
 
 
 
 
 

DIFFERENTIAL BEHAVIORAL EFFECTS OF ABSTINENCE FROM COCAINE 
SELF-ADMINISTRATION IN CUED AND UNCUED DELAY-BASED DECISION 

MAKING TASKS 
 
 
 
 
 

Metika L. Ngbokoli 
 
 
 

 
A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in partial 

fulfillment of the requirements for the degree of Master of Arts in the Department of 
Psychology and Neuroscience (Behavioral and Integrative Neuroscience) in the College of 

Arts and Sciences. 
 
 
 
 

Chapel Hill 
2020 

 
 
 
 
 
Approved by: 

 
Regina M. Carelli 

 
Todd E. Thiele 

 
Donald T. Lysle 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/388591245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

© 2020 
Metika L. Ngbokoli 

ALL RIGHTS RESERVED 
  



 iii 
 

 
 
 
 
 

ABSTRACT 
 

Metika L. Ngbokoli: Differential behavioral effects of abstinence from cocaine self-
administration in cued and uncued delay-based decision making tasks 

(Under the direction of Regina M. Carelli) 
 
 

 Decision making is an important cognitive process that can become dysfunctional when 

exposed to drugs of abuse. Those who suffer from substance use disorders often have increased 

rates of impulsivity, including delay discounting, a type of impulsivity comprised of magnitude 

and delay. Studies show prior cocaine experience can elicit differential behavioral effects related 

to magnitude of reward, and in the presence of a discrete cue shifts behavior towards the optimal 

reward. Here, we developed and tested two tasks to determine if delay-based decision making is 

similarly influenced by discrete cues. In the cued task, animals with prior cocaine self-

administration were faster to press for reward, while in the uncued task, this effect disappeared. 

However, cocaine history had no effect on free choice behavior in either task.  These findings 

indicate the presence of a discrete cue influences latency to respond, but not free choice 

behavior, in a delay-based decision making task. 
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Introduction 
 
 Decision making is an important cognitive process for human survival and can become 

maladaptive when exposed to drugs of abuse (Roesch et. al, 2007). According to the 2018 U.S. 

National Survey on Drug Use and Health, approximately 164.8 million people aged 12 and up 

had used an abused substance (such as tobacco, alcohol, or illicit drugs) in the past month, with 

approximately 977,000 of them categorized as having a cocaine use disorder. Research shows 

that those who suffer from substance use disorders (SUDs) exhibit deficits in working memory, 

cognitive flexibility, and increased impulsivity (Butler & Le Foll, 2019). 

 Impulsivity, or lack of inhibitory control, can be defined as performing an action 

prematurely without thorough analysis of potential consequences (Dalley, Everitt, & Robbins, 

2011). Those suffering from SUDs tend to have increased rates of impulsive behavior; this 

increased impulsivity holds for several drugs of abuse including heroin, methamphetamine, 

ethanol, nicotine, and cocaine (Cheng, Lu, Han, González-Vallejo, & Sui, 2012; Coffey, 

Gudleski, Saladin, & Brady, 2003; Crews & Boettiger, 2009; Grabski et al., 2016; Hoffman et 

al., 2006). While there are a number of different ways in which one can measure impulsivity in 

humans and animal models, one task commonly used is delay discounting. 

 Delay discounting is a way of measuring one’s ability to delay gratification.  In delay 

discounting tasks, both time and magnitude are modulated such that the value of a reward 

decreases as the time to reward increases (Kirby & Petry, 2004). In other words, the task is 

designed to determine if one prefers a small, immediate reward or a larger, delayed reward.  As 

the delay for the larger reward increases, the value of that reward in turn becomes “discounted”.  
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As such, impulsive individuals tend to choose the immediate reward more often as the delay to 

the larger reward increases. 

 Notably, the same holds true for those who suffer from SUDs.  That is, people with SUDs 

tend to have heightened delay discounting (i.e., more impulsivity) than those without the illness 

(Bickel, Koffarnus, Moody, & Wilson, 2014; Bjork, Hommer, Grant, & Danube, 2004; Coffey et 

al., 2003; Hoffman et al., 2006). Further, preclinical research has shown that drug naïve animals 

with higher rates of delay discounting acquire self-administration of drugs faster (Anker, Perry, 

Gliddon, & Carroll, 2009) and have greater reinstatement of drug taking after a period of 

abstinence (Broos, Diergaarde, Schoffelmeer, Pattij, & De Vries, 2012).  In addition, some 

preclinical studies reported that a history of repeated administration of cocaine increases rates of 

delay discounting in rats (Hernandez et al., 2014; Mendez, Simon, Hart, Mitchell, & Nation, 

2010; Mitchell et al., 2014; Roesch et al., 2007; Simon, Mendez, & Setlow, 2007).  However, 

these findings have not always been replicated (Broos et al., 2012; Moschak & Carelli, 2017). 

 Additional preclinical studies have examined the effects of cocaine history on behavior 

related to discrete components of a delay discounting task, namely, magnitude- and/or delay-

based decision making.  Rats without a history of cocaine exposure typically prefer high value 

(large reward/short delay) over low value options (Burton et al., 2018; Dandy & Gatch, 2009; 

Day, Jones, & Carelli, 2011; Mendez et al., 2010).  However, a history of cocaine can alter these 

preferences.  For example, Saddoris and colleagues examined the effects of cocaine history on 

behavior during a magnitude choice task (Saddoris, Sugam, & Carelli, 2017).  Here, rats learned 

that one lever was associated with a small reward (1 pellet) and the other with a larger reward (2 

pellets).  Once learned, rats then had free choice trials where both the 1-pellet and 2-pellet levers 

were simultaneously extended into the chamber, and presses on the lever delivered the associated 
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reward.  The authors found that rats that had a history of cocaine self-administration were unable 

to discriminate between a large and small reward (preferred both equally). In contrast, controls 

preferred the large over the small reward. 

 Interestingly, the effects of cocaine history on behavior may be related, in part, to the 

presence of discrete cues in decision making tasks.  For example, in a study performed by 

Roesch and colleagues (2007) the effects of a history of cocaine was examined on a delay task 

and a magnitude task.  That is, in this experiment, rats were trained and subsequently tested on 

two different tasks designed to manipulate either delay to reward or reward magnitude following 

abstinence from experimenter-administered cocaine (versus saline controls). Before testing, 

animals were trained with odors to determine side preference; one odor instructed the rat to go to 

one side of the chamber while the other instructed the rat to go to the opposite side for a reward. 

Once this was learned, a third novel odor, signifying the rat can choose either side, was 

introduced and animals were tested on the task where either delay or magnitude was 

manipulated. In the delay task, the delay to receive reward became increasingly larger (0.5s-10s) 

on the initially preferred side of the chamber while magnitude for both sides remained consistent. 

In the magnitude task, the size of the reward became increasingly larger (1-5 boli of sucrose) on 

the initially non-preferred side and there was no delay to reward. The cocaine-treated and saline-

treated rats performed in a similar manner when delay lengths and reward magnitudes were equal 

at the two locations.  However, animals with a history of cocaine (but not controls) were more 

likely to switch their responses to the alternative side when the delay to reward or reward size 

was increased. 

As noted above, Saddoris et al., (2017) and Roesch et al., (2007) demonstrated that 

abstinence from cocaine resulted in differential effects in magnitude discrimination. It is 
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important to note that in the former, there was no discrete cue to signal availability of a reward 

and animals with a history of cocaine were unable to discriminate between large and small 

rewards while in the latter, there was a discrete cue and animals with a history of cocaine shifted 

behavior towards choosing the larger reward faster than their control counterparts. Collectively, 

these findings suggest that the presence of a discrete cue to signal availability of a reward may 

have an effect on magnitude-based decision making. Specifically, animals with a history of 

cocaine in the presence of a discrete cue shift behavior towards choosing the optimal option 

faster. The question then becomes: does this hold true for delay-based decision making? 

 Previous work in the Carelli lab has examined the effects of prior cocaine self-

administration history on magnitude-based decision making and delay-discounting behavior 

(Moschak & Carelli, 2017; Saddoris et al., 2017) but we have not yet examined cocaine history 

on delay-based decision making. As such, the main goal of the present work was to determine if 

delay-based decision making is influenced by discrete cues signaling delay to reward and we 

designed two tasks to address this issue.  In the first task, rats learned that a distinct visual 

cuelight illuminated for 5 s signaled the availability of either an immediate or delayed (4 s) 

reward of the same size, and then were given an opportunity to choose their preferred option. 

The second task was similar but without the 5 s visual cue. The two behavioral endpoints 

reflective of impulsive responding of interest were: 1) latency/speed to respond and 2) choice 

behavior.  Our results revealed interesting differences between behavioral responding in the two 

tasks indicating an important role of cues in cocaine's actions on delay-based decision making. 
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Methods 

Animals 

Male Sprague-Dawley rats (Harlan; Task 1; cocaine n=7, saline n=6; Task 2; cocaine 

n=6, saline n=7) were obtained at ~2-3 months and weighed approximately 300-330g upon 

arrival. Rats were singly housed and kept at no less than 85% of their pre-experimental body 

weight with the exception of the week of postoperative care when they were given water and 

food ad libitum.  During self-administration, animals were given 20mL of water a day while 

during behavioral testing, animals were fed 3 food pellets each day (Purina Laboratory Chow). 

Animal procedures were conducted in accordance with the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals and were approved by the University of 

North Carolina at Chapel Hill Institutional Animal Care and Use Committee (IACUC). 

 

Apparatus 

Self-administration was completed in 30 x 25 x 19 cm operant chambers (Med 

Associates, St. Albans, VT) equipped with two retractable levers with cue lights above them on 

one side and a nosepoke location on the other. The chambers were also equipped with a 

receptacle programmed to deliver water located in between the two retractable levers.  Cocaine 

infusions were delivered via a syringe pump located outside of the chambers and connected to 

the animals’ catheter. For self-administration, the levers were retracted and only the nosepoke 

was enabled. Training and testing on the delay-based decision-making tasks were conducted in 

operant chambers located in another room.  These chambers were 43 x 43 x 53 cm (Med 
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Associates, St. Albans, VT) and equipped with two retractable levers with cue lights above 

them and a foodcup located between the levers for delivery of sucrose pellets.  

 

Experimental Timeline 

 Figure 1 shows a schematic diagram of the experimental timeline. First, the animals 

underwent intrajugular catheter surgery followed by a week of postoperative care. Next, the 

animals completed 14 consecutive days of either cocaine or water self-administration (yoked 

saline; see below for self-administration details) immediately followed by a 30-day 

experimenter-imposed abstinence.  During abstinence, rats remained in their home cages without 

access to drug. Finally, after abstinence, the animals were trained on one of the delay-based 

decision-making tasks, followed by 4 test days, described below. 

 

Surgery 

Rats were deeply anesthetized using a mixture of 100 mg/kg ketamine hydrochloride and 

10 mg/kg xylene and surgically prepared for implantation of a catheter into the right jugular vein 

as described in detail elsewhere (Moschak & Carelli, 2017).  A subset of these animals (Task 1; 

cocaine n=3, saline n=4; Task 2; cocaine n=6, saline n=7) also received implantation of 

microelectrode arrays for electrophysiology in the nucleus accumbens core and prelimbic cortex 

in the same surgery. However, due to noise issues and low number of cells detected, those data 

are not included in this report.  
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Self-Administration 

 One week after surgery, animals began cocaine self-administration training. Rats were 

placed into the self-administration chambers and the catheter was connected to an infusion pump.   

Each nosepoke resulted in cocaine (0.33 mg in 0.2 ml of 0.9% saline, i.v.) or an equal volume of 

both saline (i.v.) and water (delivered to the reward receptacle) paired with a 30 s tone-

houselight compound stimulus. Nosepokes during the 20 s post response period during the tone-

houselight presentation were not reinforced.  Of note, saline rats controlled both for the amount 

of fluid being infused intravenously and learning the operant task of nosepoking for reward. The 

animals were given 2-hour daily self-administration sessions over 14 consecutive days. All rats 

were mildly water-restricted (20 ml/d) but given ad libitum food access. Cocaine hydrochloride 

was obtained from the National Institute on Drug Abuse. 

 

Abstinence 

 After two weeks of cocaine or water (yoked saline) self-administration sessions, the 

animals were placed on a 30-day experimenter-imposed abstinence period where they were given 

water and food ad libitum but remained in their home cages (no drug).  After 30 days of 

abstinence, rats were trained on either the cued task (task 1) or the uncued task (task 2), 

described below.  

 

Delay based decision making tasks 

 For the Cued Task (Task 1), rats were initially trained to press two distinct levers in 

which each response was reinforced on a fixed ratio 1 (FR1) schedule of reinforcement.  

Reinforced responses resulted in the delivery of a sucrose pellet to a centrally located food cup. 
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Animals were trained to a criterion of 50 presses on each response lever for two consecutive 

days. Next, rats were trained on a task that involved three types of contingencies (30 trials each) 

intermixed within 90 total trials per session. At this stage, a single sucrose pellet was available 

for each lever press throughout the session without any imposed delay to reinforcement. The first 

two trial types were classified as forced-choice trials. For one trial type, a single cue light was 

illuminated for 5 s over one lever, followed by extension of both levers. Responses on the cue 

light illuminated lever (within 10 s) were immediately reinforced with one sucrose pellet. During 

the other forced-choice trial type, the cue light over the other lever was illuminated for 5 s, 

followed by extension of both levers. Responses within 10s on the cue-associated lever were 

reinforced as above. For forced-choice trials, responses on the unsignaled lever were counted as 

errors and resulted in termination of the house light for the remainder of the trial period, with no 

reward delivery. No response to either lever within 10s was counted as an omission and also 

resulted in termination of the houselight with no reward delivery. During the third trial type, 

termed free choice trials, both cue lights were illuminated for 5 s, after which both levers were 

extended, and responses on either lever within 10 s were reinforced with one sucrose pellet. 

After a press on either lever, both levers were retracted, and a sucrose pellet was immediately 

delivered into the food receptacle. To move on to the test days, rats needed to maintain at least 3 

days of stable accuracy (80% correct responses).  Once stable behavior was achieved, a 4 s delay 

to reinforcement was imposed after a lever press on one of the levers and similar testing began 

for a total of 4 test days. Assignment of delay for the levers was counterbalanced across subjects. 

A schematic diagram of the cued task on the test days is shown in Figure 2. 

 For the Uncued Task (Task 2), rats were first trained that two distinct levers were each 

associated with delivery of 1 pellet on a FR1 schedule. When the rat performed 50 presses on 
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each lever within a 1-h session, the session terminated. If the rat failed to reach 100 total presses 

within the hour, it was run on the same contingency the next day. Animals were trained to a 

criterion of 50 presses on each response lever for two consecutive days. Next, the animals were 

trained on a task that involved three types of contingencies (20 trials each) intermixed within 60 

total trials per session similar to task 1 but without the discrete 5 s cue preceding lever extension. 

The first two trial types were forced choice trial, during which either the right or the left lever 

was extended into the chamber without any preceding 5 s cuelight illumination above the levers. 

A response on the extended lever within 10s (FR1) resulted in the immediate delivery of a single 

sucrose pellet. Failure to respond within the 10s was counted as an error and resulted in the 

termination of the houselight for the remainder of the trial period, with no reward delivery. 

During the third trial type (free choice trials), both levers were extended into the chamber and 

response to either lever within 10s resulted in the immediate delivery of a single sucrose pellet. 

Failure to respond within 10 s was an omission and resulted in the termination of the houselight 

and end of the trial period with no reward delivery. In order to move on to test days, animals had 

to have at least 2 days of stable accuracy (80% correct responses). Once stable behavior was 

established, a 4s delay to reinforcement was imposed after a lever press on one of the levers and 

animals were run on this same task for 4 consecutive test days. A schematic diagram of the 

uncued task on the test days is shown in Figure 3. 

 

Data analysis 

 For analysis of self-administration behavior, for each task (cued versus uncued) a two-

way (group x day) ANOVA was used to compare total daily nosepokes for water (yoked saline) 

versus cocaine self-administration during the two-week training period, followed by Tukey’s 
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post hoc tests.  

 For the two delay-based decision making tasks, separate unpaired t-tests were used to 

compare accuracy (% correct responding during forced delay and immediate trials) for rats with 

a history of water (yoked saline) versus a history of cocaine self-administration. For free choice 

trials, unpaired t-tests were used to examine if differences occurred in preference for pressing the 

delay lever in rats with a history of water versus cocaine self-administration for each task. 

Analysis of delay lever preference across days was also evaluated separately for each task using 

a repeated measures two-way (group x day) ANOVA with Bonferroni’s post hoc correction for 

multiple comparisons. This analysis compared lever preference for the delayed reward using 

group and day as factors.  Latency to press for reward was evaluated separately for forced and 

free choice trials using a two-way repeated measures ANOVA with Bonferroni’s post hoc 

correction for multiple comparisons. This analysis compared latency to lever press using group 

(cocaine and saline) and trial type (delay and immediate) as factors. For all within-subjects 

analyses that did not pass Mauchly’s test for sphericity, Geisser-Greenhouse adjusted degrees of 

freedom were used. 

All analyses were considered to be significant at a= 0.05. Statistical and graphical 

analyses were performed using GraphPad Prism 8.0 for Windows (GraphPad Software, La Jolla, 

CA).  
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Results 

Self-administration behavior 

 Nose-poke responses for rats with a history of cocaine self-administration and control 

animals (water self-administration, yoked saline) were examined within the two tasks. For the 

cued task, a two-way ANOVA revealed no significant main effect of group (F1,11= 0.2440, p = 

0.6310), no main effect of day (F3.22,35.42= 0.9761, p = 0.4195) and no significant interaction 

(F13,143 = 0.4737, p = 0.9363) (Figure 4A). These findings indicate similar self-administration 

responding across days for each group in the cued task.  For the uncued task, a two-way 

ANOVA revealed a significant main effect of group (F1,11 = 6.972, p = 0.0230), no main effect 

of day (F4.403,48.43 = 0.7746, p = 0.5581) and no significant interaction (F13,143 = 1.249, p = 

0.2510) (Figure 4B). The significant main effect of group in the Uncued task indicates that 

collapsed across days, nose poke responses for water (controls) was significantly higher than 

rats responding for cocaine.   

 

History of cocaine self-administration does not affect free choice behavior but makes animals 
respond faster than controls when discrete cues are present 
 
 During forced choice delay trials in Task 1 (Cued Task), there was no significant 

difference in percent correct lever press responding during forced delay trials (t11 = 0.3731, p = 

0.7162; Figure 5A), errors (t11 = 0.6992, p = 0.4990; data not shown), or omissions (t11 = 1,349, 

p = 0.2045; data not shown) between animals with a history of cocaine self-administration 

compared to water self-administration (yoked saline). Likewise, during forced choice 
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immediate trials, there was no significant difference found in percent correct lever press 

responses (t11 = 0.7238, p = 0.4843; Figure 5B), errors (t11 = 0.6792, p = 0.5215; data not 

shown), or omissions (t11 = 1.108, p = 0.2917 ; data not shown) between groups. When animals 

could freely choose either lever (i.e., free choice trials), behavior between groups was averaged 

and analyzed across all 4 test days (Fig. 5C) as well as across each individual test day (Fig. 5D). 

There was no significant difference in free choice behavior across groups averaged across all 

test days (t11 = 0.8103, p = 0.4350; Figure 5C). Likewise, a two-way ANOVA revealed a 

significant main effect of test day (F1.785,19.63 = 5.304, p = 0.0169), but no main effect of group 

(F1,11 = 0.6565, p = 0.4350), or interaction of day x group (F3,33 = 0.7879, p = 0.5093) (Figure 

5D), indicating that both groups pressed the delay lever less over days (i.e., behavior improved).   

 Interestingly, animals with a history of cocaine self-administration were faster to press 

for reward (compared to water self-administration rats) on forced choice and free choice trials 

independent of trial type (delay versus immediate). Specifically, a two-way ANOVA revealed  

a main effect of group (F1,11 = 4.624, p = 0.0428), but no main effect of delay (F1,11 = 0.1061, p 

= 0.7477), or interaction of delay x group (F1,11 = 0.03081, p = 0.8623) during forced choice 

trials (Figure 5E).  Likewise, animals with a history of cocaine were also faster to press for 

reward during free choice trials compared to water self-administration (saline yoked) rats. A 

two-way ANOVA revealed a main effect of group (F1,11 = 4.679, p = 0.0417), but no main 

effect of delay (F1,11 = 0.003898, p = 0.9508), or interaction of delay x treatment (F1,11 = 

0.1832, p = 0.6728) (Figure 5F). 

 

History of cocaine self-administration does not affect free choice behavior, response time or 
response latency in a delay-based decision making task without discrete cues  
 
 Similar to the Cued Task, in Task 2 (Uncued Task), there was no significant difference 



 13 
 

in percent correct responding between animals with a history of cocaine self-administration 

compared to water self-administration (yoked saline) for both forced delay (t11 = 0.2289, p = 

0.8231; Figure 6A) and forced immediate trials (t11 = 0.5991, p = 0.5612; Figure 6B). Likewise, 

there was no significant difference between groups for number of omissions made during forced 

delay (t11 = 0.2289, p = 0.8231; data not shown) or forced immediate trials (t11 = 0.5991, p = 

0.5612, data not shown). Further, there was no significant difference in free choice behavior 

averaged across all 4 test days (t11 = 0.9777, p = 0.3492; Figure 6C) or when averaged across 

each test day (Figure 6D). Specifically, a two-way ANOVA revealed no main effect of day 

(F1.878,20.03 = 0.4239, p = 0.6478), group (F1,11 = 0.1030, p = 0.3320), or interaction effect of day 

x group (F3,32 = 0.8944, p = 0.4547, Figure 6D).  

 In contrast to the cued task, animals with a history of cocaine self-administration were 

not faster to press for reward during forced choice trials (Figure 6E). Here, there a two-way 

ANOVA revealed no main effect of trial type (F1,11 = 1.098, p = 0.3172;), group (F1,11 = 0.6939, 

p = 0.4226), or interaction (F1,11 = 0.7958, p = 0.3915).  Similarly, there was no difference in 

latency to press during free choice trials between animals with a history of cocaine self-

administration versus animals with a history of water self-administration (Figure 6F). 

Specifically, a two-way ANOVA revealed a significant main effect of trial type (F1,11 = 5.890, p 

= 0.0336), but not group (F1,11 = 1.446, p = 0.2544) or interaction (F1,11 = 0.0006639, p = 

0.9799). These findings indicate that independent of drug, animals were faster to respond to free 

choice immediate trials versus free choice delay trials during the task. 
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Discussion 

The objective of the present study was to determine if prior cocaine self-administration 

experience can differentially influence behavior during delay-based decision making dependent 

upon task cues. In the first task (cued), a discrete cuelight was illuminated for 5 s, after which 

rats could respond for an immediate versus delayed reward. In the second task (uncued), the 

cuelight was not presented, and rats could respond for immediate or delayed reward upon lever 

extension into the chamber. During the Cued task, when animals were presented with a cue 

light that signaled that they could respond for reward 5 s later, animals with a history of cocaine 

were faster to press for a reward than the water self-administration animals. In contrast, during 

the Uncued task, when there was no discrete cuelight present, there was no difference in latency 

to press for reward between animals with a history of cocaine self-administration and controls. 

Interestingly, prior cocaine experience did not influence free choice responding in either task.  

Collectively, these findings indicate that the presence or absence of a discrete cue light 

signaling reward availability 5 s later influences the effects of cocaine history on latency to 

respond independent of trial type in only cued but not uncued delay-based decision making 

tasks in rats.  

During the Cued task, a 5s cue light indicated the availability of an immediate or 

delayed (4s) reward upon a lever press response. There was no difference between groups in 

choice behavior (% free choice trials in which animals chose the delayed reward), but animals 

with a history of cocaine self-administration were significantly faster to press for reward 
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regardless of trial type. This finding indicates that a history of cocaine may contribute to 

enhanced impulsive responding in the task. These findings are consistent with previous work 

implicating that those who suffer from SUDs are more likely to be more impulsive than those 

without drug history (Dalley et al., 2011; Winstanley et al., 2009). For example, previous work 

has shown that in the 5-choice serial reaction time task (5CSRTT), a task used to measure 

impulsivity, animals with a history of cocaine show increased rates of premature responses 

(behavioral inhibition) than their control counterparts (Broos, van Mourik, Schetters, De Vries, 

& Pattij, 2017; Winstanley et al., 2009). Collectively, these data suggest that behavioral 

inhibition is diminished following cocaine self-administration. The current findings 

demonstrate that a history of cocaine increases another specific type of impulsivity (latency to 

respond) without making rats more impulsive in choice trials when presented with a 5 s 'waiting 

period' before a response could be made for reward.  

During the Uncued task, there was no cue light presented above the levers with lever 

extension serving as the only indicator of the availability of an immediate or delayed reward 

upon lever press.  We found no difference between groups for choice behavior during free 

choice trials or latency to press for reward. These findings suggest that in the absence of a 

discreet cue, animals with a history of cocaine perform at similar levels as their control 

counterparts in all aspects of this particular task with similar levels of impulsive behavior. This 

occurred even though control rats previously pressed more for water self-administration 

compared to water controls across all sessions (Figure 4).  The latter finding indicates that prior 

nose-poking experience for either cocaine or water self-administration did not differentially 

influence subsequent delay-based decision making behavior in this task.  

As noted above, those who suffer from SUDs tend to be more impulsive than those who 
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do not. Impulsivity has also been shown to be a vulnerability marker for developing a SUD 

(Kozak et al., 2019; Kreek, Nielsen, Butelman, & LaForge, 2005), and has been linked with 

increased risky behaviors (Bakhshani, 2014; Gorini, Lucchiari, Russell-Edu, & Pravettoni, 

2014). Interestingly, a study performed by Ferland et al., (2019) using a cued and uncued 

version of the rat gambling task to test impulsive behavior found that animals preferred more 

risky options in the cued version as opposed to the uncued version of the rat gambling task. 

Collectively, this suggests that, similar to delay-based decision making examined in the present 

study, the absence/presence of a discrete cue also influences responding in a risk-based decision 

making task, another form of impulsive behavior (Ferland et al., 2019). Their data suggests that 

the pairing of uncertain rewards with cues increases risky choice and also promotes a 

hypodopaminergic state in the nucleus accumbens (NAc). It is unclear however whether it is the 

NAc core or shell which is contributing to this hypodopaminergic state.  

For the purpose of this study, the terms “Cued” and “Uncued” were employed to 

distinguish between the two tasks used, but it is important to note that the Uncued task is not 

entirely without a discrete cue. The term “uncued” refers to the fact that this particular task had 

no cue light to signify availability of a reward, but the lever extension does serve as a cue. 

Evidence shows there are differential effects in reward value tasks that have a discrete cue 

presentation immediately before reward availability versus those that do not. For example, 

examining dopamine signaling in the nucleus accumbens (NAc) of rats immediately following 

cue presentation have shown that phasic dopamine signaling predicted anticipated reward value 

(Day et al., 2011; Ostlund, Leblanc, Kosheleff, Wassum, & Maidment, 2014) while dopamine 

release in uncued tasks did not (Saddoris et al., 2017). Taken together, these studies reveal that 

there is evidence not only of behavioral differences but also neurobiological differences in cued 
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versus uncued tasks.  

Within both tasks used in the present study, following a lever press response a 4s delay 

to reward was imposed. As mentioned previously, Roesch and colleagues (2007) examined the 

effects of a history of cocaine on a delay-based decision making task. During the task, they used 

a variety of delay periods ranging from 0.5s-10s, increasing delay to reward. It was at the 4s 

delay to reward where they saw the greatest difference in animal response, so we thought it was 

best to use that delay period in our study. Interestingly, at shorter (0.5, 2s, 3s) and longer (7s, 

8s, and 9s) delay lengths, animals with a history of cocaine performed similarly to control 

animals during the delay task. Specifically, they both shifted behavior away from the initially 

preferred (delayed) side at similar rates. It remains unknown as to why the 4 s delay resulted in 

the largest difference in responding between cocaine versus control rats in that study. However, 

as mentioned previously, this task was executed using odor cues to signify availability of 

reward. It would be interesting to see if this pattern of behavior holds true in the absence of a 

discrete cue using our behavioral task design but for delay periods both longer and shorter than 

the 4s used in our task. 

As used in our cued task, the 5s discrete cuelight period is an established feature in a 

number of studies in the Carelli lab (Day et al., 2011; Moschak & Carelli, 2017; Sackett, 

Moschak, & Carelli, 2019; Saddoris et al., 2015). It is during this 5s waiting period where 

animals make their decision to respond, and in a series of studies from the Carelli lab, it was 

during this 5 s waiting period where neural processing was altered in animals in decision 

making tasks. For example, in a study performed by Sackett et al., (2019), electrophysiological 

recordings were used to examine prelimbic cortex activity during a delay discounting task. 

They found that a subset of these neurons tracked the preferred reward during the cue 
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presentation and that this was differentially encoded in high and low impulsive animals. These 

animals were all drug naïve, so it would be interesting to see if this effect holds true or is even 

exaggerated in animals with a history of cocaine self-administration. Furthermore, it will be 

interesting to determine if neural processing in the PrL cortex, or its efferents such as the NAc 

core varies in activity when no discrete cues are present (e.g., using our uncued task) in animals 

with a history of cocaine self-administration versus controls. 

 

Concluding Remarks 

Taken together, these findings suggest that prior cocaine self-administration experience 

can produce differential effects in animal behavior during cued and uncued delay-based 

decision making tasks. Numerous studies have also shown that the NAc core is important for 

delay processing (Saddoris et al., 2015). Additionally, the prelimbic cortex, which projects to 

the NAc core is shown to exhibit numerous neuroadaptations following abstinence from 

cocaine (West, Saddoris, Kerfoot, & Carelli, 2014; Wolf, 2016) which have been associated 

with incubation of craving and implicated in delay discounting behavior (Churchwell, Morris, 

Heurtelou, & Kesner, 2009). It is unclear, however, the role of the PrL to NAc pathway when 

investigating the effects of cocaine self-administration on delay-based decision making. As 

previously mentioned, a subset of animals received implantation of microelectrode arrays for 

electrophysiology in the NAc core and prelimbic cortex, but these data were unable to be 

included in the current study due to noise issues and low cell count. Future studies will explore 

local field potential (LFP) of the PrL and NAc core as well as coherence between the two 

regions during both the cued and uncued delay-based decision making tasks. 
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Figure 1. Schematic diagram of experimental timeline. Animals were prepared for surgery 

approximately one week after arrival to the animal facility. Following surgery, animals had one 

week of post-operative care then began self-administration of either cocaine or water (yoked 

saline) 2 hours a day for 14 consecutive days. After 30 days of experimenter-imposed abstinence 

in their home cages, animals then began lever press training. Finally, animals were trained on 

either the Cued Task (Task 1) or Uncued Task (Task 2) followed by 4 test days on their specific 

task. 
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Figure 2. Schematic diagram of task 1: Cued delay based decision making task. Left: During 

forced choice delay trials, one cue light was illuminated for 5s followed by the extension of both 

levers. Presses on the signaled lever resulted in a reward delivery of 1 sucrose pellet after a 4s 

delay. Presses on the non-signaled lever resulted in termination of the trial, no reward delivery, 

and counted as an error. Middle: During forced choice immediate trials), one cue light was 

illuminated for 5s followed by the extension of both levers. Presses on the signaled lever resulted 

in a reward delivery of 1 sucrose pellet immediately. Presses on the non-signaled lever resulted 

in termination of the trial, no reward delivery, and counted as an error. Right: During free choice 

trials), both cue lights were illuminated for 5s followed by the extension of both levers. Responses 

were rewarded based on the contingency of the lever chosen. See text for additional details. 
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Figure 3. Schematic diagram of task 2: Uncued delay based decision making task Left: During 

forced choice delay trials, one lever was extended into the behavioral chamber. Presses on the 

extended lever resulted in a reward delivery of 1 sucrose pellet after a 4s delay. Middle: During 

forced choice immediate trials, one lever was extended into the behavioral chamber. Presses on 

the extended lever resulted in a reward delivery of 1 sucrose pellet immediately. Right: During 

free choice trials levers were extended into the chamber. Responses were rewarded based on the 

contingency of the lever chosen.  See text for additional details. 
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Figure 4. Self-administration behavior. A. Average total daily nosepokes for Cued Task cocaine 

and water self-administration animals. B. Average total daily nosepokes for Uncued Task cocaine 

and water self-administration animals. 
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Figure 5. Behavior during cued delay-based decision making task. A. Percentage of correct 

reinforced responses during forced choice delay trials. B. Percentage of correct reinforced 

responses during forced choice immediate trials. C.  Percentage of delay lever responses during 

free choice trials averaged across all test days for each group. D.  Percentage of presses on the 

delay lever during free choice for each group across each test day.   E.  Response time to lever 

press during forced choice trials. Animals with a history of cocaine were faster to press for reward 

(p < 0.05). F.  Response time to lever press during free choice trials. Animals with a history of 

cocaine were faster to press for reward (p < 0.05). 
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Figure 6. Behavior during uncued delay-based decision making task. A. Percentage of correct 

reinforced responses during forced choice delay trials. B. Percentage of correct reinforced 

responses during forced choice immediate trials. C.  Percentage of delay lever responses during 

free choice trials averaged across all test days for each group. D.  Percentage of presses on the 

delay lever during free choice for each group across each test day. E.  Response time to lever 

press during forced choice trials. F.  Response time to lever press during free choice trials.  
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