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Abstract

Segmentation is a key task in medical image analysis because its accuracy significantly affects 

successive steps. Automatic segmentation methods often produce inadequate segmentations, 

which require the user to manually edit the produced segmentation slice by slice. Because editing 

is time-consuming, an editing tool that enables the user to produce accurate segmentations by only 

drawing a sparse set of contours would be needed. This paper describes such a framework as 

applied to a single object. Constrained by the additional information enabled by the manually 

segmented contours, the proposed framework utilizes object shape statistics to transform the failed 

automatic segmentation to a more accurate version. Instead of modeling the object shape, the 

proposed framework utilizes shape change statistics that were generated to capture the object 

deformation from the failed automatic segmentation to its corresponding correct segmentation. An 

optimization procedure was used to minimize an energy function that consists of two terms, an 

external contour match term and an internal shape change regularity term. The high accuracy of 

the proposed segmentation editing approach was confirmed by testing it on a simulated data set 

based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. 

Segmentation results indicated that our method can provide efficient and adequately accurate 

segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 

10%), which is promising in greatly decreasing the work expected from the user.
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1. INTRODUCTION

Medical image segmentation refers to the procedure of partitioning a medical image into 

separate regions. In particular, this paper focuses on the segmentation of anatomical objects 

from medical images. Segmentation is a crucial step in neuroimaging research that uses 

shape-based features to test various hypotheses about the pathology of different brain 

disorders. It is also a crucial step in applications like image guided surgery, radiation therapy 

or diagnostic imaging. A broad array of various segmentation techniques are currently 
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available that vary in the level of user interaction. Manual segmentation performed by 

experts remains the gold standard; however, it is time-consuming and suffers from inter-

observer variability. Although many automatic segmentation algorithms have been 

developed, they still fail in cases where the target appearance is different from the norm, 

which makes automatic segmentation unreliable to produce adequate segmentation in every 

situation. In such cases, the use of interactive segmentation techniques becomes necessary.1 

Segmentation editing is a special case of interactive segmentation that typically starts with 

an initial segmentation that the user has to correct slice by slice in a time-consuming contour 

manipulation procedure.2, 3 The initial segmentation is given by a dedicated automatic or 

semi-automatic algorithm that can be independent of the editing tool.4 An effective 

segmentation editing tool would be able to quickly provide intuitive modifications in 3D 

using few contours added by the user (see Figure 1).

Segmentation editing methods can be classified into (i) image-based and (ii) image-

independent techniques. Heckel et al.5 proposed an image-based method that iteratively 

simulates the sketch-based user input on the neighboring slices using a block matching 

followed by the shortest path approach on gradients within the image. Egger et al. 6 

proposed a manual refinement method based on a graph-based approach by restricting the 

graph-cut using additional user-defined seed points to set up fixed nodes in the graph. Grady 

et al.7 proposed an energy minimization formulation of the segmentation editing problem 

that was solved using graph cuts or the random walker 3D segmentation algorithms based on 

image seeds added by the user. Although image-based editing techniques are relatively 

simple and able to provide accurate results in a timely manner, they usually fail in cases 

where the image information is not sufficient to produce a good segmentation such as 

segmenting infant brains that have greatly reduced contrast and low signal-to-noise ratio in 

magnetic resonance (MR) images. Moreover, results obtained from image-based editing 

methods cannot be guaranteed to respect the object geometry. On the other hand, image-

independent editing techniques do not rely on image information and are usually used when 

the image does not provide enough information for segmentation. For instance, Silva et al.8 

proposed a method that allows adding and removing voxels in 3D by a spherical brush with 

a user-defined radius that was applied on left ventricle segmentation. Heckel et al.4 proposed 

a sketch-based segmentation editing of 3D segmentation of compact objects in the context of 

tumor segmentation in computed tomography (CT) based on an object reconstruction using 

variational interpolation. However, surface models and drawing tools are not intuitive in 3D. 

Moreover, surface based correction methods can result in unexpected modifications.

In this work, we aim to develop a segmentation editing tool that is capable of providing 

accurate segmentation with low required user interaction. For that, we propose a novel 

framework that utilizes sparse manually segmented contours, produced by the user, and 

object shape change statistics to improve the failed automatic segmentation in an efficient 

manner (see Figure 2). The proposed techniques were used to improve failed automatic 

segmentations of a single object, namely the brain caudate, extracted from infant MR brain 

images. In particular, this paper will rely on the rich geometry information provided by a 

particular form of quasi-medial skeletal model representation called the s-rep.9, 10 The 

proposed framework starts with an s-rep fit to a failed automatic segmentation together with 

Mostapha et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the sparse contours added by the user. The objective is to find an s-rep that agrees with the 

generated contours and represent a probable change from the failed automatic segmentation.

In overview, the proposed framework utilizes shape change statistics that were generated to 

capture the object deformation from the automatic failed segmentation to its corresponding 

correct segmentation. An optimization procedure based on conjugate gradient method is 

used to search the shape space in order to minimize an energy function that consist of two 

terms, an external contour match term and an internal geometric typicality term. Details of 

the proposed segmentation editing framework are provided in the next section.

2. METHOD

2.1 Data Collection and Simulation

The proposed methods were tested on the Infant Brain Imaging Study (IBIS) dataset. The 

study participants are 24-month-old infants at high risk of developing autism spectrum 

disorder (ASD). 10 T1-weighted MR brain scans were acquired on 3T Siemens Tim Trio 

scanners using the following parameters: field of view: 224 × 256 mm, number of slices: 

160, slice thickness: 1 mm, voxel resolution: 1 × 1 × 1 mm3, TR: 2400 ms, TE: 499 ms, and 

flip angle: 120. Each caudate nucleus was segmented both automatically using the AutoSeg 

multi-atlas segementation software pipeline11 and manually by an MR expert (see Figure 3). 

This paper focuses on a single object segmentation. Based on the extent of automatic 

segmentation errors, we chose the right caudate (see Figure 3) for our investigation.

To test our method, shape change statistics, between the automatically segmented caudates 

and their manually segmented ones, needed to be generated and applied to many cases. 

Because of the limited number of cases available, simulated test cases needed to be 

generated to produce our shape change statistics and test the proposed segmentation editing 

methods. Given each image in the given dataset, the deformation to a chosen reference 

subject was generated using a nonlinear registration method, as shown if Figure 4(a). Then 

principal component analysis (PCA) was used to extract modes of variation that in turn was 

used to produce the required additional random samples. The complete steps for generating 

the required random samples are given in Algorithm 1. As demonstrated in Figure 4(b), most 

of the variation can be explained by the first 5 modes of variation. The mean shape change 

and the selected modes of variation were then used to generate 100 new random pairs of 

automatic and manual segmentations, which was then used in the following shape training 

process.

Algorithm 1

Summary of the steps used to generate the simulated cases.

1 Register k data sets images Ik to a selected reference image Iref, with available labeled image Lref, using a 
deformable model registration algorithm to produce corresponding displacement fields Dk.

2 Perform PCA on generated Dk to produce mean deformation field D̄, eigenvalues λi, and eigenvectors ϑi.

3 Generate D̂ using random coefficients αi drawn from a normal distribution with zero mean and unit 
variance.
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D = D + ∑
i = 1

n
αi λiϑi (1)

4 Apply the sampled deformation to both Iref and Lref (automatic and manual) to generate the required 
random image samples (Î and L̂).

I = D ∘ Iref , L = D ∘ Lref , (2)

2.2 Shape Change Statistical Analysis

In this paper, a skeletal extension to the medial model12 called the s-rep was used to 

represent the object shape.10 It has been shown in various publications to be more powerful 

in capturing the interior of most non-branching anatomic objects and providing efficient 

shape statistical summaries when compared to boundary point distribution models (PDMs).
10, 13–15 An s-rep fitting procedure starts with an initial template model of the object and a 

distance map that was computed from the binary image of the target object. The fitting 

process is based on thin plate spline transformation of a spherical harmonic representation of 

the surfaces of the template (initial caudate model) as well as the target objects.9 This fitting 

procedure was applied to all the simulated training data set and corresponding s-reps were 

generated.

Instead of modeling the shape of the object, we are here interested in modeling shape change 

differences from a failed automatic segmentation to its corresponding manual segmentation 

ground truth. In order to statistically model these shape differences in an effective manner, 

careful attention must be given to the process by which the objects and their differences are 

examined. In the area of statistical shape analysis, complex shape representations such as s-

reps are best thought of as non-linear entities that live on curved manifolds. Because the 

space of shapes is curved, the difference between a pair of shapes in the space will be a 

curve along the manifold, such as a geodesic connecting the two shapes. The problem then 

becomes estimating a probability distribution of geodesics in this curved space. While 

Euclidean statistical methods such as PCA are broadly applied in the analysis of PDMs, this 

approach is ill-suited for direct application to s-reps since modeling manifold data using 

linear subspaces yields nonmeaningful results (data outside the original manifold). Several 

techniques have been proposed to analyze data directly on their manifold.16, 17 However, to 

avoid complications associated with estimating probability distributions on curved 

manifolds, a technique called composite principal nested spheres (CPNS)10 was applied to 

the union of all training shapes to compute a polar system that can be used to create 

Euclideanized versions of the input s-reps. In Euclidean space, the differences between the 

Euclideanized s-rep pairs are line segments that can be analyzed using standard PCA 

yielding eigenmodes ei of the shape change and their associated standard deviations σi (see 

Figure 5). For a new test case, we start from an initial model R created by adding the mean 

shape change to the failed automatic segmentation Euclideanized s-rep fit. Then, in 
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Euclidean space, the best deformation M of the initial model R into each test image is 

computed by optimizing over the space of coefficients bi of the selected eigenmodes ei:

(3)

where the values of bi were selected based on the associated standard deviations σi:

(4)

Using the polar system generated using CPNS, a Euclideanized shape can be returned to its 

original ambient space by undoing these projections to recover the original s-rep 

representation.

2.3 Generating Test Case Data

After generating a new simulated test case according to Algorithm 1, a sparse set of 

manually segmented contours were placed (< 10% of the number of slices) by the user to 

enhance the failed automatic segmentation. Moreover, we wish to assess a candidate model 

based on the relative distance to these added contours. To accomplish this, an initial distance 

map needs to be produced. First, a shape-based interpolation18 method was used to create an 

initial 3D distance map by computing a 2D signed distance image for the manually 

segmented contours. Then, to produce a dense distance map a simple linear interpolation is 

performed between the surfaces in these slices. Next, the generated surface is smoothed 

based on the flow of Laplacian of curvature on the signed distance image in a way that 

constrains the modification to maintain the original manually segmented contours.19 In 

particular, for a time step Δt, an update for the distance image Φ based on the Laplacian of 

curvature ∇2κ as follows:

(5)

After this update, each voxel where a constraint is provided is checked to make sure it has 

not moved more than a small threshold τ from its initial value Φ0. If this happened to a 

certain coxel, it is set to be Φ0 ± τ instead, with the sign determined by the sign of the 

update. If the slices adjacent to a voxel where the constraint was enforced are non-

constrained, the amount by which the voxel was corrected is applied to the update values in 

the neighboring slices with a Gaussian falloff, so that directly neighboring slices are more 

affected than those more distant. This process is iterated until either a certain number of 

iterations is reached or the surface no longer moves.

2.4 Optimization Framework

During the optimization procedure, we search for M that minimizes an error E, which is the 

weighted sum of two terms, an external contour match term (Ec) and an internal shape 

typicality term (Es):
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(6)

The contour match term is computed as the sum of squared distances, with weights Ψ 
between the boundary voxels B of the label image I (implied by the distance image of the 

initial surface) and the continuous boundary surface Ω implied by a candidate model M. This 

is equivalent to thinking of each surface point or boundary voxel as a weighted landmark 

based on the relative distance to the manually segmented contours to reflect the confidence 

level of the distance calculation at this voxel:

(7)

Under Gaussian assumptions, given a mean and the variances of the principal directions of 

deformation, this method provides a shape-normalized Mahalanobis distance from any 

particular shape to the mean shape. Using this as the geometric prior in optimization tends to 

keep the candidate models clustered near the mean where our statistical shape model is most 

likely to be valid:

(8)

The proposed optimization framework uses the quadratically convergent conjugate gradient 

descent algorithm, which selects the successive direction vectors as a conjugate version of 

the successive gradients obtained as the method progresses. Thus, the directions are not 

specified beforehand but rather are determined sequentially at each step of the iteration. At 

each step, one evaluates the current negative gradient vector and adds to it a linear 

combination of the previous direction vectors to obtain a new conjugate direction vector 

along which to move.20 The conjugate gradient algorithm guarantees convergence in number 

of steps no more than the dimensionality of the problem, with a slight complication over 

steepest descent. In addition, because the directions are based on the gradients, the process 

makes good uniform progress toward the solution at every step. However, because conjugate 

gradient search performs best given a relatively isotropic global minimum, some 

experimentation is required to fine tune the weighting factors (μc and μs) to new shape 

studies.

3. RESULTS

Performance assessment of the segmentation editing results was carried out by applying the 

proposed techniques on 10 additional simulated infant MR brain data sets that were not used 

in the training process. The performance of the proposed segmentation framework was 

evaluated using four performance metrics: (i) the Dice similarity coefficient (DSC), (ii) the 

Jaccard similarity coefficient (JSC), (iii) the Hausdorff distance (HD), and (iv) the mean 
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absolute distance (MAD).21, 22 Detailed segmentation results for the initial automatic 

segmentation and the proposed segmentation editing approach are given in Table 1 and Table 

2, respectively. Also, a comparison summary of the obtained results, represented by the 

mean±standard deviation values, are provided in Table 3. Figure 7 shows an example of 3D 

results of the proposed segmentation editing approach.

As demonstrated by the t-test in Table 1, two out of the four performance measurements 

(DSC and JSC) show statistically significant differences (p-value<0.05) between automatic 

segmentations and their corresponding edited segmentations, which confirms the usefulness 

of the proposed segmentation editing techniques. Adding new test samples will probably 

drive the MAD results to be significant as well. In the future, the HD results will be replaced 

with its 95-percentile modified HD in order to make it less sensitive to segmentation 

outliers, which is the reason that it was found to be insignificant. As shown in Figure 7, most 

of the segmentation errors are due to the sharply narrowing tail of the caudate. This problem 

is mainly because of the quasi-slabular s-reps inability to capture shape information in 

tubular section of the caudate. Currently, my colleague Junpyo Hong is working on a new s-

rep primitive that will allow for an accurate representation of the caudate tail.

4. DISCUSSION AND FUTURE WORK

In this paper, we have described a complete pipeline for editing automatic segmentations 

efficiently. The proposed segmentation editing technique demonstrates that the integration of 

shape change statistics with few manually segmented contours is promising in enhancing 

current automatic segmentation results. The proposed framework still needed to be applied 

with different segmentation tools and a variety of real datasets to fully test its accuracy. On 

the other hand, the proposed technique allows users to freely and quickly improve automatic 

segmentations in a way that is applicable to various kinds of clinical applications, at least for 

the many objects that are well modeled by s-reps.

The main contribution of this paper is the development of a method using s-reps for 

computing probability distributions of how shape changes from one state to another. A 

Euclideanization technique was used to to transform shape objects into a space where 

classical Euclidean statistical methods can be used effectively to analyze the difference 

between two states of the same object without having to deal with difficulties associated 

with shapes living on their original curved spaces.

Currently, we are investigating the use of low-rank decomposition techniques23 to represent 

the failed automatic segmentation s-rep using the database of manually segmented s-reps. 

The surface implied by this low rank model can be used to create the weighted distance 

image required in the proposed algorithm (Figure 8). On the other hand, low rank 

decomposition can remove outliers before performing PCA on the shape change differences 

in the proposed framework. As shown in Figure 9, a compact PCA scree plot can be 

obtained, which promises to preserve the shape properties of the targeted object. Finally, the 

next phase of this project aims to study the effects of editing the segmentation of one object 

to neighborhood object segmentations.
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Figure 1. 
General segmentation editing problem
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Figure 2. 
The proposed segmentation editing framework
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Figure 3. 
An example of from the IBIS dataset with right caudate shown in yellow
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Figure 4. 
Deformation field statistics generation
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Figure 5. 
Proposed shape change statistical analysis
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Figure 6. 
Shape change statistical analysis results
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Figure 7. 
3D visualization for a segmentation editing result

Mostapha et al. Page 16

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Low rank decomposition example
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Figure 9. 
PCA analysis of low rank representations
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Table 1

Automatic segmentation approach Results

ID/Metric DSC JSC HD MAD

TS1 0.7668 0.0986 0.6217 0.6217

TS2 0.6507 0.0789 0.0289 0.4822

TS3 0.6934 0.0945 0.0294 0.5307

TS4 0.8182 0.0880 0.0173 0.6923

TS5 0.8018 0.0580 0.0180 0.6692

TS6 0.7806 0.0547 0.0223 0.6401

TS7 0.7558 0.0694 0.0219 0.6074

TS8 0.5377 0.1103 0.0440 0.3677

TS9 0.7301 0.0719 0.0266 0.5750

TS10 0.7978 0.0696 0.0190 0.6636
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Table 2

Proposed segmentation editing approach Results

ID/Metric DSC JSC HD MAD

TS1 0.8209 0.0945 0.0191 0.6961

TS2 0.8014 0.0525 0.0141 0.6686

TS3 0.8512 0.0603 0.0120 0.7409

TS4 0.8513 0.0696 0.0148 0.7411

TS5 0.8255 0.0868 0.0185 0.7029

TS6 0.8488 0.0679 0.0144 0.7374

TS7 0.8075 0.0887 0.0212 0.6772

TS8 0.8372 0.0771 0.0146 0.7200

TS9 0.8503 0.0699 0.0157 0.7395

TS10 0.8427 0.0827 0.0167 0.7282
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Table 3

Summary of the segmentation results represented by the mean±standard deviation values

ID/Metric DSC JSC HD MAD

Automatic 0.7333 ±0.0860 0.5850±0.1003 0.0794±0.0181 0.0849±0.1888

Proposed 0.8337±0.0188 0.7152±0.0274 0.0750±0.0133 0.0161±0.0028

p-value 0.0020 0.0001 0.5445 0.2642
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