the results for the entire

replication. These times are therefore most informative to compare within a table, and are not

included to compare across the various methods—fitting a random effect term will always entail a

large computational burden. Within a given table, differences in the running time are largely due

to TWO-SIGMA run time. More discussion of run time is given in the paragraph below.

For example, consider table A.1. The first column “N/N Max” gives the number of genes that

converged compared to the total number of genes simulated for each scenario, and as mentioned

above the last column gives total runtime for all computations in a given simulation replication.

One highly consistent trend is that the convergence percentage is lower and running time higher

when variance components were zero. This is because the marginal likelihood for TWO-SIGMA

is evaluated more times when the true values of σa and σb are on the boundary space of zero.

58



Comparing the first and last runtimes in table A.1 shows that there can be nearly a 50% increase

in run-time when true variance components are zero yet random effects are included in the model.

This underscores the usefulness of our ad hoc procedure to avoid fitting random effects where

they are unnecessary. In table 1, Type-I error for TWO-SIGMA is well-preserved for any vari-

ance component value but becomes increasingly inflated for the ZINB model and MAST when

variance components are non-zero. Furthermore, coverage from TWO-SIGMA for all parameters

shown remains near the nominal level of 95%. These results hold well for all four cases varying

the breakdown of the total of 50,000 cells between number of individuals and number of cells per

individual, with a slight inflation of type-I error seen in table A.4 and discussed in the main text.

Figures A.3 and A.4 show the observed type-I error across more stringent significance levels for

representative simulation scenarios. These figures do not show systematically different patterns

than seen at the .05 level in tables A.1–A.4 but can highlight the substantial type-I error seen for

MAST and the ZINB model in some situations.
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Case 1: 1000 individuals, 50 single-cells each, 0.05 level
LRT Combined χ2 95 % CI Coverage Simulation Parameters Avg. Time

N / N Max Model Type-I Error Type-I Error α1 β1 φ σa σb α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.049 0.049 0.951 0.953 0.954 — —

ZINB 0.051 0.051 0.950 0.951 0.953 — —9195/10000
MAST 0.089 0.020 0.950 0.997 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0 0 31.7

TWO-SIGMA 0.048 0.047 0.953 0.951 0.952 — —
ZINB 0.051 0.049 0.951 0.949 0.953 — —9612/10000
MAST 0.080 0.032 0.950 0.978 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0 0 33.5

TWO-SIGMA 0.048 0.050 0.954 0.953 0.949 — —
ZINB 0.052 0.053 0.952 0.951 0.949 — —9464/10000
MAST 0.081 0.042 0.953 0.966 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0 0 32.2

TWO-SIGMA 0.051 0.051 0.949 0.952 0.952 0.936 0.948
ZINB 0.132 0.131 0.941 0.853 0.001 — —10000/10000
MAST 0.144 0.059 0.942 0.950 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 30.7

TWO-SIGMA 0.051 0.051 0.950 0.949 0.951 0.936 0.963
ZINB 0.078 0.078 0.945 0.918 0.666 — —10000/10000
MAST 0.089 0.048 0.944 0.960 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.1 0.1 30.7

TWO-SIGMA 0.049 0.049 0.948 0.948 0.950 0.935 0.954
ZINB 0.066 0.066 0.941 0.930 0.869 — —10000/10000
MAST 0.095 0.049 0.941 0.960 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.1 0.1 30.1

TWO-SIGMA 0.051 0.051 0.947 0.952 0.946 0.944 0.949
ZINB 0.621 0.621 0.776 0.417 0 — —10000/10000
MAST 0.290 0.494 0.778 0.556 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.5 0.5 20.9

TWO-SIGMA 0.053 0.053 0.948 0.948 0.947 0.947 0.946
ZINB 0.505 0.503 0.794 0.539 0 — —9999/10000
MAST 0.275 0.400 0.792 0.658 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.5 0.5 18.0

TWO-SIGMA 0.050 0.050 0.950 0.954 0.949 0.950 0.948
ZINB 0.404 0.398 0.817 0.639 0 — —10000/10000
MAST 0.247 0.301 0.810 0.759 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.5 0.5 17.0

Table A.1: Type-I Error using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05

Case 2: 500 individuals, 100 single-cells each, 0.05 level
LRT Combined χ2 95 % CI Coverage Simulation Parameters Avg. Time

N / N Max Model Type-I Error Type-I Error α1 β1 φ σa σb α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.044 0.044 0.955 0.952 0.950 — —

ZINB 0.047 0.047 0.953 0.950 0.952 — —8895/10000
MAST 0.086 0.020 0.953 0.996 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0 0 31.8

TWO-SIGMA 0.042 0.043 0.952 0.957 0.946 — —
ZINB 0.045 0.046 0.949 0.955 0.949 — —9285/10000
MAST 0.084 0.030 0.949 0.981 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0 0 32.7

TWO-SIGMA 0.046 0.045 0.952 0.952 0.952 — —
ZINB 0.049 0.049 0.951 0.949 0.951 — —9502/10000
MAST 0.085 0.039 0.950 0.969 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0 0 30.6

TWO-SIGMA 0.052 0.052 0.942 0.951 0.950 0.955 0.948
ZINB 0.217 0.218 0.926 0.754 0.002 — —10000/10000
MAST 0.187 0.099 0.926 0.899 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 23.8

TWO-SIGMA 0.050 0.052 0.948 0.953 0.950 0.948 0.958
ZINB 0.106 0.105 0.935 0.885 0.670 — —10000/10000
MAST 0.104 0.065 0.934 0.944 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.1 0.1 25.3

TWO-SIGMA 0.052 0.052 0.950 0.950 0.949 0.946 0.967
ZINB 0.081 0.082 0.939 0.914 0.866 — —10000/10000
MAST 0.107 0.063 0.938 0.945 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.1 0.1 22.9

TWO-SIGMA 0.051 0.052 0.950 0.949 0.946 0.948 0.947
ZINB 0.753 0.753 0.667 0.307 0 — —10000/10000
MAST 0.419 0.673 0.670 0.414 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.5 0.5 17.8

TWO-SIGMA 0.054 0.055 0.951 0.942 0.953 0.949 0.950
ZINB 0.663 0.663 0.691 0.414 0 — —10000/10000
MAST 0.382 0.579 0.685 0.516 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.5 0.5 18.0

TWO-SIGMA 0.054 0.054 0.944 0.948 0.947 0.950 0.942
ZINB 0.583 0.577 0.705 0.509 0 — —10000/10000
MAST 0.366 0.494 0.696 0.628 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.5 0.5 15.5

Table A.2: Type-I Error using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Case 3: 100 individuals, 500 single-cells each, 0.05 level
LRT Combined χ2 95 % CI Coverage Simulation Parameters Avg. Time

N / N Max Model Type-I Error Type-I Error α1 β1 φ σa σb α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.042 0.044 0.954 0.953 0.951 — —

ZINB 0.050 0.050 0.950 0.950 0.950 — —8773/10000
MAST 0.090 0.021 0.950 0.995 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0 0 32.1

TWO-SIGMA 0.038 0.038 0.960 0.957 0.953 — —
ZINB 0.044 0.043 0.955 0.954 0.953 — —8901/10000
MAST 0.079 0.028 0.955 0.977 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0 0 32.1

TWO-SIGMA 0.044 0.045 0.956 0.954 0.951 — —
ZINB 0.051 0.050 0.952 0.949 0.951 — —9199/10000
MAST 0.087 0.038 0.950 0.969 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0 0 31.3

TWO-SIGMA 0.056 0.059 0.938 0.947 0.951 0.979 0.938
ZINB 0.534 0.533 0.869 0.465 0.007 — —9999/10000
MAST 0.313 0.376 0.869 0.634 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 25.7

TWO-SIGMA 0.057 0.060 0.940 0.942 0.952 0.978 0.943
ZINB 0.323 0.320 0.877 0.685 0.673 — —10000/10000
MAST 0.176 0.226 0.872 0.791 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.1 0.1 25.9

TWO-SIGMA 0.053 0.058 0.939 0.947 0.950 0.977 0.955
ZINB 0.224 0.219 0.887 0.789 0.883 — —10000/10000
MAST 0.174 0.169 0.882 0.860 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.1 0.1 25.6

TWO-SIGMA 0.055 0.058 0.945 0.942 0.951 0.935 0.936
ZINB 0.941 0.941 0.367 0.142 0 — —10000/10000
MAST 0.716 0.914 0.367 0.193 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.5 0.5 21.4

TWO-SIGMA 0.056 0.060 0.940 0.945 0.950 0.936 0.934
ZINB 0.909 0.909 0.386 0.196 0 — —10000/10000
MAST 0.685 0.884 0.383 0.254 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.5 0.5 20.4

TWO-SIGMA 0.053 0.056 0.943 0.947 0.952 0.939 0.934
ZINB 0.873 0.872 0.412 0.256 0 — —10000/10000
MAST 0.649 0.839 0.400 0.324 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.5 0.5 20.0

Table A.3: Type-I Error using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05

Case 4: 25 individuals, 2000 single-cells each, 0.05 level
LRT Combined χ2 95 % CI Coverage Simulation Parameters Avg. Time

N / N Max Model Type-I Error Type-I Error α1 β1 φ σa σb α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.041 0.045 0.953 0.951 0.950 — —

ZINB 0.052 0.052 0.947 0.946 0.950 — —8698/10000
MAST 0.090 0.021 0.947 0.995 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0 0 28.9

TWO-SIGMA 0.041 0.046 0.955 0.954 0.952 — —
ZINB 0.052 0.053 0.949 0.949 0.952 — —8585/10000
MAST 0.086 0.034 0.948 0.976 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0 0 28.3

TWO-SIGMA 0.042 0.044 0.954 0.954 0.946 — —
ZINB 0.051 0.050 0.949 0.949 0.946 — —8763/10000
MAST 0.090 0.041 0.949 0.966 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0 0 27.8

TWO-SIGMA 0.076 0.088 0.920 0.923 0.949 0.980 0.909
ZINB 0.817 0.817 0.689 0.235 0.056 — —9544/10000
MAST 0.497 0.720 0.689 0.354 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 22.3

TWO-SIGMA 0.072 0.087 0.926 0.923 0.946 0.994 0.896
ZINB 0.643 0.642 0.708 0.424 0.719 — —9999/10000
MAST 0.361 0.562 0.704 0.527 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.1 0.1 26.4

TWO-SIGMA 0.075 0.094 0.922 0.923 0.949 0.992 0.906
ZINB 0.548 0.542 0.733 0.541 0.880 — —10000/10000
MAST 0.361 0.467 0.718 0.637 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.1 0.1 26.3

TWO-SIGMA 0.076 0.094 0.920 0.920 0.951 0.888 0.888
ZINB 0.984 0.984 0.194 0.070 0 — —10000/10000
MAST 0.875 0.979 0.195 0.098 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.5 0.5 22.7

TWO-SIGMA 0.076 0.092 0.925 0.922 0.949 0.886 0.882
ZINB 0.974 0.975 0.202 0.101 0 — —10000/10000
MAST 0.857 0.966 0.197 0.132 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 2 0.5 0.5 22.0

TWO-SIGMA 0.074 0.089 0.923 0.922 0.950 0.891 0.880
ZINB 0.964 0.963 0.218 0.135 0 — —10000/10000
MAST 0.827 0.953 0.213 0.174 — — —

(1, 0, -0.5, -2) (2, 0, -0.1, 0.6) 1 0.5 0.5 22.5

Table A.4: Type-I Error using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Figure A.3: Type-I error across different significance levels: Shows the observed type-I error across various nominal
significance levels.

62



0.000 0.002 0.004 0.006 0.008 0.010

0.
00

0.
02

0.
04

Significance Level

O
bs

er
ve

d
Ty

pe
-I

E
rr

or

σa = 0.1, σb = 0.1, φ = 2,
nind = 1000, ncellsper = 50

(A)

0.000 0.002 0.004 0.006 0.008 0.010

0.
00

0.
02

0.
04

Significance Level

O
bs

er
ve

d
Ty

pe
-I

E
rr

or

σa = 0.1, σb = 0.1, φ = 1,
nind = 1000, ncellsper = 50

(B)

0.000 0.002 0.004 0.006 0.008 0.010

0.
00

0.
10

0.
20

Significance Level

O
bs

er
ve

d
Ty

pe
-I

E
rr

or

σa = 0.1, σb = 0.1, φ = 2,
nind = 100, ncellsper = 500

(C)

0.000 0.002 0.004 0.006 0.008 0.010

0.
00

0.
04

0.
08

Significance Level

O
bs

er
ve

d
Ty

pe
-I

E
rr

or

σa = 0.1, σb = 0.1, φ = 1,
nind = 100, ncellsper = 500

(D)

TWO-SIGMA
ZINB

MAST
45 Degree Line

Figure A.4: Type-I error across different significance levels: Shows the observed type-I error across various nominal
significance levels.
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A.1.2 Extended TWO-SIGMA Power Results

Simulations under the same framework were also performed for non-zero values of α1 and

β1 (both as defined in the previous section) to evaluate the power of TWO-SIGMA in testing

H0 : α1 “ 0, β1 “ 0. As seen in Table 1 of the main text and tables A.1–A.4, MAST and

the ZINB model can suffer from vastly inflated type-I error. Thus, the observed (or “apparent”)

power does not always provide a fair comparison to TWO-SIGMA. For each of the three methods

we therefore calculated empirical significance thresholds for all null simulation settings. These

are cutoffs such that the percentage of statistics larger than the threshold equals the significance

level. “True” power is then calculated by rejecting the null if the test statistic is larger than the

empirical significance threshold from the corresponding simulation setting under the null. In

simulation settings this does not add computation, but in real data setting this procedure involves

additional computation and is therefore not preferred.

Because the type-I error for TWO-SIGMA is approximately preserved in all four sample size

cases, true power is nearly identical to apparent power for TWO-SIGMA. We therefore found

it unnecessary to use true power for TWO-SIGMA in figures A.5-A.7 shown here and figure 2

in the main text. In contrast, true power can be very different than apparent power for both the

ZINB model and MAST given their inflated type-I errors. For example, one simulation setting

shows that the apparent power of MAST is 0.375 which the true power for this scenario is only

0.194 (see the third rows of table A.5 and A.9). Although not presented, this discrepancy between

apparent and true power would be even more pronounced if the simulated data here were based

on larger values of the variance components σa and σb because type-I errors are more inflated for

larger variance components (see tables A.1-A.4).

One general observation from tables A.9 to A.12 and figure 2 of the main text is that the ZINB

model retains very high true power in both sample size settings and across all four effect sce-

narios. For smaller values of α0 the ZINB model can sometimes have higher true power than

TWO-SIGMA. As the dropout proportion increases (via increasing α0), TWO-SIGMA tends to

eventually have higher power. TWO-SIGMA does not require the use of computationally expen-
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Figure A.5: Power evaluations in simulated data: Shows the power to test H0 : α1 “ β1 “ 0 by varying the intercept
α0 to control the drop-out proportion in four setups: TWO-SIGMA and MAST with 50 cells from each of 1000
individuals or 500 cells from each of 100 individuals. Values of φ, σa, and σb were all set to 0.1 and an effect size of
0.03 was used. Larger values of α0 correspond to more drop-out in the data. 10,000 genes were simulated. Because
of the type-I error inflation from MAST seen in tables A.1–A.4, true power was calculated and plotted using the
empirical significance threshold from the corresponding setting under the null. TWO-SIGMA retains higher power
in the first three scenarios and half of the fourth scenario without the need to use true power. See section A.1.2 for
more details about computing true power and discussion regarding power trends across all three methods.

sive resampling procedures for valid inference, giving it a key advantage over the ZINB model,

which is furthermore not articulated explicitly as a DE method for scRNA-seq data, but included

to contrast the impact of R.E.s on model performance.
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Figure A.6: Power evaluations in simulated data: Shows the power to test H0 : α1 “ β1 “ 0 by varying the effect
size in two sample size setups: 50 cells from each of 1000 individuals or 500 cells from each of 100 individuals.
Values of φ, σa, and σb were all set to 0.1 and 10,000 genes were simulated. Because of the type-I error inflation
from the ZINB model and MAST seen in tables A.1–A.4, true power was calculated and plotted using the empirical
significance threshold from the corresponding setting under the null for both of these methods. TWO-SIGMA retains
higher power in the first three scenarios and half of the fourth scenario without the need to use true power. See the
discussion at the beginning of section A.1.2 for more details about computing true power and discussion regarding
power trends across all differing methods.
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Figure A.7: Power evaluations in simulated data: Shows the power to test H0 : α1 “ β1 “ 0 by varying the effect
size with 50 cells from each of 1000 individuals. Values of φ, σa, and σb were all set to 0.1 and 10,000 genes were
simulated. Because of the type-I error inflation from the ZINB model and MAST seen in tables A.1–A.4, true power
was calculated and plotted using the empirical significance threshold from the corresponding setting under the null
for these two methods. In the first three scenarios, MAST consistently has lower true power while TWO-SIGMA and
the ZINB model typically have very similar true power. When the effect is only in the zero-inflation component,
power is lower for all methods at all effect sizes. Using TWO-SIGMA can bypass the need for computationally
expensive resampling procedures needed to generate true power. See the discussion at the beginning of section A.1.2
for more details about computing true power and discussion regarding power trends across all differing methods.
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A.1.2.1 Results using “Apparent” Power for MAST and ZINB model

Case 1: 1000 individuals, 50 single-cells each, 0.05 level
Power Scenarios 1 & 2 from Figure 1 of main text

Effects in both components in either the same or different directions

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 1.000 1.000

ZINB 1.000 1.00010000/10000
MAST 0.375 1.000

(-3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.9

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.738 1.000

(-2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.8

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.767 1.000

(-1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.0

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.816 1.000

(0, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.4

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.834 1.000

(1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.4

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.720 0.999

(2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.5

TWO-SIGMA 0.999 0.999
ZINB 1.000 1.00010000/10000
MAST 0.572 0.986

(3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.2

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.843 1.000

(-3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.4

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.913 1.000

(-2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.6

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.884 1.000

(-1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.7

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.879 1.000

(0, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 29.5

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.863 1.000

(1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 28.2

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.734 0.999

(2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.0

TWO-SIGMA 0.999 0.999
ZINB 0.999 0.99910000/10000
MAST 0.579 0.985

(3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 26.2

Table A.5: Apparent Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Case 1: 1000 individuals, 50 single-cells each, 0.05 level
Power Scenarios 3 & 4 from Figure 1 of main text

Effects in one component at a time

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 1.000 1.000

ZINB 1.000 1.00010000/10000
MAST 0.262 1.000

(-3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.6

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.461 1.000

(-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.3

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.246 1.000

(-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.9

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.280 1.000

(0, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.8

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.420 1.000

(1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 30.2

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.211 0.998

(2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.5

TWO-SIGMA 0.997 0.997
ZINB 0.999 0.99910000/10000
MAST 0.134 0.966

(3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.7

TWO-SIGMA 0.341 0.343
ZINB 0.495 0.49510000/10000
MAST 0.546 0.368

(-3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.6

TWO-SIGMA 0.482 0.484
ZINB 0.611 0.61110000/10000
MAST 0.703 0.513

(-2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.4

TWO-SIGMA 0.561 0.563
ZINB 0.668 0.6699999/10000
MAST 0.768 0.588

(-1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 29.3

TWO-SIGMA 0.577 0.577
ZINB 0.674 0.67610000/10000
MAST 0.786 0.606

(0, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 30.9

TWO-SIGMA 0.544 0.546
ZINB 0.624 0.62410000/10000
MAST 0.768 0.566

(1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 31.0

TWO-SIGMA 0.451 0.452
ZINB 0.526 0.52610000/10000
MAST 0.670 0.449

(2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 28.6

TWO-SIGMA 0.343 0.343
ZINB 0.394 0.39310000/10000
MAST 0.539 0.318

(3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 28.4

Table A.6: Apparent Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level
Power Scenarios 1 & 2 from Figure 1 of main text

Effects in both components in either the same or different directions

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.849 0.858

ZINB 0.995 0.99510000/10000
MAST 0.441 0.988

(-3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 21.6

TWO-SIGMA 0.868 0.873
ZINB 0.997 0.99710000/10000
MAST 0.712 0.992

(-2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 23.9

TWO-SIGMA 0.884 0.890
ZINB 0.996 0.99610000/10000
MAST 0.739 0.991

(-1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 22.6

TWO-SIGMA 0.888 0.893
ZINB 0.996 0.99610000/10000
MAST 0.784 0.990

(0, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 23.7

TWO-SIGMA 0.869 0.875
ZINB 0.993 0.99310000/10000
MAST 0.790 0.985

(1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.3

TWO-SIGMA 0.844 0.850
ZINB 0.986 0.98610000/10000
MAST 0.672 0.964

(2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 25.6

TWO-SIGMA 0.792 0.799
ZINB 0.969 0.96910000/10000
MAST 0.564 0.914

(3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.1

TWO-SIGMA 0.853 0.858
ZINB 0.996 0.9969996/10000
MAST 0.802 0.991

(-3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 22.1

TWO-SIGMA 0.873 0.876
ZINB 0.997 0.99710000/10000
MAST 0.869 0.992

(-2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 23.8

TWO-SIGMA 0.885 0.889
ZINB 0.997 0.9979999/10000
MAST 0.839 0.992

(-1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 22.7

TWO-SIGMA 0.880 0.885
ZINB 0.996 0.99610000/10000
MAST 0.839 0.990

(0, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 23.3

TWO-SIGMA 0.874 0.878
ZINB 0.993 0.9939999/10000
MAST 0.824 0.985

(1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 25.8

TWO-SIGMA 0.840 0.846
ZINB 0.989 0.98910000/10000
MAST 0.709 0.965

(2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 25.9

TWO-SIGMA 0.799 0.806
ZINB 0.974 0.97410000/10000
MAST 0.573 0.919

(3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 25.6

Table A.7: Apparent Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level
Power Scenarios 3 & 4 from Figure 1 of main text

Effects in one component at a time

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.748 0.757

ZINB 0.992 0.9929999/10000
MAST 0.341 0.982

(-3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 21.9

TWO-SIGMA 0.744 0.754
ZINB 0.993 0.99310000/10000
MAST 0.478 0.981

(-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 22.7

TWO-SIGMA 0.734 0.744
ZINB 0.991 0.99110000/10000
MAST 0.347 0.978

(-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 21.8

TWO-SIGMA 0.738 0.746
ZINB 0.991 0.99010000/10000
MAST 0.369 0.975

(0, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 22.1

TWO-SIGMA 0.725 0.735
ZINB 0.984 0.98410000/10000
MAST 0.444 0.962

(1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 25.4

TWO-SIGMA 0.699 0.711
ZINB 0.974 0.97410000/10000
MAST 0.282 0.923

(2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 24.9

TWO-SIGMA 0.664 0.677
ZINB 0.949 0.94910000/10000
MAST 0.187 0.851

(3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.6

TWO-SIGMA 0.279 0.289
ZINB 0.770 0.7699999/10000
MAST 0.558 0.654

(-3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 22.7

TWO-SIGMA 0.355 0.367
ZINB 0.819 0.8209999/10000
MAST 0.688 0.729

(-2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 21.1

TWO-SIGMA 0.388 0.400
ZINB 0.834 0.83410000/10000
MAST 0.732 0.756

(-1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 19.7

TWO-SIGMA 0.398 0.408
ZINB 0.823 0.82310000/10000
MAST 0.755 0.744

(0, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 20.6

TWO-SIGMA 0.380 0.391
ZINB 0.784 0.7849899/10000
MAST 0.754 0.706

(1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 25.3

TWO-SIGMA 0.339 0.349
ZINB 0.718 0.71910000/10000
MAST 0.651 0.601

(2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.4

TWO-SIGMA 0.270 0.280
ZINB 0.588 0.58810000/10000
MAST 0.533 0.446

(3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.1

Table A.8: Apparent Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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A.1.2.2 Results using “True” Power for MAST and the ZINB model

Case 1: 1000 individuals, 50 single-cells each, 0.05 level
Power Scenarios 1 & 2 from Figure 1 of main text

Effects in both components in either the same or different directions

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 1.000 1.000

ZINB 1.000 1.00010000/10000
MAST 0.194 0.352

(-3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.9

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.588 0.721

(-2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.8

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.569 0.746

(-1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.0

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.644 0.802

(0, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.4

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.705 0.822

(1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.4

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.524 0.700

(2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.5

TWO-SIGMA 0.999 0.999
ZINB 0.998 0.99810000/10000
MAST 0.358 0.547

(3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.2

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.673 0.829

(-3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.4

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.803 0.904

(-2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.6

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.736 0.872

(-1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.7

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.741 0.867

(0, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 29.5

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.738 0.852

(1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 28.2

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.541 0.715

(2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 27.0

TWO-SIGMA 0.998 0.998
ZINB 0.997 0.99710000/10000
MAST 0.369 0.557

(3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 26.2

Table A.9: True Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Case 1: 1000 individuals, 50 single-cells each, 0.05 level
Power Scenarios 3 & 4 from Figure 1 of main text

Effects in one component at a time

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 1.000 1.000

ZINB 1.000 1.00010000/10000
MAST 0.119 0.242

(-3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.6

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.366 0.450

(-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 27.3

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.116 0.229

(-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.9

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.168 0.263

(0, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.8

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.361 0.411

(1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 30.2

TWO-SIGMA 1.000 1.000
ZINB 1.000 1.00010000/10000
MAST 0.124 0.200

(2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.5

TWO-SIGMA 0.997 0.997
ZINB 0.996 0.99610000/10000
MAST 0.048 0.120

(3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 29.7

TWO-SIGMA 0.336 0.335
ZINB 0.295 0.29410000/10000
MAST 0.329 0.522

(-3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.6

TWO-SIGMA 0.476 0.474
ZINB 0.401 0.40010000/10000
MAST 0.489 0.684

(-2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.4

TWO-SIGMA 0.554 0.553
ZINB 0.459 0.4599999/10000
MAST 0.573 0.747

(-1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 29.3

TWO-SIGMA 0.570 0.568
ZINB 0.465 0.46410000/10000
MAST 0.601 0.769

(0, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 30.9

TWO-SIGMA 0.539 0.537
ZINB 0.409 0.40810000/10000
MAST 0.579 0.750

(1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 31.0

TWO-SIGMA 0.445 0.444
ZINB 0.306 0.30510000/10000
MAST 0.459 0.649

(2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 28.6

TWO-SIGMA 0.337 0.335
ZINB 0.205 0.20410000/10000
MAST 0.331 0.518

(3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 28.4

Table A.10: True Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level
Power Scenarios 1 & 2 from Figure 1 of main text

Effects in both components in either the same or different directions

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.837 0.830

ZINB 0.937 0.93710000/10000
MAST 0.052 0.085

(-3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 21.6

TWO-SIGMA 0.858 0.852
ZINB 0.935 0.93410000/10000
MAST 0.215 0.298

(-2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 23.9

TWO-SIGMA 0.872 0.866
ZINB 0.926 0.92610000/10000
MAST 0.207 0.290

(-1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 22.6

TWO-SIGMA 0.876 0.870
ZINB 0.899 0.89910000/10000
MAST 0.298 0.373

(0, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 23.7

TWO-SIGMA 0.859 0.852
ZINB 0.840 0.84010000/10000
MAST 0.394 0.456

(1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.3

TWO-SIGMA 0.831 0.822
ZINB 0.729 0.72810000/10000
MAST 0.191 0.252

(2, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 25.6

TWO-SIGMA 0.778 0.768
ZINB 0.502 0.50010000/10000
MAST 0.081 0.130

(3, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.1

TWO-SIGMA 0.842 0.835
ZINB 0.943 0.9439996/10000
MAST 0.257 0.350

(-3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 22.1

TWO-SIGMA 0.862 0.855
ZINB 0.937 0.93710000/10000
MAST 0.388 0.483

(-2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 23.8

TWO-SIGMA 0.875 0.868
ZINB 0.927 0.9269999/10000
MAST 0.323 0.417

(-1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 22.7

TWO-SIGMA 0.870 0.864
ZINB 0.901 0.90010000/10000
MAST 0.371 0.452

(0, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 23.3

TWO-SIGMA 0.862 0.855
ZINB 0.847 0.8469999/10000
MAST 0.434 0.503

(1, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 25.8

TWO-SIGMA 0.827 0.819
ZINB 0.717 0.71610000/10000
MAST 0.206 0.278

(2, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 25.9

TWO-SIGMA 0.785 0.775
ZINB 0.503 0.50010000/10000
MAST 0.079 0.132

(3, 0.03, -0.5, -2) (2, -0.03, -0.1, 0.6) 10 0.1 0.1 25.6

Table A.11: True Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level
Power Scenarios 3 & 4 from Figure 1 of main text

Effects in one component at a time

LRT Combined χ2 Simulation Parameters Avg. Time

N / N Max Model P(Reject H0) P(Reject H0) α “ pα0, α1, α2, α3q β “ pβ0, β1, β2, β3q φ σa σb (min)
TWO-SIGMA 0.730 0.719

ZINB 0.932 0.9329999/10000
MAST 0.037 0.058

(-3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 21.9

TWO-SIGMA 0.725 0.716
ZINB 0.925 0.92410000/10000
MAST 0.109 0.152

(-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 22.7

TWO-SIGMA 0.715 0.704
ZINB 0.907 0.90610000/10000
MAST 0.038 0.059

(-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 21.8

TWO-SIGMA 0.723 0.713
ZINB 0.870 0.87010000/10000
MAST 0.128 0.142

(0, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 22.1

TWO-SIGMA 0.710 0.699
ZINB 0.810 0.80910000/10000
MAST 0.265 0.278

(1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 25.4

TWO-SIGMA 0.680 0.669
ZINB 0.675 0.67310000/10000
MAST 0.070 0.083

(2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 24.9

TWO-SIGMA 0.645 0.632
ZINB 0.452 0.45110000/10000
MAST 0.012 0.020

(3, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 0.1 26.6

TWO-SIGMA 0.263 0.252
ZINB 0.184 0.1849999/10000
MAST 0.081 0.129

(-3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 22.7

TWO-SIGMA 0.337 0.324
ZINB 0.184 0.1849999/10000
MAST 0.161 0.238

(-2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 21.1

TWO-SIGMA 0.368 0.356
ZINB 0.162 0.16010000/10000
MAST 0.206 0.290

(-1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 19.7

TWO-SIGMA 0.375 0.364
ZINB 0.128 0.12610000/10000
MAST 0.250 0.335

(0, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 20.6

TWO-SIGMA 0.358 0.346
ZINB 0.086 0.0859899/10000
MAST 0.251 0.336

(1, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 25.3

TWO-SIGMA 0.321 0.310
ZINB 0.042 0.04210000/10000
MAST 0.136 0.206

(2, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.4

TWO-SIGMA 0.253 0.242
ZINB 0.011 0.01110000/10000
MAST 0.068 0.115

(3, 0.03, -0.5, -2) (2, 0, -0.1, 0.6) 10 0.1 0.1 26.1

Table A.12: True Power using LRT to test H0 : α1 “ 0, β1 “ 0 with a significance level of 0.05
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APPENDIX A: ADDITIONAL RESULTS FOR CHAPTER 3

B.1 Gene Set Simulation Details

1. Simulate set of independent (“original”) genes

(a) Simulate covariates and random effects (if present) to create cell population

(b) Randomly sample (or set to zero to exclude) parameter values for additional covari-

ates to include in the model

• Random sampling creates variability in read counts

• Intercepts fixed to ensure drop-out percentages and data scale comparable

(c) Simulate Yij from the ZINB distribution

(d) Repeat 1,000 times without RE and 300 times with RE

• Cell population same in each scenario, genes differ due to differing parameters and

randomness

• Need to make sure there are enough unique data values to limit spurious correlation

2. Generate correlated gene sets of size 30

(a) For each “original” gene, call it Yinput, add noise from NB distn using pre-specified,

fixed parameters a1, µperm, φperm to create 29 correlated genes Yout:

Yout “ roundpa1 ˚ Yinput ` a2 ˚NBpµperm, φpermqq

• Added noise has the same distribution for each scenario

• Weight noise by a2 to control the amount of correlation (larger a2 means lower

correlation) and change mean patterns across scenarios
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• If gene is under the alternative, add additional noise a3 ˚ NBpµperm, φpermq to

preserve signal (a3 taken as 0.15 in “mixed” alternatives and 0.1 otherwise)

(b) Randomly set some non-zero counts to zero to keep the proportion of zeros the same

in correlated and original gene

• Ensures that proportion of zeros alone does not drive significant results

3. Gene set testing procedure

(a) Randomly choose correlated test set (including “original” gene) and reference set

(b) Compute gene-level statistics using TWO-SIGMA

(c) Use modified Wilcoxon rank-sum procedure adjusting for inter-gene correlation

(IGC), estimated as in section 2.2 of the main text

4. Vary magnitude of IGC in 2(a) by drawing a2 randomly or treating as various fixed values

as in table B.1

5. Repeat 1-4 using 10 different random seeds and aggregate results to minimize the impact of

random seed

Table B.1: Shows the six different settings used to simulate data for gene set simulations. “O.C.” refers to the
presence of other covariates besides treatment in the true model, which can serve to create complex gene-gene
correlation structures.

a2 low a2 high O.C.
3 3 No
5 5 No
10 10 No
3 3 Yes
5 5 Yes
10 10 Yes
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B.2 Additional Power and Type-I Error Results
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Figure B.1: Shows type-I error performance for CAMERA, MAST, and TWO-SIGMA-G when gene-level random
effects are truly present and either incorrectly absent or correctly included in MAST and TWO-SIGMA-G gene-level
models. Generally, there appears to be a limited need to incur the increased computational cost of fitting gene-level
random effects if interested primarily in set-level inference. Note that CAMERA does not have the ability to fit
random effects at the gene-level. Each boxplot aggregates 6 different settings which vary both the magnitude of the
average inter-gene correlation in the test set and the nature of the correlation structure via the introduction of other
individual-level covariates. Such settings are meant to represent the diversity seen in real data sets to paint an
accurate picture of testing properties over a wide range of gene sets. Each of the 6 settings is further composed of 10
replicates which vary only random seed to mimic the impact of a different starting pool of cells from which genes
were simulated. See section S1 for more details regarding the simulation procedure.
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Figure B.2: Shows the type-I error of TWO-SIGMA-G, CAMERA, and MAST for various set-level null hypotheses
when gene-level random effects are not present or are incorrectly absent in MAST and TWO-SIGMA-G gene-level
models. Generally, TWO-SIGMA-G becomes more conservative, MAST becomes anti-conservative, and
CAMERA’s performance varies as the proportion of DE genes increases. Each boxplot aggregates 6 different
settings which vary both the magnitude of the average inter-gene correlation in the test set and the nature of the
correlation structure via the introduction of other individual-level covariates. Such settings are meant to represent the
diversity seen in real data sets to paint an accurate picture of testing properties over a wide range of gene sets. Each
of the 6 settings is further composed of 10 replicates which vary only random seed to mimic the impact of a different
starting pool of cells from which genes were simulated. See section S1 for more details regarding the simulation
procedure.
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Figure B.3: Shows the power of TWO-SIGMA-G and CAMERA when random effect terms are excluded or
incorrectly absent from the gene-level TWO-SIGMA model. Two scenarios are presented: using reference set sizes
of 100 and 30. Within each scenario, the percentage of genes that are differentially expressed in the test and
reference set is varied. For example, “T80,R50” corresponds to the configuration under the alternative hypothesis in
which 80% of test set genes are DE and 50% of reference set genes are DE. Within the test set, the amount of DE is
mixed: with 50% of genes having twice as large of an effect size as the other half. Each boxplot aggregates 6
different settings which vary both the magnitude of the average inter-gene correlation in the test set and the nature of
the correlation structure via the introduction of other individual-level covariates. Such settings are meant to represent
the diversity seen in real data sets to paint an accurate picture of testing properties over a wide range of gene sets.
Each of the 6 settings is further composed of 10 replicates which vary only random seed to mimic the impact of a
different starting pool of cells from which genes were simulated. See section S1 for more details regarding the
simulation procedure.
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Figure B.4: Shows the power of TWO-SIGMA-G and CAMERA using different DE magnitudes for genes
simulated with IGC. Four scenarios are presented: using reference set sizes of 100 and 30, both with and without
random effects truly present at the gene-level. Within each scenario, the percentage of genes that are differentially
expressed in the test and reference set is varied. For example, “T80,R50” corresponds to the configuration under the
alternative hypothesis in which 80% of test set genes are DE and 50% of reference set genes are DE. Within the test
set, the amount of DE is mixed: with 50% of genes having twice as large of an effect size as the other half. Each
boxplot aggregates 6 different settings which vary both the magnitude of the average inter-gene correlation in the test
set and the nature of the correlation structure via the introduction of other individual-level covariates. Such settings
are meant to represent the diversity seen in real data sets to paint an accurate picture of testing properties over a wide
range of gene sets. Each of the 6 settings is further composed of 10 replicates which vary only random seed to mimic
the impact of a different starting pool of cells from which genes were simulated. See section S1 for more details
regarding the simulation procedure.
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Figure B.5: Shows the power of TWO-SIGMA-G and iDEA using different DE magnitudes for genes simulated
with IGC. Two scenarios are presented: using reference set sizes of 100 and 30. Within each scenario, the percentage
of genes that are differentially expressed in the test and reference set is varied. For example, “T80,R50” corresponds
to the configuration under the alternative hypothesis in which 80% of test set genes are DE and 50% of reference set
genes are DE. Because iDEA performed poorly in scenarios involving “R0”, they were excluded. Each boxplot
aggregates 6 different settings which vary both the magnitude of the average inter-gene correlation in the test set and
the nature of the correlation structure via the introduction of other individual-level covariates. Such settings are
meant to represent the diversity seen in real data sets to paint an accurate picture of testing properties over a wide
range of gene sets. Each of the 6 settings is further composed of 10 replicates which vary only random seed to mimic
the impact of a different starting pool of cells from which genes were simulated. See section S1 for more details
regarding the simulation procedure.
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B.3 Additional Real Data Figures
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Figure B.6: Shows the percentage of sets rejected using Fisher’s-method p-values adjusted to control FDR in four
settings varying the choice of reference set between the complement set of genes (“All Other”) or a random reference
of the same size as the test set (“Same Size”), and with and without random effects present at the gene-level. The
presence of gene-level random effects in the model does not greatly affect the percentage of sets rejected in either the
HIV dataset (top) or the Alzheimer’s dataset (bottom).
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Figure B.7: Shows how the percentage of genes present varies by set size in the HIV dataset (top) and the
Alzheimer’s dataset(bottom).
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B.4 Comparing Early Stage AD Patients to Control

Gene-Level Log-FC for Set: KEGG OXIDATIVE PHOSPHORYLATION

Early Stage AD Patients vs. Control
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Figure B.8: Shows cell-type specific variation in gene-level significance for genes in the
KEGG OXIDATIVE PHOSPHORYLATION pathway comparing early stage AD patients to controls. Gene names
that are bolded are signifcant over all cell types after FDR-adjustment of the Fisher’s method p-value.
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Gene-Level Log-FC for Set: MOOTHA VOXPHOS

Early Stage AD Patients vs. Control
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Figure B.9: Shows cell-type specific variation in gene-level significance for genes in the MOOTHA VOXPHOS
pathway comparing early stage AD patients to controls. Gene names that are bolded are signifcant over all cell types
after FDR-adjustment of the Fisher’s method p-value.
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B.5 Comparing Late to Early Stage AD Patients

Heatmap of Set-Level Average Log FC by Cell Type (Late vs. Early Stage AD Patients)
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Figure B.10: Heatmap of the most significant gene sets (and their corresponding p-values) comparing late state AD
patients to early stage AD patients by cell type. Sets plotted are among the top 10 in significance for at least once cell
type. Sets in bold are significant over all cell types after FDR-adjustment of the Fisher’s method p-value.
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Gene-Level Log-FC for Set: KEGG OXIDATIVE PHOSPHORYLATION

Late vs. Early Stage AD Patients
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Figure B.11: Shows cell-type specific variation in gene-level significance for genes in the
KEGG OXIDATIVE PHOSPHORYLATION pathway comparing late stage AD patients to early stage AD patients.
Gene names that are bolded are signifcant over all cell types after FDR-adjustment of the Fisher’s method p-value.
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Figure B.12: Shows cell-type specific variation in gene-level significance for genes in the MOOTHA VOXPHOS
pathway comparing late stage AD patients to early stage AD patients. Gene names that are bolded are signifcant over
all cell types after FDR-adjustment of the Fisher’s method p-value.
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B.6 Comparing Late Stage AD Patients to Control

Heatmap of Set-Level Average Log FC by Cell Type (Late Stage AD vs. Control Patients)
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Figure B.13: Heatmap of the most significant gene sets (and their corresponding p-values) comparing late state AD
patients to controls by cell type. Sets plotted are among the top 10 in significance for at least once cell type. Sets in
bold are significant over all cell types after FDR-adjustment of the Fisher’s method p-value.
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Gene-Level Log-FC for Set: KEGG OXIDATIVE PHOSPHORYLATION

Late Stage AD Patients vs. Control
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Figure B.14: Shows cell-type specific variation in gene-level significance for genes in the
KEGG OXIDATIVE PHOSPHORYLATION pathway comparing late stage AD patients to controls. Gene names
that are bolded are signifcant over all cell types after FDR-adjustment of the Fisher’s method p-value.
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Gene-Level Log-FC for Set: MOOTHA VOXPHOS

Late Stage AD Patients vs. Control
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Figure B.15: Shows cell-type specific variation in gene-level significance for genes in the MOOTHA VOXPHOS
pathway comparing late stage AD patients to controls. Gene names that are bolded are signifcant over all cell types
after FDR-adjustment of the Fisher’s method p-value.
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B.7 Comparing AD Patients (Early and Late Stage) to Control

Heatmap of Set-Level Average Log FC by Cell Type (AD vs. Control)
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type. Sets in bold are significant over all cell types after FDR-adjustment of the Fisher’s method p-value.
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Gene-Level Log-FC for Set: KEGG OXIDATIVE PHOSPHORYLATION

AD (Early or Late Stage) vs. Control
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Figure B.17: Shows cell-type specific variation in gene-level significance for genes in the
KEGG OXIDATIVE PHOSPHORYLATION pathway comparing AD patients (early and late stage) to controls.
Gene names that are bolded are signifcant over all cell types after FDR-adjustment of the Fisher’s method p-value.
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Gene-Level Log-FC for Set: MOOTHA VOXPHOS

AD (Early or Late Stage) vs. Control
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Figure B.18: Shows cell-type specific variation in gene-level significance for genes in the MOOTHA VOXPHOS
pathway comparing AD patients (early and late stage) to controls. Gene names that are bolded are signifcant over all
cell types after FDR-adjustment of the Fisher’s method p-value.
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