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ABSTRACT

David A. Pritchard: Some Contributions in Complex Statistical Data Analysis
(Under the direction of Yufeng Liu and Matthew Psioda)

The overall goal of this dissertation is twofold: (i) to develop methodologies in two related fields of

machine learning, namely classification and variable selection, and (ii) to improve upon the available statistical

methods for the study of human fertility.

For the area of machine learning, we first present a new classification method, composite quantile-

based classifiers. It was established in Hennig and Viroli (2016) that for univariate data and under some

assumptions, the decision rule based upon the distances of an observation to the corresponding within-class

quantiles for the optimal choice of quantile levels is the Bayes rule. Conceptually, our goal is to use these

most powerful univariate classifiers as building blocks for a multivariate classifier. In brief, we propose

aggregating the component-wise distances from the feature vector of the observation to the within-class

quantiles corresponding to the one-at-a-time optimal choices of the quantile level. Aggregation is performed

through an appropriately chosen linear combination of the component-wise distances. Our second contribution

in machine learning is in the development of filtering and variable selection methods in the field of bioactive

compound identification. Historically, compounds found in plant tissues have been fruitful bases for deriving

compounds that are deleterious to certain pathogens and cancer cell lines. Our research constructs a pipeline

for processing raw data obtained through liquid chromatography - mass spectrometry (LC-MS) technology

and obtaining a ranking of potential bioactive compounds.

For the area of human fertility studies, we consider data in the form of day-specific covariates, with

pregnancy as the outcome variable. We present research aimed at overcoming several limitations in the

literature, including the ability to account for continuous covariates and to allow for missing data. Furthermore,

we incorporate the assumed true unimodal shape of the fertile window day probabilities into the model with

the goal of reducing the variance of the posterior distribution.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The overall goal of this research is twofold: (i) to develop methodologies in two fields of machine

learning, namely classification and data mining, and (ii) to improve upon the available statistical methods for

the study of human fertility. Since the subject matter in this dissertation takes place in two rather distinct

domains, we present the introduction and literature review in two separate sections accordingly. In Section 1.2

we introduce two subfields of machine learning related to our research and present our proposed contributions,

and in Section 1.3 we introduce the field of statistical fertility models and present our proposed contributions.

1.2 Machine learning topics

Machine learning is an important area of research for data analysis. In this dissertation, data are

provided in the form of inputs or features, and in some settings also include outcome information. One

important goal of machine learning research is to provide methodology to answer problems such as predicting

the outcome values for new data with a particular set of inputs, identifying important features in the

data, and observing clusters of data with similar features. There are two main types of machine learning:

supervised and unsupervised learning. Supervised learning includes problems where both the inputs and the

outcome variables are available, while unsupervised learning is the type of learning that occurs when no

outcome variable is available. Other important branches of machine learning that don’t fit neatly into these

categories include semi-supervised learning, in which some but not all of the outcome data are available, and

reinforcement learning, in which learning occurs through interactions with a particular environment.

In two of the chapters in this dissertation we propose machine learning methods. In Chapter 2, we

propose a classification method named composite quantile-based classifiers. Classification falls under the

more general category of supervised learning. In Section 1.2.1 we present a summary of the existing literature

in the field of classification. Two existing methods that are related to composite quantile-based classifiers are
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presented in more detail, namely the methods proposed by Hennig and Viroli (2016) and Fan et al. (2016).

An overview of composite quantile-based classifiers itself is also presented.

1.2.1 Supervised learning: classification

A classifier solves a common type of supervised learning problem where the goal is to build a rule

for predicting the class membership of an observation based on a set of features. The rule is constructed

from a training dataset consisting of the class membership and features for each training sample. There are

numerous applications for classification, including disease classification, image or sound recognition, object

discrimination, and spam detection, among many others.

Classification has a long and historied place in the literature. Some important early methods include

naive Bayes, linear and quadratic discriminant analysis, nearest neighbor methods (Cover and Hart, 1967),

and logistic regression. Examples of more recent methods include kernel smoothing (Mika et al., 1999),

neural networks (Ripley, 1994), and mixture discriminant analysis (Hastie and Tibshirani, 1996). These

methods often perform well in the classical low dimensional setting, where the number of features is smaller

than the training data sample size. However, in high dimensional settings some of these methods can have

identifiability issues, be computationally demanding, or suffer from poor performance due to the curse of

dimensionality.

Various methods have been proposed for classification in the high-dimensional setting. The support

vector machine (SVM) (Cortes and Vapnik, 1995) and penalized logistic regression (Park and Hastie, 2007)

are two well-known approaches that have been successfully applied in many such settings. More generally,

methods designed for the high dimensional setting often employ techniques such as shrinkage, dimension

reduction, or distance-based methods, sometimes further restricting attention to the marginal information

provided by the features in the data. Techniques performing shrinkage include penalized logistic regression

and penalized linear discriminant analysis (Tibshirani et al., 2002; Clemmensen et al., 2011; Witten and

Tibshirani, 2011). Dimension reduction is another valuable technique that is employed by methods such as

sure independence screening (Fan and Lv, 2008) and supervised principal components analysis (Bair et al.,

2006). Nonparametric distance-based classifiers such as centroid-based classifiers (Tibshirani et al., 2002)

and median based classifiers (Jörnsten, 2004; Ghosh and Chaudhuri, 2005) have been proposed, as well as

component-wise median-based classifiers (Hall et al., 2012) and quantile-based classifiers (Hennig and Viroli,

2016).
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In Chapter 2 we continue to explore quantile-based classifiers as introduced in Hennig and Viroli (2016)

in the high-dimensional setting. This family of classifiers is based upon a comparison of the component-wise

distances of the feature vector of an observation to the within-class quantiles. The quantile-based family of

methods then classifies an observation as belonging to the class which has the smaller aggregated component-

wise distance from the feature vector of the observation to the within-class quantiles, where the aggregated

distance is defined as the sum of the individual distances. The quantile-based classifiers in Hennig and Viroli

(2016) are a single-parameter family of classifiers with the parameter specifying a common quantile level for

each component at which to compare the component-wise distances of an observation to. This classification

approach can work well in certain settings, in particular for the setting where the optimal choice of the

quantile level is the same for each component. However, this restriction on the choice of quantile level can

lead to a loss of efficiency in settings where the optimal choice of the quantile level varies across components.

This naturally leads to the question of whether there is a way to allow for more flexibility in the choice of

quantile levels in order to achieve improved performance in these other scenarios.

It was established in Hennig and Viroli (2016) that for univariate data and under some assumptions, the

decision rule based upon the distances of an observation to the corresponding within-class quantiles for the

optimal choice of quantile levels is the Bayes rule. This result motivates the methodologies developed in the

research presented in Chapter 2. Conceptually, our goal is to use these most powerful univariate classifiers as

building blocks for a multivariate classifier. In brief, we propose aggregating the component-wise distances

from the feature vector of the observation to the within-class quantiles corresponding to the one-at-a-time

optimal choices of the quantile level. Aggregation is performed through an appropriately chosen linear

combination of the component-wise distances.

In the following section we describe the quantile-based classifiers method proposed by Hennig and

Viroli (2016) in some more detail. We also describe another related classification method to called FANS that

was proposed in Fan et al. (2016).

1.2.1.1 Quantile-based classifiers

Consider the check loss (also known as the quantile loss) function defined as

ρθ(u) = 1 (u > 0) θ u+ 1 (u ≤ 0) (1− θ) (−u) = u
[
θ − 1 (u ≤ 0)

]
,
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for some choice of quantile level θ ∈ (0, 1). Next, consider two populations Π0 and Π1 with corresponding

distribution functions F0 and F1 each on Rp, and further let F0j and F1j denote the marginal distribution

functions for the j-th variable with respect to F0 and F1, j = 1, . . . , p. Then we denote the quantile distance

of a point z ∈ R to the θ-th quantile of a population’s j-th component as

Φij(z, θ) = ρθ

(
z − F−1

ij (θ)
)
, i = 0, 1, j = 1, . . . , p.

Then the difference of the quantile distances of a point z to the populations’ θ-th quantile of the j-th

component is defined as

Λj(z, θ) = Φ1j(z, θ)− Φ0j(z, θ), j = 1, . . . , p.

The classification method proposed by Hennig and Viroli (2016) then is defined as the decision rule based

upon

p∑

j=1

Λj(zj , θ) > 0.

The choice of quantile level θ is chosen based upon the best empirical performance for a training sample.

1.2.1.2 The FANS classifier

Consider two classes with corresponding class conditional densities f0 and f1. Then the FANS classifier

proposed in Fan et al. (2016) is defined by the decision rule based upon

DFANS =

{
z : α0 + α1 log

f01(z1)

f11(z1)
+ · · ·+ αp log

f0p(zp)

f1p(zp)
= 0

}
.

The classifier then estimates class conditional marginal densities fij using nonparametric kernel density

estimation, and selects the choice of coefficients α0, . . . , αp by using the penalized logistic regression

coefficient estimates obtained from the transformed training data where the transformation is taken to be

x∗ij = log
f̂0j(xij)

f̂1j(xij)
for all i, j.
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1.2.1.3 Novel research: composite quantile-based classifiers

In Chapter 2, we present a binary classification method that we call composite quantile-based classifiers.

In Section 2.1, we first review the quantile classifier, a univariate distance-based classification method and its

sample version. Properties of the quantile classifier are discussed, and consistency of the empirically optimal

quantile classifier is established. An algorithm with which to calculate the estimated classification rate for the

family of quantile classifiers as a function of the quantile level is presented. In Section 2.2, the composite

quantile-based family of classification methods is presented. Connections to other related classifiers are

discussed. Consistency of the empirically optimal composite quantile-based classifier is established. A

new method for selection of a composite quantile-based classifier based on training data is proposed, and a

corresponding algorithm is presented. Properties and the form of composite quantile-based classifiers are

discussed. In Section 2.3, the competitive performance of these approaches is demonstrated using simulation

studies as well as on a benchmark email spam application. Proofs of theoretical results are presented in the

Appendix.

1.2.2 Variable selection and subset identification

Variable selection is a common problem in statistics. There are several reasons for which variable

selection is desired, including prediction accuracy, interpretation, and variable identification.

1.2.2.1 Stepwise selection methods

One common technique for variable selection is best-subset selection. This involves considering all

possible combinations of variables and choosing the combination that offers the best score by some metric.

Two commonly used metrics are the Akaike Information Criterion (AIC) (Akaike, 1974) and the Bayesian

information criterion (BIC) (Schwarz et al., 1978). The AIC is defined as

2k − 2 log(L̂),

where L̂ is the observed value for the maximum likelihood of the model, and k is the number of parameters

in the model. The BIC is defined as

k log(n)− 2 log(L̂),
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where n is the number of observations in the data, and L̂ and k are as before. In both cases, the criteria penalize

the number of parameters in the model. Although best-subset selection is an appealing strategy, the number

of subsets that need to be considered is exponential in k, and is typically not considered computationally

feasible for more than 40 parameters Hastie et al. (2009).

Rather than search through all possible subsets of variables as in best-subset selection, another approach

is to consider a greedy variable selection algorithm the chooses or discards variables one-at-a-time. Two

such examples of this technique are forward-stepwise selection and backward-stepwise selection. Forward-

stepwise selection takes the approach of one-at-a-time adding in the variable from the remaining set of

variables that are not yet in the model, and where the variables chosen is the one that best improves the model

by some metric such as the observed maximum likelihood value. Backwards selection works similarly, except

that you start with all of the variables in the model, and then remove variables one-at-a-time by removing the

variable that results in the best result with respect to some metric such as the observed maximum likelihood

value. It is clear that forward- or backward-stepwise selection will result in models that fit the observed

data no better than the best-subsets model with the same number of variables, however they are much less

computationally expensive to obtain.

A hypothesis testing-based approach to variable selection is proposed in (Gong et al., 2018). This

approach tests against the null hypothesis at each step that the response is uncorrelated with the remaining

variables given a set of selected variables. The approach is flexible in that any variable selection procedure

can be used and provides the ability to determine a stopping point for the procedure.

1.2.2.2 Shrinkage methods

While subset selection results in models with a reduced number of variables, the process is discrete

in the sense that a variable is either in or out of a model. Another approach is to penalize the magnitude

of the model coefficient values, which has the effect of shrinking their values towards zero. Furthermore,

certain choices of penalization parameters have the effect of causing some of the parameters to have a value

of exactly zero, resulting in another form of variable selection.
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One such penalization approach is called lasso penalization (Tibshirani, 1996). This approach is defined

for linear regression as

β̂ = arg min
β

n∑

i=1

||(Y −Xβ)||2 subject to
p∑

j=1

|βj | ≤ t,

where t is a nonnegative tuning parameter. An equivalent representation of the lasso estimator is given by

β̂ = arg min
β





1

2

n∑

i=1

||(Y −Xβ)||2 + λ

p∑

j=1

|βj |



 ,

and where λ is a nonnegative tuning parameter. Thus, as the value of λ increases, it results in a continuous

form of variable selection. A variant of the lasso penalty is the elastic net penalty, which is defined as

λ

p∑

j=1

(
αβ2

j + (1− α) |βj |
)
,

and where α is a turning parameter taking a value between zero and one, inclusive. The elastic net has the

same behavior of shrinking variables to exactly zero, but also tends to keep groups of correlated variables in

the model together.

Another related method to the lasso is least angle regression (LAR) (Efron et al., 2004). The LAR

method is defined in terms of the following algorithm.

1. Standardize the predictors to have mean zero and norm one, and start with the residuals r = y− ȳ and

β1 = · · · = βp = 0.

2. Find the predictor xj most correlated with r.

3. Move βj from zero towards its least-squares coefficient for xj regressed on r, until some other

competitor xj has as much correlation with the current residual as does xj .

4. LetAk be the set of nonzero coefficients and rk the residual at step k, and define δk = (XT
AkXAk)−1XAkrk.

Then for the (k+ 1)-th step, move all of the coefficients corresponding to the set Ak in the direction of

δk until some other variable has as much correlation with the current residual. Repeat this step until

completion.
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The LAR algorithm has the following connection to lasso. If, whenever a nonzero coefficient becomes zero,

then it is dropped from the active set of variables and the direction δk is subsequently recomputed, then LAR

provides the full lasso path.

Another method that is similar in spirit to the lasso albeit with a somewhat different formulation is the

Dantzig selector (Candes et al., 2007). The method is defined as the solution to

arg min
β

||XT (y −Xβ)||∞ subject to ||β||1 ≤ t,

for some nonnegative tuning parameter t. Thus the Dantzig selector replaces squared error loss by the

maximum absolute value of its gradient. The solution to this expression can be shown to be a linear

programming problem.

In some problems the predictor variables belong to a predefined group such as a collection of dummy-

coded variables used to represent the levels of a categorical variable, or a set of variables that represent a

collection of related biological measurements. In that case it is usually desirable to shrink and select the

members of such a group together. One method that provides this behavior is the grouped lasso (Bakin et al.,

1999; Lin et al., 2006). Suppose that p predictor variables are divided into L groups with p` variables in the

`-th group. Further defineX` and β` to be the design matrix and coefficient vector corresponding to the `-th

group. Then the grouped lasso is defined as

arg min
β

{
||y −Xβ||2 + λ

L∑

`=1

√
p`||β`||

}
.

Thus sparsity is encouraged at both a group and an individual level since individual members are penalized

for being members of a group by the
√
p` term.

1.2.2.3 Novel research: anti-pathogen compound discovery

One application of variable selection is in the discovery of explanatory variables with an effect on the

outcome of interest. As a collaboration with Kirkpatrick et al. (2017), we propose a novel bioinformatics

pipeline that can be used to identify chemical compounds found in plants or other organisms that have a

deleterious effect on pathogens or cancer cell lines.
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Explanatory data is collected through liquid chromatograpy - mass spectrometry (LC-MS). In brief, this

involves using liquid chromatograpy to separate out the compounds that exist in a given plant tissue into

several dozen solutions known as fractions. A given compound is observed (has a nonzero quantity) over

only a few fractions, so that compounds are better differentiated when performing downstream statistical

analyses. The mass spectrometry phase is used to actually measure the quantity of the various compounds

present in each of the fractions. The outcome variables are obtained by introducing solution from a given

fraction into a Petri dish with the pathogen or cancer cell line of interest, and observing the change in the

quantity of the pathogen or cell line after a fixed amount of time.

The size of the data is a primary challenge for this setting. The explanatory data consists of over 10,000

readings from the mass spectrometer for each observation. The number of observations is determined by

the number of replications for each of the fractions of interest (i.e. the fractions in which a decrease in the

pathogen or cancer cell line is observed). Performing these experiments is expensive and time-consuming,

and for our real data analyses we had about 15 observations for a given outcome of interest. Given this scarcity

of data, effective screening of the data is of critical importance to us. Furthermore, multiple observations

read by the mass spectrometer can belong to a single compound, so we developed a procedure to recover the

underlying compounds. Finally, after compound recovery and candidate compound screening is performed,

we propose a simple method of ranking the candidate compounds that works effectively in this setting of

acute data scarcity.

1.3 Fertility models

The study of human fertility is an effort to understand the mechanisms by which conception is achieved,

and has applications for couples trying to conceive, users of natural family-planning methods, and clinicians

trying to estimate probabilities of pregnancy. The use of probability models in this field has shown to provide

valuable insights into the predictors of the probabilities of pregnancy. The study of fertility through the use of

probability models can be divided into two paradigms based terms time-granularity: menstrual cycle-level

models and day-level models. Which class of models to use can be selected based on the analysis goals and

availability of data.
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1.3.1 Cycle-level time scale

A common approach to modeling fertility data is to consider each menstrual cycle as the time-scale,

and use a time-to-event strategy to model pregnancy status. The most popular model for this setting is the

discrete-time proportional hazards model proposed in Cox (1972). The model is described as follows.

1.3.1.1 Discrete-time proportional hazards model

Let T be a discrete random variable with support t1 < t2 < . . . , and let us write the pmf of T as

f(tj) = fj = P (T = tj). Then the survival function denoted as S(tj) is given by

S(tj) = Sj = P (T ≥ tj) =
∞∑

k=j

fj .

Next, let us define the hazard at time tj , denoted as λ(tj), to be the conditional probability of pregnancy

given that no pregnancy has occurred up to that point, then it follows that

λ(tj |xij) = λj = P (T = tj |T ≥ tj ,xij) =
fj
Sj
.

The discrete-time proportional hazards model is defined as

λ(tj |xij)
1− λ(tj |xij)

=
λ0(tj)

1− λ0(t)
exp{xTijβ}.

Estimation of the regression coefficients then proceeds through maximizing the partial likelihood.

1.3.2 Day-level time scale

One of the primary methods used to estimate to fit a model based on day-specific data is based on

Schwartz et al. (1980). In this model the probability of pregnancy for a cycle, given that a pregnancy has not

already occurred in a previous cycle, is of the form

1−
K∏

k=1

(1− λk)Xijk ,

10



for subject i, cycle j, and fertile window day k, and where Xijk is an indicator variable taking a value of

1 if sexual intercourse occurred on the corresponding day and 0 otherwise. Under this model, λijk has the

interpretation of the day-specific probability of conception in cycle j from couple i given that conception

has not already occurred, or equivalently, given intercourse only on day k. Estimation of the λijk’s proceeds

through maximum likelihood estimation.

The Schwartz et al. model has the ability to estimate the day-specific probability of conception under

the assumption that probabilities are the same across couples and cycles, which seems unlikely in actuality.

Furthermore, scientific interest often lies not just in estimating these probabilities, but identifying predictors

that may be protective or promotive to achieving pregnancy. To address these issues, Dunson and Stanford

(2005) proposed hierarchical Bayesian model with a regression term that allows for the incorporation of

predictors into the probability model. Their model is specified as follows. Define

Yij an indicator of conception for woman i, cycle j,

Vijk an indicator of conception for woman i, cycle j, day k,

Xijk an indicator of intercourse for woman i, cycle j, day k,

and let

uijk a covariate vector of length q for woman i, cycle j, day k,

β a vector of length q of regression coefficients,

ξi woman-specific random effect.

Then the model is given by

P
(
Yij = 1

∣∣ ξi,Xij ,Uij

)
= 1−

K∏

k=1

(1− λijk)Xijk

λijk = 1− exp
{
−ξi exp

(
u′ijkβ

)}

ξi ∼ Gamma (φ, φ),
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1.3.2.1 Novel research: extending the day-specific probabilities model

The model of Dunson and Stanford (2005), while arguably the gold standard for this domain, has several

limitations that we try to address in this research. The first is that the model only permits categorical predictor

variables. While categorization of certain variables such as age is a widely used technique in this field, there

are other variables of interest such as for example inhibin levels, a protein complex that can be used as a

proxy for ovarian reserve, for which established categorization cutpoints may not be known. When this is the

case or when a potential feature may be more naturally represented as a continuous variable then having a

means to do so is desirable. We modify the approximation of the posterior density in our research so as to

allow for this type of data.

A second potential issue is that missing data is not accounted for in the model, and as a result data with

missing values is typically omitted from data analyses. Of course, as with any domain this is an undesirable

practice, and in particular, fertility studies are quite expensive to set up and administer so data is at a premium.

But what may not be apparently obvious is that due to the structure of the data, missing a single variable

value for an observation in some sense requires multiple observations to be thrown out. The reason for this is

that observations are collected on a day-level time scale, but the pregnancy status outcome variable occurs

on a cycle-level time scale. Thus to include a cycle in the model, you cannot have missingness in any of

the days that occur during the cycle. As a result, a small proportion of missingness in the data can cause a

large amount of loss of data in an analysis. In order to account prevent this effect, we extend the model to

explictely include the missing values which allows for posterior inference to include data with missingness.

A third issue that the known true unimodal shape of the fertile window day probabilities is not explicitly

accounted for. What this means, is that based on subject-matter biological knowledge, researchers in the

field expect that the probability of conception during a given cycle there is a time of peak fertility, and that

when considered as a function of time fertility is monotone decreasing as the amount of time increases either

before or after this peak. While sufficiently powered analyses should be able to infer this structure, if the

model itself can somehow take into account for this structure, then doing so can potentially improve the

informativeness of the posterior density. We propose two ways of incorporating this information into the

model, each of which may be preferable in different circumstances.

12



CHAPTER 2: COMPOSITE QUANTILE-BASED CLASSIFIERS

2.1 Quantile classifiers for univariate data

The quantile classifier and the empirically optimal quantile classifier were introduced in Hennig and

Viroli (2016). For completeness, the notation and definitions are reviewed in Section 2.1.1. In Section

2.1.2, we propose an extension to the quantile classifiers that we call multimodal quantile classifiers for with

settings where there are multiple decision rule boundaries. Then in Section 2.1.3 we present some results

regarding the optimality and consistency of the new classifier.Additionally, a new algorithm is proposed in

the supplementary materials that obtains the decision rule for the empirically optimal quantile classifier in

quadratic time.

2.1.1 The quantile classifier

In order to present the quantile classifier, we begin by introducing some terminology originally defined

in Hennig and Viroli (2016). Consider the check loss (also known as the quantile loss) function defined as

ρθ(u) = 1 (u > 0) θ u+ 1 (u ≤ 0) (1− θ) (−u) = u
[
θ − 1 (u ≤ 0)

]
,

for some choice of quantile level θ ∈ (0, 1). Next, consider two populations Π0 and Π1 with corresponding

distribution functions F0 and F1 on R. The quantile distance of a point z to the population’s θ-th quantile is

defined as

Φi(z, θ) = ρθ

(
z − F−1

i (θ)
)
, i = 0, 1.

It will also be convenient later to define for fixed θ,

F−1
(0) (θ) = min

{
F−1

0 (θ), F−1
1 (θ)

}
and F−1

(1) (θ) = max
{
F−1

0 (θ), F−1
1 (θ)

}
.
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Next, the difference of the quantile distances of a point z to the populations’ θ-th quantiles is defined as

Λ (z, θ) = Φ1(z, θ)− Φ0(z, θ).

With these definitions in hand, the θ-th quantile classifier is defined as follows.

For an observation z, classify to:





Π0, if Λ (z, θ) > 0,

Π1, otherwise.
(2.1)

It can also be shown that the decision rule boundary resulting from the classifier in (2.1) is given by the value

of θF−1
(0) (θ) + (1− θ)F−1

(1) (θ).

Finally, let Z be a random variable with a prior probability π0 of being a member of population Π0, and

π1 = 1 − π0 the prior probability of being a member of population Π1. Then the probability of correctly

classifying an observed realization of Z by the θ-th quantile classifier is given by

Ψ(θ) = π0

∫
1

(
Λ(z, θ) > 0

)
dP0(z) + π1

∫
1

(
Λ(z, θ) ≤ 0

)
dP1(z). (2.2)

It was shown in Hennig and Viroli (2016) that the expression given in (2.2) has the appealing property that for

the optimal choice of quantile level θ and when the population distribution of one of the classes stochastically

dominates the other, the classification rate is equal to that of the Bayes classifier. In that paper they call

the quantile classifier with the optimal quantile level θ the optimal quantile classifier. Since in practice

the optimal choice of θ is unknown, this necessitates the empirically optimal quantile classifier, which is

presented next.

Let x1, . . . , xn be samples from a population with a probability density on R. Then we define the θ-th

empirical quantile for the population to be given by any minimizer of the sample version of the expected

check loss distance defined by

F̂−1(θ) = arg min
q



θ

∑

xi>q

|xi − q| + (1− θ)
∑

xi≤q
|xi − q|



 . (2.3)

In the supplementary materials we show that a solution to equation (2.3) providing the θ-th empirical quantile

for x1, . . . , xn is given by dnθe-th largest value of the xi.
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Next, let n0 and n1 be the number of observations from Π0, and Π1, respectively, and let n = n1 + n2.

Having defined the θ-th empirical quantile for the population, it follows that the empirical difference of the

quantile distances of a point z to the population’s θ-th quantiles is defined as

Λn(z, θ) = ρθ

(
z − F̂−1

1n1
(θ)
)
− ρθ

(
z − F̂−1

0n0
(θ)
)
.

Then we further define the observed rate of correct classification for the θ-th quantile as

Ψn(θ) =
n0

n0 + n1


 1

n0

∑

xi∈Π0

1

(
Λn(xi, θ) > 0

)

+

n1

n0 + n1


 1

n1

∑

xi∈Π1

1

(
Λn(xi, θ) ≤ 0

)



=
1

n


 ∑

xi∈Π0

1

(
Λn(xi, θ) > 0

)
+
∑

xi∈Π1

1

(
Λn(xi, θ) ≤ 0

)

 .

Finally, define the empirically optimal quantile classifier to be any solution to the equation

θ̂n = arg max
θ∈T

Ψn(θ), (2.4)

where T = [δ, 1− δ] for some small positive constant δ. The restriction of quantile levels to the set T is to

guarantee at least one optimal value of θ for the theoretical quantile classifier.

2.1.2 The multimodal quantile classifier

We discussed in Section 2.1.1 that for a fixed choice of θ, the quantile classifier has a single decision

rule boundary. As a result the classifier may suffer from loss of efficiency in settings where the Bayes rule

consists of multiple boundaries. To mitigate this drawback, we propose an extension to the quantile classifier

that we call the multimodal quantile classifier.

The way that the multimodal quantile classifier works is the following. The populations’ domains are

partitioned by splitting the domain at any point x where F0(x) = F1(x). Then the usual quantile classifier is

used to classify the points based only on the subset of the distributions’ support that belong to the interval

created by the partitioning. See Figure 2.1 for the partitioning by the multimodal quantile classifier for an

example setting.
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In more detail, suppose that there are a finite number of points x1 < · · · < xt such that F0(x) = F1(x)

for x ∈ {x1, . . . , xt} and that F0(x) 6= F1(x) otherwise, and let us denote x0 = inf{x : f0(x) > 0} and

xt+1 = sup{x : f0(x) > 0}. Then we create intervals (xk−1, xk], k = 1, . . . t + 1 and classify any new

point by comparing the quantile distance for the point using an interval-specific quantile level. Formally, the

(t+ 1)-interval multimodal quantile classifier is defined as follows.

For an observation z, classify to:





Π0, if
∑t+1

k=1 1
(
z ∈ (xk−1, xk]

)
Λ(z, θk) > 0,

Π1, otherwise.
(2.5)

Next, the empirically optimal multimodal quantile classifier is constructed as follows, using a two-step

process. For the first step in the process, we start by letting x̂1, . . . , x̂t be the values such that F̂0(x̂k) =

F̂1(x̂k), k = 1, . . . , t. In practice, it is possible that there will be intervals of points that will satisfy this

equation, and in such cases we pick just a single point within each interval such as, for example the midpoint.

We further let x0 = −∞ and xt+1 =∞.

Once we have these estimated cutpoints in hand, then the second step is to divide the domain into t+ 1

subproblems, and to find the empirically optimal quantile classifier for each subproblem. In more detail, let

us denote the empirical classification rate for a subproblem on the support (a, b] as

Ψn,(a,b](θ) =
1∑n

i=1 1
(
xi ∈ (a, b ]

)



∑

xi∈Π0

xi∈(a,b]

1

(
Λn(xi, θ) > 0

)
+

∑

xi∈Π1

xi∈(a,b]

1

(
Λn(xi, θ) ≤ 0

)

 .

Then we define the empirically optimal quantile classifier for the subproblem restricted to the support (a, b]

to be any solution to the equation

θ̂n,(a,b] = arg max
θ∈T

Ψn,(a,b](θ),

where T = [δ, 1− δ] for some small positive constant δ. Then the classification rule is defined as follows.

For an observation z, classify to:





Π0, if
∑t+1

k=1 1
(
z ∈ (x̂k−1, x̂k]

)
Λn(z, θ̂n, (x̂k−1,x̂k]) > 0,

Π1, otherwise.
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We note that this approach is a more general version of regular quantile classifiers, since it reduces to the

original form when there are no points x at which F0(x) = F1(x). It also has the advantage of keeping

estimation simple, since the only new requirement is estimation of F0 and F1, which is something that

is essentially already needed since we are previously estimating F−1
0 and F−1

1 . This leads to an efficient

classifier for many of the scenarios that we would expect to encounter in practice.

π0f0(x)

π1f1(x)

︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷
Region 1 Region 2 Region 3 Region 4

F0(x) = F1(x)

Figure 2.1: The multimodal quantile classifier partitioning for a pair of example populations. In this example
there are three values of x for which the distributions functions F0(x) = F1(x) are equal, resulting in a
partitioning into four regions. The alternating gray regions show the classification regions for the optimal
multimodal quantile classifier.

2.1.3 Optimality and consistency of the multimodal quantile classifier

In this section, we start with an alternative convergence result for the empirically optimal quantile

classifier. Let us define a variant of Ψn which we call Ψ†n, by

Ψ†n(θ) = π0

∫
1

(
Λn(z, θ) > 0

)
dP0(z) + π1

∫
1

(
Λn(z, θ) ≤ 0

)
dP1(z).

We note that Ψ†n(θ̂n) is the classification rate for the empirically optimal quantile classifier. Let δ be a small

positive constant, and consider the following assumptions.

Assumption 1. F−1
i is a continuous function of θ, i = 0, 1.

Assumption 2. P
(

Λ(Z, θ) = 0
)

= 0 for all θ ∈ [δ, 1− δ].
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Theorem 1. Let θ̃ be a solution to θ̃ = arg maxθ∈T Ψ(θ), and letR be the Bayes rule classification rate for

populations Π0 and Π1. Then under Assumptions 1 and 2, it follows that Ψ†n(θ̂n)
p−→ R.

Having established this convergence result for the usual quantile classifier, we now we turn our attention

to the multimodal quantile classifier.

Theorem 2. Consider two populations Π0 and Π1 with corresponding distribution functions F0 and F1 and

density functions f0 and f1 such that f0 and f1 are nonzero on the same domain, and further suppose that

Assumptions 1 and 2 hold. Let Z be a random variable with a prior probability π0 of being a member of

population Π0, and π1 = 1− π0 the prior probability of being a member of population Π1.

Next, suppose that there are a finite number of points x1 < · · · < xt such that F0(x) = F1(x) for

x ∈ {x1, . . . , xt} and that F0(x) 6= F1(x) otherwise, and let us denote x0 = inf{x : f0(x) > 0} and

xt+1 = sup{x : f0(x) > 0}. Further assume that for every interval (xk, xk+1), that there is exactly one

point z∗k ∈ (xk, xk+1) such that π0f0(z∗k) = π1f1(z∗k), and that π0f0(z) < π1f1(z) for z on one side of z∗k

and π0f0(z) > π1f1(z) for z on the other side of z∗k in the interval. Then the multimodal quantile classifier

for an observed realization of Z using the optimal choice of quantile levels achieves the Bayes error rate.

This theorem describes the settings in which the multimodal quantile classifier can be fully efficient.

Since, the classifier is limited to a single decision rule boundary for every interval (xk, xk+1), this will not be

sufficient for settings where multiple boundaries may be needed within the interval. On the other hand, this

kind of situation will tend to occur for small regions of the data, since larger regions would cause additional

points where F0(x) = F1(x). Next, we consider the consistency of the empirical version of the classifier.

Theorem 3. Consider the setup of Theorem 2. Let Ψ†n denote the classification rate of the empirically optimal

multimodal quantile classifier, and letR denote the Bayes rule classification rate. Then under Assumptions 1

and 2 from Theorem 1, it follows that Ψ†n
p−→ R.

Thus we see that in settings where the multimodal classifier can be fully efficient, the classification rate

of the empirical multimodal classifier converges to the Bayes rule classification rate.

2.2 Quantile-based classifiers for multivariate data

Having characterized the quantile classifier, which is by nature inherently univariate, our goal is to

construct a classification method for multivariate settings. A classifier for multivariate data was proposed in
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Hennig and Viroli (2016) that bases the classification rule on the sum of the component-wise differences

of the quantile distances. In this section we propose a classifier that generalizes this approach in several

directions by allowing for more flexible choices of quantile levels, and basing the classifier on a linear

combination of the differences of the quantile distances.

We begin this section by extending some of the notation from the previous section to the multivariate

setting. First, consider two populations Π0 and Π1 with corresponding distribution functions F0 and F1 each

on Rp, and further let F0j and F1j denote the marginal distribution functions for the j-th variable with respect

to F0 and F1, j = 1, . . . , p. Then we denote the quantile distance of a point z ∈ R to the θ-th quantile of a

population’s j-th component as

Φij(z, θ) = ρθ

(
z − F−1

ij (θ)
)
, i = 0, 1, j = 1, . . . , p.

Using these definitions, the difference of the quantile distances of a point z to the populations’ θ-th quantile

of the j-th component is defined as

Λj(z, θ) = Φ1j(z, θ)− Φ0j(z, θ), j = 1, . . . , p.

The main idea of the composite quantile-based classifiers proposed in the next section is to aggregate the

discriminatory information contained in each of the Λj’s to construct a classification method for data with

multivariate features.

2.2.1 Composite quantile-based classifiers

In this section we propose the family of composite quantile-based classifiers. We begin by motivating the

the form of the classifiers. Consider a point z = (z1, . . . , zp) ∈ Rp and quantile levels θ = (θ1, . . . , θp) ∈

(0, 1)p. If the difference of the quantile distances of the j-th component Λj(zj , θj) is positive, this provides

some descriminatory information indicating that zj is closer to the θj-th quantile of the j-th component

of population Π0 than it is to the θj-th quantile of the j-th component of population Π1, and conversely

if Λj(zj , θj) is negative. Furthermore, differences of larger magnitudes provide stronger information than

those with smaller magnitudes. With these properties in mind we propose using a linear combination of the
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Λj(zj , θj)’s as follows. We call this family of classifiers composite quantile-based classifiers.

For an observation z, classify to:





Π0, α0 +
∑p

j=1 αj Λj(zj , θj) > 0,

Π1, otherwise,
(2.6)

for α = (α0, . . . , αp) ∈ Rp+1. By introducing the coefficients to the classification model, this in principle

provides the ability to both handle the differences in scale of the features and to weight the variables as a

function of their discriminatory power.

Since the values of the Λj’s are a measure of closeness to the θ-th quantile of the parent populations, it

may seem strange that the coefficients are allowed to be negative since a negative value makes the classifier

less likely to select the population which it is closer to. However, this is an important characteristic of the

classifier since it allows the aggregation step to most flexibly model dependencies between the features in

the data. For example, when classifying between two Gaussian distributions with a common covariance, the

decision rule boundary is linear with the slope determined by the means and covariance of the distributions.

Thus, by allowing for negative linear combination coefficients, the classifier can well approximate such a

decision rule regardless of the correlation structure in the data.

Finally, the coefficient α0 can be interpreted as an offset to classify an observation when the linear

combination of the differences of the quantile distances is small. This is useful when the prior probability of

an observation being drawn from one class is higher than being drawn for the other. When this is the case, we

can require a higher threshold of closeness for an observation to a population that has a low prior probability

before we decide to classify the observation to that population.

2.2.1.1 Properties of composite quantile-based classifiers

Having presented the theoretical form of the composite quantile-based classifiers, we now consider the

consistency of the empirical version as well as the form of the classifier decision rule boundary. Firstly, let us

denote Ψ(θ) as the classification rate for composite quantile-based classifiers given by

Ψ(θ) = π0

∫
1

(
α0 +

p∑

j=1

αj Λj(zj , θj) > 0

)
dP0(z)

+ π1

∫
1

(
α0 +

p∑

j=1

αj Λj(zj , θj) ≤ 0

)
dP1(z).
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For the theorem below we will need the following assumptions. Let δ be a small positive constant.

Assumption 1. F−1
ij is a continuous function of θ, i = 0, 1, j = 1, . . . , p.

Assumption 2. P
(
α0 +

∑p
j=1 αj Λj(Zj , θj) = 0

)
= 0 for all θ ∈ [δ, 1− δ].

Assumption 3. There is a unique θ̃j that satisfies θ̃j = arg maxθ∈T Ψj(θ), j = 1, . . . , p.

Theorem 4. Denote θ̃ =
(
θ̃1, . . . , θ̃P

)
. Then under assumptions 1-3 it follows that Ψ(θ̂n)

p−→ Ψ(θ̃).

This result shows that the classification rate of the empirical version of composite quantile-based

classifiers converges to that of the composite quantile-based classifier using the component-wise most

discriminatory choices of quantile levels.

Next, we consider the decision rule form of composite quantile-based classifiers. Recall that the

composite quantile-based family of classifiers is defined as expression (2.6). From this expression we see that

the decision rule boundary is given by

α0 +

p∑

j=1

αj Λj(zj , θj) = 0. (2.7)

As an aside, we note that the set of z that satisfy (2.7) may be empty for certain choices of (α0, . . . , αp,

θ1, . . . , θp), which corresponds to a decision rule that exclusively classifies observations to one of the two

classes. If the solution set is nonempty, then we can show that the decision rule boundary is a piecewise linear

function with a particularly simple form, as is discussed in what follows. Let us define the component-wise

quantile classifier decision boundary τj to be the unique point satisfying Λj(τj , θj) = 0, j = 1, . . . , p. We

can assume without loss of generality that τj is unique because it is only non-unique when Λ( · , θj) is

identically zero, in which case the problem is effectively reduced to p− 1 dimensions. It follows then that

sign
(
F−1

1j (θj)−F−1
0j (θj)

)
Λj(zj , θj) =





τj − F−1
(0)j(θj), zj ≤ F−1

(0)j(θj),

τj − zj , F−1
(0)j(θj) < zj < F−1

(1)j(θj),

τj − F−1
(1)j(θj), otherwise.

(2.8)

The expression in (2.8) leads to the decision rule form of composite quantile-based classifiers. Conceptually,

we can divide Rp into 3p hypercubes so that the decision rule boundary set is either empty or is an affine set

within each hypercube.
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Proposition 5. Define α∗j = αj sign
(
F−1

1 (θj) − F−1
0 (θj)

)
, and let L, M , and U (for lower, middle and

upper) be sets that partition the set of indices {1, . . . , p}. Define the hypercubeHL,M,U to be the set given

by

HL,M,U =
∏

`∈L

(
−∞, F−1

(0),`(θ`)
) ∏

m∈M

[
F−1

(0),m(θm), F−1
(1),m(θm)

] ∏

u∈U

(
F−1

(1),u(θu), ∞
)
, (2.9)

where in this context the products denote the usual Cartesian product. Then the decision rule boundary for

composite quantile-based classifiers on the domainHL,M,U is the possibly empty set given by

DL,M,U =

{
z ∈ HL,M,U :

[
α0 +

∑

`∈L
α∗`

(
τ` − F−1

(0),`(θ`)
)

+
∑

u∈U
α∗u

(
τu − F−1

(1),u(θu)
)]

+
∑

m∈M
α∗m(zm − τm) = 0

}
.

Furthermore, the decision rule boundary is a continuous function of z.

2.2.1.2 Augmented composite quantile-based classifiers

The general approach of building a classifier based on the one-at-a-time comparisons of the marginal

densities can be a useful strategy for reducing the complexity of a problem in a high-dimensional setting.

However, considering only the marginal distributions can result in deletion of features that could otherwise

provide discriminative information when considered jointly. In the case of composite quantile-based classi-

fiers, deletion will occur whenever the marginal distribution functions are equal for the specified quantile

level.

In order to prevent such a loss of information, we propose a variant of the classifiers called augmented

composite quantile-based classifiers. In this variant, the transformed features upon which the decision rule

boundary are constructed are augmented by the original features. In other words, the decision rule for an

observation z is based upon

α0 + α1 Λ1(z1, θ1) + · · ·+ αp Λp(zp, θp) + αp+1z1 + · · ·+ α2pzp.
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This allows the classification rule to be constructed using the full multivariate information. Additionally,

other forms of correlation can be encoded into the data by including interaction terms or other forms of

feature expansion.

Including the original features can be helpful whenever deletion may occur or when the decision rule

boundary is approximately linear in the original features. Numerical results for the two variants are compared

in Section 2.3, and in the supplementary materials this phenomenon is investigated further by comparing

numerical results for a setting that is subject to feature deletion.

2.2.1.3 Multimodal composite quantile-based classifiers

Extending the composite quantile-based classifiers to use the multimodal quantile classifier is straightfor-

ward. The main issue that needs to be resolved is how to define the Λj’s, since there are multiple quantile

levels to consider within a feature. Suppose that features’ marginal support is divided into t + 1 regions,

where t is the number of values of x where F0(x) = F1(x). Let us denote these regions as Aj1, . . . ,Aj,t+1

ordered so that x ∈ Ajk and x′ ∈ Ajk′ for k < k′ implies that x < x′. Then for a given region Ajk, a

quantile level θjk is chosen with a resulting decision rule boundary that we call τjk such that τjk ∈ Ajk.

For values of z with z < τj1 or τj,t+1 < z, it is natural to define the difference of the quantile distances

with respect to θj1 or θj,t+1 (c.f. Figure 2.1). For z with τk < z < τk+1, then there are two potential quantiles

to base a distance upon. We propose using a combination of both quantile levels based on the point’s relative

distances to the regions’ decision rule boundary. Formally, we define the transformation by

z∗j =





Λj(zj , θj1), zj < τj1,

τk+1−zj
τk+1−τkΛj(zj , θjk) +

zj−τk
τk+1−τkΛj(zj , θj,k+1), τk ≤ zj < τk+1, k = 1, . . . , t,

Λj(zj , θj,t+1), τj,t+1 ≤ zj .

We note that this form of z∗j results in a function that is continuous and piecewise linear in zj . When

the assumptions of Theorem 2 are met and for optimal choices of quantile levels, then z∗j < 0 when

π0f0(x) > π1f1(x), z∗j = 0 when π0f0(x) = π1f1(x), and z∗j > 0 when π0f0(x) < π1f1(x). Thus this

data transformation maintains many of the characteristics that are seen in the usual composite quantile-based

classifiers.
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2.2.2 Classifier model selection

Having introduced a family of classifiers in Section 2.2.1, we are in need of a method by which to select

a particular model based upon the data at hand. This requires selection of both a vector of component-wise

quantile levels, and a vector of component coefficients. To perform model selection, we propose a two-step

process as described in Sections 2.2.2.1 and 2.2.2.2. Additionally, in Section 2.2.4 we present an alternative

algorithm that avoids splitting data at the cost of expanding the feature space.

2.2.2.1 Choice of quantile levels

As stated before, the fundamental motivation for the family of classifiers proposed in this paper is the

result that for univariate data and under some assumptions, the decision rule based upon the distances of an

observation to the corresponding within-class quantiles for the optimal choice of quantile levels is the Bayes

rule. Thus, we propose using these most powerful choices of quantile level with respect to each feature’s

discriminatory ability, taken one-at-a-time. This statement is developed more precisely below.

To begin, let us suppose that we have p-dimensional observations x1, . . . ,xn, and we let xij denote the

j-th component of xi; i = 1, . . . , n, j = 1, . . . , p. Then the empirical quantile for the j-th feature of the i-th

population is defined to be any solution satisfying

F̂−1
ijn(θ) = arg min

q




θ
∑

{`:x`∈Πi
x`j>q}

|x`j − q| + (1− θ)
∑

{`:x`∈Πi
x`j≤q}

|x`j − q|




.

Having defined the θ-th empirical quantile for the j-th feature of the i-th population, it follows that the

empirical difference of the quantile distances of a point z ∈ R to the population’s θ-th quantiles of the j-th

feature is defined as

Λjn(z, θ) = ρθ

(
z − F̂−1

1jn(θ)
)
− ρθ

(
z − F̂−1

0jn(θ)
)
.

Further define the observed rate of correct classification for the θ-th quantile of the j-th feature as

Ψjn(θ) =
1

n


 ∑

xi∈Π0

1

(
Λjn(xij , θ) > 0

)
+
∑

xi∈Π1

1

(
Λjn(xij , θ) ≤ 0

)

 .
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Finally, define the empirically optimal quantile classifier for the j-th feature to be any solution to the equation

θ̂jn = arg max
θ∈T

Ψjn(θ),

for T = [δ, 1 − δ] where δ is an arbitrarily small positive constant. Then we propose selecting θ̂jn as the

choice of quantile level, j = 1, . . . , p.

In the case of the multimodal version, we choose a quantile level for each of the regions based on the

observed data within the region.

2.2.2.2 Choice of linear combination coefficients

To motivate the choice of linear combination coefficients, we note the following observation. If we write

z∗j = Λj(zj , θj); j = 1, . . . , p, then we can express the classification rule in equation (2.6) as follows:

For an observation z, classify to:





Π0, α0 +
∑p

j=1 αjz
∗
j > 0,

Π1, otherwise.
(2.10)

From this form it is readily apparent that the the classification rule decision boundary for the classifier in

(2.10) is the same as that of the decision rule boundary obtained from the logistic regression model with

z∗ = (z∗1 , . . . , z
∗
p) as the predictor variables. From this perspective, it is natural to select the classifier

component coefficients by using the logistic regression coefficient estimates obtained from the transformed

training data where the transformation is taken to be x∗ij = Λ(xij , θj) for all i, j. Indeed, this is exactly the

approach that we propose, using a two step process as follows: first choose quantile levels based on each

feature’s empirically optimal quantile level in terms of class prediction, and then for these fixed choices

of quantile levels use penalized logistic regression on the transformed training data to select a choice of

linear combination coefficients. A full presentation of the two-step parameter selection process is provided in

Section 2.2.3.

2.2.2.3 Connections to existing methods

Composite quantile-based classifiers share a relationship with a number of existing methods such as

quantile-based classifiers, and more generally the class of distance-based classifiers to which quantile-based

classifiers belongs. Distance-based classifiers are a type of classifier that assign an observation to a population
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which it is deemed closer to by some measure of distance. More formally, let ξ0 and ξ1 be p-variate statistics

representing populations Π0 and Π1, respectively, and further let d(·, ·) denote a chosen distance measure.

Then, following the notation used in Hennig and Viroli (2016), a distance-based classifier has the following

form:

For an observation z, classify to:





Π0,
∑p

j=1

{
d(zj , ξ1j)− d(zj , ξ0j)

}
> 0,

Π1, otherwise.

Some examples of distance-based classifiers include nearest centroid classification (e.g. Hastie et al. (2009)),

shrunken centroids (Tibshirani et al. (2002), Wang and Zhu (2007)), median-based classifiers (Jörnsten

(2004), Ghosh and Chaudhuri (2005), Hall et al. (2012)), and quantile-based classifiers (Hennig and Viroli

(2016)). When we restrict the linear combination coefficients so that α0 = 0 and α1 = · · · = αp > 0, and

also require that θ1 = · · · = θp = θ, then the decision rule is based upon

α0 +

p∑

j=1

αj Λj(zj , θj) > 0 ⇐⇒
p∑

j=1

Λj(zj , θ) > 0,

which is the form of quantile-based classifiers. Quantile-based classifiers belong to the family of distance

based classifiers, which can be seen by letting ξi =
(
F−1
i1 (θ), . . . , F−1

ip (θ)
)
, i = 0, 1, and further letting

dθ(zj , ξij) = ρθ(zj − ξij), in which case

p∑

j=1

Λj(zj , θ) =

p∑

j=1

{
dθ(zj , ξ1j)− dθ(zj , ξ0j)

}
.

So from this we see that composite quantile-based classifiers cover quantile-based classifiers. Furthermore,

although composite quantile-based classifiers are not in general distance based classifiers, we see that a subset

of the family of classifiers belongs to the set of distance based classifiers.

Another interesting connection to note is that the proposed choice of quantile levels and variable

coefficients from Sections 2.2.2.1 and 2.2.2.2 selects a model from the composite quantile-based classifiers

that bears a number of similarities to the FANS classifier proposed in Fan et al. (2016). The FANS classifier

starts from the idea that for data with an equal prior probability of being a member from one of two classes

with corresponding class conditional densities f0 and f1, the Bayes rule decision boundary is given by
{
z: log f0(z)

f1(z) = 0
}

. Then, if it is the case that conditional on class membership the features are mutually
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independent, the Bayes rule decision boundary becomes

D =

{
z : log

f01(z1)

f11(z1)
+ · · ·+ log

f0p(zp)

f1p(zp)
= 0

}
,

where fij corresponds to the class conditional marginal density for the j-th feature of the i-th class. Note

that this is the Naive Bayes classifier when π0 = π1. The FANS classifier then proposes the following

generalization of the decision boundary:

DFANS =

{
z : α0 + α1 log

f01(z1)

f11(z1)
+ · · ·+ αp log

f0p(zp)

f1p(zp)
= 0

}
.

The classifier then estimates class conditional marginal densities fij using nonparametric kernel density

estimation, and selects the choice of coefficients α0, . . . , αp by using the penalized logistic regression

coefficient estimates obtained from the transformed training data where the transformation is taken to be

x∗ij = log
f̂0j(xij)

f̂1j(xij)
for all i, j.

When compared to distance-based classifiers such as the nearest centroid and shrunken centroid classifiers,

composite quantile-based classifiers are similar in that the transformation is based on some notion of distance

to a sentinel point of the within-class marginal distributions. However, as discussed in this paper and in

Hennig and Viroli (2016), the center of the data is not always the most informative location for such a

comparison, and furthermore as discussed in Hall et al. (2009), the use of the Euclidean distance can cause

the classifier to suffer from poor performance in certain cases such as in the presence of heavy-tailed data.

When compared to Naive Bayes and FANS, the transformation for composite quantile-based classifiers is

similar in that Naive Bayes and FANS map values of x with f0k(x) > f1k(x) to positive values and values of

x with f0k(x) < f1k(x) to negative values, while composite quantile-based classifiers similarly map values of

x with π0f0k(x) > π1f1k(x) to positive values and values of x with π0f0k(x) < π1f1k(x) to negative values,

under some assumptions. One important difference between the approaches occurs between the estimation

required for the methods. The estimation for composite quantile-based classifiers requires estimating F−1
0k (x)

and F−1
1k (x), and selecting an optimal quantile level, all fairly easy tasks. On the other hand, Naive Bayes

traditionally requires an a priori assumption on the density of the data, while FANS requires kernel density

estimation which is far more difficult to estimate. We will revisit this topic in Section 2.3, where the numerical
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results indicate that composite quantile-based classifiers perform comparatively better when the quantity of

the training data is limited, presumably due in part to these differences in estimation.

One final point that was noted in Fan et al. (2016) and bears repeating here, is that instead of using

penalized logistic regression, composite quantile-based classifiers may well use the SVM (linear kernel) or

any other linear classifier as a means through which to obtain the transformed feature coefficient values. In

this paper, as in Fan et al. (2016), we focus on using penalized logistic regression with the `1 penalty.

2.2.3 Algorithm for composite quantile-based classifiers

In this section, we present an algorithm used to select a composite quantile-based classifier model. This

algorithm is similar to the algorithm proposed in Fan et al. (2016).

We begin with some observations that motivate the form of the algorithm. One issue that needs some

consideration is the fact that the proposed choices of quantile levels and linear combination coefficients

are based upon a two-step process. Recall from Sections 2.2.2.1 and 2.2.2.2 that the quantile levels are

chosen first, with each quantile level based on the optimal level with respect to the feature’s ability to predict

class membership. Then for the second step, the linear combination coefficients are chosen based upon the

transformed data where the transformation is performed with respect to the choices of quantile levels from

the first step. Because of this two-step process, the second step is particularly prone to overfitting the model

to the training data. To mitigate this undesirable behavior, the data set is split into two parts: one part to

train for the choice of quantile levels and corresponding within-class quantiles, and the other part to train

for the choice of penalty parameter used to select the linear combination coefficients. The question then is

how to split the data. Based on empirical evidence, we suggest randomly splitting the data into evenly-sized

partitions. In our experience, this equitable partitioning tends to work well across different sizes and types of

data.

While alleviating one problem, splitting the data leads to another concern: namely that different splits

of the data can lead to different model choices. To protect against model instability, the data are split not

just once but multiple times, and a classification model is procured for each split. The final model is then

obtained by averaging the individual models in the following sense. Let fi be one of the individual models

among a total of L data splits. Then a new observation z is classified according to 1
L

∑L
i=1 fi(z) where

the decision rule boundary is 0 (furthermore, since the boundary rule is 0 we need not divide by L). We

note that the process described here is similar in concept to the ideas presented in bagging Breiman (1996)
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and random forests Breiman (2001). Another related idea is random-projection ensemble classification

Cannings and Samworth (2017), where high-dimensional data are randomly projected into a lower dimension

before application by an arbitrary classifier, and then the results are aggregated to construct a decision rule.

Random-projection ensemble classification employs data splitting to choose the empirically best projection

among a group of projections in an a manner that is similar in spirit to the data splitting procedure proposed

here.

The composite quantile-based classifiers algorithm is presented in its entirety in the supplementary

materials.

2.2.4 Alternative model selection algorithm: simultaneous selection

One potential downside to the data splitting approach is that we only use one portion of the data at a

time to estimate quantiles and select a quantile level, and the other portion to select the linear combination

coefficients. To prevent the need for splitting the data, one reviewer of this paper suggested that rather than

using a portion of the data to select the quantile levels for each feature, that we instead consider a grid of

candidate quantile levels, and include all of these levels in the transformed data. So for example, the decision

rule could be based on

α0 +

q∑

k=1

p∑

j=1

αjk Λj
(
zj , k/(q + 1)

)
,

for some positive integer q. Under this scheme, the number of features in the transformed data is q times

greater than the number of features in the original data, and we rely on a linear combination coefficients

selection algorithm such as penalized logistic regression to find the most important feature and quantile level

combinations to use for predictions. In high-dimensional settings, this multiplicative increase in the number

of features quickly becomes untenable, and in this case we recommend an additional step of feature screening

as is done in Fan and Lv (2008).

We performed a series of simulation studies using this approach and found that it offered competitive

performance to the data splitting approach, but were unable to find a clear reason to prefer one approach

to the other from a performance standpoint for most settings. One exception occurs for settings where the

decision rule boundary is approximately linear, which tend to perform better for the data splitting approach

since the original data for the augmented models doesn’t get overwhelmed by the multiplicative expansion of
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the number of features in the transformed data. We show an example of this in Table 9 in the supplementary

materials, while in Table 10 we show a more typical example where the different algorithms show very

similar levels of prediction accuracy.

2.2.5 Classifier examples

Having described the general form of the composite quantile-based classifiers, we now consider a few

illustrative examples of the classifiers in two dimensions. In each of the examples we use the optimal choice

of quantile level for each of the features to discriminate between the classes. These are the quantile levels

that are chosen by the composite quantile-based classifiers in the limit as the sample size goes to infinity,

as a consequence of the convergence results established in Hennig and Viroli (2016). We also set the linear

combination coefficients as (α0, α1, α2) = (0, 1, 1) and the prior probability for each class as 1/2.

2.2.5.1 Example 1: Two dimensional Gaussian data

In the first example, shown in Figure 2.2, we consider the classical setting of two Gaussian distributions.

The first class, shown in yellow, follows a N
(
(0, 0), I

)
distribution, while the second class, shown in light

red, follows a N
(
(2, 1), I

)
distribution. In the left panel, the inner circles for each class represent a contour

line for 68% of the mass of the distribution, while the outer circles represent a contour line for 95% of the

mass of the distribution. Additionally the decision rule boundary lines are shown for both the composite

quantile-based classifiers method and the Bayes rule. The composite quantile-based classifiers rule has a

classification rate of 0.82, while the Bayes rule classification rate is 0.87.

The same contour lines are shown on the right panel, but the figure is zoomed in on the upper-right

quadrant of the coordinate system in order to focus on the decision rule boundary in more detail. To begin

with, we note that the marginal distributions’ Bayes rules have decision rule boundaries with values of 1 and

1/2 for component 1 (the horizontal axis) and component 2 (the vertical axis), respectively, which corresponds

to the median quantile for each component (i.e. θ1 = θ2 = 0.5). It follows that the corresponding population

quantiles are given by F−1
01 (θ1) = 0, F−1

11 (θ1) = 2, F−1
02 (θ2) = 0, and F−1

11 (θ2) = 1, and furthermore

that Λ1(1, θ1) = 0 and Λ2(0.5, θ2) = 0. The slope of the line within the box bounded by the within-class

quantiles is −1. Once the second component (on the vertical axis) is either no less than 1 or no greater than 0

then Λ2 becomes a fixed value and the second component becomes a free variable, while the first component

is fixed at 0.5 or 1.5, respectively.
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Figure 2.2: Composite quantile-based classifier for Gaussian distributions setting.

Quantile-
based rule

Bayes rule

-2 2 4

-2

2

68% CI

95% CI

68% CI

95% CI

1.0 2.0

0.5

1.0

0.0

0.0 0.5 1.5

1.5

2.0

x1

x2

Λ1 = -0.5 Λ1 = 0.5

Λ2 = 0.5

Λ2 = -0.5

Λ2 = 0

Λ1 = 0

2.2.5.2 Example 2: Two dimensional beta and gamma distributed data

In the second example, shown in Figure 2.3, we consider settings where the shape of the component-wise

within-class marginal distributions varies across populations. In the left panel, we consider populations

where the within-class distributions follow independent beta distributions, and in the right panel we consider

populations where the within-class distributions follow independent gamma distributions. The parameters of

the beta and gamma distributions were chosen at random. As in the previous example, contour lines denoting

68% and 95% of the distributional mass for each population are shown. The Bayes rule decision boundary is

shown as the black line and the composite quantile-based decision rule boundary is shown as the blue line.

The composite quantile-based classifiers rule has a classification rate of 0.84 compared to 0.87 for the Bayes

rule for the beta distributed data, and a classification rate of 0.75 compared to 0.76 for the gamma distributed

data.

In both examples we see that the Bayes rule decision boundary is nonlinear, so we can only at best hope

to approximate it. Fortunately, in both examples the composite quantile-based decision rule boundary follows

the Bayes rule decision boundary well in the higher-density regions of the distributions. As the Bayes rule

decision boundary moves into low-density distributional regions the approximation is less accurate due to the

form of the composite quantile-based classifiers. In our experience this is typical of composite quantile-based
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classifiers: the approximation of the Bayes rule is often good at the center of the data and is less accurate in

the tails.

Figure 2.3: Composite quantile-based classifier for beta- and gamma-distributed data settings.
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One limitation of composite quantile-based classifiers that is evident from these examples is that the

classification rate does not in general achieve the Bayes rule classification rate even in the limit. This is a

consequence of the piecewise linear form of the decision rule boundary. We view this limitation as a trade-off

between simplicity of the classifier and its ability to perform well in all situations. A similar property holds for

tree-based methods, which perform a vertical or horizontal cut at each stage. Because of the simple nature of

the classifier it is well-suited for high-dimensional problems, even in the presence of limited data. For settings

where the Bayes rule decision boundary is linear as in Example 1, a variant of composite quantile-based

classifiers is discussed in the following section that can achieve the Bayes rule classification rate.

2.3 Numerical results

In this section we compare composite quantile-based classifiers with that of nine other classification

methods: quantile-based classifiers Hennig and Viroli (2016), FANS Fan et al. (2016), penalized linear

regression (`1 penalty) Park and Hastie (2007), support vector machine (radial kernel) Cortes and Vapnik

(1995), k-nearest neighbor Cover and Hart (1967), naive Bayes Hastie et al. (2009), nearest shrunken centroids

32



Tibshirani et al. (2002), penalized LDA Witten and Tibshirani (2011), and decision trees Breiman et al. (1984).

Detailed descriptions of the settings and software implementations for each of these methods are provided in

the supplementary materials.

2.3.1 Simulation examples

We consider three simulated data scenarios in the paper; additional simulation examples and results are

provided in the supplementary materials. Within each scenario, we consider combinations of sample sizes

n = 50, 250, 500 and data dimensions p = 50, 250, 500, and in every setting we consider equal numbers

of observations for each class. Additionally, the number of discriminatory features remains fixed at 50

throughout all of the simulations, so that when p is larger than 50 then the remaining variables are noise

variables.

In the first scenario we consider different distributions for each of 5 blocks of features. In more detail,

the data are sampled from a Gaussian distribution with components (Z1, . . . , Z50), and then the features are

evenly split into 5 blocks of 10 and the following transformations performed to each block: (i) Vij ∼ Zj and

Wij ∼ Zj +0.2, (ii) Vij ∼ exp(Zj) and Wij ∼ exp(Zj)+0.2, (iii) Vij ∼ log |Zj | and Wij ∼ log |Zj |+0.1,

(iv) Vij ∼ Z2
j and Wij ∼ Z2

j +0.2, and (v) Vij ∼ |Zj |1/2 and Wij ∼ |Zj |1/2 +0.1. In Table A.3 we consider

uncorrelated data for the underlying Gaussian distribution, and in Table A.4 we consider autoregressive

correlation.

In the second scenario, we consider data with features that follow independent gamma distributions with

different distributional shapes within each feature. The gamma distribution parameters were sampled as

follows. Two shape and scale parameters for each feature were each sampled from a unif (0.5, 2) distribution.

Then for each class and feature, each parameter was transformed by taking the absolute value of some additive

Gaussian random noise. So for example, suppose that αj and γj are the shape and sclae parameters drawn for

the j-th feature. Then for each class the distributional parameters are each sampled from |αj +N(0, σ2
j )| and

|γj +N(0, σ2
j )| distributions. The parameters σ1, . . . , σ50 were given by a fixed sequence each with values

between 0.1 and 0.2. Once the shape parameters were sampled, the same parameters were used for every

replicate and every simulation study. This is the setting shown in Table A.6.

In the third scenario, we consider data with features that follow independent mixture Gaussian distribu-

tions. The first population is a mixture of three Gaussian distribution each with variance 1 and with means

−3, 0, and 3, and prior probabilities of 0.2, 0.6, and 0.2 respectively. The second population is a mixture of
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two Gaussian distributions each with variance 1 and with means −1.5 and 1.5, and prior probabilities of 0.5,

and 0.5 respectively. This is the setting shown in Table 2.2b.

The classifier proposed in this paper is abbreviated as CQC. Results for the second variant of composite

quantile-based classifiers where the transformed quantile distances data is augmented by the original data are

also shown and are abbreviated as CQC augmented. We also consider the multimodal variant of the quantile

classifier in the simulation studies, which we abbreviate as CQC multimodal, and the multimodal variant

augmented by the original data, which we abbreviate as CQC multimodal augmented.

When the amount of training data are limited, we find that composite quantile-based classifiers can suffer

from instability in the choice of quantile levels. To mitigate this behavior, we suggest a modification to the

usual composite quantile-based classifiers. Rather than selecting the quantile levels independently for each

feature, we instead restrict the quantile level to be constant across the features as is done for quantile-based

classifiers. Then, for a fixed choice of quantile level we choose the linear combination coefficients as was

proposed for composite quantile-based classifiers; we call this blend of approaches the hybrid approach. Then

we choose the classifier with the best classification rate from one of the classifiers based on

α0k +

p∑

j=1

αjkΛj(zj , k/(q + 1)), k = 1, . . . , q,

for some grid size q. This approach has the advantages of choosing quantile levels that are more stable and

doesn’t require splitting the data to train the quantile levels, at the cost of losing flexibility in the classifier.

In order to choose between the regular and hybrid approach we can choose the classifier with the better

classification rate on the cross-validation testing sets. It is noted in the discussion of the simulations whenever

the hybrid approach is used.

Simulation results for the block transformed Gaussian setting are shown in Tables A.3 and A.4. In

these settings composite quantile-based classifiers and FANS typically perform better than other classifiers.

Decision trees also perform well in some settings, which suggests that there are some relatively discriminative

features. When the quantity of the training data decreases to n = 50 we see a sharp rise in the misclassification

rates for all methods. It is in this setting that the hybrid quantile-based classifiers do well. For example, when

n = 50 and p = 500 with uncorrelated data, using the hybrid approach reduces the misclassification rate

from 0.351 to 0.215 as compared to composite quantile-based classifiers. We believe the reason that the

hybrid approach works well here is that we may have a number of relatively discriminative features that the
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quantile-based methods approach of selecting quantile levels can effectively key in on, and then the additional

linear combination step can help to deal with some of the differences in scale and discriminatory power

between the blocks.

Simulation results for the gamma distributed data setting are shown in Table A.6. In this setting,

composite quantile-based classifiers and decision trees performed the best, which we see this as a sign of a

few features having some degree of separability across the two classes. Since the optimal quantile level varies

across all of the features, the additional flexibility of composite quantile-based classifiers to select varying

quantile levels results in better performance as compared to quantile-based classifiers.

Simulation results for the mixture Gaussian distributed data setting are shown in Table 2.2b. In this

setting the multimodal version of the composite quantile-based classifiers performs the best when the sample

size is 250 or 500. When the sample size is small (50 observations) then multimodal composite quantile-based

classifiers have some difficulties due to the fact that the observations are split across the observed partitions,

thus reducing the sample size for the individual subproblems to too small of a level. Simulation settings show

good performance for regular composite quantile-based classifiers for 50 observations in most settings, so we

would expect that 50 observations for each subproblem would be sufficient to achieve good performance for

the overall multimodal classifier.

2.3.2 Application to spam email classification

For a real data study, we consider a spam email data set with a total of 4,601 observations and 57 features.

The attributes are, for example, the percentage of specific words or phrases in the email (e.g. money, free,

order), the average and maximum run lengths of uppercase letters, and the total number of uppercase letters.

The features for this data set are typically highly skewed: often 90% of the data have no occurrences of a

word while a few emails have a high rate. In this data set 39% of the emails in the data set were spam emails,

versus 61% non-spam emails.

Various settings were considered for this data as follows. For each setting, a certain amount of data was

randomly selected to be the training data, and the misclassification rate was then based on the remaining

holdout data. The number of observations used to train the classifiers for the various settings was 100,

250, 500, and 1000 observations, respectively. The misclassification rate as the number of training observa-

tions increased for more than 1,000 training observations was nearly constant for all of the classifiers and

consequently is not shown.
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Table 2.1: Simulation study: misclassification results for block transformed data.

(a) Correlation coefficient = 0 with p = 50

n = 50 n = 250 n = 500

CQC 0.181 (0.03) 0.043 (0.01) 0.029 (0.01)
CQC multimodal 0.217 (0.06) 0.045 (0.01) 0.029 (0.01)
CQC augmented 0.176 (0.05) 0.048 (0.01) 0.030 (0.01)
CQC multimodal augmented 0.225 (0.05) 0.046 (0.01) 0.031 (0.01)
Quantile-based classifiers 0.223 (0.03) 0.112 (0.02) 0.085 (0.01)
FANS 0.320 (0.08) 0.068 (0.01) 0.027 (0.01)
FANS2 0.323 (0.06) 0.063 (0.01) 0.028 (0.01)
Penalized logistic regression 0.431 (0.03) 0.322 (0.02) 0.291 (0.02)
Support vector machine 0.386 (0.02) 0.306 (0.02) 0.284 (0.01)
k-nearest neighbor 0.464 (0.02) 0.448 (0.02) 0.431 (0.02)
Naive Bayes 0.452 (0.01) 0.396 (0.02) 0.374 (0.02)
Nearest shrunken centroids 0.422 (0.05) 0.339 (0.01) 0.330 (0.02)
Penalized LDA 0.374 (0.03) 0.301 (0.02) 0.283 (0.01)
Decision trees 0.374 (0.08) 0.078 (0.01) 0.040 (0.01)

(b) Correlation coefficient = 0.8 with p = 250

n = 50 n = 250 n = 500

CQC 0.228 (0.03) 0.115 (0.01) 0.091 (0.00)
CQC multimodal 0.339 (0.06) 0.115 (0.01) 0.094 (0.01)
CQC augmented 0.293 (0.05) 0.118 (0.01) 0.092 (0.00)
CQC multimodal augmented 0.383 (0.06) 0.116 (0.01) 0.091 (0.01)
Quantile-based classifiers 0.263 (0.02) 0.154 (0.02) 0.126 (0.03)
FANS 0.428 (0.08) 0.128 (0.01) 0.079 (0.01)
FANS2 0.402 (0.07) 0.139 (0.01) 0.085 (0.01)
Penalized logistic regression 0.477 (0.03) 0.432 (0.03) 0.421 (0.02)
Support vector machine 0.452 (0.02) 0.428 (0.03) 0.416 (0.02)
k-nearest neighbor 0.463 (0.02) 0.450 (0.02) 0.452 (0.03)
Naive Bayes 0.466 (0.02) 0.436 (0.02) 0.435 (0.02)
Nearest shrunken centroids 0.434 (0.02) 0.388 (0.02) 0.392 (0.02)
Penalized LDA 0.460 (0.03) 0.403 (0.02) 0.397 (0.02)
Decision trees 0.443 (0.07) 0.118 (0.02) 0.081 (0.01)
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Table 2.2: Simulation study: misclassification results for varying within-class distributional shapes

(a) Gamma distributed features with p = 50

n = 50 n = 250 n = 500

CQC 0.128 (0.03) 0.052 (0.01) 0.035 (0.01)
CQC multimodal 0.158 (0.04) 0.051 (0.01) 0.037 (0.01)
CQC augmented 0.153 (0.04) 0.054 (0.01) 0.034 (0.01)
CQC multimodal augmented 0.191 (0.05) 0.053 (0.01) 0.034 (0.01)
Quantile-based classifiers 0.156 (0.01) 0.062 (0.02) 0.045 (0.01)
FANS 0.389 (0.10) 0.107 (0.02) 0.069 (0.01)
FANS2 0.363 (0.09) 0.116 (0.02) 0.073 (0.01)
Penalized logistic regression 0.493 (0.01) 0.500 (0.02) 0.501 (0.02)
Support vector machine 0.492 (0.01) 0.462 (0.02) 0.424 (0.01)
k-nearest neighbor 0.495 (0.01) 0.489 (0.02) 0.486 (0.02)
Naive Bayes 0.424 (0.02) 0.369 (0.02) 0.341 (0.02)
Nearest shrunken centroids 0.506 (0.02) 0.506 (0.02) 0.503 (0.01)
Penalized LDA 0.498 (0.00) 0.506 (0.02) 0.501 (0.01)
Decision trees 0.272 (0.11) 0.060 (0.01) 0.038 (0.01)

(b) Mixture Gaussian distributions with p = 250

n = 50 n = 250 n = 500

CQC 0.464 (0.03) 0.234 (0.01) 0.187 (0.02)
CQC multimodal 0.400 (0.05) 0.083 (0.01) 0.054 (0.01)
CQC augmented 0.481 (0.02) 0.264 (0.02) 0.195 (0.02)
CQC multimodal augmented 0.442 (0.03) 0.096 (0.01) 0.061 (0.01)
Quantile-based classifiers 0.359 (0.03) 0.192 (0.02) 0.158 (0.01)
FANS 0.444 (0.03) 0.117 (0.02) 0.056 (0.01)
FANS2 0.472 (0.06) 0.127 (0.02) 0.057 (0.01)
Penalized logistic regression 0.499 (0.01) 0.495 (0.02) 0.499 (0.02)
Support vector machine 0.504 (0.01) 0.417 (0.05) 0.374 (0.02)
k-nearest neighbor 0.488 (0.01) 0.481 (0.01) 0.487 (0.01)
Naive Bayes 0.431 (0.02) 0.318 (0.03) 0.270 (0.02)
Nearest shrunken centroids 0.502 (0.01) 0.492 (0.02) 0.496 (0.01)
Penalized LDA 0.506 (0.01) 0.497 (0.02) 0.506 (0.02)
Decision trees 0.491 (0.02) 0.398 (0.06) 0.334 (0.04)
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We observe that augmented quantile-based classifiers have nearly the lowest misclassification rate across

all of the settings. Penalized logistic regression is one of the better competitors which suggests that a linear

decision rule boundary is a reasonable choice of boundary for this problem. The augmented FANS classifier

is another strong competitor which makes sense given that it also uses the original features, and has a close

relationship to composite quantile-based classifiers.

Table 2.3: Misclassification rates for the spam email data set for varying numbers of observations used as
training data.

Number of observations used to train

n = 100 n = 250 n = 500 n = 1000

CQC 0.130 (0.04) 0.088 (0.01) 0.080 (0.01) 0.068 (0.01)
CQC augmented 0.123 (0.03) 0.090 (0.01) 0.079 (0.01) 0.064 (0.00)
Quantile-based classifiers 0.319 (0.03) 0.307 (0.01) 0.305 (0.01) 0.302 (0.01)
FANS 0.153 (0.03) 0.101 (0.01) 0.095 (0.01) 0.079 (0.00)
FANS2 0.146 (0.02) 0.102 (0.01) 0.089 (0.01) 0.074 (0.00)
Penalized logistic regression 0.140 (0.03) 0.116 (0.01) 0.100 (0.01) 0.081 (0.01)
Support vector machine 0.249 (0.11) 0.130 (0.05) 0.100 (0.01) 0.081 (0.00)
k-nearest neighbor 0.315 (0.01) 0.299 (0.01) 0.282 (0.01) 0.251 (0.01)
Naive Bayes 0.391 (0.03) 0.352 (0.02) 0.314 (0.02) 0.295 (0.02)
Nearest shrunken centroids 0.148 (0.03) 0.152 (0.02) 0.153 (0.02) 0.134 (0.01)
Penalized LDA 0.138 (0.02) 0.129 (0.01) 0.121 (0.01) 0.113 (0.01)
Decision trees 0.204 (0.03) 0.156 (0.02) 0.133 (0.02) 0.108 (0.01)

2.4 Discussion

In this paper we propose a family of classification rules based on the marginal quantiles of the class

features. The univariate quantile classifier is equal to the Bayes rule for the optimal choice of quantile level

and under some assumptions. Motivated by this, we consider univariate quantile classifiers as a starting point

for constructing a multivariate classifier. The multivariate classifiers considered in this paper are constructed

in a two step process. First, the marginal quantiles of the data are estimated and an estimate of the optimal

quantile level for each component is calculated. Secondly, a rule for combining the information provided

by an observation’s quantile distances to the marginal within-class quantile is constructed through a linear

combination obtained using penalized linear regression. We observe competitive performance of composite

quantile-based classifiers in simulation examples and a spam email classification application. The composite

quantile-based classifiers decision rule is computationally efficient to train and the decision rule boundary

has a simple piecewise-linear form that is well-suited for high-dimensional settings.
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Proofs to the theorems in this paper are presented in the supplementary materials.
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CHAPTER 3: BIOACTIVE PEPTIDE DISCOVERY

Difficult-to-treat fungal and bacterial infections are increasingly commonplace, new viral diseases are

emerging and spreading rapidly, and cancer remains a leading cause of death worldwide (Klevens et al.,

2007). In the United States, there are almost two million hospital-acquired bacterial infections each year,

resulting in over 100,000 deaths. The emergence of ESKAPE (Enterococcus faecium, Staphylococcus aureus,

Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species)

pathogens has led to a significant increase in multidrug-resistant infections in the clinic with associated

increases in morbidity and mortality (Boucher et al., 2009). In addition, the recent emergence, resurgence,

and spread of viruses, including Zika, SARS, West Nile, Ebola, and MERS (Fletcher and Moreno, 2012), for

which there are limited or no direct-acting antivirals, highlight the susceptibility of the human population to

future potentially untreatable pandemics. Furthermore, despite continued progress in anticancer therapeutics,

limitations to current lead compounds of nonspecific toxicity, poor drug penetration, and multidrug resistance

have emphasized the need for discovery of anticancer therapeutics with novel mechanisms of action. With

many bacteria now unresponsive to multiple classes of antimicrobial compounds and cancer being the leading

cause of death worldwide, there is an undeniable and desperate need to identify novel pharmacological

chemistries and accelerate their development through new methods and innovative technologies.

Natural products have long been sources of virtually all traditional medicinal preparations and have been

the single most successful source of lead compounds for drug discovery (Harvey et al., 2015). Specifically,

plants have played a significant role in the treatment of human ailments since prehistoric times. The teas and

tinctures of times past are one source of drug discovery, allowing the ethnobotanically guided isolation and

characterization of pharmacologically active compounds for the treatment of bacterial and fungal infections,

cancers, and other ailments. Despite historical relevance and past success, challenges associated with natural

product discovery have slowed progress in drug discovery efforts. In addition, natural product discovery

efforts have largely focused on small molecule constituents. However, recent discoveries have revealed

ribosomally synthesized, post-translationally modified peptide natural products (RiPPs) with substantial

structural diversity and bioactivity potential, including novel mechanisms of action (Arnison et al., 2013;
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Essig et al., 2014). While traditionally studied for antifungal and antibacterial properties, recent studies have

piqued interest in these peptides as potential anticancer therapeutics (Schweizer, 2009). Peptides offer several

advantages over other small and large molecule drug candidates – including greater efficacy, selectivity,

and specificity, relative to small organic molecules, better tissue penetration, and reduced immunogenicity

and manufacturing costs, relative to proteins/antibodies. Advances in peptide modification, formulation,

and delivery methods can address known limitations of peptidic drug candidates (Vlieghe et al., 2010),

including modification of peptide length/content to increase selectivity (Mandal et al., 2014), stapling, and/or

peptidomimetic conversion techniques to improve pharmacokinetic properties (Walensky and Bird, 2014),

as well as encapsulation methods to protect from proteolytic degradation. However, RiPPs fall outside

the scope of standard therapeutic screening approaches and elude detection via standard -omic workflows,

because of their large size, structural diversity, and high level of post-translational modification; therefore,

systematic approaches for discovery and characterization are in nascent development (Mohimani et al., 2014).

Developing natural product screens for antimicrobially active RiPPs has the potential for discovery of new

bioactive compounds with novel mechanisms of action able to address the growing problem of antimicrobial

resistance.

Current methods for RiPP discovery often rely on bioassay-guided fractionation (Henriques et al., 2012)

or genomic mapping (e.g., Pep2 Path, RiPPquest) to facilitate downstream analysis (Medema et al., 2014;

Skinnider et al., 2016). Relying on iterative rounds of chromatographic separations, bioassay- guided

fractionation is extremely time-consuming and provides no structural information until late in the discovery

process. In addition, this approach often leads to replication of previously known compounds, as a bias

toward highly abundant and highly active compounds is evident. While alternative genomic mapping

approaches can provide structural information from the beginning, prior genomic sequencing and knowledge

of peptide biosynthetic pathways is required. Furthermore, this approach is unable to provide direct bioactivity

information on the target peptide, thus necessitating downstream isolation and activity screening to determine

function and biological activity. Recent approaches to address some of these limitations have been proposed

(e.g., compound activity mapping); however, these platforms are specific to small molecule identification and

do not translate efficiently toward advancing untargeted proteomics approaches (Kurita et al., 2015).

The research presented in this chapter is the result of a collaboration in Kirkpatrick et al. (2017), with

the resulting methodology named the PepSAVI-MS pipeline. The goal of the research is to develop a

bioinformatics and statistical pipeline for the screening and identification of bioactive peptides from natural
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product sources. For streamlined identification of bioactive peptides, the platform relies on mass spectrometry

for data collection with subsequent data processing and statistical analysis to assign bioactivity to individual

components. Proof-of-principle studies for a known antimicrobially active RiPP from the plant Viola odorata

are presented to validate this workflow. In addition, we use this pipeline to explore novel antibacterial and

anticancer applications of the Viola odorata cyclotide, cycloviolacin O2.

3.1 Data generation

3.1.1 Explanatory data generation

Viola odorata seedlings were grown to mature rosette stage under standard greenhouse conditions.

Seedlings were planted in nutrient-rich soil under controlled temperature and light cycle conditions until

aerial tissue was harvested using flash freezing under liquid nitrogen. Frozen tissue was ground using a

mortar and pestle and aqueous solution was created by introducting acetic acid with protease inhibitors. The

sample was then concentrated using vacuum centrifugation to generate the final crude extract.

The quantity of each of the candiate compounds in the extract can be measured using mass spectrometry.

However, in order to distinguish compounds with similar spectrometry readings and additionally to have

greater statistical capability to detect compounds with antimicrobial effects, the eluent generated from the

viola odorata tissue is subjected to liquid chromatography separation. This process involves forcing the eluent

through a a chromatographic column. The analates flow through the column at varying speeds depending

on their chemical composition, and every few minutes a new vial collects the eluate. As a function of time,

the quantity that a given analate is observed follows a unimodal curve. See Figure 3.1 for a hypothetical

representation for how a sequence of analates with similar spectrometry readings can be observed in the

spectrometer over time. In the top panel, we show a hypothetical true quantity for a given mass spectometer

range and where each curve represents a unique compound. In the bottom panel we show how quantities in

the top panel are observed at discrete time slices across the fractions.

The mass spectrometer measures the quantity of a compound at a given mass to charge ratio (m/z) and

charge value. Data was collected for a total of 33 fractions and 10,902 mass to charge ratios. However, a

given compound may span multiple m/z levels, so one of our tasks in the upcoming data processing section is

to combine readings for different m/z levels belonging to the same compound.
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Figure 3.1: Liquid Chromotography Representation
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3.1.2 Outcome data generation

The outcome variables are a measure of the quantity of growth inhibition in a given pathogen or cancer

cell line after introducing a sample of the aqueous solution generated from the viola odorata tissue into a petri

dish with the pathogen or cancer cell line. Peptide libraries were assayed for growth inhibition against the

following pathogens: E. coli, E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, E. cloacae,

F. graminearum, and cancer cell lines: breast cancer, prostate cancer, and ovarian cancer. Library fractions

were incubated with a microbial or cancer cell culture in a manner such that the presence of bioactive peptides

in a given fraction will result in inhibition of culture growth during the incubation period. For bacterial assays,

the remaining viable cells were quantified indirectly by spectrophotometric measurement of the irreversible

intracellular bioreduction of resazurin. For anticancer bioactivity, cytotoxicity assays were performed using

MTT-based assays to measure mitochondrial succinate dehydrogenase activity with absorbance measurements

at 570 nm. Values for each fraction are compared to positive and negative controls containing a known

therapeutic or water, respectively, to determine a percent activity of each library fraction, where a small

value of remaining viable cells indicates high activity. Percent activity of each well was calculated using the
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formula:

percent activity =

(
1− Response of fraction− Response of positive control

Response of negative control− Response of positive control

)
× 100 (3.1)

where response refers to relative fluorescence units for antibacterial assays and absorbance for anticancer

assays. There were a total of either 3 or 4 measurements conducted for each of the pathogens or cancer cell

lines for each of the fractions.

3.2 Processing and filtering the explanetory data

3.2.1 Recovering the candidate compounds

The preprocessing and binning procedure contains a number of criteria to exclude unwanted compounds

and thereby restrict compounds to those of potential interest. Retention time limitations are put in place

to eliminate background ions that are detected either before (equilibration) or after (wash) the gradient is

applied; for the gradient performed in our laboratory, 14 and 45 minutes are appropriate retention time lower

and upper bounds. Mass and charge limitations of 2 to 15 kDa and +2 to +10, respectively, were chosen to

restrict compounds to the mass and charge ranges of known bioactive peptides.

Mass spectrometry features that satisfy this initial exclusion process are then consolidated when features

are believed to belong to the same underlying compound. This consolidation step requires choices to be

made through the specification of criteria deeming two MS features to be considered the same compound.

An m/z difference of 0.05 Da was chosen for our data analysis to be the maximum difference for which two

compounds could have in m/z to be considered to belong to the same compound. The value of 0.05 Da was

chosen by performing multiple LC-MS runs studying the variation in the observations; this value was chosen

so that fluctuations in mass accuracy and retention time for the test data allowed the same peak to be picked

multiple times despite representing the same compound.

The other criterion that must be met for two MS feature observations to be considered to belong to the

same compound is that the retention times for the two features cannot be more than a specified amount of

time apart. For this analysis, because we used prior retention time alignment, we chose to allow all MS

features that were below the threshold for m/z difference and had the same charge state to be considered to

belong to the same compound.
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The precise algorithm used to filter and combine mass spectrometry observations that are believed to

belong to the same underlying compound is described as follows. In the first step, all observations must

satisfy each of the following criteria for inclusion in the binning process.

1. Each observation must have its peak elution time occur during the fractions of interest.

2. Each observation must have a mass that exceeds the spectrometer’s limit of detection.

3. Each observation must have an electrical charge state that falls within the expected range of known

bioactive peptides.

Once that a set of observations satisfying the above criteria is obtained, then a second step attempts to

combine observations believed to belong to the same underlying compound. The algorithm considers two

observations that satisfy each of the following criteria to belong to the same compound.

1. The absolute difference in Daltons of the mass-to-charge value between the two observations is less

than the prespecified value.

2. The absolute difference of the peak elution time between the two observations is less than the prespeci-

fied amount.

3. The electrical charge state must be the same for the two observations.

Then the binning algorithm is defined as follows. Consider an observation that satisfies the inclusion criteria;

this observation is compaired pairwise with every other observation that satisfies the inclusion criteria. If a

pair of observations satisfies the criteria determining them to belong to the same underlying compound then

the two observations are merged into a single observation. The two previous compounds are removed from

the working set, and the process starts over with the newly created observation. The process repeats until

no other observation in the working set meets the criteria determining it to belong to the same underlying

compound as that of the current observation; at this point it is considered that all observations belonging to

the compound have been found, and the process starts over with a new observation.

The merging process has not yet been defined; it is performed by averaging the mass-to-charge values and

peak elution times, and summing the mass spectrometry intensities at each fraction. Although observations

are merged pairwise, when multiple observations are combined in a sequence of pairings, the averages are
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given equal weight for all of the observations. In other words, if a pair of observations are merged, and

then a third observation is merged with the new observation created by combining the original two, then

the mass-to-charge value and peak elution time values of the new observation are obtained by summing the

values for each of the three original observations and dividing by three. The merging process for more than

three observations is conducted similarly.

Having described the binning algorithm, it is apparent that there are scenarios in which the order in which

observations are merged affects the outcome of the algorithm. Since it seems that a minumum requirement

of any binning algorithm is that the algorithm is invariant to the ordering of the observations in the data,

this algorithm abides by the following rules. The observations in the data are sorted in increasing order by

mass-to-charge value, peak elution time, and electical charge state, respectively. Then when choosing an

observation to compare to the rest of the set, we start with the observation at the top of the sort ordering, and

compare it one-at-a-time to the other elements in the set according to the same ordering. When a consolidated

observation is complete in that no other observation left in the working set satisfies the merging criteria, then

this consolidated observation can be removed from consideration for all future merges.

At the end of the preprocessing and binning procedure, the number of candidate compounds was reduced

from 10,902 to 6,258.

3.2.2 Filtering candidate compounds

The next step in the pipeline is to remove any potential candidate compounds with observed abundances

for which it is unlikely that they might be a compound with an effect on the observed bioactivity.

3.2.2.1 Selecting the fraction region of interest

Bioactivity regions of interest are selected based on each individual bioactivity data set. Because of the

crude nature of SCX, a given peptide should elute over a minimum of three fractions in a Gaussian manner.

Because mass spectrometry is more sensitive than the bioactivity assays, the defined bioactivity region can

extend 1-2 fractions beyond the visible activity range on either end. The bioactivity regions for each species

that were deemed to be active are depicted by blue bars in Figure 3.2. The regions chosen for each bioactivity

data ranged from a size of as small as 3 fractions to as large as 6 fractions, and each region was contained

within the window of fractions 17-25.
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For typical analyses we recommend filtering the MS dataset using the region chosen as dictated by

the bioactivity data (as described above). However, for the data analysis, in the interest of simplicity of

presentation and since a single region rather tightly encapsulates the chosen region for all of the bioactivity

datasets, we simply filtered the MS dataset with the region chosen to be the smallest one that included the

chosen region for every individual datset, namely fractions 17-25.

3.2.2.2 Filtering criteria selection

In addition to selecting the region of interest for which to filter by, we must also specify a bordering

region; this is the region that we consider when filtering for candidate compounds by criterion 3: a candidate

compound’s elution in the bordering region cannot be greater than a specified proportion of its maximum

abundance, and criterion 4: a candidate compound must have a nonzero level of elution in the right adjacent

fraction to the fraction with the maximum elution. For this data analysis, we specified the most conservative

choice for bordering region, which is that every fraction not in the region of interest is to be considered the

bordering region.

Another criterion that we filter by is that a candidate compound may not by more abundant in the bordering

region than some specified proportion of its maximum abundance in the region of interest. Allowing for a

small nonzero elution outside of the region of interest accounts for small fluctations from absolute 0 that are

most likely due to noise in the instrumentation readings. The allowable proportion of abundance relative to

the maximum is data dependent; we selected a value of 0.01 by inspecting the distribution of MS features in

the data that fit the profile of what we might expect for a compound with an effect on bioactivity levels in the

region.

Another filtering criterion that we consider for a candidate compound is a minimum value for the

maximum intensity value over the LC-MS profile. This level should be chosen to reflect the appropriate

amount of noise apparent in the instrumentation; for our analysis we selected 1000 Da as an appropriate

value.

Finally, an option to filter the data by a maximum allowed charge state is included in the pipeline. This

has already been considered in the consolidation step, but is included in the filtering step in the event that

other researchers do not wish to use the consolidation function with the data analysis in hand. We selected a

maximum charge state of +10, consistent with our choice in the binning step.

After this filtering of the data, this reduced the number of candidate compounds from 6,258 to 225.
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Figure 3.2: Viola odorata peptide library bioactivity against all pathogens in which strong activity was seen in
the region of cyO2 elution. Average percentage of activity values for each fraction are plotted with error bars
representing +1 standard deviation. The fractions selected as the region of interest are shown using blue bars.
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3.3 Candidate compound ranking and validation

In this section potential candidate compounds are ranked with the goal of facilitating the investigation of

compounds with a deleterious effect on each of the bioactivity peptide libraries. Not that for each library

the mass spectrometry data remains the same, and additionally that the region of interest changes over the

peptitde libraries according to the selections shown in Figure 3.2.

3.3.1 Candidate compound ranking procedure

Constructing a ranking procedure for the compounds was highly constrained due to the availability of

the data. Despite our best efforts, the number of candidate compounds was reduced to 225, while we had

available only between 12 and 20 observed outcomes for a given pathogen or cancer cell line. Due to this

dearth of data, our procedure is constructed to require only a few observations to produce reasonable results.

The ranking procedure works by selecting a choice of quadratic penalty parameter, and for fixed value

of quadratic penalty parameter tracking the order in which the coefficients corresponding to candidate

compounds first become nonzero along the elastic net (Zou and Hastie, 2005) path as the `1 penalty parameter

changes. Then it is presumed that compounds with corresponding coefficients that become nonzero earlier in

the path may be better candidates for having an effect on bioactivity levels then those with corresponding

coefficients that become nonzero later in the path. To select a quadratic penalty parameter we recommend

a small nonzero value with the thought that being near to the lasso penalty (Tibshirani, 1996) we might

achieve good behavior in terms of variable selection. The reason for not choosing a penalty of 0 is that in

that case the elastic net reduces to the lasso model, which can have no more than one less than the number

of bioactivity data points of nonzero coefficients, and thus severly reduces the size of the list of candidate

compounds generated by this approach. We also note that we do not consider this choice to be data-driven;

for our analysis we chose a value of 0.001.

3.3.2 Pipeline validation using cyO2

To validate this pipeline, we demonstrate successful detection and identification of a known AMP

from the botanical species Viola odorata. Viola odorata, commonly known as sweet violet, contains many

cyclotides - including cycloviolacin O2 (cyO2). CyO2 is a small, cysteine rich cyclotide comprised of 30

amino acids (MWmonoisotopic: 3138.37 Da), which has been shown to have diverse activity against many
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Gram-negative bacteria (E. coli, K. pneumoniae, and P. aeruginosa), as well as several cancer cell lines. Here,

we demonstrate successful detection, prioritization, and identification of cyO2 as a means of validating the

use of this statistical analysis approach for bioactive peptide discovery.

Each of the rows in Table 3.1 contains a ranking of the cyO@ compound obtained using the procedure

for a given outcome variable. The exact m/z and charge values for cyO2 were obtained by comparing the

candidate compounds list after the consolidation and filtering process to the known range of values; the m/z

and charge pairs corresponding to cyO2 were determined to be (1047.4898, 3), and (1570.2414, 2) in our

data. When there is only one ranking for a given pathogen or cancer cell line then this indicates that only one

of the two forms of cyO2 survived the screening process.

From the table we see that for the E. coli, and breast cancer data sets, at least one charge state corre-

sponding to cyO2 is identified in the first 20 candidate compounds. For the A. baumannii, P. aeruginosa,

and prostate cancer data cets, CyO2 is identified in the first 50 compounds; and for the F. graminearum and

ovarian cancer data sets cyO2 is identified in the first 100 compounds.

Outcome Rankings

E. coli 20, 97
A. baumannii 23
P. aeruginosa 41, 97
F. graminearum 97, 112
Breast cancer cells 3
Prostate cancer cells 45
Ovarian cancer cells 99

Table 3.1: Cycloviolacin O2 rankings for each of the outcome variables

3.4 Discussion

It has been previously demonstrated that cyO2 was active against a subset of the ESKAPE pathogens,

including K. pneumoniae (Pränting et al., 2010). Results from our study are in agreement with the activity

of cyO2 in the cyclotide fractions against E. coli and P. aeruginosa. The MIC for the ESKAPE pathogen

representing novel activity, A. baumannii, was determined to be 15 µM, using isolated cyO2, and thus

supports that cyO2 is the main contributor to the activity seen in these fractions.
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Screening of V. odorata fractions against a panel of human cancer cell lines similarly demonstrates a

proof-of-principle, as well as an additional novel finding. In previous studies, cyO2 has been shown to have

anticancer activity against multiple breast and ovarian cancer cell lines (Gerlach et al., 2010). Although

our screen used different cell lines, strong activity was observed against the breast cancer cell line, as

well as the ovarian cancer cell line across fractions in which cyO2 was eluted. In addition, this is the first

demonstration of the ability of purified cyO2 to kill PC3 prostate cancer cells. This study not only highlight

the wide applicability of this platform but also the capabilities of antimicrobial peptides as broad-spectrum

therapeutics.
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CHAPTER 4: DAY-SPECIFIC PROBABILITIES OF CONCEPTION

4.1 Introduction

Understanding the predictors of pregnancy is a fundamental goal of human fertility research. Identifying

the factors that are protective or promotive of conception can help clinicians and patients to understand the

causes of infertility and aid couples who are trying to conceive. However, modeling the biological system can

be challenging since the pregnancy outcome is observed at a cycle-specific time scale, while some predictors

of pregnancy such as cervical mucus type or hormone levels are associated with pregnancy at a finer time

scale. The day-specific probabilities of conception model proposed in Dunson and Stanford (2005) offers

a rich expression of this system, however our experience working with the model has indicated to us that

there are several areas in which the posterior estimation can be improved. In this paper we propose several

modifications to the day-specific probabilities of conception model that provide for more efficient estimation

of the predictors of pregnancy.

4.1.1 The biology of human fertilization

Fertilization is defined as the fusion of a human oocyte (egg) and sperm. In the natural fertility context,

this occurs sometime after sexual intercourse between a man and a woman. In more detail, during the

reproductive portion of her life, the female body undergoes a cyclical process known as the menstrual

cycle that prepares the body for a potential fertilization. During ovulation, a single oocyte is released into

the Fallopian tube, where it has the opportunity to be fertilized by a sperm cell. The life span of the egg

after release is estimated to be about 12-24 hours, during which fertilization must occur for a successful

conception to take place during a given menstrual cycle. If fertilization, embryo development, and subsequent

implantation do not occur, a woman will menstruate, which starts another cycle and chance to become

pregnant.

On the male side of the reproductive process, sperm leave the male’s body and enter the female’s vagina

after vaginal intercourse and ejaculation. They rapidly move into the cervix, and from there, some sperm will
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travel into the Fallopian tubes. Fertilization of the egg will occur in the distal portion of the fallopian tube.

Sperm are viable for up to 5 days, and can reach the egg in as little time as an hour or as long as several days.

4.1.1.1 The fertile window

Given that an egg is viable for a day and sperm are viable and can fertilize an egg for up to 5 days,

conception can occur when vaginal intercourse occurs during a window including the 5 days prior to ovulation

and the day of ovulation. This time period is known as the fertile window in the fertility studies domain.

Furthermore, it is apparent that sexual intercourse status and other factors are irrelevant outside of the

fertile window. To simplify modeling of the biological process, it commonly assumed that the size of the

fertile window is a constant number of days across all subjects and menstrual cycles.

One complication of this issue is that we don’t usually know when ovulation actually occurs. Ovulation

can be estimated by using ovulation predictor kits or by the calendar method, which involves counting

backwards from the onset of menstrual bleeding. No ovulation marker is completely accurate, so to account

for possible data misspecification, the fertile window is commonly widened to 5-11 days so as to ensure

that the true fertile window lies somewhere in the extended window. In this paper we proceed under the

assumption that the data is correct, although an interesting direction of research would be to explicitly account

for the possible shift between the data and the true fertile window in the model.

4.1.1.2 Data collection

Many potential predictors of pregnancy such as age and gravidity status at the time of entering a study

can be thought of as fixed quantities. However some predictors of pregnancy such as cervical mucus type

change over the course of a menstrual cycle. Increasing the number of times such variables are measured

adds burden to study participants and yields diminishing amounts of information. Therefore a good balance

regarding the frequency of collected observations must be reached, and a typical time granularity is one entry

per day.

Of course the most critical time-varying event affecting pregnancy is the occurrence of sexual intercourse

status. Sexual intercourse status is typically recorded as a binary variable delineating either none or no less

than 1 occurrence of sexual intercourse due primarily to modeling convenience.
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Data is often recorded in-home by study participants, with the data kept in some form of a journal, which

may be some sort of physical medium, or may be entered in some form of digital application such as a Web

interface.

4.1.2 Time to Conceive Study

In this paper we use our method to analyze the Time to Conceive study, a prospective study conducted

from 2008-2010 that observed English-speaking women between 30 and 44 years of age who were attempting

to conceive (Evans-Hoeker et al., 2013; Steiner et al., 2014; Crawford et al., 2016; Steiner et al., 2017).

Women who had been trying to conceive for more than three months prior to entering the study, or women

with a history of infertility or other medical conditions associated with infertility were excluded from the

study.

After participants were entered into the study, women completed a questionnaire which queried women

for information on various topics such as demographics, medical, surgical, obstetric, gynecologic, and

menstrual history, behaviors, partner demographics, height and weight, and pregnancy history. Then, over

the course of the study, participants recorded a study diary, which included information on vaginal bleeding,

cervical mucus score, pregnancy test results, and vaginal lubricant use.

4.1.3 Upcoming sections

In Section 4.2, we review the existing day-specific probabilities model proposed in Dunson and Stanford

(2005). Then in Section 4.3, we propose a new prior specification for the coefficients corresponding to

the fertile window that encourages information sharing and consistency with a biologically plausible form.

In Section 4.4, we propose a new approach for incorporating missing data into the model for both sexual

intercourse status and model covariates. Then in Section 4.5, we perform simulation studies demonstrating

the increased efficiency of the prior specifications for the regression coefficients corresponding to the

fertile window days, as well as the increased efficiency from incorporating the missing data into the model.

Furthermore, in 4.6, we present a real data analysis using the new approaches for the Time to Conceive

dataset. Finally, in Section 4.7, we summarize the proposed model for modeling fertility data.
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4.2 The day-specific probabilities model

The day-specific probabilities of conception model was introduced in Dunson and Stanford (2005). For

completeness, the notation and definitions are reviewed in the following sections.

4.2.1 Model specification

We wish to model the probability of a woman becoming pregnant for a given menstrual cycle as a

function of her covariate status across the days of the cycle. Consider a study cohort and let us index

woman i, i = 1, . . . , n,

cycle j, j = 1, . . . , ni,

day k, k = 1, . . . ,K,

where day k refers to the kth day out of a total of K days in the fertile window. Let us write day i, j, k as a

shorthand for individual i, cycle j, and day k and similarly for cycle j, k. Then define

Yij , an indicator of conception for woman i, cycle j,

Vijk, an indicator of conception for woman i, cycle j, day k,

Xijk, an indicator of intercourse for woman i, cycle j, day k.

Then writingXij =
(
Xij1, . . . , XijK

)
, it can be shown that

P
(
Yij = 1

∣∣Xij , Yi1 = 0, . . . , Yi,j−1 = 0
)

= 1−
K∏

k=1

{
1− P

(
Vijk = 1

∣∣ Yi1 = 0, . . . , Yi,j−1 = 0, Vij1 = 0, . . . , Vi,k−1 = 0
)}Xijk

.

With this result in mind, we now consider the Dunson and Stanford day-specific probabilities model. Using

the same indexing scheme as above, define

uijk, a covariate vector of length q for woman i, cycle j, day k,

β, a vector of length q of regression coefficients,

ξi, woman-specific random effect.
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Then writing Uij =
(
u′ijk, . . . ,u

′
ijk

)′, Dunson and Stanford propose the model:

P
(
Yij = 1

∣∣ ξi,Xij ,Uij

)
= 1−

K∏

k=1

(1− λijk)Xijk ,

λijk = 1− exp
{
−ξi exp

(
u′ijkβ

)}
,

ξi ∼ Gamma (φ, φ).

From our previous derivation, we see that we may interpret λijk as the day-specific probability of conception

in cycle j from couple i given that conception has not already occured, or in the language of Dunson and

Stanford, given intercourse only on day k.

Delving further, we see that λijk is strictly increasing in uijkh βh, where we are denoting uijkh to be the

hth term in uijk and similarly for βh. When βh = 0 then the hth covariate has no effect on the day-specific

probability of conception.

λijk is also strictly increasing in ξi which may be interpreted as a woman-specific random effect. Also

note that specifying the distribution of the ξi with a common parameters prevents nonidentifiability between

E [ξi] and the day-specific parameters. Since Var [ξi] = 1/φ it follows that φ may be interpreted as a measure

of variability across women.

4.2.1.1 Auxiliary model specification

In order to make posterior computation more tractable, Dunson and Stanford proposed the following

auxiliary data model.

Yij = 1

(
K∑

k=1

XijkZijk > 0

)
,

Zijk ∼ Poisson
(
ξi exp

(
u′ijkβ

))
, k = 1, . . . ,K.

Let us further define Wijk = XijkZijk for all i, j, k.
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4.3 Estimating fertile window day regression terms

Based on the biology of human fertility Speroff and Fritz (2005) and the existing fertility studies literature

Barrett and Marshall (1969); Schwartz et al. (1980); Royston (1982); Wilcox et al. (1995); Colombo and

Masarotto (2000); Dunson et al. (2001); Stanford et al. (2003); Lynch et al. (2006), we expect that the effect

of the timing of intercourse relative to the ovulation day will follow a unimodal shape. Thus, by incorporating

this information into the model, we anticipate that this will result in more accurate posterior estimation.

4.3.1 Prior specification of the fertile window regression coefficients

Let S(d) be a decay function such that S(−∞) = S(∞) = 0 and S(0) = 1. Further let m index the day

associated with peak fertility. Then we model

γm ∼ Gamma(aγm , bγm),

and

γm+d |γm ∼ Gamma
(
ν,

ν

S(d) γm

)
,

for d ∈ Z \ {0}. Then under these assumptions it follows that

E [γm+d |γm] = S(d) γm,

and

Var [γm+d |γm] =
1

ν
[S(d)γm]2.

Thus S controls the amount of decay in the mean that the fertile window day coefficients undergo in

comparison to the peak fertility day, while ν controls the variance from the decay that the model permits.

Furthermore, in practice we will not know exactly which day will be the peak intensity day in the fertile

window, so we allow m to be a random variable and define µ to be the value of the peak intensity day. More
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precisely, we define

µ |m = γm,

where m is the index of the coefficient corresponding the peak intensity day. In Section 4.3.1.1 we discuss

the selection of S, and in Sections 4.3.1.2, 4.3.1.3, and 4.3.1.4 we discuss the selection of µ, ν, and m.

4.3.1.1 Specification of the fertile window decay function S

We define the decay function S to be any function satisfying S(−∞) = S(∞) = 0 and S(0) = 1. In

this paper we propose using a parametric function based on the skew-normal distribution, with values for

the parameters based on the existing estimates of the probabilities of pregnancy relative to the timing of

intercourse during the fertile window. We choose to use a parametric distribution so that researchers can

easily extend the model by equipping the distributions parameters with prior distributions, however, in this

paper we find it sufficient to consider the values of these parameters to be fixed quantities. Our reasoning

for this is that because we have a limited number of days in the fertile window from which to infer the

distributional parameters, it is questionable whether the added flexibility in the model is worth additional

model complexity. Furthermore, by making ν a random variable, we can allow the model to deviate from the

decay curve as much as the data dictates by decreasing the value of ν.

We view the skew-normal distribution as being a natural choice to base the decay function from among

the class of parametric distributions, due to its unimodal form and its ability to take on a non-symmetric

shape. We note that although selecting a decay curve with a unimodal form encourages a unimodal form in

the regression coefficients, it does not strictly enforce it. We believe that this is ideal in the sense that we

can inform the model based on our past experience and biological understanding, yet still allow the model

freedom to deviate from this form if the data dictates it.

The skew-normal distribution has three parameters, a location parameter, a variance parameter, and a

skew parameter. In order to select these parameters, we perform the following elicitation scheme. First, we

consider the existing estimates of the probabilities of pregnancy relative to the timing of intercourse during

the fertile window, and center and scale these estimates so that the peak intercourse days coincide and the

scaled probability for the peak day takes a value of 1. Then we find the values for the skew-normal parameters

that minimize the sum of the squared-error loss for the transformed historical data.

58



In Figure 4.1 we display the elicited decay curve. The values obtained from the elicitation scheme are

a shift parameter of approximately -1.32, a variance of 2.68, and a skew parameter of -2.65 (and then the

distribution is scaled so that the mode takes a value of 1).
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Figure 4.1: The elicited decay curve

4.3.1.2 Specification of the peak intensity parameter µ

We equip the peak intensity µ with a gamma prior distribution, and use the empirical mean obtained

from the existing literature meta-analysis as the target mean for the prior distribution for the peak intensity

parameter µ, in the sense that we select hyperparameters aµ and bµ that result in the desired mean. For the

meta-analysis we obtained a target mean coefficient value of 0.34, and for the hyperparameters we chose

values of aµ = 0.34/0.2 and bµ = 1/0.2, resulting in a unimodal distribution with a standard deviation

of approximately 0.26. These hyperparameters were selected to find values that would achieve a flexible

standard deviation as well as maintain a unimodal form.
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4.3.1.3 Specification of the coefficient variance parameter ν

For the coefficient variance parameters we selected a gamma prior distribution with a hyperparameters

aν = 25/8 and bν = 1/8 which results in a unimodal distribution with a mean of 25 and a standard deviation

of approximately 14.14. So, for example when ν has a value of 25, S(d) has a value of 1, and µ has a value

of 0.34, then the standard deviation of γm+d is 0.68 (for a mean value of 0.34). The standard deviation is

smaller at the tails of the decay curve, so for example, when ν has a value of 25, S(d) has a value of 0.2, and

µ has a value of 0.34, then the standard deviation of γm+d is 0.0136 (for a mean value of 0.068).

4.3.1.4 Specification of the peak intensity day parameter m

We propose modeling the peak intensity day using a multinomial distribution, with fixed prior probabili-

ties chosen by the researcher based on their level of confidence in the scheme used to identify the ovulation

day for the data in hand. For example, when ovulation day is determined using a relatively accurate measure

such as an ovulation predictor kit in a preponderance of the data, then a researcher may want to place the bulk

of the mass in the three or four days around the ovulation day. One the other hand, when the ovulation day

is primarily identified by less accurate methods such as by counting backward from the next occurrence of

menstrual bleeding, then a researcher may wish to place relatively flat prior probabilities on the distribution.

For the simulations and real data analysis, we used multinomial prior probabilities of 0.20, 0.25, and 0.20

for the three days that we most strongly expect to be the peak intensity day, and distributed the remaining

mass among the other remaining days.

4.3.2 Updating step for the fertile window day coefficients and prior parameters

The full conditional distributions for the fertile window day coefficients and for the prior parameters

do not have a closed-form solution (with the exception of the peak intensity day parameter m), so we use a

Metropolis step to update each of the parameters. The full derivation of the updating steps is provided in the

supplementary materials.

4.3.2.1 Proposal distributions

For each of the updating steps, we use the absolute value of a uniform distribution as the proposal

distribution, with tuning parameters chosen to yield between 20% and 40% acceptance rates.
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4.4 Missing data imputation

One of the potential limitations of the day-specific probability models proposed in Dunson and Stanford

(2005) is that it doesn’t have a mechanism for incorporating missing data. As a result, any cycles that have a

missing value have to be removed from the data, which can obviously result in a loss of efficiency as the

amount of missingness increases.

In our experience, the intercourse status for a given day is the most commonly missing variable. Consider

the worst-case scenario where missingness for this variable is independent – then 10% missingness results in

only 48% of cycles being retained for a 7-day fertile window on average, while a 20% missingness results in

only 21% of the cycles being retained for a 7-day fertile window. Fortunately, the missingness of intercourse

status tends to be correlated within a cycle so that cycles often have either no missing or multiple missing

values, but regardless data is expensive to collect and we want to use as much of it as possible.

Missing baseline variables such as e.g. gravidity status have a different issue that a missing value causes

all of the participant’s cycles to be thrown out. Although we would expect it to be less common to see

missingness in this type of variable, once again this kind of attrition can add up which we obviously want to

avoid.

4.4.1 Gibbs step for missing Xijk

We propose an autoregressive prior for the distribution of a missing intercourse indicator Xijk. This is

motivated by our empirical evidence that the best predictor of intercourse for the i, j, k-th day is whether

intercourse occurred on the previous day. We assume that

P
(
Xijk = 1

∣∣X−ijk,U
)

= P
(
Xijk = 1

∣∣ Xij,k−1,U
)

=
exp

{
(Xij,k−1,Uijk)

Tτ
}

1 + exp {(Xij,k−1,Uijk)Tτ}
,

for τ a known vector of regression coefficients. In other words, the prior probability of intercourse on the

i, j, k-th day is a logistic regression model. In practice, we don’t know the true values of τ a priori so we use

an empirical Bayes approach and estimate it from the nonmissing entries in the data.
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Under this assumption, we obtain the following full conditional distribution for Xijk when k < K (i.e.

not the last day in the fertile window). When k = K the full conditional distribution of Xijk is similar to that

of (4.1), except without the Xij,k+1 terms.

P
(
Xijk = 1

∣∣ Y ,W ,γ, ξ, φ,X−ijk,U , data
)

(4.1)

=
π
(
Wijk

∣∣ γ, ξi, Xijk = 1,X−ijk,U , data
)
P
(
Xij,k+1 |Xijk = 1,U

)
P
(
Xijk = 1 |Xij,k−1,U

)

∑1
t=0 π

(
Wijk

∣∣ γ, ξi, Xijk = t,X−ijk,U , data
)
P
(
Xij,k+1 |Xijk = t,U

)
P
(
Xijk = t |Xij,k−1,U

)

We then fully specify the joint distribution as follows. We assume that

P
(
X |U

)
=
∏

i,j

P
(
Xij1, . . . , XijK

∣∣ U
)

=
∏

i,j

{
P
(
XijK |Xij,K−1,U

)
· · ·P

(
Xij2 |Xij1,U

)
P
(
Xij1 |U

)}
.

In Section 4.6 we investigate the intercourse status missingness in the Time to Conceive dataset, and fit the

autoregressive empirical Bayes model for the nonmissing data.

4.4.2 Gibbs step for missing covariates

Missingness in the covariates can come in the form of a day-specific variable, a cycle-specific variable,

or a baseline variable. In the interest of brevity we characterize the updating step for a missing continuous

covariate here, and in the supplementary materials we describe the updating step for missing cycle-specific or

baseline covariates.

We assume that the prior distributions for the covariates are mutually independent. Although we

acknowledge that this is not a realistic assumption for every setting, our contention is that without study-

specific knowledge of the variables involved, it is difficult to specify a reasonable joint distribution model.

We expect this to be a reasonable approximation for what is ideally a relatively small amount of missingness

in the data.

The model for missing continuous covariates and missing categorical covariates differ slightly, as we

will cover in the following sections.

62



4.4.2.1 Gibbs step for missing continuous covariate

Let Uijkh be a missing day-specific covariate, then we use a Metropolis step to update Uijkh. Under the

previously stated assumptions, we have

π
(
Uijkh

∣∣ Y ,W ,γ, ξ, φ,U−ijkh

)

=
π
(
Y ,W ,γ, ξ, φ, Uijkh,U−ijkh

)

∫
π
(
Y ,W ,γ, ξ, φ, Uijkh,U−ijkh

)
dUijkh

∝
π
(
Wi

∣∣ γ, ξi,X, Uijkh,U−ijkh

)
P
(
Xijk |Uijkh

)
π(Uijkh)

∫
π
(
Wi

∣∣ γ, ξi,X, Uijkh,U−ijkh

)
P
(
Xijk |Uijkh

)
π(Uijkh) dUijkh

,

where the P (Xijk |Uijk) term is a constant if Xijk is nonmissing for the ith subject. It follows that the

acceptance ratio r is given by

r day-specific

=
π
(
Uijkh = u∗

∣∣ Y ,W ,γ, ξ, φ,U−ijkh

)

π
(
Uijkh = u(s)

∣∣ Y ,W ,γ, ξ, φ,U−ijkh

)

=
π
(
Wi

∣∣ γ, ξi,X, Uijkh = u∗,U−ijkh

)
P
(
Xijk |Uijkh = u∗

)
π(Uijkh = u∗)

π
(
Wi

∣∣ γ, ξi,X, Uijkh = u(s),U−ijkh

)
P
(
Xijk |Uijkh = u(s)

)
π(Uijkh = u(s)).

Additionally, we also need to specify a prior distribution for the covariates. For this paper we used a

conjugate prior Normal distribution for the imputed covariate. In more detail, we specify that

Uijkh | ζ, κ
i .i .d .∼ N(ζ, κ), for all i, j, k, h

ζ |κ, {Uijkh} ∼ N(ζ0, κ),

κ | {Uijkh} ∼ Gamma(aκ, bκ),

where {Uijkh} is taken to mean the set of all missing hth covariates. We take an Empirical Bayes approach

when specifying the hyperparameters. We set ζ0 to be the empirical mean of the nonmissing hth covariates,

and select aκ, and bκ so that the prior distribution’s mean is equal to the sample variance of the nonmissing
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hth covariates and let the distribution have a noninformative variance. We use a uniform distribution as the

proposal distribution for the missing covariates.

4.4.2.2 Gibbs step for missing categorical covariate

Let Uijk be a day-specific categorical variable with corresponding design matrix dummy variables

(Uijk`1 ,. . . Uijk`r). Then

P
(
Uijk = u

∣∣ Y ,W ,γ, ξ, φ,U−ijk

)

=
π
(
Y ,W ,γ, ξ, φ, Uijk = u,U−ijk

)

∑
t π
(
Y ,W ,γ, ξ, φ, Uijk = t,U−ijk

)

=
P
(
Wijk

∣∣ γ, ξi,X, Uijk = u,U−ijk

)
P
(
Xijk |Xij,k−1, Uijk = u

)
P (Uijk = u)

∑
t P
(
Wijk

∣∣ γ, ξi,X, Uijk = t,U−ijk

)
P
(
Xijk |Xij,k−1, Uijk = t

)
P (Uijk = t)

.

We specify the prior distribution to be conjugate multinomial-Dirichlet distributed. That is to say we let

Uijkh |πh ∼ multinomial(πh)

πh ∼ Dirichlet(ah)

We use an empirical Bayes approach to specify the mean of the prior distributions of the ah.

4.5 Simulation studies

4.5.1 Comparing the peak-intensity model

In order to compare the peak-intensity decay model, we compare the peak-intensity decay model with two

versions of the day-specific probabilities model proposed in Dunson and Stanford (2005). In the first version

of the day-specific probabilities model, we use the data that we generated in 4.3.1.1 to provide informative

priors to the model coefficients. Then, for the second specification of the model we used uninformative priors.

In order to compare these various models, we considered a number of different settings. In terms of the

simulated data settings, we consider fertile window sizes of both five days and seven days. In terms of the
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sample size we considered sizes of 100, 200, and 300 participants. For the coefficients corresponding to the

fertile window days, we consider three settings.

In the first setting, we set the coefficients to be the same as the decay that we derived in Section 4.3.1.1,

so that both the peak-intensity decay model and the informative priors day-specific probabilites models are

correctly specified. In another setting, we set the peak-intensity of the coefficients corresponding to the fertile

window to be scaled from that of the prior distributions, and we shifted the location of the peak-intensity day.

We would expect that the peak-intensity decay model would be able to recover these parameters more readily

than the incorrectly specified informative priors day-specific probabilities model. Finally, we also included a

model in which the decay of the coefficients corresponding to the fertile window days is different than what

was derived in 4.3.1.1, so that both the peak-intensity decay model and the informative priors day-specific

probabilities model are incorrectly specified.

We present the results from a pair of simulation studies in what follows, and in the Supplementary

Materials we present an extended set of simulation results. For each of the simulation studies we are

describing the average results over 10,000 simulations.

4.5.1.1 Correctly specified mean prior distribution setting

In Table B.2 we compare the posterior distributions for the fertile window day coefficients for a simulated

set of data such that the coefficients used for the data-generating mechanism are equal to the means of

the prior distributions for the peak-intensity model and the informative prior version of the day-specific

probabilities model. Each dataset was generated with 5 fertile window days and 200 subjects.

For this simulation setting, we see that for each of the coefficients corresponding to the fertile window

days that the average squared error between the posterior mean and the true coefficient value is smallest for

the peak intensity model compared to the two prior specifications of the day-specific probabilities model.

Furthermore, the standard deviation of the posterior mean distributions across all of the simulations is smaller

for each of the coefficients for the peak intensity model, and the average width of the 95% credible region is

smaller than the other model parameterizations. We attribute these reductions in variance in the posterior

distributions for the peak intensity model to the induced correlation structure between the coefficients in

the prior distribution. This allows for information sharing between the coefficients that results in a gain of

efficiency compared to the other models.
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On the other hand, we see that the coefficient’s posterior means for the peak intensity model tend to

have a slightly larger average difference magnitude than the other models. However, the largest magnitude

of average difference between the posterior mean and the true coefficient value is 0.016 (for fertile window

day 3), which we find to be an acceptably small difference. We attribute this behavior to the form of the

peak-intensity model. For this model, the posterior mean is the mean of the mixture distribution comprised

from the posterior distributions conditional on the peak intensity locations. When the peak intensity day

location is shifted towards a given fertile window day, then the coefficient corresponding to this day will be

stochastically larger, while the converse is true when the peak intensity day location is shifted away from that

same fertile window day. When we look at the posterior distribution for the peak intensity day location, we

see that the day 5 of the fertile window has the most mass outside of the true peak intensity day (i.e. day 4).

As a result, the posterior means for the coefficients corresponding to the fertile window days before the peak

intensity day have a diminished unconditional mean, while the coefficient corresponding to the day after the

peak intensity day is increased.

It is interesting that day 5 has the largest posterior probability of being the peak intensity day outside of

the true peak intensity day. In our experience, the model tends to favor the “shorter side” of the fertile window,

meaning the side of the fertile window that has less days before or after the true peak intensity day. The

reason for this behavior is a byproduct of the induced correlation between the fertile window day coefficients.

In the posterior distribution conditional on day 5 being the peak intensity day, when the coefficient values are

larger than the conditional posterior mean, then they can fit the true coefficients quite well, with only the

exception of day 5 having an inaccurate value. On the other hand, for the posterior distribution conditional on

day 3 being the peak intensity day, then when the correlation structure of the coefficients holds, then about

half of the fertile window days have an inaccurate value, regardless of the direction of the correlation relative

to the mean. As expected, we can see that the posterior mean for the peak intensity magnitude is slightly

larger than the true value.

When the size of the fertile window is larger, such as seven days compared to five, then a shift of one day

for the peak intensity day causes less of an imbalance, and as we would expect the model does not favor the

shorter side as strongly. Furthermore, as the sample size increases, then the posterior distribution increasing

places the bulk of the mass on the true peak intensity day.
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4.5.1.2 Shifted and scaled mean prior distribution setting

In Table B.15, we compare the posterior distributions for the fertile window day coefficients for a

simulated set of data such that the coefficients used for the data-generating mechanism are a shifted and

scaled version of the means of the prior distributions for the peak-intensity model and the informative prior

version of the day-specific probabilities model. More precisely, the mean of the prior distribution of the dth

day relative to the peak-intensity day is given by µS(d) (where µ and S are chosen as described in Section

4.3.1), while the coefficient used for the dth day for the data-generating mechanism is given by µ′S(d+ a).

In particular, the coefficients were scaled by a factor of 1.2, and the peak-intensity day was shifted two days

to the left. Each dataset was generated with 7 fertile window days and 300 subjects.

This data-generating mechanism is particularly problematic for the day-specific probabilities model with

informative priors, those priors are misspecified. This prior specification expects the coefficient corresponding

to day 5 to have the greatest magnitude, while in fact it is the coefficient corresponding to day 3 that has the

greatest magnitude. Because of this, the posterior means for the coefficients to the left of day 5 are smaller

than the values used for the data simulations, while the posterior means for the coefficients to the right of

day 5 are larger than the values used for the data simulations. The non-informative prior specification of

the day-specific probabilities model on the other hand has posterior means that are closer to true coefficient

values, however it still suffers from relatively large variances for the posterior distributions.

The peak-intensity model fares relatively well in this setting, as we would expect. The model has

parameters for the magnitude of the scaling as well as for the peak intensity day location that can each be

updated to reflect the data. We can see that the variance for this model is significantly lower than for the

other models. For example, the width of the 95% credible region for the peak day coefficient is 0.221 for

the peak-intensity model, while it is 0.274 and 0.275 for the informative and non-informative day-specific

probabilities model, respectively.

We note that the posterior mean for the peak intensity magnitude is smaller than the peak intensity used

for the data-generating mechanism. We find that although the peak intensity parameter is able to adapt to

the data, it can be relatively slow to do so since its posterior distribution is based on the fertile window day

coefficients which only has a small number of data points, and is only indirectly affected by the sample size

through these coefficients. So since the mean of the prior distribution for the peak intensity magnitude is
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smaller than that what was used for the data simulation, (0.340 compared to 0.408), we see that a sample size

of 300 is not yet sufficient for the posterior distribution to be fully centered around the true value.

4.5.2 Imputing missing intercourse status

4.5.2.1 Missing intercourse status fertile window model only

In Table 4.3 we compare the posterior distributions for the fertile window day coefficients for a simulated

set of data with missing values inserted into the missing sexual intercourse status values. Each dataset was

generated with 7 fertile window days, and to insert the missing values, we randomly changed at least one

each sexual intercourse status value in a given cycle to missing with probability 0.52, independent of all other

cycles (the value of 0.52 was chosen to be comparable with the probability of missing at least value if each

day’s intercourse was missing with probability 0.1 independent of any other days). In our experience missing

sexual intercourse status values in a cycle are highly correlated. If a cycle was chosen to have missing sexual

intercourse status values for a given simulation, then we inserted between 1 and 7 days of missing values

with a uniform probability.

Each dataset was generated with 300 subjects. We simulated the data such that the coefficients used for

the data-generating mechanism are equal to the means of the prior distributions for the peak-intensity model

and the informative prior version of the day-specific probabilities model. We can see that on average 297

subjects had at least 1 cycle with sexual intercourse (or a missing value for sexual intercourse status) during

the fertile window, for a total of 564 menstrual cycles on average. On the other hand, when we didn’t impute

missing sexual intercourse status, we were only able to retain an average of 186 subjects and 261 menstrual

cycles.

When comparing the fixed informative models, we see that the posterior means had similar measures for

mean squared error and standard deviation. However the variance of the posterior distribution was greatly

reduced for the model with imputation. For example, the posterior distribution for day 5 (the peak intensity

day) for the model with imputation had an average width of 0.303 for the 95% credible region, while the

width of the credible region for the same coefficient in the non-imputation model had a width of 0.350. For

the day 4 coefficient with true value 0.288, the model with imputation had an average width of 0.288 for the

95% credible region, while the width of the credible region for the same coefficient in the non-imputation

model had a width of 0.329.
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Table 4.1: Correctly specified prior parameters, 5 fertile window days, n = 200

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.115 0.105 -0.010 0.001 0.031 0.121
Day -2 0.196 0.182 -0.014 0.001 0.042 0.162
Day -1 0.288 0.272 -0.016 0.002 0.050 0.195
Day 0 0.340 0.331 -0.009 0.002 0.056 0.218
Day 1 0.264 0.273 0.009 0.004 0.064 0.251

Fixed informative
Day -3 0.115 0.102 -0.013 0.002 0.048 0.177
Day -2 0.196 0.185 -0.011 0.003 0.057 0.222
Day -1 0.288 0.279 -0.009 0.004 0.066 0.258
Day 0 0.340 0.336 -0.004 0.004 0.071 0.278
Day 1 0.264 0.266 0.002 0.004 0.066 0.254

Non-informative
Day -3 0.115 0.120 0.005 0.003 0.053 0.198
Day -2 0.196 0.188 -0.008 0.004 0.061 0.234
Day -1 0.288 0.273 -0.015 0.005 0.069 0.269
Day 0 0.340 0.326 -0.014 0.006 0.074 0.289
Day 1 0.264 0.263 -0.001 0.004 0.069 0.266

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.354 0.014 0.075 0.145

Posterior distribution for the peak
intensity location

Day -3 Day -2 Day -1 Day 0 Day 1
0.000 0.000 0.080 0.633 0.287
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Table 4.2: Scaled and shifted prior parameters, 7 fertile window days, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.235 0.232 -0.003 0.001 0.042 0.166
Day -1 0.346 0.341 -0.005 0.002 0.052 0.205
Day 0 0.408 0.402 -0.006 0.002 0.056 0.221
Day 1 0.317 0.304 -0.013 0.002 0.049 0.192
Day 2 0.124 0.118 -0.006 0.000 0.027 0.107
Day 3 0.020 0.019 -0.001 0.000 0.008 0.023
Day 4 0.002 0.002 0.000 0.000 0.003 0.002

Fixed informative
Day -2 0.235 0.190 -0.045 0.006 0.058 0.222
Day -1 0.346 0.309 -0.037 0.005 0.066 0.257
Day 0 0.408 0.378 -0.030 0.005 0.070 0.274
Day 1 0.317 0.304 -0.013 0.003 0.064 0.251
Day 2 0.124 0.160 0.036 0.003 0.051 0.196
Day 3 0.020 0.067 0.047 0.003 0.037 0.136
Day 4 0.002 0.004 0.002 0.000 0.013 0.029

Non-informative
Day -2 0.235 0.229 -0.006 0.003 0.062 0.238
Day -1 0.346 0.335 -0.011 0.004 0.069 0.267
Day 0 0.408 0.395 -0.013 0.005 0.073 0.284
Day 1 0.317 0.300 -0.017 0.004 0.066 0.259
Day 2 0.124 0.126 0.002 0.002 0.051 0.195
Day 3 0.020 0.031 0.011 0.001 0.030 0.103
Day 4 0.002 0.016 0.014 0.000 0.024 0.076

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.408 0.397 -0.011 0.064 0.124

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2 Day 3 Day 4
0.000 0.032 0.962 0.006 0.000 0.000 0.000
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When comparing the peak-intensity model with imputation to the fixed informative model with imputa-

tion, we again see that the posterior mean for the peak-intensity model is slightly further on average than for

the fixed intensity model. However, the mean squared error and standard deviation of the posterior mean

smaller for the peak-intensity model (for example, a MSE of 0.002 for the peak-intensity model for day 5

compared to a MSE of 0.004 for the fixed informative model). Furthermore, the width of the coefficient’s

95% credible regions is far smaller on average than for the fixed informative model. For example, for the peak

intensity day, the average width of the credible region for the peak-insensity model was 0.218 compared to a

width of 0.303 for the fixed informative model (and an average width of 0.350 for the non-imputation model).

4.5.2.2 Missing intercourse status fertile window plus covariates model

In Table 4.4 we again compared the posterior distributions for the fertile window day coefficients for a

simulated set of data with missing values inserted into the missing sexual intercourse status values, however

this time we also included a set of covariates into the data-generating mechanism. Each dataset was generated

with 5 fertile window days, and to insert the missing values, we randomly changed each sexual intercourse

status value to missing with probability 0.1.

Each dataset was generated with 300 subjects. We simulated the data such that the coefficients used

for the data-generating mechanism are equal to the means of the prior distributions for the peak-intensity

model and the informative prior version of the day-specific probabilities model. We included six categorical

covariates which we have labeled to emulate dummy-encoded coefficients corresponding to covariates for

age, BMI and gravidity status. The hyperparameters for gamma distribution for the non-fertile window day

coefficients were chosen to have a value of 2 for both the shape and the rate parameters so as to provide a

unimodal distribution with na posterior mean of 1 (i.e. no effect on the model) such that nearly all of the

mass is between 0 and 3.

We can see that on average 293 subjects had at least 1 cycle with sexual intercourse (or a missing value

for sexual intercourse status) during the fertile window, for a total of 537 cycles on average. On the other

hand, when we didn’t impute missing sexual intercourse status, we were only able to retain an average of 204

subjects and 293 menstrual cycles.

Both the peak-intensity model and fixed informative model with missing data imputation tended to have

smaller mean squared errors and credible region widths than the fixed informative model without missing

data imputation. For example, when comparing the coefficient corresponding to Day 0, the peak-intensity

71



model credible region width is 0.248 on average compared to 0.342 for the non-imputation model, and when

comparing coefficient corresponding to Age 36-38 status, the mean squared error for the fixed informative

model with imputation is 0.036 compared to 0.068 for the model without imputation.

We can see that this scenario is similar to the previous missing-data scenario in the sense that the

coefficients corresponding to the fertile window days for the peak-intensity model tend to have a posterior

mean that is smaller than the true value used to generate the data, however the effect is more pronounced

in this case. The average mean squared errors and posterior variances for the coefficients corresponding to

the fertile window days still tends to be smaller for the peak-intensity model than for the fixed-informative

models for either with or without missing data imputation. On the other hand, the posterior mean for the

coefficients corresponding to the non-fertile window days tends to be larger for the peak-intensity model with

missing data imputation than for the fixed informative model with missing data imputation. In general, we

expect the mass of the posterior distributions to tend towards 1 since we specified a prior distribution with a

mean of 1. However, we view the addition of the covariates as adding more complexity to the model, and

therefore causing decreased accuracy in our posterior estimate of the peak intensity day. This in turn causes

decreased posterior means for the coefficients corresponding to the fertile window day, and the posterior

distributions for the non-fertile window day coefficients are stochastically larger as a result.

Because of this effect, there is something of a trade-off when the amount of posterior uncertainly

increases due to the amount of covariates in the model or the quantity of missingness. In short, when the

posterior variance of the fertile window day coefficients is the primary concern then we recommend using the

peak-intensity model, whereas if the posterior distribution of the covariates is the primary scientific interest

then we recommend using the fixed informative model.

4.6 Real Data Analysis

To asses the performance of the methodology proposed in this paper, we consider the Time to Conceive

(TTC) cohort, a prospective time-to-pregnancy study. This study included English-speaking women between

29 and 44 years of ages who had been trying to conceive for 3 months or less. The study did not administer

biological measurements to ascertain the ovulation day, so in order to use the most accurate measures of

ovulation possible, wer restricted our attention to cycles in which ovulation was determined through a positive
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Table 4.3: Imputing sexual intercourse status without covariates, 7 fertile window days, correlated missingness
mechanism, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -4 0.059 0.056 -0.003 0.000 0.019 0.074
Day -3 0.115 0.110 -0.005 0.001 0.031 0.121
Day -2 0.196 0.188 -0.008 0.001 0.043 0.167
Day -1 0.288 0.278 -0.010 0.002 0.052 0.204
Day 0 0.340 0.325 -0.015 0.002 0.055 0.218
Day 1 0.264 0.255 -0.009 0.003 0.055 0.215
Day 2 0.104 0.111 0.007 0.002 0.044 0.169

Fixed informative
Day -4 0.059 0.031 -0.028 0.003 0.024 0.075
Day -3 0.115 0.108 -0.007 0.003 0.055 0.203
Day -2 0.196 0.197 0.001 0.003 0.065 0.253
Day -1 0.288 0.295 0.007 0.004 0.074 0.288
Day 0 0.340 0.342 0.002 0.004 0.077 0.303
Day 1 0.264 0.271 0.007 0.004 0.071 0.277
Day 2 0.104 0.092 -0.012 0.003 0.050 0.185

Non-informative
Day -4 0.059 0.029 -0.030 0.003 0.025 0.078
Day -3 0.115 0.101 -0.014 0.004 0.057 0.213
Day -2 0.196 0.191 -0.005 0.004 0.073 0.281
Day -1 0.288 0.288 0.000 0.005 0.085 0.329
Day 0 0.340 0.337 -0.003 0.006 0.090 0.350
Day 1 0.264 0.265 0.001 0.005 0.081 0.315
Day 2 0.104 0.087 -0.017 0.004 0.052 0.191

Average number of subjects and cycles (imputation)

Subjects Cycles
297 564

Average number of subjects and cycles (non-imputation)

Subjects Cycles
186 261
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Table 4.4: Imputing sexual intercourse status with covariates, 5 fertile window days, independent missingness
mechanism, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.115 0.099 -0.016 0.001 0.029 0.111
Day -2 0.196 0.174 -0.022 0.002 0.043 0.166
Day -1 0.288 0.257 -0.031 0.003 0.055 0.216
Day 0 0.340 0.308 -0.032 0.004 0.064 0.248
Day 1 0.264 0.249 -0.015 0.003 0.060 0.235
Age 30-35 0.923 1.040 0.117 0.049 0.170 0.665
Age 36-38 0.651 0.741 0.090 0.049 0.191 0.742
Age 38+ 0.357 0.427 0.070 0.031 0.126 0.492
BMI Overweight 0.803 0.864 0.062 0.030 0.162 0.635
BMI Obese 0.625 0.683 0.058 0.022 0.147 0.571
Gravid Yes 2.226 2.377 0.152 0.167 0.368 1.437

Fixed informative
Day -3 0.115 0.117 0.002 0.002 0.044 0.170
Day -2 0.196 0.204 0.008 0.002 0.059 0.228
Day -1 0.288 0.288 0.000 0.004 0.069 0.268
Day 0 0.340 0.341 0.001 0.004 0.076 0.295
Day 1 0.264 0.268 0.004 0.003 0.064 0.251
Age 30-35 0.923 0.977 0.054 0.031 0.154 0.602
Age 36-38 0.651 0.697 0.047 0.036 0.177 0.690
Age 38+ 0.357 0.402 0.045 0.026 0.118 0.459
BMI Overweight 0.803 0.830 0.027 0.024 0.154 0.603
BMI Obese 0.625 0.656 0.031 0.019 0.140 0.545
Gravid Yes 2.226 2.214 -0.012 0.109 0.325 1.272

Non-informative
Day -3 0.115 0.117 0.002 0.002 0.051 0.196
Day -2 0.196 0.202 0.006 0.003 0.069 0.269
Day -1 0.288 0.285 -0.003 0.005 0.081 0.316
Day 0 0.340 0.326 -0.014 0.006 0.088 0.342
Day 1 0.264 0.266 0.002 0.004 0.077 0.300
Age 30-35 0.923 1.000 0.077 0.063 0.207 0.809
Age 36-38 0.651 0.733 0.083 0.068 0.238 0.923
Age 38+ 0.357 0.422 0.065 0.046 0.157 0.608
BMI Overweight 0.803 0.853 0.050 0.047 0.205 0.798
BMI Obese 0.625 0.692 0.067 0.035 0.187 0.729
Gravid Yes 2.226 2.206 -0.020 0.140 0.410 1.603
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result of an ovulation predictor kit. The fertile window was defined as extending four days before and four

days after the ovulation day.

For the data analysis we considered the same three models as in Tables 4.3 and 4.4, namely the peak-

intensity model, the fixed informative model, and the fixed non-informative model. In order to obtain a fair

comparison only included cycles without any missing data in them. We also include categorical covariates

for age, BMI, and gravidity status.

We show the results of analyzing the TTC dataset in Table 4.5. We can see that there are a total of

334 women with a total of 585 menstrual cycles included in the study. When considering the coefficients

corresponding to the fertile window days, we see that for all three models the coefficients for the most part

follow a unimodal form with the days most likely to result in conception occurring during the three days

before ovulation. As discussed before, we see that the peak-intensity model tends to have lower posterior

means than the fixed informative model due to the uncertainty in the location of the peak intensity day, with

the benefit of having smaller posterior variances.

An interesting anomaly occurs for the fixed informative and non-informative models for the coefficient

corresponding to fertile window day 4. For this day we have a sudden spike in the posterior mean, with a

value of 0.100 for the fixed informative model, and a value of 0.250 for the fixed non-informative model.

In comparison, the information borrowing across the days results in a posterior mean of 0.001 for the

peak-intensity model for this coefficient. Since this unexpected spike is not a reasonable value for the data,

we can speculate that this is some sort of misspecification of the data occuring during the data collection

process. Whatever the cause, we can see that the peak-intensity model defends us against unrealistic posterior

distributions such as these.

In each of the models, the posterior means for the age categories each have values below 1, which has the

interpretation of these age categories having lower fecundability than for the reference group of ages 29-30.

Next, for the overweight BMI status category, we observe a value of close to 1 for each of the models, which

has the interpretation of no effect in the model in comparison to the reference group of underweight BMI

and normal weight BMI combined (the underweight category is too small to be considered on its own). A

BMI status of obese has a value below 1 for each of the models, indicating reduced levels of fecundability

compared to the reference groups. And finally, having had a previous pregnancy indicates a higher ability to

become pregnant than women who have never become pregnant.
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Table 4.5: Analysis of the Time to Conceive data

Peak-intensity

Coef. Mean Std. CR Low CR High

Peak-intensity
Day -4 0.054 0.047 0.000 0.149
Day -3 0.145 0.050 0.057 0.253
Day -2 0.166 0.064 0.049 0.291
Day -1 0.238 0.059 0.144 0.357
Day 0 0.135 0.065 0.040 0.254
Day 1 0.037 0.048 0.000 0.112
Day 2 0.009 0.031 0.000 0.023
Day 3 0.002 0.019 0.000 0.002
Day 4 0.001 0.013 0.000 0.002
Age 31-35 0.932 0.225 0.590 1.464
Age 36-38 0.681 0.235 0.332 1.234
Age 39+ 0.371 0.180 0.121 0.812
BMI Overweight 1.029 0.253 0.610 1.612
BMI Obese 0.832 0.248 0.435 1.389
Gravid Yes 1.454 0.291 0.969 2.097

Fixed informative
Day -4 0.060 0.058 0.000 0.205
Day -3 0.169 0.072 0.051 0.334
Day -2 0.194 0.072 0.079 0.362
Day -1 0.291 0.076 0.168 0.464
Day 0 0.154 0.061 0.056 0.294
Day 1 0.032 0.048 0.000 0.168
Day 2 0.003 0.019 0.000 0.033
Day 3 0.001 0.011 0.000 0.000
Day 4 0.100 0.146 0.000 0.480
Age 31-35 0.811 0.178 0.513 1.206
Age 36-38 0.612 0.209 0.295 1.097
Age 39+ 0.322 0.156 0.108 0.701
BMI Overweight 0.990 0.250 0.579 1.560
BMI Obese 0.804 0.239 0.421 1.346
Gravid Yes 1.359 0.270 0.910 1.952

Non-informative
Day -4 0.099 0.069 0.008 0.265
Day -3 0.174 0.081 0.048 0.363
Day -2 0.183 0.083 0.053 0.374
Day -1 0.303 0.088 0.163 0.504
Day 0 0.145 0.072 0.037 0.314
Day 1 0.103 0.074 0.008 0.282
Day 2 0.091 0.071 0.006 0.271
Day 3 0.078 0.066 0.004 0.246
Day 4 0.250 0.136 0.043 0.575
Age 31-35 0.730 0.167 0.455 1.092
Age 36-38 0.561 0.197 0.267 1.019
Age 39+ 0.276 0.136 0.092 0.612
BMI Overweight 0.956 0.247 0.552 1.534
BMI Obese 0.770 0.240 0.387 1.320
Gravid Yes 1.310 0.266 0.867 1.902
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4.7 Conclusion

In this paper we propose a new model called the peak-intensity model for describing the contribution of

sexual intercourse during a given fertile window day towards the likelihood of becoming pregnant during

the menstrual cycle. This model leverages the current scientific understanding of the unimodal form of the

relationship between the probability of becoming pregnant as a function of time across the fertile window.

Furthermore, we analyzed previous studies on the effect of the fertile window day on the likelihood of

pregnancy in order to propose a set of prior distributions.

Additionally, we propose missing data imputation mechanisms for sexual intercourse status, categorical

covariates, and continuous covariates. Simulation studies and a real data analysis demonstrate the improved

efficiency of these proposed models.
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APPENDIX A: COMPOSITE QUANTILE-BASED CLASSIFIERS TECHNICAL DETAILS

A.1 Quantile classifier further discussion

A.1.1 Example differences of quantile distances

Two small examples are provided in Figure A.1 to further demonstrate the θ-th quantile classifier and the

relationship between the quantile distances and the difference of the quantile distances. In these examples we

suppose that F−1
0 (θ) < F−1

1 (θ) at both the 0.25- and 0.75-th quantile levels, and that F−1
1 (θ)−F−1

0 (θ) is the

same for the two quantile levels. This is the case for example for populations that follow N(0, 1) and N(1, 1)

distributions. In the upper-left plot we show the check loss distance to the populations’ 0.25-th quantiles as a

function of input z and denoted as Φ1 and Φ0, while in the bottom-left plot we show the difference of these

same check loss distances, i.e. Λ = Φ1 − Φ0, again as a function of input z. The upper-right and lower right

plots also show the check loss distances and difference between the distances, but instead with respect to the

populations’ 0.75-th quantiles. In each of these figures τθ can be seen to represent the decision rule boundary

point, i.e. when Λ = 0. It can also be shown that the decision rule boundary is always between F−1
0 and

F−1
1 , and that when the quantile level is less than 1/2 that τθ is closer to F−1

1 , and conversely that when the

quantile level is greater than 1/2 that τθ is closer to F−1
0 . Finally, we note that Λ is piecewise linear with a

slope of −1 between F−1
0 (θ) and F−1

1 (θ), and is constant otherwise.

A.1.2 Consistency of the optimal quantile classifier

We now present a result for the consistency of the empirical version that we make use of in Theorem 4 of

the main paper. We note that this proposition is essentially a special case of Theorem 1 from Hennig and

Viroli (2016). Let δ be a small positive constant, then we will need the following assumptions.

Assumption 1. F−1
i is a continuous function of θ, i = 0, 1.

Assumption 2. P
(

Λ(Z, θ) = 0
)

= 0 for all θ ∈ [δ, 1− δ].

Assumption 3. There is a unique θ̃ that satisfies θ̃ = arg maxθ∈T Ψ(θ).

Proposition 6. Let θ̃ be a solution to θ̃ = arg maxθ∈T Ψ(θ), and let θ̂n denote the empirically optimal

quantile level. Then under Assumptions 1 and 2, it follows that Ψ(θ̂n)
p−→ Ψ(θ̃). Furthermore, under

Assumptions 1, 2, and 3, it follows that θ̂n
p−→ θ̃.
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Figure A.1: Example within-class quantile distances and difference in quantile distances for two choices of
quantiles.
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It is worth noting that convergence to the optimal quantile level is based on the empirically optimal

choice for a training data set without the need for additional training on a validation data set. Intuitively, this

can be explained by the fact that the model complexity is the same for all of the possible quantile classifier

models, so we do not need to include a model validation training step to defend against overfitting the model

to the data.

A.1.3 Calculating the quantile classifier for a fixed quantile level

So far it has been established that the classification rate of the empirically optimal quantile classifier

converges to the classification rate of the true optimal quantile classifier. In this section we investigate the

practical considerations of calculating the empirically optimal quantile classifier. Recall the definition of the
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quantile classifier:

For an observation z, classify to:





Π0, if Λ (z, θ) > 0,

Π1, otherwise.

Then an alternative version of the classifier is provided by Supplementary Proposition 7.

Proposition 7. Assume for the moment that F−1
0 (θ) < F−1

1 (θ). Then the quantile classifier defined in

equation (2.1) can be equivalently expressed as follows.

For an observation z, classify to:





Π0, z < θ F−1
0 (θ) + (1− θ)F−1

1 (θ),

Π1, otherwise.

If on the other hand F−1
0 (θ) > F−1

1 (θ), then the direction of the inequality changes so that we instead

classify an observation to Π0 when z > θ F−1
1 (θ) + (1− θ)F−1

0 (θ), and to Π1 otherwise.

It is interesting to note that the decision rule boundary lies on the line segment between F−1
0 (θ) and

F−1
1 (θ), with the location of the point on the line segment determined by the quantile level. We saw an

example of this in Figure A.1 in that for the 0.25-th quantile level the decision rule boundary was closer to

the larger quantile, and for the 0.75-th quantile level the decision rule boundary was closer to the smaller

quantile.

Next, the result given in Supplementary Proposition 8 provides an expression with which to obtain an

optimal solution for the empirical quantile estimator. Recall the form of the θ-th empirical quantile:

arg min
q



θ

∑

xi>q

|xi − q| + (1− θ)
∑

xi≤q
|xi − q|



 . (A.1)

We can view this optimization problem as a special case to the quantile regression problem introduced

in Koenker and Bassett Jr (1978), where the xi’s correspond to the response variables, and q is a single

regression coefficient corresponding to predictor data with only an intercept term and no other covariates. In

light of this fact, we may utilize any of the theory developed in the quantile regression literature to solve this

minimization problem. However, it turns out that there is a simple closed-form solution available for this

particular special case of quantile regression, which is presented as Supplementary Proposition 8.
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Proposition 8. Let x1, . . . , xm be points on R. Then a solution to equation (A.1) providing the θ-th empirical

quantile for x1, . . . , xm is given by dmθe-th largest value of the xi.

Futhermore, as a consequence of the results of Supplementary Propositions 7 and 8, the result in

Supplementary Proposition 9 characterizes the complexity of obtaining the empirical decision rule boundary

for a given dataset.

Proposition 9. Obtaining the quantile classifier decision rule boundary for a fixed choice of quantile level is

an O(n) operation.

A.1.4 Calculating the empirically optimal quantile classifier

In the previous section we described how to calculate the quantile classifier for a fixed choice of quantile

level. In this section we describe an algorithm used to construct the empirically optimal quantile classifier. To

begin with, we start with an example calculation that illustrates the considerations that lead to the algorithm.

A.1.4.1 An example calculation

An illustrative example showing the decision rule boundary and corresponding classification rate as

a function of the quantile level for a small data set is presented as Figure A.2. A data set for class 0

with seven observations was sampled from independent N(0, 1) distributions yielding the values −0.96,

−0.78,−0.46,−0.10, 0.24, 0.98, 1.61, and a data set for class 1 with five observations was sampled from

independent N(1, 1) distributions yielding the values −0.60, 0.37, 0.64, 1.37, 1.78. These values are shown

as the horizontal lines in the top panel, along with the decision rule boundaries corresponding to this data

which are displayed as the diagonal blue lines. The dashed vertical lines represent the quantile levels at which

the quantile estimates change for at least one of the classes. In the bottom panel the number of correctly

classified observations out of a possible 12 observations is plotted as a function of the quantile level. From

this figure we see that the classification rate of the quantile classifier is constant for the intervals between the

quantile estimate change points except when the set of corresponding decision rule boundary values includes

values in the data. When this is the case the intervals can be further divided into sub-intervals with a constant

classification rate. For this particular example the theoretically optimal quantile level is 0.5, which is indeed

one of the empirically optimal quantile levels.
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Figure A.2: Illustrative plot of the empirical classification rate for a toy example. An example data set is
shown with 7 values from class Π0 and 5 values from class Π1.
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From this figure, we can see that the decision rule boundaries are intervals as a function of the quantile

level between levels at which the quantile estimates change for at least one of the classes (i.e. each of the

blue line segments in the top panel of the figure). The algorithm described in the next section measures the

classification rate for the points in each of intervals, yielding an exhaustive search of potential quantile levels.

A.1.4.2 Quantile classifier algorithm

In order to calculate the empirical classification rate as a function of quantile level, the first step is to obtain

the set of valid decision rule boundaries. In other words, let φ(θ; data): (0, 1) 7→ R be the function that maps

a quantile level for a given data set to the quantile classifier decision rule boundary; then we wish to obtain the

set
{
x ∈ R: θ ∈ (0, 1), φ(θ; data) = x

}
. The key observation that facilitates the calculation of this set is

that the domain (0, 1) can be partitioned into smaller intervals for which range of the decision rule boundary

function φ can be easily calculated. In more detail, consider an interval (θlow, θhigh] such that dθn0e and dθn1e

are each constant for all θ in the interval. As a consequence of the form of the quantile estimator, it follows

that there are values a and b such that F−1
(0) (θ) = a and F−1

(1) (θ) = b for all θ in the interval. Thus by the result

on the form of the decision rule boundary, we have φ(θ; data) = θa+ (1− θ)b for any θ in the interval, and

it follows that
{
x ∈ R: θ ∈ (θlow, θhigh], φ(θ; data) = x

}
=
[
θhigh a+ (1− θhigh) b, θlow a+ (1− θlow) b

)
.

Next we consider how to partition (0, 1) into such sets. For notational convenience we actually consider

(0, 1]: even though the 1-th quantile doesn’t make sense theoretically, its estimate is well-defined. Now dθn0e

is a step function with the endpoints for each step taking place at 1, . . . , n0 and which occur for values of θ at

1/n0, 2/n0, . . . , n0/n0. Similarly, dθn1e is a step function with the endpoint for each step taking place at

1, . . . , n1 and which occurs for values of θ at 1/n1, 2/n1, . . . , n1/n1. Thus any interval that doesn’t include

one of those values of θ except as its upper bound is constant for each of these functions. So we can partition

(0, 1] by letting each interval have an open lower bound be one of the step function change locations for one

of the classes, and having the upper bound be the next smallest step function change location for either of the

classes (and we also need an interval from 0 to the smallest step function change location).

Consider then one such interval, say [xlow, xhigh), such that for each x ∈ [xlow, xhigh) there exists a θ ∈ (0, 1]

with φ(θ; data) = x. At this point we would like to calculate the classification rate for all x in the interval:

we can achieve this by conceptually “sliding” the decision rule boundary across the interval. Since the

classification rate doesn’t change as we slide the decision rule boundary in-between observations, we can find

the values in the data that belong to [xlow, xhigh) and partition the interval into sub-intervals that each have a
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constant classification rate. So for example, if xk, . . . , xk+s are the only observations in the data that belong

to [xlow, xhigh), then [xlow, xk), [xk, xk+1), . . . , [xk+s−1, xk+s), [xk+s, xhigh) may be such a partitioning.

The reason we say that this ‘may’ be a partitioning is that whether the endpoints of the sub-intervals

are open or closed depends on which class we have arbitrarily decided to classify an observation to in the

event of ties. Note that when the quantile level θ corresponds to a decision rule boundary with a value

equal to a point in the data, say x∗, then the quantile distance of that point to the populations’ empirical

θ-th quantiles is the same for either population, so we have to fall back on our classification rule in the

event of ties. Whether the decision rule has the same classification rate as an open interval with upper

bound x∗ or as an open interval with lower bound x∗ depends on which class has a smaller empirical θ-th

quantile, and what our tiebreaker rule is. If the tiebreaker goes to the class with a larger empirical θ-th

quantile, then the classification rate is the same as an open interval with with lower bound x∗, and we

get a partitioning of [xlow, xhigh) with the form [xlow, xk), [xk, xk+1), . . . , [xk+s−1, xk+s), [xk+s, xhigh). If

however, the tiebreaker goes to the class with a larger empirical θ-th quantile, then the classification rate

is the same as an open interval with upper bound x∗, and we get a partitioning of [xlow, xhigh) with the form

[xlow, xk], (xk, xk+1], . . . , (xk+s−1, xk+s], (xk+s, xhigh).

Finally, we note that we may wish to map back the sets from the decision rule boundary space to their

quantile levels space, for example if we’ve found a set with a good empirical classification rate. Recall that

we started with a set of quantile levels (θlow, θhigh] such that F−1
0 and F−1

1 are each constant for all θ in the

interval, and that each x ∈ [xlow, xhigh) corresponds to the decision rule boundary for a θ from that interval.

Let us write F−1
(0) (θ) = a and F−1

(1) (θ) = b for all θ in the interval, and assume that a is strictly less than b.

Then for x ∈ [xlow, xhigh), we observe the following relation:

x = θ a+ (1− θ) b ⇐⇒ θ =
b− x
b− a

.

At this point we have all of the concepts that we need to construct an algorithm to calculate an empirically

optimal choice of quantile level. The corresponding algorithm is presented as Algorithm 1, and a result for

the algorithm complexity is presented as Supplementary Proposition 10.

Proposition 10. The decision rule for the empirically optimal quantile classifier can be obtained in O(n2)

time.
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Algorithm 1: Calculating the empirically optimal quantile classifier

Data :v1, . . . , vn0 from Π0 and w1, . . . , wn1 in Π1

1 sort observations v1, . . . , vn0 and w1, . . . , wn1 . Assume that in the case of ties, we classify to Π1.
2 sort v1, . . . , vn0 , w1, . . . , wn1 and denote the unique values as x1, . . . , xr
3 Produce a sorted set of quantile levels given by

Θ =
{

0
}⋃{ k

n0
: 1 ≤ k ≤ n0

}⋃{ k
n1

: 1 ≤ k ≤ n1

}

4 for i in 2 to |Θ| do

5 calculate F̂−1
0n0

(θi) and F̂−1
1n1

(θi), and find

a = min
{
F̂−1

0n0
(θi), F̂

−1
1n1

(θi)
}

and b = max
{
F̂−1

0n0
(θi), F̂

−1
1n1

(θi)
}

6 calculate the interval

Gi =
[
θi a+ (1− θi) b, θi−1 a+ (1− θi−1) b

)
=
[
xlow, xhigh

)

7 find the smallest xi ∈ [xlow,∞). If xi ≥ xhigh then calculate the classification rate for Gi.

8 while xi ∈ Gi do
9 calculate the classification rate for the interval with upper and lower bounds determined by xi

and min{xi+1, xhigh}, respectively (for whether bounds in interval are open or closed see
below)

10 if F̂−1
0n0

(θi) < F̂−1
1n1

(θi) then
11 calculate classification rate for the interval with bounds xi and xi+1 among the following:

[xlow, xk], (xk, xk+1], . . . , (xk+s−1, xk+s], (xk+s, xhigh)

12 else
13 calculate classification rate for the interval with bounds xi and xi+1 among the following:

[xlow, xk), [xk, xk+1), . . . , [xk+s−1, xk+s), [xk+s, xhigh)

14 end
15 map interval back to corresponding interval in the quantile levels space
16 xi ← xi+1

17 end
18 end
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It remains an open question as to whether the bound obtained in Supplementary Proposition 10 is actually

achievable. In practice, for both simulated and real data we typically see less than n total intervals that need

to be considered in the outer and inner loops, so when this is the case the algorithm runs in O(n log n) time.

As an alternative, we can approximate the empirically optimal quantile classifier by simply calculating the

empirical classification rate over a fine grid of quantile levels, which reduces the complexity to an O(Kn)

operation where K is the number of points in the grid. This complexity is the case because each choice of

quantile level requires calculating the decision rule boundary by finding the k0-th and k1-th largest value

of each class for the appropriate values of k0 and k1, and then counting the number of observations on the

correct side of the boundary, each of which is an O(n) operation.

One last issue that has yet to be addressed that is evident in this example is how to choose a quantile

level based on a training data set when there is more than one empirically optimal value. When this is the

case, as it typically is, we find that selecting the value closest to the median works well in many settings.

One argument for this choice is that the median is the optimal choice of quantile level for two classes with

symmetric distributions that differ only by a location shift. While this scenario may not hold in many settings,

it still offers in some sense a conservative rule for what is hopefully a small set of empirically quantile levels

from which to choose.

A.1.5 Calculating composite quantile-based classifiers

In the last section, we discussed calculation of the univariate quantile classifiers. In this section we

consider the runtime for the calculation of the (multivariate) composite quantile-based quantile classifiers.

Two expressions for the run time complexity of Algorithm 2 from the main paper are presented in

Supplementary Proposition 11. The first expression describes the complexity of a sequential implementation

of the algorithm, while the second expression considers an implementation utilizing parallel computing.

The opportunities for parallelism that are considered are the following. At the top level, the sub-models

f1, . . . , fL can each be obtained independently of each other. Furthermore, within the calculation of each

sub-model with index `, the feature-specific calculations can each be performed independently of each other.

Thus, for j in 1, . . . p, both the calculation of the optimal quantile level for the j-th feature with data D`1

and the transformation of the j-th component of every xi in data D`2 can be calculated independently of

the other features (lines 3-8 of Algorithm 2 from the main paper). Additionally, selection of the choice of

linear combination coefficients can be parallelized over the folds in the cross-validation procedure (line 9

86



of Algorithm 2 from the main paper). Exploiting these opportunities for parallelism leads to the run time

complexity described below.

Proposition 11. Let T be the number of penalty levels and K be the number of folds considered when

performing penalized logistic regression with k-fold cross-validation to select the linear combination co-

efficients α0, . . . , αp. Then the model selection algorithm for composite quantile-based classifiers runs in

O
(
Lnp

[
n+KT

])
time. Furthermore, if the number of compute nodes in a computing cluster topology is at

least L, and C denotes the smallest number of available cores from among the compute nodes, then the run

time of Algorithm 2 from the main paper is reduced to O
(
np
C

[
n+KT

])
.

A.2 Theoretical proofs

In this section we provide proofs for the propositions that were presented earlier in the supplementary

materials (Supplementary Propositions 1-6), as well as a proof for Theorem 1-4 from the main paper.

Additionally, in order to make Theorem 3 more readily digestible, we have split off a number of preliminary

propositions that we make use of in the theorem. The proofs of Supplementary Propositions 1-6 are provided

in Section A.2.1, the proofs for Theorems 1, 2, and 4 are provided in Section A.2.2, and the proof of Theorem

3 and the supporting propositions are provided in Section A.2.3.

A.2.1 Proofs of Supplementary Propositions 1-6

Proof of Supplementary Proposition 6. The fact that Ψ(θ̂n)
p−→ Ψ(θ̃) is a special case of Theorem 1 in

Hennig and Viroli (2016) for a feature-space of dimension 1. Furthermore, during the proof of that theorem it

was shown that under Assumptions 1 and 2, Ψ is a continuous function of θ. To show that θ̂n
p−→ θ̃ suppose

that the claim doesn’t hold. Then there exists an ε > 0 and δ > 0 such that for all N ∈ N, there exists an

n ≥ N such that

P
(∣∣θ̂n − θ̃

∣∣ > ε
)
≥ δ.

Now, because Ψ is continuous and Ψ(θ̃) is a unique maximum, it follows that we can find ν > 0 such that

min
{∣∣Ψ(θ̃ − ε)−Ψ(θ̃)

∣∣ ,
∣∣Ψ(θ̃ + ε)−Ψ(θ̃)

∣∣
}
≥ ν.
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Therefore, for all N ∈ N, there exists an n ≥ N such that

P
(∣∣Ψ(θ̂n)−Ψ(θ̃)

∣∣ ≥ ν
)
≥ P

(∣∣θ̂n − θ̃
∣∣ ≥ ε

)
≥ δ.

But this is in contradiction to the fact that Ψ(θ̂n)
p−→ Ψ(θ̃).

Proof of Supplementary Proposition 7. Suppose F−1
(0) (θ) 6= F−1

(1) (θ). It is clear (e.g. see Figure A.1) that

Φ(0)(z, θ) is equal to Φ(1)(z, θ) at exactly one point, say τ , and that the following holds:





Φ(0)(z, θ) < Φ(1)(z, θ), z < τ,

Φ(0)(z, θ) = Φ(1)(z, θ), z = τ,

Φ(0)(z, θ) > Φ(1)(z, θ), z > τ.

Furthermore, we can infer that F−1
(0) (θ) < τ < F−1

(1) (θ). Setting the loss functions equal for z in this interval

yields:

Φ(0)(z, θ)
set
= Φ(1)(z, θ)

⇐⇒ 1

(
z > F−1

(0) (θ)
)
θ
(
z − F−1

(0) (θ)
)

+ 1

(
z ≤ F−1

(0) (θ)
)

(1− θ)
(
F−1

(0) (θ)− z
)

= 1

(
z > F−1

(1) (θ)
)
θ
(
z − F−1

(1) (θ)
)

+ 1

(
z ≤ F−1

(1) (θ)
)

(1− θ)
(
F−1

(1) (θ)− z
)

⇐⇒ θ
(
z − F−1

(0) (θ)
)

= (1− θ)
(
F−1

(1) (θ)− z
)

⇐⇒ z = θ F−1
(0) (θ) + (1− θ)F−1

(1) (θ).

It can then be verified that Φ(0)(z, θ) < Φ(1)(z, θ) corresponds to classifying z to Π(0) and that Φ(0)(z, θ) >

Φ(1)(z, θ) corresponds to classifying z to Π(1). Combining these facts yields the desired result.

We can write the minimization problem,

min
q



θ

∑

xi>q

|xi − q| + (1− θ)
∑

xi≤q
|xi − q|
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equivalently as

minimize
q+,q−,u,v

θ
∑m

i=1 ui + (1− θ)
∑m

i=1 vi

subject to xi − (q+ − q−) = ui − vi, i = 1, . . . ,m

q+ ≥ 0, q− ≥ 0, u ≥ 0, v ≥ 0

which is seen to be a linear programming problem in standard form. By rewriting the equality condition as

q+ − q− + ui − vi = xi for i = 1, . . . ,m, we can express the equality condition in matrix form as




1 −1 1 −1

...
...

. . . . . .

1 −1 1 −1







q+

q−

u

v




=




x1

...

xm



.

Recall that a solution for (q+, q−,u,v) is a basic solution if and only if there exist indices B(1), . . . , B(m)

such that both (i) the columns of the coefficient matrix with column indices subset by B(1), . . . , B(m) are

linearly independent, and (ii) if an element of (q+, q−,u,v) does not correspond to one of B(1), . . . , B(m)

then the element must have a value of 0.

We can see that in order to have independent columns from the coefficient matrix, then for each i,

no more than one of the columns corresponding to either ui or vi can have an index in B(1), . . . , B(m),

and additionally no more than one of the columns corresponding to either q+ or q− can have an index in

B(1), . . . , B(m). Furthermore, we note that if we have one column corresponding to q+ or q−, and one

column corresponding to either ui or vi for each i, then we have m+ 1 columns, which is still one column

too many. Thus we see that there must be either (i) exactly one column corresponding to either ui or vi for

each i and no columns corresponding to either q+ or q−, or (ii) exactly one column corresponding to either

ui or vi for each i less one and exactly one column corresponding to either q+ or q−.

Furthermore, we can infer that if a column corresponding to q+ or q− has an index in B(1), . . . , B(m)

and the solution is feasible (i.e. q+ and q− are both nonnegative), then q+ = (xi)+ and q− = (−xi)+, where

the index i corresponds to the only i without a column corresponding to either ui or vi, and (z)+ = max(0, z).

Let q = q+− q−, then it follows that a feasible solution for any j 6= i has ui = (xi− q)+ and vi = (q−xi)+.
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This leads to a set of basic feasible solutions given by q ∈ {x1, . . . , xm}. One last basic feasible solution is

given for q = 0 with ui = (xi)+ and vi = (−xi)+ for all i.

Next we aim to find the minimizing basic feasible solution. Suppose that dθme = k and that ` < k, and

let q = xk and q′ = x`. Then comparing the objective function evaluated at q and q′, we have

{
θ

m∑

i=`+1

(xi − q′) + (1− θ)
∑̀

i=1

(q′ − xi)

}
−

{
θ

m∑

i=k+1

(xi − q) + (1− θ)
k∑

i=1

(q − xi)

}

= (1− θ)
∑̀

i=1

{
(q′ − xi)− (q − xi)

}

+ θ

k∑

i=`+1

(xi − q′)− (1− θ)
k∑

i=`+1

(q − xi)

+ θ

m∑

i=k+1

{
(xi − q′)− (xi − q)

}

= (1− θ)
∑̀

i=1

{
(q′ − xi)− (q − xi)

}

+ θ

k∑

i=`+1

(xi − q′)− (1− θ)
k∑

i=`+1

(q − xi)± (1− θ)
k∑

i=`+1

(q′ − xi)

+ θ

m∑

i=k+1

{
(xi − q′)− (xi − q)

}

= −(1− θ)
∑̀

i=1

(q − q′)

+ θ

k∑

i=`+1

(xi − q′)− (1− θ)
k∑

i=`+1

(q − q′)− (1− θ)
k∑

i=`+1

(q′ − xi)

+ θ

m∑

i=k+1

(q − q′)

= −(1− θ)
k∑

i=1

(q − q′)

+ θ

k∑

i=`+1

(xi − q′)− (1− θ)
k∑

i=`+1

(q′ − xi)

+ θ

m∑

i=k+1

(q − q′)
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= −(1− θ)
k∑

i=1

(q − q′)

+
k∑

i=`+1

(xi − q′)

+ θ

m∑

i=k+1

(q − q′)

= −(1− θ) k (q − q′) +
k∑

i=`+1

(xi − q′) + θ(m− k)(q − q′)

=
k∑

i=`+1

(xi − q′)− (k − θm)(q − q′)

≥ (xk − q′)− (q − q′)

= xk − q

= 0.

The inequality is due to the fact that xi ≥ q′ for i ≥ `+ 1, and also the fact that k − θm < 1. Suppose now

that dθme = k and that ` > k, and let q = xk and q′ = x`. Then comparing the objective function evaluated

at q and q′, we have

{
θ

m∑

i=`+1

(xi − q′) + (1− θ)
∑̀

i=1

(q′ − xi)

}
−

{
θ

m∑

i=k+1

(xi − q) + (1− θ)
k∑

i=1

(q − xi)

}

= (1− θ)
k∑

i=1

{
(q′ − xi)− (q − xi)

}

+ θ
∑̀

i=k+1

(xi − q′)− (1− θ)
∑̀

i=k+1

(q − xi)

+ θ

m∑

i=`+1

{
(xi − q′)− (xi − q)

}

= (1− θ)
k∑

i=1

(q′ − q)

− θ
∑̀

i=k+1

(q′ − q) +
∑̀

i=k+1

(xi − q)

− θ
m∑

i=l+1

(q′ − q)
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= (1− θ)
k∑

i=1

(q′ − q) +
∑̀

i=k+1

(xi − q)− θ
m∑

i=k+1

(q′ − q)

= (1− θ) k (q′ − q) +
∑̀

i=k+1

(xi − q)− θ (m− k)(q′ − q)

= (k − θm)(q′ − q) +
∑̀

i=k+1

(xi − q)

≥ 0.

There is one basic feasible solution remaining to check, that where q = 0. To show that this is not the optimal

solution except in the case that xdθme = 0, we make the following argument. Note that if we add some

nonzero value τ to each xi and if q∗ is an optimal choice for the original problem, then q∗ + τ is an optimal

choice for the new problem. Choose −τ to be one of the xi for some i: then 0 is one of the values in the

transformed data, which was shown in the previous results to be no better than the dθme-th largest value of

the transformed data, so it follows that the dθme-th largest value is optimal. Since τ cannot be better than

optimal for the transormed data, then by the law of the contrapositive 0 cannot be better than optimal for the

original data.

Proof of Supplementary Proposition 9. Constructing the θ-th quantile classifier requires merely finding the

dθn0e-th largest value from the observations that were drawn from population Π0, and the dθn1e-th largest

value from the observations that were drawn from population Π1, and then calculating the decision boundary

based on Supplementary Proposition 7. Finding the k-th largest value of a set is an O(n) operation, and the

calculation to obtain the decision boundary using Supplementary Proposition 7 is an O(1) operation.

Proof of Supplementary Proposition 10. Sorting the data is an O(n log n) operation. The operations per-

formed in line 2 of Algorithm 1 takes O(n) time.

The outer loop beginning on line 3 of Algorithm 1 requires some number of iterations that is bounded

from above by n− 1. Within each iteration, calculating F−1
V and F−1

W and the interval Gi are each constant

time operations.

The step in line 6 of Algorithm 1 is really a high-level view of a second loop. This inner loop requires

first finding the set of xi’s with values in
[
xlow, xhigh

)
which is an O(log n) operation. The number of times

that the inner loop is performed is determined by the number of points with values in the interval and is
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bounded from above by n− 1. Calculating the classification rate the sub-interval in each step of the inner

loop is a constant time operation, as is mapping the sub-interval back to the quantile levels space.

So combining the worst-case bound for the outer and inner loops, we find that the total number of

intervals for which we calculate the classification rate for has a worst-case bound on the order of n2 intervals,

and that each calculation is a constant time operation for a total cost of O(n2) time. The initial operations

performed in lines 1-2 of Algorithm 1 have an aggregate cost with O(n log n) time, so in total the algorithm

runs in O(n2) time.

Proof of Supplementary Proposition 11. Consider the operations performed inside the outer-level for loop

spanning lines 1-10 in Algorithm 2 from the main paper. Splitting the data into two parts is anO(n) operation.

Next, consider the second-level for loop iterating over the features. We saw in Supplementary Proposition 10

that the decision rule for the empirically optimal quantile classifier for the j-th feature can be obtained in

O(n2) time. Next, calculating x∗ij is a constant-time operation for an O(n) number of calculations, which in

total is an O(n) operation.

Next, we break down the steps required in line 9 of Algorithm 2 from the main paper to select the linear

combination coefficients via penalized logistic regression. Using the coordinate descent algorithm proposed

in Friedman et al. (2007, 2010) yields an O(np) run time for a fixed choice of penalty parameter. Thus for a

grid of size T penalty parameters and performing k-fold cross-validation for a total of K folds yields a total

run time bound of O(KTnp).

Then, since the outer loop is performed a total of L times, we obtain the following run time bound for a

sequential implementation of Algorithm 2:

O
(
L
[
n+ p(n2 + n) +KTnp

])
= O

(
Lnp

[
n+KT

])
.

Next, if we have L compute nodes available, we can assign the calculation of each sub-model fi to one of the

nodes; this reduces the problem to calculating the run time for each of the fi. If we perform the parallelism

over first the features (i.e. lines 3-8 of Algorithm 2 from the main paper), and then over the cross-validation

folds (i.e. line 9 of Algorithm 2 from the main paper), then the run time bound for an implementation of

Algorithm 2 utilizing parallel computing is given by

O
(
n+

p

C
(n2 + n) +

K

C
Tnp

)
= O

(np
C

[
n+KT

])
.
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This calculation shows that the cost of training the algorithm has a polynomial-time complexity.

A.2.2 Proof of Theorems 1, 2, and 4

Proof of Theorem 1. The proof is largely adapted from Theorem 2 of Hennig and Viroli (2016). Suppose

that the claim doesn’t hold. Then there exists an ε > 0, a δ > 0, a sequence M of positive integers, and a

sequence of quantile levels {θ∗m}m∈M such that

P
(∣∣Ψ†m(θ∗m)−Ψ(θ∗m)

∣∣ > ε
)
≥ δ for all m. (A.2)

Now, every bounded sequence has at least one convergent subsequence, and we will choose to restrict our

attention to such a subsequence in what follows. Define θ∗ = limm→∞ θ
∗
m, then we have

P
(∣∣Ψ†m(θ∗m)−Ψ(θ∗m)

∣∣ > ε
)

= P
(∣∣Ψ†m(θ∗m)−Ψ†m(θ∗) + Ψ†m(θ∗)−Ψ(θ∗) + Ψ(θ∗)−Ψ(θ∗m)

∣∣ > ε
)

≤ P
(∣∣Ψ†m(θ∗m)−Ψ†m(θ∗)

∣∣+
∣∣Ψ†m(θ∗)−Ψ(θ∗)

∣∣+
∣∣Ψ(θ∗)−Ψ(θ∗m)

∣∣ > ε
)

≤ P
(∣∣Ψ†m(θ∗m)−Ψ†m(θ∗)

∣∣+
∣∣Ψ(θ∗)−Ψ(θ∗m)

∣∣ > ε

2

)
(A.3)

+ P
(∣∣Ψ†m(θ∗)−Ψ(θ∗)

∣∣ > ε

2

)
.

It was established in Hennig and Viroli (2016) that Ψ is continuous under Assumptions 1 and 2, so as a result

it follows that
∣∣Ψ(θ∗)−Ψ(θ∗m)

∣∣→ 0. Now,

Ψ†m(θ∗m)−Ψ†m(θ∗)

= π0

∫
1

(
Λm(z, θ∗m) > 0

)
dP0(z) + π1

∫
1

(
Λm(z, θ∗m) ≤ 0

)
dP1(z)

− π0

∫
1

(
Λm(z, θ∗) > 0

)
dP0(z)− π1

∫
1

(
Λm(z, θ∗) ≤ 0

)
dP1(z).

= π0

∫ [
1

(
Λm(z, θ∗m) > 0

)
− 1

(
Λm(z, θ∗) > 0

)]
dP0(z) (A.4)

+ π1

∫ [
1

(
Λm(z, θ∗m) ≤ 0

)
− 1

(
Λm(z, θ∗) ≤ 0

)]
dP1(z).

From the proof of Theorem 1 in Hennig and Viroli (2016), we have that
∣∣∣F̂−1
im (θ∗m)− F̂−1

im (θ∗)
∣∣∣ a.s.−→ 0, i =

0, 1, and since the sample quantiles are strongly consistent, it follows that F̂−1
im (θ∗m)

a.s.−→ F−1
i (θ∗), i = 0, 1.
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Let us denote τθ∗m = θ∗mF̂
−1
(0),m(θ∗m) + (1− θ∗m)F̂−1

(1),m(θ∗m), and τθ∗ = θ∗F̂−1
(0),m(θ∗) + (1− θ∗)F̂−1

(1),m(θ∗),

then we also obtain that |τθ∗ − τθ∗m |
a.s.−→ 0.

From Theorem 3 in Mason (1982), and under Assumption 1, we get limm→∞ supθ∈T |F̂−1
im (θ)−F−1

i (θ)|

= 0 almost surely. Suppose for the time-being that F−1
0 (θ∗) < F−1

1 (θ∗). Then for large values of m we

will observe both F̂−1
0m(θ∗m) < F̂−1

1m(θ∗m) and F̂−1
0m(θ∗) < F̂−1

1m(θ∗) with probability 1. When this is the case

then equation (A.4) can be expressed as

π0

∫ [
1

(
Λm(z, θ∗m) > 0

)
− 1

(
Λm(z, θ∗) > 0

)]
dP0(z)

+ π1

∫ [
1

(
Λm(z, θ∗m) ≤ 0

)
− 1

(
Λm(z, θ∗) ≤ 0

)]
dP1(z)

= π0

∫ [
1 (z < τθ∗m)− 1 (z < τθ∗)

]
dP0(z)

+ π1

∫ [
1 (z ≥ τθ∗m)− 1 (z ≥ τθ∗)

]
dP1(z)

= π0

∫ τθ∗

τθ∗m

dP0(z) + π1

∫ τθ∗m

τθ∗
dP1(z). (A.5)

On the other hand, if F−1
0 (θ∗) > F−1

1 (θ∗), then for large values of m we will observe both F̂−1
0m(θ∗m) >

F̂−1
1m(θ∗m) and F̂−1

0m(θ∗) > F̂−1
1m(θ∗) with probability 1. When this is the case then equation (A.4) can be

expressed as

π0

∫ [
1

(
Λm(z, θ∗m) > 0

)
− 1

(
Λm(z, θ∗) > 0

)]
dP0(z)

+ π1

∫ [
1

(
Λm(z, θ∗m) ≤ 0

)
− 1

(
Λm(z, θ∗) ≤ 0

)]
dP1(z)

= π0

∫ [
1 (z > τθ∗m)− 1 (z > τθ∗)

]
dP0(z)

+ π1

∫ [
1 (z ≤ τθ∗m)− 1 (z ≤ τθ∗)

]
dP1(z)

= π0

∫ τθ∗m

τθ∗
dP0(z) + π1

∫ τθ∗

τθ∗m

dP1(z). (A.6)

But since |τθ∗ − τθ∗m |
a.s.−→ 0, we observe that both (A.5) and (A.6) converge to 0, which establishes the almost

sure convergence of the first term in (A.3).
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Next, we consider the second term from (A.3). If we can show that Ψ†m(θ∗) is continuous in
(
F−1

0m(θ∗),

F−1
1m(θ∗)

)
, then we can invoke the continuous mapping theorem to establish convergence of Ψ†m(θ∗) to Ψ(θ∗).

To establish continuity, we look to find the limit of Ψ†m(θ∗m).

Consider
(
F−1

0m(θ∗), F−1
1m(θ∗)

)
for some θ∗ ∈ T , then 1

(
Λm(z, θ∗) > 0

)
is equal to either 1 (z < τθ∗m)

or 1 (z > τθ∗m), depending on whether F−1
0m(θ∗) < F−1

1m(θ∗). It follows that for fixed z 6= τθ∗m , then

1
(
Λm(z, θ∗) > 0

)
is continuous in

(
F−1

0 (θ∗), F−1
1 (θ∗)

)
. A nearly identical argument establishes continuity

for 1
(
Λm(z, θ∗) ≤ 0

)
on the same set of z.

Then, if we take the limit of Ψ†m(θ∗m), we can invoke the dominated convergence theorem to move the

limit sign inside each of the integrals. Furthermore, since we have shown that the indicator functions are

continuous except on a set with probability 0, we find that the limit of Ψ†m is the same as when evaluated at

the limit of the sample quantiles, establishing continuity of Ψ†m(θ∗).

Since the sample quantiles are strongly consistent, we can then use the continuous mapping theorem

to establish that Ψ†m(θ∗)
a.s.−→ Ψ(θ∗), from which it follows that

∣∣Ψ†m(θ∗) − Ψ(θ∗)
∣∣ a.s.−→ 0, which in turn

implies convergence in probability of the second term in (A.3). This and our earlier results force both terms

to 0 in the limit, however this is a contradiction to the statement in (A.2), so we conclude that the claim in

Theorem 1 holds.

Proof of Theorem 2. Let us consider the subproblem for the region given by the interval (xk, xk+1). Let M

be a random variable that takes a value of 0 if Z is drawn from Π0 and a value of 1 if Z is drawn from Π1.

Then

fi
(
z | z ∈ (xk, xk+1)

)
=

fi(z)

Fi(xk+1)− Fi(xk)
, i = 0, 1, (A.7)

and furthermore

P
(
M = i

∣∣ Z ∈ (xk, xk+1)
)

(A.8)

=
P
(
Z ∈ (xk, xk+1)

∣∣M = i
)
P (M = i)

P
(
Z ∈ (xk, xk+1)

)

=
P
(
Z ∈ (xk, xk+1)

∣∣M = i
)
P (M = i)

∑1
i=0 P

(
Z ∈ (xk, xk+1)

∣∣M = i
)
P (M = i)

,
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=
πi

(
Fi(xk+1)− Fi(xk)

)

∑1
i=0 πi

(
Fi(xk+1)− Fi(xk)

) , i = 0, 1.

Let us denote the density function defined in (A.7) as f (k)
i , and let us denote the quantity defined in (A.8) as

π
(k)
i , each for i = 0, 1, k = 1, . . . , t. Then

π
(k)
i f

(k)
i (x) =

πi

(
Fi(xk+1)− Fi(xk)

)

∑1
i=0 πi

(
Fi(xk+1)− Fi(xk)

) fi(z)

Fi(xk+1)− Fi(xk)

=
πi fi(z)

∑1
i=0 πi

(
Fi(xk+1)− Fi(xk)

) . (A.9)

Thus we see that π0f0(z) and π1f1(z) are multiplied by the same positive constant to obtain π(k)
0 f

(k)
0 (z)

and π(k)
1 f

(k)
1 (z), respectively. Since it is assumed that there is exactly one value z∗k in (xk, xk+1) such

that π0f0(z∗k) = π1f1(z∗k), it follows from (A.9) that z∗k is also the only point such that π(k)
0 f

(k)
0 (z∗k) =

π
(k)
1 f

(k)
1 (z∗k). Furthermore, for any points z such that π0f0(z) < π1f1(z), it follows that π(k)

0 f
(k)
0 (z) <

π
(k)
1 f

(k)
1 (z), and for any points z such that π0f0(z) > π1f1(z), it follows that π(k)

0 f
(k)
0 (z) > π

(k)
1 f

(k)
1 (z).

Thus the conditions of Lemma 2 in the supplementary materials of Hennig and Viroli (2016) are satisfied,

and the quantile classifier achieves the Bayes rule classification rate for the region. Since this is the case for

all of the regions, we conclude that the Bayes rule classification rate is achieved for the entire domain due to

the form of the multimodal quantile classifier as defined in (11).

Proof of Theorem 4. The upper bound on the difference between the component-wise quantile distances

shown in (A.10) was established in the proof of Theorem 1 in Hennig and Viroli (2016). For z ∈ R and

θ, θ′ ∈ (0, 1) then

∣∣Φij(z, θ)− Φij(z, θ
′)
∣∣ ≤ |z| |θ − θ′|+ 4|F−1

ij (θ)− F−1
ij (θ′)|, i = 1, 2, j = 1, . . . , p. (A.10)

Since F−1
ij is continuous by assumption, it follows that for arbitrary fixed z, Φij(z, θ) is continuous in θ for

every {i, j}. This in turn implies that for arbitrary fixed z then Λ(z,θ) = α0 +
∑p

j=1 αjΛj(zj , θj) is also

continuous in θ, since Λ is a linear combination of the Φij(zj , θj)’s. Then we observe that

lim
θ→θ∗

Ψ(θ) = lim
θ→θ∗

{
π0

∫
1

(
Λ(z,θ) > 0

)
dP0(z) + π1

∫
1

(
Λ(z,θ) ≤ 0

)
dP1(z)

}
(A.11)
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= π0

∫
lim
θ→θ∗

1

(
Λ(z,θ) > 0

)
dP0(z) + π1

∫
lim
θ→θ∗

1

(
Λ(z,θ) ≤ 0

)
dP1(z)

= π0

∫
1

(
lim
θ→θ∗

Λ(z,θ) > 0
)
dP0(z) + π1

∫
1

(
lim
θ→θ∗

Λ(z,θ) ≤ 0
)
dP1(z)

= π0

∫
1

(
Λ(z,θ∗) > 0

)
dP0(z) + π1

∫
1

(
Λ(z,θ∗) ≤ 0

)
dP1(z)

= Ψ(θ∗).

The justification for bringing the limit inside of the integral is due to the dominated convergence theorem. The

justification for bringing the limit inside of the indicator function is that the indicator function is continuous

everywhere except at 0, which by Assumption 2 occurs with probability 0, and hence does not change the

value of the integral. This result establishes that Ψ is continuous in θ.

It is shown in the supplementary materials that θ̂jn
p−→ θ̃j , so by Slutsky’s theorem it follows that

θ̂n
p−→ θ̃. Then by the result obtained in equation (A.11), a second application of Slutsky’s theorem yields

Ψ(θ̂n)
p−→ Ψ(θ̃).

A.2.3 Proof of Theorem 3

Recall the statement of Theorem 3 from the main paper. We will need the following assumptions for the

result. Let δ be a small positive constant, and consider the following assumptions.

Assumption 1. F−1
i is a continuous function of θ, i = 0, 1.

Assumption 2. P
(

Λ(Z, θ) = 0
)

= 0 for all θ ∈ [δ, 1− δ].

Theorem 3. Consider two populations Π0 and Π1 with corresponding distribution functions F0 and F1 and

density functions f0 and f1 such that f0 and f1 are nonzero on the same domain, and further suppose that

Assumptions 1 and 2 hold. Let Z be a random variable with a prior probability π0 of being a member of

population Π0, and π1 = 1− π0 the prior probability of being a member of population Π1.

Next, suppose that there are a finite number of points x1 < · · · < xt such that F0(x) = F1(x) for

x ∈ {x1, . . . , xt} and that F0(x) 6= F1(x) otherwise, and let us denote x0 = inf{x : f0(x) > 0} and

xt+1 = sup{x : f0(x) > 0}. Further assume that for every interval (xk, xk+1), that there is exactly one

point z∗k ∈ (xk, xk+1) such that π0f0(z∗k) = π1f1(z∗k), and that π0f0(z) < π1f1(z) for z on one side of z∗k

and π0f0(z) > π1f1(z) for z on the other side of z∗k in the interval.
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Let Ψ†n denote the classification rate of the empirically optimal multimodal quantile classifier, and letR

denote the Bayes rule classification rate. Then under Assumptions 1 and 2, it follows that Ψ†n
p−→ R.

A.2.3.1 Preliminary propositions

To begin with, we define some terminology and establish some intermediate results that will be of use

when proving Theorem 3. We provide the proof of the main theorem in Section A.2.3.2, and then go back

and provide the proofs for the intermediate propositions in A.2.3.3.

Let us start by partitioning the domain of Π0 and Π1. The idea is to create small intervals around the

values of x where F0(x) = F1(x) and then have large intervals between those smaller intervals. Consider

the setting of Theorem 3 in what follows. Then we have points x1 < · · · < xt such that F0(x) = F1(x)

for x ∈ {x1, . . . , xt}, and points τ̃1 < · · · < τ̃k+1 such that π0f0(z) = π1f1(z) for z ∈ {τ̃1, . . . , τ̃k},

and we additionally define x0 = inf{x : f0(x) > 0} and xt+1 = sup{x : f0(x) > 0}. Then we

consider non-overlapping intervals B0, . . . ,Bt+1 of the form (blowk , bupk ] such that xk ∈ Bk and τ̃k 6∈ Bk,

and further define the intervals A1, . . . ,Ak of the form (alowk , aupk ] such that alowk = bupk−1 and aupk = blowk .

We also at times consider the further subdivision of Ak into the intervals A−k = Ak ∩ {z : z ≤ τ̃k} and

A+
k = Ak ∩ {z : z > τ̃k}. See Figure A.3 for an example illustration of such a partitioning.

Figure A.3: An example partitioning of the domain of Π0 and Π1 into sets B0, A1, B1, A2, B2, A3, B3, A4,
and B4. The partitioning is based on the fact that the Bk are the regions where it is hard to estimate sign(
F1(x)− F0(x)).

π0f0(x)

π1f1(x)

︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷
A1 A2 A3 A4

F0(x) = F1(x)

B1 B2B0 B3

{ { {︷ ︸︸ ︷

B4

︷ ︸︸ ︷
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Next we define a restricted variant of the classification rate for the empirical quantile classifier. Let

Ψ†n,D(θ) = π0

∫

D
1

(
Λn(z, θ) > 0

)
dP0(z) + π1

∫

D
1

(
Λn(z, θ) ≤ 0

)
dP1(z),

for D ⊂ R. Thus, ψ†n,D(θ) is the classification rate for the θ-th empirical quantile classifier with n samples

over the region D. We additionally define θ̂n,D to be any solution to the equation

θ̂n,D = arg max
θ∈T

Ψn,D(θ),

where T = [δ, 1− δ] for some small positive constant δ, and further define τ̂n,D be the decision rule boundary

corresponding to the chosen value for θ̂n,D. We also define a measure of how many more points are correctly

classified by the θ-th empirical quantile classifier than are incorrectly classified in the region D as

ΓD(θ) =
∑

zi∈Π0
zi∈D

1

(
Λn(zi, θ) > 0

)
+
∑

zi∈Π1
zi∈D

1

(
Λn(zi, θ) ≤ 0

)

−
∑

zi∈Π0
zi∈D

1

(
Λn(zi, θ) ≤ 0

)
−
∑

zi∈Π1
zi∈D

1

(
Λn(zi, θ) > 0

)
.

With these definitions in hand, we can now begin to present some results. The next proposition deals with

estimating the difference between the distribution functions.

Proposition 4. Suppose that we have sets A1, . . . ,At+1 such that infx∈
⋃
Ak |F1(x)− F0(x)| > 0. Then

lim
n→∞

P
(

max
x∈
⋃
Ak

{
sign(F̂1n1(x)− F̂0n0(x))− sign(F1(x)− F0(x))

}
= 0

)
= 1.

Next, Supplementary Proposition 5 and Supplementary Corollary 6 provide necessary conditions for the

classification rate to differ for the quantile level chosen based on the observations in Ak, compared the

quantile level based on the points in the surrounding region selected by the multimodal quantile classifier.

Proposition 5. Let x1, . . . , xtn be the cutpoints chosen by the multimodal empirical quantile classifier, and

suppose that sign(F̂1n1(x) − F̂0n0(x)) = sign(F1(x) − F0(x)) for all x ∈ Ak. Let kn be the index such

that Ak ⊂ (xkn−1, xkn ], then a necessary condition for the event Ψ†n,Ak(θ̂n,(xkn−1,xkn ]) 6= Ψ†n,Ak(θ̂n,Ak) to

occur is that either:
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1. there is an a ∈ R with xkn−1 < a ≤ alowk such that Γ(alowk ,τ̂n,Ak]
(θ̂n,Ak) ≤ −Γ(a,alowk ](θ̂n,Ak), or

2. there is an a ∈ R with aupk < a ≤ xkn such that Γ(τ̂n,Ak ,a
up
k ](θ̂n,Ak) ≤ −Γ[aupk ,a](θ̂n,Ak).

This says that any move of the decision rule boundary from Ak to one of the surrounding intervals enclosed

by (xkn−1, xkn ] requires an interval directly borderingAk so that changing the boundary would cause enough

of a gain in the number of correctly classified points in the bordering interval to outweigh the decrease in

correctly classified points in Ak. The following corollary provides a similar result, but now with respect to

the true optimal decision rule boundary instead of the estimated boundary.

Corollary 6 (Corollary to Supplementary Proposition 5). Consider the setting of Supplementary Proposition

5, and let θ̃k and τ̃k be the optimal quantile level and corresponding decision rule boundary for the subproblem

restricted to Ak. Then a necessary condition for the event Ψ†n,Ak(θ̂n,(xkn−1,xkn ]) 6= Ψ†n,Ak(θ̃k) to occur is

that either:

1. there is an a ∈ R with xkn−1 < a ≤ alowk such that Γ(alowk ,τ̃k](θ̃k) ≤ −Γ(a,alowk ](θ̃k), or

2. there is an a ∈ R with aupk < a ≤ xkn such that Γ[τ̃k,a
up
k ](θ̃k) ≤ −Γ[aupk ,a](θ̃k).

Next we establish a general convergence result that will be of use later.

Proposition 7. LetG1, G2, . . . , andH1, H2, . . . be two sequences of events such thatGk andHk correspond-

ing to the same probability space for each k. Suppose that limn→∞ P (Gn) = π, and limn→∞ P (Hn) = 1.

Then limn→∞ P (Gn|Hn) = π.

Finally, the following result says that we can construct the partitioning of the populations’ domains so that

conditional on the estimated distribution functions having the same within-region stochastic ordering for

A1, . . . ,At+1, then the classification rate for the quantile classifier based on Ak is equal to the classification

rate for the quantile classifier based on the surrounding subproblem chosen by the classifier with high

probability.

Proposition 8. Consider the setting of Theorem 3, and let Hn denote the event that sign(F̂1n1(x) −

F̂0n0(x)) = sign(F1(x) − F0(x)) for all x ∈ Ak. Then we can choose B0,A1,B2, . . . ,At,Bt+1 so

that limn→∞ P
(

Ψ†n,Ak(θ̂n,(xkn−1,xkn ]) = Ψ†n,Ak(θ̂n,Ak)
∣∣Hn

)
= 1 for k = 1, . . . , t+ 1.
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A.2.3.2 Proof of Theorem 3

Proof of Theorem 3. Fix ε, δ > 0. Then we want to show that there exists some N0 ∈ N such that for all

N ≥ N0, then

P
(∣∣Ψ†N −R

∣∣ > ε
)
< δ.

In what follows we let Ψ†N,D denote the classification rate for a subset of the domain D, but using the

classification rule constructed by the multimodal quantile classifier for the entire domain. Similarly, we let

RD denote the Bayes rule classification rate restricted to the domain D. We will assume that there are t− 1

values of x such that F0(x) = F1(x), and let us choose B0, . . . ,Bt so that
∑t

`=0RB` ≤
ε
2 . Then we have

P
(∣∣Ψ†N −R

∣∣ > ε
)

= P

(
t∑

k=1

∣∣Ψ†N,Ak −RAk
∣∣+

t∑

`=0

∣∣Ψ†N,B` −RB`
∣∣ > ε

)

≤ P

({
t∑

k=1

∣∣Ψ†N,Ak −RAk
∣∣ > ε

2

}
∩

{
t∑

`=0

∣∣Ψ†N,B` −RB`
∣∣ > ε

2

})

≤ P

(
t∑

k=1

∣∣Ψ†N,Ak −RAk
∣∣ > ε

2

)
+ P

(
t∑

`=0

∣∣Ψ†N,B` −RB`
∣∣ > ε

2

)

= P

(
t∑

k=1

∣∣Ψ†N,Ak −RAk
∣∣ > ε

2

)
(A.12)

≤ P

(
t⋃

k=1

{∣∣Ψ†N,Ak −RAk
∣∣ > ε

2t

})

≤
t∑

k=1

P
(∣∣Ψ†N,Ak −RAk

∣∣ > ε

2t

)

=

t∑

k=1

{
1− P

(∣∣Ψ†N,Ak −RAk
∣∣ ≤ ε

2t

)}
.

We note that the equality for (A.12) is due to the construction of the B`. Thus, it suffices to show that

P
(∣∣ΨN,Ak −RAk

∣∣ ≤ ε

2t

)
> 1− δ1,
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for k = 1, . . . , t, and where δ1 = δ
t .

Next, we define a variant of Ψ†N,D that we call Ψ†∗N,D, and which is defined as the classification rate

for the regular (non-multimodal) quantile classifier where the empirically optimal quantile level is chosen

based only on the observations in D. We also define HN to be the event that sign(F̂1n(x) − F̂0n(x)) =

sign(F1(x)− F0(x)) for all x ∈ Ak and for k = 1, . . . , t. Then for large N we have

P
(∣∣Ψ†N,Ak −RAk

∣∣ ≤ ε

2t

)

≥ P
({∣∣Ψ†∗N,Ak −RAk

∣∣ ≤ ε

2t

}
∩
{

Ψ†∗N,Ak = Ψ†N,Ak

}
∩ HN

)
(A.13)

= 1− P
({∣∣Ψ†∗N,Ak −RAk

∣∣ ≤ ε

2t

}c
∪
{{

Ψ†∗N,Ak = Ψ†N,Ak

}
∩ HN

}c)

= 1− P
({∣∣Ψ†∗N,Ak −RAk

∣∣ ≤ ε

2t

}c)
− P

({{
Ψ†∗N,Ak = Ψ†N,Ak

}
∩ HN

}c )

> 1− δ1

2
− P

({{
Ψ†∗N,Ak = Ψ†N,Ak

}
∩ HN

}c )
,

where the inequality for (A.13) is due to the convergence result in Hennig and Viroli (2016). Furthermore,

P
({{

Ψ†∗N,Ak = Ψ†N,Ak

}
∩ HN

}c )

= 1− P
({

Ψ†∗N,Ak = Ψ†N,Ak

}
∩ HN

)

= 1− P
(

Ψ†∗N,Ak = Ψ†N,Ak

∣∣HN

)
P
(
HN

)
,

so it suffices to show that

P
(

Ψ†∗N,Ak = Ψ†N,Ak

∣∣HN

)
> 1− δ2 and P (HN ) > 1− δ2, (A.14)

and where 1 − δ2 =
(

1− δ1
2

)1/2
. But we know that both inequalities in (A.14) hold for large N due to

Supplementary Proposition 8 and Proposition 4, so this establishes the main result of the theorem.
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A.2.3.3 Proofs of preliminary propositions

Proof of Supplementary Proposition 4. From the Glivenko-Cantelli theorem (e.g. see Van der Vaart (2000)),

we know that for every ε, δ > 0 there exists an N0 ∈ N such that for every N ≥ N0

P
(

sup
x

∣∣∣F̂0N (x)− F0(x)
∣∣∣ > ε

2

)
<
δ

2
,

and additionally there exists an N1 ∈ N such that for every N ≥ N1

P
(

sup
x

∣∣∣F̂1N (x)− F1(x)
∣∣∣ > ε

2

)
<
δ

2
.

Then for N ≥ max(N0, N1), we have

P
(

sup
x

∣∣∣F̂1N (x)− F̂0N (x)− (F1(x)− F0(x))
∣∣∣ > ε

)

= P
(

sup
x

∣∣∣F̂1N (x)− F1(x) + F0(x)− F̂0N (x)
∣∣∣ > ε

)

≤ P
(

sup
x

{∣∣∣F̂1N (x)− F1(x)
∣∣∣+
∣∣∣F̂0N (x)− F0(x)

∣∣∣
}
> ε

)

≤ P
(

sup
x

∣∣∣F̂1N (x)− F1(x)
∣∣∣+ sup

x

∣∣∣F̂0N (x)− F0(x)
∣∣∣ > ε

)

≤ P
({

sup
x

∣∣∣F̂1N (x)− F1(x)
∣∣∣ > ε

2

}
∪
{

sup
x

∣∣∣F̂0N (x)− F0(x)
∣∣∣ > ε

2

})

≤ P
(

sup
x

∣∣∣F̂1N (x)− F1(x)
∣∣∣ > ε

2

)
+ P

(
sup
x

∣∣∣F̂0N (x)− F0(x)
∣∣∣ > ε

2

)

≤ δ

2
+
δ

2

= δ,

Suppose now that infx∈
⋃
Ak |F1(x)− F0(x)| = κ for κ > 0. Then

P
(

max
x∈
⋃
Ak

{
sign(F̂1n(x)− F̂0n(x))− sign(F1(x)− F0(x))

}
= 0

)

≤ P
(

sup
x

∣∣∣F̂1N (x)− F̂0N (x)− (F1(x)− F0(x))
∣∣∣ ≥ κ

)
. (A.15)
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But since for every δ > 0 we can find an N∗ ∈ N such that for every N ≥ N∗ the expression in (A.15) is

less than κ the definition of a limit is satisfied and the result is shown.

Proof of Supplementary Proposition 5. Firstly, we note that if Ψ†n,Ak(θ̂n,(xkn−1,xkn ]) 6= Ψ†n,Ak(θ̂n,Ak) then

τ̂n,(xkn−1,xkn ] 6∈ Ak. For if this were indeed the case, then we would have a suboptimal classification of

points inside of Ak without changing the classification of points in the surrounding intervals.

Suppose then that τ̂n,(xkn−1,xkn ] ∈ (xkn−1, a
low
k ]; let us call this value and the corresponding quantile

level τ∗ and θ∗ for ease of notation. This choice of quantile level reverses the classification of points in the

region (alowk , τ∗] while leaving the classifications the same in (τ∗, xkn ], so that there are now Γ(alowk ,τ∗](θ
∗)

fewer correct classifications in those regions. Thus, we need to get at least that many more correct in (τ∗, ak]

to counteract this loss, since the classification of observations in (xkn−1, τ
∗] remains unchanged.

A similar argument can be made for τ̂n,(xkn−1,xkn ] ∈ (aupk , xkn ]. These statements in conjunction verify

Supplementary Proposition 5.

Proof of Corollary 6. We note that Γ(alowk ,τ̃k)(θ̃k) ≤ Γ(alowk ,τ̂n,Ak]
(θ̂n,Ak) and that Γ[τ̃k,a

up
k ](θ̃k) ≤ Γ(τ̂n,Ak ,a

up
k ]

(θ̂n,Ak), from which it follows that both conditions in Corollary 6 are weaker then the conditions in Sup-

plementary Proposition 5. Since they are necessary conditions in the proposition, then they must also be

necessary conditions in the corollary.

Proof of Supplementary Proposition 7. We have

lim
n→∞

P (An|Hn)

= lim
n→∞

P (An ∩Hn)

P (Hn)

=
limn→∞ P (An ∩Hn)

limn→∞ P (Hn)

= lim
n→∞

P (An ∩Hn)

= lim
n→∞

{
1− P (Acn ∪Hc

n)
}

≥ lim
n→∞

{
1−

[
P (Acn) + P (Hc

n)
]}

= lim
n→∞

{
1−

[
1− P (An) + 1− P (Hn)

]}
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= lim
n→∞

{
P (An)− 1 + P (Hn)

}

= lim
n→∞

P (An)− 1 + P (Hn)

= π − 1 + 1

= π.

Furthermore,

lim
n→∞

P (An|Hn)

= lim
n→∞

P (An ∩Hn)

P (Hn)

=
limn→∞ P (An ∩Hn)

limn→∞ P (Hn)

= lim
n→∞

P (An ∩Hn)

≤ lim
n→∞

P (An)

= π.

Thus, by putting these two pieces together, we obtain the desired result.

Proof of Supplementary Proposition 8. Let us focus our attention for the time-being to the region Ak and

its surrounding regions Bk−1 and Bk. Then a necessary condition for the event Ψ†n,Ak(θ̂n,(xkn−1,xkn ])

6= Ψ†n,Ak(θ̂n,Ak) to occur is given by Corollary 6. We will show in what follows that Bk−1,Ak, and Bk can

be chosen so that the total number of observations in Bk−1 is less than Γ(ak,τ̃k)(θ̃k) with high probability, and

the total number of observations in Bk is less than Γ(τ̃k,bk)(θ̃k) with high probability, which together implies

that the necessary condition in Corollary 6 does not occur.

Let us define the random variables U (i)
` = 1 (X` drawn from Πi, X` ∈ A+

k ), i = 0, 1 and V` = 1 (X` ∈

Bk). Further define the quantities πU(i) = EU (i)
` , i = 0, 1 and πV = EV`. Now, under the assumptions

of Theorem 3 we have either π0f0(x) > π1f1(x) or π0f0(x) < π1f1(x) for all x ∈ A+
k . Suppose for

the time-being that it is the latter, then a result of
∑N

`=1

(
U

(1)
` − U

(0)
` − V`

)
> 0 means that part 2 of the
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necessary condition in Corollary 6 cannot occur since the value of
∑N

`=1 V` ≥ −Γ[aupk ,a](θ̃k) for any a ∈ R

with aupk < a ≤ xkn .

Now, since we are considering the case where π0f0(x) < π1f1(x) for all x > τ̃k, it follows that πU(1) >

πU(0) for any choice of A+
k . This being the case, let us choose A+

k and Bk such that πV < πU(1) − πU(0) .

Then we have

E

[
N∑

`=1

(
U

(1)
` − U

(0)
` − V`

)]
= n

(
πU(0) − πU(1) − πV

)
> 0. (A.16)

For the case when π0f0(x) > π1f1(x) then we would instead consider
∑N

`=1

(
U

(0)
` − U (1)

` − V`
)
. Next,

since U (1)
` , U

(0)
` , and V` along with other possible values for X` form a portion of a multivariate distribution,

we have

Var

[
N∑

`=1

(
U

(1)
` − U

(0)
` − V`

)]
(A.17)

= nVar
[
U

(1)
1 − U (0)

1 − V1

]

= n
(

Var
[
U

(1)
1

]
+ Var

[
U

(0)
1

]
+ Var

[
V1

]

− Cov
[
U

(1)
1 , U

(0)
1

]
− Cov

[
U

(1)
1 , V1

]
+ Cov

[
U

(0)
1 , V1

])

= n
(
πU(1)(1− πU(1)) + πU(0)(1− πU(0)) + πV (1− πV )

+ πU(1)πU(0) + πU(1)πV − πU(0)πV

)

<∞.

Let us denote W` = U
(1)
` − U

(0)
` − V`, and let µW = EW and σ2

W = Var [W ], then

P

(
N∑

`=1

W` ≤ 0

)

= P

(
N∑

`=1

W` − nµW ≤ −nµW

)

= P

(
−

(
N∑

`=1

W` − nµW

)
≥ nµW

)
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≤ P

(∣∣∣∣∣
N∑

`=1

W` − nµW

∣∣∣∣∣ ≥ nµW
)

= P




∣∣∣
∑N

`=1W` − nµW
∣∣∣

√
nσW

≥ nµW√
nσW




= P




∣∣∣
∑N

`=1W` − nµW
∣∣∣

√
nσW

≥
√
nµW
σW




≤
σ2
W

nµ2
W

, (A.18)

where the final inequality is due to Chebyshev’s inequality. We note that this upper bound can also be obtained

for an analogous statement regarding the number of points in Bk−1 compared to the number of correctly

classified points minus the number of incorrectly classified points in A−k .

Let us denote the event described in (A.17) and the analogous event for A−k and Bk−1 as S+
n,k and S−n,k,

respectively. Then we have

P
(

Ψ†n,Ak(θ̂n,(xkn−1,xkn ]) 6= Ψ†n,Ak(θ̂n,Ak)
∣∣HN

)

≤ P
(
S−n,k ∪ S

+
n,k

∣∣ HN

)

≤ P
(
S−n,k

∣∣ HN

)
+ P

(
S+
n,k

∣∣ HN

)
. (A.19)

Now from (A.18) and the analogous result for A−k and Bk−1, we obtain that limn→∞ P
(
S−n,k

)
= limn→∞

P
(
S+
n,k

)
= 0. Furthermore, from Supplementary Proposition 7, we obtain that limn→∞ P

(
S−n,k

∣∣ HN

)
=

limn→∞ P
(
S+
n,k

∣∣ HN

)
= 0, which in turn forces (A.19) to 0 in the limit.

Thus we conclude that limn→∞ P
(

Ψ†n,Ak(θ̂n,(xkn−1,xkn ]) 6= Ψ†n,Ak(θ̂n,Ak)
∣∣HN

)
for appropriately

chosen Bk−1,Ak, and Bk. Furthermore, we can choose B0,A1,B1, . . . ,At+1,Bt+1 so that this expression

holds for all k, since it only requires making the Bk small enough so that the expression in (A.16) and it’s

counterpart hold for each k. Since we can make the Bk arbitrarily small, we can ensure that it is small enough

to satisfy such an expression for both (or just one in the case of B0 or Bt+1) of the neighboring Ak.
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A.3 Extended simulation results

A.3.1 Simulated data scenarios

Consider the following framework for each of the scenarios. Let Z = (Z1, . . . , Zp) ∼ N(0, Σ), and let

Vi = (Vi1, . . . , Vip) andWi = (Wi1, . . . ,Wip) be observations from two populations, i = 1, . . . , n/2, and

where the Vi andWi are all mutually independent. There are two choices of covariance matrices considered

for Σ. In some scenarios we consider independent data where the covariance matrix is the identity matrix, and

in other scenarios we consider the correlated data with an autoregressive lag 1 covariance matrix (abbreviated

as AR1). The AR1 matrix is specified with variance parameters identically 1 on the diagonal, and correlation

parameter 0.8. In the interest of continuity, the scenarios are designed to be similar to the simulation settings

presented in Hennig and Viroli (2016).

In the first and second scenarios, we consider two classes each with features drawn from a multivariate

Gaussian distribution and with one class given a location shift. That is to say that for each feature we consider

Vij ∼ Zj and Wij ∼ Zj + 0.35. In the first scenario we consider uncorrelated data for the underlying

Gaussian distribution, and in the second scenario we consider autoregressive correlation.

In the third and fourth scenarios, we consider highly skewed data by exponentiating the components

of a Gaussian distribution. That is to say that for each feature we consider Vij ∼ exp(Zj) and Wij ∼

exp(Zj) + 0.35. In the third scenario we consider uncorrelated data for the underlying Gaussian distribution,

and in the fourth scenario we consider autoregressive correlation.

In the fifth and sixth scenarios we consider different distributions for each of 5 blocks of features. In

more detail, the data is sampled from a Gaussian distribution and then p features are evenly split into 5 blocks,

with the following transformations performed to the various blocks: (i) Vij ∼ Zj and Wij ∼ Zj + 0.2, (ii)

Vij ∼ exp(Zj) and Wij ∼ exp(Zj) + 0.2, (iii) Vij ∼ log |Zj | and Wij ∼ log |Zj |+ 0.1, (iv) Vij ∼ Z2
j and

Wij ∼ Z2
j +0.2, and (v) Vij ∼ |Zj |1/2 andWij ∼ |Zj |1/2+0.1. In the fifth scenario we consider uncorrelated

data for the underlying Gaussian distribution, and in the sixth scenario we consider autoregressive correlation.

In the seventh and eight scenarios, we considered data with different distributional shapes within each

feature. In the seventh scenario we considered data with independent beta distributed features and in the eight

scenario we considered data with independent gamma distributed features. The beta distribution parameters

were sampled as follows. Two shape parameters were sampled for each feature each from a unif (0.1, 3)

and unif (0.5, 3) distribution for each shape parameter, respectively. Then for each class and feature, each
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parameter was transformed by taking the absolute value of some additive Gaussian random noise. So for

example, suppose that αj and βj are the shape parameters drawn for the j-th feature. Then for each class

the distributional parameters are each sampled from |αj +N(0, σ2
j )| and |βj +N(0, σ2

j )| distributions. The

parameters σ1, . . . , σ50 were given by a fixed sequence each with values between 0.05 and 0.20. Once the

shape parameters were sampled, the same parameters were used for every replicate and every simulation

study. Finally, the gamma distribution parameters in the eighth scenario were sampled in essentially the same

manner.

In the ninth scenario we consider a setting suggested to us by one the reviewers in which feature deletion

occurs for marginal-based methods such as composite quantile-based classifiers. We consider two classes

that are drawn from a multivariate Gaussian distribution, one with a mean of 0 and one with a mean vector

µ such that µ1 = µ3 = · · · = 0.5 and µ2 = µ4 = · · · = 0. Both classes’ distributions are equipped with

the same AR1 covariance matrix Σ with variance parameters identically 1 on the diagonal and a correlation

parameter of 0.8.

In the tenth scenario, we consider data with features that follow independent mixture Gaussian distribu-

tions. The first population is a mixture of three Gaussian distribution each with variance 1 and with means

−3, 0, and 3, and prior probabilities of 0.2, 0.6, and 0.2 respectively. The second population is a mixture of

two Gaussian distributions each with variance 1 and with means −1.5 and 1.5, and prior probabilities of 0.5,

and 0.5 respectively. This is the setting shown in Table A.8.

A.3.2 Classifier implementations and settings

We compared the misclassification rate from the composite quantile-based classifiers model with that of

nine other classification methods: quantile-based classifiers Hennig and Viroli (2016), FANS Fan et al. (2016),

penalized linear regression (`1 penalty) Park and Hastie (2007), support vector machine (radial kernel) Cortes

and Vapnik (1995), k-nearest neighbor Cover and Hart (1967), naive Bayes Hastie et al. (2009), nearest

shrunken centroids Tibshirani et al. (2002), penalized LDA Witten and Tibshirani (2011), and decision trees

Breiman et al. (1984).

The composite quantiles-based classifier is implemented using the R programming language R Core Team

(2016); the source code is available from the authors upon request. Quantile-based methods is implemented

as the R package quantileDA. There are several methods of quantifying distributional skew provided by

the package; we used the default Galton skewness measure. FANS is implemented as MATLAB MATLAB
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(2016) source code and is available upon request by the authors of Fan et al. (2016). Results from both the

FANS method and FANS2 method are shown since FANS2 is similar to the augmented version of composite

quantile-based classifiers. Penalized linear regression is implemented as the R package glmnet and uses

the `1 penalty with 10-fold cross validation to select the penalty parameter. Support vector machine is

implemented in the R package e1071 through the C++ library libsvm. The Gaussian kernel was used,

with tuning parameters for each simulation selected using the function tune.svm over the kernel coefficient

parameter from among {0.001, 0.01, 0.1, 1, 2}, and the constraints violation cost from among {1, 2, 4, 8, 16}.

k-nearest neighbors is implemented in the R package class and uses leave-one-out cross validation to

choose the number of neighbors considered from among {1, . . . , 9}. Naive Bayes is implemented in the R

package e1071. Nearest shrunken centroids is implemented as the R package pamr with 10-fold cross

validation used to select the threshold parameter. The version of penalized linear discriminant analysis

compared in the simulation studies is that proposed in Witten and Tibshirani (2011), and is implemented

as the R package PenalizedLDA using 6-fold cross validation. Decision trees is implemented as the

R package rpart. All packages used in the numerical analysis are available from the Comprehensive R

Archive Network.

A.3.3 Simulation results

The composite quantile-based classifier is abbreviated as CQC. Results for the second variant of compos-

ite quantile-based classifiers where the transformed quantile distances data is augmented by the original data

are also shown and are abbreviated as CQC augmented.

Simulation results for the Gaussian setting are shown in Table A.1. We would expect composite quantile-

based classifiers to be suboptimal in this setting compared to LDA and similar classifiers since they do not

make use of the distributional information, and are interested in the magnitude of the loss of efficiency. One

thing to notice is that the augmented version of CQC performs better nearly everywhere as compared to the

non-augmented version. This is to be expected since the Bayes rule decision boundary is linear in the original

features, and is also the case for FANS2 as compared to FANS. In this setting, nearest shrunken centroids and

penalized LDA show the best performance. When n is large compared to p, marginal quantile-based classifiers

perform reasonably well, although performance deteriorates relative to other methods when conditions are

less ideal.
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Simulation results for the exponentiated Gaussian setting are shown in Table A.2. In this setting the

0-th quantile level for all features is optimal and quantile-based perform extremely well. CQC performs

well also, although never as well as quantile-based classifiers. We see this as being due to several reasons.

Firstly, quantile-based classifiers composite quantile-based classifiers sacrifice part of the data set in order

to train the linear combination coefficients; this has the effect of reducing the sample size to both choose

good quantile levels and to estimate the within-class quantiles. Secondly, since the optimal quantile level

is the same for every quantile, quantile-based classifiers is able to borrow information across all of the

features to estimate the optimal quantile level, while composite quantile-based classifiers selects the quantile

level one feature at-a-time. Thirdly, the freedom to select linear combination coefficients for the composite

quantile-based classifiers method can result in additional variation. These points highlight the trade-off

between the two methods. When the optimal quantile levels and discriminatory information are the same

across the components then quantile-based classifiers perform better than CQC, and when this is not the case

then CQC may perform better in some settings.

Simulation results for the block transformed Gaussian setting are shown in Table A.3 and Table A.4. In

contrast to the previous scenarios, in this setting the optimal quantile levels and discriminatory information

vary across the components, and in this setting CQC typically performs better than quantile-based classifiers.

FANS and decision trees are the other best-performing classifiers in this scenario. The inclusion of decision

trees suggests that there are some relatively discriminative features. When the quantity of the training data

decreases to n = 50 we see a sharp rise in the misclassification rates for all methods. It is in this setting

that the hybrid CQC and quantile-based classifiers do well. For example, when n = 50 and p = 500 with

uncorrelated data, using the hybrid approach reduces the misclassification rate from 0.351 to 0.215. Both

CQC and quantile-based classifiers perform well in this setting compared to other methods. We attribute this

in part to the relative simplicity of the models in this data-sparse setting. Additionally, the reason that the

hybrid approach works well here is that we may have a number of relatively discriminative features that the

quantile-based methods approach of selecting quantile levels can effectively key in on, and then the additional

linear combination step can help to deal with some of the differences in scale and discriminatory power

between the blocks.

Simulation results for the beta distributed and gamma distributed data settings are shown in Table A.5

and Table A.6. In the case of the beta distributed data, CQC and decision trees performed the best. We see

this as a sign of a few features having some degree of separability across the two classes. In this setting where
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the optimal quantile level varies across all of the features, we see that CQC having more flexibility to select

quantile levels results in better performance as compared to quantile-based classifiers. We see similar results

for the gamma distributed data, although in this case quantile-based classifiers perform about as well as CQC.

We see this as suggesting that there happen to be a number of features with similar optimal quantile levels

that quantile-based classifiers can select to achieve similar performance as the more flexible approach.

Simulation results for the Gaussian distributed data settings with partially equal mean vectors are shown

in Table A.7. We note that due to the construction of this scenario, the marginal distributions for the even-

numbered features are identical between the classes and will be deleted by marginal-based methods such

as composite quantile-based classifiers, naive Bayes, and FANS. Now, the inverse of an AR1 matrix is a

tridiagonal matrix, and the Bayes rule decision boundary is the set of solutions for x to xTΣ−1µ = c for

some constant c. But since Σ−1 is tridiagonal, it follows that the nonzero elements of µ are spread out over

the features that have a mean of 0 for µ, and as a result methods that delete these features will suffer from a

loss of efficiency. On the other hand, since the decision rule boundary is linear, we expect that methods such

as penalized logistic regression should be able to perform well.

In the simulation results, we see that the regular form of composite quantile-based classifiers does suffer

from some loss of efficiency, compared to say penalized logistic regression. However, as expected, the

augmented form of the classifiers does improve the efficiency of the classifier in the simulations. For example,

when n = 250 and p = 50, we have a decrease in the misclassification rate from 0.122 to 0.039. The

classification improves in nearly all of the combinations of n and p, but when the size of the training data

is limited (n = 50), the improvement is fairly minimal. We expect that this is due to the variable selection

performed by the regression step being overwhelmed by the doubling of the parameter space and the lack of

training data.

Simulation results for the mixture Gaussian distributed data are shown in Table A.8. When the training

data are more abundant (n = 250 and n = 500) then the multimodal composite quantile-based classifiers

has either the lowest or nearly the lowest misclassification rate, with FANS a close competitor for some

settings. For example, when n = 250 and p = 250, then the composite quantile-based classifiers have a

misclassification rate of 0.083 compared to a next-best rate of 0.117 among other competitors. When n = 500

then composite quantile-based classifiers and FANS have similar misclassification rates across the various

choices of p, with the two methods performing much better than any of the other classifiers. For example,
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when n = 500 and p = 500, then composite quantile-based classifiers and FANS have a misclassification

rate of 0.060 and 0.056 respectively, while the next closest competitor has a misclassification rate of 0.191.

It is interesting to note that when the training data is less abundant (n = 50), quantile-based classifiers

has the best empirical misclassification rate when p = 250 or p = 500, despite its inability to classify multiple

intervals to a single class as is necessary to achieve the Bayes rule misclassification rate. We attribute this to

the fact that when the sample size is small, quantile-based classifiers is better able to approximate its optimal

classifier than other methods. However we observe that when the training data is more abundant, then as we

would expect the misclassification rate has a higher lower bound than for other classifiers.

Simulation results comparing the model fitting algorithms described in Section 3.3 and Section 3.4 of the

main paper are shown in Table A.9 and Table A.10. In each of these tables, we consider several different

classifier model selection algorithms in addition to the usual approach. In the first and second classifiers,

we simultaneously include the transformed data for each of the features across a grid of quantile levels.

In the first classifier, we use a grid of quantile levels with values 0.01, 0.02, . . . , 0.99, and in the second

classifier, we use a grid of quantile levels with values 0.05, 0.10, . . . , 0.95. These two classifiers are labeled as

CQC simultaneous (0.01) and CQC simultaneous (0.05), in reference to their grid step size. For yet another

classifier variant, we also use a quantile level grid with step size 0.05, but this time we use feature screening

to reduce the number of features to twice the number of the original number of features. We label this variant

as CQC simultaneous screen. We additionally include an augmented version that includes the original data

for each of these classifier algorithms.

In Table A.9 we see that the usual CQC approach augmented with the original data performs the best

in all of the scenarios. We expect the CQC models with the augmented data to perform better than the

models without augmented data since the Bayes decision rule boundary is a linear boundary and the classifier

constructed from the transformed data has a piecewise linear form. Among the CQC models that were

augmented with the original data, we find that the classifiers that did not perform simultaneous selection

performed better than those that did. We expect that this is because it is important to keep the original features

in the model, and including the transformed features for all of the quantile levels makes it less likely that they

will have much or any contribution to the prediction.

In Table A.10, we see that many of the various classifiers achieve the best classification rate for at least

one of the simulation settings. In fact this is quite representative of our experience in comparing these various

classifier algorithms over many different simulation studies. In short, the different algorithms seemed fairly
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stable in the sense that there wasn’t usually a wide variability in the classification rates, and no one type of

classifier was consistently better than the others.

A.3.4 Categorical and mixed data

In practice, one often encounters data that has variables with both continuous as well as categorical data.

In problems such as these categorical data is typically reformulated into so-called dummy-coded variables.

However, the quantile-based classifier is inherently ill-conditioned to handle such data. When categorical

variables are present in the data, we propose including them in the classifier as untransformed dummy-coded

variables.

A second type of data can also cause problems: one where the data is a mixture of point masses as

well as continuous data. As an example, consider univariate data where the the quantiles of the underlying

populations are given as shown in Figure A.4.

Figure A.4: Example mixture distribution with both categorical and continuous values

Quantile levels

0.01 · · · 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Class 0 0.00 · · · 0.00 0.02 0.14 0.23 0.33 0.42 0.55 0.68 0.87 1.05 1.41
Class 1 0.00 · · · 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.08 0.18 0.20

This example raises the question as to what the quantile distances would be for a fixed choice of quantile

level. Suppose first that we consider a quantile level with nonzero quantiles for both classes, say 0.97. In this

case, the quantile distances for the data in class 0 with value 0 are larger than the quantile distances for the

data in class 1 with value 0. As a result, the quantile-based data will have spuriously introduced differences in

the data for 90% of the data, when in fact there is no discriminative information in those quantiles. Conversely,

suppose now that we select a quantile level with quantiles for both classes with value 0. Doing so has the

effect of simply multiplying the nonzero values in the data by a constant factor (i.e. the chosen quantile level).

While this is less disastrous then the previous scenario, we are not using the quantile-based data approach

consistent with the rest of the paper.

What we propose to do for such a scenario is the following. When mixture data such as the example

given above is present for a variable, we try to separate the parts of the data that belong to the point mass

contribution to the mixture, and those that belong to the continuous part of the mixture. Then for the point
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mass data, we create a categorical variable that includes a reference category for the continuous part of the

data, and for the continuous part we perform the quantile-based classification using only the reduced subset

of the data.
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Table A.1: Gaussian data, correlation coefficient = 0.8

n = 50 n = 250 n = 500

p = 50

CQC 0.402 (0.02) 0.361 (0.02) 0.358 (0.01)
CQC multimodal 0.401 (0.02) 0.362 (0.02) 0.357 (0.01)
CQC augmented 0.391 (0.02) 0.353 (0.02) 0.349 (0.01)
CQC multimodal augmented 0.390 (0.02) 0.356 (0.02) 0.351 (0.01)
Quantile-based classifiers 0.414 (0.04) 0.359 (0.01) 0.349 (0.01)
FANS 0.446 (0.04) 0.352 (0.01) 0.362 (0.01)
FANS2 0.439 (0.05) 0.356 (0.02) 0.352 (0.01)
Penalized logistic regression 0.396 (0.03) 0.360 (0.02) 0.354 (0.01)
Support vector machine 0.389 (0.03) 0.349 (0.02) 0.344 (0.01)
k-nearest neighbor 0.429 (0.02) 0.401 (0.04) 0.387 (0.01)
Naive Bayes 0.375 (0.03) 0.339 (0.01) 0.339 (0.01)
Nearest shrunken centroids 0.381 (0.03) 0.341 (0.01) 0.340 (0.02)
Penalized LDA 0.376 (0.05) 0.336 (0.02) 0.337 (0.01)
Decision trees 0.433 (0.03) 0.408 (0.02) 0.403 (0.01)

p = 250

CQC 0.437 (0.02) 0.380 (0.02) 0.370 (0.01)
CQC multimodal 0.428 (0.03) 0.385 (0.01) 0.368 (0.02)
CQC augmented 0.429 (0.02) 0.379 (0.02) 0.368 (0.01)
CQC multimodal augmented 0.426 (0.02) 0.384 (0.02) 0.365 (0.02)
Quantile-based classifiers 0.428 (0.03) 0.394 (0.03) 0.362 (0.02)
FANS 0.496 (0.01) 0.409 (0.02) 0.375 (0.01)
FANS2 0.474 (0.03) 0.398 (0.02) 0.360 (0.01)
Penalized logistic regression 0.446 (0.02) 0.395 (0.02) 0.369 (0.01)
Support vector machine 0.403 (0.03) 0.370 (0.02) 0.349 (0.02)
k-nearest neighbor 0.430 (0.04) 0.392 (0.02) 0.384 (0.01)
Naive Bayes 0.401 (0.02) 0.349 (0.01) 0.342 (0.02)
Nearest shrunken centroids 0.379 (0.02) 0.344 (0.01) 0.336 (0.01)
Penalized LDA 0.374 (0.02) 0.344 (0.01) 0.337 (0.01)
Decision trees 0.459 (0.02) 0.447 (0.01) 0.438 (0.03)

p = 500

CQC 0.427 (0.03) 0.394 (0.02) 0.369 (0.02)
CQC multimodal 0.437 (0.03) 0.386 (0.02) 0.379 (0.02)
CQC augmented 0.442 (0.04) 0.388 (0.02) 0.362 (0.01)
CQC multimodal augmented 0.443 (0.04) 0.379 (0.20) 0.362 (0.02)
Quantile-based classifiers 0.402 (0.02) 0.402 (0.03) 0.395 (0.01)
FANS 0.483 (0.03) 0.428 (0.03) 0.375 (0.02)
FANS2 0.468 (0.04) 0.411 (0.04) 0.368 (0.02)
Penalized logistic regression 0.441 (0.04) 0.387 (0.03) 0.360 (0.02)
Support vector machine 0.385 (0.03) 0.365 (0.03) 0.349 (0.01)
k-nearest neighbor 0.403 (0.04) 0.386 (0.04) 0.386 (0.03)
Naive Bayes 0.391 (0.03) 0.360 (0.02) 0.338 (0.01)
Nearest shrunken centroids 0.349 (0.03) 0.349 (0.04) 0.331 (0.01)
Penalized LDA 0.379 (0.05) 0.346 (0.02) 0.336 (0.01)
Decision trees 0.480 (0.03) 0.444 (0.03) 0.434 (0.02)
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Table A.2: Exponentiated Gaussian data, correlation coefficient = 0.8

n = 50 n = 250 n = 500

p = 50

CQC 0.223 (0.02) 0.120 (0.01) 0.098 (0.01)
CQC multimodal 0.247 (0.02) 0.124 (0.02) 0.100 (0.01)
CQC augmented 0.232 (0.02) 0.132 (0.01) 0.108 (0.01)
CQC multimodal augmented 0.265 (0.02) 0.133 (0.01) 0.109 (0.01)
Quantile-based classifiers 0.133 (0.03) 0.064 (0.01) 0.061 (0.01)
FANS 0.388 (0.06) 0.232 (0.03) 0.177 (0.02)
FANS2 0.405 (0.04) 0.235 (0.02) 0.184 (0.02)
Penalized logistic regression 0.430 (0.02) 0.426 (0.01) 0.430 (0.01)
Support vector machine 0.417 (0.03) 0.362 (0.02) 0.355 (0.02)
k-nearest neighbor 0.446 (0.02) 0.412 (0.02) 0.416 (0.02)
Naive Bayes 0.453 (0.02) 0.445 (0.03) 0.436 (0.03)
Nearest shrunken centroids 0.432 (0.02) 0.418 (0.03) 0.414 (0.02)
Penalized LDA 0.432 (0.04) 0.412 (0.01) 0.405 (0.01)
Decision trees 0.327 (0.02) 0.201 (0.03) 0.155 (0.02)

p = 250

CQC 0.242 (0.03) 0.164 (0.02) 0.128 (0.01)
CQC multimodal 0.335 (0.04) 0.164 (0.02) 0.132 (0.01)
CQC augmented 0.305 (0.03) 0.167 (0.02) 0.134 (0.01)
CQC multimodal augmented 0.385 (0.04) 0.172 (0.01) 0.109 (0.01)
Quantile-based classifiers 0.157 (0.03) 0.068 (0.01) 0.060 (0.01)
FANS 0.457 (0.05) 0.265 (0.02) 0.197 (0.02)
FANS2 0.463 (0.05) 0.271 (0.02) 0.197 (0.01)
Penalized logistic regression 0.489 (0.02) 0.458 (0.03) 0.435 (0.02)
Support vector machine 0.450 (0.02) 0.433 (0.02) 0.404 (0.02)
k-nearest neighbor 0.448 (0.02) 0.417 (0.03) 0.403 (0.02)
Naive Bayes 0.465 (0.01) 0.461 (0.03) 0.450 (0.03)
Nearest shrunken centroids 0.421 (0.02) 0.434 (0.02) 0.414 (0.02)
Penalized LDA 0.464 (0.03) 0.438 (0.04) 0.407 (0.01)
Decision trees 0.416 (0.05) 0.208 (0.03) 0.144 (0.02)

p = 500

CQC 0.268 (0.02) 0.160 (0.01) 0.135 (0.01)
CQC multimodal 0.370 (0.05) 0.164 (0.01) 0.140 (0.01)
CQC augmented 0.344 (0.05) 0.172 (0.02) 0.138 (0.01)
CQC multimodal augmented 0.399 (0.03) 0.168 (0.01) 0.139 (0.01)
Quantile-based classifiers 0.169 (0.03) 0.065 (0.01) 0.060 (0.01)
FANS 0.453 (0.05) 0.268 (0.03) 0.205 (0.02)
FANS2 0.476 (0.04) 0.271 (0.03) 0.206 (0.02)
Penalized logistic regression 0.490 (0.01) 0.458 (0.02) 0.461 (0.02)
Support vector machine 0.459 (0.03) 0.453 (0.02) 0.441 (0.02)
k-nearest neighbor 0.438 (0.04) 0.428 (0.02) 0.415 (0.02)
Naive Bayes 0.471 (0.02) 0.458 (0.02) 0.456 (0.03)
Nearest shrunken centroids 0.427 (0.02) 0.424 (0.02) 0.426 (0.02)
Penalized LDA 0.459 (0.03) 0.436 (0.02) 0.426 (0.02)
Decision trees 0.412 (0.07) 0.196 (0.03) 0.156 (0.02)
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Table A.3: Block transformed data, correlation coefficient = 0

n = 50 n = 250 n = 500

p = 50

CQC 0.181 (0.03) 0.043 (0.01) 0.029 (0.01)
CQC multimodal 0.217 (0.06) 0.045 (0.01) 0.029 (0.01)
CQC augmented 0.176 (0.05) 0.048 (0.01) 0.030 (0.01)
CQC multimodal augmented 0.225 (0.05) 0.046 (0.01) 0.031 (0.01)
Quantile-based classifiers 0.223 (0.03) 0.112 (0.02) 0.085 (0.01)
FANS 0.320 (0.08) 0.068 (0.01) 0.027 (0.01)
FANS2 0.323 (0.06) 0.063 (0.01) 0.028 (0.01)
Penalized logistic regression 0.431 (0.03) 0.322 (0.02) 0.291 (0.02)
Support vector machine 0.386 (0.02) 0.306 (0.02) 0.284 (0.01)
k-nearest neighbor 0.464 (0.02) 0.448 (0.02) 0.431 (0.02)
Naive Bayes 0.452 (0.01) 0.396 (0.02) 0.374 (0.02)
Nearest shrunken centroids 0.422 (0.05) 0.339 (0.01) 0.330 (0.02)
Penalized LDA 0.374 (0.03) 0.301 (0.02) 0.283 (0.01)
Decision trees 0.374 (0.08) 0.078 (0.01) 0.040 (0.01)

p = 250

CQC 0.222 (0.08) 0.062 (0.01) 0.045 (0.01)
CQC multimodal 0.286 (0.05) 0.062 (0.01) 0.047 (0.01)
CQC augmented 0.234 (0.08) 0.063 (0.01) 0.047 (0.01)
CQC multimodal augmented 0.316 (0.06) 0.067 (0.01) 0.049 (0.01)
Quantile-based classifiers 0.234 (0.04) 0.115 (0.01) 0.089 (0.01)
FANS 0.374 (0.07) 0.083 (0.01) 0.036 (0.01)
FANS2 0.398 (0.08) 0.080 (0.01) 0.038 (0.01)
Penalized logistic regression 0.465 (0.03) 0.382 (0.03) 0.343 (0.02)
Support vector machine 0.424 (0.02) 0.382 (0.01) 0.344 (0.01)
k-nearest neighbor 0.470 (0.03) 0.446 (0.03) 0.451 (0.02)
Naive Bayes 0.472 (0.01) 0.426 (0.02) 0.408 (0.01)
Nearest shrunken centroids 0.403 (0.05) 0.318 (0.02) 0.303 (0.02)
Penalized LDA 0.435 (0.03) 0.372 (0.02) 0.340 (0.01)
Decision trees 0.354 (0.07) 0.072 (0.02) 0.038 (0.01)

p = 500

CQC 0.215 (0.04) 0.065 (0.01) 0.046 (0.01)
CQC multimodal 0.332 (0.06) 0.065 (0.01) 0.047 (0.01)
CQC augmented 0.267 (0.07) 0.070 (0.01) 0.050 (0.01)
CQC multimodal augmented 0.390 (0.04) 0.070 (0.01) 0.050 (0.01)
Quantile-based classifiers 0.244 (0.04) 0.131 (0.02) 0.093 (0.02)
FANS 0.404 (0.07) 0.102 (0.02) 0.033 (0.01)
FANS2 0.422 (0.07) 0.094 (0.02) 0.033 (0.01)
Penalized logistic regression 0.472 (0.03) 0.414 (0.04) 0.342 (0.01)
Support vector machine 0.451 (0.02) 0.400 (0.01) 0.367 (0.01)
k-nearest neighbor 0.464 (0.03) 0.439 (0.02) 0.434 (0.02)
Naive Bayes 0.474 (0.02) 0.440 (0.02) 0.420 (0.02)
Nearest shrunken centroids 0.406 (0.04) 0.318 (0.01) 0.300 (0.01)
Penalized LDA 0.470 (0.03) 0.392 (0.02) 0.358 (0.02)
Decision trees 0.406 (0.09) 0.076 (0.03) 0.043 (0.02)
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Table A.4: Block transformed data, correlation coefficient = 0.8

n = 50 n = 250 n = 500

p = 50

CQC 0.224 (0.04) 0.081 (0.01) 0.064 (0.01)
CQC multimodal 0.224 (0.05) 0.084 (0.01) 0.068 (0.01)
CQC augmented 0.234 (0.06) 0.086 (0.01) 0.066 (0.01)
CQC multimodal augmented 0.234 (0.05) 0.086 (0.01) 0.068 (0.01)
Quantile-based classifiers 0.280 (0.08) 0.134 (0.02) 0.107 (0.01)
FANS 0.302 (0.06) 0.115 (0.02) 0.076 (0.01)
FANS2 0.308 (0.06) 0.117 (0.01) 0.076 (0.01)
Penalized logistic regression 0.443 (0.03) 0.409 (0.02) 0.396 (0.02)
Support vector machine 0.420 (0.03) 0.384 (0.02) 0.375 (0.03)
k-nearest neighbor 0.480 (0.03) 0.450 (0.02) 0.444 (0.02)
Naive Bayes 0.454 (0.04) 0.420 (0.02) 0.410 (0.02)
Nearest shrunken centroids 0.462 (0.04) 0.422 (0.01) 0.416 (0.03)
Penalized LDA 0.430 (0.05) 0.388 (0.02) 0.383 (0.02)
Decision trees 0.313 (0.07) 0.115 (0.02) 0.076 (0.01)

p = 250

CQC 0.228 (0.03) 0.115 (0.01) 0.091 (0.00)
CQC multimodal 0.339 (0.06) 0.115 (0.01) 0.094 (0.01)
CQC augmented 0.293 (0.05) 0.118 (0.01) 0.092 (0.00)
CQC multimodal augmented 0.383 (0.06) 0.116 (0.01) 0.091 (0.01)
Quantile-based classifiers 0.263 (0.02) 0.154 (0.02) 0.126 (0.03)
FANS 0.428 (0.08) 0.128 (0.01) 0.079 (0.01)
FANS2 0.402 (0.07) 0.139 (0.01) 0.085 (0.01)
Penalized logistic regression 0.477 (0.03) 0.432 (0.03) 0.421 (0.02)
Support vector machine 0.452 (0.02) 0.428 (0.03) 0.416 (0.02)
k-nearest neighbor 0.463 (0.02) 0.450 (0.02) 0.452 (0.03)
Naive Bayes 0.466 (0.02) 0.436 (0.02) 0.435 (0.02)
Nearest shrunken centroids 0.434 (0.02) 0.388 (0.02) 0.392 (0.02)
Penalized LDA 0.460 (0.03) 0.403 (0.02) 0.397 (0.02)
Decision trees 0.443 (0.07) 0.118 (0.02) 0.081 (0.01)

p = 500

CQC 0.238 (0.04) 0.125 (0.01) 0.090 (0.01)
CQC multimodal 0.379 (0.06) 0.123 (0.01) 0.091 (0.01)
CQC augmented 0.312 (0.06) 0.123 (0.01) 0.090 (0.01)
CQC multimodal augmented 0.404 (0.05) 0.127 (0.01) 0.090 (0.01)
Quantile-based classifiers 0.277 (0.03) 0.158 (0.02) 0.115 (0.03)
FANS 0.429 (0.07) 0.146 (0.02) 0.092 (0.01)
FANS2 0.415 (0.07) 0.148 (0.02) 0.095 (0.01)
Penalized logistic regression 0.480 (0.02) 0.444 (0.02) 0.430 (0.02)
Support vector machine 0.460 (0.02) 0.436 (0.02) 0.427 (0.02)
k-nearest neighbor 0.487 (0.01) 0.457 (0.01) 0.459 (0.02)
Naive Bayes 0.480 (0.03) 0.450 (0.02) 0.436 (0.01)
Nearest shrunken centroids 0.423 (0.03) 0.398 (0.03) 0.397 (0.02)
Penalized LDA 0.465 (0.04) 0.423 (0.02) 0.411 (0.01)
Decision trees 0.421 (0.10) 0.146 (0.03) 0.084 (0.02)
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Table A.5: Beta distributed data

n = 50 n = 250 n = 500

p = 50

CQC 0.060 (0.04) 0.016 (0.01) 0.009 (0.01)
CQC multimodal 0.064 (0.04) 0.015 (0.01) 0.010 (0.01)
CQC augmented 0.068 (0.03) 0.015 (0.01) 0.010 (0.01)
CQC multimodal augmented 0.077 (0.03) 0.013 (0.01) 0.009 (0.00)
Quantile-based classifiers 0.158 (0.03) 0.031 (0.01) 0.019 (0.01)
FANS 0.053 (0.03) 0.025 (0.02) 0.015 (0.00)
FANS2 0.072 (0.05) 0.023 (0.01) 0.016 (0.00)
Penalized logistic regression 0.420 (0.17) 0.511 (0.02) 0.501 (0.02)
Support vector machine 0.445 (0.10) 0.475 (0.03) 0.438 (0.02)
k-nearest neighbor 0.505 (0.02) 0.491 (0.01) 0.484 (0.01)
Naive Bayes 0.195 (0.16) 0.332 (0.13) 0.327 (0.11)
Nearest shrunken centroids 0.498 (0.01) 0.512 (0.01) 0.495 (0.02)
Penalized LDA 0.420 (0.17) 0.503 (0.01) 0.507 (0.01)
Decision trees 0.071 (0.03) 0.029 (0.01) 0.019 (0.00)

p = 250

CQC 0.049 (0.02) 0.011 (0.00) 0.012 (0.00)
CQC multimodal 0.050 (0.02) 0.015 (0.01) 0.013 (0.01)
CQC augmented 0.063 (0.03) 0.011 (0.01) 0.007 (0.00)
CQC multimodal augmented 0.068 (0.04) 0.014 (0.01) 0.010 (0.01)
Quantile-based classifiers 0.301 (0.02) 0.173 (0.03) 0.108 (0.01)
FANS 0.059 (0.04) 0.024 (0.01) 0.018 (0.01)
FANS2 0.059 (0.04) 0.026 (0.01) 0.017 (0.01)
Penalized logistic regression 0.464 (0.11) 0.495 (0.02) 0.505 (0.02)
Support vector machine 0.499 (0.02) 0.500 (0.02) 0.494 (0.02)
k-nearest neighbor 0.507 (0.02) 0.490 (0.02) 0.490 (0.02)
Naive Bayes 0.434 (0.06) 0.331 (0.18) 0.413 (0.10)
Nearest shrunken centroids 0.496 (0.01) 0.494 (0.02) 0.504 (0.01)
Penalized LDA 0.494 (0.01) 0.500 (0.01) 0.501 (0.02)
Decision trees 0.076 (0.06) 0.022 (0.01) 0.016 (0.00)

p = 500

CQC 0.075 (0.03) 0.019 (0.01) 0.011 (0.01)
CQC multimodal 0.076 (0.04) 0.019 (0.01) 0.014 (0.01)
CQC augmented 0.068 (0.03) 0.021 (0.01) 0.012 (0.00)
CQC multimodal augmented 0.082 (0.03) 0.020 (0.01) 0.014 (0.01)
Quantile-based classifiers 0.356 (0.02) 0.228 (0.03) 0.164 (0.02)
FANS 0.073 (0.07) 0.028 (0.01) 0.020 (0.01)
FANS2 0.072 (0.05) 0.031 (0.01) 0.022 (0.01)
Penalized logistic regression 0.460 (0.13) 0.485 (0.02) 0.506 (0.01)
Support vector machine 0.497 (0.02) 0.501 (0.02) 0.506 (0.02)
k-nearest neighbor 0.499 (0.02) 0.498 (0.01) 0.495 (0.02)
Naive Bayes 0.462 (0.03) 0.441 (0.05) 0.459 (0.06)
Nearest shrunken centroids 0.497 (0.01) 0.492 (0.02) 0.500 (0.01)
Penalized LDA 0.491 (0.02) 0.498 (0.02) 0.498 (0.01)
Decision trees 0.060 (0.03) 0.030 (0.01) 0.013 (0.01)
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Table A.6: Gamma distributed data

n = 50 n = 250 n = 500

p = 50

CQC 0.128 (0.03) 0.052 (0.01) 0.035 (0.01)
CQC multimodal 0.159 (0.04) 0.052 (0.01) 0.037 (0.01)
CQC augmented 0.153 (0.04) 0.054 (0.01) 0.034 (0.01)
CQC multimodal augmented 0.191 (0.05) 0.052 (0.01) 0.034 (0.01)
Quantile-based classifiers 0.156 (0.01) 0.062 (0.02) 0.045 (0.01)
FANS 0.389 (0.10) 0.107 (0.02) 0.069 (0.01)
FANS2 0.363 (0.09) 0.116 (0.02) 0.073 (0.01)
Penalized logistic regression 0.493 (0.01) 0.500 (0.02) 0.501 (0.02)
Support vector machine 0.492 (0.01) 0.462 (0.02) 0.424 (0.01)
k-nearest neighbor 0.495 (0.01) 0.489 (0.02) 0.486 (0.02)
Naive Bayes 0.424 (0.02) 0.369 (0.02) 0.341 (0.02)
Nearest shrunken centroids 0.506 (0.02) 0.506 (0.02) 0.503 (0.01)
Penalized LDA 0.498 (0.00) 0.506 (0.02) 0.501 (0.01)
Decision trees 0.272 (0.11) 0.060 (0.01) 0.038 (0.01)

p = 250

CQC 0.228 (0.12) 0.070 (0.02) 0.041 (0.01)
CQC multimodal 0.242 (0.07) 0.073 (0.02) 0.044 (0.01)
CQC augmented 0.272 (0.11) 0.083 (0.03) 0.046 (0.01)
CQC multimodal augmented 0.302 (0.05) 0.086 (0.02) 0.048 (0.01)
Quantile-based classifiers 0.246 (0.13) 0.070 (0.02) 0.055 (0.02)
FANS 0.392 (0.09) 0.146 (0.03) 0.093 (0.03)
FANS2 0.413 (0.07) 0.148 (0.04) 0.113 (0.05)
Penalized logistic regression 0.503 (0.01) 0.503 (0.01) 0.502 (0.01)
Support vector machine 0.495 (0.01) 0.501 (0.01) 0.496 (0.01)
k-nearest neighbor 0.492 (0.01) 0.489 (0.02) 0.481 (0.01)
Naive Bayes 0.501 (0.01) 0.494 (0.01) 0.491 (0.01)
Nearest shrunken centroids 0.493 (0.01) 0.501 (0.01) 0.492 (0.02)
Penalized LDA 0.498 (0.01) 0.500 (0.01) 0.500 (0.00)
Decision trees 0.296 (0.09) 0.075 (0.03) 0.040 (0.01)

p = 500

CQC 0.211 (0.05) 0.070 (0.01) 0.045 (0.01)
CQC multimodal 0.359 (0.11) 0.076 (0.01) 0.045 (0.01)
CQC augmented 0.335 (0.08) 0.081 (0.01) 0.049 (0.01)
CQC multimodal augmented 0.406 (0.08) 0.083 (0.01) 0.055 (0.02)
Quantile-based classifiers 0.192 (0.03) 0.089 (0.02) 0.062 (0.01)
FANS 0.374 (0.11) 0.128 (0.02) 0.083 (0.01)
FANS2 0.424 (0.09) 0.162 (0.05) 0.091 (0.02)
Penalized logistic regression 0.503 (0.01) 0.503 (0.02) 0.502 (0.01)
Support vector machine 0.501 (0.00) 0.496 (0.01) 0.506 (0.01)
k-nearest neighbor 0.499 (0.02) 0.490 (0.02) 0.496 (0.02)
Naive Bayes 0.498 (0.01) 0.494 (0.01) 0.492 (0.01)
Nearest shrunken centroids 0.504 (0.01) 0.504 (0.02) 0.504 (0.01)
Penalized LDA 0.496 (0.01) 0.501 (0.01) 0.504 (0.01)
Decision trees 0.341 (0.12) 0.110 (0.13) 0.039 (0.01)
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Table A.7: Gaussian data with partially equivalent marginals, correlation coefficient = 0.8

n = 50 n = 250 n = 500

p = 50

CQC 0.302 (0.03) 0.122 (0.02) 0.076 (0.01)
CQC multimodal 0.301 (0.02) 0.127 (0.02) 0.080 (0.01)
CQC augmented 0.276 (0.03) 0.034 (0.01) 0.014 (0.00)
CQC multimodal augmented 0.262 (0.02) 0.039 (0.01) 0.013 (0.00)
Quantile-based classifiers 0.354 (0.04) 0.302 (0.03) 0.281 (0.02)
FANS 0.419 (0.03) 0.094 (0.01) 0.049 (0.01)
FANS2 0.429 (0.05) 0.110 (0.02) 0.051 (0.01)
Penalized logistic regression 0.206 (0.05) 0.023 (0.00) 0.012 (0.00)
Support vector machine 0.097 (0.04) 0.012 (0.00) 0.008 (0.00)
k-nearest neighbor 0.340 (0.03) 0.263 (0.02) 0.224 (0.02)
Naive Bayes 0.321 (0.03) 0.277 (0.02) 0.262 (0.02)
Nearest shrunken centroids 0.312 (0.03) 0.269 (0.02) 0.259 (0.01)
Penalized LDA 0.310 (0.02) 0.275 (0.02) 0.265 (0.02)
Decision trees 0.415 (0.02) 0.375 (0.02) 0.345 (0.02)

p = 250

CQC 0.384 (0.04) 0.281 (0.02) 0.188 (0.02)
CQC multimodal 0.395 (0.03) 0.276 (0.02) 0.186 (0.02)
CQC augmented 0.376 (0.04) 0.214 (0.03) 0.043 (0.01)
CQC multimodal augmented 0.371 (0.03) 0.209 (0.02) 0.045 (0.01)
Quantile-based classifiers 0.366 (0.02) 0.335 (0.04) 0.321 (0.05)
FANS 0.444 (0.03) 0.117 (0.02) 0.056 (0.01)
FANS2 0.472 (0.06) 0.127 (0.02) 0.056 (0.01)
Penalized logistic regression 0.384 (0.04) 0.064 (0.01) 0.020 (0.00)
Support vector machine 0.334 (0.03) 0.135 (0.01) 0.047 (0.01)
k-nearest neighbor 0.347 (0.03) 0.265 (0.03) 0.225 (0.02)
Naive Bayes 0.368 (0.02) 0.296 (0.01) 0.282 (0.02)
Nearest shrunken centroids 0.316 (0.04) 0.260 (0.01) 0.264 (0.02)
Penalized LDA 0.340 (0.02) 0.276 (0.02) 0.272 (0.01)
Decision trees 0.451 (0.04) 0.417 (0.02) 0.394 (0.02)

p = 500

CQC 0.430 (0.03) 0.311 (0.02) 0.241 (0.03)
CQC multimodal 0.413 (0.03) 0.308 (0.02) 0.245 (0.02)
CQC augmented 0.407 (0.04) 0.278 (0.02) 0.095 (0.02)
CQC multimodal augmented 0.419 (0.05) 0.279 (0.03) 0.094 (0.03)
Quantile-based classifiers 0.370 (0.02) 0.375 (0.02) 0.366 (0.02)
FANS 0.488 (0.02) 0.140 (0.01) 0.054 (0.01)
FANS2 0.486 (0.02) 0.160 (0.01) 0.058 (0.01)
Penalized logistic regression 0.402 (0.03) 0.100 (0.03) 0.023 (0.01)
Support vector machine 0.367 (0.02) 0.242 (0.02) 0.156 (0.02)
k-nearest neighbor 0.350 (0.02) 0.264 (0.02) 0.232 (0.02)
Naive Bayes 0.392 (0.03) 0.314 (0.02) 0.302 (0.02)
Nearest shrunken centroids 0.338 (0.05) 0.259 (0.04) 0.263 (0.02)
Penalized LDA 0.375 (0.05) 0.288 (0.02) 0.288 (0.02)
Decision trees 0.439 (0.04) 0.409 (0.03) 0.397 (0.02)
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Table A.8: Mixture Gaussian data, correlation coefficient = 0

n = 50 n = 250 n = 500

p = 50

CQC 0.341 (0.03) 0.188 (0.01) 0.164 (0.01)
CQC multimodal 0.261 (0.03) 0.064 (0.01) 0.046 (0.00)
CQC augmented 0.411 (0.03) 0.195 (0.02) 0.175 (0.03)
CQC multimodal augmented 0.334 (0.03) 0.076 (0.01) 0.053 (0.01)
Quantile-based classifiers 0.284 (0.05) 0.160 (0.02) 0.146 (0.01)
FANS 0.419 (0.03) 0.094 (0.01) 0.049 (0.01)
FANS2 0.429 (0.05) 0.110 (0.02) 0.051 (0.01)
Penalized logistic regression 0.494 (0.02) 0.503 (0.01) 0.502 (0.01)
Support vector machine 0.366 (0.02) 0.219 (0.02) 0.189 (0.02)
k-nearest neighbor 0.483 (0.01) 0.485 (0.01) 0.484 (0.01)
Naive Bayes 0.328 (0.02) 0.209 (0.02) 0.186 (0.02)
Nearest shrunken centroids 0.495 (0.01) 0.499 (0.02) 0.499 (0.02)
Penalized LDA 0.494 (0.01) 0.491 (0.01) 0.496 (0.01)
Decision trees 0.464 (0.03) 0.360 (0.04) 0.324 (0.04)

p = 250

CQC 0.464 (0.02) 0.234 (0.02) 0.187 (0.02)
CQC multimodal 0.400 (0.05) 0.083 (0.01) 0.054 (0.01)
CQC augmented 0.481 (0.02) 0.264 (0.03) 0.195 (0.03)
CQC multimodal augmented 0.442 (0.03) 0.096 (0.01) 0.061 (0.01)
Quantile-based classifiers 0.359 (0.03) 0.192 (0.02) 0.158 (0.01)
FANS 0.444 (0.03) 0.117 (0.02) 0.056 (0.01)
FANS2 0.472 (0.06) 0.127 (0.02) 0.057 (0.01)
Penalized logistic regression 0.499 (0.01) 0.495 (0.02) 0.499 (0.02)
Support vector machine 0.504 (0.01) 0.417 (0.05) 0.374 (0.02)
k-nearest neighbor 0.488 (0.01) 0.481 (0.01) 0.487 (0.01)
Naive Bayes 0.431 (0.02) 0.318 (0.03) 0.270 (0.02)
Nearest shrunken centroids 0.502 (0.01) 0.492 (0.02) 0.496 (0.01)
Penalized LDA 0.506 (0.01) 0.497 (0.02) 0.506 (0.02)
Decision trees 0.491 (0.02) 0.398 (0.06) 0.334 (0.04)

p = 500

CQC 0.483 (0.02) 0.259 (0.02) 0.211 (0.02)
CQC multimodal 0.437 (0.03) 0.105 (0.01) 0.060 (0.01)
CQC augmented 0.493 (0.02) 0.307 (0.02) 0.231 (0.02)
CQC multimodal augmented 0.471 (0.03) 0.124 (0.02) 0.064 (0.01)
Quantile-based classifiers 0.370 (0.03) 0.218 (0.02) 0.191 (0.02)
FANS 0.488 (0.02) 0.140 (0.01) 0.056 (0.01)
FANS2 0.486 (0.02) 0.160 (0.01) 0.058 (0.01)
Penalized logistic regression 0.501 (0.02) 0.500 (0.02) 0.494 (0.02)
Support vector machine 0.492 (0.02) 0.489 (0.01) 0.479 (0.02)
k-nearest neighbor 0.488 (0.01) 0.486 (0.01) 0.488 (0.01)
Naive Bayes 0.445 (0.02) 0.366 (0.01) 0.330 (0.02)
Nearest shrunken centroids 0.497 (0.02) 0.502 (0.01) 0.498 (0.01)
Penalized LDA 0.498 (0.01) 0.500 (0.00) 0.497 (0.01)
Decision trees 0.499 (0.02) 0.424 (0.04) 0.327 (0.04)
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Table A.9: Model fitting comparison: Gaussian data, correlation coefficient = 0

n = 50 n = 250 n = 500

p = 50

CQC 0.286 (0.03) 0.198 (0.02) 0.160 (0.01)
CQC augmented 0.263 (0.05) 0.161 (0.02) 0.138 (0.01)
CQC simultaneous (0.01) 0.338 (0.05) 0.203 (0.01) 0.169 (0.02)
CQC simultaneous (0.05) 0.329 (0.05) 0.202 (0.01) 0.166 (0.01)
CQC simultaneous screen 0.340 (0.04) 0.204 (0.01) 0.163 (0.01)
CQC simultaneous augmented (0.01) 0.330 (0.05) 0.203 (0.01) 0.167 (0.01)
CQC simultaneous augmented (0.05) 0.338 (0.06) 0.199 (0.01) 0.167 (0.01)
CQC simultaneous screen augmented 0.336 (0.06) 0.205 (0.01) 0.168 (0.01)

p = 250

CQC 0.391 (0.03) 0.243 (0.02) 0.196 (0.02)
CQC augmented 0.355 (0.03) 0.199 (0.02) 0.158 (0.01)
CQC simultaneous (0.01) 0.399 (0.03) 0.274 (0.03) 0.202 (0.02)
CQC simultaneous (0.05) 0.402 (0.03) 0.257 (0.02) 0.201 (0.02)
CQC simultaneous screen 0.413 (0.04) 0.251 (0.01) 0.199 (0.02)
CQC simultaneous augmented (0.01) 0.404 (0.02) 0.251 (0.02) 0.183 (0.02)
CQC simultaneous augmented (0.05) 0.395 (0.02) 0.251 (0.02) 0.183 (0.02)
CQC simultaneous screen augmented 0.405 (0.04) 0.246 (0.02) 0.186 (0.02)

p = 500

CQC 0.423 (0.03) 0.280 (0.02) 0.215 (0.02)
CQC augmented 0.405 (0.04) 0.222 (0.02) 0.175 (0.01)
CQC simultaneous (0.01) 0.436 (0.04) 0.289 (0.03) 0.220 (0.01)
CQC simultaneous (0.05) 0.445 (0.03) 0.274 (0.03) 0.221 (0.01)
CQC simultaneous screen 0.443 (0.04) 0.281 (0.04) 0.221 (0.01)
CQC simultaneous augmented (0.01) 0.439 (0.05) 0.275 (0.04) 0.214 (0.01)
CQC simultaneous augmented (0.05) 0.448 (0.03) 0.265 (0.03) 0.205 (0.01)
CQC simultaneous screen augmented 0.447 (0.04) 0.258 (0.03) 0.205 (0.01)
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Table A.10: Model fitting comparison: Exponentiated Gaussian data, correlation coefficient = 0

n = 50 n = 250 n = 500

p = 50

CQC 0.174 (0.04) 0.030 (0.01) 0.012 (0.00)
CQC augmented 0.206 (0.03) 0.031 (0.01) 0.012 (0.00)
CQC simultaneous (0.01) 0.159 (0.03) 0.038 (0.01) 0.013 (0.00)
CQC simultaneous (0.05) 0.165 (0.04) 0.033 (0.01) 0.013 (0.00)
CQC simultaneous screen 0.160 (0.04) 0.035 (0.01) 0.013 (0.00)
CQC simultaneous augmented (0.01) 0.167 (0.04) 0.040 (0.01) 0.014 (0.00)
CQC simultaneous augmented (0.05) 0.166 (0.04) 0.034 (0.01) 0.014 (0.00)
CQC simultaneous screen augmented 0.173 (0.04) 0.033 (0.01) 0.013 (0.00)

p = 250

CQC 0.198 (0.03) 0.031 (0.01) 0.017 (0.00)
CQC augmented 0.222 (0.04) 0.038 (0.01) 0.016 (0.00)
CQC simultaneous (0.01) 0.215 (0.04) 0.033 (0.01) 0.014 (0.00)
CQC simultaneous (0.05) 0.218 (0.04) 0.031 (0.01) 0.015 (0.00)
CQC simultaneous screen 0.218 (0.05) 0.028 (0.00) 0.014 (0.00)
CQC simultaneous augmented (0.01) 0.199 (0.03) 0.031 (0.01) 0.015 (0.00)
CQC simultaneous augmented (0.05) 0.213 (0.08) 0.030 (0.00) 0.015 (0.00)
CQC simultaneous screen augmented 0.200 (0.03) 0.031 (0.00) 0.015 (0.00)

p = 500

CQC 0.225 (0.03) 0.036 (0.01) 0.016 (0.00)
CQC augmented 0.292 (0.03) 0.043 (0.01) 0.017 (0.01)
CQC simultaneous (0.01) 0.232 (0.07) 0.032 (0.01) 0.017 (0.00)
CQC simultaneous (0.05) 0.233 (0.06) 0.029 (0.01) 0.016 (0.00)
CQC simultaneous screen 0.248 (0.07) 0.030 (0.01) 0.017 (0.00)
CQC simultaneous augmented (0.01) 0.245 (0.07) 0.030 (0.01) 0.018 (0.01)
CQC simultaneous augmented (0.05) 0.237 (0.05) 0.029 (0.01) 0.016 (0.00)
CQC simultaneous screen augmented 0.244 (0.07) 0.029 (0.01) 0.017 (0.00)
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APPENDIX B: DAY-SPECIFIC PROBABILITIES OF CONCEPTION TECHNICAL DETAILS

B.1 Complete derivations from the main paper

In this section we provide some of the details omitted from the main paper.

B.1.1 Updating step for the fertile window day coefficients and prior parameters

B.1.1.1 Updating step for γk

We use a Metropolis step to update γk for k 6= m. We have the logarithm of the acceptance ratio r given

by

log r = log
π
(
γ∗k
∣∣ Y ,W ,γ−k, ξ,φ,m, µ, ν, data

)

π
(
γ

(s)
k
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)
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) .

For any i, j, k such that Xijk = 1 we have that
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and similarly for logP
(
Wijk

∣∣ γ(s)
k ,γ−k, ξi, data

)
. Thus, it follows that

log
P
(
W
∣∣ γ∗k ,γ−k, ξ, data

)

P
(
W
∣∣ γ(s)

k ,γ−k, ξ, data
)

= log
Πi,j:Xijk=1 P

(
Wijk

∣∣ γ∗k ,γ−k, ξi, data
)

Πi,j:Xijk=1 P
(
Wijk

∣∣ γ(s)
k ,γ−k, ξi, data

)

=
∑

i,j:
Xijk=1

logP
(
Wijk

∣∣ γ∗k ,γ−k, ξi, data
)
−
∑

i,j:
Xijk=1

logP
(
Wijk

∣∣ γ(s)
k ,γ−k, ξi, data

)

=
∑

i,j:
Xijk=1

{
Wijk

(
log γ∗k − log γ

(s)
k

)
(B.1)

− ξi exp


log γ∗k +

∑

`6=k
uijk` log γ`




+ξi exp


log γ

(s)
k +

∑

`6=k
uijk` log γ`





 .

Furthermore,

π(γ∗k)

π(γ
(s)
k )

= log

(
ν

S(k−m)µ

)ν
Γ(ν) (γ∗k)ν−1 exp

{
− ν
S(k−m)µγ

∗
k

}

(
ν

S(k−m)µ

)ν
Γ(ν)

(
γ

(s)
k

)ν−1
exp

{
− ν
S(k−m)µγ

(s)
k

}

= (ν − 1)
(

log γ∗k − log γ
(s)
k

)
− ν

S(k −m)µ

(
γ∗k − γ

(s)
k

)
. (B.2)

Thus, we can obtain the value of log r for γk for k 6= m by summing (B.1) and (B.2).

B.1.2 Prior specification of the fertile window peak intensity coefficient

Let us denote the value of the coefficient corresponding to the peak intensity day in the fertile window as

µ. In other words, if k indexes the day with the peak intensity then we have γk = µ. Then we propose using

a gamma distribution to model the peak intensity coefficient µ of the form

µ ∼ Gamma (aµ, bµ) .
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When we are solely modeling the fertile window day coefficients without any other covariates in the model,

then we can utilize the historical data from the literature to provide an informative prior for µ in a manner

similar to what we did for the fertile window decay function S. However, when are including other covariates

in the model then it is difficult to predict how these other covariates will affect the values of the fertile window

day coefficients, so in this case we suggest using an noninformative prior.

B.1.2.1 Updating step for µ

We use a Metropolis step to update µ. We have the logarithm of the acceptance ratio r given by

log r = log
π
(
µ∗
∣∣ Y ,W ,γ−m, ξ, φ,m ν

)

π
(
µ(s)

∣∣ Y ,W ,γ−m, ξ, φ,m ν
)

= log






∏

k 6=m

π
(
γk |m,µ∗, ν

)

π(γk |m,µ(s), ν)


 π(µ∗)

π(µ(s))



 .

Furthermore we have for k 6= m

log
π
(
γk |m,µ∗, ν

)

π
(
γk |m,µ(s), ν

)

= −ν
(

log γ∗k − log γ
(s)
k

)
− νγk
S(d)

(
1

µ∗
− 1

µ(s)

)
, (B.3)

and

log
π (µ∗ | aµ, bµ)

π
(
µ(s) | aµ, bµ

)

= log

b
aµ
µ

Γ(aµ)(µ∗)aµ−1 exp {−bµµ∗}
b
aµ
µ

Γ(aµ)(µ(s))aµ−1 exp
{
−bµµ(s)

}

= (aµ − 1)
(

logµ∗ − logµ(s) − bµ(µ∗ − µ(s))
)
. (B.4)

Thus we can calculate the logarithm of the acceptance ratio by summing the expression in B.3 for each

k 6= m in addition to the results of B.4.
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B.1.3 Prior specification of the variance parameter ν

We assume a prior distribution for ν of the form

ν ∼ Gamma(aν , bν). (B.5)

Since we don’t have any sense of what ν should be from study to study we simply choose an uninformative

prior.

B.1.3.1 Updating step for ν

We use a Metropolis step to update ν. The logarithm of the acceptance ratio r is given by

log r = log
π
(
ν∗
∣∣ Y ,W ,γ, ξ,φ,m, µ0, data

)

π
(
ν(s)

∣∣ Y ,W ,γ, ξ,φ,m, µ0, data
)

= log

(∏
6̀=m π

(
γ` |m,µ, ν∗

))
π(ν∗)

(∏
6̀=m π

(
γ` |m,µ, ν(s)

))
π
(
ν(s)
) .

We have

log
π (γk |m,µ, ν∗)
π
(
γk |m,µ, ν(s)

) (B.6)

= log

(
ν∗

S(k−m)µ

)ν∗
Γ(ν∗) (γk)

ν∗−1 exp
{
− ν∗

S(k−m)µγk

}

(
ν(s)

S(k−m)µ

)ν(s)
Γ(ν(s))

(γk)
ν(s)−1 exp

{
− ν(s)

S(k−m)µγk

}
(B.7)

= ν∗ log
ν∗

S(k −m)µ
− ν(s) log

ν(s)

S(k −m)µ
(B.8)

− log Γ(ν∗) + log Γ(ν(s)) + (ν∗ − ν(s)) log γk

− (ν∗ − ν(s))
γk

S(k −m)µ

= ν∗ log ν∗ − ν(s) log ν(s) − (ν∗ − ν(s)) log(S(k −m)µ) (B.9)

− log Γ(ν∗) + log Γ(ν(s)) + (ν∗ − ν(s)) log γk

− (ν∗ − ν(s))
γk

S(k −m)µ
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= ν∗ log ν∗ − ν(s) log ν(s) − log Γ(ν∗) + log Γ(ν(s)) (B.10)

(ν∗ − ν(s))

(
log γk − log

(
S(k −m)µ

)
− γk
S(k −m)µ

)
,

and

log
π (ν∗ | aν , bν)

π
(
ν(s) | aν , bν

)

= log

baνν
Γ(aν)(ν∗)aν−1 exp {−bνν∗}
baνν

Γ(aν)(ν(s))aν−1 exp
{
−bνν(s)

}

= (aν − 1)
(

log ν∗ − log ν(s) − bν(ν∗ − ν(s))
)
. (B.11)

Thus, we can obtain the value of log r for γ` by summing (B.10) for k 6= m with and (B.11).

B.1.4 Prior specification of the index of the peak intensity day

We propose modeling the peak intensity day using a multinomial distribution, with fixed prior probabili-

ties chosen by the researcher based on their level of confidence in the scheme used to identify the ovulation

day for the data in hand. For example, when ovulation day is determined using a relatively accurate measure

such as an ovulation predictor kit in a preponderance of the data, then a researcher may want to place the bulk

of the mass in the three or four days around the ovulation day. One the other hand, when the ovulation day

is primarily identified by less accurate methods such as by counting backward from the next occurrence of

menstrual bleeding, then a researcher may wish to place relatively flat prior probabilities on the distribution.

B.1.4.1 Updating the peak intensity day index

The full conditional distribution for peak intensity day index is given by

P
(
m = m∗

∣∣ Y ,W ,γ, ξ,φ, µ, ν, data
)

=

(∏
k 6=m∗ π

(
γk |m = m∗µ, ν

))
P (m = m∗)

∑K
`=1

(∏
k 6=` π

(
γk |m = `, µ, ν

))
P (m = `)

,
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where

π
(
γk |m = `, µ, ν

)
=

(
ν

S(k−`)µ

)ν

Γ(ν)
(γk)

ν−1 exp

{
− ν

S(k − `)µ
γk

}
,

and

P (m = `) = p`.

B.1.5 Gibbs step for missing covariates

Missingness in the covariates can come in the form of a day-specific variable, a cycle-specific variable,

or a baseline variable. Let h index the hth element in the ijkth covariate vector, and consider for a moment a

baseline variable for participant i. Then there are a set of entries {Uijkh} in the design matrix that correspond

to the value of this variable. Let us denote such a baseline variable as Ui··, then in the case of a continuous

variable we have Uijkh = Ui·· for the corresponding set of j, k, and h. When the variable is a categorical

variable, we have design matrix dummy variables (Uijk`1 , . . . Uijk`r) for some `1, . . . , `r for each cycle j

and fertile window day k corresponding to the value of Ui·· for participant i. We similarly denote Uij· to be a

cycle-specific variable with corresponding entries in the design matrix {Uijkh} for the set of k and h.

We assume that the prior distributions for the covariates are mutually independent. Although we

acknowledge that this is not a realistic assumption for every setting, our contention is that without study-

specific knowledge of the variables involved, it is difficult to specify a reasonable joint distribution model.

We expect this to be a reasonable approximation for what is ideally a relatively small amount of missingness

in the data.

The model for missing continuous covariates and missing categorical covariates differ slightly, as we

will cover in the following sections.

B.1.5.1 Gibbs step for missing continuous covariate

Let Uijkh be a missing day-specific covariate, then we use a Metropolis step to update Uijkh. Under the

previously stated assumptions, we have

π
(
Uijkh

∣∣ Y ,W ,γ, ξ, φ,U−ijkh

)
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=
π
(
Y ,W ,γ, ξ, φ, Uijkh,U−ijkh

)

∫
π
(
Y ,W ,γ, ξ, φ, Uijkh,U−ijkh

)
dUijkh

∝
π
(
Wi

∣∣ γ, ξi,X, Uijkh,U−ijkh

)
P
(
Xijk |Uijkh

)
π(Uijkh)

∫
π
(
Wi

∣∣ γ, ξi,X, Uijkh,U−ijkh

)
P
(
Xijk |Uijkh

)
π(Uijkh) dUijkh

,

where the P (Xijk |Uijk) term is a constant if Xijk is nonmissing for the ith subject. It follows that the

acceptance ratio r is given by

r day-specific

=
π
(
Uijkh = u∗

∣∣ Y ,W ,γ, ξ, φ,U−ijkh

)

π
(
Uijkh = u(s)

∣∣ Y ,W ,γ, ξ, φ,U−ijkh

)

=
π
(
Wi

∣∣ γ, ξi,X, Uijkh = u∗,U−ijkh

)
P
(
Xijk |Uijkh = u∗

)
π(Uijkh = u∗)

π
(
Wi

∣∣ γ, ξi,X, Uijkh = u(s),U−ijkh

)
P
(
Xijk |Uijkh = u(s)

)
π(Uijkh = u(s)).

.

Next, suppose that the missing covariate is a cycle-specific covariate, then let us denote the random variable

corresponding to this value as Uij·h. Then Uijkh = Uij·h for all fertile window days k = 1, . . . ,K, and the

acceptance ratio is given by

r cycle-specific

=
π
(
Uij·h = u∗

∣∣ Y ,W ,γ, ξ, φ,U−ij·h

)

π
(
Uij·h = u(s)

∣∣ Y ,W ,γ, ξ, φ,U−ij·h

)

=
π
(
Wij

∣∣ γ, ξi,X, Uij·h = u∗,U−ij·h

)
P
(
Xij |Uij·h = u∗

)
π(Uij·h = u∗)

π
(
Wij

∣∣ γ, ξi,X, Uij·h = u(s),U−ij·h

)
P
(
Xij |Uij·h = u(s)

)
π(Uij·h = u(s)).

,

Finally, suppose that the missing covariate is a baseline covariate, then let us denote the random variable

corresponding to this value as Ui··h. Then Uijkh = Ui··h for all cycles j and fertile window days k associated

with participant i, and the acceptance ratio is given by

r baseline
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=
π
(
Ui··h = u∗

∣∣ Y ,W ,γ, ξ, φ,U−i··h

)

π
(
Ui··h = u(s)

∣∣ Y ,W ,γ, ξ, φ,U−i··h

)

=
π
(
Wi

∣∣ γ, ξi,X, Ui··h = u∗,U−i··h

)
P
(
Xi |Ui··h = u∗

)
π(Ui··h = u∗)

π
(
Wi

∣∣ γ, ξi,X, Ui··h = u(s),U−i··h

)
P
(
Xi |Ui··h = u(s)

)
π(Ui··h = u(s)).

.

Additionally, we also need to specify a prior distribution for the covariates. For this paper we used a conjugate

prior Normal distribution for the imputed covariate. In more detail, we specify that

Uijkh | ζ, κ
i .i .d .∼ N(ζ, κ), for all i, j, k, h,

ζ |κ, {Uijkh} ∼ N(ζ0, κ),

κ | {Uijkh} ∼ Gamma(aκ, bκ),

where {Uijkh} is taken to mean the set of all missing hth covariates. We take an Empirical Bayes approach

when specifying the hyperparameters. We set ζ0 to be the empirical mean of the nonmissing hth covariates,

and select aκ, and bκ so that the prior distribution’s mean is equal to the sample variance of the nonmissing

hth covariates and let the distribution have a noninformative variance. We use a uniform distribution as the

proposal distribution for the missing covariates.

B.1.5.2 Gibbs step for missing categorical covariate

Let Uijk be a day-specific categorical variable with corresponding design matrix dummy variables

(Uijk`1 ,. . . Uijk`r). Then

P
(
Uijk = u

∣∣ Y ,W ,γ, ξ, φ,U−ijk

)

=
π
(
Y ,W ,γ, ξ, φ, Uijk = u,U−ijk

)

∑
t π
(
Y ,W ,γ, ξ, φ, Uijk = t,U−ijk

)

=
P
(
Wijk

∣∣ γ, ξi,X, Uijk = u,U−ijk

)
P
(
Xijk |Xij,k−1, Uijk = u

)
P (Uijk = u)

∑
t P
(
Wijk

∣∣ γ, ξi,X, Uijk = t,U−ijk

)
P
(
Xijk |Xij,k−1, Uijk = t

)
P (Uijk = t)

.
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Next, let Uij· be a cycle-specific categorical variable with corresponding design matrix dummy variables

{(Uijk`1 ,. . . , Uijk`r)}. Then

P
(
Uij· = u

∣∣ Y ,W ,γ, ξ, φ,U−ij·

)

=
π
(
Y ,W ,γ, ξ, φ, Uij· = u,U−ij·

)

∑
t π
(
Y ,W ,γ, ξ, φ, Uij· = t,U−ij·

)

=
P
(
Wij

∣∣ γ, ξi,X, Uij· = u,U−ij·

)
P
(
Xij |Uij· = u

)
P (Uij· = u)

∑
t P
(
Wij

∣∣ γ, ξi,X, Uij· = t,U−ij·

)
P
(
Xij |Uij· = t

)
P (Uij· = t)

.

Finally, let Ui·· be a baseline categorical variable with corresponding design matrix dummy variables {(Uijk`1 ,

. . . , Uijk`r)}. Then

P
(
Ui·· = u

∣∣ Y ,W ,γ, ξ, φ,U−ij·

)

=
π
(
Y ,W ,γ, ξ, φ, Ui·· = u,U−ij·

)

∑
t π
(
Y ,W ,γ, ξ, φ, Ui·· = t,U−ij·

)

=
P
(
Wi

∣∣ γ, ξi,X, Ui·· = u,U−ij·

)
P
(
Xi |Ui·· = u

)
P (Ui·· = u)

∑
t P
(
Wi

∣∣ γ, ξi,X, Ui·· = t,U−ij·

)
P
(
Xi |Ui·· = t

)
P (Ui·· = t)

.

We specify the prior distribution to be conjugate multinomial-Dirichlet distributed. That is to say we let

Uijkh |πh ∼ multinomial(πh),

πh ∼ Dirichlet(ah).

We use an empirical Bayes approach to specify the mean of the prior distributions of the ah.

B.2 Detailed simulation studies

B.2.1 Simulation setup and model comparisons

In order to compare the peak-intensity decay model, we compare the peak-intensity decay model with

two versions of the day-specific probabilities model proposed in Dunson and Stanford (2005). In the first
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version of the day-specific probabilities model, we use the data that we generated in Section 3 of the main

paper to provide informative priors to the model coefficients. Then, for the second specification of the model

we used uninformative priors.

In order to compare these various models, we considered a number of different settings. In terms of the

simulated data settings, we consider fertile window sizes of both five days and seven days. In terms of the

sample size we considered sizes of 100, 200, and 300 participants. For the coefficients corresponding to the

fertile window days, we consider three settings.

In the first setting, we set the coefficients to be the same as the decay that we derived in Section 3 of the

main paper, so that both the peak-intensity decay model and the informative priors day-specific probabilites

models are correctly specified. In another setting, we set the peak-intensity of the coefficients corresponding

to the fertile window to be scaled from that of the prior distributions, and we shifted the location of the

peak-intensity day. We would expect that the peak-intensity decay model would be able to recover these

parameters more readily than the incorrectly specified informative priors day-specific probabilities model.

Finally, we also included a model in which the decay of the coefficients corresponding to the fertile window

days is different than what was derived in 3 of the main paper, so that both the peak-intensity decay model

and the informative priors day-specific probabilities model are incorrectly specified.

We present the results from a pair of simulation studies in what follows, and in the Supplementary

Materials we present an extended set of simulation results. For each of the simulation studies we are

describing the average results over 10,000 simulations.

B.2.2 Correctly specified prior parameters setting

In Tables B.1, B.2, and B.3, we consider the setting where the data were generated based upon coefficients

constructed from the elicited decay curve created in Section 3 of the main paper with a 5-day fertile window,

and in Tables B.10, B.11, and B.11 we consider the same setting but with a 7-day fertile window.

In Table B.1, we compare the models for a 5-day fertile window with 100 participants. With this small

number of participants, the peak-intensity model has a large amount of uncertainty regarding the location of

the peak intensity location, with a 0.172 posterior probability of Day -1 being the peak intensity day, and a

0.351 posterior probability of Day 1 being the peak intensity day. As a result, the posterior mean coefficient

value of the peak intensity day is slightly lower than the true value (-0.025 bias). However, despite this small

bias and uncertainty in the peak intensity day location, the MSEs for the peak intensity model coefficients are
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still smaller than for the other models, so we conclude that the posterior distribution for the peak-intensity

model has a higher posterior density near the true values than for the other models.

In Table B.10, we again see that there is a large amount of uncertainty regarding the location of the peak

intensity location (a 0.209 posterior probability of Day -1 being the peak intensity day, and a 0.351 posterior

probability of Day 1 being the peak intensity day). The bias for the coefficient posterior mean for the peak

intensity day is -0.051 in this setting, but again we see that the MSEs for the peak intensity model coefficients

are smaller than for the other models.

In Tables B.2 and B.11, we compare the models for a 5-day and 7-day fertile window with 200 participants.

For the 5-day version, the posterior probability for the peak intensity day is reduced to 0.080 for Day -1 and

to 0.287 for Day 1, and the bias for the coefficient posterior mean for the peak intensity day is improved

to -0.009. The width of the credible region for the peak-intensity model for each of the coefficients is

smaller than for either of the other models. For example, the width of the credible region for the coefficient

posterior mean for the peak intensity day is 0.218, compared to 0.278 and 0.289 for the fixed informative and

non-informative models.

For Table B.11, the posterior probability for the peak intensity day is reduced to 0.114 for Day -1 and

to 0.165 for Day 1, and the bias for the coefficient posterior mean for the peak intensity day is improved to

-0.018. the width of the credible region for the coefficient posterior mean for the peak intensity day is 0.225,

compared to 0.303 and 0.321 for the fixed informative and non-informative models.

In Tables B.3 and B.12, we compare the models for a 5-day and 7-day fertile window with 300 participants.

With this many participants the posterior probability for the peak intensity day location is 0.930 for the 5-day

fertile window setting, and 0.844 for the 7-day fertile window setting. With this many participants, all three

of the models have coefficient means that are close to the true values. The credible region widths are still the

smallest for the peak-intensity model, but the difference between the widths across the models is slightly

smaller. For example, the width of the credible region is 0.91 for the peak intensity coefficient for the peak

intensity model, compared to 0.233 for the fixed informative model and 0.240 for the non-informative model.

When the study size is smaller, the information borrowing that is enabled by the peak intensity model seems

to provide greater relative gains, but even when data are more abundant the models without the information

sharing are still less efficient.
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B.2.3 Scaled and shifted prior parameters setting

In Tables B.4, B.5, and B.6, we consider the setting where the data were generated based upon coefficients

from a scaled and shifted decay curve as compared to the elicited decay curve created in Section 3 of the

main paper with a 5-day fertile window, and in Tables B.13, B.14, and B.15 we consider the same setting but

with a 7-day fertile window.

In Table B.4 we compare the models for a 5-day and 7-day fertile window with 300 participants. In

this setting were we have a relatively small amount of data we would expect that the peak-intensity and the

fixed-informative models would be guided to some degree by the misspecified prior parameters, and we see

that to some degree, particularly in the negative bias of the posterior mean value for the peak intensity day

(-0.035 for the peak-intensity model and -0.043 for the fixed informative model). As we saw in the correctly

specified models, there is a fair amount of uncertainty in the posterior distribution of the peak intensity day.

Interestingly though, the average posterior proportion for the peak intensity day for this setting with a shifted

peak intensity day was 0.569 compared to that of the 0.468 for the correctly specified setting with the same

number of participants. We attribute this behavior to the fact that the scaled true coefficient values make it

comparatively easier to distinguish the peak coefficient day. The same is true for the 7-day fertile window

setting in Table B.13 where the average posterior proportion for the peak intensity day was 0.773, but in this

case the cause is due to the longer fertile window in the simulation setting resulting in more pregnancy events.

In Tables B.4 and B.13 we also see that the flexibility of the peak-intensity model in terms of being able

to adapt to location and scale shifts results in posterior densities with means closer to the true parameters than

for the other models in most cases. For example, the peak intensity model has an average posterior mean bean

of -0.012 and credible region width of 0.325 for Day -1 compared to -.050 and -0.019 with credible region

widths of 0.379 and 0.422 for the fixed informative and non-informative models. In Tables B.4 and B.13 we

see similar results for the average posterior means for the Day -1 coefficient, where the peak intensity model

has a bias of -0.012 with a credible region widths of 0.244, while the fixed informative and non-informative

models have biases of -0.034 and -0.016 with credible region widths of 0.294 and 0.311.

In Tables B.6 and B.15 with 300 participants, all of the models are performing well. However, the peak

intensity model tends to have the smallest posterior variance for the coefficients in comparison to the other

models. For example, the credible region width for the peak intensity day coefficient is 0.222 for the peak

intensity model compared to 0.269 and 0.278 for the fixed informative and non-informative models.
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B.2.4 Incorrect decay prior parameters setting

The incorrect decay simulation setting is a setting that is poorly suited for the peak intensity model, since

it violates one of the core assumptions of the model. In particular, the simulated data has a local minimum at

Day -1 in both the 5-day and 7-day simulation settings. Since the other models don’t rely on any particular

form of the fertile window coefficients, they shouldn’t suffer as greatly in this situation. Although we include

such a setting in our simulation studies so that we can understand the behavior of the peak-intensity model

when the true fertile window decay curve doesn’t follow the one specified by the prior parameters, it is our

belief that since the biology of human fertility and empirical evidence from past studies dictates such a form

of the decay curve, that it is reasonable to impose such a form to the model in order to incur gains in efficiency

in the event that such beliefs are reasonable close to the truth.

In Table B.7, we see that the peak intensity model has a large amount of uncertainty in the posterior

distribution of the peak intensity day location for 100 participants, with proportions of 0.125, 0.368, 0.337,

and 0.159 for Day -1, Day 0, Day 1, and Day 2. The average posterior mean bias for the Day -1 coefficient

for the peak intensity model is 0.039 compared to 0.008 for both the fixed informative and non-informative

models. The 7-day fertile window setting shown in Table B.16, shows similar results, except that the other

models exhibit worse performance with more days to estimate. For example, the fixed informative model has

a posterior mean bias of -0.031 for Day -1 compared to 0.007 in the 5-day fertile window setting.

In Table B.8 we see the results for 200 participants in the 5-day fertile window setting. With this increase

in participants, although the bias is still worse than for the fixed informative and non-informative models

for the Day -2 and Day -1 coefficients, the difference between the posterior means for Day -2 and Day -1

is -0.022 compared to -0.033 for the 100 participants setting. Then in Table B.9, the difference between

the posterior means for Day -2 and Day -1 is -0.009, so we can see that the model is adjusting to the local

minimum at Day -1.

In Tables B.17 and B.18 we see the results for 200 and 300 participants in the 7-day fertile window

setting. In both tables we do see that the peak intensity model not well-suited to model the local minimum at

Day -1. For example, the difference between the posterior means for Day -2 and Day -1 is -0.032 and -0.021

for the two settings.
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Table B.1: Correctly specified prior parameters, 5 fertile window days, n = 100

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.115 0.108 -0.007 0.001 0.040 0.156
Day -2 0.196 0.182 -0.014 0.002 0.053 0.208
Day -1 0.288 0.267 -0.021 0.003 0.062 0.241
Day 0 0.340 0.315 -0.025 0.004 0.069 0.271
Day 1 0.264 0.262 -0.002 0.006 0.085 0.329

Fixed informative
Day -3 0.115 0.093 -0.022 0.004 0.058 0.213
Day -2 0.196 0.183 -0.013 0.005 0.075 0.287
Day -1 0.288 0.280 -0.008 0.006 0.087 0.339
Day 0 0.340 0.334 -0.006 0.007 0.093 0.364
Day 1 0.264 0.259 -0.005 0.005 0.085 0.329

Non-informative
Day -3 0.115 0.127 0.012 0.005 0.071 0.264
Day -2 0.196 0.188 -0.008 0.007 0.082 0.314
Day -1 0.288 0.268 -0.020 0.009 0.094 0.365
Day 0 0.340 0.314 -0.026 0.010 0.100 0.389
Day 1 0.264 0.252 -0.012 0.008 0.092 0.355

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.349 0.009 0.086 0.165

Posterior distribution for the peak
intensity location

Day -3 Day -2 Day -1 Day 0 Day 1
0.000 0.010 0.172 0.468 0.351
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Table B.2: Correctly specified prior parameters, 5 fertile window days, n = 200

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.115 0.105 -0.010 0.001 0.031 0.121
Day -2 0.196 0.182 -0.014 0.001 0.042 0.162
Day -1 0.288 0.272 -0.016 0.002 0.050 0.195
Day 0 0.340 0.331 -0.009 0.002 0.056 0.218
Day 1 0.264 0.273 0.009 0.004 0.064 0.251

Fixed informative
Day -3 0.115 0.102 -0.013 0.002 0.048 0.177
Day -2 0.196 0.185 -0.011 0.003 0.057 0.222
Day -1 0.288 0.279 -0.009 0.004 0.066 0.258
Day 0 0.340 0.336 -0.004 0.004 0.071 0.278
Day 1 0.264 0.266 0.002 0.004 0.066 0.254

Non-informative
Day -3 0.115 0.120 0.005 0.003 0.053 0.198
Day -2 0.196 0.188 -0.008 0.004 0.061 0.234
Day -1 0.288 0.273 -0.015 0.005 0.069 0.269
Day 0 0.340 0.326 -0.014 0.006 0.074 0.289
Day 1 0.264 0.263 -0.001 0.004 0.069 0.266

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.354 0.014 0.075 0.145

Posterior distribution for the peak
intensity location

Day -3 Day -2 Day -1 Day 0 Day 1
0.000 0.000 0.080 0.633 0.287
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Table B.3: Correctly specified prior parameters, 5 fertile window days, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.115 0.108 -0.007 0.001 0.028 0.107
Day -2 0.196 0.190 -0.006 0.001 0.037 0.145
Day -1 0.288 0.280 -0.008 0.002 0.044 0.173
Day 0 0.340 0.335 -0.005 0.002 0.049 0.191
Day 1 0.264 0.270 0.006 0.003 0.053 0.209

Fixed informative
Day -3 0.115 0.104 -0.011 0.002 0.041 0.153
Day -2 0.196 0.196 0.000 0.002 0.050 0.193
Day -1 0.288 0.285 -0.003 0.003 0.056 0.219
Day 0 0.340 0.338 -0.002 0.004 0.060 0.233
Day 1 0.264 0.264 0.000 0.003 0.055 0.214

Non-informative
Day -3 0.115 0.115 0.000 0.002 0.044 0.164
Day -2 0.196 0.198 0.002 0.003 0.052 0.200
Day -1 0.288 0.281 -0.007 0.004 0.058 0.226
Day 0 0.340 0.331 -0.009 0.004 0.061 0.240
Day 1 0.264 0.261 -0.003 0.003 0.057 0.221

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.356 0.016 0.068 0.133

Posterior distribution for the peak
intensity location

Day -3 Day -2 Day -1 Day 0 Day 1
0.000 0.000 0.027 0.930 0.043
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Table B.4: Scaled and shifted prior parameters, 5 fertile window days, n = 100

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.235 0.235 0.000 0.006 0.074 0.286
Day -1 0.346 0.334 -0.012 0.006 0.083 0.325
Day 0 0.408 0.373 -0.035 0.004 0.078 0.308
Day 1 0.317 0.278 -0.039 0.007 0.077 0.300
Day 2 0.125 0.127 0.002 0.004 0.067 0.251

Fixed informative
Day -2 0.235 0.174 -0.061 0.010 0.081 0.307
Day -1 0.346 0.296 -0.050 0.010 0.098 0.379
Day 0 0.408 0.365 -0.043 0.009 0.105 0.407
Day 1 0.317 0.317 0.000 0.007 0.097 0.377
Day 2 0.125 0.173 0.048 0.006 0.077 0.294

Non-informative
Day -2 0.235 0.228 -0.007 0.009 0.095 0.363
Day -1 0.346 0.327 -0.019 0.011 0.109 0.422
Day 0 0.408 0.369 -0.039 0.012 0.114 0.444
Day 1 0.317 0.286 -0.031 0.011 0.104 0.400
Day 2 0.125 0.137 0.012 0.006 0.078 0.293

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.356 0.016 0.068 0.133

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2
0.001 0.232 0.569 0.173 0.025
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Table B.5: Scaled and shifted prior parameters, 5 fertile window days, n = 200

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.235 0.229 -0.006 0.002 0.052 0.205
Day -1 0.346 0.334 -0.012 0.003 0.062 0.244
Day 0 0.408 0.393 -0.015 0.003 0.064 0.252
Day 1 0.317 0.301 -0.016 0.003 0.059 0.232
Day 2 0.125 0.123 -0.002 0.002 0.043 0.166

Fixed informative
Day -2 0.235 0.201 -0.034 0.005 0.065 0.250
Day -1 0.346 0.312 -0.034 0.007 0.075 0.294
Day 0 0.408 0.387 -0.021 0.006 0.081 0.316
Day 1 0.317 0.321 0.004 0.005 0.075 0.291
Day 2 0.125 0.146 0.021 0.003 0.056 0.214

Non-informative
Day -2 0.235 0.230 -0.005 0.004 0.070 0.271
Day -1 0.346 0.330 -0.016 0.007 0.080 0.311
Day 0 0.408 0.391 -0.017 0.007 0.085 0.331
Day 1 0.317 0.306 -0.011 0.006 0.078 0.302
Day 2 0.125 0.122 -0.003 0.003 0.057 0.212

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.408 0.403 -0.005 0.074 0.145

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2
0.000 0.094 0.806 0.096 0.004
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Table B.6: Scaled and shifted prior parameters, 5 fertile window days, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.235 0.231 -0.004 0.001 0.044 0.172
Day -1 0.346 0.338 -0.008 0.002 0.053 0.208
Day 0 0.408 0.403 -0.005 0.002 0.057 0.222
Day 1 0.317 0.309 -0.008 0.002 0.050 0.198
Day 2 0.125 0.124 -0.001 0.001 0.034 0.131

Fixed informative
Day -2 0.235 0.214 -0.021 0.004 0.057 0.218
Day -1 0.346 0.323 -0.023 0.004 0.064 0.251
Day 0 0.408 0.397 -0.011 0.005 0.069 0.269
Day 1 0.317 0.318 0.001 0.004 0.063 0.246
Day 2 0.125 0.143 0.018 0.002 0.048 0.181

Non-informative
Day -2 0.235 0.235 0.000 0.004 0.059 0.229
Day -1 0.346 0.335 -0.011 0.004 0.067 0.261
Day 0 0.408 0.401 -0.007 0.006 0.071 0.278
Day 1 0.317 0.307 -0.010 0.004 0.065 0.253
Day 2 0.125 0.127 0.002 0.002 0.048 0.182

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.408 0.406 -0.002 0.066 0.129

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2
0.000 0.035 0.912 0.053 0.001
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Table B.7: Incorrect decay prior parameters, 5 fertile window days, n = 100

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.180 0.116 -0.064 0.007 0.045 0.172
Day -1 0.110 0.149 0.039 0.003 0.045 0.175
Day 0 0.200 0.193 -0.007 0.001 0.046 0.181
Day 1 0.180 0.177 -0.003 0.002 0.048 0.188
Day 2 0.140 0.121 -0.019 0.004 0.056 0.211

Fixed informative
Day -2 0.180 0.133 -0.047 0.006 0.061 0.228
Day -1 0.110 0.118 0.008 0.002 0.056 0.211
Day 0 0.200 0.202 0.002 0.003 0.067 0.260
Day 1 0.180 0.200 0.020 0.003 0.066 0.255
Day 2 0.140 0.155 0.015 0.003 0.061 0.231

Non-informative
Day -2 0.180 0.172 -0.008 0.005 0.069 0.264
Day -1 0.110 0.118 0.008 0.004 0.060 0.225
Day 0 0.200 0.188 -0.012 0.005 0.071 0.273
Day 1 0.180 0.169 -0.011 0.004 0.068 0.262
Day 2 0.140 0.138 -0.002 0.004 0.063 0.239

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.200 0.235 0.035 0.060 0.117

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2
0.010 0.125 0.368 0.337 0.159
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Table B.8: Incorrect decay prior parameters, 5 fertile window days, n = 200

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.180 0.122 -0.058 0.005 0.036 0.139
Day -1 0.110 0.144 0.034 0.002 0.035 0.137
Day 0 0.200 0.204 0.004 0.001 0.039 0.152
Day 1 0.180 0.190 0.010 0.001 0.039 0.152
Day 2 0.140 0.125 -0.015 0.003 0.044 0.165

Fixed informative
Day -2 0.180 0.154 -0.026 0.003 0.048 0.184
Day -1 0.110 0.113 0.003 0.001 0.042 0.161
Day 0 0.200 0.201 0.001 0.002 0.051 0.198
Day 1 0.180 0.193 0.013 0.002 0.050 0.193
Day 2 0.140 0.149 0.009 0.002 0.046 0.176

Non-informative
Day -2 0.180 0.174 -0.006 0.003 0.052 0.197
Day -1 0.110 0.113 0.003 0.002 0.044 0.168
Day 0 0.200 0.195 -0.005 0.003 0.053 0.205
Day 1 0.180 0.177 -0.003 0.003 0.051 0.198
Day 2 0.140 0.140 0.000 0.002 0.048 0.182

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.200 0.238 0.038 0.049 0.097

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2
0.000 0.032 0.487 0.409 0.072
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Table B.9: Incorrect decay prior parameters, 5 fertile window days, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.180 0.130 -0.050 0.004 0.033 0.127
Day -1 0.110 0.139 0.029 0.002 0.031 0.120
Day 0 0.200 0.206 0.006 0.001 0.035 0.136
Day 1 0.180 0.189 0.009 0.001 0.034 0.132
Day 2 0.140 0.123 -0.017 0.002 0.037 0.140

Fixed informative
Day -2 0.180 0.162 -0.018 0.002 0.041 0.156
Day -1 0.110 0.110 0.000 0.001 0.035 0.135
Day 0 0.200 0.202 0.002 0.002 0.043 0.166
Day 1 0.180 0.187 0.007 0.002 0.041 0.160
Day 2 0.140 0.144 0.004 0.001 0.039 0.147

Non-informative
Day -2 0.180 0.176 -0.004 0.002 0.043 0.163
Day -1 0.110 0.110 0.000 0.001 0.037 0.139
Day 0 0.200 0.198 -0.002 0.002 0.044 0.170
Day 1 0.180 0.176 -0.004 0.002 0.042 0.163
Day 2 0.140 0.137 -0.003 0.001 0.040 0.150

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.200 0.239 0.039 0.045 0.089

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2
0.000 0.007 0.536 0.427 0.030
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Table B.10: Correctly specified prior parameters, 7 fertile window days, n = 100

day true mean bias MSE Std. CR

Peak-intensity
Day -4 0.059 0.062 0.003 0.001 0.030 0.114
Day -3 0.115 0.115 0.000 0.002 0.046 0.175
Day -2 0.196 0.184 -0.012 0.003 0.058 0.227
Day -1 0.288 0.257 -0.031 0.004 0.065 0.254
Day 0 0.340 0.289 -0.051 0.006 0.069 0.271
Day 1 0.264 0.232 -0.032 0.008 0.077 0.297
Day 2 0.104 0.124 0.020 0.006 0.069 0.257

Fixed informative
Day -4 0.059 0.027 -0.032 0.003 0.027 0.078
Day -3 0.115 0.106 -0.009 0.004 0.068 0.250
Day -2 0.196 0.191 -0.005 0.004 0.083 0.318
Day -1 0.288 0.283 -0.005 0.004 0.094 0.366
Day 0 0.340 0.333 -0.007 0.006 0.100 0.389
Day 1 0.264 0.263 -0.001 0.005 0.092 0.356
Day 2 0.104 0.087 -0.017 0.004 0.061 0.221

Non-informative
Day -4 0.059 0.093 0.034 0.005 0.071 0.256
Day -3 0.115 0.134 0.019 0.005 0.083 0.305
Day -2 0.196 0.180 -0.016 0.007 0.094 0.353
Day -1 0.288 0.250 -0.038 0.009 0.105 0.405
Day 0 0.340 0.290 -0.050 0.012 0.111 0.427
Day 1 0.264 0.237 -0.027 0.009 0.103 0.393
Day 2 0.104 0.128 0.024 0.006 0.081 0.297

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.330 -0.010 0.072 0.139

Posterior distribution for the peak
intensity location

Day -4 Day -3 Day -2 Day -1 Day 0 Day 1 Day 2
0.000 0.001 0.045 0.209 0.436 0.276 0.034
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Table B.11: Correctly specified prior parameters, 7 fertile window days, n = 200

day true mean bias MSE Std. CR

Peak-intensity
Day -4 0.059 0.057 -0.002 0.000 0.021 0.081
Day -3 0.115 0.111 -0.004 0.001 0.034 0.131
Day -2 0.196 0.188 -0.008 0.002 0.046 0.179
Day -1 0.288 0.274 -0.014 0.002 0.054 0.211
Day 0 0.340 0.322 -0.018 0.002 0.057 0.225
Day 1 0.264 0.251 -0.013 0.003 0.059 0.231
Day 2 0.104 0.113 0.009 0.002 0.048 0.182

Fixed informative
Day -4 0.059 0.032 -0.027 0.002 0.027 0.082
Day -3 0.115 0.110 -0.005 0.003 0.055 0.205
Day -2 0.196 0.198 0.002 0.004 0.065 0.253
Day -1 0.288 0.290 0.002 0.004 0.073 0.286
Day 0 0.340 0.341 0.001 0.005 0.078 0.303
Day 1 0.264 0.265 0.001 0.004 0.072 0.277
Day 2 0.104 0.094 -0.010 0.003 0.052 0.190

Non-informative
Day -4 0.059 0.073 0.014 0.002 0.051 0.183
Day -3 0.115 0.123 0.008 0.004 0.061 0.229
Day -2 0.196 0.191 -0.005 0.005 0.071 0.272
Day -1 0.288 0.273 -0.015 0.006 0.078 0.305
Day 0 0.340 0.319 -0.021 0.007 0.082 0.321
Day 1 0.264 0.250 -0.014 0.005 0.077 0.296
Day 2 0.104 0.113 0.009 0.003 0.060 0.221

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.335 -0.005 0.058 0.111

Posterior distribution for the peak
intensity location

Day -4 Day -3 Day -2 Day -1 Day 0 Day 1 Day 2
0.000 0.000 0.001 0.114 0.717 0.165 0.003
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Table B.12: Correctly specified prior parameters, 7 fertile window days, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -4 0.059 0.057 -0.002 0.000 0.017 0.067
Day -3 0.115 0.111 -0.004 0.000 0.028 0.109
Day -2 0.196 0.189 -0.007 0.001 0.039 0.151
Day -1 0.288 0.281 -0.007 0.001 0.047 0.184
Day 0 0.340 0.335 -0.005 0.001 0.051 0.200
Day 1 0.264 0.257 -0.007 0.002 0.048 0.190
Day 2 0.104 0.108 0.004 0.001 0.036 0.137

Fixed informative
Day -4 0.059 0.038 -0.021 0.002 0.028 0.088
Day -3 0.115 0.111 -0.004 0.002 0.048 0.179
Day -2 0.196 0.194 -0.002 0.003 0.055 0.215
Day -1 0.288 0.293 0.005 0.003 0.062 0.243
Day 0 0.340 0.350 0.010 0.004 0.066 0.257
Day 1 0.264 0.265 0.001 0.003 0.061 0.235
Day 2 0.104 0.094 -0.010 0.003 0.045 0.166

Non-informative
Day -4 0.059 0.067 0.008 0.002 0.042 0.151
Day -3 0.115 0.119 0.004 0.002 0.051 0.192
Day -2 0.196 0.188 -0.008 0.003 0.059 0.227
Day -1 0.288 0.282 -0.006 0.004 0.065 0.253
Day 0 0.340 0.336 -0.004 0.004 0.069 0.268
Day 1 0.264 0.255 -0.009 0.004 0.064 0.247
Day 2 0.104 0.107 0.003 0.003 0.049 0.184

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.340 0.337 -0.003 0.051 0.100

Posterior distribution for the peak
intensity location

Day -4 Day -3 Day -2 Day -1 Day 0 Day 1 Day 2
0.000 0.000 0.000 0.059 0.844 0.096 0.001
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Table B.13: Scaled and shifted prior parameters, 7 fertile window days, n = 100

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.235 0.238 0.003 0.003 0.067 0.265
Day -1 0.346 0.337 -0.009 0.004 0.079 0.310
Day 0 0.408 0.369 -0.039 0.005 0.077 0.303
Day 1 0.317 0.267 -0.050 0.007 0.070 0.273
Day 2 0.124 0.103 -0.021 0.002 0.044 0.166
Day 3 0.020 0.019 -0.001 0.000 0.016 0.051
Day 4 0.002 0.003 0.001 0.000 0.005 0.007

Fixed informative
Day -2 0.235 0.105 -0.130 0.025 0.061 0.214
Day -1 0.346 0.250 -0.096 0.016 0.099 0.382
Day 0 0.408 0.319 -0.089 0.014 0.104 0.405
Day 1 0.317 0.294 -0.023 0.007 0.098 0.381
Day 2 0.124 0.216 0.092 0.011 0.083 0.320
Day 3 0.020 0.130 0.110 0.014 0.068 0.256
Day 4 0.002 0.020 0.018 0.001 0.028 0.085

Non-informative
Day -2 0.235 0.217 -0.018 0.007 0.100 0.380
Day -1 0.346 0.309 -0.037 0.009 0.114 0.441
Day 0 0.408 0.339 -0.069 0.013 0.117 0.457
Day 1 0.317 0.266 -0.051 0.012 0.108 0.416
Day 2 0.124 0.137 0.013 0.004 0.083 0.308
Day 3 0.020 0.064 0.044 0.004 0.060 0.213
Day 4 0.002 0.043 0.041 0.003 0.050 0.173

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.408 0.385 -0.023 0.088 0.169

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2 Day 3 Day 4
0.001 0.187 0.773 0.037 0.002 0.000 0.000
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Table B.14: Scaled and shifted prior parameters, 7 fertile window days, n = 200

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.235 0.230 -0.005 0.001 0.049 0.192
Day -1 0.346 0.334 -0.012 0.002 0.060 0.234
Day 0 0.408 0.388 -0.020 0.002 0.063 0.248
Day 1 0.317 0.294 -0.023 0.003 0.055 0.216
Day 2 0.124 0.115 -0.009 0.001 0.032 0.124
Day 3 0.020 0.019 -0.001 0.000 0.010 0.030
Day 4 0.002 0.002 0.000 0.000 0.004 0.004

Fixed informative
Day -2 0.235 0.164 -0.071 0.011 0.063 0.238
Day -1 0.346 0.286 -0.060 0.009 0.078 0.301
Day 0 0.408 0.355 -0.053 0.007 0.081 0.318
Day 1 0.317 0.298 -0.019 0.005 0.075 0.292
Day 2 0.124 0.175 0.051 0.005 0.060 0.233
Day 3 0.020 0.087 0.067 0.006 0.047 0.175
Day 4 0.002 0.009 0.007 0.000 0.017 0.045

Non-informative
Day -2 0.235 0.224 -0.011 0.004 0.073 0.283
Day -1 0.346 0.321 -0.025 0.006 0.082 0.319
Day 0 0.408 0.375 -0.033 0.006 0.086 0.335
Day 1 0.317 0.289 -0.028 0.006 0.079 0.306
Day 2 0.124 0.129 0.005 0.003 0.060 0.228
Day 3 0.020 0.041 0.021 0.002 0.039 0.134
Day 4 0.002 0.023 0.021 0.001 0.031 0.103

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.408 0.389 -0.019 0.070 0.135

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2 Day 3 Day 4
0.000 0.058 0.926 0.016 0.000 0.000 0.000
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Table B.15: Scaled and shifted prior parameters, 7 fertile window days, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -2 0.235 0.232 -0.003 0.001 0.042 0.166
Day -1 0.346 0.341 -0.005 0.002 0.052 0.205
Day 0 0.408 0.402 -0.006 0.002 0.056 0.221
Day 1 0.317 0.304 -0.013 0.002 0.049 0.192
Day 2 0.124 0.118 -0.006 0.000 0.027 0.107
Day 3 0.020 0.019 -0.001 0.000 0.008 0.023
Day 4 0.002 0.002 0.000 0.000 0.003 0.002

Fixed informative
Day -2 0.235 0.190 -0.045 0.006 0.058 0.222
Day -1 0.346 0.309 -0.037 0.005 0.066 0.257
Day 0 0.408 0.378 -0.030 0.005 0.070 0.274
Day 1 0.317 0.304 -0.013 0.003 0.064 0.251
Day 2 0.124 0.160 0.036 0.003 0.051 0.196
Day 3 0.020 0.067 0.047 0.003 0.037 0.136
Day 4 0.002 0.004 0.002 0.000 0.013 0.029

Non-informative
Day -2 0.235 0.229 -0.006 0.003 0.062 0.238
Day -1 0.346 0.335 -0.011 0.004 0.069 0.267
Day 0 0.408 0.395 -0.013 0.005 0.073 0.284
Day 1 0.317 0.300 -0.017 0.004 0.066 0.259
Day 2 0.124 0.126 0.002 0.002 0.051 0.195
Day 3 0.020 0.031 0.011 0.001 0.030 0.103
Day 4 0.002 0.016 0.014 0.000 0.024 0.076

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.408 0.397 -0.011 0.064 0.124

Posterior distribution for the peak
intensity location

Day -2 Day -1 Day 0 Day 1 Day 2 Day 3 Day 4
0.000 0.032 0.962 0.006 0.000 0.000 0.000

154



Table B.16: Incorrect decay prior parameters, 7 fertile window days, n = 100

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.080 0.073 -0.007 0.002 0.033 0.124
Day -2 0.180 0.120 -0.060 0.007 0.045 0.172
Day -1 0.110 0.157 0.047 0.005 0.048 0.186
Day 0 0.200 0.187 -0.013 0.002 0.049 0.190
Day 1 0.180 0.167 -0.013 0.003 0.049 0.191
Day 2 0.140 0.117 -0.023 0.006 0.051 0.191
Day 3 0.070 0.062 -0.008 0.004 0.042 0.152

Fixed informative
Day -3 0.080 0.031 -0.049 0.004 0.028 0.086
Day -2 0.180 0.116 -0.064 0.007 0.064 0.238
Day -1 0.110 0.141 0.031 0.003 0.065 0.249
Day 0 0.200 0.210 0.010 0.003 0.074 0.286
Day 1 0.180 0.216 0.036 0.004 0.074 0.285
Day 2 0.140 0.172 0.032 0.004 0.068 0.261
Day 3 0.070 0.063 -0.007 0.003 0.047 0.166

Non-informative
Day -3 0.080 0.100 0.020 0.003 0.066 0.238
Day -2 0.180 0.148 -0.032 0.005 0.076 0.285
Day -1 0.110 0.126 0.016 0.004 0.072 0.268
Day 0 0.200 0.172 -0.028 0.006 0.081 0.305
Day 1 0.180 0.162 -0.018 0.005 0.079 0.299
Day 2 0.140 0.138 -0.002 0.004 0.074 0.275
Day 3 0.070 0.095 0.025 0.004 0.063 0.228

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.200 0.239 0.039 0.056 0.108

Posterior distribution for the peak
intensity location

Day -3 Day -2 Day -1 Day 0 Day 1 Day 2 Day 3
0.001 0.024 0.224 0.277 0.268 0.173 0.035
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Table B.17: Incorrect decay prior parameters, 7 fertile window days, n = 200

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.080 0.067 -0.013 0.001 0.025 0.094
Day -2 0.180 0.126 -0.054 0.005 0.037 0.145
Day -1 0.110 0.158 0.048 0.004 0.039 0.150
Day 0 0.200 0.211 0.011 0.001 0.042 0.163
Day 1 0.180 0.193 0.013 0.001 0.042 0.162
Day 2 0.140 0.124 -0.016 0.003 0.042 0.160
Day 3 0.070 0.048 -0.022 0.002 0.029 0.105

Fixed informative
Day -3 0.080 0.044 -0.036 0.003 0.030 0.098
Day -2 0.180 0.152 -0.028 0.004 0.055 0.207
Day -1 0.110 0.130 0.020 0.002 0.050 0.190
Day 0 0.200 0.212 0.012 0.003 0.057 0.221
Day 1 0.180 0.202 0.022 0.003 0.056 0.215
Day 2 0.140 0.157 0.017 0.002 0.052 0.200
Day 3 0.070 0.061 -0.009 0.002 0.039 0.138

Non-informative
Day -3 0.080 0.084 0.004 0.002 0.048 0.173
Day -2 0.180 0.170 -0.010 0.003 0.059 0.225
Day -1 0.110 0.120 0.010 0.003 0.053 0.200
Day 0 0.200 0.194 -0.006 0.004 0.061 0.234
Day 1 0.180 0.173 -0.007 0.003 0.059 0.226
Day 2 0.140 0.135 -0.005 0.003 0.056 0.211
Day 3 0.070 0.079 0.009 0.002 0.046 0.168

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.200 0.245 0.045 0.045 0.087

Posterior distribution for the peak
intensity location

Day -3 Day -2 Day -1 Day 0 Day 1 Day 2 Day 3
0.000 0.000 0.077 0.440 0.415 0.067 0.002
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Table B.18: Incorrect decay prior parameters, 7 fertile window days, n = 300

day true mean bias MSE Std. CR

Peak-intensity
Day -3 0.080 0.065 -0.015 0.001 0.022 0.084
Day -2 0.180 0.129 -0.051 0.004 0.034 0.132
Day -1 0.110 0.150 0.040 0.002 0.033 0.131
Day 0 0.200 0.216 0.016 0.001 0.038 0.147
Day 1 0.180 0.198 0.018 0.001 0.036 0.143
Day 2 0.140 0.129 -0.011 0.002 0.038 0.143
Day 3 0.070 0.046 -0.024 0.001 0.025 0.089

Fixed informative
Day -3 0.080 0.057 -0.023 0.002 0.032 0.109
Day -2 0.180 0.161 -0.019 0.002 0.047 0.178
Day -1 0.110 0.119 0.009 0.001 0.041 0.157
Day 0 0.200 0.213 0.013 0.002 0.048 0.187
Day 1 0.180 0.194 0.014 0.002 0.047 0.180
Day 2 0.140 0.150 0.010 0.001 0.044 0.167
Day 3 0.070 0.060 -0.010 0.001 0.034 0.121

Non-informative
Day -3 0.080 0.086 0.006 0.002 0.041 0.150
Day -2 0.180 0.173 -0.007 0.002 0.049 0.187
Day -1 0.110 0.111 0.001 0.002 0.043 0.165
Day 0 0.200 0.202 0.002 0.002 0.050 0.195
Day 1 0.180 0.173 -0.007 0.002 0.048 0.187
Day 2 0.140 0.135 -0.005 0.002 0.046 0.175
Day 3 0.070 0.073 0.003 0.001 0.039 0.139

Posterior distribution for the peak intensity
true mean bias 50% CR 90% CR

0.200 0.248 0.048 0.042 0.082

Posterior distribution for the peak
intensity location

Day -3 Day -2 Day -1 Day 0 Day 1 Day 2 Day 3
0.000 0.000 0.018 0.462 0.509 0.012 0.000
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B.3 The day-specific probabilities model

The goal of this appendix is to fully characterize the Dunson and Stanford day-specific probabilities

model. In its current state it tries to provide full detail of the derivations described in Bayesian Inferences on

Predictors of Conception Probabilities.

B.3.1 Model specification

We wish to model the probability of a woman becoming pregnant for a given menstrual cycle as a

function of her covariate status across the days of the cycle. Consider a study cohort and let us index

woman i, i = 1, . . . , n,

cycle j, j = 1, . . . , ni,

day k, k = 1, . . . ,K,

where day k refers to the kth day out of a total of K days in the fertile window. Let us write day i, j, k as a

shorthand for individual i, cycle j, and day k and similarly for cycle j, k. Then define

Yij an indicator of conception for woman i, cycle j,

Vijk an indicator of conception for woman i, cycle j, day k,

Xijk an indicator of intercourse for woman i, cycle j, day k.
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Then writingXij =
(
Xij1, . . . , XijK

)
, we observe that

P
(
Yij = 1

∣∣Xij , Yi1 = 0, . . . , Yi,j−1 = 0
)

= 1− P
(
Yij = 0

∣∣Xij , Yi1 = 0, . . . , Yi,j−1 = 0
)

= 1− P
(
Vijk = 0, k = 1, . . . ,K

∣∣Xij , Yi1 = 0, . . . , Yi,j−1 = 0
)

= 1−
K∏

k=1

P
(
Vijk = 0

∣∣ Xijk, Yi1 = 0, . . . , Yi,j−1 = 0, Vij1 = 0, . . . , Vi,k−1 = 0
)

= 1−
K∏

k=1

{
1− P

(
Vijk = 1

∣∣ Xijk, Yi1 = 0, . . . , Yi,j−1 = 0, Vij1 = 0, . . . , Vi,k−1 = 0
)}

= 1−
K∏

k=1

{
1−Xijk P

(
Vijk = 1

∣∣ Yi1 = 0, . . . , Yi,j−1 = 0, Vij1 = 0, . . . , Vi,k−1 = 0
)}

= 1−
K∏

k=1

{
1− P

(
Vijk = 1

∣∣ Yi1 = 0, . . . , Yi,j−1 = 0, Vij1 = 0, . . . , Vi,k−1 = 0
)}Xijk

.

With this result in mind, we now consider the Dunson and Stanford day-specific probabilities model. Using

the same indexing scheme as above, define

uijk a covariate vector of length q for woman i, cycle j, day k,

β a vector of length q of regression coefficients,

ξi woman-specific random effect.

Then writing Uij =
(
u′ijk, . . . ,u

′
ijk

)′, Dunson and Stanford propose the model:

P
(
Yij = 1

∣∣ ξi,Xij ,Uij

)
= 1−

K∏

k=1

(1− λijk)Xijk ,

λijk = 1− exp
{
−ξi exp

(
u′ijkβ

)}
,

ξi ∼ Gamma (φ, φ). (B.12)
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From our previous derivation, we see that we may interpret λijk as the day-specific probability of conception

in cycle j from couple i given that conception has not already occured, or in the language of Dunson and

Stanford, given intercourse only on day k.

Delving further, we see that λijk is strictly increasing in uijkh βh, where we are denoting uijkh to be the

hth term in uijk and similarly for βh. When βh = 0 then the hth covariate has no effect on the day-specific

probability of conception.

λijk is also strictly increasing in ξi which as Dunson and Stanford suggest may be interpreted as a

woman-specific random effect. The authors state that specifying the distribution of the ξi with a common

parameters prevents nonidentifiability between E [ξi] and the day-specific parameters. Since Var [ξi] = 1/φ it

follows that φ may be interpreted as a measure of variability across women.

B.3.1.1 Computation consideration

As an aside, we note that it may be more computationally convenient to calculate

P
(
Yij = 1

∣∣ ξi,Xij ,Uij

)

= 1−
K∏

k=1

(1− λijk)Xijk

= 1−
K∏

k=1

[
exp

{
−ξi exp

(
u′ijkβ

)} ]Xijk

= 1−
K∏

k=1

exp
{
−Xijkξi exp

(
u′ijkβ

)}

= 1− exp

{
−

K∑

k=1

Xijkξi exp
(
u′ijkβ

)
}
.

B.3.2 Marginal probability of conception

The marginal probability of conception, obtained by integrating out the couple-specific frailty ξi, has

form as follows.

P (Yij = 1 |Xij ,Uij)

=

∫ ∞

0
P
(
Yij , ξi |Xij ,Uij

)
dξi
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=

∫ ∞

0
P
(
Yij , ξi |Xij ,Uij

)
G(ξi; φ, φ) dξi

=

∫ ∞

0

[
1−

K∏

k=1

(1− λijk)Xijk
]
G(ξi; φ, φ) dξi

= 1−
∫ ∞

0

K∏

k=1

(1− λijk)Xijk G(ξi; φ, φ) dξi

= 1−
∫ ∞

0

K∏

k=1

[
exp

{
−ξi exp

(
u′ijkβ

)} ]Xijk
G(ξi; φ, φ) dξi

= 1−
∫ ∞

0

K∏

k=1

exp

{
− ξiXijk exp

(
u′ijkβ

)}
G(ξi; φ, φ) dξi

= 1−
∫ ∞

0
exp

{
−ξi

K∑

k=1

Xijk exp
(
u′ijkβ

)
}
G(ξi; φ, φ) dξi

= 1−


 φ

φ+
∑K

k=1Xijk exp
(
u′ijkβ

)



φ

,

since

∫ ∞

0

exp

{
−ξi

K∑

k=1

Xijk exp
(
u′ijkβ

)
}
G(ξi; φ, φ) dξi

=

∫ ∞

0

exp

{
−ξi

K∑

k=1

Xijk exp
(
u′ijkβ

)
}

φφ

Γ(φ)
ξφ−1
i dξi

=

∫ ∞

0

φφ

Γ(φ)
ξφ−1
i exp

{
−ξi

[
φ+

K∑

k=1

Xijk exp
(
u′ijkβ

)
]}

dξi

=


 φ

φ+
∑K

k=1Xijk exp
(
u′ijkβ

)



φ∫ ∞

0

[
φ+

∑K
k=1Xijk exp

(
u′ijkβ

)]φ

Γ(φ)

× ξφ−1
i exp



−ξi

[
φ+

K∑

k=1

Xijk exp
(
u′ijkβ

)
]φ
 dξi,

and the function inside the integral is a gamma density function.
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B.3.2.1 Day-specific marginal probability of conception

Dunson and Stanford also point out the following remarkable result. The marginal day-specific probability

of conception in a cycle with intercourse only on day k and with predictors u is given by

P (Y = 1 |u) = 1−
(

φ

φ+ exp(u′β)

)φ
,

which is in the form of the Aranda-Ordaz generalized linear model, and reduces to a logistic regression model

for φ = 1.

B.3.3 Prior specification

Define

GAh(·) density function of a gamma distribution truncated to the region Ah ⊂ (0,∞),

γh exp(βh).

Then the Dunson and Stanford model chooses priors of the form

π (γ) =

q∏

h=1

{
ph1

(
γh = 1

)
+ (1− ph)1

(
γh 6= 1

)
GAh

(
γh; ah, bh

)}
,

π(φ) = G
(
φ; c1, c2

)
.

where

ph prior probability that γh = 1, a hyperparameter,

ah, bh shape and rate hyperparameters for gamma distribution of γh,

c1, c2 shape and rate hyperparameters for gamma distribution of φ.

Values of γh = 1 correspond to βh = 0 and the hth predictor in uijk being dropped from the model. Thus

assigning the prior for each of the γh to be a mixture distribution between a point mass at one and a gamma

distribution allows the model to drop terms from the regression component with nonzero probability.

Typical constraints for the γh are R+, (0, 1), and (1,∞) which correspond to no constraint, a negative

effect on probability of conception, and a positive effect on probability of conception, respectively. Thus a
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priori knowledge of the direction of association of the predictor variables can be incorporated into the model

to decrease posterior uncertainty.

B.3.3.1 Monotone effects

Consider a model where the list of covariates includes an ordered categorical variable with types 1, . . . , t.

Let sijk =
(
sijk,2, . . . , sijk,t

)
be a vector of length (t− 1) for each day i, j, k where

sijk,2 = I
(

categorical variable for day i, j, k is type 2
)

sijk,3 = I
(

categorical variable for day i, j, k is type 2 or 3
)

...
...

...

sijk,t = I
(

categorical variable for day i, j, k is type 2 or 3 or . . . or t
)
.

Next, let us partition each covariate vector uijk =
(
rijk, sijk

)
so that rijk is a vector of the remaining

covariate terms. Furthermore let β =
(
τ , α

)
be the corresponding partition of covariate coefficients

where α =
(
α2, . . . , αt

)
. Then for person i, cycle j, and day k with categorical variable type d where

d ∈ {1, . . . , t}, then

λijk = 1− exp
{
−ξi exp

(
u′ijkβ

)}

= 1− exp
{
−ξi exp

(
r′ijkτ + s′ijkα

)}

= 1− 1
(
d = 1

)
exp

{
−ξi exp

(
r′ijkτ

)}

− 1
(
d ≥ 2

)
exp

{
−ξi exp

(
r′ijkτ +

d∑

m=2

αm

)}

From this form we can see that when αm ≥ 0, m = 2, . . . , t then λijk is nondecreasing in m. It follows that

a monotone increasing categorical variable can be created by coding the variable in the format as described

above, and constraining the corresponding parameters of γh to be greater than or equal to one (corresonding

to βh ≥ 0 for each of the corresonding h). Similarly, a monotone decreasing categorical variable can be

created by coding the variable as described above, and constraining the corresponding parameters of γh to be

less than or equal to one.
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B.3.4 Posterior computation

Express the data augmentation model as

Yij = 1

(
K∑

k=1

XijkZijk > 0

)
,

Zijk ∼ Poisson
(
ξi exp

(
u′ijkβ

))
, k = 1, . . . ,K. (B.13)

Let us further define Wijk = XijkZijk for all i, j, k.

B.3.4.1 Verifying the equivalence of the data augmentation model

Under (B.13), Yij = 0 if and only if Wij1, . . . ,WijK are identically 0. It follows that

P
(
Yij = 0

∣∣ ξi,Xij ,Uij

)

=
∏

k:Xijk=1

P
(
Wijk = 0

∣∣ ξi,uijk
)

=

K∏

k=1

[
P
(
Wijk = 0

∣∣ ξi,uijk
)]Xijk

=
K∏

k=1

[
exp

{
ξi exp

(
u′ijkβ

)} ]Xijk

=

K∏

k=1

(1− λijk)Xijk .

which is the model in (B.12).

B.3.4.2 The full likelihood

Let Y be a random variable representing all of the potential pregnancy indicators Yij , letW be a random

variable representing all of the latent variables Wijk, and let ξ be a random variable representing all of the
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woman-specific random effects ξi. Then

π
(
Y ,W ,γ, ξ, φ | data

)

= π
(
Y |W ,γ, ξ, φ, data

)
π
(
W |γ, ξ, φ, data

)
π
(
ξ |γ, φ, data

)
π
(
γ |φ, data

)
π
(
φ | data

)

= π
(
Y |W

)
π
(
W |γ, ξ, data

)
π
(
ξ |φ

)
π
(
γ
)
π
(
φ
)

=

(∏

i,j

π
(
Yij |Wij

)
)( ∏

i,j,k:Xijk=1

π
(
Wijk |γ, ξ

)
)(

n∏

i=1

π
(
ξi |φ

)
)(

q∏

`=1

π
(
γh
)
)
π
(
φ
)

=




∏

i,j

[
1

(
K∑

k=1

Wijk > 0

)
Yij + 1

(
K∑

k=1

Wijk = 0

)
(
1− Yij

)
]


×


 ∏

i,j,k:Xijk=1

1

Wijk!

[
ξi exp

(
q∑

`=1

uijk` log γ`

)]Wijk

exp

{
−ξi exp

(
q∑

`=1

uijk` log γ`

)}


×

(
n∏

i=1

φφ

Γ(φ)
ξφ−1
i exp

(
− φξi

)
)

×

(
q∏

`=1

[
ph1

(
γh = 1

)
+ (1− ph)1

(
γh 6= 1

)
GAh(γh; ah, bh)

])

× cc12
Γ(c1)

φc1−1 exp
(
− c2φ

)
.

B.3.4.3 The full conditional distributions

The full conditional distribution for W

WritingWij =
(
Wij1, . . . ,WijK

)
and lettingm =

(
m1, . . . ,mK

)
be a vector of realized outcomes for

Wij , we see first that for Yij = 0 we have

P
(
Wij = m

∣∣ Yij = 0, β, φ, ξ, data
)

=





1, m = 0,

0, else.

Next, for Yij = 1 we have

P
(
Wij = m

∣∣ Yij = 1, β, φ, ξ, data
)

=
∞∑

s=0

P
(
Wij = m,

∑
kWijk = s

∣∣∣ Yij = 1, β, φ, ξ, data
)
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= P
(
Wij = m,

∑
kWijk =

∑
kmk

∣∣∣ Yij = 1, β, φ, ξ, data
)

= P
(
Wij = m

∣∣∣
∑

kWijk =
∑

kmk, Yij = 1, β, φ, ξ, data
)

× P
(∑

kWijk =
∑

kmk

∣∣∣ Yij = 1, β, φ, ξ, data
)
.

Furthermore,

π

(
K∑

k=1

Wijk

∣∣∣∣∣ Yij = 1, β, φ, ξ, data

)

= π

(
K∑

k=1

Wijk

∣∣∣∣∣
K∑

k=1

Wijk ≥ 1, β, φ, ξ, data

)

∼ Poisson


ξi

∑

k: Xijk=1

exp
(
u′ijkβ

)

 truncated so that

K∑

k=1

Wijk ≥ 1,

and

π

(
Wij

∣∣∣∣∣
K∑

k=1

Wijk, Yij = 1, β, φ, ξ, data

)

∼ Multinomial




K∑

k=1

Wijk;
Xij1ξi exp

(
u′ij1β

)

ξi
∑

k: Xijk=1

exp
(
u′ijkβ

) , . . . ,
XijKξi exp

(
u′ijKβ

)

ξi
∑

k: Xijk=1

exp
(
u′ijkβ

)


 .
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The full conditional distribution for γh

Define the following terms which will be of use in the following derivation. Denote

ãh ah +
∑

i,j,k uijkhWijk,

b̃h bh +
∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

6̀=h
γ
uijk`
` ,

d1 ph exp
{
−(̃bh − bh)

}
,

d2 (1− ph)
C(ah, bh)

∫
Ah G(γ; ãh, b̃h) dγ

C(ãh, b̃h)
∫
Ah G(γ; ah, bh) dγ

,

p̃h
d1

d1 + d2
.

Then for the case when the explanetory variables are all categorical, we have

π
(
γh |γ(−h), φ, ξ,W , data

)

∝ π
(
W | ξ, γ, data

)
π
(
γh
)

=




n∏

i=1

ni∏

j=1

∏

k:Xijk=1

π
(
Wijk | ξi, γ, data

)

π

(
γh
)

∝




n∏

i=1

ni∏

j=1

∏

k:Xijk=1

[
exp

(
uijkh log γh

)]Wijk

× exp

{
−ξi exp

(
q∑

`=1

uijk` log γ`

)})
π
(
γh
)

=




n∏

i=1

ni∏

j=1

∏

k:Xijk=1

γ
uijkhWijk

h exp

{
−ξi

q∏

`=1

γ
uijk`
`

}
π

(
γh
)

= γ
∑
i,j,k uijkhWijk

h exp



−

∑

i,j,k:Xijk=1

ξi

q∏

`=1

γ
uijk`
`



π

(
γh
)

= γ
∑
i,j,k uijkhWijk

h exp




−

∑

i,j,k:Xijk=1,
uijkh=0

ξi
∏

`6=h
γ
uijk`
` − γh

∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

` 6=h
γ
uijk`
`




π
(
γh
)
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∝ γ
∑
i,j,k uijkhWijk

h exp




−γh

∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

`6=h
γ
uijk`
`




π
(
γh
)

= γ
∑
i,j,k uijkhWijk

h exp




−γh

∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

`6=h
γ
uijk`
`





×
[
ph1

(
γh = 1

)
+ (1− ph)1

(
γh 6= 1

)
GAh(γh; ah, bh)

]

= ph 1
(
γh = 1

)
exp




−

∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

`6=h
γ
uijk`
`





+ (1− ph)1
(
γh 6= 1

)
γ
∑
i,j,k uijkhWijk

h

× exp




−γh

∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

` 6=h
γ
uijk`
`




GAh(γh; ah, bh)

= ph 1
(
γh = 1

)
exp




−

∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

` 6=h
γ
uijk`
`





+ (1− ph) 1
(
γh 6= 1

) C(ah, bh)∫
Ah G(γ; ah, bh) dγ

γ
ah+

∑
i,j,k uijkhWijk−1

h

× exp




−γh


bh +

∑

i,j,k:Xijk=1,
uijkh=1

ξi
∏

`6=h
γ
uijk`
`








= ph 1
(
γh = 1

)
exp

{
−(̃bh − bh)

}

+ (1− ph)1
(
γh 6= 1

) C(ah, bh)∫
Ah G(γ; ah, bh) dγ

γãh−1
h exp

{
−b̃hγh

}

= ph 1
(
γh = 1

)
exp

{
−(̃bh − bh)

}
+ (1− ph)1

(
γh 6= 1

)

×
C(ah, bh)

∫
Ah G(γ; ãh, b̃h) dγ

C(ãh, b̃h)
∫
Ah G(γ; ah, bh) dγ

C(ãh, b̃h)∫
Ah G(γ; ãh, b̃h) dγ

γãh−1
h exp

{
−b̃hγh

}

= ph 1
(
γh = 1

)
exp

{
−(̃bh − bh)

}
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+ (1− ph)1
(
γh 6= 1

) C(ah, bh)
∫
Ah G(γ; ãh, b̃h) dγ

C(ãh, b̃h)
∫
Ah G(γ; ah, bh) dγ

GAh
(
γ; ãh, b̃h

)

= d11
(
γh = 1

)
+ d21

(
γh 6= 1

)
GAh
(
γ; ãh, b̃h

)

∝ d1

d1 + d2
1
(
γh = 1

)
+

d2

d1 + d2
1
(
γh 6= 1

)
GAh
(
γ; ãh, b̃h

)

= p̃h1
(
γh = 1

)
+ (1− p̃h)1

(
γh 6= 1

)
GAh
(
γ; ãh, b̃h

)
.

The full conditional distribution for ξi

π
(
ξi
∣∣ β, φ,W , data

)

∝ π
(
Wi

∣∣ β, ξi, data
)
π
(
ξi |φ, data

)

=


 ∏

j,k:Xijk=1

π
(
Wijk

∣∣ β, ξi, data
)

π

(
ξi |φ, data

)

∝


 ∏

j,k:Xijk=1

ξ
Wijk

i exp

{
− ξi exp

(
u′ijkβ

)}

 ξφ−1

i exp
{
− φξi

}

=


ξ

∑
j,kWijk

i exp

{
− ξi

∑

j,k:Xijk=1

exp
(
u′ijkβ

)
}
 ξφ−1

i exp
{
− φξi

}

= ξ
φ+
∑
j,kWijk−1

i exp



−ξi

[
φ+

∑

j,k:Xijk=1

exp
(
u′ijkβ

)
]


∼ Gamma


φ+

∑

j,k

Wijk, φ +
∑

j,k:Xijk=1

exp
(
u′ijkβ

)

 .

Sampling φ

Sampling φ can be achieved via the Metropolis algorithms. Let φ(s) denote the value of φ for the sth scan

of the MCMC algorithm, and let φ∗ denote a proposed value of φ for the (s+ 1)th scan of the algorithm. We

consider the following two proposal distributions where δ is a tuning parameter with value greater than 0.
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(i) J
(
φ∗ |φ(s)

)
∼
∣∣N
(
φ(s), δ2

) ∣∣ ,

(ii) J
(
φ∗ |φ(s)

)
∼
∣∣Uniform

(
φ(s) − δ, φ(s) + δ

) ∣∣ .

Now,

π
(
φ |Y ,W ,β, ξ, data

)

=
π
(
Y ,W ,β, ξ, φ, data

)

π
(
Y ,W ,β, ξ, data

)

=
1

π
(
Y ,W ,β, ξ, data

) π
(
Y |W ,β, ξ, φ, data

)
π
(
W |β, ξ, φ, data

)

× π
(
ξ |φ, data

)
π (φ | data)

=
1

π
(
Y ,W ,β, ξ, data

) π
(
Y |W

)
π
(
W |β, ξ, data

)
π
(
ξ |φ

)
π (φ)

=

(
n∏

i=1

π
(
ξi |φ

)
)
π (φ)

π
(
Y |W

)
π
(
W |β, ξ, data

)

π
(
Y ,W ,β, ξ, data

) .

It follows that the acceptance ratio is given by min(r, 1) where

r =
π
(
φ∗ |Y ,W ,β, ξ, data

)

π
(
φ(s) |Y ,W ,β, ξ, data

) =

(∏n
i=1 π

(
ξi |φ∗

))
π (φ∗)

(∏n
i=1 π

(
ξi |φ(s)

))
π (φ(s))

.

B.3.5 Symmetric distributions verfication

Recall the proposal distributions from Step 4 of the MCMC algorithm:

(i) J
(
φ∗ |φ(s)

)
∼
∣∣N
(
φ(s), δ2

) ∣∣,

(ii) J
(
φ∗ |φ(s)

)
∼
∣∣Uniform

(
φ(s) − δ, φ(s) + δ

) ∣∣.
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To see that (i) is indeed a symmetric distribution, consider the following. Let X ∼ Normal (µ, δ2), and let

Y = |X|. Define

A0 = {0},

A1 = (−∞, 0), g1(x) = −x, g−1
1 (x) = −x,

A2 = (0,∞), g2(x) = x, g−1
2 (x) = x.

Then

πY (y) =

2∑

i=1

fX
(
g−1
i (y)

) ∣∣∣∣
d

d y
g−1
i (y)

∣∣∣∣

=
1√

2πδ2
exp

{
− 1

δ2
(−y − µ)2

}
| − 1 |+ 1√

2πδ2
exp

{
− 1

δ2
(y − µ)2

}
| 1 |.

Letting πJ(i) (x|y) denote the density function of (i), it follows that

πJ(i)

(
φ∗ |φ(s)

)
=

1√
2πδ2

exp

{
− 1

δ2

(
−φ∗ − φ(s)

)2
}

+
1√

2πδ2
exp

{
− 1

δ2

(
φ∗ − φ(s)

)2
}
,

and that

πJ(i)

(
φ(s) |φ∗

)
=

1√
2πδ2

exp

{
− 1

δ2

(
−φ(s) − φ∗

)2
}

+
1√

2πδ2
exp

{
− 1

δ2

(
φ(s) − φ∗

)2
}
.

which are readily seen to be equivalent.

To see that (ii) is indeed a symmetric distribution, consider the following. Let X ∼ Uniform (a, b), and let

Y = |X|. Then for a < y < b,

FY (y) = P (Y ≤ y)

= P (|X| ≤ y)

= P (−y ≤ X ≤ y)
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= FX(y)− FX(−y)

=
y − a
b− a

− −y − a
b− a

1 (a < −y),

so that

πY (y) =
1

b− a
+

1

b− a
1 (a < −y).

Letting πJ(ii) (x|y) denote the density function of (ii), it follows that for φ(s) < φ∗ < φ(s),

πJ(ii)

(
φ∗ |φ(s)

)
=

1

(φ(s) + δ)− (φ(s) − δ)
+

1

(φ(s) + δ)− (φ(s) − δ)
1 (φ(s) − δ < −φ∗)

=
1

2δ
+

1

2δ
1
(
φ(s) − δ < −φ∗

)
,

and similarly that for φ∗ < φ(s) < φ∗,

πJ(ii)

(
φ(s) |φ∗

)
=

1

(φ∗ + δ)− (φ∗ − δ)
+

1

(φ∗ + δ)− (φ∗ − δ)
1 (φ∗ − δ < −φ(s)

)

=
1

2δ
+

1

2δ
1
(
φ∗ − δ < −φ(s)

)
,

which after rearranging terms are seen to be equivalent.

B.3.5.1 Computational considerations

Sampling from a truncated gamma distribution

Consider a set (a, b) and let X be a continuous random variable with support A such that (a, b) ⊂ A.

Define

FX the distribution function of X,

U (d1, d2) a uniform random variable with support on (d1, d2),

V a random variable defined by V = F−1
X

(
U
(
FX(a), FX(b)

))
.
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Then

P (V ≤ v) = P
{
F−1
X

(
U
(
FX(a), FX(b)

))
≤ v
}

= P
{
U
(
FX(a), FX(b)

)
≤ FX(v)

}

=





0, v ≤ FX(a),

FX(v)− FX(a)

FX(b)− FX(a)
, FX(a) < v < FX(b),

1, FX(b) ≤ v,

which is the distribution function of X truncated to (a, b). Thus by choosing FX to be the distribution

function of some desired gamma distribution, we may sample from the truncated gamma distribution by

sampling u ∼ U
(
FX(a), FX(b)

)
and then calculating F−1

X (u).

Sampling from a truncated Poisson distribution

Let X be a random variable with support {x1, x2, . . . } where xi < xj for all i < j. Let FX denote the

distribution function of X , and let GX : (0, 1) 7→ {x1, x2, . . . } be a pseudo-inverse of FX defined by

GX(p) = min
{
xi ∈ {x1, x2, . . . }: FX(xi) ≥ p

}
.

Next, let j1, j2, k ∈ N with j1 < j2. Note that this implies that FX(xj1) < FX(xj2) if we assume

P (X = xi) > 0 for all i ∈ N. Define U(d1, d2) to be a uniform random variable with support on (d1, d2),

then

P
{
GX

(
U (FX(xj1−1), FX(xj2))

)
= xk

}

= P
{
U (FX(xj1−1), FX(xj2)) ∈

(
FX(xk−1), FX(xk)

)}

= 1 (xj1 ≤ xk, xk ≤ xj2)

∫ FX(xk)

FX(xk−1)

1

FX(xj2)− FX(xj1−1)
dy

= 1 (xj1 ≤ xk, xk ≤ xj2)
FX(xk)− FX(xk−1)

FX(xj2)− FX(xj1−1)
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= 1 (xj1 ≤ xk, xk ≤ xj2)
P (X = xk)

FX(xj2)− FX(xj1−1)
,

which is the probability mass function of X truncated to {xj1 , . . . , xj2}. Notice that we may replace FX(xj2)

with 1 throughout to obtain the pmf of X truncated to {xj1 , xj1+1, . . . }. Thus by choosing FX to be the

distribution of a Poisson distribution with mean λ, we may sample from the Poisson distribution truncated to

be greater than or equal to 1 by sampling u ∼ U
(
FX(0), 1

) d
= U

(
e−λ, 1

)
and then calculating GX(u).

B.4 Extending the algorithm to continuous predictors

Suppose for ease of exposition that the model has a single continuous variable - the extension to multiple

continuous variables is straightforward. Let αijk denote the value for the continuous variable for the (i, j, k)th

day, and let θ be the exponentiated value of the corresponding coefficient. Then we can express the model as

P
(
Yij = 1

∣∣ β, θ, ξ, data
)

= 1−
K∏

k=1

(1− λijk)Xijk ,

where

λijk = 1− exp
{
−ξi exp

(
u′ijkβ + αijk log(θ)

)}
.

When a predictor variable is not categorical, then we do not have a closed-form expression for the full

conditional distribution of the corresonding coefficient. To express the model in a form that is more amenable

to sampling via the Metropolis-Hastings algorithm, we cast the prior distribution of θ as a mixture distribution

by defining

θ | (M = 1) = 1,

θ | (M = 0) ∼ GA(a, b),

M ∼ Bern (p),

and we assume that (θ,M) ⊥ γ. Then we observe that

π
(
M
∣∣ Y ,W ,γ, θ, ξ, φ, data

)
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∝ π
(
Y
∣∣W ,M,γ, θ, ξ, φ, data

)
π
(
W
∣∣M,γ, θ, ξ,φ, data

)

× π
(
γ
∣∣M, θ, ξ, φ, data

)
π
(
θ
∣∣M, ξ, φ, data

)
π
(
M
∣∣ ξ, φ, data

)
π
(
ξ, φ

∣∣ data
)

= π
(
Y |W

)
π
(
W
∣∣ γ, θ, ξ, data

)
π
(
γ
)
π
(
θ |M

)
π
(
M
)
π
(
ξ, φ
)

∝ π (M | θ)

= 1 (θ = 1)M + 1 (θ 6= 1) (1−M).

From this we see that M = 0 and M = 1 are both absorbing states and we need to proceed with a different

tack. We adapt the data augmentation approach proposed by Carlin and Chib (1995) to suit our needs. Define

θ1 | (M = 1) = 1,

θ0 | (M = 0) ∼ GA(a, b),

and let

P
(
Yij = 1

∣∣M,β, θ0, θ1, ξ, data
)

= 1−
K∏

k=1

(1− λijk)Xijk ,

where

λijk =





1− exp
{
−ξi exp

(
u′ijkβ + αijk log(θ0)

)}
, M = 0,

1− exp
{
−ξi exp

(
u′ijkβ + αijk log(θ1)

)}
, M = 1.

Of course M = 1 corresponds to αijk being dropped from the model since log(θ1) = 0. We also see that Y

is independent of θk 6=j given that M = j, j = 0, 1. Usually here we would assume that (θ0 |M) ⊥ (θ1 |M),

but in this case it is automatic. In order to complete the prior specification it remains to specify the linking

distributions θ1 | (M = 0) and θ0 | (M = 1), but we will defer this for a moment. Instead, we observe that

π
(
Y ,W ,M = j,γ, θ0, θ1, ξ, φ

∣∣ data
)

= π
(
Y
∣∣W ,M = j, θ0, θ1, ξ, φ, data

)
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× π
(
W
∣∣M = j, θ0, θ1, ξ, φ, data

)

× π
(
θ0, θ1

∣∣M = j, ξ, φ, data
)

× P
(
M = j

∣∣ ξ, φ, data
)

× π
(
ξ, φ

∣∣ data
)

= π
(
Y |W

)
π
(
W
∣∣M = j,γ, θj , ξ, data

)

×

[
1∏

k=0

π
(
θk |M = j

)
]
P
(
M = j

)
π
(
ξ, φ
)
.

Now we consider the auxiliary variables model. We have

π
(
θj
∣∣ Y ,W ,M = j,γ, θk 6=j , ξ, φ, data

)

=
π
(
Y ,W ,M = j,γ, θ0, θ1, ξ, φ

∣∣ data
)

∫
π
(
Y ,W ,M = j,γ, θ0, θ1, ξ, φ

∣∣ data
)
dθj

=
π
(
Y |W

)
π
(
W
∣∣M = j,γ, θj , ξ, data

) [∏1
k=0 π

(
θk |M = j

)]
P
(
M = j

)
π
(
ξ, φ
)

∫
π
(
Y |W

)
π
(
W
∣∣M = j,γ, θj , ξ, data

) [∏1
k=0 π

(
θk |M = j

)]
P
(
M = j

)
π
(
ξ, φ
)
dθj

=
π
(
W
∣∣M = j,γ, θj , ξ, data

)
π
(
θj |M = j

)
∫
π
(
W
∣∣M = j,γ, θj , ξ, data

)
π
(
θj |M = j

)
dθj

= π
(
θj
∣∣W ,M = j,γ, ξ, data

)
,

so we see that the full conditional distribution for θj , j = 0, 1 remains unchanged under the auxiliary

variables model. Next, for k 6= j,
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π
(
θk
∣∣ Y ,W ,M = j,γ, θj , ξ, φ, data

)

=
π
(
Y ,W ,M = j,γ, θ0, θ1, ξ, φ

∣∣ data
)

∫
π
(
Y ,W ,M = j,γ, θ0, θ1, ξ, φ

∣∣ data
)
dθk

=
π
(
Y |W

)
π
(
W
∣∣M = j,γ, θj , ξ, data

) [∏1
i=0 π

(
θi |M = j

)]
P
(
M = j

)
π
(
ξ, φ
)

∫
π
(
Y |W

)
π
(
W
∣∣M = j,γ, θj , ξ, data

) [∏1
i=0 π

(
θi |M = j

)]
P
(
M = j

)
π
(
ξ, φ
)
dθk

=
π
(
θk |M = j

)
∫
π
(
θk |M = j

)
dθk

= π
(
θk |M = j

)
.

Thus the full conditional distribution for θk 6=j when M = j is just the linking density. Note also that the

full conditional distributions of γ, ξ, and φ remain unchanged under the auxiliary variables model. Next we

observe that

P
(
M = 1

∣∣ Y ,W ,γ, θ0, θ1, ξ, φ, data
)

=
π
(
Y ,W ,M = 1,γ, θ0, θ1, ξ, φ

∣∣ data
)

∑1
j=0 π

(
Y ,W ,M = j,γ, θ0, θ1, ξ, φ

∣∣ data
)

=
π
(
W
∣∣M = 1,γ, θ1, ξ, data

) [∏1
k=0 π

(
θk |M = 1

)]
P
(
M = 1

)

∑1
j=0 π

(
W
∣∣M = j,γ, θj , ξ, data

) [∏1
k=0 π

(
θk |M = j

)]
P
(
M = j

) .

In light this of result, we now choose the prior distributions for θ1 | (M = 0) and θ0 | (M = 1). Clearly we

should specify θ1 | (M = 0) = 1. Furthermore, out of convenience, we propose specifying θ0 | (M = 1)
d
=

θ0 | (M = 0). Under this specification, we obtain that

P
(
M = 1

∣∣ Y ,W ,γ, θ0, θ1, ξ, φ, data
)

=
π
(
W
∣∣M = 1,γ, θ1, ξ, data

)
P
(
M = 1

)

∑1
j=0 π

(
W
∣∣M = j,γ, θj , ξ, data

)
P
(
M = j

) .

In conclusion, we may incorporate a continuous covariate into the MCMC sampler by using the data

augmentation approach detailed above. When M = 0 then θ0 is updated via a Metropolis step.
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