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Abstract

Trends in longitudinal or cross-sectional
studies over time are often captured through
regression models. In their simplest man-
ifestation, these regression models are for-
mulated in Rn. However, in the context of
imaging studies, the objects of interest which
are to be regressed are frequently best mod-
eled as elements of a Riemannian manifold.
Regression on such spaces can be accom-
plished through geodesic regression. This pa-
per develops an approach to compute confi-
dence intervals for geodesic regression mod-
els. The approach is general, but illustrated
and specifically developed for the Grassmann
manifold, which allows us, e.g., to regress
shapes or linear dynamical systems. Exten-
sions to other manifolds can be obtained in
a similar manner. We demonstrate our ap-
proach for regression with 2D/3D shapes us-
ing synthetic and real data.

1 Introduction

Linear regression models in Euclidean space are classi-
cal and frequently-used statistical methods [21]. How-
ever, imaging studies are often faced with objects such
as shapes, diffeomorphisms, or linear dynamical sys-
tems, which are best represented as elements of a
Riemannian manifold. Hence, extensions of linear re-
gression models to such spaces, so-called geodesic re-
gression models, are required and have recently been
proposed [18, 14, 8]. Geodesic regression models are
compact representations of trends. However, response
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variables in these models are often high-dimensional,
which makes it difficult to assess (1) model fit as
well as (2) confidence in the estimated model parame-
ters. In this paper, we propose an approach to quan-
tify geodesic regression confidence. While, Gaussian
processes [16, 3] do naturally possess the property to
quantify uncertainty, the uncertainty is in the model
predictions and response variables are typically scalar-
valued. In contrast, we are specifically interested in re-
sponse variables on Riemannian manifolds and uncer-
tainty in the model parameters. For illustration, our
approach is developed in the context of the Grassman-
nian, i.e., the manifold of p-dimensional linear sub-
spaces of Rn, but it could readily be extended to other
Riemannian manifolds. This will be computationally
easiest in a finite-dimensional setting, but extensions
to infinite-dimensional manifolds are conceivable; see
for example [22] for a related approach in image regis-
tration on the space of diffeomorphisms.

Our specific contributions are as follows:

• An approach to efficiently compute the Hessian of
the energy of the geodesic regression problem on
the Grassmannian. This approach is based on the
second variation of the energy, which can be com-
puted via the tangent linear model (TLM) and the
tangent linear adjoint model (TLAM) to the best-
fitting geodesic. These tangent models allow to ef-
ficiently compute Hessian-vector-products and, as
a result, columns of the Hessian can be obtained
via a simple forward-backward sweep [7, 13]. The
inverse of this Hessian corresponds to the covari-
ance matrix of the model parameters (the Laplace
approximation to the posterior distribution).

• An approach to propagate the estimated covari-
ance matrix of the model parameters along a fitted
geodesic, inspired by a simple special case of the
Kalman filter [9].

• An estimation method for Mahalanobis-like
geodesic distance functions, making use of block-



diagonal covariance matrices. This estima-
tion method properly deals with geodesic-to-
measurement residuals, which are defined in sepa-
rate tangent spaces. The block-diagonal structure
of the covariance matrices is essential to be able
to capture localized confidence. Commonly used
homoscedastic models for geodesic regression are
not appropriate in this context.

• A simple visualization of the point position
marginals (as ellipses/ellipsoids) of the shapes de-
scribed by the regression geodesic.

Organization. Sec. 2 motivates our approach from
the perspective of linear least-squares regression in Eu-
clidean space and details how to compute the Hes-
sian using an adjoint method. Sec. 3 explains the re-
lated computations on the Grassmannian. Sec. 4 then
presents experimental results and Sec. 5 concludes the
paper with a discussion and an outlook on future work.

2 Uncertainty for Linear Regression

Given a collection of N measurements in R and their
associated independent variables, i.e., {(yi, ti)}Ni=1, we
assume a linear regression model of the form yi =
a+ bti + εi, where a is the y-intercept and b the slope.
We assume the measurement noise εi at each point is
independent and identically distributed, in particular,
εi ∼ N (0, σ2). Under this assumption, the maximum
likelihood estimates (MLE) of (a, b) coincide with the
least-squares solution obtained by minimizing the en-
ergy

E(a, b) =
1

2σ2

N∑
i=1

(yi − a− bti)2 =
1

2σ2

N∑
i=1

r2i , (1)

where ri denotes the i-th measurement residual. In
practice, the MLE is obtained by solving the linear
system y = Xβ with y = [y1, · · · , yN ]>, X = [1, t]
(1 = [1, · · · , 1]>, t = [t1, · · · , tN ]>) and β = [a b]>.

We also know that the MLE β̂ follows a Gaussian
N (β,C), where C = [I(β)]−1 denotes the inverse
Fisher information matrix. An estimate of the co-
variance for the optimal parameter β̂ can be obtained
from the observed Fisher information or, equivalently,
by computing the Hessian of the energy in Eq. (1)
which is proportional to the negative log-likelihood
− log p(y|X;β, σ2).

The Hessian, H, of the energy E(a, b) in Eq. (1) is:

H =
1

2σ2

 ∂2E
∂a2

∂2E
∂a∂b

∂2E
∂a∂b

∂2E
∂b2

 =
1

σ2

(
N

∑
i ti∑

i ti
∑
i t

2
i

)
.

(2)

By inversion of H, we obtain an estimate Ĉ of the
covariance of β̂, i.e.,

H−1 = Ĉ =
σ2

N
∑
i(ti − t̄)2

( ∑
i t

2
i −∑i ti

−∑i ti N

)
(3)

with t̄ = N−1
∑
i ti. The standard errors of the in-

tercept (sa) and slope (sb) can then be read-off as the
diagonal elements, i.e.,

sa = σ

√ ∑
i t

2
i

N
∑
i(ti − t̄)2

, sb =
σ√∑

i(ti − t̄)2
. (4)

Note that as N increases, the uncertainty in the esti-
mated parameters decreases.

As σ is constant, it does not change the optimization
solution for β in Eq. (1). However, it does scale the
Hessian and consequently the covariance; for that rea-
son, it needs to be jointly estimated. The (biased)
MLE of σ is given by the mean of the squared residuals
r2i and can be made unbiased for the linear regression
problem with two degrees of freedom by multiplying
the mean of the residuals by N/(N − 2) [4].

In practice, closed-form solutions of the Hessian can-
not be easily computed for more complex energy func-
tions, in particular, when they involve dynamic con-
straints. Such dynamic constraints appear naturally
when dealing with geodesic equations on manifolds
which may not be written in explicit form. We will
therefore discuss an alternative solution which will al-
low us to extend Hessian computations to Riemannian
manifolds, the Grassmannian in particular.

2.1 Hessian Estimation

In geodesic regression formulations, the energy of
Eq. (1) is replaced by the sum-of-squared-residuals be-
tween measurements and the corresponding values on
the geodesic. The geodesic itself is expressed in the
form of a differential equation; see, e.g., [12] for a for-
mulation on the Grassmannian. In this setting, the
linear regression problem can be reformulated as min-
imizing the energy1

E(x0) =
1

2σ2

N∑
i=1

(yi − x1(ti))
2,

s.t. ẋ1 = x2, and ẋ2 = 0,

(5)

over x0 = [x1(0), x2(0)]>, i.e., the initial conditions,
including the intercept and the slope. For simplicity
we assume {ti}Ni=1 are normalized to [0, 1]. We are now
no longer optimizing over the two parameters (a, b),

1We omit the dependency of x1 and x2 on t, i.e., x1(t),
x2(t), for readability and define ẋi := d/dt xi(t).



but over the initial conditions of a system of differen-
tial equations. Hence, we require variational calculus
to compute the analog of a directional first and sec-
ond derivative (i.e., the first and second variations).
While the first variation allows us to compute optimal-
ity conditions (the functional equivalent of the Karush-
Kuhn-Tucker conditions [15]), the second variation al-
lows us to derive equations to compute Hessian-vector-
products. Specifically, the first variation results in a
set of adjoint equations: λ̇1 = 0, λ1(1) = 0, with jumps
at each measurement λ1(ti−) = λ1(ti+)− 1

σ2 (x1(ti)−
yi) and λ̇2 = −λ1, λ2(1) = 0, where λ1 and λ2 are
the adjoint variables for x1 and x2. Integrating the
state equations (ẋ1 = x2 and ẋ2 = 0 with initializa-
tions x1(0) = x1,0 and x2(0) = x2,0) forward in time,
followed by a backward-in-time integration of the ad-
joint equations allows us to compute the gradients of
the energy with respect to the initial conditions, i.e.,
∇x1(0)E = −λ1(0) and ∇x2(0)E = −λ2(0). These gra-
dients then facilitate the numerical minimization of
the regression energy in Eq. (5). Importantly, if the
state equations are replaced by other geodesic equa-
tions2 and the squared residual terms by squared dis-
tance measures on the manifold, one obtains the opti-
mization strategy for geodesic regression. The adjoint
equation system can then be considered the geodesic
regression equivalent of error-backpropagation.

A similar forward-backward approach can be used to
compute Hessian-vector-products which now involves
the second variation of the energy [19, 20]. The second
variation of the least-squares energy in the direction
δx0 is defined as

δ2E(x0; δx0) :=
∂2

∂ε2
E(x0 + εδx0)|ε=0 . (6)

Our goal is to derive an equation system from the
second variation such that the Hessian-vector-product
can be directly read-off, i.e.,

δ2E(x0; δx0) = 〈δx0,∇2Eδx0〉 . (7)

Here, ∇2E is the Hessian of E(x0), and ∇2Eδx0 de-
notes the Hessian-vector-product from the second vari-
ation. It turns out that this goal can be achieved
through a forward-sweep of the tangent linear model
(TLM) (i.e., the geodesic equations linearized around
the optimal solution), followed by a backward sweep
of the tangent linear adjoint model (TLAM) (i.e., the
adjoint equations linearized around the optimal solu-
tion) with appropriate boundary conditions. Specifi-
cally, given perturbation δx = [δx1, δx2]> at the opti-
mal solution, the equations for the forward TLM can

2The state equations for linear least-squares can equiva-
lently be written as ẍ = 0 (which corresponds to a straight
line). This is of course a geodesic in Euclidean space.

be derived3 as:

δẋ1 − δx2 = 0,

δx1(0) = δx1,0,
and

δẋ2 = 0,

δx2(0) = δx2,0 .
(8)

The equations for the backward TLAM are

δλ̇1 = 0,

δλ1(1) = 0,
and

δλ̇2 = −δλ1,
δλ2(1) = 0 ,

(9)

with jumps δλ1(ti−) = δλ1(ti+) − 1
σ2 δx1(ti) for i =

1, . . . , N . This allows computing the Hessian-vector-
product as ∇2Eδx0 = [−δλ1(0),−δλ2(0)]>. Choosing
δx0 = [1, 0]> and δx0 = [0, 1]> as the initial values for
the forward TLM, we can easily compute the first and
the second column of the Hessian ∇2E. This is equiv-
alent to the exact solution of the Hessian in Eq. (2).
More importantly, it allows us to generalize the Hes-
sian computation to Riemannian manifolds, as we can
use it to deal with differential-equation constraints re-
quired to express the geodesic equations.

3 Regression Uncertainty on G(p, n)

This section develops the approach for computing
the Hessian for the geodesic regression energy on the
Grassmannian G(p, n) by following the adjoint strat-
egy of Sec. 2.1. In particular, Sec. 3.1 reviews geodesic
regression on G(p, n) and Sec. 3.2 develops the method
to compute Hessian-vector-products. The measure-
ment noise model is a bit more complex as (i) a ho-
moscedastic model is in general no longer sufficient,
(ii) residuals of the Euclidean model need to be com-
puted via the Riemannian Log-map, and (iii) the tan-
gent vectors obtained by the Log-Map (corresponding
to measurement residuals) all live in their own tan-
gent spaces. Covariance estimation and propagation
is described in Sec. 3.3.

3.1 Review of Geodesic Regression on G(p, n)

In [12] a numerical solution to perform geodesic regres-
sion on the Grassmann manifold is proposed, based
on a generalization of linear least-squares regression
using the previously discussed adjoint method. In
particular, geodesic regression allows to capture the
relationship between data points on the Grassman-
nian {Yi}Ni=1 and their associated independent vari-
ables {ti}Ni=1. On the Grassmannian, G(p, n), a data
point (i.e., a subspace) Yi is represented by a n×p or-
thonormal matrix Yi such that Yi = span(Yi). Note
that, capital N denotes the number of measurements,
while lowercase n refers to the number of rows of the

3Forward TLM and backward TLAM equations arise
from taking the second variation (cf. Eq. (6)) of the energy
in Eq. (5) and integration by parts.



n×p matrix Yi representing Yi. The independent vari-
able ti is a scalar value, normalized to [0, 1] to simplify
notation. This allows ordering the (ti,Yi) pairs based
on the ordering of the ti’s. Specifically, the optimiza-
tion problem in this regression setting is

min
{Xi(0)}

E({Xi(0)}) :=
1

2σ2

N∑
i=1

dg(Yi,X1(ti))
2

s.t.
Ẋ1 = X2

Ẋ2 = −X1(X>2 X2)

}
forward equations

and
X1(0)>X1(0) = I

X1(0)>X2(0) = 0

}
initial conditions . (10)

Here, dg : G(p, n)×G(p, n)→ R≥0 denotes the geodesic
distance on the Grassmannian [5, 12] (based on the
canonical metric) and X1(0) and X2(0) are the initial
conditions to be estimated. These initial conditions
correspond to intercept and slope in linear regression.
In this paper, we effectively use a uniform prior, but
priors on the parameters (the initial conditions) can
be added if desired. Just as in the Euclidean case
of Sec. 2, the optimization problem can be solved us-
ing the adjoint method. The equations for the adjoint
variables λ1 and λ2 are

λ̇1 =λ2X
>
2 X2, and

λ̇2 =− λ1 + X2(λ>2 X1 + X>1 λ2)
(11)

with λ1(1) = 0, λ2(1) = 0. Also, we have jumps for λ1
at each data point (i = 1, . . . , N)

λ1(ti−) = λ1(ti+)− 1

2σ2
∇X1(ti)dg(X1(ti),Yi)

2

= λ1(ti+) +
1

σ2
LogX1(ti)Yi ,

(12)

where we used (see [12]) that

∇X1(ti)dg(X1(ti),Yi)
2 = −2LogX1(ti)Yi . (13)

In more detail, this computes the Riemannian Log-
Map4 which allows us to shoot X1(ti) to Yi in unit
time along the geodesic connecting X1(ti) and Yi.
The gradients of the energy from Eq. (10) w.r.t. X1(0)
and X2(0) are given by

∇X1(0)E = −(In −X1(0)X1(0)>)λ1(0)

+ X2(0)λ2(0)>X1(0)
(14)

and

∇X2(0)E = −(In −X1(0)X1(0)>)λ2(0) . (15)

Based on these gradients, the optimization problem
can be solved numerically [12].

4See [1] for a detailed explanation of the Log-Map of
the Grassmannian.

3.2 Hessian estimation

As discussed in Sec. 2, although the noise variance
σ2 is unknown before estimation, it is a constant
that will not affect the optimal solution of the regres-
sion problem. However, the noise variance is impor-
tant for Hessian estimation to obtain a proper covari-
ance matrix through the Hessian inverse. In stan-
dard geodesic regression, measurement noise is as-
sumed to be homoscedastic. In Eq. (10), this man-
ifests in a simple sum-of-squared geodesic distances.
However, this may not always be a realistic noise as-
sumption. In particular, it is generally not well suited
for shape regression which is our target example appli-
cation (see Sec. 4). Hence, we generalize the squared
geodesic distance to a weighted-squared geodesic dis-
tance, reminiscent of a Gaussian noise model with
a more general covariance structure. We note that
dg(Yi,X1(ti))

2 = ‖LogX1(ti)Yi‖2F , and the Rieman-
nian Log-map on G(p, n) returns a n×p matrix. Hence,
we reformulate the noise model in the tangent spaces
of points on the Grassmannian and define a weighted
squared geodesic distance as

dgw(Yi,X1(ti); Σi)
2 := ‖Σ−

1
2

i vec(LogX1(ti)Yi)‖2 .
(16)

Here, vec(·) vectorizes a matrix and produces a col-
umn vector. Vectorization depends on the context and
needs to be consistent with the structure of Σi. In fact,
this weighted squared geodesic distance is a generaliza-
tion of the geodesic distance dg on the Grassmannian;
by setting Σi = diag(σ2, · · · , σ2), Eq. (16) reduces to
the standard geodesic distance. The energy term for
geodesic regression consequently changes to

E({Xi(0)}) :=
1

2

N∑
i=1

dgw(Yi,X1(ti); Σi)
2 , (17)

subject to the geodesic constraints and the constraints
on the initial condition from Eq. (10). Notably, this
modification only changes the regression formulation
of Sec. 3.1 slightly: jumps for λ1 change to λ1(ti−) =
λ1(ti+)+mat(Σ−1i vec(LogX1(ti)Yi)), where mat(·) re-
shapes the matrix from its vectorized representation.

The newly introduced weighting requires us to esti-
mate the Σi’s for computing the weighted geodesic
distance. With a sufficient amount of data, the full Σi

can be estimated reliably. If only a few measurements
are available, we need to assume a simpler structure
of Σi. For our shape regression problems, we will use
a block-diagonal form, with sub-covariance matrices
{Σk

i }nk=1 of size p×p, because of the limited number of
data samples. Hence, for each entry of X1 we consider
row-wise variances. For instance, in the shape analysis
of Sec. 4, X1 is a n×p matrix with columns represent-
ing the coordinates of points (i.e., p = 2, 3 for 2D or



3D shapes, resp.) and n being the number of bound-
ary points (of the shape). We assume the coordinates
of each point5 are correlated, which is estimated in its
corresponding sub-covariance matrix Σk

i . In this way,
for each point of a shape, we have p(p+1)/2 unknowns
in the symmetric matrix Σk

i , which can be estimated
from at least p(p + 1)/2 samples. While, in princi-
ple, all the measurement time-points could share one
matrix Σ, this is not appropriate in curved spaces, as
each estimated point X1(ti) has its own tangent space.
Hence, we estimate tangent-space specific Σi’s, i.e., at
each time point ti there is an associated covariance
matrix Σi.

In more detail, we first initialize all Σi’s with identity
matrices and then alternatingly (i) fit the geodesic and
(ii) estimate the covariance matrices Σi of the mea-
surement noise model. For each Σi, we first compute
the analogs of the residuals V∗i = LogX1(ti)Yi for each
measurement Yi and its corresponding point X1(ti)
on the regression geodesic. We then parallel-transport
each of the residual tangent vectors to all other mea-
surement time points. Finally, Σi is estimated from
the residual tangent vectors at this time-point and
all the parallel-transported residual tangent vectors
of the other measurement time points, i.e., {Vi}Ni=1

obtained from {V∗i }Ni=1. For our block-diagonal case,
each block-diagonal sub-covariance matrix {Σk

i }nk=1 is

computed as 1
N

∑N
i=1(Vk

i )>Vk
i , where Vk

i is the k-th
row of the residual matrix Vi.

Hessian-vector products. To compute the Hessian-
vector-products, we follow Sec. 2.1 and take the second
variation of the energy from Eq. (17) in the direction
δX0 = [δX>1,0, δX

>
2,0]>. As a result, around the opti-

mal solution, we can obtain the linearized TLM equa-
tions for shooting the perturbation δX0 forward as

δẊ1 = δX2

δẊ2 = − δX1(X>2 X2)−X1(δX>2 X2)

−X1(X>2 δX2)

(18)

with δX1(0) = δX1,0 and δX2(0) = δX2,0. The asso-
ciated TLAM equations for shooting the adjoint vari-
ables δλ1 and δλ2 backward are

δλ̇1 = δλ2(X>2 X2) + λ2(δX>2 X2) + λ2(X>2 δX2),

δλ̇2 = X2(δλ>2 X1 + λ>2 δX1 + δX>1 λ2 + X>1 δλ2)

+ δX2(λ>2 X1 + X>1 λ2)− δλ1,
(19)

subject to δλ1(1) = δλ2(1) = 0. Again, we also have

5A reasonable alternative, not explored in this paper,
would also be to account for covariances with neighboring
points.

jumps for δλ1 at each data point, i.e.,

δλ1(ti−) = δλ1(ti+)− 1

2
mat(Σ−1vec(Z)) (20)

with

Z = (∇2
X1(ti)

dg(X1(ti),Yi)
2)δX1(ti) . (21)

Computing Z is non-trivial as Z essentially is the
product of the Hessian of the Grassmannian squared
distance function and the direction δX1(ti). We nu-
merically approximate this term by using the deriva-
tive of the gradient, i.e., (∂∇X1(ti)+εδX1(ti)dg(X1(ti)+
εδX1(ti),Yi)

2/∂ε)|ε=0, since we already know the so-
lution to ∇X1(ti)dg(X1(ti),Yi)

2 from Eq. (13). As an
alternative to this numerical approximation, the Hes-
sian of the squared geodesic distance could be com-
puted analytically following the algorithm in [6].

Solving the forward TLM and backward TLAM equa-
tions for a given perturbation δX0 allows us to com-
pute the Hessian-vector-product with respect to X0 =
[X1(0)>,X2(0)>]> as

∇2E

(
δX1(0)

δX2(0)

)
=

(
h1
h2

)
(22)

with h1, h2 given by

h1 =∇2
X1X1

EδX1(0) +∇2
X1X2

EδX2(0)

=− (In −X1(0)X1(0)>)δλ1(0)

+ δX1(0)X1(0)>λ1(0) + X1(0)δX1(0)>λ1(0)

+ δX2(0)λ2(0)>X1(0) + X2(0)δλ2(0)>X1(0)

+ X2(0)λ2(0)>δX1(0)

(23)

and

h2 =∇2
X2X1

EδX1(0) +∇2
X2X2

EδX2(0)

=− (In −X1(0)X1(0)>)δλ2(0)

+ δX1(0)X1(0)>λ2(0)

+ X1(0)δX1(0)>λ2(0) .

(24)

Note that the Hessian ∇2E is of size 2np × 2np, in-
volving all the parameters in the initial conditions X0.
At each iteration, by initializing the perturbation δX0

as mat([0, · · · , 0, 1, 0, · · · , 0]>2np), we obtain the equiv-
alent of one column of the desired Hessian ∇2E.

3.3 Covariance Matrix Estimation

If the Hessian is symmetric and positive definite, its in-
verse (i.e., the covariance matrix estimate) is symmet-
ric and positive definite. However, the Hessian on the



Grassmannian is semi-positive definite, because the di-
mensionality of G(p, n) is p(n − p) instead of np [5].
Hence, among the np principal directions of the Hes-
sian for X1, p2 principal directions will have eigenval-
ues of zero. The same situation holds for X2. Con-
sequently, the first 2p2 eigenvalues of the Hessian are
zero. In practice, because of numerical errors, these
eigenvalues may not be exactly zero but some small
negative or positive values. We therefore set the first
2p2 smallest eigenvalues of the Hessian to zero. The
Moore-Penrose pseudoinverse of the Hessian then gives
the covariance matrix estimate for X0. Importantly, if
we partition C(0) into 4 np× np blocks, the diagonal
sub-matrices are the variances for X1(0) and X2(0)
and the off-diagonal sub-matrices are the covariance
between them.

3.3.1 Covariance Matrix Propagation

Now that we have the covariance matrix C(0) for
parameters X1(0) and X2(0), we need to appropri-
ately propagate C(0) along the regression geodesic.
To achieve this goal, we rewrite the linearized for-
ward equations, i.e., Eq. (18), around the opti-
mal solution as δẊ = A(t)δX, where δX =
[vec(δX1)>, vec(δX2)>]> is a column vector of size
2np, resulting in

A(t) =

[
0np Inp
R S

]
(25)

with
R =− (X2(t)>X2(t))⊗ In

S =− (X2(t)> ⊗X1(t))Tnp

− Ip ⊗ (X1(t)X2(t)>)

(26)

and Tnp being an orthogonal permutation matrix of
size np×np that satisfies vec(δX>2 ) = Tnp · vec(δX2).
The time-dependent matrix A(t) is determined by the
regression geodesic, i.e., at each time point t it is com-
puted using the optimal X1(t) and X2(t). The covari-
ance then propagates as Ċ = CA> + AC. These are
the same equations as for the covariance propagation
in a continuous-time Kalman filter without noise [9].

4 Experiments

We demonstrate our approach for estimating confi-
dence intervals for geodesic regression on G(p, n) on
synthetic and real data6. In the experiments, we pri-
marily consider shape data. Each shape is represented
on the Grassmannian using singular value decomposi-
tion (SVD) on the coordinate matrix [12]. For exam-
ple, for a 2D shape with n points its coordinate matrix

6Source code for the proposed method is publicly avail-
able at https://bitbucket.org/yi_hong/ggr_all.

of size n× 2 is L = [(x1, y1); (x2, y2); ...; (xn, yn)]. For
a 3D shape the coordinate matrix is n× 3. By apply-
ing SVD on this matrix, i.e., L = UΣV>, we obtain
an affine-invariant shape representation (cf. [1]) using
the left-singular vectors U, which is a representative
for an element (i.e., a subspace) on G(p, n).

For each independent value ti, there is an estimated
shape X1, its corresponding tangent vector, i.e., the
velocity X2, and an estimated covariance matrix
(propagated to ti) for X1 and X2. While there is no
straightforward way to jointly visualize the covariance
matrix for both starting point and velocity, we can vi-
sualize them separately. E.g., given 2D shapes, the co-
variance matrix is 2np×2np. We can easily extract the
sub-matrix corresponding to the initial condition (or
velocity) and then consider each 2× 2 block along the
diagonal. These blocks correspond to sub-covariances
at each point on the shape (i.e., the marginals of a
point). A confidence interval (CI) is not straightfor-
wardly defined on manifolds; hence, we visualize the
confidence interval for each point on the shape via its
marginals. By fixing a 95% CI, we can visualize the
sub-covariances using an error ellipse (or ellipsoid in
3D) and color each ellipse/ellipsoid by the correspond-
ing matrix determinant.

Synthetic data. We generate two sets of synthetic
data to validate our approach. The first one is a se-
quence of 11 “T-shapes” with the horizontal part grad-
ually thinning. Each shape has an associated scalar
value, i.e., the time point t which is uniformly sam-
pled within [0, 1]. To add noise to these T-shapes, we
shift the vertical part slightly to the left or to the right
at each time point. The generated shapes and their
corresponding shapes on the regression geodesic are
shown in Fig. 1(a). In this experiment, the regression
geodesic captures the thinning trend of the horizontal
part of the T-shape. However, the added noise due to
shifting the vertical parts adds to the local uncertainty,
as shown by the CIs in Fig. 1(a).

The second synthetic data, shown in Fig. 1(b), also
includes 11 shapes, all uniformly sampled from a
geodesic that connects two shapes, a flower and a bird.
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Figure 2: Trace of the variance at the 1st point (x, y) of
the synthetic shape in the “flower” → “bird” experiment.

https://bitbucket.org/yi_hong/ggr_all


(a) Synthetic T-shapes

(b) Synthetic flower and bird shapes

Figure 1: Synthetic shapes with 95% CIs for the shape (top row in (a) and (b), resp.) and the velocity (bottom row
in (a) and (b), resp.) at five time points (left to right). The black dashed curves are the generated shapes, and the
magenta ones are the corresponding shapes on the geodesic. The color coding of the ellipses indicates the determinant of
the sub-covariances, from small values (blue) to high values (yellow).

As before, each shape has an associated independent
value t, uniformly distributed within [0, 1]. To “pull”
the sampled shapes away from the geodesic, we use
another set of 11 different shapes to build individual
geodesics, along which we move our sampled shapes
for time t = 1/5. The resulting shapes are no longer
on one geodesic. Fig. 1(b) shows the local uncer-
tainty introduced by moving the shapes away from the
geodesic, visualized through the corresponding CIs.

Most notably, in both experiments, the CIs for the
shapes first decrease and then increase when moving
along the regression geodesic. Yet, the CI for the ve-
locity remains almost unchanged. This can be more
clearly seen from Fig. 2. In particular, we choose the
first point of a shape and trace its variance in each co-
ordinate (i.e., the marginals for x and y, resp.) along
the geodesic. Around the mid-time point, the variance
of the shape reaches its minimum as at this time point

we have the most measurements on both sides available
for estimation. However, in case of the velocity CIs we
do not have related measurement information. These
observations are consistent with the CIs we observe for
least-squares regression with points in R2 [17]. They
also hold in the following experiments.

Real data. In our experiments with real data, we ap-
ply our method to study (1) corpus callosum degenera-
tion and (2) longitudinal caudate changes. The corpus
callosum shapes are 2D shapes collected from 32 sub-
jects. Each shape is represented by 64 2D landmarks
with an associated subject age, varying from 19 to 90
years. Fig. 3 (top) demonstrates the 95% CIs for esti-
mated shapes at three ages. We only show one 95% CI
for the velocity, because (as discussed before) the vari-
ance of the velocity remains almost unchanged along
the regression geodesic. In this data set, the variances
of corpus callosum shapes are quite small. Neverthe-



Figure 3: Real shapes with 95% CIs for the shape (first three columns) at three time points (left to right : 19, 55, 90
years for corpus callosum and 6, 16, 24 months for caudate) and 95% CIs for the velocity (rightmost column). For the
corpus callosum shapes, the black dashed curves are real shapes, and the magenta ones are the corresponding shapes on
the regression geodesic. For caudates, the magenta surface meshes are the estimated caudates on the regression geodesic.
As in Fig. 1, the color coding of the ellipsoids indicates the determinant of the sub-covariances, from small values (blue)
to high values (yellow).

less, we can still see the changes in the variance of
the shape along the regression geodesic. Furthermore,
from the CIs for the shape and the velocity, we can see
that the anterior and posterior ends of the corpus cal-
losum exhibit larger uncertainty than the mid-caudate.
This is consistent with previous studies.

The caudate data set is longitudinal, including 10 sub-
jects with data collected at three time points, i.e., 6,
12, and 24 months. Each shape is represented by 1002
3D landmarks. In our experiment, we only use the left
caudate. Fig. 3 (bottom) shows the 95% CIs for the
shape and the velocity. As expected, the CIs for the
shape at mid-age show highest confidence; again, the
CIs for the velocity remains almost unchanged along
the regression geodesic. Notably, the “tail” of the cau-
date exhibits higher variance, which is consistent with
the data as the caudate tail is difficult to segment.

5 Discussion

We presented an approach to estimate confidence in-
tervals for geodesic regression on the Grassmannian.
In principle, this concept can be extended to other Rie-
mannian manifolds by adjusting the appropriate terms
(i.e., Log-Map, parallel transport, etc.). Our experi-
mental results (1) show that estimated confidence in-
tervals are consistent with the behavior of linear least-
squares regression and (2) that we can provide local
uncertainties of the regression results over time. Ad-
ditionally, we have introduced block-diagonal matrices
to approximate the general measurement covariance
matrices to give different weights to the shape coor-
dinates. In general, the full measurement noise model
could be estimated, given a sufficiently large number of
measurements. To ensure the numerical correctness of
the covariance estimate of the regression parameters,
we compared our results with an approximate analyti-
cal solution obtained from finite differences of the gra-

dient of the energy (and then taking the inverse). For
the synthetic data, with a small perturbation at the
optimal solution of the regression, e.g., 1e-6, the finite
difference approximation results in a covariance close
to ours, i.e., 1e-9 difference in the Frobenius-norm.

In addition, the covariance matrix estimation, i.e.,
computing the Hessian inverse, would be computa-
tionally demanding for a large and high-dimensional
dataset. However, approximate solutions can be used
in this case, e.g., by using a low-rank approximation
of the Hessian [22].

Finally, we note that MCMC sampling could, in prin-
ciple, be used to estimate model uncertainty. How-
ever, sampling manifold-valued parameters is non-
trivial [10], especially for our case, where parameters
reside in the tangent bundle of the Grassmannian. To
compare our method with MCMC sampling, one pos-
sible strategy could be exploring Hybrid Monte Carlo
sampling strategies on matrix manifolds [11] (or [2])
and further extending these strategies to the tangent
bundle. This comparison, however, is not straightfor-
ward and is left for future work.
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